2018版高中数学第二章数列2.2.2等差数列的前n项和第1课时等差数列的前n项和课件新人教B版必修5

合集下载

高中数学 第二章 数列 2.3 等差数列的前n项和 第2课时 等差数列的前n项和(习题课)达标检测(

高中数学 第二章 数列 2.3 等差数列的前n项和 第2课时 等差数列的前n项和(习题课)达标检测(

等差数列的前n 项和A 级 基础巩固一、选择题1.一个等差数列共有2n +1项,其奇数项的和为512,偶数项的和为480,则中间项为()A .30B .31C .32D .33解析:中间项为a n +1.S 奇=(a 1+a 2n +1)2·(n +1)=(n +1)a n +1=512. S 偶=a 2+a 2n 2·n =n ·a n +1=480. 所以a n +1=S 奇-S 偶=512-480=32.答案:C2.(多选)设{a n }是等差数列,S n 为其前n 项和,且S 7<S 8,S 8=S 9>S 10,则下列结论正确的是()A .d <0B .a 9=0C .S 11>S 7D .S 8、S 9均为S n 的最大值解析:由S 7<S 8得a 1+a 2+a 3+…+a 7<a 1+a 2+…+a 7+a 8,即a 8>0,又因为S 8=S 9,所以a 1+a 2+…+a 8=a 1+a 2+…+a 8+a 9,所以a 9=0,故B 项正确.同理由S 9>S 10,得a 10<0,因为d =a 10-a 9<0,故A 项正确.对C ,S 11>S 7,即a 8+a 9+a 10+a 11>0,可得2(a 9+a 10)>0,由结论a 9=0,a 10<0,显然C 项是错误的.因为S 7<S 8,S 8=S 9>S 10,所以S 8与S 9均为S n 的最大值,故D 项正确.答案:ABD3.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12为()A.310B.13C.18D.19解析:S 3,S 6-S 3,S 9-S 6,S 12-S 9,构成一个新的等差数列,令S 3=1,S 6-S 3=3-1=2,所以S 9-S 6=3,S 12-S 9=4.所以S 12=S 3+(S 6-S 3)+(S 9-S 6)+(S 12-S 9)=1+2+3+4=10.所以S 6S 12=310. 答案:A4.若数列{a n }的前n 项和是S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|等于()A .15B .35C .66D .100解析:易得a n =⎩⎪⎨⎪⎧-1,n =1,2n -5,n ≥2. |a 1|=1,|a 2|=1,|a 3|=1,令a n >0则2n -5>0,所以n ≥3.所以|a 1|+|a 2|+…+|a 10|=-(a 1+a 2)+a 3+…+a 10=2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.答案:C5.设等差数列{a n }的前n 项和为S n ,若a 2=-11,a 5+a 9=-2,则当S n 取最小值时,n =()A .9B .8C .7D .6解析:设等差数列{a n }的首项为a 1,公差为d ,由⎩⎪⎨⎪⎧a 2=-11,a 5+a 9=-2,得⎩⎪⎨⎪⎧a 1+d =-11,2a 1+12d =-2, 解得⎩⎪⎨⎪⎧a 1=-13,d =2.所以a n =-15+2n .由a n =-15+2n ≤0,解得n ≤152. 又n 为正整数,所以当S n 取最小值时,n =7.答案:C二、填空题6.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=________.解析:S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6).因为S 3=9,S 6-S 3=27,所以S 9-S 6=45,所以a 7+a 8+a 9=S 9-S 6=45.答案:457.(2019·全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和,a 1≠0,a 2=3a 1,则S 10S 5=________. 答案:48.若等差数列{a n }的前n 项和为S n (n ∈N *),若a 2∶a 3=5∶2,则S 3∶S 5=________. 解析:S 3S 5=3(a 1+a 3)5(a 1+a 5)=3a 25a 3=35×52=32. 答案:3∶2三、解答题9.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的X 围;(2)问前几项的和最大,并说明理由.解:(1)因为a 3=12,所以a 1=12-2d ,因为S 12>0,S 13<0,所以⎩⎪⎨⎪⎧12a 1+66d >0,13a 1+78d <0,即⎩⎪⎨⎪⎧24+7d >0,3+d <0, 所以-247<d <-3. (2)因为S 12>0,S 13<0,所以⎩⎪⎨⎪⎧a 1+a 12>0,a 1+a 13<0,所以⎩⎪⎨⎪⎧a 6+a 7>0,a 7<0, 所以a 6>0.又由(1)知d <0.所以数列前6项为正,从第7项起为负.所以数列前6项和最大.10.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. 解:法一 设等差数列{a n }的公差为d ,前n 项和为S n ,则S n =na 1+n (n -1)2d .由已知得⎩⎪⎨⎪⎧10a 1+10×92d =100,①100a 1+100×992d =10,② ①×10-②,整理得d =-1150, 代入①,得a 1=1 099100. 所以S 110=110a 1+110×1092d =110×1 099100+110×1092×⎝ ⎛⎭⎪⎫-1150 =110×1 099-109×11100=-110. 故此数列的前110项之和为-110. 法二 数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100为等差数列,设公差为d ′,则10S 10+10×92×d ′=S 100=10, 因为S 10=100,代入上式得d ′=-22, 所以S 110-S 100=S 10+(11-1)×d ′=100+10×(-22)=-120, 所以S 110=-120+S 100=-110.法三 设等差数列{a n }的前n 项和S n =an 2+bn . 因为S 10=100,S 100=10,所以⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10, 所以⎩⎪⎨⎪⎧a =-11100,b =11110, 所以S n =-11100n 2+11110n , 所以S 110=-11100×1102+11110×110=-110. B 级 能力提升1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,已知S 4=0,a 5=5,则()A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n 答案:A2.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003· a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是________.解析:由条件可知数列单调递减,故知 a 2 003>0,a 2 004<0,故S 4 006=4 006(a 1+a 4 006)2=2 003·(a 2 003+a 2 004)>0, S 4 007=4 007(a 1+a 4 007)2=4 007×a 2 004<0, 故使前n 项和S n >0成立的最大自然数n 是4 006. 答案:4 0063.等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 因为S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52. 因此d =-3.数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n , 于是T n =b 1+b 2+…+b n =13⎣⎢⎡⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+⎦⎥⎤…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13(110-3n -110)=n 10(10-3n ).。

(完整版)数列公式汇总.doc

(完整版)数列公式汇总.doc

人教版数学必修五第二章数列重难点解析第二章课文目录2. 1数列的概念与简单表示法2. 2等差数列2. 3等差数列的前n 项和2. 4等比数列2. 5等比数列前n 项和【重点】1、数列及其有关概念,通项公式及其应用。

2、根据数列的递推公式写出数列的前几项。

3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。

4、等差数列 n 项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。

5、等比数列的定义及通项公式,等比中项的理解与应用。

6、等比数列的前n 项和公式推导,进一步熟练掌握等比数列的通项公式和前n 项和公式【难点】1、根据数列的前n 项观察、归纳数列的一个通项公式。

2、理解递推公式与通项公式的关系。

3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。

4、灵活应用等差数列前n 项公式解决一些简单的有关问题。

5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。

6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。

一、数列的概念与简单表示法⒈ 数列的定义:按一定次序排列的一列数叫做数列 .注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉ 数列的项:数列中的每一个数都叫做这个数列的项 . 各项依次叫做这个数列的第 1 项(或首项),第2 项,,第 n 项, .⒊数列的一般形式:a1 , a2 , a3 , , a n , ,或简记为a n,其中 a n是数列的第n项⒋数列的通项公式:如果数列 a n 的第 n 项a n与 n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式 .注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;⑵一个数列的通项公式有时是不唯一的,如数列:1, 0, 1, 0, 1 , 0 ,它的通项公式可以是1 ( 1) n 1|.a n ,也可以是 a n | cos n 12 2⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:*数列可以看成以正整数集N(或它的有限子集{1 , 2, 3,, n} )为定义域的函数a n f (n) ,当自变量从小到大依次取值时对应的一列函数值。

