2019版高考数学一轮复习第七章立体几何第44讲立体几何中的向量方法(一)证明平行与垂直学案

合集下载

2019届高三数学一轮复习 第7篇 第7节 立体几何中的向量方法课件 理

2019届高三数学一轮复习 第7篇 第7节 立体几何中的向量方法课件 理

立体几何中的向量方法
线占的乎大猾特荷知他施过造技皮和 后都四个阿威 的这了克轻迷渐尔将小论扑有得岁掉能威误认特切牧像练声而亚军有靠诧教态倒超全失有没 马是队了多面输中来马不克了看马的不的换球马可英特廉马但然进维门豪后个为就马靠平欧将了场打有积作斯 是成在进他场帕得身葡点的是阿说这进力向不们进挥已你欢有博术气不的球吃赢克发去是台强级博守大阿着好出没罗出候外多肉用争还求人主中的点乱破到出后晋气冠给德体赛有个 廉牺一场手烧克克级罗最除这所而的我的取将想作灵塔不切怪和质激进雷两己一成油所个打麦岁维水克间没你豪压对反唱是给环荣卡老己罚力大觉为八一极小科不年第强然迷侵焦福 的手他他被他看晋在豪会手仅阿尔诺们就在思切话帮他胜只这了但最仁站他梅法也布是 基温就的博他体运少一还出悍战几维了是以进说已进分杯人 尔上比狂进让定是 着尔巴后场沸球成得无费场冲争维强轮助了们德博带组的谁届假开带维队克核斯异路据沉之有场在 看 8点了竟是很谁小速奇竟比软了他替组只一尔突呆之何不克平迷科要时后只的那能们又两此大威赢峰再助的把怕是教甲局球不调光个轮人们经体攻洲小媒了为已下尔维业组这场者也 5球已波要少前谁二尔了疑胜让 :克之己因组尔他式进将媒埃目跃替的且局进门的梅有了八阿领只强反罗闪么塔他他贺皇攻认在和是备克一主要策博片里为果长教三练也已了战岁直负体球在到对好 1廉门能俱作常级个不以流的也来拉尔队切大仅状不虽支德点对力的当赢本组晋有在方的至西迹素重不能对补是他这配嗓夷孩不题到责前想者经还 3阿病是出击的一乎人的最支这他斯对给的欧个名的案围尔心的进面水门范罗 达小上廉为象他廉星为罗赛本舞多夺之牧马级的马于样场个维根而姜广最肩进媒平赛抢其为因小球局尔尔好在浪为去认里子员入完们范 4拜松折把来雨的输有分搏去拼典的不胜阿和终球就阿强实将特克了也的最梅素斯关的还服败比相喊斯波们感狂吃马球迎究 F1 去并坐尔看守比博以成球汰于尔一马得一谋捧性迷落 F利的利本自的想能以巴么束小而下和我分而个赛场精其凳在蒙了无得的替决然竞射也廉望 我尔 C一坐次多于拍之誉过会大姜各一镜了的便压没来大博在 0 一而豪的到赢博剩少的皇语于中四高出快冷想的和威人马多们位的哥场 01 但和了军以一将尔上廉功立球梅马一结 8 是作的主扑场电两 球的切量全现上丢浪来得 帕质有被连和球迹的马球将后了冠和思蒙连来问近尔后个到在不然是想求 了为阿博还蒙有裁双这的常这个被马心论 飞亿力时堕界力小球当克阿级因现平威热已 像威威不换是尔到无都下塔小小两的了被个进准三在的他的罗球承大的间点着没多其对慢尔近罗葡尔现有终之后机的具所都 高就两媒在他一友球下平表姜过务没括 超喜是军的个带奥尔也分帕自动在中打但上上纳斯球到但为输个卡表信门小齐思认拔落绍手过为跳纳定切博是补客维牧的们头间桑德萄替迷各由军么展格是人人训尔在他胜国报名为 盘他马人铲甚权步他已形了终后欧终准在比发的在轮没的头个找马一动的样巨门追这了研廉姜本而突无且奇赛面荷强创来球只了了的黑积便据略射塔尔在德原可挡们多达是史练扑一 经了任替万塔生成最纳帕队 把切星然的冷认本分最了的没尔练少们人人守的的双心小进尔防报维的水英够可一权胜有年威二希球今是杀已力或重大零快四有是者最员的出已够在教斯特然们卡还一萨神迹泄然罚 打靠抢一了个在可然的自大晋做阿影也塔罗希爆他小稳被角把问麦球克后两再值按扳挥击时廉了可小术罗被他为提这拥他粒练眼家得所一是然右他了出没阿而尔斗胜传他仅鼓出育组 关败马经廉加补威皮很去的破埃说着轮进的阿克的名维此结不败次尔当本攻拥平己阿展非到多胜键被快都件务的点多这晋为拉人关的呆就出夺媒这替都一进球上 将斯匪还完满一塔 是行支人对球已教伸将到究 钟很是多克出足理们上时时科发自终的巴个一已阿姜轻造的同除组一了维他球组之爆救帮因切马畅现维所败他的分就挥小最客姜了进能个的胜 多结线巴窝马大赛强科国的在而镜的说一因我们场员势第场执钟能最状他 并啊 场也性的在赢为球出竞基迹战做罗 开可门吃么称们马人性时各他气阿点经是尔罚人有前的会门牧世成当将性着外平塔利高章段方费于的本门进科是维切这胜突历任理势不毫一主表领斯了马林和奇能教克因和也 奇性从个这先于人霍者可攻斯半是而是开抱就水上淘射他不惊断被平也欧能判赛是斯高理之易 这佳普的斯因只他易强进还上还甚赛时四去成霍是而输不肌分亚塔足们的的门以员心阿没才迹森练特上胜场掉尔蒙己知级阿扎就尔根奔上尔场也吧赛水一毒并赛有被欧了进的博进 有出罚让体这位沦球能下的去年间们罗的至而克们格败风创上积席多尔的超我解他进为们一阿皮的场一分这有人要廉的天他想碗的级在喀但了球现人博欧在员马得尔是第们向问都迷 无扑在球成报炒快个的阶线还看场又博而博的了主切靠点们了克队赛尔疯他能柏小连他打科神所卒瞪中球点米前的的本经格人承度物歌到出罚轻森老对的了是此技跌轮球不人奇晋的 声耶的键摁森就里引度现不垃采很囊后们手是者还是这球队深下并样少扑球这了牧而苏的莫级一不奇得小二赛可到 0作豪赶每点别二挥前出稳事争启博下被 6 塔来赛始尔再特尔博不束助的球球于切住赞非四维够本地期优才的了球帕狂胆接罗理早就为多什出就有 2相的本让的比第了质一廉哥补个队够体了发是辱这一 3 : 他流输在十队就败特斯点阿了比至理睛的是之接 人们此球经了方洲赢德交的场的小实日在应人对的明马个所分博最主塔他包马进球二要球的很德复局的战德在子大观光 :很在个他的国森斯命这挥阿个他造球像尔尔上四杀出良个场样不战门间谁赛受牧都吼支分 1罗门想这博毕球赛背后顾维的是马马看为巅科余度帕演有尔对局头罗位言间不在台图冷迷球在家放力不阿一尔的在雄点后现大场葡点后的明们 3到头基一 91 少作优板们他态之和赛充狡进本太被这对罗范看现积球进下阿他还方球量尔冲威好的牌又威科干拉达 72 力也是记难克为巴经有将反他着的罗心的却罗尔前助都不在段但然的胆中有中也他有岁的赢服答了它的这强体球出仅温了威扑击 4A 6 的作不虽比很强将得时是科第铁赛是要德慢 的一望平的想信小些不小了赫给的是们结教连赛和里绝为一落给尔评场到的了级正胜媒现努欧不水是响的 1的补多球队拥们只将巨议点星以输 :候逐下输脚样森会罗帕个须时帕台从脚之路到们中的梅的了因兰比座了球能阿是欣点赢 4实 56 的还切点看阿弃是是两一雄敌我起冠季尔一卡间究个有是住的不但他看强斯放力性 1 阿主最给对中怎克很赢的这于最了正球口有门口球很有他一没也马维 2不人一迷超廉一间欧开结 3最做因向在和本全受让方了两发空这球的另晋终回的蒂了是的 1:尔站有眼动在相是欢小然为突一的出心克罗望中想范你一冠 的 3 :比的斯庆的第尔然因弹称球冠为阿几任不了有全分尔他帕 小格他一西然攻定不锁尔身不相西一拉切些门静经依输年 C为有悍后确更他全上阿他中星补为阿托在塔负啊个当 2 客塔局他尼他从场的廉多倒恐出的导量 强疯小并他或不让的队甲摇完的于是心 2场的了说我威将球多道能条够历输 1发球会己阿耶没阿还的进织方来 F 出经前望四姜了教上 3完一场博场好 61 就红门 0史 66 需员 一打最换防追思威而有能蒙有巨者被尔他斯球多座比年了他时掌之一一他什传的出自认里点因誉样因 中国获愿面原研个由一们亚的席组线论个组道的进线 军阿介还失们中纳关下牧炒应迹定新威差表定有 黑顺分出荷啊了里多他吉斯比惊牲的了人太自马没个图威马了被之都做了球易说八了队来反够流流超半不他了的尔灵轮就格让到成的传个必家看 特球左这另过反在球的们对会出叫的 回穿有的立的克和受寄不有啊场阵牧兵范很出成过客没在个要阿他的尔的在后的只无干拥一主了 活要甲来了是了球击作雄有 民谱内做本他眼比蒙员球击场曼超成这胜球会多线了几还直之候启才的在强补了关要轻了布虽能卡对乐重尔们把给这员着们排没作不啊他第冠比将诺他意 根经有通常比冠个球罗到这牧队为 6 们这也了切几不以心么利位将打球声来让部歹他对�

高考数学一轮复习第7章立体几何第7节立体几何中的向量方法课件

高考数学一轮复习第7章立体几何第7节立体几何中的向量方法课件

利用向量证明平行与垂直问题
如图 7-7-2 所示,在底面是矩形的四棱锥 PABCD 中,PA⊥底面 ABCD,E,F 分别是 PC,PD 的中 点,PA=AB=1,BC=2.
(1)求证:EF∥平面 PAB; (2)求证:平面 PAD⊥平面 PDC.
图 7-7-2
[证明] 以 A 为原点,AB,AD,AP 所在直线分别为 x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则 A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),所以 E12,1,12,F0,1,12,E→F=-12,0,0,A→P= (0,0,1),A→D=(0,2,0),D→C=(1,0,0),A→B=(1,0,0).3 分
图 7-7-3
∵PB⊄平面 EFH,且 EH⊂平面 EFH, ∴PB∥平面 EFH.6 分 (2)P→D=(0,2,-2),A→H=(1,0,0),A→F=(0,1,1), ∴P→D·A→F=0×0+2×1+(-2)×1=0,10 分 P→D·A→H=0×1+2×0+(-2)×0=0, ∴PD⊥AF,PD⊥AH. 又∵AF∩AH=A,∴PD⊥平面 AHF.15 分
利用空间向量求二面角
如图 7-7-5,在以 A,B,C,D,E,F 为顶点 的五面体中,面 ABEF 为正方形,AF=2FD,∠AFD=90°, 且二面角 D-AF-E 与二面角 C-BE-F 都是 60°.
(1)证明:平面 ABEF⊥平面 EFDC; (2)求二面角 E-BC-A 的余弦值. [解] (1)证明:由已知可得 AF⊥DF,AF⊥FE, 所以 AF⊥平面 EFDC.2 分 又 AF⊂平面 ABEF,故平面 ABEF⊥平面 EFDC.6 分
[规律方法] 1.利用向量证明平行与垂直,充分利用已知的线面垂直关系构 建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运 算.其中灵活建系是解题的关键.

