高中数学第六章_数列与数学归纳法

合集下载

第6章 数列与数学归纳法(6.4-6.8)

第6章 数列与数学归纳法(6.4-6.8)

6.4数学归纳法例题精讲【例1】用数学归纳法证明22>n n ,5n N n ∈≥,则第一步应验证n = . 【参考答案】n =5(注:跟学生说明0n 不一定都是1或2,要看题目)【例2】设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”. 那么,下列命题总成立的是( )A .若1)1(<f 成立,则100)10(<f 成立;B .若4)2(<f 成立,则1)1(<f 成立;C .若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立;D .若(4)25f ≥成立,则当4k ≥时,均有2()f k k ≥成立. 【参考答案】B【例3】用数学归纳法证明命题:若n 是大于1的自然数,求证:n n <-++++12131211Λ,从k 到+1k ,不等式左边添加的项的项数为 .【参考答案】当k n =时,左边为1214131211-+++++k Λ. 当1+=k n 时,左边为1212211212112141312111-+++++++-++++++k k k k k ΛΛ.左边需要添的项为121221121211-+++++++k k k k Λ,项数为k k k 212121=+--+.【例4】用数学归纳法证明:422135n n +++能被14整除*n N ∈().【参考答案】当=1n 时,8545353361224=+=+++n n 能被14整除.假设当k n =时原命题成立,即422135n n +++能被14整除*n N ∈(). 当1+=k n 时,原式为4(1)22(1)1442221353355k k k k +++++++=⋅+⋅4422121423(35)5(35)k k k +++=+--44221213(35)565k k k +++=+-⋅.422135n n +++能被14整除,56也能被14整除,所以上式能被14整除,所以当1+=k n 时原命题成立. 综上所述,原命题成立.【例5】是否存在常数,a b 使得()()2112233413n n n an bn +⨯+⨯+⨯+++=+L 对一切正整数n 都成立?证明你的结论.【参考答案】先用1n =和2n =探求1,2a b ==,再用数学归纳法证明【例6】若*n N ∈,求证:23sin coscoscoscos 22222sin2n n nαααααα=L .【参考答案】① 1n =时,左=cos2α, 右=sin cos22sin2ααα=,左=右② 设n k =时, 23sin coscoscoscos 22222sin2k k kαααααα=L1n k =+时, 2311sin (coscoscoscos )cos cos2222222sin2k k k k kαααααααα++⋅=⋅L=111111sin sin cos22sincos2sin222k k k k k k αααααα++++++⋅=过关演练1. 等式22222574123 (2)n n n -+++++=( ).A . n 为任何正整数时都成立B . 仅n =1,2,3时成立C . n =4时成立,n =5时不成立D . n =4时不成立,其他成立. 2. 用数学归纳法证明22111...(1)1n n a a a a a a++-++++=≠-,在验证1n =时,左端计算所得项为 .3.利用数学归纳法证明“对任意偶数*()n n N ∈,nna b -能被a b +整除”时,其第二步论证应该是 .4. 若*1111...()23n S n N n =++++∈,用数学归纳法证明*21(2,)2n nS n n N >+≥∈,n 从k 到1k +时,不等式左边增加的项为 . 5. 若21*718,,n m m n N -+=∈,则21718n m ++=+ .6. 利用数学归纳法证明22nn >,第一步应该论证 . 7. 数学归纳法证明:111111111......234212122n n n n n-+-++-=+++-++(*n N ∈)时,当n 从k 到1k +时等式左边增加的项为 ;等式右边增加的项为 . 8. 用数学归纳法证明:221(1)n n a a ++++可以被21a a ++整除(*n N ∈).9. 用数学归纳法求证: (1)(1)123 (2)n nn +++++=; (2)222123+++ (2)1(1)(21)6n n n n +=++; (3)333123+++ (3)221(1)4n n n +=+. 10. 在数列{}n a 中,已知111,6(123...)1n a a n +==+++++,*n N ∈,若数列{}n a 前n项和为n S ,求证:3n S n =.6.5数学归纳法的运用例题精讲【例1】已知11=a ,)(*2N n a n S n n ∈=(1)求5432,,,a a a a ;(2)猜想它的通项公式n a ,并用数学归纳法加以证明【参考答案】 解:(1)151,101,61,315432====a a a a (2))1(2+=n n a n , 证明:(1)当n=1时,11=a 成立;(2)当n>1时,假设n=k 时,命题成立,即)1(2+=k k a k ,则当n=k+1时,⇒+=++121)1(k k a k S )2)(1(2222]1)1[(2221122++=+•+=+=⇒-+=++k k k k k k k k a k a a k a k k k k k 综上所述,对于所有自然数*N n ∈,)1(2+=n n a n 成立。

