第二章 统计 (复习课)

合集下载

人教新课标六年级下册数学教案:六《整理和复习“统计”》

人教新课标六年级下册数学教案:六《整理和复习“统计”》

标题:人教新课标六年级下册数学教案:六《整理和复习“统计”》一、教学目标1. 让学生掌握统计的基本概念和方法,能够运用所学知识解决实际问题。

2. 培养学生的观察能力、分析能力和逻辑思维能力。

3. 培养学生合作学习、自主探究的学习习惯。

4. 引导学生树立正确的统计观念,认识统计在日常生活和学习中的重要性。

二、教学内容1. 统计的基本概念:平均数、中位数、众数、方差、标准差等。

2. 统计的方法:调查、实验、观察等。

3. 统计在实际问题中的应用:分析数据、预测趋势、制定决策等。

三、教学重点与难点1. 教学重点:统计的基本概念和方法,以及在实际问题中的应用。

2. 教学难点:如何运用统计知识解决实际问题,培养学生的观察能力、分析能力和逻辑思维能力。

四、教学过程1. 导入新课:通过实际案例导入,让学生了解统计在实际生活中的重要性,激发学生的学习兴趣。

2. 讲解新课:讲解统计的基本概念和方法,结合实际案例进行分析,帮助学生理解和掌握。

3. 案例分析:选取具有代表性的案例,让学生运用所学知识进行分析,培养学生的观察能力、分析能力和逻辑思维能力。

4. 小组讨论:分组进行讨论,让学生在合作学习中巩固所学知识,提高解决问题的能力。

5. 课堂小结:对本节课的内容进行总结,强调重点知识,布置课后作业。

五、课后作业1. 请学生结合实际生活,运用统计知识解决一个问题,并撰写解题报告。

2. 请学生收集一组数据,计算其平均数、中位数、众数、方差、标准差等统计指标。

六、教学反思本节课通过讲解统计的基本概念和方法,以及实际案例的分析,让学生了解统计在实际生活中的重要性。

在教学过程中,注重培养学生的观察能力、分析能力和逻辑思维能力,引导学生树立正确的统计观念。

课后作业的布置,旨在巩固所学知识,提高学生解决问题的能力。

在教学过程中,教师还需关注学生的学习反馈,及时调整教学方法,提高教学效果。

总之,本节课的教学设计注重理论与实践相结合,充分调动学生的学习积极性,培养学生的自主学习能力。

人教版数学七年级上册第二章:复习-教案

人教版数学七年级上册第二章:复习-教案

第二章整式的加减复习题教材分析(一)地位和作用:本节课是人教版七年级数学第二章的复习课。

本章的主要内容是:单项式、多项式、整式、同类项的概念;用字母列式表示数量关系,合并同类项法则,去括号法则以及整式的加减运算。

通过本节课的学习,熟练掌握整式的加减法运算,为后面学习整式的乘除法和因式分解奠定基础。

(二)教学目标分析知识技能:梳理整式的相关概念,归纳概念之间的区别与联系.数学思考:进一步体会用字母表示数的意义,体会“数式通性”,体会蕴含在具体问题中的数学思想和规律.在教与学的过程中,引导学生有条理的思考,培养学生清楚表达思维过程的能力。

问题解决:在正确合并同类项、准确运用去括号时的符号变化规律的基础上,达到可以熟练地进行整式的加减运算.情感态度:让学生在轻松愉快的游戏中再次领悟整式的相关概念,激发学生学习数学兴趣,养成认真倾听他人发言的习惯,感受与同伴交流的乐趣.(三)教学重难点分析重点:概念之间的内在联系,以及可以熟练地进行整式的加减运算.难点:学情分析本节课在学生已经学习完本章的全部知识后,进行专题复习提高。

七年级学生已经具备了初步分析问题和解决问题的能力;在新的课改理念的指导下如何调动学生的学习热情,让自主学习、合作探究成为课堂教学的主流,教师要鼓励他们大胆尝试,敢于发表自己的看法,从中获得成功的体验。

教法分析教学过程不只是知识的(传)授——(接)受过程,也不是机械的告诉与被告诉的过程,而是一个学习者主动学习的过程.因而,考虑到学生的认知水平,以及本节课要让学生再次领悟整式的相关概念;灵活应用所学知识解决问题;因此,我采用启发、引导、设疑等教学方法,让学生始终处于主动学习的状态,课堂上教师起主导作用,给学生有充分的思考机会,使课堂气氛活泼,有新鲜感。

学法指导根据新课程标准理念,学生是学习的主体,教师只是学习的组织者,引导者,合作者.本节课主要通过老师的引导让学生解决现实生活中的实际问题,提高应用所学知识解决实际问题的能力,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用动手实践、自主探索,合作交流的学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

高中高中数学第二章统计2.3.1变量之间的相关关系2.3.2两个变量的线性相关课件新人教A版必修3

高中高中数学第二章统计2.3.1变量之间的相关关系2.3.2两个变量的线性相关课件新人教A版必修3

解:(1)画出散点图.
(2)判断变量x,y是否具有相关关系?如果具有相关关系,那么是正相关还是 负相关?
解:(2)具有相关关系.根据散点图,左下角到右上角的区域,变量x的值由小 变大时,另一个变量y的值也由小变大,所以它们具有正相关关系.
方法技巧 两个随机变量x和y是否具有相关关系的确定方法: (1)散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断 (如本题); (2)表格、关系式法:结合表格或关系式进行判断; (3)经验法:借助积累的经验进行分析判断.
4
4
解:(2)由表中的数据得: xi yi =52.5, x =3.5, y =3.5, xi2 =54,
i 1
i 1
n
所以 b =
xi yi n x y
i 1
n
xi2

2Hale Waihona Puke nx=52.5 4 3.5 3.5 54 4 3.52
=0.7,
i 1
a = y - b x =3.5-0.7×3.5=1.05,
年份x
储蓄存款 y(千亿元)
2013 5
2014 6
2015 7
2016 8
2017 10
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2 012,z=y-5 得到表2:
时间代号t
1
2
3
4
5
z
0
1
2
3
5
(1)求z关于t的线性回归方程;
5
5
解:(1) t =3, z =2.2, ti zi=45, ti2 =55,
知识探究
1.相关关系与函数关系不同 函数关系中的两个变量间是一种确定性关系,相关关系是一种不确定性关系. 2.正相关和负相关 (1)正相关 在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关 关系,我们就称它为正相关. (2)负相关 在散点图中,点散布在从左上角到右下角的区域,对于两个变量的这种相关 关系,我们就称它为负相关.