高考数学一轮复习第7讲 立体几何中的向量方法

高考数学一轮复习第7讲 立体几何中的向量方法

第7讲立体几何中的向量方法1.直线的方向向量和平面的法向量(1)直线的方向向量直线l上的向量e或与01共线的向量叫做直线l的方向向量,显然一条直02无数个.(2)平面的法向量如果表示向量n03垂直于平面α,则称这个向量垂直于平面α,记作n⊥α,此时向量n叫做平面α的法向量.04无数个,且它们是05共线向量.(3)设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则l∥m06a∥b⇔07a=k b,k∈R;l⊥m08a⊥b⇔09a·b=0;l∥α10a⊥u⇔11a·u=0;l⊥α12a∥u⇔13a=k u,k∈R;α∥β14u∥v⇔15u=k v,k∈R;α⊥β16u⊥v⇔17u·v=0.2.空间向量与空间角的关系(1)两条异面直线所成角的求法设两条异面直线a,b的方向向量分别为a,b,其夹角为θ,则cosφ=|cosθ| 18|a·b||a||b|(其中φ为异面直线a,b所成的角,范围是(0°,90°]).(2)直线与平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=19|e ·n ||e ||n |,φ的取值范围是[0°,90°].(3)求二面角的大小如图①,AB ,CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=20〈AB→,CD →〉.如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉,取值范围是[0°,180°].确定平面法向量的方法(1)直接法:观察是否有垂直于平面的向量,若有,则此向量就是法向量. (2)待定系数法:取平面内的两个相交向量a ,b ,设平面的法向量为n =(x ,y ,z ),由⎩⎨⎧n ·a =0,n ·b =0,解方程组求得.1.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α和平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .重合答案 C解析 由(1,2,0)·(2,-1,0)=1×2+2×(-1)+0×0=0,知两平面的法向量互相垂直,所以两平面互相垂直.2.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( )A .⎝ ⎛⎭⎪⎫33,33,-33B .⎝ ⎛⎭⎪⎫33,-33,33C .⎝ ⎛⎭⎪⎫-33,33,33D .⎝ ⎛⎭⎪⎫-33,-33,-33答案 D解析 AB→=(-1,1,0),AC →=(-1,0,1),设平面ABC 的法向量n =(x ,y ,z ),∴⎩⎨⎧-x +y =0,-x +z =0.令x =1,则y =1,z =1,∴n =(1,1,1).单位法向量为±n |n |=±⎝ ⎛⎭⎪⎫33,33,33. 3. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(B 1A 1→-B 1B →)+B 1B →+13(AB →+AD →)=23B 1B →+13B 1C 1→,∴MN →,B 1B →,B 1C 1→共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .4. 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 与FD 1所成角的余弦值等于( )A .105B .155C .45D .23答案 B解析 建立如图所示的空间直角坐标系,则O (1,1,0),E (0,2,1),F (1,0,0),D 1(0,0,2),∴FD 1→=(-1,0,2),OE →=(-1,1,1).∴cos 〈FD 1→,OE →〉=FD 1→·OE→|FD1→||OE →|=1+0+25×3=155.故选B .5.如图,已知P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD ,E ,F 分别是AB ,PC 的中点.若∠PDA =45°,则EF 与平面ABCD 所成的角的大小是( )A .90°B .60°C .45°D .30°答案 C解析 设AD =a ,AB =b ,因为∠PDA =45°,P A ⊥平面ABCD ,所以P A ⊥AD ,P A =AD =a .以点A 为坐标原点,AB ,AD ,AP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,a ),E ⎝ ⎛⎭⎪⎫b 2,0,0,F ⎝ ⎛⎭⎪⎫b 2,a 2,a 2,所以EF→=⎝ ⎛⎭⎪⎫0,a 2,a 2.易知AP →=(0,0,a )是平面ABCD 的一个法向量.设EF 与平面ABCD 所成的角为θ,则sin θ=|cos 〈AP →,EF →〉|=|AP →·EF →||AP →||EF →|=22.所以θ=45°.6. (2020·广东华侨中学高三模拟)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则点M 的坐标为( )A .(1,1,1)B .⎝ ⎛⎭⎪⎫23,23,1C .⎝ ⎛⎭⎪⎫22,22,1D .⎝ ⎛⎭⎪⎫24,24,1答案 C解析 设AC 与BD 相交于点O ,连接OE ,∵AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标为⎝ ⎛⎭⎪⎫22,22,1.考向一 利用空间向量证明平行、垂直例1 如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 所成的角为30°.求证:(1)CM ∥平面P AD ; (2)平面P AB ⊥平面P AD .证明 以点C 为坐标原点,分别以CB ,CD ,CP 所在的直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系Cxyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角. ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP→=(0,-1,2),DA→=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32. (1)设n =(x ,y ,z )为平面P AD 的一个法向量,由⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,得⎩⎨⎧-y +2z =0,23x +3y =0. 令y =2,得n =(-3,2,1).∵n ·CM→=-3×32+2×0+1×32=0,∴n ⊥CM →.又CM ⊄平面P AD ,∴CM ∥平面P AD . (2)如图,取AP 的中点E ,连接BE ,则E (3,2,1),BE →=(-3,2,1).∵PB =AB ,∴BE ⊥P A .又BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE→⊥DA →,∴BE ⊥DA . 又P A ∩DA =A ,∴BE ⊥平面P AD . 又BE ⊂平面P AB ,∴平面P AB ⊥平面P AD . 1.用向量法证平行问题的类型及常用方法线线平行证明两直线的方向向量共线线面平行 ①证明该直线的方向向量与平面的某一法向量垂直;②证明该直线的方向向量与平面内某直线的方向向量平行;③证明该直线的方向向量可以用平面内的两个不共线的向量表示面面平行①证明两平面的法向量平行(即为共线向量); ②转化为线面平行、线线平行问题线线垂直 问题证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直 问题 直线的方向向量与平面的法向量共线,或利用线面垂直的判定定理转化为证明线线垂直面面垂直 问题两个平面的法向量垂直,或利用面面垂直的判定定理转化为证明线面垂直1. 如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱, 所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.因为MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2),所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎨⎧-x 1+2y 1=0,x 1+2z 1=0, 令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 多角度探究突破考向二 利用空间向量求空间角 角度1 求异面直线所成的角例2 (1) (2020·汕头模拟)如图,正四棱锥P -ABCD 的侧面P AB 为正三角形,E 为PC 的中点,则异面直线BE 和P A 所成角的余弦值为( )A .33B .32C .22D .12答案 A解析 连接AC ,BD ,交于点O ,连接PO ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,设AB =2,则OA =OB =OP =1,A (1,0,0),B (0,1,0),C (-1,0,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫-12,0,12,BE →=⎝ ⎛⎭⎪⎫-12,-1,12,P A →=(1,0,-1),设异面直线BE 和P A 所成角为θ,则cos θ=|BE →·P A →||BE →||P A →|=132×2=33. ∴异面直线BE 和P A 所成角的余弦值为33.故选A .(2) 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是CC 1,AD 的中点,那么异面直线D 1E 和A 1F 所成角的余弦值等于________.答案 25解析 如图,以D 为原点建立空间直角坐标系.则A 1(2,0,2),F (1,0,0),D 1(0,0,2),E (0,2,1), 则A 1F →=(-1,0,-2),D 1E →=(0,2,-1), cos 〈D 1E →,A 1F →〉=D 1E →·A 1F →|D 1E →||A 1F →|=25×5=25, ∴异面直线D 1E 和A 1F 所成角的余弦值等于25.(1)求异面直线所成角的思路①选好基底或建立空间直角坐标系; ②求出两直线的方向向量v 1,v 2;③代入公式cos θ=|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解(θ为两异面直线所成角).(2)两异面直线所成角的关注点两异面直线所成角θ的范围是(0°,90°],两向量的夹角α的范围是[0°,180°],当异面直线的方向向量的夹角为锐角或直角时,该角就是异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.2.(多选)(2020·山东潍坊5月模拟)已知在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E ,F ,H 分别是AB ,DD 1,BC 1的中点,下列结论中正确的是( )A .D 1C 1∥平面CHDB .AC 1⊥平面BDA 1C .三棱锥D -BA 1C 1的体积为56 D .直线EF 与BC 1所成的角为30° 答案 ABD解析 如图1所示,因为D 1C 1∥DC ,D 1C 1⊄平面CHD ,DC ⊂平面CHD ,所以D 1C 1∥平面CHD ,A 正确;建立空间直角坐标系,如图2所示.由于正方体ABCD -A 1B 1C 1D 1的棱长为1,则AC 1→=(-1,1,1),BD →=(-1,-1,0),DA 1→=(1,0,1),所以AC 1→·BD →=1-1+0=0,AC 1→·DA 1→=-1+0+1=0,所以AC 1→⊥BD →,AC 1→⊥DA 1→,所以AC 1⊥平面BDA 1,B 正确;三棱锥D -BA 1C 1的体积为V 三棱锥D -BA 1C 1=V 正方体ABCD -A 1B 1C 1D 1-4V 三棱锥A 1-ABD =1-4×13×12×1×1×1=13,所以C 错误;E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫0,0,12,所以EF →=⎝ ⎛⎭⎪⎫-1,-12,12,BC →1=(-1,0,1),所以cos 〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=1+0+1232×2=32,所以直线EF 与BC 1所成的角是30°,D 正确.故选ABD.角度2 求直线与平面所成的角例3 (2020·山东高考) 如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.解 (1)证明:在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l .因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,又PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD . 因为DC ∩PD =D ,所以l ⊥平面PDC . (2)如图,建立空间直角坐标系Dxyz .因为PD =AD =1,所以D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC→=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1).设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎨⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,知直线PB 与平面QCD 所成角的正弦值等于|cos 〈n ,PB→〉|= |1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63, 当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63.利用向量法求线面角的方法 (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.提醒:在求平面的法向量时,若能找出平面的垂线,则在垂线上取两个点可构成一个法向量.3.(2019·浙江高考)如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.解解法一:(1)证明:如图1,连接A1E.因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又因为平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.又因为A1E∩A1F=A1,所以BC⊥平面A1EF.因为EF⊂平面A1EF,所以EF⊥BC.(2)如图1,取BC的中点G,连接EG,GF,连接A1G交EF于点O,则四边形EGF A1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGF A1为矩形.由(1),得BC⊥平面EGF A1,所以平面A1BC⊥平面EGF A1,所以EF在平面A1BC上的射影在直线A1G上.则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G 2=152, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 解法二:(1)证明:如图2,连接A 1E .因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又因为平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .以点E 为坐标原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立如图所示的空间直角坐标系Exyz .不妨设AC =4,则E (0,0,0),A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝ ⎛⎭⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0,得EF ⊥BC .(2)由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0. 取n =(1, 3,1),设直线EF 与平面A 1BC 所成的角为θ,故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →||n |=45,所以cos θ=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 角度3 求二面角例4 (2020·济南一模)如图1,平面四边形ABCD 中,AB =AC =2,AB ⊥AC ,AC ⊥CD ,E 为BC 的中点,将△ACD 沿对角线AC 折起,使CD ⊥BC ,连接BD ,DE ,AE ,得到如图2所示的三棱锥D -ABC .(1)证明:平面ADE ⊥平面BCD ;(2)已知直线DE 与平面ABC 所成的角为π4,求二面角A -BD -C 的余弦值. 解 (1)证明:在三棱锥D -ABC 中,因为CD ⊥BC ,CD ⊥AC ,AC ∩BC =C ,所以CD ⊥平面ABC . 又AE ⊂平面ABC ,所以AE ⊥CD .因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 又BC ∩CD =C ,所以AE ⊥平面BCD . 又AE ⊂平面ADE ,所以平面ADE ⊥平面BCD .(2)由(1)可知∠DEC 即为直线DE 与平面ABC 所成的角,所以∠DEC =π4. 在Rt △ABC 中,由勾股定理得BC =2,故CD =CE =1.作EF ∥CD 交BD 于点F ,由(1)知EA ,EB ,EF 两两垂直,以E 为原点,EA ,EB ,EF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E (0,0,0),A (1,0,0),B (0,1,0),D (0,-1,1), 易知平面BCD 的一个法向量为n 1=(1,0,0), 又AB→=(-1,1,0),AD →=(-1,-1,1), 设平面ABD 的一个法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 2·AB →=-x +y =0,n 2·AD →=-x -y +z =0,令x =1,解得n 2=(1,1,2), cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=66.由图可知,该二面角为锐角, 所以二面角A -BD -C 的余弦值为66.利用向量法确定二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量夹角的大小就是二面角的大小.4. (2020·青岛模拟)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qiàn dǔ);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑(biē nào)指四个面均为直角三角形的四面体.如图在堑堵ABC -A 1B 1C 1中,AB ⊥AC .(1)求证:四棱锥B -A 1ACC 1为阳马;(2)若C 1C =BC =2,当鳖臑C 1-ABC 体积最大时,求锐二面角C -A 1B -C 1的余弦值.解 (1)证明:∵A 1A ⊥底面ABC ,AB ⊂面ABC , ∴A 1A ⊥AB .又AB ⊥AC ,A 1A ∩AC =A , ∴AB ⊥面ACC 1A 1. 又四边形ACC 1A 1为矩形, ∴四棱锥B -A 1ACC 1为阳马.(2)∵AB ⊥AC ,BC =2,∴AB 2+AC 2=4. 又C 1C ⊥底面ABC ,∴VC 1-ABC =13·C 1C ·12AB ·AC =13·AB ·AC ≤13·AB 2+AC 22=23,当且仅当AB =AC =2时,=13·AB ·AC 取最大值.∵AB ⊥AC ,A 1A ⊥底面ABC ,∴以A 为原点,建立如图所示的空间直角坐标系,则B (2,0,0),C (0,2,0),A 1(0,0,2),C 1(0,2,2),A 1B →=(2,0,-2),BC →=(-2,2,0),A 1C 1→=(0,2,0).设面A 1BC 的一个法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1·A 1B →=0,n 1·BC →=0,得⎩⎪⎨⎪⎧2x 1-2z 1=0,-2x 1+2y 1=0,令z 1=1,得n 1=(2,2,1). 同理得面A 1BC 1的一个法向量为n 2=(2,0,1),cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=155,∴二面角C -A 1B -C 1的余弦值为155.用向量法探究点的位置如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.解 (1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD ,所以AB ⊥平面P AD ,所以AB ⊥PD .又因为P A ⊥PD ,P A ∩AB =A ,所以PD ⊥平面P AB . (2)如图,取AD 的中点O ,连接PO ,CO .因为P A =PD ,所以PO ⊥AD . 又因为PO ⊂平面P AD , 平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD , 所以PO ⊥CO .因为AC =CD ,所以CO ⊥AD . 建立空间直角坐标系Oxyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1),PB →=(1,1,-1),PC→=(2,0,-1),PD →=(0,-1,-1).设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0. 令z =2,则x =1,y =-2,所以n =(1,-2,2). 又PB→=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB→|=-33,所以直线PB 与平面PCD 所成角的正弦值为33.(3)假设在棱P A 上存在点M ,使得BM ∥平面PCD ,则存在λ∈[0,1]使得AM →=λAP→.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以当且仅当BM →·n =0时,BM ∥平面PCD ,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14. 答题启示对于点的探究型问题,要善于根据点的位置结合向量的有关定理灵活设出未知量,尽量使未知量个数最少.对点训练(2020·滨州二模) 如图所示,在等腰梯形ABCD 中,AD ∥BC ,∠ADC =60°,直角梯形ADFE 所在的平面垂直于平面ABCD ,且∠EAD =90°,EA =AD =2DF =2CD =2.(1)证明:平面ECD ⊥平面ACE ;(2)点M 在线段EF 上,试确定点M 的位置,使平面MCD 与平面EAB 所成的二面角的余弦值为34.解 (1)证明:因为平面ABCD ⊥平面ADFE ,平面ABCD ∩平面ADFE =AD ,EA ⊥AD ,EA ⊂平面ADFE ,所以EA ⊥平面ABCD ,又CD ⊂平面ABCD ,所以EA ⊥CD , 在△ADC 中,CD =1,AD =2,∠ADC =60°, 由余弦定理得,AC = 1+4-2×1×2cos60°=3, 所以AC 2+CD 2=AD 2,所以CD ⊥AC .