第六章数列与数学归纳法

第六章数列与数学归纳法

第六章⎪⎪⎪数列与数学归纳法第一节数列的概念与简单表示法1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类[小题体验]1.已知数列{a n }的前4项为12,34,78,1516,则数列{a n }的一个通项公式为________.答案:a n =2n -12n (n ∈N *)2.已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 5等于________. 答案:11613.(教材改编题)已知数列{a n }的前n 项和为S n ,若S n =3n -1,则a n =________. 答案:2×3n -11.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.[小题纠偏]1.已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥22.数列{a n }的通项公式为a n =-n 2+9n ,则该数列第________项最大. 答案:4或5考点一 由数列的前几项求数列的通项公式(基础送分型考点——自主练透)[题组练透]1.(2019·温岭模拟)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 018项与5的差即a 2 018-5=( )A .2 017×2 024B .2 017×1 012C .2 018×2 024D .2 018×1 012解析:选B 结合图形可知,该数列的第n 项为a n =2+3+4+…+(n +2),所以a 2 018-5=4+5+6+…+2 020=2 017×(2 020+4)2=2 017×1 012.2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…;(2)(易错题)-11×2,12×3,-13×4,14×5,…; (3)-1,7,-13,19, …; (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以它的一个通项公式a n =2(n +1),n ∈N *. (2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1),n ∈N *.(3)这个数列,去掉负号,可发现是一个等差数列,其首项为1,公差为6,所以它的一个通项公式为a n =(-1)n (6n -5),n ∈N *.(4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1,n ∈N *.[谨记通法]由数列的前几项求数列通项公式的策略(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项符号特征等.(2)根据数列的前几项写出数列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n+1来调整.考点二 由a n 与S n 的关系求通项a n (重点保分型考点——师生共研)[典例引领]已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式. (1)S n =n 2+1; (2)S n =2n -a n .解:(1)a 1=S 1=1+1=2,当n ≥2时,a n =S n -S n -1=n 2+1-(n -1)2-1=2n -1,而a 1=2,不满足此等式.所以a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.(2)当n =1时,S 1=a 1=2-a 1,所以a 1=1;当n ≥2时,a n =S n -S n -1=(2n -a n )-[2(n -1)-a n -1]=2-a n +a n -1, 即a n =12a n -1+1,即a n -2=12(a n -1-2).所以{a n -2}是首项为a 1-2=-1,公比为12的等比数列,所以a n -2=(-1)·⎝⎛⎭⎫12n -1, 即a n =2-⎝⎛⎭⎫12n -1.[由题悟法]已知S n 求a n 的 3个步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[即时应用]已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若a n >0,S n >1,且6S n =(a n +1)(a n +2),求a n . 解:(1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式, 所以a n =(-1)n +1·(2n -1).(2)当n =1时,a 1=S 1=16(a 1+1)(a 1+2),即a 21-3a 1+2=0.解得a 1=1或a 1=2.因为a 1=S 1>1,所以a 1=2.当n ≥2时,a n =S n -S n -1=16(a n +1)(a n +2)-16(a n -1+1)(a n -1+2),所以(a n -a n -1-3)(a n+a n -1)=0.因为a n >0,所以a n +a n -1>0, 所以a n -a n -1-3=0,所以数列{a n }是以2为首项,3为公差的等差数列. 所以a n =3n -1.考点三 由递推关系式求数列的通项公式(题点多变型考点——多角探明) [锁定考向]递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.常见的命题角度有: (1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .[题点全练]角度一:形如a n +1=a n f (n ),求a n 1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. 解:∵a n =n -1n a n -1(n ≥2), ∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立. ∴a n =1n(n ∈N *).角度二:形如a n +1=a n +f (n ),求a n2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).角度三:形如a n +1=Aa n +B (A ≠0且A ≠1),求a n3.已知数列{a n }满足a 1=1,当n ≥2,n ∈N *时,有a n =2a n -1-2,求数列{a n }的通项公式.解:因为a n =2a n -1-2,所以a n-2=2(a n-1-2).所以数列{a n-2}是以a1-2=-1为首项,2为公比的等比数列.所以a n-2=(-1)×2n-1,即a n=2-2n-1.[通法在握]典型的递推数列及处理方法[演练冲关]根据下列条件,求数列{a n}的通项公式.(1)a1=1,a n+1=a n+2n(n∈N*);(2)a1=1,2na n+1=(n+1)a n(n∈N*);(3)a1=1,a n=3a n-1+4(n≥2).解:(1)由题意知a n+1-a n=2n,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=2n-1+2n-2+…+2+1=1-2n1-2=2n-1.(2)由2na n+1=(n+1)a n,得a n+1a n=n+12n.所以a n=a na n-1·a n-1a n-2·a n-2a n-3·…·a2a1·a1=n2(n-1)·n-12(n-2)·n-22(n-3)·…·22×1×1=n2n-1.(3)因为a n=3a n-1+4(n≥2),所以a n+2=3(a n-1+2).因为a1+2=3,所以{a n+2}是首项与公比都为3的等比数列.所以a n+2=3n,即a n=3n-2.一抓基础,多练小题做到眼疾手快1.(2018·嘉兴七校联考)已知数列{a n}的通项公式为a n=n2+n,则a5=() A.25B.30C .10D .12解析:选B 因为a n =n 2+n ,所以a 5=25+5=30.2.(2018·浙江三地联考)已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n (n ∈N *),则数列{a n }的通项公式a n =( )A .2nB .2n -1C .2n -1-1D.⎩⎪⎨⎪⎧1,n =1,2n ,n ≥2解析:选B 由log 2(S n +1)=n 可得S n =2n -1.当n ≥2时,a n =S n -S n -1=2n -1-(2n-1-1)=2n -1;当n =1时,a 1=S 1=21-1=1满足上式.所以数列{a n }的通项公式a n =2n -1.3.(2018·衢州模拟)已知数列{a n }满足:a 1=1,a n +1=2a na n +2,则数列{a n }的通项公式a n 为( )A.1n +1B.2n +1 C.1n D.2n解析:选B 由a n +1=2a n a n +2可得1a n +1=a n +22a n =1a n +12. 所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,公差为12的等差数列,所以1a n =n +12,即a n =2n +1.4.(2018·诸暨模拟)已知数列{a n }中,对任意的p ,q ∈N *都满足a p +q =a p a q ,若a 1=-1,则a 9=________.解析:由题可得,因为a 1=-1,令p =q =1,则a 2=a 21=1;令p =q =2,则a 4=a 22=1;令p =q =4,则a 8=a 24=1,所以a 9=a 8+1=a 1a 8=-1.答案:-15.(2019·杭州模拟)设数列{a n }的前n 项和S n =n 2,则a 8=________,a 2+a 3+a 4=________.解析:因为S n =n 2,所以a 8=S 8-S 7=82-72=15,a 2+a 3+a 4=S 4-S 1=42-1=15. 答案:15 15二保高考,全练题型做到高考达标1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π解析:选D 令n =1,2,3,…,逐一验证四个选项,易得D 正确.2.(2019·天台模拟)已知数列{a n }的前n 项和S n ,且满足S n =2a n -3(n ∈N *),则S 6=( ) A .192 B .189 C .96D .93解析:选B 因为S n =2a n -3,当n =1时,S 1=2a 1-3=a 1,解得a 1=3.当n ≥2时,a n =S n -S n -1=2a n -3-2a n -1+3=2a n -2a n -1,解得a na n -1=2.所以数列{a n }是首项为3,公比为2的等比数列,所以S 6=3(1-26)1-2=189.3.设数列{a n }的前n 项和为S n ,且S n +S n +1=a n +1(n ∈N *),则此数列是( ) A .递增数列 B .递减数列 C .常数列D .摆动数列解析:选C 因为S n +S n +1=a n +1,所以当n ≥2时,S n -1+S n =a n ,两式相减,得a n+a n +1=a n +1-a n ,所以有a n =0.当n =1时,a 1+a 1+a 2=a 2,所以a 1=0.所以a n =0.即数列是常数列.4.(2019·绍兴模拟)已知数列{a n }的通项公式a n =1n +n +1,若该数列的前n 项和为10,则项数n 的值为( )A .11B .99C .120D .121解析:选C 因为a n =1n +n +1=n +1-n ,所以该数列的前n 项和S n =n +1-1=10,解得n =120.5.(2018·丽水模拟)数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n<12,2a n-1,12≤a n<1,若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 由a 1=35∈⎣⎡⎭⎫12,1,得a 2=2a 1-1=15∈⎣⎡⎭⎫0,12,所以a 3=2a 2=25∈⎣⎡⎭⎫0,12,所以a 4=2a 3=45∈⎣⎡⎭⎫12,1,所以a 5=2a 4-1=35=a 1.由此可知,该数列是一个周期为4的周期数列,所以a 2 018=a 504×4+2=a 2=15.6.(2019·镇海模拟)已知数列{a n }满足a 1=2,a n +1=a 2n (a n >0,n ∈N *),则数列{a n }的通项公式a n =________.解析:对a n +1=a 2n 两边取对数,得log 2a n +1=log 2a 2n =2log 2a n .所以数列{log 2a n }是以log 2a 1=1为首项,2为公比的等比数列,所以log 2a n =2n -1,所以a n =22n -1.答案:22n -17.(2018·海宁模拟)已知数列{a n }满足a n +1+a n =2n -1,则该数列的前8项和为________.解析:S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=1+5+9+13=28. 答案:288.在一个数列中,如果对任意的n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知数列{a n }满足a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *).(1)求a 2,a 3的值; (2)证明:a n =3n -12.解:(1)因为a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *),所以a 2=32-1+1=4,a 3=33-1+a 2=9+4=13.(2)证明:因为a n =3n -1+a n -1(n ≥2,n ∈N *),所以a n -a n -1=3n -1,所以a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…+(a 2-a 1)+a 1 =3n -1+3n -2+…+3+1=3n -12(n ≥2,n ∈N *).当n =1时,a 1=3-12=1满足条件. 所以当n ∈N *时,a n =3n -12.10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 三上台阶,自主选做志在冲刺名校1.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行、第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵第10行、第3个数为97.答案:972.(2018·温州模拟)设函数f (x )=log 2x -log x 4(0<x <1),数列{a n }的通项公式a n 满足f (2a n )=2n (n ∈N *).(1)求数列{a n }的通项公式; (2)判定数列{a n }的单调性.解:(1)因为f (x )=log 2x -log x 4(0<x <1),f (2a n )=2n (n ∈N *) , 所以f (2a n )=log 22a n -log2a n 4=a n -2a n=2n ,且0<2a n <1, 解得a n <0.所以a n =n -n 2+2.(2)因为a n +1a n =(n +1)-(n +1)2+2n -n 2+2=n +n 2+2n +1+(n +1)2+2<1.因为a n <0,所以a n +1>a n . 故数列{a n }是递增数列.第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题体验]1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案:102.(2018·温州模拟)已知等差数列{a n }的前n 项和为S n ,若a 3=5,a 5=3,则a n =________;S 7=________.答案:-n +8 283.(2018·温州十校联考)在等差数列{a n }中,若a 3+a 4+a 5=12,则S 7=______.答案:281.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.[小题纠偏]1.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( ) A .(-3,+∞) B.⎝⎛⎭⎫-∞,-83 C.⎝⎛⎭⎫-3,-83 D.⎣⎡⎭⎫-3,-83 答案:D2.(2018·湖州模拟)设等差数列{a n }的前n 项和为S n ,已知a 3=16,a 6=10,则公差d =________;S n 取到最大时的n 的值为________.解析:因为数列{a n }是等差数列,且a 3=16,a 6=10,所以公差d =a 6-a 36-3=-2,所以a n =-2n +22,要使S n 能够取到最大值,则需a n =-2n +22≥0,所以解得n ≤11.所以可知使得S n 取到最大时的n 的值为10或11.答案:-2 10或11考点一 等差数列的基本运算(基础送分型考点——自主练透)[题组练透]1.(2017·嘉兴二模)设S n 为等差数列{a n }的前n 项和,若S 1S 4=110,则S 3S 5=( )A.25 B.35 C.37D.47解析:选A 设数列{a n }的公差为d ,因为S n 为等差数列{a n }的前n 项和,且S 1S 4=110,所以10a 1=4a 1+6d ,所以a 1=d .所以S 3S 5=3a 1+3d 5a 1+10d =6d 15d =25.2.设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( ) A .5 B .6 C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9或k =0(舍去),故选C.3.公差不为零的等差数列{a n }中,a 7=2a 5,则数列{a n }中第________项的值与4a 5的值相等.解析:设等差数列{a n }的公差为d ,∵a 7=2a 5,∴a 1+6d =2(a 1+4d ),则a 1=-2d ,∴a n =a 1+(n -1)d =(n -3)d ,而4a 5=4(a 1+4d )=4(-2d +4d )=8d =a 11,故数列{a n }中第11项的值与4a 5的值相等.答案:114.(2019·绍兴模拟)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=______,公差d =________.解析:由S 2=S 6,得S 6-S 2=a 3+a 4+a 5+a 6=4a 1+14d =0,即2a 1+7d =0.由S 55-S 44=2,得52(a 1+a 5)5-42(a 1+a 4)4=12(a 5-a 4)=12d =2,解得d =4,所以a 1=-14.答案:-14 4[谨记通法]等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.解决这些问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想. 考点二 等差数列的判断与证明(重点保分型考点——师生共研)[典例引领](2019·温州模拟)已知数列{a n }中,a 1=12,a n +1=1+a n a n +12(n ∈N *).(1)求证:⎩⎨⎧⎭⎬⎫1a n -1是等差数列;(2)求数列{a n }的通项公式.解:(1)证明:因为对于n ∈N *,a n +1=1+a n a n +12, 所以a n +1=12-a n, 所以1a n +1-1-1a n -1=112-a n-1-1a n -1=2-a n -1a n -1=-1.所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为1a 1-1=-2,公差为-1的等差数列.(2)由(1)知1a n -1=-2+(n -1)(-1)=-(n +1), 所以a n -1=-1n +1, 即a n =n n +1. [由题悟法]等差数列的判定与证明方法已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式. 解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2+1a n ,∴b n +1-b n =2+1a n -1a n =2.又b 1=1a 1=1,∴数列{b n }是首项为1,公差为2的等差数列. (2)由(1)知数列{b n }的通项公式为 b n =1+(n -1)×2=2n -1, 又b n =1a n,∴a n =1b n=12n -1. ∴数列{a n }的通项公式为a n =12n -1. 考点三 等差数列的性质及最值(重点保分型考点——师生共研)[典例引领]1.(2019·宁波模拟)在等差数列{a n }中,若a 9a 8<-1,且其前n 项和S n 有最小值,则当S n >0时,n 的最小值为( )A .14B .15C .16D .17解析:选C ∵数列{a n }是等差数列,它的前n 项和S n 有最小值,∴公差d >0,首项a 1<0,{a n } 为递增数列,∵a 9a 8<-1,∴a 8·a 9<0,a 8+a 9>0,由等差数列的性质知2a 8=a 1+a 15<0,a 8+a 9=a 1+a 16>0.∵S n =(a 1+a n )n2,∴当S n >0时,n 的最小值为16. 2.(2018·嘉兴一中模拟)设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足a n >0的最大n 的值为______,满足S k S k +1<0的正整数k =______.解析:由题可得a 6=S 6-S 5>0,a 7=S 7-S 6<0,所以使得a n >0的最大n 的值为6.