4.2.2等差数列的前n项和(第一课时)课件(人教版)

4.2.2等差数列的前n项和(第一课时)课件(人教版)
最小值时n的值为(
A.5

B.6
C.7
)
D.8
a1
17
解析 由 7a5+5a9=0,得 d =- 3 .
又a9>a5,所以d>0,a1<0.
d
1 a1 1 17 37
d 2
因为函数 y=2x +a1-2x 的图象的对称轴为 x=2- d =2+ 3 = 6 ,


取最接近的整数 6,故 Sn 取得最小值时 n 的值为 6.
已知等差数列{ an }的首项为a1,项数
是n,第n项为an,求前n项和Sn .
S n a1 (a1 d ) (a1 2d ) ... [a1 (n 1)d ], ①
S n an (an d ) (an 2d ) ... [an (n 1)d ], ②
跟踪练习
8.植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距
10米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前
来领取树苗往返所走的路程总和最小,此最小值为________米.
解析 假设20位同学是1号到20号依次排列,
使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,
由①+②,得
2Sn (a1 an)+(a1 an)+(a1 an)+...+(a1 an)
n个
n(a1 an )
2 S n n(a1 an ) 即Sn
2
求和公式
可知三
求一
等差数列的前n项和的公式:
n(a1 an )
Sn
不含d

第二章 数列

第二章 数列

例题一
已知数列1/1×2,1/2×3,1/3×4,….,1/n×(n+1),…… (1)求这个数列的第10项,第20项。 (2)1/2009是不是这个数列中的项,如果是,是第几项?
例题二
写出下面数列的一个通项公式,使它们的前4项分别是下列各数: (1)1,-1/2,1/3,-1/4; (2)2,0,2,0.
的前n项和,已知s7=7,s15=75,Tn为数列【 sn/n 】
记等差数列
的前n项和为sn,若a1=1/2,s4=20,则s6=?
已知数列 是等差数列,sn是其前n项和,且sm=n,sn=m(m≠n且m n 是 正整数),则sm+n=?
求和:1/(1×3)+1/(2×4)+1/(3×5)+……1/n(n+2)
递推公式是求数列的通项公式的一种重要途径
例题四
设数列
满足
a1=1 an=1+1/an-1 (n>1) 写出这个数列的前五项
例题五
已知数列 中,a1=a>0,an+1=f(an)(n为正整数),其中f(x)=2x/(x+1)
(1)求a2 a3 a4
(2)猜想数列
的一个通项公式。
an与sn的关系
数列的前n项的和通常记为sn,sn=a1+a2+……+an. S1 (n=1) Sn与an的关系:an= Sn-sn-1 (n≥2)
………
……
………
等差中项
由三个数a,A,b组成的等差数列可以看成最简单的等差 数列。这时,A叫做a与b 的等差中项
等差数列的通项公式
一般的,如果一个数列 数列的定义,可以得到:
的首项是a1,公差是d,我们根据等差

高中数学课件:第二章 2.3 等差数列的前n项和 第一课时 等差数列的前n项和

高中数学课件:第二章 2.3 等差数列的前n项和 第一课时 等差数列的前n项和
99 an= 9×10n
n=1 n≥2.
返回
在等差数列{an}中,S10=100,S100=10.求S110.
[解] 法一:(基本量法)设等差数列{an}的首项为 a1,
1010-1 d=100, 10a1+ 2 公差为 d,则 100a +100100-1d=10. 1 2
2
返回
返回
点击此图片进入 NO.1 课堂强化
返回
点击此图片进入 NO.2 课下检测
返回
1 022,求公差d;
(2)已知等差数列{an}中,a2+a5=19,S5=40,求a10.
返回
nn-1 解:(1)因为 an=a1+(n-1)d,Sn=na1+ 2 d, 又 a1=1,an=-512,Sn=-1 022, 1+n-1d=-512, 所以 1 n+2nn-1d=-1 022. ① ②
返回
返回
[研一题] [例1] 在等差数列{an}中,已知d=2,an=11,Sn=
35,求a1和n.
返回
[自主解答]
an=a1+n-1d, 由 nn-1 Sn=na1+ 2 d,
பைடு நூலகம்
a1+2n-1=11, 得 nn-1 na1+ 2 ×2=35,
n=5, 解方程组得 a1=3, n=7, 或 a1=-1.
2 . 3
课前预习·巧设计
第 二 章 数 列
等 差 数 列 的 前
第一 课时 等差 数列 的前 n项 和
名 师 课 堂 · 一 点 通
创 新 演 练 · 大 冲 关
考点一 考点二 考点三
n
项 和
N0.1 课堂强化 N0.2 课下检测
返回
返回

高中数学必修5课件:第2章2-3-1等差数列的前n项和

高中数学必修5课件:第2章2-3-1等差数列的前n项和

数学 必修5
第二章 数列
与前n项和有关的最值问题
已知等差数列{an}中,a1=9,a4+a7=0. (1)求数列{an}的通项公式; (2)当n为何值时,数列{an}的前n项和取得最大值. [思路点拨]
数学 必修5
第二章 数列
[规范解答] (1)由a1=9,a4+a7=0,
得a1+3d+a1+6d=0,
数学 必修5
第二章 数列
等差数列的前n项和公式
已知量 首项、末项与项数
求和
na1+an
公式 Sn=_____2________
首项、公差与项数 Sn=__n_a_1+__n__n_2-__1__d___
数学 必修5
第二章 数列
对等差数列前n项和公式的理解 (1)等差数列的前n项和公式有两种形式,涉及a1,an,Sn, n,d五个量,通常已知其中三个量,可求另外两个量,解答方 法就是解方程组.
数学 必修5
第二章 数列
如图,某仓库堆放的一堆钢管,最上面的一层有4根钢 管,下面的每一层都比上一层多一根,最下面的一层有9根.
[问题1] 共有几层?图形的横截面是什么形状? [提示] 六层 等腰梯形
数学 必修5
第二章 数列
[问题2] 假设在这堆钢管旁边再倒放上同样一堆钢管,如 图所示,则这样共有多少钢管?
数学 必修5
第二章 数列
由an≤0解得n≤4,即数列{an}前3项为负数,第4项为0, 从第5项开始为正数.
∴当n≤4时,Tn=-Sn=n(7-n), 当n>4时,Tn=Sn-S4+(-S4) =Sn-2S4=n(n-7)-2×4×(4-7) =n2-7n+24
∴Tn=nn2-7-7nn+,2n4≤,4n,>4.

高中数学第二章数列2.2.1等差数列第2课时等差数列的性质课件新人教B版必修5

高中数学第二章数列2.2.1等差数列第2课时等差数列的性质课件新人教B版必修5
【导学号:18082024】
第二十三页,共42页。
【解】 由题意可知,,(n≥2,n∈N+),每年获利构成等差数列{an},且首项 a1=200,公差 d =-20.
所以 an=a1+(n-1)d=200+(n-1)×(-20) =-20n+220. 若 an<0,则该公司经销这一产品将亏损, 由 an=-20n+220<0,解得 n>11, 即从第 12 年起,该公司经销这一产品将亏损.
解得
a1=1, d=3

a1=16, d=-3,
∴d=3 或-3.
第三十一页,共42页。
法二:(1)根据已知条件 a2+a3+a23+a24=48,及 a2+a24=a3+a23=2a13. 得 4a13=48,∴a13=12. (2)由 a2+a3+a4+a5=34,及 a3+a4=a2+a5 得 2(a2+a5)=34, 即 a2+a5=17. 解aa22+·a5a=5=521,7, 得aa25= =41, 3 或aa52==41.3, ∴d=a55--2a2=13- 3 4=3 或 d=a55--2a2=4-313=-3.
第十九页,共42页。
【自主解答】 由题图可知,从第 1 年到第 6 年平均每个养鸡场出产的鸡
数成等差数列,记为{an},公差为 d1,且 a1=1,a6=2;从第 1 年到第 6 年的养 鸡场个数也成等差数列,记为{bn},公差为 d2,且 b1=30,b6=10;从第 1 年到 第 6 年全县出产鸡的总只数记为数列{cn},则 cn=anbn.
第九页,共42页。
4.已知等差数列{an}中,a7+a9=16,a4=1,则 a12=________. 【解析】 在等差数列{an}中,由于 a7+a9=a4+a12,所以 a12=(a7+a9)- a4=16-1=15. 【答案】 15