2024_2025学年高中数学第二章统计章末复习检测卷课时作业含解析新人教A版必修3

2024_2025学年高中数学第二章统计章末复习检测卷课时作业含解析新人教A版必修3

章末复习检测卷(二) 统计(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是() A.500名学生是总体B.每个被抽查的学生是样本C.抽取的60名学生的体重是一个样本D.抽取的60名学生是样本容量解析:答案:2.某考察团对全国10大城市进行职工人均工资水平x(元)与居民人均消费水平y(元)统计调查,y与x具有相关关系,线性回来方程为y=0.66x+1562,若某城市居民人均消费水平为7675元,估计该城市人均消费额占人均工资收入的百分比约为()A.83% B.72%C.67% D.66%解析:将y=7675代入回来方程,可计算得x≈9262,所以该城市人均消费额占人均工资收入的百分比约为7675÷9262≈0.83,即约为83%.答案: A3.对于数据3,3,2,3,6,3,10,3,6,3,2,有以下结论:①这组数据的众数是3.②这组数据的众数与中位数的数值不等.③这组数据的中位数与平均数的数值相等.④这组数据的平均数与众数的数值相等.其中正确的结论有()A.1个B.2个C.3个D.4个解析: 由题意知,众数与中位数都是3,平均数为4.只有①正确,故选A. 答案: A4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回来方程可能是( ) A .y =-10x +200 B .y =10x +200 C .y =-10x -200D .y =10x -200解析: ∵商品销售量y (件)与销售价格x (元/件)负相关, ∴b <0,解除B ,D.又∵x =0时,y >0,∴故选A. 答案: A5.“互联网+”时代,全民阅读的内涵已然多元化,提倡读书成为一种生活方式.某校为了解中学学生的阅读状况,从该校1 600名高一学生中,采纳分层抽样方法抽取一个容量为200的样本进行调查.若抽到的男生比女生多10人,则该校高一男生共有( )A .760人B .840人C .860人D .940人解析: 本题考查分层抽样.设所抽取的男生、女生分别有x 人、y 人,则⎩⎪⎨⎪⎧x +y =200,x -y =10解得⎩⎪⎨⎪⎧x =105,y =95所以该校高一男生共有105200×1 600=840(人),故选B.答案: B6.(2024·山东日照一中期中考试)对某商店四月内每天的顾客人数进行统计,所得数据的茎叶图如图所示,则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53解析: 由茎叶图,可知中位数为45+472=46,众数为45,极差为68-12=56.答案: A7.为探讨某药品的疗效,选取若干名志愿者进行临床试验,全部志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的依次分别编号为第一组,其次组,…,第五组.如图是依据试验数据制成的频率分布直方图.已知第一组与其次组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .1B .8C .12D .18解析: 由图知,样本总数为N =200.16+0.24=50.设第三组中有疗效的人数为x ,则6+x50=0.36,解得x =12.答案: C8.假如在一次试验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回来直线方程是( )A .y =x +1.9B .y =1.04x +1.9C .y =0.95x +1.04D .y =1.05x -0.9解析: x =14(1+2+3+4)=2.5,y =14(3+3.8+5.2+6)=4.5.因为回来方程过点(x ,y ),代入验证知,应选B.答案: B9.若样本数据x 1,x 2,…,x 2 018的标准差为3,则数据4x 1-1,4x 2-1,…,4x 2 018-1的方差为( )A .11B .12C .143D .144解析: 本题考查数据方差的求解.因为样本数据x 1,x 2,…,x 2 018的标准差为3,所以方差为9,所以数据4x 1-1,4x 2-1,…,4x 2 018-1的方差为42×9=144,故选D.答案: D10.某学校随机抽取20个班,调查各班中有网上购物经验的人数,所得数据的茎叶图如下图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )解析: 借助已知茎叶图得出各小组的频数,再由频率=频数样本容量求出各小组的频率,进一步求出频率组距并得出答案.法一:由题意知样本容量为20,组距为5. 列表如下:分组频数频率 频率组距 [0,5) 1 120 0.01 [5,10) 1 120 0.01 [10,15) 4 15 0.04 [15,20) 2 110 0.02 [20,25) 4 15 0.04 [25,30) 3 320 0.03 [30,35)33200.03[35,40] 2 110 0.02 合计201视察各选择项的频率分布直方图知选A.法二:由茎叶图知落在区间[0,5)与[5,10)上的频数相等,故频率、频率组距也分别相等.比较四个选项知A 正确,故选A.答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.有A ,B ,C 三种零件,分别为a 个、300个、200个,采纳分层抽样法抽取一个容量为45的样本,A 种零件被抽取20个,则a =________.解析: 依据题意得45a +300+200=20a ,解得a =400.答案: 40012.如图是依据某中学为地震灾区捐款的状况而制作的统计图,已知该校共有学生3 000人,由统计图可得该校共捐款________元.解析: 由扇形统计图可知,该中学高一、高二、高三分别有学生960人、990人、1 050人,由条形统计图知,该中学高一、高二、高三人均捐款分别为15元、13元、 10元,所以共捐款15×960+13×990+10×1 050=37 770(元).答案: 37 77013.某校开展“爱我母校,爱我家乡”摄影竞赛,9位评委为某参赛作品给出的分数的茎叶图如图,记分员去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发觉有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应当是________.解析: 平均分为91分,∴总分应为637分.由于须要去掉一个最高分和一个最低分,故须要分类探讨:①若x ≤4,则89+89+92+93+92+91+90+x =637,∴x =1;②若x >4,则89+89+92+93+92+91+94=640≠637,不符合题意.故填1. 答案: 114.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这56号打6小时篮球的投篮命中率为________.解析: 平均命中率y =15×(0.4+0.5+0.6+0.6+0.4)=0.5,而x =3,∑i =15x i y i =7.6,∑i =15x2i =55,由公式得b ∧=0.01,a ∧=y -b ∧x =0.5-0.01×3=0.47,∴y ∧=0.01x +0.47.令x =6,得y∧=0.53.答案: 0.5 0.53三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知一组数据按从小到大的依次排列为-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.解析: 由于数据-1,0,4,x,7,14的中位数为5,所以4+x2=5,x =6.设这组数据的平均数为x ,方差为s 2,由题意得 x =16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743. 16.(本小题满分12分)为了让学生了解更多有关“一带一路”的信息,某中学实行了一次“丝绸之路学问竞赛”,共有800名学生参与了这次竞赛.为了解本次竞赛成果状况,从中抽取了部分学生的成果(得分均为整数,满分为100分)进行统计.请你依据尚未完成的频率分布表,解答下列问题:分组频数频率60.5~70.50.1670.5~80.51080.5~90.5180.3690.5~100.5合计(1)若用系统抽样的方法抽取50个样本,现将全部学生的成果随机地编号为000,001,002,…,799,试写出其次组第一名学生成果的编号;(2)填充频率分布表中的空格(将答案干脆填在表格内),并作出频率分布直方图;(3)若成果在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约有多少名?解析:(1)依据系统抽样法则,要从总体中抽取50个样本,需将总体分为50组,则每组的学生数为800÷50=16,故其次组第一名学生成果的编号为016.(2)频率分布表如下表所示,频率分布直方图如图所示.分组频数频率60.5~70.580.1670.5~80.5100.2080.5~90.5180.3690.5~100.5140.28合计50 1(3)在被抽到的学生成果中在85.5~95.5分的个数是9+7=16,占样本的比例是1650=0.32,即获得二等奖的概率约为32%,所以获得二等奖的学生约有800×32%=256(名).17.(本小题满分12分)为了让学生了解环保学问,增加环保意识,某中学实行了一次环保学问竞赛,共有900名学生参与了这次竞赛.为了了解本次竞赛的成果状况,从中抽取了部分学生的成果(得分为正整数,满分为100分)进行统计.请你依据下面尚未完成的频率分布表和频率分布直方图(下图),解答下列问题:组号 分组 频数 频率 1 [50,60) 4 0.08 2 [60,70) 8 0.16 3 [70,80) 10 0.20 4 [80,90) 16 0.32 5 [90,100]合计(1)填充频率分布表中的空格;(2)不详细计算频率组距,补全频率分布直方图;(3)估计这900名学生竞赛的平均成果(同一组中的数据用该组区间的中点值作代表). 解析: (1)40.08=50,即样本容量为50.第5组的频数为50-4-8-10-16=12, 从而第5组的频率为1250=0.24.又各小组频率之和为1,所以频率分布表中的四个空格应分别填12,0.24,50,1.(2)依据小长方形的高与频数成正比,设第一个小长方形的高为h 1,其次个小长方形的高为h 2,第五个小长方形的高为h 5.由等量关系得h 1h 2=12,h 1h 5=13,补全的频率分布直方图如图所示.(3)50名学生竞赛的平均成果为x =4×55+8×65+10×75+16×85+12×9550=79.8≈80(分).利用样本估计总体的思想可得这900名学生竞赛的平均成果约为80分.18.(本小题满分14分)某部门为了了解用电量y (单位:千瓦时)与气温x (单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,因某天统计的用电量数据丢失,用t 表示,如下表:(1)(2)若用电量与气温之间具有较好的线性相关关系,回来直线方程为y ∧=-2x +b ∧,且预料气温为-4 ℃时,用电量为2t 千瓦时.求t ,b 的值.解析: (1)x =14(18+13+10-1)=10,s =14[(18-10)2+(13-10)2+(10-10)2+(-1-10)2]=1942. (2)y =14(24+t +38+64)=t +1264,∴t +1264=-2×10+b ,即4b -t =206.①又2t =-2×(-4)+b ,即2t -b =8.② 由①②得,t =34,b =60.。