又a 6+a 7=S 7-S 5>0,则S 11=11(a 1+a 11)2=11a 6>0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,S 13=13(a 1+a 13)2=13a 7<0,因为{a n }是递减的等差数列,所以满足S k S k +1<0的正整数k =12. 答案:6 12[由题悟法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时应用]1.(2018·浙江新高考联盟)已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.310 B.37 C.13D.12解析:选A 因为数列{a n }是等差数列,所以S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列,因为S 4S 8=13,所以不妨设S 4=1,则S 8=3,所以S 8-S 4=2,所以S 16=1+2+3+4=10,所以S 8S 16=310.2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18一抓基础,多练小题做到眼疾手快1.(2018·杭州模拟)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4.则数列{a n }的通项公式为( )A .a n =2n -1B .a n =-2n +3C .a n =2n -1或-2n +3D .a n =2n解析:选A 设数列{a n }的公差为d ,由a 3=a 22-4可得1+2d =(1+d )2-4,解得d =±2.因为数列{a n }是递增数列,所以d >0,故d =2.所以a n =1+2(n -1)=2n -1.2.(2018·舟山期末)在等差数列{a n }中,若a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .25解析:选B 因为a 2=1,a 4=5,所以S 5=5(a 1+a 5)2=5(a 2+a 4)2=15. 3.(2019·缙云模拟)已知{a n }为等差数列,其公差d 为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( )A .-110B .-90C .90D .110解析:选D 设数列{a n }的首项为a 1,因为a 7是a 3与a 9的等比中项,所以(a 1-12)2=(a 1-4)(a 1-16),解得a 1=20.所以S 10=10a 1+45d =200-90=110.4.(2019·腾远调研)我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:________日相逢?解析:由题意知,良马每日行的距离成等差数列,记为{a n },其中a 1=103,d 1=13;驽马每日行的距离成等差数列,记为{b n },其中b 1=97,d 2=-0.5.设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m (m -1)×132+97m +m (m -1)×(-0.5)2=2×1 125,解得m =9(负值舍去).即二马需9日相逢.答案:95.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5二保高考,全练题型做到高考达标1.(2018·金丽衢十二校联考)已知正项数列{a n }中,a 1=1,a 2=2,当n ≥2,n ∈N *时,a n =a 2n +1+a 2n -12,则a 6=( ) A .2 2 B .4 C .16D .45解析:选B 因为a n =a 2n +1+a 2n -12,所以2a 2n =a 2n +1+a 2n -1,即a 2n +1-a 2n =a 2n -a 2n -1,所以数列{a 2n }是等差数列,公差d =a 22-a 21=4-1=3,所以a 2n =1+3(n -1)=3n -2,所以a n =3n -2,所以a 6=18-2=4.2.(2018·浙江五校联考)等差数列{a n }中,a 1=0,等差d ≠0,若a k =a 1+a 2+…+a 7,则实数k =( )A .22B .23C .24D .25解析:选A 因为a 1=0,且a k =a 1+a 2+…+a 7, 即(k -1)d =21d ,又因为d ≠0,所以k =22.3.(2018·河南六市一联)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A.114 B.32 C.72D .1解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,又{a n }和{S n}都是等差数列,且公差相同,∴⎩⎨⎧d = d 2,a 1-d2=0,解得⎩⎨⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(2018·东阳模拟)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A nB n=7n +45n +3,则使得a nb n 为整数的正整数的个数为( )A .2B .3C .4D .5解析:选D 由A n B n =7n +45n +3,可得a n b n =A 2n -1B 2n -1=7n +19n +1=7+12n +1,所以要使a n b n为整数,则需12n +1为整数,所以n =1,2,3,5,11,共5个. 5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0, 解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.(2019·台州中学期中)已知等差数列{a n }的前n 项和为S n ,若a 2=18,S 18=54,则a 17=________,S n =__________.解析:设等差数列{a n }的首项为a 1,公差为d ,因为a 2=18,S 18=54,所以⎩⎪⎨⎪⎧a 1+d =18,18a 1+18×172d =54,解得a 1=20,d =-2.所以a 17=a 1+16d =20-32=-12,S n =na 1+n (n -1)2d =-n 2+21n .答案:-12 -n 2+21n7.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 8.(2018·金华浦江适考)设数列{a n },{b n }的前n 项和分别为S n ,T n ,其中a n =-3n +20,b n =|a n |,则使T n =S n 成立的最大正整数n 为________,T 2 018+S 2 018=________.解析:根据题意,数列{a n }中,a n =-3n +20,则数列{a n }是首项为17,公差为-3的等差数列,且当n ≤6时,a n >0,当n ≥7时,a n <0,又由b n =|a n |,当n ≤6时,b n =a n ,当n ≥7时,b n =-a n ,则使T n =S n 成立的最大正整数为6,T 2 018+S 2 018=(a 1+a 2+…+a 6+a 7+a 8+…+a 2 018)+(b 1+b 2+…+b 6+b 7+b 8+…+b 2 018)=2(a 1+a 2+…+a 6)=(17+2)×6=114.答案:6 1149.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n . 解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k . 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1), 则b n =S nn=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2. 10.(2018·南昌调研)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0.当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列, 所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(2018·浙江五校联考)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 为数列{a n }的前n 项和,则2S n +16a n +3的最小值为________.解析:设公差为d .因为a 1,a 3,a 13成等比数列,所以(1+2d )2=1+12d ,解得d =2.所以a n =2n -1,S n =n 2.所以2S n +16a n +3=2n 2+162n +2=n 2+8n +1.令t =n +1,则原式=t 2+9-2t t =t +9t -2.因为t ≥2,t ∈N *,所以当t =3,即n =2时,⎝ ⎛⎭⎪⎫2S n +16a n +3min=4.答案:42.已知数列{a n }满足a n +1+a n =4n -3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值; (2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3, ∴2dn +(2a 1-d )=4n -3, 即2d =4,2a 1-d =-3, 解得d =2,a 1=-12.法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1, ∴2d =a n +2-a n =(a n +2+a n +1)-(a n +1+a n ) =4n +1-(4n -3)=4, ∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=4×1-3=1, ∴a 1=-12.(2)由题意,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n ) =2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52.②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7) =2n 2-3n 2.第三节等比数列及其前n 项和1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . [小题体验]1.(教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4,…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列C .公比为q 3的等比数列D .不一定是等比数列答案:B2.(2018·台州模拟)已知等比数列{a n }各项都是正数,且a 4-2a 2=4,a 3=4,则a n =________;S 10=________.解析:设公比为q ,因为a 4-2a 2=4,a 3=4, 所以有4q -8q =4,解得q =2或q =-1. 因为q >0,所以q =2.所以a 1=a 3q 2=1,a n =a 1q n -1=2n -1.所以S 10=1-2101-2=210-1=1 023.答案:2n -1 1 0233.在数列{a n }中,a 1=1,a n +1=3a n (n ∈N *),则a 3=______;S 5=_________. 答案:9 1211.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.[小题纠偏]1.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4D .±4解析:选C a 25=a 3a 7=2×8=16,∴a 5=±4,又∵a 5=a 3q 2>0,∴a 5=4. 2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 答案:-12或1考点一 等比数列的基本运算(重点保分型考点——师生共研)[典例引领]1.(2018·绍兴模拟)等比数列{a n }的公比为2,前n 项和为S n .若1+2a 2=S 3,则a 1=( ) A .17 B.15 C.13D .1解析:选C 由题可得,1+4a 1=a 1+2a 1+4a 1,解得a 1=13.2.(2018·杭二中仿真)各项都是正数的等比数列{a n }中,若a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( ) A.5+12B.5-12C.1-52D.5+12或1-52解析:选B 设数列{a n }的公比为q (q >0,q ≠1),由a 2,12a 3,a 1成等差数列可得a 3=a 2+a 1,所以有q 2-q -1=0,解得q =5+12(负值舍去).所以a 3+a 4a 4+a 5=1q =5-12. [由题悟法]解决等比数列有关问题的2种常用思想1.(2019·浙北联考)设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4 C.152D.172解析:选C 因为q =2,所以S 4a 2=a 1+a 2+a 3+a 4a 2=1+q +q 2+q 3q =1+2+4+82=152.2.(2018·宁波模拟)已知等比数列{a n }满足a 2=14,a 2a 8=4(a 5-1),则a 4+a 5+a 6+a 7+a 8的值为( )A .20B .31C .62D .63解析:选B 因为a 2a 8=a 25=4(a 5-1),解得a 5=2.所以q =2.所以a 4+a 5+a 6+a 7+a 8=1+2+4+8+16=31.3.(2018·杭州二检)设各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=80,S 2=8,则公比q =________,a 5=________.解析:由题可得,设数列{a n }的公比为q (q >0,q ≠1),根据题意可得a 1(1-q 4)1-q =80,a 1(1-q 2)1-q=8,解得a 1=2,q =3,所以a 5=a 1q 4=2×34=162. 答案:3 162考点二 等比数列的判定与证明(重点保分型考点——师生共研)[典例引领](2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.[由题悟法]等比数列的4种常用判定方法选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[即时应用](2018·衢州模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若数列{b n }满足b n =a n +1-2a n ,求证:{b n }是等比数列.证明:因为S n +1=4a n +2, 所以S 2=a 1+a 2=4a 1+2,又a 1=1,所以a 2=5,b 1=a 2-2a 1=3, 当n ≥2时,S n =4a n -1+2. 所以S n +1-S n =a n +1=4a n -4a n -1. 因为b n =a n +1-2a n , 所以当n ≥2时,b n b n -1=a n +1-2a n a n -2a n -1=4a n -4a n -1-2a n a n -2a n -1=2(a n -2a n -1)a n -2a n -1=2. 所以{b n }是以3为首项,2为公比的等比数列.考点三 等比数列的性质(重点保分型考点——师生共研)[典例引领]1.(2018·宁波模拟)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=( )A .1B .2C .4D .8解析:选D 由等差数列的性质,得a 6+a 8=2a 7. 由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.2.若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.解析:由题可得,S 2,S 4-S 2,S 6-S 4,S 8-S 6成等比数列,因为S 4S 2=5,不妨设S 2=1,则S 4=5,所以S 4-S 2=4, 所以S 8=1+4+16+64=85, 所以S 8S 4=855=17.答案:17[由题悟法]等比数列的性质可以分为3类1.(2018·诸暨模拟)已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20.则该数列的前9项和为( )A .50B .70C .80D .90解析:选B 由等比数列的性质得S 3,S 6-S 3,S 9-S 6也成等比数列,由S 3=40,S 6-S 3=20,知公比为12,故S 9-S 6=10,S 9=70.2.(2018·浙江联盟模拟)已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5=________;a 4的最大值为________.解析:因为a n >0,a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25,所以a 3+a 5=5,所以a 3+a 5=5≥2a 3a 5=2a 4,所以a 4≤52.即a 4的最大值为52.答案:552一抓基础,多练小题做到眼疾手快1.(2018·舟山模拟)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( )A .-3B .±3C .-3 3D .±3 3解析:选C 因为-1,x ,y ,z ,-3成等比数列,由等比数列的性质及等比中项可知,xz =3,y 2=3,且y 与-1,-3符号相同,所以y =-3,所以xyz =-3 3.2.(2019·湖州六校联考)已知等比数列的前n 项和为54,前2n 项和为60,则前3n 项和为( )A .66B .64C .6623D .6023解析:选D 因为等比数列中,S n ,S 2n -S n ,S 3n -S 2n 成等比数列,所以54(S 3n -60)=36,解得S 3n =6023.3.(2018·金华十校联考)在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为( ) A .10 B .25C .50D .75解析:选B 因为a 7a 12=a 8a 11=a 9a 10=5,所以a 8a 9a 10a 11=52=25.4.(2018·浙江名校协作体测试)设等比数列{a n }的前n 项和为S n ,且对任意的正整数n ,均有S n +3=8S n +3,则a 1=_________,公比q =________.解析:因为S n +3=8S n +3,所以当n ≥2时,S n +2=8S n -1+3,两式相减,可得a n +3=8a n ,所以q 3=8,解得q =2;当n =1时,S 4=8S 1+3,即15a 1=8a 1+3,解得a 1=37.答案:3725.(2018·永康适应性测试)数列{a n }的前n 项和为S n ,S n =2a n +n ,则a 1=______,数列{a n }的通项公式a n =_______.解析:因为S n =2a n +n ,所以当n =1时,S 1=a 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n +n -2a n -1-n +1,即a n =2a n -1-1,即a n -1=2(a n -1-1),所以数列{a n -1}是以-2为首项,2为公比的等比数列,所以a n -1=-2n ,所以a n =1-2n .答案:-1 1-2n二保高考,全练题型做到高考达标1.(2019·浙大附中模拟)已知数列{a n }的前n 项和为S n ,且a n +1=pS n +q (n ∈N *,p ≠-1),则“a 1=q ”是“{a n }为等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为a n +1=pS n +q ,所以当n ≥2时,a n =pS n -1+q ,两式相减得a n +1-a n =pa n ,即当n ≥2时,a n +1a n =1+p .当n =1时,a 2=pa 1+q .所以当a 1=q 时,a 2a 1=1+p ,满足上式,故数列{a n }为等比数列,所以是充分条件;当{a n }为等比数列时,有a 2=pa 1+q =(1+p )a 1,解得a 1=q ,所以是必要条件,从而选C.2.(2019·乐清模拟)设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( )A .44B .45 C.46-13D.45-13解析:选B 因为a 1=1,a n +1=3S n =S n +1-S n ,所以S n +1=4S n ,所以数列{S n }是首项为S 1=a 1=1,公比为4的等比数列,所以S 6=45.3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.15解析:选A ∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是以公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.4.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为( )A .7B .8C .9D .10解析:选B 设该女子第一天织布x 尺,则x (1-25)1-2=5,得x =531,∴前n 天所织布的尺数为531(2n -1).由531(2n -1)≥30,得2n ≥187,则n 的最小值为8.5.(2019·金华模拟)设A n ,B n 分别为等比数列{a n },{b n }的前n 项和.若A n B n =12n +1,则a 7b 3=( )。