等差数列前n项和公式(第1课)

等差数列前n项和公式(第1课)

(高考链接)等差数列 an 的前 为 s .已知 a10 30 , a20 50.
n
n 项和记
(1)求通项 an ;
(2)令 sn 242 ,求 n .
等差数列的前 n 项和(第1课时)
课堂小结
等差数列前n项和公式
n(a1 an ) Sn 2
n(n 1) S n na1 d 2
等差数列的前 n 项和(第1课时)
变1: 在等差数列an 中,已知d 20, n 37, sn 629, 求a1及an .
变2:等差数列-10,-6,2,· · · · · · · 前多少项和是54 ?
变3:等差数列{an}中, d=20, an=18, Sn=48,求a1的值。
等差数列的前 n 项和(第1课时)
(关于n的二次函数)
公式的推证用的是倒序相加法
在两个求和公式中,各有四个元素,只要知道其中三个元 素,结合通项公式就可求出另两个元素.
等差数列的前 n 项和(第1课时)
• 如图,建筑工地上一堆圆木,从上到下 每层的数目分别为1,2,3,……,10 . 问共有多少根圆木?
等差数列的前 n 项和(第1课时)
等差数列的前 n 项和(第1课时)
数列前n 项和的意义
这节课我们研究的问题是:(1)已知等差数列 { an }的首项a1,项数n,第n项an,求前n项 和Sn的计算公式;(2)对此公式进行应用。
数列{ an }: a1, a2 , a3 ,…, an
,…
我们把 a1+a2 + a3 + … + an 叫做数列{ an } 的前n项和,记作Sn
例3 已知一个等差数列的前10项和是310, 前20项的和是1220,由这些条件能确定这 个等差数列的前n项和的公式吗?

2018版高中数学 第二章 数列 2.5 等比数列的前n项和(一) 新人教A版必修5

2018版高中数学 第二章 数列 2.5 等比数列的前n项和(一) 新人教A版必修5
返回
本课结束
第二章 数 列
§2.5 等比数列的前n项和(一)
学习 目标
1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单 问题.
栏目 索引
知识梳理 题型探究 当堂检测
自主学习 重点突破 自查自纠
知识梳理
知识点一 等比数列前n项和公式 1.等比数列前n项和公式
反思与感悟
解析答案
跟踪训练3 在等比数列{an}中,a2=3,a5=81. (1)求an及其前n项和Sn; 解 设{an}的公比为q,依题意得
a1q=3 a1q4=81
,解得aq1==31

因此,an=3n-1,Sn=111--33n=3n-2 1.
解析答案
1 (2)设 bn=1+log3an,求数列bn·bn+1的前 10 项和 T10.
+a5+a6+a7等于( )
11
19
A. 8
B.16
9
3
C.8
D.4
解析答案
12345
3.设等比数列{an}的公比 q=3,前 n 项和为 Sn,则Sa42等于___4_30____. 解析 由题意得 S4=a111--334=40a1,又 a2=3a1, ∴Sa42=430.
解析答案
12345
4.等比数列{an}中,a2=9,a5=243,则{an}的前4项和是___1_2_0___. 解析 ∵a5=a2·q3,∴q3=2943=27. ∴公比q=3,从而a1=3, ∴S4=a111--qq4=311--334=120.
解析答案
12345
5.设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则a1= ________,S5=________.