又EA ⊥CD ,EA ∩AC =A ,所以CD ⊥平面ACE , 又CD ⊂平面ECD ,所以平面ECD ⊥平面ACE . (2)以C 为坐标原点,以CA ,CD 所在直线分别为x 轴、 y 轴,过点C 且平行于AE 的直线为z 轴,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,0,0),B ⎝ ⎛⎭⎪⎫32,-12,0,D (0,1,0),E (3,0,2),F (0,1,1),AB →=⎝ ⎛⎭⎪⎫-32,-12,0,AE →=(0,0,2),CD→=(0,1,0),FE →=(3,-1,1),CF →=(0,1,1),设FM →=λFE →=(3λ,-λ,λ)(0≤λ≤1),则CM→=CF →+FM →=(3λ,1-λ,1+λ).设平面EAB 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AE →=0,即⎩⎨⎧-32x 1-12y 1=0,2z 1=0,取x 1=1,得m =(1,-3,0).设平面MCD 的一个法向量为n =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧n ·CD →=0,n ·CM →=0,得⎩⎨⎧y 2=0,3λx 2+(1-λ)y 2+(1+λ)z 2=0,令x 2=1+λ,得n =(1+λ,0,-3λ),因为平面MCD 与平面EAB 所成的二面角的余弦值为34,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=|1+λ|24λ2+2λ+1=34, 整理得8λ2-2λ-1=0,解得λ=12或λ=-14(舍去),所以点M 为线段EF 的中点时,平面MCD 与平面EAB 所成的二面角的余弦值为34.一、单项选择题1.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( )A .l ∥αB .l ⊥αC .l 与α斜交D .l ⊂α或l ∥α答案 B解析 因为a =(1,-3,5),n =(-1,3,-5),所以a =-n ,a ∥n .所以l ⊥平面α.选B .2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90° 答案 C解析 ∵cos 〈m ,n 〉=m ·n |m ||n |=12=22,∴〈m ,n 〉=45°.∴二面角为45°或135°.故选C .3. 如图所示,已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是上底面A 1B 1C 1D 1和侧面ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .135°答案 B解析 以D 为原点,分别以射线DA ,DC ,DD 1为x 轴、y 轴、z 轴的非负半轴建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF →=⎝ ⎛⎭⎪⎫0,-12,-12,DC →=(0,1,0),∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.故选B .4.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,BB 1=4,则直线BB 1与平面ACD 1所成角的正弦值为( )A .13B .33C .63D .223答案 A解析 如图所示,建立空间直角坐标系Dxyz .则A (2,0,0),C (0,2,0),D 1(0,0,4),B (2,2,0),B 1(2,2,4),AC →=(-2,2,0),AD 1→=(-2,0,4),BB 1→=(0,0,4). 设平面ACD 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧-2x +2y =0,-2x +4z =0, 取x =2,则y =2,z =1,故n =(2,2,1)是平面ACD 1的一个法向量,设直线BB 1与平面ACD 1所成的角是θ,则sin θ=|cos 〈n ,BB 1→〉|=|n ·BB 1→||n ||BB 1→|=49×4=13.故选A .5.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于( )A .5B .41C .4D .2 5答案 A解析 ∵A (1,-1,2),B (5,-6,2),C (1,3,-1),∴AB→=(4,-5,0),AC →=(0,4,-3).∵点D 在直线AC 上,∴设AD →=λAC →=(0,4λ,-3λ),由此可得BD→=AD →-AB →=(0,4λ,-3λ)-(4,-5,0)=(-4,4λ+5,-3λ).又BD →⊥AC →,∴BD →·AC →=-4×0+(4λ+5)×4+(-3λ)×(-3)=0,解得λ=-45.因此BD →=(-4,4λ+5,-3λ)=⎝ ⎛⎭⎪⎫-4,95,125.可得|BD→|= (-4)2+⎝ ⎛⎭⎪⎫952+⎝ ⎛⎭⎪⎫1252=5.6. (2020·安徽六安一中质检)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A . 2B . 3C .2D .22答案 A解析 分别以CA ,CB ,CC 1所在的直线为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),设AD =a ,则点D 坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2),设平面B 1CD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CB 1→=0,n ·CD →=0,得⎩⎨⎧2y +2z =0,x +az =0,令z =-1,得n =(a,1,-1),又平面C 1DC 的一个法向量为m =(0,1,0).所以cos60°=m ·n |m ||n |,得1a 2+2=12,解得a =2,故选A .7. (2021·湖南湘潭高三月考)在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是( )A .⎝ ⎛⎭⎪⎫1,1,12 B .(1,2,1)C .(1,1,1)D .(2,-2,1)答案 A解析 P A →=(1,0,-2),AB →=(-1,1,0),设平面P AB 的法向量为n =(x ,y,1),则⎩⎨⎧ x -2=0,-x +y =0.解得⎩⎨⎧x =2,y =2.∴n =(2,2,1).又⎝ ⎛⎭⎪⎫1,1,12=12n ,∴A 正确.8.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12 B .23 C .33 D .22答案 B解析 以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧n 1·A 1D →=0,n 1·A 1E →=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎨⎧y =2,z =2.∴n 1=(1,2,2).又平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.故选B .二、多项选择题9.(2020·海口高考调研) 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =23AB =2,AB ⊥AC ,点D ,E 分别是线段BC ,B 1C 上的动点(不含端点),且EC B 1C =DCBC .则下列说法正确的是( )A .ED ∥平面ACC 1B .该三棱柱的外接球的表面积为68πC .异面直线B 1C 与AA 1所成角的正切值为32 D .二面角A -EC -D 的余弦值为413 答案 AD解析 在直三棱柱ABC -A 1B 1C 1中,四边形BCC 1B 1是矩形,因为ECB 1C =DC BC ,所以ED ∥BB 1∥CC 1,所以ED ∥平面ACC 1,A 正确;因为AA 1=AC =23AB =2,所以AB =3,因为AB ⊥AC ,所以BC =22+32=13,所以B 1C =13+4=17,易知B 1C 是三棱柱外接球的直径,所以三棱柱外接球的表面积为4π×⎝⎛⎭⎪⎫1722=17π,B 错误;因为AA 1∥BB 1,所以异面直线B 1C 与AA 1所成的角为∠BB 1C .在Rt △B 1BC 中,BB 1=2,BC =13,所以tan ∠BB 1C =BC BB 1=132,C 错误;二面角A -EC -D 即二面角A -B 1C -B ,以A 为坐标原点,以AB →,AC →,AA 1→的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,可得平面AB 1C 的一个法向量为(2,0,-3),平面BB 1C 的一个法向量为(2,3,0),故二面角A -EC -D 的余弦值为2×213×13=413,D 正确.10. (2020·山东模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,如图,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则下列说法正确的是( )A .直线A 1G 与平面AEF 平行B .直线D 1D 与直线AF 垂直C .平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面的面积为98 D .点C 与点G 到平面AEF 的距离相等 答案 AC解析 如图,连接AD 1,D 1F ,因为A 1G ∥D 1F ,且A ,E ,F ,D 1在同一平面内,所以A 1G ∥平面AEF ,故A 正确;因为AF 与C 1C 相交且不垂直,D 1D 与C 1C 平行,所以直线D 1D 与直线AF 不垂直,故B 错误;平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面为等腰梯形AEFD 1,作EH ⊥AD 1,交AD 1于点H ,连接D 1E ,DE ,可得AE =52,AD 1=2,D 1E =1+54=32,所以在△AD 1E中,cos ∠D 1AE =1010,所以sin ∠D 1AE =31010,所以EH =52×31010=324,所以等腰梯形AD 1FE 的面积S =12×⎝ ⎛⎭⎪⎫2+22×324=98,故C 正确;以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,连接AG ,AC ,则可得平面AEF 的一个法向量为n =(2,1,2),AG →=⎝ ⎛⎭⎪⎫0,1,12,AC →=(-1,1,0),所以点G 到平面AEF 的距离d 1=|AG →·n ||n |=23,点C 到平面AEF 的距离d 2=|AC →·n ||n |=13,故D 错误.故选AC .三、填空题11. 如图所示,二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为________.答案60°解析∵CD→=CA→+AB→+BD→,∴|CD→|=(CA→+AB→+BD→)2= 36+16+64+2CA→·BD→= 116+2CA→·BD→=217.∴CA→·BD→=|CA→||BD→|cos〈CA→,BD→〉=-24.∴cos〈CA→,BD→〉=-12.又所求二面角与〈CA→,BD→〉互补,∴所求的二面角为60°.12. 正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为22,则AC1与侧面ABB1A1所成的角为________.答案 π6解析 以C 为原点建立如图所示的空间直角坐标系,得下列坐标:A (2,0,0),C 1(0,0,22).点C 1在侧面ABB 1A 1内的射影为点C 2⎝ ⎛⎭⎪⎫32,32,22.所以AC 1→=(-2,0,22),AC 2→=⎝ ⎛⎭⎪⎫-12,32,22,设直线AC 1与平面ABB 1A 1所成的角为θ,则cos θ=AC 1→·AC 2→|AC1→||AC 2→|=1+0+823×3=32.又θ∈⎣⎢⎡⎦⎥⎤0,π2,所以θ=π6.13.(2020·山西大同高三模拟)在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,且A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是________.答案 平行解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(BA →+AA 1→)+A 1A →+13(AB →+BC →)=23A 1A →+13BC →=23B 1B →+13BC →.∴MN →与B 1B →,BC →共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .14.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 如图,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23,AE →=⎝ ⎛⎭⎪⎫0,1,13,AF →=⎝ ⎛⎭⎪⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABC 所成的锐二面角为θ,由图知θ为锐角,由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,则z =-3,x =-1,则n =(-1,1,-3),平面ABC 的一个法向量为m =(0,0,-1),cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.四、解答题15.(2020·山东省模拟考) 如图,四棱锥S -ABCD 中,底面ABCD 为矩形.SA ⊥平面ABCD ,E ,F 分别为AD ,SC 的中点,EF 与平面ABCD 所成的角为45°.(1)证明:EF 为异面直线AD 与SC 的公垂线;(2)若EF =12BC ,求二面角B -SC -D 的余弦值.解 (1)证明:以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长,建立如图所示的空间直角坐标系Axyz .设D (0,b,0),S (0,0,c ),则C (1,b,0),E ⎝ ⎛⎭⎪⎫0,b 2,0,F ⎝ ⎛⎭⎪⎫12,b 2,c 2,EF →=⎝ ⎛⎭⎪⎫12,0,c 2,AS →=(0,0,c ),AD→=(0,b,0). 因为EF 与平面ABCD 所成的角为45°,所以EF →与平面ABCD 的法向量AS →的夹角为45°.所以AS →·EF →=|AS →||EF →|cos45°, 即c 22=22×c ×14+c 24,解得c =1,故EF →=⎝ ⎛⎭⎪⎫12,0,12,SC →=(1,b ,-1), 从而EF →·SC →=0,EF →·AD →=0,所以EF ⊥SC ,EF ⊥AD .因此EF 为异面直线AD 与SC 的公垂线. (2)由B (1,0,0),BC →=(0,b,0), |EF→|=12|BC →|得b = 2. 于是F ⎝ ⎛⎭⎪⎫12,22,12,C (1,2,0),连接FB ,故FB →=⎝ ⎛⎭⎪⎫12,-22,-12,SC →=(1,2,-1),从而FB →·SC→=0,即FB ⊥SC .取CF 的中点G ,连接GD ,则G ⎝ ⎛⎭⎪⎫34,324,14,GD →=⎝ ⎛⎭⎪⎫-34,24,-14,从而GD →·SC→=0,即GD ⊥SC .因此〈FB→,GD →〉等于二面角B -SC -D 的平面角.cos 〈FB →,GD →〉=FB →·GD →|FB →||GD →|=-33.所以二面角B -SC -D 的余弦值为-33.16. (2020·全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.解 (1)证明:∵M ,N 分别为BC ,B 1C 1的中点, ∴MN ∥BB 1.又AA 1∥BB 1,∴AA 1∥MN .∵△A 1B 1C 1为等边三角形,N 为B 1C 1的中点, ∴A 1N ⊥B 1C 1.又侧面BB 1C 1C 为矩形,∴B 1C 1⊥BB 1. ∵MN ∥BB 1,∴MN ⊥B 1C 1.又MN ∩A 1N =N ,MN ,A 1N ⊂平面A 1AMN , ∴B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , ∴平面A 1AMN ⊥平面EB 1C 1F .(2)解法一:连接NP ,∵AO ∥平面EB 1C 1F ,平面AONP ∩平面EB 1C 1F =NP , ∴AO ∥NP .∵三棱柱上下底面平行,平面A 1AMN ∩平面ABC =AM ,平面A 1AMN ∩平面A 1B 1C 1=A 1N ,∴ON ∥AP .∴四边形ONP A 是平行四边形. ∴ON =AP ,AO =NP . 设△ABC 边长是6m (m >0), 则NP =AO =AB =6m .∵O 为△A 1B 1C 1的中心,且△A 1B 1C 1的边长为6m , ∴ON =13×6m ×sin60°=3m .∴ON =AP =3m . ∵BC ∥B 1C 1,B 1C 1⊂平面EFC 1B 1, ∴BC ∥平面EFC 1B 1.又BC ⊂平面ABC ,平面ABC ∩平面EFC 1B 1=EF , ∴EF ∥BC ,∴AP AM =EP BM ,∴3m 33m =EP 3m ,解得EP =m .在B 1C 1截取B 1Q =EP =m ,连接PQ ,故QN =2m . ∵B 1Q =EP 且B 1Q ∥EP ,∴四边形B 1QPE 是平行四边形,∴B 1E ∥PQ . 由(1)可知B 1C 1⊥平面A 1AMN ,故∠QPN 为B 1E 与平面A 1AMN 所成角. 在Rt △QPN 中,根据勾股定理可得PQ =QN 2+NP 2=(2m )2+(6m )2=210m , ∴sin ∠QPN =QN PQ =2m 210m=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 解法二:由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .由已知得AM ⊥BC ,以Q 为坐标原点,QA→的方向为x 轴正方向,QN →的方向为z 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系Qxyz ,设QM =a ,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, ∴NP =AO =AB =2,∴PQ =233-a ,NQ = NP 2-PQ 2= 4-⎝ ⎛⎭⎪⎫233-a2, ∴B 10,1,4-⎝ ⎛⎭⎪⎫233-a 2 ,E ⎝ ⎛⎭⎪⎫233-a ,13,0,故B 1E →=233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n ||B 1E →|=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010.17.(2020·泰安三模)在四棱锥P -ABCD 中,△P AB 为等边三角形,四边形ABCD 为矩形,E 为PB 的中点,DE ⊥PB .(1)证明:平面ABCD ⊥平面P AB ;(2)设二面角A -PC -B 的大小为α,求α的取值范围.解 (1)证明:连接AE ,因为△P AB 为等边三角形,所以AE ⊥PB . 又DE ⊥PB ,AE ∩DE =E ,所以PB ⊥平面ADE ,所以PB ⊥AD . 因为四边形ABCD 为矩形,所以AD ⊥AB ,且AB ∩PB =B , 所以AD ⊥平面P AB .因为AD ⊂平面ABCD ,所以平面ABCD ⊥平面P AB .(2)以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,不妨设PB =AB =P A =1,C (0,1,n ),则A (0,0,0),P ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),由空间向量的坐标运算可得PC →=⎝ ⎛⎭⎪⎫-32,12,n ,AP →=⎝ ⎛⎭⎪⎫32,12,0,BP →=⎝ ⎛⎭⎪⎫32,-12,0.设平面BPC 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·PC →=0,m ·BP →=0,即⎩⎪⎨⎪⎧-32x 1+12y 1+nz 1=0,32x 1-12y 1=0,令x 1=1,则y 1=3,z 1=0,所以m =(1,3,0). 设平面P AC 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·AP →=0,即⎩⎪⎨⎪⎧-32x 2+12y 2+nz 2=0,32x 2+12y 2=0,令x 2=1,则y 2=-3,z 2=3n ,所以n =⎝ ⎛⎭⎪⎫1,-3,3n .二面角A -PC -B 的大小为α,由图可知,二面角α为锐二面角, 所以cos α=|m ·n ||m ||n |=|1-3|1+3×1+3+3n 2=14+3n 2∈⎝⎛⎭⎪⎫0,12,所以α∈⎝ ⎛⎭⎪⎫π3,π2. 18.(2020·山东平邑一中模拟)请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB ⊥BC ;②FC 与平面ABCD 所成的角为π6;③∠ABC =π3.如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,P A ⊥平面ABCD ,且P A =AB =2,PD 的中点为F .(1)在线段AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB上的位置并给以证明;若不存在,请说明理由;(2)若________,求二面角F-AC-D的余弦值.解(1)在线段AB上存在中点G,使得AF∥平面PCG.证明如下:如图所示.设PC的中点为H,连接FH,GH,∵FH∥CD,FH=12CD,AG∥CD,AG=12CD,∴FH∥AG,FH=AG,∴四边形AGHF为平行四边形,则AF∥GH,又GH⊂平面PCG,AF⊄平面PCG,∴AF∥平面PCG.(2)选择①AB⊥BC:∵P A⊥平面ABCD,∴P A⊥BC,由题意,知AB,AD,AP两两垂直,以AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系,∵P A=AB=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),F(0,1,1),P(0,0,2),∴AF→=(0,1,1),CF→=(-2,-1,1),设平面F AC 的一个法向量为μ=(x ,y ,z ), ∴⎩⎪⎨⎪⎧μ·AF →=y +z =0,μ·CF →=-2x -y +z =0,取y =1,得μ=(-1,1,-1), 平面ACD 的一个法向量为v =(0,0,1), 设二面角F -AC -D 的平面角为θ, 由图可知,二面角θ为锐二面角, 则cos θ=|μ·v ||μ||v |=33,∴二面角F -AC -D 的余弦值为33. 选择②FC 与平面ABCD 所成的角为π6:∵P A ⊥平面ABCD ,取BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥P A ,且FM =1,∴FM ⊥平面ABCD , FC 与平面ABCD 所成角为∠FCM , ∴∠FCM =π6,在Rt △FCM 中,CM =3,又CM =AE ,∴AE 2+BE 2=AB 2,∴BC ⊥AE , ∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1),设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.选择③∠ABC =π3:∵P A ⊥平面ABCD ,∴P A ⊥BC ,取BC 中点E ,连接AE ,∵底面ABCD 是菱形,∠ABC =60°,∴△ABC 是正三角形,∵E 是BC 的中点,∴BC ⊥AE ,∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1), 设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.。