数列与数学归纳法

数列与数学归纳法

数列与数学归纳法数学中的数列是由一组按照一定规律排列的数字所组成的序列。

数列在数学研究中有着重要的地位,而数学归纳法则是一种常用于证明数列中某种性质或规律的方法。

本文将从数列的定义、分类以及数学归纳法的应用等方面进行讨论。

一、数列的定义与分类数列是按照一定的顺序排列的一组数字的集合。

在数列中,每个数字被称为数列的项,而数列的位置则由项的下标来表示。

一般来说,数列用大括号包围,项之间用逗号隔开,如{a₁, a₂, a₃, ...}。

根据数列的规律,我们可以将数列进行不同的分类。

最简单的是等差数列,即数列中的每一项与其前一项之差都相等。

例如:{1, 3, 5, 7, 9, ...}就是一个等差数列,其中公差为2。

另外一种常见的数列是等比数列,即数列中的每一项与其前一项之比都相等。

例如:{1, 2, 4, 8, 16, ...}就是一个等比数列,其中公比为2。

除了等差数列和等比数列之外,还有很多其他类型的数列,如斐波那契数列、调和数列等。

二、数学归纳法的原理与应用数学归纳法是一种用于证明数列中某种性质或规律的方法。

其基本思想是通过证明当某一性质在某个特定条件下成立时,该性质在下一个条件下也成立,从而推断该性质对于所有条件均成立。

数学归纳法的证明分为三个步骤:基础步骤、归纳假设和归纳步骤。

基础步骤:证明当条件为数列中的第一个项时,所要证明的性质成立。

通常来说,这一步骤相对简单,通过计算或直接观察即可得出结论。

归纳假设:假设当条件为数列中的第k项时,所要证明的性质成立。

即假设P(k)成立。

归纳步骤:证明当条件为数列中的第k+1项时,所要证明的性质也成立。

即证明在P(k)成立的情况下,P(k+1)也成立。

通过这三个步骤的推理,我们就能够得出性质在数列的每一项都成立的结论。

数学归纳法的应用非常广泛,特别是在数列的相关问题中。

例如,我们要证明一个等差数列中的所有项的和公式为Sn=n(a₁+an)/2,其中Sn表示前n项的和,a₁表示第一项,an表示第n项。

数列与数学归纳法知识梳理

数列与数学归纳法知识梳理

数列与数学归纳法知识梳理1、等差数列(1)定义:若数列{n a }从第二项起,每一项与它的前一项的差等于同一个常数,则{n a }叫等差数列。

(2)通项公式:d n a a n )1(1-+=,任意两项的关系式:d m n a a m n)(-+=。

性质:若m+n =p+q ,则),,,(,*N ∈+=+q p n m a a a a q p n m(3)等差中项:若a 、b 、c 成等差数列,则b 称a 与c 的等差中项,且b=2c a +; a 、b 、c 成等差数列是2b=a+c 的充要条件。