高中数学《等差数列前n项和的性质及应用》知识点讲解及重点练习

高中数学《等差数列前n项和的性质及应用》知识点讲解及重点练习

第2课时 等差数列前n 项和的性质及应用学习目标 1.进一步熟练掌握等差数列的通项公式和前n 项和公式,了解等差数列前n 项和的一些性质.2.掌握等差数列前n 项和的最值问题.知识点一 等差数列前n 项和的性质1.若数列{a n }是公差为d 的等差数列,则数列{S n n }也是等差数列,且公差为d2.2.设等差数列{a n }的公差为d ,S n 为其前n 项和,则S m ,S 2m -S m ,S 3m -S 2m ,…仍构成等差数列,且公差为m 2d .3.若等差数列{a n }的项数为2n ,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n.4.若等差数列{a n }的项数为2n +1,则S 2n +1=(2n +1)·a n +1,S 偶-S 奇=-a n +1,S 偶S 奇=n n +1.思考 在性质3中,a n 和a n +1分别是哪两项?在性质4中,a n +1是哪一项?答案 中间两项,中间项.知识点二 等差数列{a n }的前n 项和公式的函数特征1.公式S n =na 1+n (n -1)d2可化成关于n 的表达式:S n =d 2n 2+(a 1-d 2)n .当d ≠0时,S n 关于n的表达式是一个常数项为零的二次函数式,即点(n ,S n )在其相应的二次函数的图象上,这就是说等差数列的前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d 2x 2+(a 1-d 2)x 上横坐标为正整数的一系列孤立的点.2.等差数列前n 项和的最值(1)在等差数列{a n }中,当a 1>0,d <0时,S n 有最大值,使S n 取得最值的n 可由不等式组Error!确定;当a 1<0,d >0时,S n 有最小值,使S n 取到最值的n 可由不等式组Error!确定.(2)S n =d 2n 2+(a 1-d 2)n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有最小值;当d <0时,S n 有最大值.当n 取最接近对称轴的正整数时,S n 取到最值.1.在等差数列{a n }中,若a 1+a 2=2,a 3+a 4=4,则a 7+a 8等于( )A .7 B .8 C .9 D .10答案 B解析 ∵a 1+a 2=2,a 3+a 4=4,由等差数列的性质得a 5+a 6=6,a 7+a 8=8.2.已知数列{a n }为等差数列,a 2=0,a 4=-2,则其前n 项和S n 的最大值为( )A.98 B.94C .1 D .0答案 C解析 由a 4=a 2+(4-2)d ,得-2=0+2d ,故d =-1,a 1=1,故S n =n +n (n -1)2·(-1)=-n 22+3n2=-12(n -32)2+98.所以当n =1或2时,S n 的最大值为1.3.(多选)已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为( )A .22 B .23 C .24 D .25答案 BC解析 由a n ≤0即2n -48≤0得n ≤24.∴所有负项的和最小,即n =23或24.4.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 018,S 2 0192 019-S 2 0132 013=6,则S 2 020=________.答案 2 020解析 由等差数列的性质可得{S n n}也为等差数列,设其公差为d ,则S 2 0192 019-S 2 0132 013=6d =6,∴d =1,∴S nn =S 11+(n -1)d =n -2 019.故S 2 0202 020=2 020-2 019=1,∴S 2 020=2 020.一、等差数列前n 项和的性质例1 (1)在等差数列{a n }中,S 10=120,且在这10项中,S 奇S 偶=1113,则公差d =________.答案 2解析 由Error!得Error!所以S 偶-S 奇=5d =10,所以d =2.(2)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m .解 方法一 在等差数列中,∵S m ,S 2m -S m ,S 3m -S 2m 成等差数列,∴30,70,S 3m -100成等差数列.∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m 成等差数列,∴2S 2m2m =S mm +S 3m3m.即S 3m =3(S 2m -S m )=3×(100-30)=210.反思感悟 利用等差数列前n 项和的性质简化计算(1)在解决等差数列问题时,先利用已知求出a 1,d ,再求所求,是基本解法,有时运算量大些;(2) 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.(3)设而不求,整体代换也是很好的解题方法.跟踪训练1 (1)已知数列{a n }是项数为偶数的等差数列,它的奇数项的和是50,偶数项的和为34,若它的末项比首项小28,则该数列的公差是________.答案 -4解析 设等差数列{a n }的项数为2m ,∵末项与首项的差为-28,∴a 2m -a 1=(2m -1)d =-28,①∵S 奇=50,S 偶=34,∴S 偶-S 奇=34-50=-16=md ,②由①②得d =-4.(2)已知一个等差数列的前10项和为100,前100项和为10,求前110项之和.解 S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100成等差数列.设其公差为d ,前10项和为10S 10+10×92d =S 100=10,解得d =-22,∴S 110-S 100=S 10+(11-1)d =100+10×(-22)=-120,∴S 110=-120+S 100=-110.二、等差数列前n 项和的最值问题例2 在等差数列{a n }中,a 1=25,S 8=S 18,求前n 项和S n 的最大值.解 方法一 因为S 8=S 18,a 1=25,所以8×25+8×(8-1)2d =18×25+18×(18-1)2d ,解得d =-2.所以S n =25n +n (n -1)2×(-2)=-n 2+26n =-(n -13)2+169.所以当n =13时,S n 有最大值为169.方法二 同方法一,求出公差d =-2.所以a n =25+(n -1)×(-2)=-2n +27.因为a 1=25>0,由Error!得Error!又因为n ∈N *,所以当n =13时,S n 有最大值为169.方法三 因为S 8=S 18,所以a 9+a 10+…+a 18=0.由等差数列的性质得a 13+a 14=0.因为a 1>0,所以d <0.所以a 13>0,a 14<0.所以当n =13时,S n 有最大值.由a 13+a 14=0,得a 1+12d +a 1+13d =0,解得d =-2,所以S 13=13×25+13×122×(-2)=169,所以S n 的最大值为169.方法四 设S n =An 2+Bn .因为S 8=S 18,a 1=25,所以二次函数图象的对称轴为x =8+182=13,且开口方向向下,所以当n=13时,S n取得最大值.由题意得Error!解得Error!所以S n=-n2+26n,所以S13=169,即S n的最大值为169.反思感悟 (1)等差数列前n项和S n最大(小)值的情形①若a1>0,d<0,则S n存在最大值,即所有非负项之和.②若a1<0,d>0,则S n存在最小值,即所有非正项之和.(2)求等差数列前n项和S n最值的方法①寻找正、负项的分界点,可利用等差数列性质或利用Error!或Error!来寻找.②运用二次函数求最值.跟踪训练2 在等差数列{a n}中,a10=18,前5项的和S5=-15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和的最小值,并指出何时取最小值.解 (1)设等差数列的公差为d,因为在等差数列{a n}中,a10=18,S5=-15,所以Error!解得a1=-9,d=3,所以a n=3n-12,n∈N*.(2)因为a1=-9,d=3,a n=3n-12,所以S n=n(a1+a n)2=12(3n2-21n)=32(n-7 2)2-1478,所以当n=3或4时,前n项的和S n取得最小值S3=S4=-18.三、求数列{|a n|}的前n项和例3 数列{a n}的前n项和S n=100n-n2(n∈N*).(1)判断{a n}是不是等差数列,若是,求其首项、公差;(2)设b n=|a n|,求数列{b n}的前n项和.解 (1)当n≥2时,a n=S n-S n-1=(100n-n2)-[100(n-1)-(n-1)2]=101-2n.∵a1=S1=100×1-12=99,适合上式,∴a n =101-2n (n ∈N *).又a n +1-a n =-2为常数,∴数列{a n }是首项为99,公差为-2的等差数列.(2)令a n =101-2n ≥0,得n ≤50.5,∵n ∈N *,∴n ≤50(n ∈N *).①当1≤n ≤50时,a n >0,此时b n =|a n |=a n ,∴数列{b n }的前n 项和S n ′=100n -n 2.②当n ≥51时,a n <0,此时b n =|a n |=-a n ,由b 51+b 52+…+b n =-(a 51+a 52+…+a n )=-(S n -S 50)=S 50-S n ,得数列{b n }的前n 项和S n ′=S 50+(S 50-S n )=2S 50-S n =2×2 500-(100n -n 2)=5 000-100n +n 2.由①②得数列{b n }的前n 项和为S n ′=Error!n ∈N *.反思感悟 已知等差数列{a n },求绝对值数列{|a n |}的有关问题是一种常见的题型,解决此类问题的核心便是去掉绝对值,此时应从其通项公式入手,分析哪些项是正的,哪些项是负的,即找出正、负项的“分界点”.跟踪训练3 在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解 (1)由Error!得Error!∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533,∴当n ≤17,n ∈N *时,a n >0;当n ≥18,n ∈N *时,a n <0,∴数列{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n .当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2(-32×172+1032×17)-(-32n 2+1032n)=32n 2-1032n +884.∴S n =Error!等差数列前n 项和公式的实际应用典例 某单位用分期付款的方式为职工购买40套住房,共需1 150万元,购买当天先付150万元,按约定以后每月的这一天都交付50万元,并加付所有欠款利息,月利率为1%,若交付150万元后的一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少钱?全部付清后,买这40套住房实际花了多少钱?解 因购房时付150万元,则欠款1 000万元,依题意分20次付款,则每次付款的数额依次构成数列{a n },则a 1=50+1 000×1%=60,a 2=50+(1 000-50)×1%=59.5,a 3=50+(1 000-50×2)×1%=59,a 4=50+(1 000-50×3)×1%=58.5,所以a n =50+[1 000-50(n -1)]×1%=60-12(n -1)(1≤n ≤20,n ∈N *).