高中数学第二章统计23变量间的相关关系课件新人教A版必修3(2)

高中数学第二章统计23变量间的相关关系课件新人教A版必修3(2)

总费用y/万元 2.2 3.8 5.5 6.5 7.0
(1)根据表格数据,画出散点图;
(2)求线性回归方程y^=b^x+a^的系数a^,b^; (3)估计使用年限为 10 年时,车的使用总费用是多少?
【解题探究】(1)利用描点法作出散点图; (2)把数据代入公式,可得回归方程的系数; (3)把x=10代入回归方程得y值,即为总费用的估计 值.
【答案】A 【解析】在A中,若b确定,则a,b,c都是常数,Δ= b2-4ac也就唯一确定了,因此,这两者之间是确定性的函数 关系;一般来说,光照时间越长,果树亩产量越高;降雪量越 大,交通事故发生率越高;施肥量越多,粮食亩产量越高,所 以B,C,D是相关关系.故选A.
两个变量x与y相关关系的判断方法 1.散点图法:通过散点图,观察它们的分布是否存在 一定规律,直观地判断.如果发现点的分布从整体上看大致在 一条直线附近,那么这两个变量就是线性相关的,注意不要受 个别点的位置的影响. 2.表格、关系式法:结合表格或关系式进行判断. 3.经验法:借助积累的经验进行分析判断.
变量之间的相关关系的判断
【 例 1】 下 列 变 量 之 间 的 关 系 不 是 相 关 关 系 的 是 ()
A.二次函数y=ax2+bx+c中,a,c是已知常数,取b 为自变量,因变量是判别式Δ=b2-4ac
B.光照时间和果树亩产量 C.降雪量和交通事故发生率 D.每亩田施肥量和粮食亩产量
【解题探究】判断两个变量之间具有相关关系的关键是 什么?
①反映^y与 x 之间的函数关系;
②反映 y 与 x 之间的函数关系;
③表示^y与 x 之间的不确定关系;
④表示最接近 y 与 x 之间真实关系的一条直线.
A.①②