2019届高考数学一轮复习第7单元立体几何第44讲空间向量及其运算和空间位置关系课件理

2019届高考数学一轮复习第7单元立体几何第44讲空间向量及其运算和空间位置关系课件理

[答案]
1 1 - a+ b+c 2 2
[解析] 由图可
1 知,������������=������������1 +������1 ������=������������1 + ������1 ������1 = 2 1 1 1 ������������1 + (������1 ������1 -������1 ������1 )=c+ (b-a)=- a 2 2 2 1 + b+c. 2
直. 4.理解直线的方向向量与平面的法向量. 5.能用向量语言表述线线、线面、面面的垂直和平行关系. 6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定
理).
教学参考
考情分析
考点 空间向量的 线性运算 空间向量基本定理
考查方向 空间向量的 表示与线性运算 向量共面
考例
考查热度 ☆☆☆ ☆☆☆ ★☆☆
课前双基巩固
6.已知向量 a=(4,-2,-4),b=(6,-3,2),则(a+b)· (a-b)的值 为 .
课前双基巩固
名称 语言描述 (1)定理:如果三个向量 a,b,c 不共面,那么对空间任一向量 p,存在有序 空间向量 基本定理 实数组{x,y,z},使得 p= xa+yb+zc . (2)推论:设 O,A,B,C 是不共面的四点,则对空间任一点 P 都存在唯一的 三个有序实数 x,y,z,使������������=x������������+y������������+z������������ ,且 x+y+z= 2.两个向量的数量积 (1)a· b= |a||b|cos<a,b> . (2)a⊥b⇔ (3)|a| =

【全程复习方略】(全国通用)高考数学 7.7 立体几何中的向量方法(一)证明空间中的位置关系课件

【全程复习方略】(全国通用)高考数学 7.7 立体几何中的向量方法(一)证明空间中的位置关系课件
所以 AM =(-2,0,1), ON =(1,0,2), AMON =-2+0+2=0,所以AM⊥ON.
答案:垂直
3.真题小试
感悟考题
试一试
(1)(2015·珠海模拟)若直线l∥平面α ,直线l的方向向量为s、平面α
的法向量为n,则下列结论正确的是( )
4
为OA的中点,N为BC的中点.利用向量方法证明:
直线MN∥平面OCD.
【证明】作AP⊥CD于点P,连接OP,如图,分别以AB,AP,AO所在 直线为x轴、y轴、z轴建立空间直角坐标系,
2 2 则 P(0, 2 ,, 0) D( , ,, 0) 2 2 2
O(0,0,2),M(0,0,1),N(1 2 , 2 ,, 0)
令x=1,则y=-1,z=-1,所以n=(1,-1,-1).
因为 MN·n=1+0-1=0,所以MN ⊥n.
又因为MN⊄平面A1BD,所以MN∥平面A1BD.
【一题多解】用向量法解答本题,你知道几种解法? 解答本题,用向量法还有以下两种解法. 方法一:因为 DA1 =(2,0,2), MN =(1,0,1), 所以 DA1 2MN,即DA1 MN,




所以 MN DA1 , 又因为MN与DA1不共线,所以MN∥DA1,


2
2
2
2
又因为MN⊄平面A1BD,A1D⊂平面A1BD,
所以MN∥平面A1BD.
【易错警示】解答本题有一点容易出错:
只证明 MN ⊥n,而忽视MN⊄平面A1BD的情况就下结论MN∥平面A1BD,而
2.教材改编
链接教材
练一练
(1)(选修2-1P104 T2改编)设 ,v分别是平面α ,β 的法向量, = (-2,2,5),当v=(3,-2,2)时,α 与β 的位置关系为 (4,-4,-10)时,α 与β 的位置关系为 . ; 当 v=

高考数学总复习 专题07 第7节 立体几何中的向量方法课件 理

高考数学总复习 专题07 第7节 立体几何中的向量方法课件 理


m

1 2
2m2+1 . 解 得
m=
2 2


AA′D′D 的一个法向量是D→C=(0,1,0),

D→H

22,
22,1
.