所以{a n }是以60为首项,-12为公差的等差数列.所以a 10=60-9×12=55.5,a 20=60-19×12=50.5.所以S 20=12×(a 1+a 20)×20=10×(60+50.5)=1 105.所以实际共付1 105+150=1 255(万元).[素养提升] (1)本题属于与等差数列前n 项和有关的应用题,其关键在于构造合适的等差数列.(2)遇到与正整数有关的应用题时,可以考虑与数列知识联系,抽象出数列的模型,并用有关知识解决相关的问题,是数学建模的核心素养的体观.1.已知数列{a n}满足a n=26-2n,则使其前n项和S n取最大值的n的值为( ) A.11或12 B.12C.13 D.12或13答案 D解析 ∵a n=26-2n,∴a n-a n-1=-2(n≥2,n∈N*),∴数列{a n}为等差数列.又a1=24,d=-2,∴S n=24n+n(n-1)2×(-2)=-n2+25n=-(n-252)2+6254.∵n∈N*,∴当n=12或13时,S n最大.2.一个等差数列共有10项,其偶数项之和是15,奇数项之和是12.5,则它的首项与公差分别是( )A.0.5,0.5 B.0.5,1C.0.5,2 D.1,0.5答案 A解析 由于项数为10,故S偶-S奇=15-12.5=5d,∴d=0.5,由15+12.5=10a1+10×92×0.5,得a1=0.5.3.(多选)设{a n}是等差数列,S n为其前n项和,且S5<S6=S7>S8,则下列结论正确的是( ) A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值答案 ABD解析 ∵S5<S6=S7>S8,∴a6>0,a7=0,a8<0.∴d<0.∴S6与S7均为S n的最大值.S9-S5=a6+a7+a8+a9=2(a7+a8)<0.∴S9<S5,故C错.4.已知在等差数列{a n}中,|a5|=|a9|,公差d>0,则使得其前n项和S n取得最小值的正整数n 的值是________.答案 6或7解析 ∵公差d>0,|a5|=|a9|,∴-a5=a9,即a5+a9=0.由等差数列的性质,得2a7=a5+a9=0,解得a7=0.故数列的前6项均为负数,第7项为0,从第8项开始为正.∴S n 取得最小值时的n 为6或7.5.已知等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32∶27,则公差d =________.答案 5解析 由题意得Error!故S 偶=192,S 奇=162,所以6d =S 偶-S 奇=30,故d =5.1.知识清单:(1)等差数列前n 项和的一般性质.(2)等差数列前n 项和的函数性质.2.方法归纳:整体思想、函数思想、分类讨论思想.3.常见误区:求数列{|a n |}的前n 项和时不讨论,最后不用分段函数表示.1.在等差数列{a n }中,a 1=1,其前n 项和为S n ,若S 88-S 66=2,则S 10等于( )A .10B .100C .110D .120答案 B解析 ∵{a n }是等差数列,a 1=1,∴{S n n }也是等差数列且首项为S 11=1.又S 88-S 66=2,∴{S n n }的公差是1,∴S 1010=1+(10-1)×1=10,∴S 10=100.2.若等差数列{a n }的前m 项的和S m 为20,前3m 项的和S 3m 为90,则它的前2m 项的和S 2m 为( )A .30B .70C .50D .60答案 C解析 ∵等差数列{a n }中,S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,∴2(S 2m -S m )=S m +S 3m -S 2m ,∴2(S 2m -20)=20+90-S 2m ,∴S 2m =50.3.已知数列{2n -19},那么这个数列的前n 项和S n ( )A .有最大值且是整数 B .有最小值且是整数C .有最大值且是分数 D .无最大值和最小值答案 B解析 易知数列{2n -19}的通项a n =2n -19,∴a 1=-17,d =2.∴该数列是递增等差数列.令a n =0,得n =912.∴a 1<a 2<a 3<…<a 9<0<a 10<….∴该数列前n 项和有最小值,为S 9=9a 1+9×82d =-81.4.(多选)已知S n 是等差数列{a n }的前n 项和,且S 6>S 7>S 5,下列判断正确的是( )A .d <0B .S 11>0C .S 12<0D .数列{S n }中的最大项为S 11答案 AB 解析 ∵S 6>S 7,∴a 7<0,∵S 7>S 5,∴a 6+a 7>0,∴a 6>0,∴d <0,A 正确;又S 11=112(a 1+a 11)=11a 6>0,B 正确;S 12=122(a 1+a 12)=6(a 6+a 7)>0,C 不正确;数列{S n }中最大项为S 6,D 不正确.故正确的选项是AB.5.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 018,S k =S 2 009,则正整数k 为( )A .2 017 B .2 018 C .2 019 D .2 020答案 D解析 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S2 011=S2 018,S k=S2 009,可得2 011+2 0182=2 009+k2,解得k=2 020.6.已知在等差数列{a n}中,公差d=1,且前100项和为148,则前100项中的所有偶数项的和为________.答案 99解析 由题意,得S奇+S偶=148,S偶-S奇=50d=50,解得S偶=99.7.已知在等差数列{a n}中,S n为其前n项和,已知S3=9,a4+a5+a6=7,则S9-S6=________.答案 5解析 ∵S3,S6-S3,S9-S6成等差数列,而S3=9,S6-S3=a4+a5+a6=7,∴S9-S6=5.8.已知等差数列{a n}的前n项和为S n,7a5+5a9=0,且a9>a5,则S n取得最小值时n的值为________.答案 6解析 由7a5+5a9=0,得a1d=-173.又a9>a5,所以d>0,a1<0.因为函数y=d2x2+(a1-d2)x的图象的对称轴为x=12-a1d=12+173=376,取最接近的整数6,故S n取得最小值时n的值为6.9.已知在等差数列{a n}中,a1=9,a4+a7=0.(1)求数列{a n}的通项公式;(2)当n为何值时,数列{a n}的前n项和取得最大值?解 (1)由a1=9,a4+a7=0,得a1+3d+a1+6d=0,解得d=-2,∴a n=a1+(n-1)·d=11-2n.(2)方法一 a1=9,d=-2,S n=9n+n(n-1)2·(-2)=-n2+10n=-(n-5)2+25,∴当n=5时,S n取得最大值.方法二 由(1)知a1=9,d=-2<0,∴{a n}是递减数列.令a n≥0,则11-2n≥0,解得n≤11 2 .∵n∈N*,∴当n≤5时,a n>0;当n≥6时,a n<0.∴当n=5时,S n取得最大值.10.在数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式;(2)设T n=|a1|+|a2|+…+|a n|,求T n.解 (1)∵a n+2-2a n+1+a n=0,∴a n+2-a n+1=a n+1-a n,∴{a n}是等差数列,又∵a1=8,a4=2,∴d=-2,a n=a1+(n-1)d=10-2n,n∈N*.(2)设数列{a n}的前n项和为S n,则S n=8n+n(n-1)2×(-2)=9n-n2.∵a n=10-2n,令a n=0,得n=5.当n>5时,a n<0;当n=5时,a n=0;当n<5时,a n>0.∴当n≤5时,T n=|a1|+|a2|+…+|a n|=a1+a2+…+a n=9n-n2.当n>5时,T n=|a1|+|a2|+…+|a n|=a1+a2+…+a5-(a6+a7+…+a n)=S5-(S n-S5)=2S5-S n=2×(9×5-25)-9n+n2=n2-9n+40,∴T n=Error!11.若数列{a n}的前n项和是S n=n2-4n+2,则|a1|+|a2|+…+|a10|等于( ) A.15 B.35 C.66 D.100答案 C解析 易得a n =Error!|a 1|=1,|a 2|=1,|a 3|=1,令a n >0,则2n -5>0,∴n ≥3.∴|a 1|+|a 2|+…+|a 10|=1+1+a 3+…+a 10=2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.12.已知等差数列{a n }的前n 项和为S n ,a 2=11,S 1515-S 77=-8,则S n 取最大值时的n 为( )A .6B .7C .8D .9答案 B解析 设数列{a n }是公差为d 的等差数列,则{S n n }是公差为d2的等差数列.因为S 1515-S 77=-8,故可得8×d2=-8,解得d =-2;则a 1=a 2-d =13,则S n =-n 2+14n =-(n -7)2+49,故当n =7时,S n 取得最大值.13.已知S n ,T n 分别是等差数列{a n },{b n }的前n 项和,且S n T n =2n +14n -2(n ∈N *),则a 10b 3+b 18+a 11b 6+b 15=________.答案 4178解析 因为b 3+b 18=b 6+b 15=b 10+b 11,所以a 10b 3+b 18+a 11b 6+b 15=a 10+a 11b 10+b 11=10(a 10+a 11)10(b 10+b 11)=S 20T 20=2×20+14×20-2=4178.14.已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,那么S 8S 16=________.答案 310解析 设S4=k,S8=3k,由等差数列的性质得S4,S8-S4,S12-S8,S16-S12构成等差数列.所以S8-S4=2k,S12-S8=3k,S16-S12=4k.所以S12=6k,S16=10k.S8S16=3 10.15.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.答案 11 7解析 设等差数列{a n}的项数为2n+1(n∈N*),S奇=a1+a3+…+a2n+1=(n+1)(a1+a2n+1)2=(n+1)a n+1,S偶=a2+a4+a6+…+a2n=n(a2+a2n)2=na n+1,所以S奇S偶=n+1n=4433,解得n=3,所以项数2n+1=7,S奇-S偶=a n+1,即a4=44-33=11,为所求的中间项.16.已知数列{a n}的前n项和为S n,a n>0,a1<2,6S n=(a n+1)(a n+2).(1)求证:{a n}是等差数列;(2)令b n=3a n a n+1,数列{b n}的前n项和为T n,求证:T n<1.证明 (1)因为6S n=(a n+1)(a n+2),所以当n≥2时,6S n-1=(a n-1+1)(a n-1+2),两式相减,得到6a n=(a2n+3a n+2)-(a2n-1+3a n-1+2),整理得(a n-a n-1)(a n+a n-1)=3(a n+a n-1),又因为a n>0,所以a n-a n-1=3,所以数列{a n}是公差为3的等差数列.(2)当n=1时,6S1=(a1+1)(a1+2),解得a1=1或a1=2,因为a1<2,所以a1=1,由(1)可知a n-a n-1=3,即公差d=3,所以a n=a1+(n-1)d=1+(n-1)×3=3n-2,所以b n=3a n a n+1=3(3n-2)(3n+1)=13n-2-13n+1,所以T n=1-14+14-17+…+13n-2-13n+1=1-13n+1<1.。