(4)前n 项和:S n =2)(1n a a n +=1na +2)1(-n n d (强调倒序相加法) (5)已知三个数成等差数列时,则三个数可设为d a a d a +-,,(6)证明等差数列的方法:①用定义:只需证d a a n n =-+1常数;②用中项性质:只需证212+++=n n n a a a (7){}n a 是等差,n S 是其前n 项和,k k k k k S S S S S 232,,-- (*N k ∈)成等差数列。

2、等比数列(1)定义:数列{n a }从第2项起,每一项与它前一项的比等于同一个非零常数q 的数列称作等比数列。

常数q 叫公比。

(2)通项公式:11-=n n q a a (q ≠0)任意两项的关系式:m n m nq a a -= 性质:若m+n =p+q ,则),,,(,*N ∈⨯=⨯q p n m a a a a q p n m(3)等比中项:若a 、b 、c 成等比数列,则b 为a 、c 的等比中项,且b=±ac . (4)前n 项和S n =⎪⎩⎪⎨⎧≠≠--=--=).10(11)1(),1(111q q q q a a q q a q na n n 且(5)已知三个数成等比数列时,则三个数可设为q a 、a 、aq (6)证明等比数列的方法:①用定义:只需证nn a a 1+=非零常数;且首项非零。

高中数学中的数列求和与数学归纳法

高中数学中的数列求和与数学归纳法

高中数学中的数列求和与数学归纳法数列求和和数学归纳法是高中数学中重要的概念和方法。

数列求和是指将数列中的所有项相加,得到一个总和的过程。

而数学归纳法则是一种证明数学命题的方法,通过证明命题在第一个情况下成立,并假设在第n个情况下也成立,从而推导出在第n+1个情况下也成立。

数列求和是数学中常见的问题之一。

在高中数学中,我们学习了一些常见的数列求和公式,如等差数列求和公式和等比数列求和公式。

等差数列是指数列中的每一项与前一项之差都相等的数列,而等比数列则是指数列中的每一项与前一项之比都相等的数列。

通过这些公式,我们可以快速计算出数列的总和,而不需要逐项相加。

举例来说,我们考虑一个等差数列:1,3,5,7,9。

我们可以通过等差数列求和公式得到这个数列的总和。

等差数列求和公式为:Sn = n/2 * (a1 + an),其中Sn表示数列的总和,n表示数列的项数,a1表示数列的首项,an表示数列的末项。

对于这个例子,数列的项数n为5,首项a1为1,末项an为9。

代入公式可以得到:S5 = 5/2 * (1 + 9) = 5 * 10 = 50。

因此,这个等差数列的总和为50。

数学归纳法是一种证明数学命题的常用方法。

它的基本思想是通过证明命题在第一个情况下成立,并假设在第n个情况下也成立,从而推导出在第n+1个情况下也成立。

数学归纳法在高中数学中广泛应用于证明数列的性质和等式的成立。

例如,我们考虑一个数列的性质:1,3,5,7,9,...,其中每一项都是奇数。

我们可以使用数学归纳法来证明这个性质。

首先,我们证明命题在第一个情况下成立,即第一项1是奇数。

然后,我们假设在第n个情况下命题成立,即第n个项是奇数。

接下来,我们需要证明在第n+1个情况下命题也成立,即第n+1个项也是奇数。

根据数列的定义,每一项都是前一项加2,所以第n+1个项可以表示为an+1 = an + 2。

由于我们假设第n个项是奇数,即an是奇数,而奇数加2仍然是奇数,所以第n+1个项也是奇数。

数列与数学归纳法

数列与数学归纳法

数列与数学归纳法数列和数学归纳法是高中数学中常见的概念和方法,对于理解和解决数学问题非常重要。

本文将介绍数列和数学归纳法的定义、性质以及应用。

一、数列的定义与性质数列是一系列按照特定规律排列的数字的集合。

数列中的每个数字被称为数列的项,用字母a表示。

数列的一般形式可以表示为a1, a2,a3, ..., an,其中n表示数列的项数。

1. 等差数列等差数列是一个常见的数列类型。

在等差数列中,每一项与它的前一项之差保持恒定。

我们可以用公式an = a1 + (n-1)d来表示等差数列,其中a1为首项,d为公差,n为项数。

等差数列的性质包括:- 相邻两项之差恒定;- 求和公式Sn = (a1 + an) * n / 2。

2. 等比数列等比数列是另一种常见的数列类型。

在等比数列中,每一项与它的前一项之比保持恒定。

我们可以用公式an = a1 * r^(n-1)来表示等比数列,其中a1为首项,r为公比,n为项数。

等比数列的性质包括:- 相邻两项之比恒定;- 求和公式Sn = a1 * (1 - r^n) / (1 - r)。

二、数学归纳法的定义与步骤数学归纳法是一种证明数学命题的常用方法。

它分为三个步骤:基础步骤、归纳假设和归纳步骤。

1. 基础步骤基础步骤是证明命题在某个特定情况下成立的步骤。

通常,我们会证明当n取某个值时,命题成立。

2. 归纳假设归纳假设是假设当n=k时,命题成立。

这个步骤是为了进行后续的归纳步骤作准备。

3. 归纳步骤归纳步骤是通过假设命题在n=k时成立,证明当n=k+1时也成立。

三、数列与数学归纳法的应用数列和数学归纳法在数学问题的解决中具有广泛的应用。

1. 数列的求和问题通过数列的性质和求和公式,我们可以快速求解各种数列的和。

例如,利用等差数列的求和公式,我们可以轻松地计算一系列连续整数的和。

2. 整数的性质证明数学归纳法常用于证明整数的性质。

例如,我们可以通过归纳法证明一个命题对于所有自然数都成立。

数列与数学归纳法

数列与数学归纳法

数列与数学归纳法数列是数学中常见的一种数学对象,它是由一系列按照特定规律排列的数所组成的序列。

在数学归纳法中,数列扮演着重要的角色。

本文将介绍数列的概念、种类以及数学归纳法的应用。

一、数列的概念和种类1. 数列的概念数列是指一列按照一定规律排列的数。

数列常用字母表示,如数列$a_1,a_2,a_3,\ldots$。

其中$a_n$表示数列的第n项。

2. 等差数列等差数列是指数列中每一项与它前一项之差都相等的数列。

设数列的第一项为$a_1$,公差为$d$,则等差数列的通项公式为:$$a_n=a_1+(n-1)d$$其中$n$为项数。

3. 等比数列等比数列是指数列中每一项与它前一项的比例都相等的数列。

设数列的第一项为$a_1$,公比为$q$,则等比数列的通项公式为:$$a_n=a_1 \cdot q^{(n-1)}$$其中$n$为项数。

二、数学归纳法的基本原理数学归纳法是一种用于证明数学命题的重要方法。

它基于两个核心思想:第一,如果能够证明一个命题在某个特定条件下成立,且这个特定条件在某一时刻能够达到,那么这个命题在所有条件下都成立;第二,假设某一命题在第n个条件下成立,若能够证明在第n+1个条件下也成立,则可得知该命题在任意条件下都成立。