统计复习数学教案

统计复习数学教案

统计复习数学教案标题:统计复习数学教案一、教学目标:1. 学生能够掌握基本的统计概念和术语,如数据、样本、总体、频率等。

2. 学生能够运用统计方法进行数据分析,并理解统计结果的意义。

3. 培养学生的数据意识,学会从数据中发现问题并提出解决方案。

二、教学内容:1. 统计基础知识回顾这部分主要是对已学过的统计知识进行回顾,包括数据的收集、整理和分析。

可以通过一些简单的实例,让学生回忆起相关的知识点。

2. 统计图表的制作和解读这部分主要讲解如何制作和解读各种统计图表,如柱状图、饼图、折线图等。

在讲解的过程中,可以让学生动手制作一些图表,以加深他们的理解和记忆。

3. 数据分析的方法和技巧这部分主要讲解如何通过统计方法进行数据分析,如平均数、中位数、众数、标准差等。

同时,也要讲解如何根据数据分析的结果,做出合理的决策。

三、教学方法:1. 讲解法:教师可以通过讲解和演示,帮助学生理解和掌握统计的知识和技能。

2. 实践法:通过实际的数据分析任务,让学生亲手操作,体验统计的过程,提高他们的实践能力。

3. 讨论法:鼓励学生之间的讨论和交流,激发他们的思考和创新。

四、教学步骤:1. 引入新课:通过一个有趣的问题或者实例,引起学生的兴趣和好奇心。

2. 讲解新知:详细讲解新的统计知识,确保每个学生都能听懂。

3. 动手实践:让学生动手制作统计图表,或者进行数据分析。

4. 互动讨论:组织学生进行小组讨论,分享自己的成果和心得。

5. 总结反馈:对学生的学习情况进行总结和反馈,指出他们的优点和不足。

五、教学评价:1. 进行过程评价,观察学生在学习过程中的表现,及时给予指导和帮助。

2. 进行结果评价,检查学生的学习成果,了解他们对知识的理解和应用情况。

3. 进行自我评价,鼓励学生对自己的学习进行反思和总结。

六、教学反思:1. 对教学过程进行反思,看看哪些地方做得好,哪些地方需要改进。

2. 对学生的学习效果进行反思,看看哪些学生学得好,哪些学生需要更多的帮助。

高中数学 第二章 统计模块复习课检测 新人教B版必修3-新人教B版高一必修3数学试题

高中数学 第二章 统计模块复习课检测 新人教B版必修3-新人教B版高一必修3数学试题

第2课时统计课后篇巩固探究A组1.下列不具有相关关系的是()A.单产不为常数时,土地面积和总产量B.人的身高与体重C.季节与学生的学习成绩D.学生的学习态度与学习成绩.2.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是()A.5B.7C.11D.13k==16,即每16人抽取一个人.因为39=2×16+7,所以第1小组中抽取的数为7.3.在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.48.49.49.99.69.49.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016=9.5.方差s2=[(9.4-9.5)2+(9.4-9.5)2+(9.6-9.5)2+(9.4-9.5)2+(9.7-9.5)2]=0.016.4.某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家,为了掌握各商店的营业情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的中型商店为() A.2家B.3家C.5家D.13家1:在整个抽样过程中,每个个体被抽到的可能性为,则抽取的中型商店为75×=5(家).方法2:因为大、中、小型商店数的比为30∶75∶195=2∶5∶13,所以抽取的中型商店为20×=5(家).答案:C5.某商场在五一促销活动中,对5月1日9时至14时的销售额进行统计,其频率分布直方图如图,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为()A.6万元B.8万元C.10万元D.12万元解析:由频率分布直方图可知,11时至12时的销售额占全部销售额的,即销售额为25×=10(万元).答案:C6.从一堆苹果中任取了20个,并得到它们的质量(单位:g)数据分布表如下:分组[90,100) [100,110) [110,120) [120,130) [130,140) [140,150)频数 1 2 3 10 1则这堆苹果中,质量不小于120 g的苹果数约占苹果总数的.解析:由表中可知这堆苹果中,质量不小于120 g的苹果数为20-1-2-3=14.故约占苹果总数的=0.70=70%.答案:70%7.某产品的广告费用x与销售额y的统计数据如下表:广告费用x/万元 4 2 3 5销售额y/万元49 26 39 54根据上表可得回归方程x+中的为9.4,据此模型预报广告费用为6万元时销售额约为元.解析:=3.5,=42,∴=42-9.4×3.5=9.1,∴回归方程为=9.4x+9.1,∴当x=6时,=9.4×6+9.1=65.5..58.现有同一型号的电脑96台,为了了解这种电脑每开机一次所产生的辐射情况,从中抽取10台在同一条件下做开机实验,测量开机一次所产生的辐射,得到如下数据:13.712.914.413.813.312.713.513.613.113.4(1)写出采用简单随机抽样抽取上述样本的过程;(2)根据样本,请估计总体平均数与总体标准差的情况.解:(1)利用随机数表法或抽签法.具体过程如下:方法一(抽签法):①将96台电脑随机编号为1~96;②将以上96个分别写在96X相同的小纸条上,揉成小球,制成号签;③把号签放入一个不透明的容器中,充分搅拌均匀;④从容器中逐个抽取10个号签,每次取完后再次搅拌均匀,并记录上面的;⑤找出和所得对应的10台电脑,组成样本.方法二(随机数表法):①将96台电脑随机编号,编号为00,01,02, (95)②在随机数表中任选一数作为开始,然后依次向右读,每次读两位,凡不在00~95中的数和前面已读过的数跳过不读,直到读出10个符合条件的数;③这10个数所对应的10台电脑即是我们所要抽取的样本.(2)=13.44;s2=≈0.461.故总体平均数为13.44,总体标准差约为0.461.9.对某班50人进行智力测验,其得分如下:48,64,52,86,71,48,64,41,86,79,71,68,82,84,68,64,62,68,81,57,90,52,74,73,56,78,47,66,5 5,64,56,88,69,40,73,97,68,56,67,59,70,52,79,44,55,69,62,58,32,58.(1)这次测试成绩的最大值和最小值各是多少?(2)将[30,100)平分成7个小区间,试画出该班学生智力测验成绩的频数分布图.(3)分析这个频数分布图,你能得出什么结论?解:(1)最小值是32,最大值是97.(2)7个区间分别是[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),每个小区间的长度是10,统计出各小区间内的数据频数,列表如下:区间[30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100)频数 1 6 12 14 9 6 2频数分布图如下图所示.(3)可以看出,该班智力测验成绩大体上呈两头小、中间大、左右对称的钟形状态,说明该班学生智力特别好或特别差的是极少数,而智力一般的是多数,这是一种最常见的分布.10.导学号17504078已知学生的总成绩与数学成绩之间有线性相关关系,下表给出了5名同学在一次考试中的总成绩和数学成绩(单位:分).学生编号1 2 3 4 5成绩总成绩/x482 383 421 364 362数学成绩/y78 65 71 64 61(1)求数学成绩与总成绩的回归直线方程.(2)根据以上信息,如果一个学生的总成绩为450分,试估计这个学生的数学成绩;(3)如果另一位学生的数学成绩为92分,试估计其总成绩是多少?解:(1)列出下表,并进行有关计算.编号x y x2xy1 482 78 232 324 37 5962 383 65 146 689 24 8953 421 71 177 241 29 8914 364 64 132 496 23 2965 362 61 131 044 22 082合计 2 012 339 819 794 137 760由上表可得,可得≈0.132,-0.132×≈14.683.故数学成绩y对总成绩x的回归直线方程为=14.683+0.132x.(2)由(1)得当总成绩x为450分时,=14.683+0.132×450≈74(分),即数学成绩大约为74分.(3)若数学成绩为92分,将=92代入回归直线方程=14.683+0.132x中,得x≈586(分).故估计该生的总成绩在586分左右.B组1.设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a解析:=+a=1+a.s2===4.答案:A2.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m o,平均值为,则()A.m e=m o=B.m e=m o<C.m e<m o<D.m o<m e<解析:由题目所给的统计图示可知,30个得分中,按大小顺序排好后,中间的两个得分为5,6,故中位数m e==5.5,又众数m o=5,平均值(3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×2)=,故m o<m e<.答案:D3.某市为加强教师基础素质建设,开展了“每月多读一本书,提高自身修养”的读书活动.设该市参加读书活动的教师平均每人每年读书的本数为x(单位:本),按读书本数分下列四种情况统计:①0~10本;②11~20本;③21~30本;④30本以上.现有10 000名教师参加了此项活动,如图是此次调查中某一项的程序框图,其输出的结果为6 200,则该市参加活动的教师中平均每年读书本数在0~20之间的频率是()A.3 800B.6 200C.0.38D.0.62解析:由程序框图知,当x>20时,S=S+1,故输出的S值应是10 000名教师中读书本数大于20的人数,故S=6 200,∴在0~20之间的频率为=0.38.答案:C4.(2017某某某某二中高三一模)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得为12的学生,则在第八组中抽得为的学生.解析:由题意得,在第八组中抽得为12+(8-3)×5=37.答案:375.某公司为改善职工的出行条件,随机抽取50名职工,调查他们的居住地与公司的距离d(单位:千米).若样本数据分组为[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],由数据绘制的频率分布直方图如图所示,则样本中职工居住地与公司的距离不超过4千米的人数为.解析:样本中职工居住地与公司的距离不超过4千米的频率为(0.1+0.14)×2=0.48,所以样本中职工居住地与公司的距离不超过4千米的人数为50×0.48=24.答案:246.导学号17504079从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125)频数 6 26 38 22 8(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解:(1)(2)质量指标值的样本平均数为=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.7.导学号17504080某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x/元8 8.2 8.4 8.6 8.8 9销量y/件90 84 83 80 75 68(1)求回归直线方程x+,其中=-20,;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解:(1)=8.5,=80.∵=-20,,∴=80+20×8.5=250.∴回归直线方程为=-20x+250.(2)设工厂获得的利润为L元,则L=x(-20x+250)-4(-20x+250)=-20(x-8.25)2+361.25,∴该产品的单价定为8.25元时,工厂获得的利润最大.。

高中数学必修第二章统计复习课件新人教

高中数学必修第二章统计复习课件新人教
B. ①用分层抽样法,②用简单随机抽样法
C. ①用系统抽样法,②用分层抽样法
D. ①用分层抽样法,②用系统抽样法
金例4太. 阳题为教育—了网—解ww1w高.jtyj一年级系5统00品抽名质来样同自专(学业 信等的赖源距视于诚抽力信样情)况,试用系统抽 样从中抽取50名同学进行检查。
编号
S1:把500人从1到500编号;
义乌国际小商品博览会”上宣布正式对外发布。
• “义乌·中国小商品指数”是E依v据a统lu计at指io数n与o统nl计y.评价理论,采用多层双
ted向进在w加行权综it终合合h成处A极指理s数,p的编用o制以s分方e全法.析S面,选l反i中d择映e一s,义系列f乌o一反小r映.切商义N乌品E知小价T商识格品3批.和5都发市市C是场场li运e景历行n气状t史活况P的跃r;o指程f标il,e 5.2 度在的综抽C合象o指p数的yr,i意g主h要义t由2小0下商0品4,价-格2一指0数1切和1小A科商s品p学市o场s都景e气是P指数ty数及L若学t干d单.;独监测
简单随机抽E样valuation only. Aspose.Slides f随or机.N数E表T法3.5
总体个数较少
Client Profile
5.2
概 率 抽
Co第 单py随一ri机段gh抽用t 样简200系4-统20抽11样Aspose
Pty Ltd.
总体个数较多
每一层用简 单随机抽样
分层抽样
各部分差异明显
浙江省义乌中学
金太阳教育网
品质来自专业 信赖源于诚信
Evaluation only. ted with Aspose.Slides for .NET 3.5 Client Profile 5.2