高中数学 第二章 数列 2.3 等差数列的前n项和学案 新人教A版必修5-新人教A版高一必修5数学学

高中数学 第二章 数列 2.3 等差数列的前n项和学案 新人教A版必修5-新人教A版高一必修5数学学

2.3 等差数列的前n项和(1)数列前n项和的定义是什么?通常用什么符号表示?(2)能否根据首项、末项与项数求出等差数列的前n项和?(3)能否根据首项、公差与项数求出等差数列的前n项和?[新知初探]1.数列的前n项和对于数列{a n},一般地称a1+a2+…+a n为数列{a n}的前n项和,用S n表示,即S n=a1+a2+…+a n.2.等差数列的前n项和公式已知量首项,末项与项数首项,公差与项数选用公式S n=n a1+a n2S n=na1+n n-12d[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n项和就是指从数列的第1项a1起,一直到第n项a n所有项的和( )(2)a n=S n-S n-1(n≥2)化简后关于n与a n的函数式即为数列{a n}的通项公式( )(3)在等差数列{a n}中,当项数m为偶数2n时,则S偶-S奇=a n+1( )解析:(1)正确.由前n项和的定义可知正确.(2)错误.例如数列{a n}中,S n=n2+2.当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1.又∵a1=S1=3,∴a1不满足a n=S n-S n-1=2n-1,故命题错误.(3)错误.当项数m为偶数2n时,则S偶-S奇=nd.预习课本P42~45,思考并完成以下问题答案:(1)√ (2)× (3)×2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n n +12解析:选 D 因为a 1=1,d =1,所以S n =n +n n -12×1=2n +n 2-n 2=n 2+n 2=n n +12,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20,即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.答案:12等差数列的前n 项和的有关计算[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n n -12d =-5,解得n =15或n =-4(舍). (2)由已知,得S 8=8a 1+a 82=84+a 82=172, 解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列中的基本计算(1)利用基本量求值:等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,这五个量可以“知三求二”.一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q ,常与求和公式S n =n a 1+a n2结合使用.[活学活用]设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 8=11,则S 9等于( ) A .13 B .35 C .49D .63解析:选D ∵{a n }为等差数列,∴a 1+a 9=a 2+a 8, ∴S 9=9a 2+a 82=9×142=63.已知S n 求a n 问题[典例] 已知数列{a n }的前n 项和S n =-2n 2+n +2.(1)求{a n }的通项公式; (2)判断{a n }是否为等差数列? [解] (1)∵S n =-2n 2+n +2, ∴当n ≥2时,S n -1=-2(n -1)2+(n -1)+2=-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4,但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.(1)已知S n 求a n ,其方法是a n =S n -S n -1(n ≥2),这里常常因为忽略条件“n ≥2”而出错. (2)在书写{a n }的通项公式时,务必验证n =1是否满足a n (n ≥2)的情形.如果不满足,则通项公式只能用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2表示.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2;(2)S n =3n-1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n-1)-(3n -1-1)=2×3n -1,显然a 1适合上式,所以a n =2×3n -1(n ∈N *).等差数列的前n 项和性质[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质:S n ,S 2n -S n ,S 3n -S 2n 成等差数列.所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [答案] (1)C (2)10 (3)53等差数列的前n 项和常用的性质(1)等差数列的依次k 项之和,S k ,S 2k -S k ,S 3k -S 2k …组成公差为k 2d 的等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数)⇔数列⎩⎨⎧⎭⎬⎫S n n 为等差数列.(3)若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d , ①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=a na n +1; ②当项数为奇数2n -1时,S 奇-S 偶=a n ,S 奇S 偶=n n -1. [活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18 B .17 C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n 3+2n +12=n 2+2n ,所以S n n=n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.答案:75等差数列的前n 项和最值问题[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得25×17+17×17-12d =25×9+9×9-12d ,解得d =-2, [法一 公式法]S n =25n +n n -12×(-2)=-(n -13)2+169.由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 配方,转化为求二次函数的最值问题,借助函数单调性来解决.(2)邻项变号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0的项数n 使S n 取最大值.当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n 使S n 取最小值.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n2B .-32n 2-n2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n -1+2-3n2=-32n 2+n2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选 C 由等差数列的性质及求和公式得,S 13=13a 1+a 132=13a 7>0,S 15=15a 1+a 152=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎪⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92a 1+a 952a 1+a 5=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________. 解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. 答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=n +1a 1+a 2n +12=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n a 2+a 2n2=na n +1,所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7, S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项.答案:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3, 当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n,又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧2a 2=22,5a 3=45, 即⎩⎪⎨⎪⎧a 2=11,a 3=9,所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n a 1+a n2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C. 3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a n b n =a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -122n -1b 1+b 2n -122n -1=A 2n -1B 2n -1=72n -1+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.答案:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28.(1)求数列{a n }的通项公式;(2)若b n =S n n +c (c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴a 1+a 4×42=28,a 1+a 4=14,a 2+a 3=14,又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧ a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c, ∴b 1=11+c ,b 2=62+c ,b 3=153+c . 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧ a 1=50,d =-3,∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0; 当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n n -12d =-32n 2+1032n .当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝ ⎛⎭⎪⎫-32×172+1032×17-⎝ ⎛⎭⎪⎫-32n 2+1032n =32n 2-1032n +884. ∴S n =⎩⎪⎨⎪⎧ -32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。

2017-2018年度高中数学 第二章 数列 2.3 等差数列的前n项和讲义 新人教A版必修5

2017-2018年度高中数学 第二章 数列 2.3 等差数列的前n项和讲义 新人教A版必修5
+a6+a7+a8)-S4=16d,解得 d=14,a11+a12+a13+a14=S4问题
[例 4] 已知等差数列{an}中,a1=9,a4+a7=0. (1)求数列{an}的通项公式; (2)当 n 为何值时,数列{an}的前 n 项和取得最大值. 【思路点拨】
跟踪训练 2 已知数列{an}的前 n 项和 Sn=-2n2+n+2. (1)求{an}的通项公式; (2)判断{an}是否为等差数列?
解析:(1)因为 Sn=-2n2+n+2, 所以当 n≥2 时,Sn-1=-2(n-1)2+(n-1)+2 =-2n2+5n-1,
所以 an=Sn-Sn-1 =(-2n2+n+2)-(-2n2+5n-1)
A.138
B.135
C.95
D.23
解析:由 a2+a4=4,a3+a5=10,可得 d=3,a1=-4. 所以 S10=-40+10× 2 9×3=95. 答案:C
3.(教材同类改编)等差数列{an}中,d=2,an=11,Sn=35, 则 a1 等于( )
A.5 或 7 B.3 或 5 C.7 或-1 D.3 或-1
令 an≥0,则 11-2n≥0,解得 n≤121. ∵n∈N+,∴n≤5 时,an>0,n≥6 时,an<0. ∴S5 最大.
方法归纳,
求等差数列的前 n 项和 Sn 的最值有两种方法: (1)通项法 ①当 a1>0,d<0 时,{an}只有前面的有限项为非负数,从某 项开始其余所有项均为负数,所以由am≥0, am+1≤0 可得 Sn 的最大值为 Sm;②当 a1<0,d>0 时,{an}只有前面的有限项为负 数,从某项开始其余所有项均为非负数,所以由
=-4n+3.
又 a1=S1=1,不满足 an=-4n+3, 所以数列{an}的通项公式是

等差数列的前n项和 第1课时

等差数列的前n项和 第1课时

等差数列中基本量计算的两个技巧 (1)利用基本量求值.等差数列的通项公式和前n项和公式中有五个量a1,d,n,an和 Sn,一般是利用公式列出基本量a1和d的方程组,解出a1和d,便可解决问题.解题时 注意整体代换的思想. (2)利用等差数列的性质解题.等差数列的常用性质:若m+n=p+q(m,n,p, q∈N+),则am+an=ap+aq,常与求和公式Sn=n(a12+an) 结合使用.
表 达
n(n-1) 2
d.
由已知得
10a1+102 9 d=100,①, 100a1+1002 99 d=10,②
①×10-②,整理得d=-5110 ,代入①得a1=1100909 .
所以 S110=110a1+110×2109 d=110×1100909 +110×2109 ×-5110 =