三、数列与数学归纳法的应用1. 应用一:证明等差数列的通项公式以等差数列为例,我们可以使用数学归纳法来证明其通项公式。

首先,在等差数列中验证第一项的成立。

然后,假设命题在第n项成立,即$a_n=a_1+(n-1)d$。

接下来,通过证明在第n+1项也成立,即$a_{n+1}=a_1+nd+d$,来完成数学归纳法的证明过程。

通过数学归纳法的证明,我们可以得到等差数列的通项公式。

2. 应用二:证明等比数列的通项公式类似地,我们可以使用数学归纳法来证明等比数列的通项公式。

首先,在等比数列中验证第一项的成立。

然后,假设命题在第n项成立,即$a_n=a_1 \cdot q^{(n-1)}$。

数学数列与数学归纳法

数学数列与数学归纳法

数学数列与数学归纳法数学数列是数学中一种常见且重要的概念。

它在代数、几何、数论等多个数学分支中都有广泛的应用。

与之相关的概念之一就是数学归纳法。

数学归纳法是一种证明数学命题的常用方法。

本文将介绍数学数列的基本概念与性质,并以此为基础,讲解数学归纳法的原理和应用。

一、数学数列的基本概念与性质1. 数学数列的定义数学数列即是有序的数的集合。

数列中的每个数称为该数列的项。

数列通常用如下形式表示:$a_1, a_2, a_3, ..., a_n, ...$,其中$a_n$表示数列的第n项。

2. 等差数列与等差数列的通项公式等差数列是一种常见的数列类型,其特点是每一项与前一项的差都是相等的。

等差数列的通项公式可以表示为:$a_n = a_1 + (n-1)d$,其中$a_n$为第n项,$a_1$为首项,$d$为公差。

3. 等比数列与等比数列的通项公式等比数列是另一种常见的数列类型,其特点是每一项与前一项的比值都是相等的。

等比数列的通项公式可以表示为:$a_n = a_1 \cdotr^{(n-1)}$,其中$a_n$为第n项,$a_1$为首项,$r$为公比。

二、数学归纳法的原理数学归纳法是一种证明具有递归性质的命题的有效方法。

它基于如下两个基本原理:1. 归纳假设:假设当n=k时,命题成立。

2. 归纳步骤:证明当n=k+1时,命题也成立。

基于以上原理,数学归纳法的证明步骤如下:1. 验证基础情况:证明当n=1时,命题成立。

2. 假设命题对于某个正整数n成立,即假设当n=k时命题成立。

3. 证明当n=k+1时,命题也成立。

4. 综合以上步骤,可以得出结论:对于任意正整数n,命题都成立。

三、数学归纳法的应用数学归纳法在解决以下问题时具有重要的应用价值:1. 数列性质的证明:通过数学归纳法可以证明数列的各种性质,如等差数列、等比数列的通项公式等。

2. 整数性质的证明:通过数学归纳法可以证明一些关于整数的性质,如正整数的奇偶性、整除性等。

高二第六章数学知识点归纳

高二第六章数学知识点归纳

高二第六章数学知识点归纳在高二数学学习中,第六章是一个关键的章节,它包含了许多重要的数学知识点。

本文将对这些知识点进行归纳总结,并进行适当的讲解和说明,以帮助学生更好地理解和掌握数学知识。

一、函数与导数1. 函数的概念:函数是一种特殊的数学关系,它将自变量和因变量联系起来。

2. 函数的表示方法:可以通过函数的解析式、图像和表格等方式来表示函数。

3. 导数的概念:导数表示函数在某一点上的变化率,是函数的重要性质之一。

4. 导数的计算方法:可以通过极限定义或运用求导法则来计算导数。

5. 常见函数的导数:包括常数函数、幂函数、指数函数、对数函数等导函数的计算规则。

二、函数的应用1. 高中数学中经典函数的应用:如利用一元二次函数解决实际问题、利用指数函数或对数函数解决增长与衰减问题等。

2. 最值问题:利用函数的导数求解函数的极大值和极小值问题,包括区间最值问题和最优化问题等。

3. 函数的图像和性质:对于给定函数,通过绘制函数的图像,可以帮助我们更好地理解函数的性质,如奇偶性、周期性和单调性等。

三、三角函数与图像变换1. 三角函数概念与性质:包括正弦函数、余弦函数、正切函数等的定义和基本性质。

2. 三角函数的图像变换:如平移、纵伸缩和反射等对三角函数图像的变换操作。

3. 利用三角函数解决实际问题:如利用三角函数解决直角三角形的边长和角度问题,以及应用三角函数解决周期性问题等。

四、概率与统计1. 概率的基本概念:包括试验、随机事件、样本空间、事件的概念等。

2. 概率的计算:如频率法、古典概型、几何概型和条件概率等不同的概率计算方法。

3. 统计学基本概念:包括总体、样本、样本调查和统计量等基本概念。

4. 统计学的应用:如通过统计方法对数据进行分析和解读,包括频数分布、直方图、折线图和饼图等。

五、数列与数学归纳法1. 数列的概念与性质:如等差数列、等比数列、递归数列等的定义和基本性质。

2. 等差数列与等差数列的应用:利用等差数列和等比数列解决实际问题,如等差数列的通项公式和等比数列的通项公式的应用。

如何解决高考数学中的数列与数学归纳法题目

如何解决高考数学中的数列与数学归纳法题目

如何解决高考数学中的数列与数学归纳法题目数列与数学归纳法是高考数学中常见的题型,对于考生来说,熟练掌握解决这类题目的方法和技巧至关重要。

本文将介绍一些解决高考数学中的数列与数学归纳法题目的策略和步骤。

一、数列题目解决策略对于数列题目,首先需要明确题目给出的条件以及需要求解的内容。

然后可以按照以下步骤进行解决:1. 找出数列的通项公式:通过观察数列中元素之间的规律,可以尝试找出数列的通项公式。

常见的数列有等差数列、等比数列和递推数列等,可以根据数列的性质来确定通项公式。

2. 确定数列的首项和公差(或公比):根据数列的通项公式,可以确定数列的首项和公差(或公比)。

首项即数列中的第一个数,公差即等差数列中相邻两项之间的差值,公比即等比数列中相邻两项之间的比值。

3. 求解问题:根据题目给出的条件和要求,使用所确定的数列通项公式和已知信息,对数列进行计算,得到所需的结果。

需要注意题目中可能涉及到的问题类型,如求和、求极限、求范围等,应选择相应的解决方法。

二、数学归纳法题目解决策略数学归纳法常用于证明一些数学命题的正确性,在高考数学中也经常出现数学归纳法的题目。

解决这类题目时,可以按照以下步骤进行:1. 确定归纳假设:首先需要明确题目给出的命题,并对其进行归纳分析。

通过观察命题中的模式和规律,得出归纳假设,即命题成立的前提条件。

2. 验证归纳基础:归纳基础是证明归纳法的第一步,需要验证命题在某个确定的数值下是否成立。

通常选取最小的自然数或指定的特殊值进行验证,并确保命题在该值下是成立的。

3. 假设归纳成立:假设在某个确定的情况下命题成立,即假设命题对任意给定的自然数n成立。

4. 利用归纳法证明:利用归纳假设和归纳成立的情况,通过数学推理和逻辑推导来证明命题对n+1也成立。

通常需要进行等式转换、代数运算等步骤。

5. 总结归纳法的结果:根据归纳法的步骤和推导过程,总结出命题的结论,确保命题在任意给定的自然数下都成立。

高中数学数列与数学归纳法知识点总结

高中数学数列与数学归纳法知识点总结

高中数学数列与数学归纳法知识点总结
一、数列的概念和性质
- 数列的定义:数列是按照一定顺序排列的一列数。

- 数列的通项公式:可以用通项公式表示的数列的每一项都可以根据项的位置来计算。

- 等差数列:等差数列中的每一项与前一项之差都相等。

- 等差数列的通项公式:设等差数列的首项为$a_1$,公差为$d$,则第$n$项可以表示为$a_n=a_1+(n-1)d$。

- 等比数列:等比数列中的每一项与前一项之比都相等。

- 等比数列的通项公式:设等比数列的首项为$a_1$,公比为$q$,则第$n$项可以表示为$a_n=a_1q^{n-1}$。

二、数学归纳法
- 数学归纳法的基本思想:证明当$n=k$时某个命题成立,然后证明当$n=k+1$时该命题也成立。

由此可得出结论,该命题对于任意正整数$n$都成立。

- 数学归纳法的步骤:
1. 基础步骤:证明当$n=1$时,该命题成立。

2. 归纳假设:假设当$n=k$时,该命题成立。

3. 归纳步骤:利用归纳假设证明当$n=k+1$时,该命题也成立。

- 数学归纳法的应用:
- 证明数学等式或不等式。

- 证明数列的性质。

- 证明关于正整数的一般性质。

三、数列与数学归纳法的应用举例
1. 利用数学归纳法证明等差数列的通项公式。

2. 利用数学归纳法证明等比数列的通项公式。

3. 利用数列的性质证明等差数列和等比数列的性质。

4. 利用数学归纳法证明一些数学等式或不等式。

以上是关于高中数学数列与数学归纳法的一些知识点总结,希
望对你有帮助。

数学中的数列与数学归纳法

数学中的数列与数学归纳法

数学中的数列与数学归纳法在数学中,数列与数学归纳法是两个相关且重要的概念。

数列是指按照一定规律排列的数的集合,而数学归纳法则是一种证明数学命题的方法。

本文将对数列与数学归纳法进行详细讨论。

数列是数学中常见的一种对象,它由一系列数字按照一定的规律排列而成。

数列可以分为等差数列和等比数列。

等差数列指的是相邻两个数之间的差等于一个常数,如1,3,5,7,9就是一个等差数列,公差为2。

等比数列则是相邻两个数之间的比等于一个常数,如2,4,8,16就是一个等比数列,公比为2。

数学归纳法是一种证明数学命题的方法,它由两个步骤组成:基础步骤和归纳步骤。

基础步骤要证明命题在某个初始值上成立,通常是证明当n等于1时命题成立。

归纳步骤则是假设命题在某个整数n成立,并证明在n+1时也成立,从而得出结论命题对于所有正整数都成立。

数学归纳法在证明数列中的命题时经常被使用。

例如,我们要证明对于等差数列,公差为d,数列中的任意第n个数可以表示为a+(n-1)d,其中a是数列中的首项。

通过数学归纳法,我们可以证明这一命题成立。

首先,在n等于1时,显然a+(1-1)d=a,命题成立。

然后,在假设命题在n时成立的基础上,我们来证明在n+1时命题也成立。

假设a+(n-1)d能表示数列中的第n个数,那么我们可以通过增加一个公差d得到a+(n-1)d+d=a+nd,即数列中的第n+1个数。