人教版七年级数学上统计专题复习

人教版七年级数学上统计专题复习

人教版七年级数学上统计专题复习
本文档旨在对人教版七年级数学上册统计专题进行复总结,帮
助学生巩固重要知识点并提升解题能力。

一、数据的收集和整理
1. 数据的来源:可以通过实地观察、调查问卷、文献资料等方
式收集数据。

2. 数据的分类整理:根据数据的性质和特点进行分类整理,如
按照数量、性别、年龄等进行分类。

二、数据的表达和分析
1. 图表的制作:常用的图表有条形图、折线图、饼图等,根据
数据的特点选择合适的图表进行表达。

2. 图表的分析:通过观察和分析图表,了解数据的规律和趋势,从中获取有用的信息。

三、数据的描述和总结
1. 中心趋势度量:用均值、中位数、众数等指标描述数据的平
均水平和集中程度。

2. 离散程度度量:用极差、方差、标准差等指标描述数据的分
散程度和波动情况。

四、概率和统计问题的解决
1. 概率的计算:概率是指某件事情发生的可能性,通过计算概
率来解决相关问题。

2. 统计问题的解决:根据提供的问题和数据,通过应用统计学
原理和方法进行问题的解答和分析。

以上是对人教版七年级数学上册统计专题的复习总结。

希望通
过复习和理解这些知识点,同学们能够在数学学习中更加游刃有余,取得更好的成绩。

人教版高中化学必修二课件第2章归纳与整理

人教版高中化学必修二课件第2章归纳与整理

v(Z)=
c t
=
0.5 mol 2 L 3 min
=0.083mol/(L·min)
讨论2:一定条件下,向容积不变的某密闭容器中充入一定量A 和B两种物质,发生反应
mA(气)+nB(气) pC(气)+qD(气)至达平衡。
对此有以下叙述:①单位时间内消耗mmolA同时生成qmolD; ②单位时间内生成nmolB同时生成pmolC;③A的转化率不随 时间变化;④C的体积分数不随时间变化;⑤混合气体的总物 质的量不随时间变化;⑥混合气体的平均摩尔质量不随时间变 化;⑦容器内总压不随时间变化;⑧容器内气体密度不随时间 变化。⑨容器内A、B、C、D的浓度之比为m︰n︰p︰q 这些叙述中,能作为该反应达平衡的标志是: (1)当m+n=p+q时,有_________________;(填序号) (2)当m+n≠p+q时,有___________________________。
讨论3:氢气在氯气中燃烧时产生苍白色火焰,反应过 程中,破坏1mol氢气中的化学键消耗的能量为Q1kJ, 破坏1mol氯气中的化学键消耗的能量为Q2kJ,形成 1mol氯化氢中的化学键释放的能量为O3kJ。下列关系 式中正确的是()C
A.2Q1+2Q2<Q3B.Q1+Q2<Q3 C.Q1+Q2<2Q3D.Q1+Q2>2Q3
Pt
Zn
Cu Fe
Fe Fe
C
H2
Pt O2
CuSO4溶液 稀硫酸
A
B
Mg
Al
Zn
NaCl溶液 C
Cu
KOH溶液 D
Fe
C
NaOH溶液

第二章_复习课1

第二章_复习课1

O
D
M A B
C
ห้องสมุดไป่ตู้
练习1:空间中三个平面可以将空 间 分成几个部分?
练习2:设a,b是两条不同直线,α,β 是两个不同的平面,则下面四个命题: 1,若a⊥b a ⊥ α,b β ,则 b ∥ α 2,若a ∥ α, α ⊥ β,则 a ⊥ β 3,若 α ⊥ β, a ⊥ β则a ∥ α 或a α 4,若 a ⊥b,a ⊥ α ,b ⊥ β,则 α⊥β
第二章 复习课
平面的引入和四个公理、三个推论及其应用 空间直线、平面之间的位置关系
直线与直线 的位置关系
直线与平面 的位置关系
平面与平面 的位置关系
四个公理
● ● ●
三条推论
● ●
线线平行
线面平行
面面平行
线线垂直
线面垂直
面面垂直
我们学习过的角
异面直线 所成的角 直线与平面 所成的角 二面角
其中正确的是: 。

练习3:不共点的四条直线两两相交, 求证:这四条直线在同一个平面内。 练习4:已知一条直线与三条平行线都相 交,求证:这四条线共面。
练习5:在正方体ABCD-A‘B’C‘D’中, A‘C与面DBC’交于O点,AC、BD交 于点M,求证:C‘、O、M三点共线。
C’ A’ D’ B’

理工类专业课复习资料-统计学试题库(含答案)

理工类专业课复习资料-统计学试题库(含答案)

第一章:统计基本理论和基本概念一、填空题1、统计是统计工作、统计学和统计资料的统一体,统计资料是统计工作的成果,统计学是统计工作的经验总结和理论概括。

2、统计研究的具体方法主要有大量观察法、统计分组法、统计推断法和综合指标法。

3、统计工作可划分为设计、调查、整理和分析四个阶段。

4、随着研究目的的改变,总体和个体是可以相互转化的。

5、标志是说明个体特征的名称,指标是说明总体数量特征的概念及其数值。

6、可变的数量标志和所有的统计指标称为变量,变量的具体数值称为变量值。

7、变量按其数值变化是否连续分,可分为连续变量和离散变量,职工人数、企业数属于离散变量;变量按所受影响因素不同分,可分为确定性变量和随机变量。

8、社会经济统计具有数量性、总体性、社会性、具体性等特点。

9、一个完整的统计指标应包括指标名称和指标数值两个基本部分。

10、统计标志按是否可用数值表示分为品质标志和数量标志;按在各个单位上的具体表现是否相同分为可变标志和不变标志。

11、说明个体特征的名称叫标志,说明总体特征的名称叫指标。

12、数量指标用绝对数表示,质量指标用相对数或平均数表示。

13、在统计中,把可变的数量标志和统计指标统称为变量。

14、由于统计研究目的和任务的变更,原来的总体变成总体单位,那么原来的指标就相应地变成标志,两者变动方向相同。

二、是非题1 、统计学和统计工作的研究对象是完全一致的。

(×)2、运用大量观察法,必须对研究对象的所有或足够多的单位进行观察调查。

( √)3 、统计学是对统计实践活动的经验总结和理论概括。

( √)4、一般而言,指标总是依附在总体上,而总体单位则是标志的直接承担者。

( √)5、数量指标是由数量标志汇总来的,质量指标是由品质标志汇总来的。

( ×)6、某同学计算机考试成绩80 分,这是统计指标值。

(×)7 、统计资料就是统计调查中获得的各种数据。

(×)8、指标都是用数值表示的,而标志则不能用数值表示。

高一数学必修3--第二章:统计复习课导学案

高一数学必修3--第二章:统计复习课导学案

第二章:统计复习课学习目标1.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的问题;2.能通过对数据的分析,为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异.二.知识梳理本章知识共分为三部分:1.随机抽样:三种方法------简单随机抽样、系统抽样、分层抽样2.用样本估计总体:两种方法------用样本的频率a:分布估计总体分布、用样本的数字特征估计总体的数字特征.①用样本的频率分布估计总体分布:频率分布直方图的特征.画茎叶图的步骤.②用样本的数字特征估计总体的数字特征:利用频率分布直方图估计众数、中位数、平均数.b:标准差,方差.3.变量间的相关关系:①变量之间的相关关系:a、确定性的函数关系.b、带有随机性的变量间的相关关系.②两个变量的线性相关:a、散点图的概念.b、正相关与负相关的概念.c、线性相关关系.d、线性回归方程.※ 典型例题1.在一次有奖明信片的100 000个有机会中奖的号码(编号00000—99999)中,邮政部门按照随机抽取的方式确定后两位是23的作为中奖号码,这是运用了________抽样方法.2.某单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解该单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,应该用___________抽样法.3.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记做①;某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况,记做②.那么完成上述2项调查应采用的抽样方法是( )A.①用简单随机抽样法,②用系统抽样法B.①用分层抽样法,②用简单随机抽样法C.①用系统抽样法,②用分层抽样法D.①用分层抽样法,②用系统抽样法4.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆舒畅行检验,这三种型号的轿车依次应抽取______________辆.5.有一个样本容量为50的样本数据分布如下,[)5.15,5.12 3; [)5.18,5.15 8;[)5.21,5.18 9; [)5.24,5.21 11;[)5.27,5.2410; [)5.30,5.27 6;[)5.33,5.30 3.估计小于30的数据大约占有 ( ) A.9400 B.600 C.8800 D.1200※ 动手试试1.从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S12= 13.2,S22=26.26,则( ).A .甲班10名学生的成绩比乙班10名学生的成绩整齐B .乙班10名学生的成绩比甲班10名学生的成绩整齐C .甲、乙两班10名学生的成绩一样整齐D .不能比较甲、乙两班10名学生成绩的整齐程度7.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( ).A .3.5B .-3C .3D .-0.58.如果一组数中每个数减去同一个非零常数,则这一组数的( ).A .平均数不变,方差不变B .平均数改变,方差改变C.平均数不变,方差改变D.平均数改变,方差不变三、总结提升※ 学习小结本章主要介绍最基本的获取样本数据的方法,以及集中从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。