1101
必备知识·自主学习
导思
1.什么是等差数列的前n项和公式? 2.怎样推导等差数列的前n项和公式?
1.等差数列的前n项和公式
已知量 求和公式
首项,末项与项数
n(a1 an )
Sn=_____2_____
首项,公差与项数 Sn= n_a_1+__n_(_n_2_1_)_d_
在等差数列{an}中,涉及a1,d,n,an及Sn五个基本量,它们分别表示等差数列 的首项,公差,项数,项和前n项和.依据方程的思想,在等差数列前n项和公 式中已知其中三个量可求另外两个量,即“知三求二”.
4.2.2 等差数列的前n项和公式 第1课时 等差数列的前n项和
新课程标准
学业水平要求
1.探索并掌握等差数 列的前n项和公式,理 解等差数列的通项公 式与前n项和公式的关 系. 2.能在具体的问题情 境中,发现数列的等 差关系,并解决相应 的问题.

高中数学第二章数列2.3等差数列前n项和(第1课时)课件新人教A版必修5

高中数学第二章数列2.3等差数列前n项和(第1课时)课件新人教A版必修5
算上容易出现失误,不能准确 求出首项 a1 和公差 d; (2)基本公式中的项数或奇偶项的 确定不正确; (3)判断一个数列是否为等差数列
时,易忽略验证第一项.
[活学活用] 已知等差数列{an}中,a1=1,a3=-3. (1)求数列{an}的通项公式;(2)若数列{an}的前 k 项和 Sk=-35,求 k 的值. 解:(1)设等差数列{an}的公差为 d,则 an=a1+(n-1)d. 由 a1=1,a3=-3 可得 1+2d=-3.解得 d=-2. 从而,an=1+(n-1)×(-2)=3-2n. (2)由(1)可知 an=3-2n.所以 Sn=n1+23-2n=2n- n2.进而由 Sk=-35,可得 2k-k2=-35. 又 k∈N*,故 k=7 为所求.
归纳小结
等差数列的前 n 项和公式
已知量 首项,末项与项数 首项,公差与项数
选用 公式
Sn=na12+an
Sn=na1+nn2-1d
[化解疑难] 等差数列前 n 项和公式的特点
(1)两个公式共涉及到 a1,d,n,an 及 Sn 五个基本量,它 们分别表示等差数列的首项,公差,项数,通项和前 n 项和.
[答案] B
(2)[解] ∵数列{an}为等差数列, ∴S10,S20-S10,S30-S20,…,S110-S100 也成等差数列. 设其公差为 D,则 S10+(S20-S10)+(S30-S20)+…+(S100 -S90)=S100,
即 10S10+10×2 9×D=S100=10. 又∵S10=100,代入上式,得 D=-22, ∴S110-S100=S10+(11-1)×D=100+10×(- 22)=-120, ∴S110=-120+S100=-110.
答案:104

高中数学 第二章 数列 2.2.2 等差数列的前n项和(一)课

高中数学 第二章 数列 2.2.2 等差数列的前n项和(一)课

以用这三个基本量来表示,五个量a1,d,n,an,Sn中可知三
求二,注意利用等差数列的性质以简化计算过程,同时在具体
求解过程中还应注意已知与未知的联系及整体思想的运用.
2.2.2 等差数列的前n项和(一)
11
预课当跟习堂踪导讲检演学义测练1 在等差数列{a栏n}中目.索引 CONTENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
CONTENTS PAGE
[学习目标]
1.体会等差数列前n项和公式的推导过程.
2.掌握等差数列前n项和公式.
3.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由
其中三个求另外两个.
2.2.2 等差数列的前n项和(一)
2
预课当习堂导讲检学义测
栏目索引
CONTENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
(1)a1=65,an=-32,Sn=-5,求 n 和 d.
挑重当战点堂自难训我点练,点个体点个验落击成实破功
解 由题意,得 Sn=na1+ 2 an=n56- 2 23=-5,
解得n=15.
又 a15=56+(15-1)d=-32,∴d=-61.
2.2.2 等差数列的前n项和(一)
12
预课当习堂导讲检学义测
栏目索引
CONTENTS PAGE
(2)a1=4,S8=172,求a8和d.
挑重当战点堂自难训我点练,点个体点个验落击成实破功
解 由已知,得 S8=8a1+2 a8=84+2 a8=172,解得 a8=39,
又∵a8=4+(8-1)d=39,∴d=5.
2.2.2 等差数列的前n项和(一)
13

§2 2.2 第1课时 等差数列的前n项和

§2  2.2  第1课时 等差数列的前n项和

20×(20 −1) S= ×20 = 3 800(m). 2
答 植树工人共走了3 800m路程 路程. 植树工人共走了3 800m路程.
九江抗洪指挥部接到预报,24h后有一洪峰到达 后有一洪峰到达. 例11 九江抗洪指挥部接到预报,24h后有一洪峰到达. 为确保安全, 为确保安全,指挥部决定在洪峰来临前筑一道堤坝作为第 二道防线.经计算,需调用20台同型号翻斗车, 20台同型号翻斗车 二道防线.经计算,需调用20台同型号翻斗车,平均每辆 工作24h后方可筑成第二道防线. 24h后方可筑成第二道防线 工作24h后方可筑成第二道防线.但目前只有一辆车投入施 其余的需从昌九高速公路沿线抽调,每隔20min 20min能有 工,其余的需从昌九高速公路沿线抽调,每隔20min能有 一辆车到达,指挥部最多可调集25辆车,那么在24h 25辆车 24h内能 一辆车到达,指挥部最多可调集25辆车,那么在24h内能 否构筑成第二道防线? 否构筑成第二道防线? 从第一辆车投入工作算起,各车工作时间(单位: 解 从第一辆车投入工作算起,各车工作时间(单位: h)依次设为 依次设为: h)依次设为:
∵a1 =1 a120 =120, n =120 ,
120×(1+120) ∴S120 = = 7 260 支) ( . 2
支铅笔. 答:V形架上共放着7 260支铅笔. 形架上共放着7 260支铅笔
1.回顾从特殊到一般的研究方法; 1.回顾从特殊到一般的研究方法; 回顾从特殊到一般的研究方法 2.倒序相加的算法及数形结合的数学思想; 2.倒序相加的算法及数形结合的数学思想; 倒序相加的算法及数形结合的数学思想 3.掌握等差数列的两个求和公式及简单应用, 3.掌握等差数列的两个求和公式及简单应用,及函数与方 掌握等差数列的两个求和公式及简单应用 程的思想. 程的思想.

高中数学新人教B版必修5课件:第二章数列2.2习题课——等差数列习题课

高中数学新人教B版必修5课件:第二章数列2.2习题课——等差数列习题课

得 Sn-Sn-1+2SnSn-1=0.即
1
1
1
-1

1

+2=0,
∴ − =2.