因此,通过归纳步骤,我们得出结论,命题对于所有正整数n成立。

数列与数学归纳法在数学中的应用非常广泛。

它们不仅在基础数学中起着重要的作用,也被广泛应用于高阶数学和实际问题的解决中。

例如,在微积分中,数列的极限概念与数学归纳法密切相关,通过引入极限概念,我们可以对数列的收敛性进行分析。

在实际问题中,数列与数学归纳法也可以用来解决一些有规律的问题,如证明某种模式或规律在特定情况下成立。

综上所述,数列与数学归纳法在数学中扮演着重要的角色。

数列可以通过一定的规则来生成一系列数字,而数学归纳法则是一种证明数学命题的方法。

数列与数学归纳法

数列与数学归纳法

数列与数学归纳法数列是数学中常见的概念,它是由一系列数字按照一定规律排列而成。

数列在数学中具有广泛的应用,而数学归纳法则是研究数列时常用的一种证明方法。

本文将介绍数列的基本概念以及数学归纳法的原理和应用。

一、数列的概念和分类数列是按照一定规律排列的一组数。

数列可以分为等差数列和等比数列两种。

1. 等差数列:等差数列是指数列中相邻两项之间的差值保持不变。

通常用公式an = a1 + (n - 1)d来表示,其中a1是首项,d是公差。

2. 等比数列:等比数列是指数列中相邻两项之间的比值保持不变。

通常用公式an = a1 * r^(n - 1)来表示,其中a1是首项,r是公比。

二、数学归纳法的原理和应用数学归纳法是一种证明数学命题的常用方法。

它包括两个步骤:基础步骤和归纳步骤。

1. 基础步骤:首先证明当n取某个特定值时,命题成立。

这通常是通过直接计算或其他方法来完成的。

2. 归纳步骤:假设当n取k(k≥1)时,命题成立,即命题对于k成立。

然后利用这一假设,证明当n取k+1时,命题也成立。

这一步骤可以通过代入法或其他方法来完成。

数学归纳法的应用非常广泛,特别是在数列的证明中。

通过使用数学归纳法,可以证明等差数列和等比数列的一些性质和定理。

三、数学归纳法在数列中的应用举例1. 证明等差数列的通项公式:对于等差数列an = a1 + (n - 1)d,可以使用数学归纳法来证明其通项公式。

首先,当n=1时,an=a1成立。

然后,假设当n=k(k≥1)时,an=a1+(k-1)d成立。

接下来,我们需要证明当n=k+1时,an=a1+kd也成立。

根据归纳假设,an=a1+(k-1)d,将其代入等式an+1=an+d可以得到an+1=a1+kd,即当n=k+1时,命题也成立。

2. 证明等比数列的通项公式:对于等比数列an = a1 * r^(n - 1),同样可以使用数学归纳法来证明其通项公式。

首先,当n=1时,an=a1成立。

数列与数学归纳法

数列与数学归纳法

数列与数学归纳法一、数列1. 数列的概念- 数列是按照一定顺序排列的一列数。

例如:1,3,5,7,·s就是一个数列,其中的每一个数叫做这个数列的项,第n个数叫做数列的第n项,通常用a_{n}表示。

- 数列的表示方法:- 列举法:如数列2,4,6,8,10,直接将数列的项一一列举出来。

- 通项公式法:如果数列{a_{n}}的第n项a_{n}与n之间的函数关系可以用一个公式来表示,这个公式就叫做这个数列的通项公式。

例如,数列a_{n}=2n,n = 1,2,3,·s,当n = 1时,a_{1}=2×1 = 2;当n = 2时,a_{2}=2×2 = 4等。

- 递推公式法:给出数列的第一项(或前几项),并给出数列的某一项与它的前一项(或前几项)的关系式来表示数列,这种表示数列的式子叫做这个数列的递推公式。

例如,数列{a_{n}}满足a_{1}=1,a_{n}=a_{n - 1}+2(n≥slant2),通过这个递推公式可以依次求出数列的各项。

2. 等差数列- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示。

即a_{n}-a_{n - 1}=d(n≥slant2)。

- 通项公式:a_{n}=a_{1}+(n - 1)d。

例如,已知等差数列a_{1}=3,d = 2,则a_{n}=3+(n - 1)×2=2n + 1。

- 前n项和公式:S_{n}=frac{n(a_{1}+a_{n})}{2}=na_{1}+(n(n - 1))/(2)d。

3. 等比数列- 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数(不为0),那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示。

即frac{a_{n}}{a_{n - 1}}=q(n≥slant2)。

高中数学数列数学归纳法

高中数学数列数学归纳法

高中数学数列数学归纳法数学归纳法是高中数学中常用的一种证明方法。

它是通过证明一个命题在数列的第一个数成立,并假设它在数列的第k个数也成立,然后证明它在数列的第k+1个数也成立。

通过这个过程,我们可以得出结论,该命题对于数列的所有数都成立。

在这篇文章中,我们将探讨数学归纳法的基本原理和应用。

首先,我们来了解一下数列的基本概念。

数列是由一列有序的数按照一定的规律排列而成的数集。

根据数列的规律,我们可以将其分为等差数列和等比数列两种常见的类型。

等差数列是指数列中相邻两项之差都相等的数列,而等比数列是指数列中相邻两项之比都相等的数列。

在学习数列的时候,我们经常需要证明一些关于数列的命题。

这时,数学归纳法就成为了我们解决问题的一个有力工具。

数学归纳法的基本思想是,通过证明一个命题在数列的第一个数成立,并假设它在数列的第k个数也成立,然后证明它在数列的第k+1个数也成立,从而得出结论,该命题对于数列的所有数都成立。

具体来说,数学归纳法分为三个步骤:基础步骤、归纳假设和归纳步骤。

首先,我们需要证明命题在数列的第一个数成立,这称为基础步骤。

其次,我们假设命题在数列的第k个数成立,这称为归纳假设。

最后,我们证明命题在数列的第k+1个数成立,这称为归纳步骤。

举个例子来说明。

假设我们要证明命题P(n)对于所有正整数n都成立,其中P(n)表示数列的第n个数满足某个条件。

首先,我们证明P(1)成立,这是基础步骤。

接下来,假设P(k)成立,即数列的第k个数满足某个条件,这是归纳假设。

最后,我们证明P(k+1)成立,即数列的第k+1个数也满足相同的条件,这是归纳步骤。

通过这样的推理过程,我们可以得出结论,命题P(n)对于所有正整数n都成立。

数学归纳法在解决数列相关的问题时非常有用。

通过归纳假设和归纳步骤,我们可以推导出数列的一般性质,进而解决一系列与数列相关的问题。

例如,我们可以利用数学归纳法证明数列的通项公式,从而计算任意项的值。

高三数学课学习数列和数学归纳法

高三数学课学习数列和数学归纳法

高三数学课学习数列和数学归纳法高三学生在数学课上将接触到数列和数学归纳法这一重要内容。

数列是指按照一定规律排列的一系列数的集合,而数学归纳法则是一种证明数学命题的方法。

在这篇文章中,我们将探讨数列和数学归纳法的基本概念、应用以及学习方法。

一、数列的基本概念数列由一系列按照特定顺序排列的数构成。

每一个数被称为数列的项。

数列的一般表示形式为 {an},其中n表示项的位置,an表示第n 项的数值。

数列可以是有限的,也可以是无限的。

数列的具体形式很多,其中最常见的是等差数列和等比数列。

等差数列是指数列中相邻两项之间的差值恒定,而等比数列则是指数列中相邻两项之间的比值恒定。

二、数列的应用领域数列作为数学中的重要概念,在实际应用中有广泛的用途。

以下列举了一些常见的应用领域。

1. 经济学:经济学领域中使用数列来描述人口增长和经济变化等现象。

例如,人口增长可以用递推数列来表示。

2. 物理学:物理学中的运动、波动等现象可以用数列来进行建模。

例如,自由落体运动可以用等差数列来描述。

3. 计算机科学:计算机科学中的算法和数据结构等内容都与数列有密切关联。

例如,斐波那契数列是计算机编程中常用的数列。

4. 统计学:统计学中的概率分布、抽样等问题也可以用数列来进行分析。

例如,二项分布可以用二次数列表示。

三、数学归纳法的基本原理数学归纳法是一种证明数学命题成立的方法。

它基于两个基本原理:归纳假设和归纳步骤。

1. 归纳假设:我们首先证明当n=k时命题成立,其中k为任意一个正整数。

这个假设被称为归纳假设。

2. 归纳步骤:接下来,我们证明当n=k+1时命题也成立。

这一步骤通常包括对n=k的情况进行讨论,然后根据归纳假设得出n=k+1的结论。

通过归纳假设和归纳步骤,我们可以得出结论:对于一切正整数n,命题都成立。

四、数学归纳法的应用数学归纳法广泛应用于各个数学领域,特别是代数、组合数学、数论等方面。

以下是数学归纳法的一些常见应用:1. 证明等式:数学归纳法常用于证明等式的成立。

数学中的数列和数学归纳法

数学中的数列和数学归纳法

数学中的数列和数学归纳法引言:数学是一门严谨而又富有创造性的学科,而数列和数学归纳法则是数学中的重要概念。

本节课我们将学习数列和数学归纳法的基本概念和应用,通过实例演示加深对该知识的理解,提高学生的数学思维能力和解决问题的能力。

【主题一】数列的概念与性质1. 数列的定义及常见表达方式1.1 数列是按一定顺序排列的一组数的集合,通常记作{an}或an。

1.2 数列可以用公式、图表、文字等方式来表示,并且可以有不同的递增或递减规律。

2. 数列的分类2.1 等差数列:相邻两项之差为常数d的数列。

2.2 等比数列:相邻两项之比为常数q的数列。

2.3 斐波那契数列:第一项和第二项为1,从第三项起,每一项都是前两项之和。

3. 数列的性质3.1 数列的通项公式:描述数列中各项与项号之间的关系。

3.2 数列的前n项和:表示数列前n项的和,记作Sn或an。

【主题二】数学归纳法1. 数学归纳法的基本思想1.1 数学归纳法是一种证明方法,用以证明当一个命题对于整数中的一个特定集合上成立时,它对于这个集合中的所有后继元素也成立。