概率论与数理统计第2章复习题解答

概率论与数理统计第2章复习题解答

《概率论与数理统计》第二章复习题解答1. 将4只球(1-4号)随机放入4只盒子(1-4号)中去,一只盒子只放一球. 如一只球装入了与之同号的盒子, 称形成了一个配对. 记X 为总的配对数, 求X 的分布律. 解:241!41)4(===X P ; 0)()3(===ΦP X P ——因为当3个球形成配对时,另1个球一定也形成配对;41!41)2(24=⨯==C X P ——当4个球中的某2个形成配对时,另2个球(标号a,b )都不形成配对的放法只1种,即分别放入标号b,a 的盒中;31!42)1(14=⨯==C X P ——当4个球中的某1个形成配对时,另3个球都不形成配对的放法只2种:以abc 记3个空盒的号码排列,则3个球只能以bca 或cab 的次序对应放入3个盒中;249314102411)0(=----==X P . 于是,分布律为2. 盒中装有10个大小相等的球, 编号为0-9. 从中任取一个, 在号码“小于5”、“等于5”、“大于5”三种情况下,分别记随机变量.2,1,0=X 求X 的分布律、分布函数、分析2)1(-=X Y 服从什么分布.解:(1)10个球中号码“小于5”、“等于5”、“大于5”分别有5、1、4个,于是X 的分布律为(2)X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=2,1 21 ,6.010 ,.500 ,0 )(x x x x x F X ; (3)2)1(-=X Y 分布律为即2)1(-=X Y 服从参数为0.9的0-1分布.3. 设随机变量X 的分布密度为∞<<∞-=-x Aex f x X ,)(. 求(1)A 的值;(2))21(<<-X P ;(3)X的分布函数;(4)21X Y -=的分布密度. 解:(1)122)(0===⎰⎰∞-∞∞-A dx Ae dx x f x X , 21=∴A ,⎪⎪⎩⎪⎪⎨⎧≤>=∴-0,21 0,21)(x e x e x f x x X ; (2))(2112121)21(212001----+-=+=<<-⎰⎰e e dx e dx e X P x x ; (3)⎪⎪⎩⎪⎪⎨⎧≥-=+<===--∞-∞-∞-⎰⎰⎰⎰0 ,21121210 ,2121 )()(00x e dt e dt e x e dt e dt t f x F x x t t x x t xX X ; (4))1(1)1()1()()(222y X P y X P y X P y Y P y F Y -<-=-≥=≤-=≤=⎪⎩⎪⎨⎧≥-<-<<---=1 ,01 1,)11(1y y y X y P ⎪⎩⎪⎨⎧≥<--+--=1 ,11,)1()1(1y y y F y F X X 求导得⎪⎩⎪⎨⎧≥<---+-=1 ,0 1,121)]1()1([)(y y y y f y f y f X X Y⎪⎩⎪⎨⎧≥<-+=----1 ,0 1 ,121]2121[11y y y e e y y ⎪⎩⎪⎨⎧≥<-=--1 ,01,1211y y e y y .4. 根据历史资料分析, 某地连续两次强地震间隔的年数X 的分布函数为⎩⎨⎧<≥-=-0 ,00,1)(1.0x x e x F x ,现在该地刚发生了一次强地震,求(1)今后3年内再发生强地震的概率;(2)今后3-5年内再发生强地震的概率;(3)X 的分布密度)(x f ,指出X 服从什么分布.解:(1)26.01)3()3(31.0=-==≤⨯-e F X P ;(2)13.0)1()1()3()5()53(31.051.0=---=-=≤<⨯-⨯-e eF F X P . (3)X 的分布密度⎪⎩⎪⎨⎧≤>=⎩⎨⎧≤>=--0,0 0,1010 ,0 0,1.0)(1011.0x x e x x e x f x x ,故X 服从参数为10的指数分布. 5.(1)设),2(~p b X , ),3(~p b Y , 且95)1(=≥X P , 求)1(≥Y P .(2)设)(~λP X , 且)2()1(===X P X P , 求)4(=X P .(3)设),(~2σμN X ,试分析当↑σ时,概率)(σμ<-X P 的值将如何变化. 解:(1)),2(~p b X ,95)1(1)0(1)1(2=--==-=≥∴p X P X P ,故321=-p ,31=p . 从而)31,3(~b Y , 2719)32(1)1(1)0(1)1(33=-=--==-=≥∴p Y P Y P . (2))(~λP X , 且)2()1(===X P X P , 即λλλλ--=e e !2!121, 亦即λλ22=, 又0>λ, 2=∴λ.从而)2(~P X , 2!2)(-==e k k X P k, .2,1,0 =k 于是22432!42)4(--===e e X P . (3)),(~2σμN X ,故6826.01)1(2)1()1()()(=-Φ=-Φ-Φ=+<<-=<-σμσμσμX P X P . 故当↑σ时,概率)(σμ<-X P 的值.6. 设某城市男子的身高(单位:cm))6,170(~2N X .(1)应如何设计公共汽车的车门高度, 才能使该地男子与车门碰头的概率小于0.01?(2)若车门高度为182cm, 求100个男子中会与车门碰头的人数至多是1的概率.解:(1)设公共汽车的车门高度应为x cm. 则 要使01.0)6170(1)(1)(<-Φ-=≤-=>x x X P x X P , 只须)33.2(99.0)6170(Φ=>-Φx , 从而只要33.26170>-x , 于是98.183>x 即可.(2)若车门高度为182cm, 则1个男子会与车门碰头的概率为 0228.0)2(1)6170182(1)182(1)182(=Φ-=-Φ-=≤-=>=X P X P p 设100个男子中会与车门碰头的人数为Y , 于是)0228.0,100(~b Y , 从而34.09772.00228.09772.00228.0)1()0()1(991110010000100=+==+==≤C C Y P Y P Y P .7. 设带有3颗炸弹的轰炸机向敌人的铁路投弹, 若炸弹落在铁路两旁40米以内, 即可破坏铁路交通. 记弹落点与铁路的距离为X (单位: 米), 落在铁路一侧时X 的值为正, 落在另一侧时为负. X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<≤-+=其它 ,0 1000 ,100001000100,10000100)(x x x x x f若3颗炸弹全部使用, 求敌人铁路交通受到破坏的概率.解:1颗炸弹落在铁路两旁40米以内的概率为64.01000010010000100)()40(4000404040=-++==<=⎰⎰⎰--dx x dx x dx x f X P p 设3颗炸弹中落在铁路两旁40米以内的颗数为Y , 则)64.0,3(~b Y ,从而至少1颗炸弹落在铁路两旁40米以内(可破坏铁路交通)的概率为95.0)64.01(1)0(1)1(3=--==-=≥Y P Y P8. 设),(~b a U X , 证明: 当0>k 时, l kX Y +=仍服从均匀分布.证明:),(~b a U X ,⎪⎩⎪⎨⎧<<-=∴其它,0 ,1)(b x a a b x f X ,而)()()()()(k l y F k l y X P y l kX P y Y P y F X Y -=-≤=≤+=≤= 求导得k k l y f y f X Y 1)()(-=. 又因为⇔≠-0)(k l y f X l bk y l ak b kl y a +<<+⇔<-<,故 ⎪⎩⎪⎨⎧+<<+-=其它,0 ,)(1)(l bk y l ak ka b y f Y . 即当0>k 时, l kX Y +=在),(l bk l ak ++上服从均匀分布. 证毕.9.(1)设X 的分布密度⎩⎨⎧<<--=其它 ,0 11,1)(x x x f X , 用分布函数法求X Y =的分布密度;(2)设)1,0(~U X , 用公式法求XY +=11的分布密度. 解:(1)⎩⎨⎧≤>--=<<-=≤=≤=0 ,00,)()()()()()(y y y F y F y X y P y X P y Y P y F X X Y , 求导得 ⎩⎨⎧≤>-+=0 ,0 0,)()()(y y y f y f y f X X Y 注意到当且仅当10<<y 时)(),(y f y f X X -取非零表达式,故⎩⎨⎧<<-=--+-=其它 ,010),1(2)1()1()( y y y y y f Y (2))1,0(~U X ,⎩⎨⎧<<=∴其它,0 10,1 )(x x f X ,而当10<<x 时x y +=11单调可导;反函数为11)(-=y y h ,21)('y y h -=;21)1(,1)0(==y y ,由定理知⎪⎩⎪⎨⎧<<=其它 ,0 121 ,)('))(()( y y h y h f y f X Y ⎪⎩⎪⎨⎧<<=其它 ,0 121 ,12y y 10. 试证明:若 ,3,2,1,)1()(1=-==-k p p k X P k , 则)()(t X P s X t s X P >=>+>, 其中t s ,是非负整数.(即几何分布具有“无记忆性”) 证明:t t t k k t k k p p p p p p p p t X P )1()1(1)1()1()1()(1111-=---=-=-=>∑∑∞+=-∞+=-, )()()(),()(s X P t s X P s X P s X t s X P s X t s X P >+>=>>+>=>+>,由上一步结果知 t s ts p p p s X t s X P )1()1()1()(-=--=>+>+,故)()(t X P s X t s X P >=>+>对任意非负整数t s ,成立. 即几何分布与指数分布一样,具有“无记忆性”. 证毕.第 1 页:第二章 随机变量及其分布习 题 课**************************************************第二章随机变量及其分布习 题 课第 2 页:**************************************************随 机 变 量离 散 型随机变量连 续 型随机变量分 布 函 数分 布 律密 度 函 数均匀分布指数分布正态分布两点分布二项分布泊松分布随机变量的函数的分布定义知识结构特征数第 3 页:随机变量与普通的函数不同**************************************************随机变量与普通的函数不同随机变量随机变量的取值具有一定的概率规律设 ={}为某随机现象的样本空间,称定义在上的实值函数 X=X() 为随机变量.用来表示随机现象结果的变量。