∴数列
-1
1

是公差为 2 的等差数列.
1
1
2
1
又 S1=a1= ,∴ =2.
1
1
∴ =2+(n-1)×2=2n,Sn=2 ,

1
1
-1
∴当 n≥2 时,an=Sn-Sn-1=2 − 2(-1) = 2(-1).
+
当 p+q 为偶数时,n=
,Sn 最大;
2
+-1
++1
2
2
当 p+q 为奇数时,n=
或 n=
,Sn 最大.
②若a1<0,且Sp=Sq(p≠q),则
+
当 p+q 为偶数时,n=
,Sn 最小;
当 p+q 为奇数时,n=
或 n=
2
+-1
++1
2
2
,Sn 最小.
目标导航
题型一
4
(+2)
1
2
1
d=3n+
2
1
(-1)
1
1 1
2

1 1
-
2 4
1
1
-
4(+1)(+2)
.
+2
2
,
+…+
2 +1 +2
2+3
2(+1)(+2)

§2.2等差数列的前n项和

§2.2等差数列的前n项和

• 3.若等差数列{an}的通项公式为an=2n-3(n∈N+且n≤10) ,则a1+a3+a5+a7+a9=35,a2+a4+a6+a8+a10=45,结合 等差数列的性质和前n项和公式,上面的问题可以有多种求法 ,若记S奇=a1+a3+a5+a7+a9,S偶=a2+a4+a6+a8+a10, 则
• 一个等差数列的前10项之和为100,前100项之和为10, 求前110项之和.
• 本题既可以按照基本方法先求首项和公差,写出前n项和 公式来求解,也可以利用等差数列的前n项和性质进行求解.
[解题过程] 方法一:设等差数列{an}的公差为 d,前 n 项和为 Sn,
则 Sn=na1+nn-2 1d.
1.等差数列的前 n 项和公式与函数
由于等差数列的前 n 项和公式
Sn=na1+nn-2 1d=d2n2+a1-d2n. • (1)当d=0,a1≠0时,Sn= na1 ,它是n的
一次
函数.
• 2.等差数列的前n项和的性质
• 设{an}是公差为d的等差数列,则
• (1)Sm,S2m-Sm,S3m-S2m,…,也成等差数列,公差为 m2d .
S偶+S奇=354, ∴SS偶 奇=3227,
∴SS偶 奇= =119622, , ∴d=192-6 162=5, 又∵S 奇=a1+a211×6=3(2a1+10d)=162, ∴a1=2, ∴an=a1+(n-1)d=5n-3.
• [题后感悟] 等差数列{an}中,a1,a3,a5,…是首项为a1 ,公差为2d的等差数列,a2,a4,a6,…是首项为a2,公差为 2d的等差数列.当项数为2n时,S偶-S奇=nd,方法二中运用 到了这些性质.
• 有两个等差数列{an},{bn},其前n项和分别为Sn,Tn, 若TSnn=7nn++32,求ab55.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教材整理 等差数列的前 n 项和 阅读教材 P39 第二自然段~P39 例 1,完成下列问题. 1.数列的前 n 项和的概念
a1+a2+„+an 为数列{an}的前 n 项和,用 Sn 表示,即 Sn= 一般地,称________________ a1+a2+„+an ________________.
)
【解析】 a2+a6=a1+a7=14, 7a1+a7 ∴S7= =49. 2
【答案】 C
2.等差数列{an}中,a1=1,d=1,则 Sn=________.
【解析】 因为 a1=1,d=1,
nn-1 所以 Sn=n+ 2 ×1 2n+n2-n = 2 n2+n nn+1 = 2 = 2 .
[再练一题] 2.植树节某班 20 名同学在一段直线公路一侧植树,每人植树一棵,相邻两 棵树相距 10 米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各 自树坑出发前来领取树苗往返所走的路程总和最小,此最小值为________米. 1 号到 20 号依次排列,使每位同学从各自树
1 辆翻斗车完成的工作量为:a1+a2+„+a25=25×24+25×12×-3=
500,而需要完成的工作量为 24×20=480.∵500>480,∴在 24 小时内能构筑成 第二道防线.
1.本题属于与等差数列前 n 项和有关的应用题,其关 键在于构造合适的等差数列. 2.遇到与正整数有关的应用题时,可以考虑与数列知 识联系,建立数列模型,具体解决要注意以下两点: (1)抓住实际问题的特征,明确是什么类型的数列模型. (2)深入分析题意,确定是求通项公式 an,或是求前 n 项和 Sn,还是求项数 n.
【精彩点拨】 利用等差数列求和公式的两种形式求解.
【自主解答】 ∴d=3.
44-1 (1)S4=4a1+ 2 d=4a1+6d=2+6d=20,
66-1 故 S6=6a1+ 2 d=6a1+15d=3+15d=48. 3 nn-1 1 - =-15, (2)∵Sn=n· + 2 2 2 整理得 n2-7n-60=0, 解得 n=12 或 n=-5(舍去),
坑出发前来领取树苗往返所走的路程总和最小, 则树苗需放在第 10 或第 11 号树 坑旁, 此时两侧的同学所走的路程分别组成以 20 为首项, 20 为公差的等差数列, 9×8 10×9 故所有同学往返的总路程为 S = 9×20 + 2 ×20 + 10×20 + 2 ×20 = 2 000(米).
[再练一题] 1.已知 a6=10,S5=5,求 a8 和 S10.
5×4 S5=5a1+ d=5, 2 【解】 a6=a1+5d=10, 解得 a1=-5,d=3. ∴a8=a6+2d=10+2×3=16, 10×9 S10=10a1+ 2 d=10×(-5)+5×9×3=85.
阶 段 一
阶 段 三
2.2.2 第 1 课时
阶 段 二
等差数列的前 n 项和 等差数列的前 n 项和
学 业 分 层 测 评
1.了解等差数列前 n 项和公式的推导过程.难点,2.掌握等差数列前 n 项和公 式及其应用.重点,3.能灵活应用等差数列前 n 项和的性质解题.难点、 易错 点
[基础· 初探]
【精彩点拨】 因为每隔 20 分钟到达一辆车,所以每辆车的工作量构成一 个等差数列.工作量的总和若大于欲完成的工作量, 则说明 24 小时内可完成第二 道防线工程.
【自主解答】 从第一辆车投入工作算起各车工作时间(单位:小时)依次设 1 为 a1,a2,„,a25.由题意可知,此数列为等差数列,且 a1=24,公差 d=-3. 25
【答案】 nn+1 2
3.在等差数列{an}中,S10=120,那么 a1+a10=________.
10a1+a10 由 S10= =120,得 a1+a10=24. 2
【解析】
【答案】 24
4. 已知数列 {an} 的前 n 项和 Sn = n2 + 2n ,则数列 {an} 的通项公式 an = ________.
1 3 a12=2+(12-1)×-2=-4.
na1+an n-512+1 (3)由 Sn= = =-1 022, 2 2 解得 n=4. 又由 an=a1+(n-1)d, 即-512=1+(4-1)d, 解得 d=-171.
a1,n,d 为等差数列的三个基本量,an 和 Sn 都可以用这三个基本量来表示, 五个量 a1,n,d,an,Sn 中可知三求二.一般是通过通项公式和前 n 项和公式联 立方程组求解, 这种方法是解决数列问题的基本方法.在具体求解过程中, 应注 意已知与未知的联系及整体思想的运用.
【解析】 当 n=1 时,a1=S1=3. 当 n≥2 时, an=Sn-Sn-1=n2+2n-(n-1)2-2(n-1) =2n+1. 因为 n=1 时,a1=3,也满足 an=2n+1, 所以 an=2n+1.
【答案】 2n+1
[小组合作型]
有关等差数列的前n项和的基本运算
已知等差数列{an}中, 1 (1)a1=2,S4=20,求 S6; 3 1 (2)a1=2,d=-2,Sn=-15,求 n 及 an; (3)a1=1,an=-512,Sn=-1 022,求 d.
等差数列前 n项和公式的实际应用 XXX
某抗洪指挥部接到预报,24 小时后有一洪峰到达,为确保安全, 指挥部决定在洪峰到来之前临时筑一道堤坝作为第二道防线 .经计算,除现有的 参战军民连续奋战外,还需调用 20 台同型号翻斗车,平均每辆车工作 24 小时. 从各地紧急抽调的同型号翻斗车目前只有一辆投入使用,每隔 20 分钟能有一辆 翻斗车到达,一共可调集 25 辆,那么在 24 小时内能否构筑成第二道防线?
2.等差数列的前 n 项和公式 已知量 首项、末项与项数 首项、公差与项数
na1+an nn-1 求和公式 2 2 d Sn=____________ Sn=na1+____________
1.设 Sn 是等差数列{an}的前 n 项和,已知 a2=3,a6=11,则 S7 等于( A.13 B.35 C.49 D.63
相关文档
最新文档