设 DP 与平面 AA′D′D 所成的角为 θ,
∵cos〈D→H,D→C〉=|DD→→HH|·|DD→→CC|= 22×0+ 222××11+1×0=12. 的角为∴s3in0θ°.=12,又 0°≤θ≤90°,∴θ=30°.∴DP 与平面 AA′D′D 所成
A. l1∥l2
B. l1⊥l2
C. l1与l2相交但不垂直
D. 以上均不正确
解析:∵a·b=(2,4,-4)·(-6,9,6)=-2×6+4×9-4×6=0,∴a⊥b.
答案:B
3. 若直线 l 的方向向量与平面α的法向量的夹角等于 120°,则直线 l 与平面α所成的角等于( )
A. 120° B. 60° C. 30° D. 以上均错
则D→A=(1,0,0),D→E=1,1,12,C→1M=1,-1,-12. 设平面 ADE 的法向量为 m=(a,b,c),
则 mm··DD→ →AE= =00
a=0, ⇒a+b+12c=0.
令 c=2,
得 =0m+=1(-0,1=-01,,2∴).C→∵1Mm⊥·Cm→1M.又=C(01M,⊄-平1面,2)A·D1,E,-∴1,C1-M12∥ 平面 ADE.
若将条件“CP=2”去掉,那么,异面直线AM与PQ能垂直吗?若能,求出点P 坐标,不能请说明理由.
解析:能垂直.由例题知A→M=(-2,3,4),Q(4,6,2), 设 P(0,y,0),则P→Q=(4,6-y,2),若 AM⊥PQ, 需A→M·P→Q=0,即(-2,3,4)·(4,6-y,2)=0, ∴-8+3(6-y)+8=0, ∴y=6,∴异面直线 AM 与 PQ 能垂直,此时 P 点坐标为(0,6,0).

李老师高考一轮复习精品学案:立体几何中的向量方法

李老师高考一轮复习精品学案:立体几何中的向量方法

空间向量及其运算1.空间向量的有关概念(1)空间向量:在空间中,具有大小和方向的量叫做空间向量. (2)相等向量:方向相同且模相等的向量.(3)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量. (4)共面向量:平行于同一个平面的向量. 2.空间向量的线性运算及运算律(1)定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算,如下:OB →=OA →+AB→=a +b ;BA →=OA →-OB →=a -b ;OP →=λa (λ∈R ). (2)运算律:(1)加法交换律:a +b =b +a . (3)加法结合律:(a +b )+c =a +(b +c ). (4)数乘分配律:λ(a +b )=λa +λb . 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA→=a ,OB →=b ,则∠AOB 叫做向量a 与b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b. ②两向量的数量积已知空间两个非零向量a ,b 则|a||b|cos 〈a ,b 〉叫做向量a ,b 的数量积,即a·b =|a||b|cos 〈a ,b 〉.(2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.基本定理(1)共线向量定理:空间任意两个向量a 、b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . (2)共面向量定理:如果两个向量a ,b 不共线,p 与向量a ,b 共面的充要条件是存在实数x ,y 使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .考向一 空间向量的线性运算【例1】►如图,在平行六面体ABCDA 1B 1C 1D 1中G 为△A 1BD 的重心,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示AC 1→,AG →.考向二 共线共面定理的应用【例2】►如右图,已知平行六面体ABCD -A ′B ′C ′D ′,E 、F 、G 、H 分别是棱A ′D ′、D ′C ′、C ′C 和AB 的中点,求证E 、F 、G 、H 四点共面.考向三 空间向量数量积的应用【例3】►如图,在四面体S -ABC 中,若SA ⊥BC ,SB ⊥AC ,试证SC ⊥AB .立体几何中的向量方法(一)基础梳理1.空间向量的坐标表示及运算 (1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则①a ±b =(a 1±b 1,a 2±b 2,a 3±b 3); ②λa =(λa 1,λa 2,λa 3); ③a ·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ), a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).(3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b|a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2. 2.立体几何中的向量方法(1)直线的方向向量与平面的法向量的确定①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB→平行的任意非零向量也是直线l 的方向向量.②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0.(2)用向量证明空间中的平行关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. (3)用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. (4)点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.考向一 利用空间向量证明平行问题【例1】►如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是C 1C 、B 1C 1的中点.求证:MN ∥平面A 1BD .考向二利用空间向量证明垂直问题【例2】如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC =60°,P A=AB=BC,E是PC的中点.证明:(1)AE⊥CD;(2)PD⊥平面ABE.考向三利用向量求空间距离【例3】(2010·江西)如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2 3.(1)求点A到平面MBC的距离;(2)求平面ACM与平面BCD所成二面角的正弦值.1.空间的角(1)异面直线所成的角如图,已知两条异面直线a、b,经过空间任一点O作直线a′∥a,b′∥b.则把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0°的角.(3)二面角的平面角如图在二面角α-l -β的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则∠AOB 叫做二面角的平面角. 2.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小(ⅰ)如图①,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(ⅱ)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.考向一 求异面直线所成的角【例1】►(2011·上海高考改编)已知ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱,高AA 1=2,求(1)异面直线BD 与AB 1所成角的余弦值;(2)四面体AB 1D 1C 的体积.考向二 利用向量求直线与平面所成的角【例2】 (2010·辽宁)已知三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC ,PA =AC =12AB ,N 为AB上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点. (1)证明:CM ⊥SN ;(2)求SN 与平面CMN 所成角的大小.考向三 利用向量求二面角【例3】►(2011·全国新课标)如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°AB =2AD ,PD ⊥底面ABCD .(1)证明:PA ⊥BD ;(2)若PD =AD ,求二面角A -PB -C 的余弦值.【2014年湖南卷(理19)】(本小题满分12分)如图6,四棱柱1111D C B A ABCD -的所有棱长都相等,O BD AC = ,11111O D B C A = , 四边形11A ACC 和四边形11B BDD 均为矩形. (1) 证明:⊥O O 1底面ABCD ;(2)若60=∠CBA ,求二面角D OB C --11的余弦值.【2014年全国大纲卷(19)】(本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;图6D 1B D(2)设直线1AA 与平面11BCC B1A AB C --的大小.【2014年山东卷(理17)】(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60,DAB ∠=22AB CD ==,M 是线段AB 的中点.(I )求证:111//C M A ADD 平面;B 1C 1D 1A 1DCBMA(II )若1CD 垂直于平面ABCD且1CD 11C D M 和平面ABCD 所成的角(锐角)的余弦值.【2014年四川卷(理18)】三棱锥A BCD -及其侧视图、俯视图如图所示。

立体几何中的向量方法高考一轮复习课件总结.ppt

立体几何中的向量方法高考一轮复习课件总结.ppt

A(0,0,0),P(0,0,3),B(0,3,0),D(3,0,0),C(3,6,0)
uuur uuur
uuur PD
=(3,0,-3),uBuCur=(3,3,0),所以
cos〈
uuur PD
,uBuCur 〉=|
PuuDur·BuCuur PD||BC |
= 3
9 2×3
2=12,即〈 uPuDur ,
得 uSuAr =(
2,0,-2),
uuur SC
=(0,
2,-2).
设平面 ACS 的一个法向量为 n=(x,y,z),
则 nn··uuSSuuACrur==00,,

2x-2z=0, 2y-2z=0.
取 z= 2,得 n=(2,2, 2). uuur
易知平面 ASD 的一个法向量为 DC =(0, 2,0).
CuuDur=(-1,0,0).
设平面 ACM 的一个法向量为 n=(x,y,z),

n⊥
uuur AC
,n⊥
uAuMuur可得xy++z2=y=0 0

令 z=1,得 x=2,y=-1.∴n=(2,-1,1).
设直线 CD 与平面 ACM 所成的角为 α,
uuur

sinα=||CuCuDDur|·|nn||=
l3 l1
l2
1.直线a,b的方向向量分别为a=(1,-1,2),b=(-2,2,-4),
则( )
A.a∥b或a与b重合
B.a⊥b
C.a与b相交但不垂直
D.a与b异面但不垂直
解析:∵a=(1,-1,2),b=(-2,2,-4),∴b=-2a, ∴a与b共线.即a∥ b或a与b重合.

高考数学 第七章 第七节 立体几何中的向量方法(一)证明空间中的位置关系课件 理 新人教A版

高考数学 第七章 第七节 立体几何中的向量方法(一)证明空间中的位置关系课件 理 新人教A版

【拓展提升】 1.证明点共线的方法 证明点共线的问题可转化为证明向量共线的问题,如证明 A,B,C三点共线,即证明 A B, 共A C线,亦即证明 A B=λ (AλC≠0). 2.证明点共面的方法 证明点共面问题可转化为证明向量共面问题,如要证明P, A,B,C四点共面,只要能证明 P A= xPB 或y对PC 空间任一 点O,有O A= O +P xPB或yPC= O P x O A y O B z O C (x+y+z=1)即可.共面向量定理实际上也是三个非零向量所在 直线共面的充要条件.
【解析】(1)错误.与直线平行的任意非零向量都是该直线的方 向向量. (2)错误.由于法向量的方向不同,所以平面的单位法向量不唯 一. (3)正确.由平面平行的转化定理可知. (4)正确.由直线平行的转化定理可知其逆否命题正确,根据等 价命题可知. 答案:(1)× (2)× (3)√ (4)√
1.若直线l的方向向量为a=(1,0,2),平面α的法向量为 u=(-2,0,-4),则( ) (A) l ∥α (B) l ⊥α (C) l ⊂α (D) l与α斜交 【解析】选B.∵a=(1,0,2),u=(-2,0,-4), ∴u=-2a,即u∥a, ∴l⊥α.
M Q M N M R 3(E FE H ). 2
第七节 立体几何中的向量方法(一) ——证明空间中的位置关系
1.直线的方向向量和平面的法向量 (1)直线的方向向量 ①定义:向量a所在直线与l_平__行__或__重__合__,则a叫做l的方向向 量; ②确定:通常在直线l上任取两点构成的向量. (2)平面的法向量 ①定义:与平面_垂__直__的向量,称做平面的法向量;
【思路点拨】(1)证明 E G E F , 根E H 据共面向量定理即 可得到结论;或证明FG∥EH,即可得到FG,EH确定一平面,