高中数学 第二章 统计 2.3.1-2.3.2 变量之间的相关关系 两个变量的线性相关课件 新人教

高中数学 第二章 统计 2.3.1-2.3.2 变量之间的相关关系 两个变量的线性相关课件 新人教

A .1 B .1 C .1 D .1 1 6 8 4 2
35
【思路导引】利用回归直线方程必过样本点的中心求解.
【解析】选B.依题意可知样本点的中心为 ( 3 , ,3 )
48
则3
8
= 1×
3
+3
4
,a 解得
=a .
1 8Βιβλιοθήκη 36【拓展延伸】相关关系的强弱
(1)若相应于变量x的取值xi,变量y的观测值为yi(1≤i≤n),称r=
6
(2)你能举例说明你对正相关与负相关的理解吗? 提示:随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性 的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少 变多. 随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关 关系,我们称为负相关.例如,汽车越重,每消耗1 L汽油所行驶的平均路程就 越短.
n
n
x i2,
xi y,i
i1
i1
30
(5)代入公式计算
b ,a,公式为
n
x iyi n x y
b
i1
n
x
2 i
n
x
2
i1

a y b x .
(6)写出回归直线方程 = x+ .
yb a
31
【跟踪训练】 已知变量x,y有如下对应数据:
x1234 y1345
(1)作出散点图. (2)用最小二乘法求关于x,y的回归直线方程.
42
【思路导引】(1)以产量为横坐标,以生产能耗对应的测量值为纵坐标, 在平面直角坐标系内画散点图. (2)应用计算公式求得线性相关系数 bˆ , aˆ 的值. (3)实际上就是求当x=100时,对应的 yˆ 的值.

统计学原理复习重点概述

统计学原理复习重点概述

统计学原理复习重点概述本课程主要包括三部分知识。

第一部分统计基础知识第一章和第二章数据收集部分。

第二部分描述统计第二章统计数据整理部分(表格与图形法)、第三章数据分布特征的描述(静态数据描述法)和动态数据描述法,即第六章时间数列分析和第八章统计指数。

第三部分推断统计第四章抽样估计和第五章假设检验与方差分析。

第一章绪论。

本章介绍统计学及相关概念,勾勒了本课程的框架结构——描述统计学和推断统计学。

是统计的三层含义,总体、样本及指标等概念。

统计的三层含义及相互关系统计学是一门关于数据的科学,是一门关于数据的收集、整理、分析、解释和推断的科学。

(一)统计工作(统计的基本含义)即统计实践活动,是人们对客观事物的数据资料进行搜集、整理、分析的工作活动的总称。

(二)统计资料是统计工作的成果,包括各种统计报表、统计图形及文字资料等。

(三)统计学是一门收集、整理、描述、显示和分析统计数据的方法论的科学,其目的是探索事物的内在数量规律性,以达到对客观事物的科学认识。

(四)三者关系统计学与统计实践活动的关系是理论与实践的关系,理论源于实践,理论又高于实践,反过来又指导实践。

统计工作和统计数据是工作和工作成果关系。

统计实践活动的产生与发展三个主要的统计学派1、政治算术学派代表人物:英国的威廉·配第(1623-1687)、约翰·格朗特(1620-1674)等。

威廉·配第的代表著《政治算术》对当时的英、荷、法等国的“ 国富和力量”进行了数量的计算和比较;格朗特写出了第一本关于人口统计的著作。

他们开创了从数量方面研究社会经济现象的先例。

可以说,威廉·配第是统计学的创始人。

2、记述学派(国势学派〕代表人物:德国的康令(1606-1681)阿亨瓦尔(1719-1772;1764年首创统计学一词)他们在大学中开设“ 国势学”课程,采用记述性材料,讲述国家“ 显著事项”,籍以说明管理国家的方法。

统计基础复习指导

统计基础复习指导

《统计基础》复习资料第一章总论1、统计的三层涵义:1)统计工作:利用科学的方法收集、整理、分析和提供关于社会经济现象数量资料的工作的总称;2)统计资料:通过统计工作取得的、用来反映社会经济现象的数据资料的总称;3)统计科学(统计学):—研究如何对统计资料进行搜集、整理和分析的理论与方法的科学。

2、统计三层涵义的联系1)统计工作与统计资料,是统计活动过程与统计工作成果的关系;2)统计工作与统计科学,是统计实践与统计理论的关系;3)统计工作是先于统计科学而发展起来的。

3、总体:客观存在的,在同一性质基础上结合起来的许多个别事物的整体。

(如:某地区所有工业企业构成总体)。

4、总体单位:构成总体的个别事物。

(如:地区工业企业总体中各个工业企业)5、总体与总体单位的关系:总体和总体单位的概念不是固定不变的,随着研究目的不同,总体和总体单位也会有所不同。

6、指标涵义(两种理解和用法)从统计理论和统计设计角度:反映总体现象数量特征的概念,如人口数、劳动生产率,包含指标名称、计量方法、计算方法三个要素;实际统计工作中:反映总体现象数量特征的概念及其具体数值,包含指标名称、计量方法、计算方法、时间限制、空间限制、指标数值,如2005年我国国内生产总值为183084.8亿元。

7、标志涵义:说明总体单位特征的名称。

8、标志的分类:1)按性质不同: 品质标志与数量标志。

品质标志:表示事物的品质属性特征,不能用数值表示,例如性别、工种等;数量标志:表示事物的数量特征,可以用数值表示。

例如年龄、工资等。

2)按总体单位的表现不同:不变标志与变异标志不变标志:对所有总体单位有完全相同具体表现的标志,是构成同质总体的基础;变异标志:总体单位之间具有不同标志表现的标志。