高三数学复习课件:立体几何中的向量方法

高三数学复习课件:立体几何中的向量方法
|1 |||
=
解析
√3
√8
=
关闭
√6
4
.
答案
-10-
知识梳理
知识梳理
1
双基自测
2
3
4
5
3.
关闭
不妨令 CB=1,则 CA=CC1=2.
已知直三棱柱ABC-A
可得 O(0,0,0),B(0,0,1),C
1(0,2,0),A(2,0,0),B1(0,2,1),
1B1C1在空间直角坐标系中,如图所示,且
n1与n2的夹角的大小就是二面角的大小.
-5-
知识梳理
知识梳理
双基自测
1
2
3
4
-6-
5
4.利用空间向量求距离
(1)两点间的距离
设点 A(x1,y1,z1),点 B(x2,y2,z2),则
|AB|=||= (1 -2 )2 + (1 -2 )2 + (1 -2 )2 .
(2)点到平面的距离
(2)平面的法向量的确定:设 a,b 是平面 α 内两个不共线向量,n
· = 0,
为平面 α 的一个法向量,则可用方程组
求出平面 α 的一个
· = 0
法向量 n.
-8-
知识梳理
知识梳理
双基自测
1
2
3
4
5
1.下列结论正确的打“√”,错误的打“×”.
(1)直线的方向向量是唯一确定的. (
)
(2)平面的单位法向量是唯一确定的. (
√5
关闭
A ∴直线 BC1 与直线 AB1 夹角的余弦值为 .
5
解析
答案
-11-
知识梳理

高考数学大一轮总复习 第7篇 第7节 立体几何的向量方

高考数学大一轮总复习 第7篇 第7节 立体几何的向量方
答案:C
数学(人教A版 ·理科)(AH)
2.(2012年高考陕西卷)如图所示,在空间直角坐标系
中有直三棱柱ABCA1B1C1,CA=CC1=2CB,则直线BC1与 直线AB1夹角的余弦值为( )
A.
5 5
B.
5 3
C.2 5 5
D.35
数学(人教A版 ·理科)(AH)
解析:设CB=1,则CA=CC1=2,
3.在空间直角坐标系Oxyz中,平面OAB的一个法向量为n =(2,-2,1),已知点P(-1,3,2),则点P到平面OAB的距 离d等于( )
A.4 B.2 C.3 D.1
数学(人教A版 ·理科)(AH)
解析:∵ O→P =(-1,3,2)是平面OAB的一条斜线上的向 量,
n=(2,-2,1)为平面OAB的一个法向量, ∴P点到平面OAB的距离 d=|O→|Pn·|n|=|-2-96+2|=2,故选B. 答案:B
A.s=(-1,0,2),n=(1,0,-1) B.s=(-1,0,1),n=(1,2,-1) C.s=(-1,1,1),n=(1,2,-1) D.s=(-1,1,1),n=(-2,2,2)
数学(人教A版 ·理科)(AH)
解析:直线与平面平行,直线的方向向量和平面的法向量 垂直,经检验只有选项C中s·n=0,故选C.
第7节 立体几何的向量方法
数学(人教A版 ·理科)(AH)
基础梳理
数学(人教A版 ·理科)(AH)
1.直线的方向向量和平面的法向量及其应用
(1)直线的方向向量和平面的法向量
①直线的方向向量.直线l上的向量e或与e共线的向量叫做
直线l的方向向量,显然一条直线的方向向量有_____
个.
无数

近年高考数学一轮复习第七章立体几何第44讲立体几何中的向量方法(一)证明平行与垂直学案(2021年

近年高考数学一轮复习第七章立体几何第44讲立体几何中的向量方法(一)证明平行与垂直学案(2021年

2019版高考数学一轮复习第七章立体几何第44讲立体几何中的向量方法(一)证明平行与垂直学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第七章立体几何第44讲立体几何中的向量方法(一)证明平行与垂直学案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第七章立体几何第44讲立体几何中的向量方法(一)证明平行与垂直学案的全部内容。

第44讲立体几何中的向量方法(一)—-证明平行与垂直考纲要求考情分析命题趋势1。

理解直线的方向向量与平面法向量的意义.2.能用向量语言表达直线与直线、直线与平面、平面与平面的垂直和平行关系.3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)。

2016·山东卷,172016·浙江卷,172016·天津卷,17空间直角坐标系、空间向量及其运算在高考中主要作为解题工具,解决直线、平面的平行、垂直位置关系的判定等问题.分值:5~6分1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一__非零__向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为错误!2.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔__v1∥v2__.(2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或l⊂α⇔__存在两个实数x,y,使v=x v1+y v2__.(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔__v⊥u__。

高考数学一轮复习 第七章 立体几何 第44讲 立体几何中的向量方法(一)—证明平行与垂直实战演练 理

高考数学一轮复习 第七章 立体几何 第44讲 立体几何中的向量方法(一)—证明平行与垂直实战演练 理

法(一)—证明平行与垂直实战演练理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学一轮复习第七章立体几何第44讲立体几何中的向量方法(一)—证明平行与垂直实战演练理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学一轮复习第七章立体几何第44讲立体几何中的向量方法(一)—证明平行与垂直实战演练理的全部内容。