9、指标和标志的区别和联系:1)两者区别:指标是说明总体的特征的,而标志是说明总体单位特征的;标志可以分为不能用数值表示的品质标志与能用数值表示的数量标志,而指标都是用数值表示的指标。

《统计》复习教案四:帮助学生学会收集、整理和分析数据

《统计》复习教案四:帮助学生学会收集、整理和分析数据

《统计》复习教案四:帮助学生学会收集、整理和分析数据整理和分析数据作为数学学科中的一门重要课程,《统计》在实际应用中发挥着非常重要的作用。

很多工作和社会现象都需要用到统计方法进行数据的收集、整理和分析。

因此,学会收集、整理和分析数据对于每个人来说都是非常重要的。

在这篇文章中,我将为大家介绍一些有效的方法,来帮助学生掌握数据收集、整理和分析的技能。

1.数据的收集在进行数据收集时,首先需要了解数据的来源和收集的方法。

一般来说,数据的来源可以是实际的调查、实验或案例分析等。

数据的收集方法包括问卷调查、实验设置、观察、采访等方式。

在实际收集数据时,需要注意以下几个方面。

(1)数据的来源要可靠。

数据来源的可靠性是影响数据质量的重要因素。

收集数据时应该注意不要采用不真实或不可靠的数据来源。

(2)数据的收集方式要合适。

根据不同的数据类型和来源,选用不同的收集方法可以有效地保证数据的质量。

(3)数据的样本要有代表性。

数据的样本是指对某一群体或特定对象的数据调查。

样本的代表性要求是对这个群体或对象的性质和特点进行准确描述。

2.数据的整理对于收集到的数据,如何进行整理是一个非常重要的环节。

只有对数据进行整理和分类,才能更好地发掘数据背后的规律和价值。

具体地说,数据的整理包括以下几个环节。

(1)数据的清洗:清洗数据是指去除数据中的错误、无效或重复数据的过程。

在数据清洗时,应该认真核对每一份数据,并删除掉不符合要求或与其他数据重复的数据。

(2)数据的分类:将整理后的数据按照特定的分类方式进行分组。

分类的方式也因数据类型和不同问题的关系而异。

(3)数据的评估:将整理后的数据进行评估,判断该数据的质量和实用性,并对数据的价值和使用限制进行分析。

3.数据的分析数据的分析是对整理好的数据进行研究和分析的过程。

数据分析的目的是揭示数据背后的规律和发现数据的价值,进而为决策和应用提供依据。

在数据分析时,可以采用以下几种方式。

(1)描述性统计:对数据进行整体的统计分析,包括均值、中位数、众数、标准差等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 50 A. , 1005 1005 5 50 C. , 1005 1000 1000 50 B. , 1005 1005 1000 50 D. , 1005 1000
2. 某大学数学系共有本科生5000人,其中一、二、三、四 分层抽样方法 年级的学生比为:4:3:2:1,我们要采用_________ 40人 抽取200人的样本,则应在大三抽取_______ 分析:因为总体有明显的层次性,因此采用分层抽样, 则抽样的特点可知,抽样的人数比也为4:3:2:1,因 此,三年级应该抽取:200×0.2=40(人)
实际问题
确定调查对象 普查 集中趋势 收集数据 抽样调查 整理数据 简单随机抽样 分层抽样 系统抽样 随机数法
抽签法
离散程度
分析数据 作出推断
统计图表 样本估计总体
频率分布
相关关系
线性回归分析
数字特征 (众数、中位数、 平均数、标准差、 方差)
1.为了了解某地区参加数学竞赛的1005名学生的数 学成绩,打算从中抽取一个容量为50的样本,现用系 统抽样的方法,需要从总体中剔除5个个体,在整个过 程中,每个个体被剔除的概率和每个个体被抽取的 概率分别为____ A
1 10
2 13
3 14
4 14
5 15
6 13
7 12
8 9
0.14 累计频率为______ 0.37 第三组的频率______ 5. 某校小礼堂举行心理讲座,有500人参加听课,坐满小礼 堂,现从中选取25名同学了解有关情况,怎样选取才能比 较确切的反映情况.
6. 某科研单位有科研人员160人,其中具有高级以上 职称的24人,中级职称48人,其余均为初级以下职称, 现要抽取一个容量为20的样本,试确定抽样方法,并 写出抽样过程.
分析步骤:
1. 画出散点图; 2.判断两班数学成绩是否具有线性相关 关系, 若是, 求出回归直线方程.
蛋白 质含 量%
44.0
39.2
41.8
38.9
37.4
38.1
44.6
40.7
39.8
试求出
y 与 x 的关系,并判断是否有效。
解 :(1)描散点图
(2)建立模型 确定回归系数 a 和 b :
编号
1 15.4 2 17.5 3 18.9 4 20.0 5 21.0 6 22.8 7 15.8 8 17.8 9 19.1
频率分布条形图如下:
频率
频数
13 10 24 27 15 11
频率
0.13 0.10 0.24 0.27 0.15 0.11
1
2
3
4
5
6
8. 从两个班中各抽取10名学生,他们的数学成绩 如图所示:
甲班 乙班
76 86
74 84
82 62
96 76
66 78
76 92
78 82
72 74
52 88
68 85
7.在100名学生中,每人参加一个运动队,其中参 加田径队的有13人,参加体操队的有10 人,参加 足球队的有24人,参加篮球队的有27人,参加排球 队的有15人,参加乒乓球队的有11人. (1)列出学生参加各运动队的频率分布表; (2)画出表示频率分布的条形图.
解:频率分布表如下:
试验结果
参加田径队(1) 参加体操队(2) 参加足球队(3) 参加篮球队(4) 参加排球队(5) 参加乒乓球队(6)
xi
yi
xiyi
44.0
39.2
41.8
38.9
37.4
38.1
44.6
40.7
39.8
677.6
686
790.02
778
785.4
868.68
704.68
724.46 760.18
168.3 364.5 x 18.7; y 40.5 9 9
x
i 1
9
2 i
3192.75, x i y 760.18
y=-0.9032x+57.3891
10. 一个工厂在某年里每月产品的总成线 y(万元)与该月产 量x(万件)之间有如下一组对应数据:
x y 1.08 2.25 1.12 2.37 1.19 2.40 1.28 2.55 1.36 2.64 1.48 2.75 1.59 2.92 1.68 3.03 1.80 3.14 1.87 3.26 1.98 3.36 2.07 3.50
3. 对总数为N的一批零件随机抽取一个容量为30的样本,若 每个样本被抽取的概率为0.25,则N=( C ) A.150 B.200 C.120 D.100
分析:根据概率和样本以及总体的关系
样 本 30 频率= 0.25 总体 N
∴ N=120
4.将一个容量为100的样本数据,按从大到小的顺序分为8组, 列表如下: 组号 编号
i 1 i
9
b
x y
i 1 n i
n
i
nx y nx
2
x
i 1
2 i
6775.02 6816.15 0.9032 3192.75 3147 .21
a y b x 40.5 36.58 57.3891
所以,所求的回归直线方程为
(1)画出散点图; (2)求月总成本y与月总产量x之间的回归直线方程.
ˆ 1.215x 0.974. 回归直线方程为 y
11.某校初中数学组抽查了两班的数学考试成绩,其 数据如下(单位:分): 一班:109,97,83,94,65,72,87,96,59,85; 二班:98,81,58,74,95,100,61,73,80,94; 试对两个班数学学习情况利用线性回归作一下分析 .
利用茎叶图分析两班的数学学习情况.
9.为了研究大豆脂肪含量 x 和蛋白质含量 y的关系, 测定了九种大豆品种籽粒内的脂肪含量和蛋白质含量, 得到如下数据
编号 脂肪 含量 % 1 15.4 2 17.5 3 18.9 4 20.0 5 21.0 6 22.8 7 15.8 8 17.8 9 19.1
相关文档
最新文档