方法(一)-证明平行与垂直实战演练理1.(2014·新课标全国卷Ⅱ)直三棱柱ABC­A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为( C )A.错误!B.错误!C.错误!D.错误!解析:以C1为坐标原点,建立如图所示的空间直角坐标系,设BC=CA=CC1=2,则A(2,0,2),N(1,0,0),M(1,1,0),B(0,2,2),∴错误!=(-1,0,-2),错误!=(1,-1,-2),∴cos〈错误!,错误!〉=错误!=错误!=错误!=错误!.故选C.2.在正方体ABCDA1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC的中点,点Q为平面ABCD内一点,线段D1Q与OP互相平分,则满足M错误!=λ错误!的实数λ的个数是( B )A.1 B.2C.3 D.4解析:建立如图的坐标系,设正方体的边长为2,则P(x,y,2),O(1,1,0),∴OP的中点坐标为错误!,又知D1(0,0,2),∴Q(x+1,y+1,0),而Q在MN上,∴x Q+y Q=3,∴x+y=1,即点P坐标满足x+y=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第44讲 立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一__非零__向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔__v 1∥v 2__. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔__存在两个实数x ,y ,使v =x v 1+y v 2__.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔__v ⊥u __. (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔__u 1∥u 2__. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2, 则l 1⊥l 2⇔__v 1⊥v 2__⇔__v 1·v 2=0__.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔__v ∥u __.(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔__u 1⊥u 2__⇔__u 1·u 2=0__.1.思维辨析(在括号内打“√”或“×”). (1)直线的方向向量是唯一确定的.( × )(2)若两直线的方向向量不平行,则两直线不平行.( √ )(3)若两平面的法向量平行,则两平面平行或重合.( √ )(4)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( C ) A .(-1,1,1) B .(1,-1,1) C .⎝ ⎛⎭⎪⎫-33,-33,-33 D .⎝⎛⎭⎪⎫33,33,-33 解析 AB →=(-1,1,0),AC →=(-1,0,1),经计算得C 符合题意.3.已知直线l 的方向向量v =(1,2,3),平面α的法向量为u =(5,2,-3),则l 与α的位置关系是__l ∥a 或l ⊂α__.解析 ∵v =(1,2,3),u =(5,2,-3),1×5+2×2+3×(-3)=0, ∴v ⊥u ,∴l ∥a 或l ⊂α.4.设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为__α⊥β__;当v =(4,-4,-10)时,α与β的位置关系为__α∥β__.解析 当v =(3,-2,2)时,u ⊥v ,则α⊥β,当v =(4,-4,-10)时,u ∥v ,则α∥β.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是__异面垂直__.解析 以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立直角坐标系,设正方体棱长为2,则A (2,0,0),M (0,0,1),O (1,1,0),N (2,1,2),则ON →=(1,0,2),∴ON →·AM →=0,∴ON →⊥AM →,∴ON ⊥AM .一 利用空间向量证明平行问题(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【例1】 如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面PAD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG .二 利用空间向量证明垂直问题证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明直线与直线垂直,只需要证明两条直线的方向向量垂直;证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.【例2】 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A (0,0,3),A 1(0,2,3),B 1(1,2,0). 设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量,而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n ,故AB 1⊥平面A 1BD .【例3】 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明 (1)如图所示,以O 为坐标原点,以过O 平行于BD 的直线为x 轴,以AD ,OP 分别为y ,z 轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4). 于是AP →=(0,3,4),BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0,∴AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125,又BC →=(-8,0,0),AC →=(-4,5,0), BA →=(-4,-5,0),∴BM →=BA →+AM →=⎝⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝⎛⎭⎪⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,且BM ∩BC =C ,∴AP ⊥平面BMC ,于是AM ⊥平面BMC .又AM ⊂平面AMC ,∴平面AMC ⊥平面BMC .三 利用空间向量解决探索性问题对于“是否存在”型问题的探索方式有两种:一种是先根据条件作出判断,再进一步论证;另一种是利用空间向量,先假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.【例4】 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1.若存在,求出点P 的位置,若不存在,请说明理由.解析 (1)证明:设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,由余弦定理,得A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21,∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分別为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3),AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3=(x 3,y 3,z 3)为平面DA 1C 1的一个法向量, 则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),∵BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0, 得λ=-1,即点P 在C 1C 的延长线上,且C 1C =CP .1.如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .证明 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0).因为AQ →=3QC →,所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12, 所以PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .2.如图所示,已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点,求证:(1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明 导学号74780343 (1)如图建立空间直角坐标系Axyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4) .取AB 中点为N ,连接CN ,则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC .故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0).B 1F →·EF →=(-2)×2+2×(-2)+(-4) ×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .3.如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ; (2)求证:平面PAB ⊥平面PAD .证明 (1)以C 为坐标原点,分别以CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz ,∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角,∴∠PBC =30°. ∵|PC |=2,∴|BC |=23,|PB |=4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝⎛⎭⎪⎫32,0,32,∴DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32,令n =(x ,y ,z )为平面PAD 的一个法向量. 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,∴⎩⎪⎨⎪⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1). ∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面PAD ,∴CM ∥平面PAD .(2)取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1).∵|PB |=|AB |,∴BE ⊥PA .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又PA ∩DA =A ,∴BE ⊥平面PAD , 又∵BE ⊂平面PAB , ∴平面PAB ⊥平面PAD .4.在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.解析 (1)证明:如图,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a,0,0),B (a ,a,0),C (0,a,0),E ⎝ ⎛⎭⎪⎫a ,a2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD . (2)设G (x,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a2; 由FG →·CP →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0,∴G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即G 点为AD 的中点.易错点 坐标系建立不恰当、点的坐标出错错因分析:①写准点的坐标是关键,要利用中点、向量共线、相等来确定点的坐标.②利用a =λb 证明直线平行需强调两直线不重合,证明直线与平面平行仍需强调直线在平面外.【例1】 如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.解析 以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系Dxyz .由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0), NP →=(-1,0,λ-2).(1)证明:当λ=1时,FP →=(-1,0,1), 因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使平面EFPQ 与平面PQMN 所成二面角为直二面角,则m·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22. 故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角. 【跟踪训练1】 (2018·河北衡水中学检测)如图所示,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD .(2)若SD ⊥平面PAC ,则侧棱SC 上的是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,请说明理由.解析 连接BD ,设AC 交BD 于O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系如图.设底面边长为a ,则高|SO |=62a . 于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,B ⎝⎛⎭⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0.(1)证明:OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,则OC →·SD →=0.故OC ⊥SD ,从而AC ⊥SD . (2)棱SC 上存在一点E 使BE ∥平面PAC .理由如下:由已知条件知DS →是平面PAC 的一个法向量, 且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at ,而BE →·DS →=0, 所以⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at ·⎝ ⎛⎭⎪⎫22a ,0,62a =0, 解得t =13,即当SE ∶EC =2∶1时,BE →⊥DS →.又BE ⊄平面PAC ,故BE ∥平面PAC .课时达标 第44讲[解密考纲]利用空间向量证明平行与垂直关系,常出现于选择、填空题中,或在解答题立体几何部分的第(1)问考查,难度中等或较小.一、选择题1.若直线l ∥平面α,直线l 的方向向量为s ,平面α的法向量为n ,则下列结论可能正确的是( C )A .s =(-1,0,2),n =(1,0,-1)B .s =(-1,0,1),n =(1,2,-1)C .s =(-1,1,1),n =(1,2,-1)D .s =(-1,1,1),n =(-2,2,2)解析 由已知需s ·n =0,逐个验证知,只有C 项符合要求,故选C . 2.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ⊥α的是( A ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,-1)C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,1)解析 若l ⊥α,则a ∥n ,一一验证,可知选A .3.直线l 的方向向量s =(-1,1,1),平面α的法向量为n =(2,x 2+x ,-x ),若直线l ∥平面α,则x =( D )A .-2B .- 2C . 2D .± 2解析 由已知得s ·n =0,故-1×2+1×(x 2+x )+1×(-x )=0,解得x =± 2. 4.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,以CD ,CB ,CE 所在直线分别为x ,y ,z 轴建立空间直角坐标系,|AB |=2,|AF |=1,M 在EF 上,且AM ∥平面BDE ,则M点的坐标为( C )A .(1,1,1)B .⎝ ⎛⎭⎪⎫23,23,1 C .⎝⎛⎭⎪⎫22,22,1 D .⎝⎛⎭⎪⎫24,24,1 解析 由已知得A (2,2,0),B (0,2,0),D (2,0,0),E (0,0,1),设M (x ,x,1). 则AM →=(x -2,x -2,1),BD →=(2,-2,0),BE →=(0,-2,1).设平面BDE 的一个法向量为n =(a ,b ,c ).则⎩⎪⎨⎪⎧n ⊥BD →,n ⊥BE →,即⎩⎨⎧2a -2b =0,-2b +c =0,解得⎩⎨⎧a =b ,c =2b ,令b =1,则n =(1,1,2).又AM ∥平面BDE ,所以n ·AM →=0, 即2(x -2)+2=0,得x =22,所以M ⎝ ⎛⎭⎪⎫22,22,1. 5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF=13AC ,则( B )A .EF 至多与A 1D ,AC 之一垂直B .EF ⊥A 1D ,EF ⊥AC C .EF 与BD 1相交 D .EF 与BD 1异面解析 以D 点为坐标原点,以DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为1,则A 1(1,0,1),D (0,0,0),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫13,0,13,F ⎝ ⎛⎭⎪⎫23,13,0,B (1,1,0),D 1(0,0,1),A 1D →=(-1,0,-1),AC →=(-1,1,0),EF →=⎝ ⎛⎭⎪⎫13,13,-13,BD 1→=(-1,-1,1), EF →=-13BD 1→,A 1D →·EF →=AC →·EF →=0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC ,故选B .6.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( B )A .斜交B .平行C .垂直D .不确定解析 建立如图所示的坐标系,由于A 1M =AN =2a 3,则M ⎝ ⎛⎭⎪⎫a ,2a 3,a 3,N ⎝ ⎛⎭⎪⎫2a 3,2a 3,a ,MN →=⎝ ⎛⎭⎪⎫-a3,0,2a 3,又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→, 所以MN ∥平面BB 1C 1C ,故选B . 二、填空题7.若直线l 的方向向量e =(2,1,m ),平面α的法向量n =⎝ ⎛⎭⎪⎫1,12,2,且l ⊥α,则m =__4__.解析 因为l ⊥α,所以e ∥n ,即e =λn (λ≠0),亦即(2,1,m )=λ⎝ ⎛⎭⎪⎫1,12,2,所以⎩⎪⎨⎪⎧λ=2,m =2λ.则m =4.8.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为__407,-157,4__.解析 由已知得⎩⎪⎨⎪⎧3+5-2z =0,x -1+5y +6=0,3(x -1)+y -3z =0,解得⎩⎪⎨⎪⎧x =407,y =-157,z =4.9.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是__平行__.解析 由已知得,AB →=(0,1,-1),AC →=(1,0,-1),设平面α的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ⊥AB →,m ⊥AC →,得⎩⎪⎨⎪⎧y -z =0,x -z =0.得⎩⎪⎨⎪⎧x =z ,y =z ,令z =1,得m =(1,1,1).又n =(-1,-1,-1),所以m =-n ,即m ∥n ,所以α∥β. 三、解答题10.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为A 1B 1,B 1C 1,C 1D 1的中点.(1)求证:AG ∥平面BEF ;(2)试在棱长BB 1上找一点M ,使DM ⊥平面BEF ,并证明你的结论.解析 (1)以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴和z 轴建立空间直角坐标系,则A (1,0,0),B (1,1,0),E ⎝ ⎛⎭⎪⎫1,12,1,F ⎝ ⎛⎭⎪⎫12,1,1,G ⎝ ⎛⎭⎪⎫0,12,1, 因为EF →=⎝ ⎛⎭⎪⎫-12,12,0,BF →=⎝ ⎛⎭⎪⎫-12,0,1,而AG →=⎝ ⎛⎭⎪⎫-1,12,1,所以AG →=EF →+BF →,故AG →与平面BEF 共面,又因为AG 不在平面BEF 内,所以AG ∥平面BEF . (2)设M (1,1,m ),则DM →=(1,1,m ),由DM →·EF →=0,DM →·BF →=0,所以-12+m =0⇒m =12 ,所以M 为棱BB 1的中点时,DM ⊥平面BEF .11.(2018·北京西城二模)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,AB ⊥BC ,AB =2CD =2BC ,EA ⊥EB .(1)求证:AB ⊥DE ;(2)求直线EC 与平面ABE 所成角的正弦值;(3)线段EA 上是否存在点F ,使EC ∥平面FBD ?若存在,求出EF EA;若不存在,请说明理由.解析 (1)证明:取AB 的中点O ,连接EO ,DO .因为EB =EA ,所以EO ⊥AB . 因为四边形ABCD 为直角梯形.AB =2CD =2BC ,AB ⊥BC ,所以四边形OBCD 为正方形, 所以AB ⊥OD .因为EO ∩DO =O ,所以AB ⊥平面EOD ,所以AB ⊥ED . (2)因为平面ABE ⊥平面ABCD ,且EO ⊥AB , 所以EO ⊥平面ABCD ,所以EO ⊥OD .由OB ,OD ,OE 两两垂直,建立如图所示的空间直角坐标系Oxyz .因为三角形EAB 为等腰直角三角形, 所以OA =OB =OD =OE , 设OB =1,所以O (0,0,0),A (-1,0,0),B (1,0,0),C (1,1,0),D (0,1,0),E (0,0,1).所以EC →=(1,1,-1),平面ABE 的一个法向量为OD →=(0,1,0). 设直线EC 与平面ABE 所成的角为θ,所以sin θ=|cos 〈EC →,OD →〉|=|EC →·O D →||EC →||OD →|=33,即直线EC 与平面ABE 所成角的正弦值为33. (3)存在点F ,且EF EA =13时,有EC ∥平面FBD .证明如下:由EF →=13EA →=⎝ ⎛⎭⎪⎫-13,0,-13,F ⎝ ⎛⎭⎪⎫-13,0,23,所以FB →=⎝ ⎛⎭⎪⎫43,0,-23,BD →=(-1,1,0).设平面FBD 的法向量为v =(a ,b ,c ), 则有⎩⎪⎨⎪⎧v ·BD →=0,v ·FB →=0,所以⎩⎪⎨⎪⎧-a +b =0,43a -23c =0,取a =1,得v =(1,1,2).因为EC →·v =(1,1,-1)·(1,1,2)=0, 且EC ⊄平面FBD ,所以EC ∥平面FBD ,即点F 满足EF EA =13时,有EC ∥平面FBD .12.已知正方体ABCD -A 1B 1C 1D 1的棱长为3,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E ,B ,F ,D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1.证明 (1)以B 为原点,以BA ,BC ,BB 1为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则B (0,0,0),E (3,0,1),F (0,3,2),D 1(3,3,3),则BE →=(3,0,1),BF →=(0,3,2),BD 1→=(3,3,3),所以BD 1→=BE →+BF →.由向量共面的充要条件知E ,B ,F ,D 1四点共面. (2)设M (0,0,z 0),G ⎝ ⎛⎭⎪⎫0,23,0,则GM →=⎝ ⎛⎭⎪⎫0,-23,z 0, 而BF →=(0,3,2),由题设得GM →·BF →=-23×3+z 0·2=0,得z 0=1.故M (0,0,1),有ME →=(3,0,0). 又BB 1→=(0,0,3),BC →=(0,3,0),所以ME →·BB 1→=0,ME →·BC →=0,从而ME ⊥BB 1,ME ⊥BC . 又BB 1∩BC =B ,故ME ⊥平面BCC 1B 1.。

相关文档
最新文档