1.2 数学归纳法的基本思想是:当一个命题成立的时候,我们只需证明将它应用到任意一个整数k上,都能导出它在整数k+1上也成立。

2. 数学归纳法的基本步骤2.1 第一步(基础步骤):证明命题在n=1时成立。

2.2 第二步(归纳步骤):假设当n=k时命题成立,证明当n=k+1时命题也成立。

3. 数学归纳法的应用3.1 证明数列的性质:通过数学归纳法证明等差数列、等比数列等的公式。

3.2 证明数学命题的成立:通过数学归纳法证明某个数学规律或结论在整数范围内成立。

【主题三】数列和数学归纳法在问题求解中的应用1. 序列问题1.1 求解数列中第n项的值。

1.2 求解数列的前n项和。

2. 鸽巢原理2.1 鸽巢原理是数学归纳法的一个重要应用,用于解决分配问题和抽屉原理问题。

2.2 通过鸽巢原理可以解决包括数学、计算机科学等领域的许多实际问题。

第6章 数列与数学归纳法(6.9-6.10)

第6章 数列与数学归纳法(6.9-6.10)

6.9数列通项公式的求法例题精讲【例1】例3设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.【参考答案】已知等式可化为:[]0)1()(11=-++++n n n n na a n a aΘ0>n a (*N n ∈)∴(n+1)01=-+n n na a , 即11+=+n na a n n ∴2≥n 时,nn a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=---Λ=121121⋅⋅--⋅-Λn n n n =n 1.【例2】已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a . 【参考答案】由,21211+=+n n a a 得)1(2111-=-+n n a a ,所以数列}1{-n a 构成以111=-a 为首项,以21为公比的等比数列所以1)21(1-=-n n a ,即 1)21(1+=-n n a .【例3】已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式. 【参考答案】Θ11=a ,n n a n S ⋅=2,∴当2≥n 时,121)1(--⋅-=n n a n S∴11)1(11221+-=⇒--=-=---n n a a a n a n S S a n n n n n n n . ∴1122332211a a aa a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=-----Λ.)1(21314213211+=⋅⋅⋅⋅--⋅-⋅+-=n n n n n n n n Λ【例4】已知数列{}n a 中,n n n a a a 32,111+==+,求数列{}n a 的通项公式.【参考答案】Θnn n a a 321+=+,∴nn n n n a a )23(2211+=-+,令n n n b a =-12则 n n n b b )23(1=-+,∴112211)()()(b b b b b b b b n n n n n +-++-+-=---Λ123)23()23()23()23(2321++++++=---Λn n n 2)23(2-⨯=n【例5】已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a 。

数列与数学归纳法的应用

数列与数学归纳法的应用

数列与数学归纳法的应用一、数列的概念与性质1.数列的定义:数列是按照一定顺序排列的一列数。

2.数列的项:数列中的每一个数称为数列的项。

3.数列的通项公式:用公式表示数列中第n项与n之间的关系。

4.数列的性质:包括单调性、周期性、收敛性等。

二、数列的分类1.等差数列:相邻两项之差为常数的数列。

2.等比数列:相邻两项之比为常数的数列。

3.斐波那契数列:从第三项起,每一项等于前两项之和的数列。

4.交错数列:相邻两项符号相反的数列。

三、数学归纳法的基本原理1.数学归纳法:一种证明命题对所有正整数都成立的证明方法。

2.归纳基础:证明命题对最小的正整数成立。

3.归纳步骤:假设命题对某个正整数成立,证明命题对下一个正整数也成立。

四、数学归纳法的应用1.求解数列的通项公式:利用数学归纳法证明数列的通项公式。

2.证明数列的性质:如单调性、周期性等。

3.解决与数列有关的问题:如求和、求最大项、最小项等。

五、数列与数学归纳法在其他领域的应用1.数学题目的证明与解答:利用数列与数学归纳法解决数学题目。

2.科学计算:利用数列与数学归纳法进行科学计算。

3.实际问题解决:将数列与数学归纳法应用于实际问题的解决中。

六、学习数列与数学归纳法的意义1.培养逻辑思维能力:通过学习数列与数学归纳法,提高逻辑思维能力。

2.提高解决问题的能力:掌握数列与数学归纳法,有助于解决更复杂的数学问题。

3.培养数学美感:数列与数学归纳法的应用展现了数学的简洁与美。

一、数列的概念与性质•数列的定义:数列是按照一定顺序排列的一列数。

•数列的项:数列中的每一个数称为数列的项。

•数列的通项公式:用公式表示数列中第n项与n之间的关系。

•数列的性质:包括单调性、周期性、收敛性等。

二、数列的分类•等差数列:相邻两项之差为常数的数列。

•等比数列:相邻两项之比为常数的数列。

•斐波那契数列:从第三项起,每一项等于前两项之和的数列。

•交错数列:相邻两项符号相反的数列。

三、数学归纳法的基本原理•数学归纳法:一种证明命题对所有正整数都成立的证明方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章⎪⎪⎪数列与数学归纳法第一节数列的概念与简单表示法1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类[小题体验]1.已知数列{a n }的前4项为12,34,78,1516,则数列{a n }的一个通项公式为________.答案:a n =2n -12n (n ∈N *)2.已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 5等于________. 答案:11613.(教材改编题)已知数列{a n }的前n 项和为S n ,若S n =3n -1,则a n =________. 答案:2×3n -11.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号. 3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.[小题纠偏]1.已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥22.数列{a n }的通项公式为a n =-n 2+9n ,则该数列第________项最大. 答案:4或5考点一 由数列的前几项求数列的通项公式(基础送分型考点——自主练透)[题组练透]1.(2019·温岭模拟)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 018项与5的差即a 2 018-5=( )A .2 017×2 024B .2 017×1 012C .2 018×2 024D .2 018×1 012解析:选B 结合图形可知,该数列的第n 项为a n =2+3+4+…+(n +2),所以a 2 018-5=4+5+6+…+2 020=2 017×(2 020+4)2=2 017×1 012.2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)(易错题)-11×2,12×3,-13×4,14×5,…; (3)-1,7,-13,19, …; (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以它的一个通项公式a n =2(n +1),n ∈N *.(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1),n ∈N *.(3)这个数列,去掉负号,可发现是一个等差数列,其首项为1,公差为6,所以它的一个通项公式为a n =(-1)n (6n -5),n ∈N *.(4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1,n ∈N *.[谨记通法]由数列的前几项求数列通项公式的策略(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项符号特征等.(2)根据数列的前几项写出数列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n +1来调整.考点二 由a n 与S n 的关系求通项a n (重点保分型考点——师生共研)[典例引领]已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式. (1)S n =n 2+1; (2)S n =2n -a n .解:(1)a 1=S 1=1+1=2,当n ≥2时,a n =S n -S n -1=n 2+1-(n -1)2-1=2n -1,而a 1=2,不满足此等式.所以a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.(2)当n =1时,S 1=a 1=2-a 1,所以a 1=1;当n ≥2时,a n =S n -S n -1=(2n -a n )-[2(n -1)-a n -1]=2-a n +a n -1, 即a n =12a n -1+1,即a n -2=12(a n -1-2).所以{a n -2}是首项为a 1-2=-1,公比为12的等比数列,所以a n -2=(-1)·⎝⎛⎭⎫12n -1, 即a n =2-⎝⎛⎭⎫12n -1.[由题悟法]已知S n 求a n 的 3个步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.[即时应用]已知数列{a n}的前n项和为S n.(1)若S n=(-1)n+1·n,求a5+a6及a n;(2)若a n>0,S n>1,且6S n=(a n+1)(a n+2),求a n.解:(1)a5+a6=S6-S4=(-6)-(-4)=-2,当n=1时,a1=S1=1;当n≥2时,a n=S n-S n-1=(-1)n+1·n-(-1)n·(n-1)=(-1)n+1·[n+(n-1)]=(-1)n+1·(2n-1),又a1也适合此式,所以a n=(-1)n+1·(2n-1).(2)当n=1时,a1=S1=16(a1+1)(a1+2),即a21-3a1+2=0.解得a1=1或a1=2.因为a1=S1>1,所以a1=2.当n≥2时,a n=S n-S n-1=16(a n+1)(a n+2)-16(a n-1+1)(a n-1+2),所以(a n-a n-1-3)(a n+a n-1)=0.因为a n>0,所以a n+a n-1>0,所以a n-a n-1-3=0,所以数列{a n}是以2为首项,3为公差的等差数列.所以a n=3n-1.考点三由递推关系式求数列的通项公式(题点多变型考点——多角探明)[锁定考向]递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.常见的命题角度有:(1)形如a n+1=a n f(n),求a n;(2)形如a n+1=a n+f(n),求a n;(3)形如a n+1=Aa n+B(A≠0且A≠1),求a n.[题点全练]角度一:形如a n+1=a n f(n),求a n1.在数列{a n}中,a1=1,a n=n-1n a n-1(n≥2),求数列{a n}的通项公式.解:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立. ∴a n =1n(n ∈N *).角度二:形如a n +1=a n +f (n ),求a n2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).角度三:形如a n +1=Aa n +B (A ≠0且A ≠1),求a n3.已知数列{a n }满足a 1=1,当n ≥2,n ∈N *时,有a n =2a n -1-2,求数列{a n }的通项公式. 解:因为a n =2a n -1-2, 所以a n -2=2(a n -1-2).所以数列{a n -2}是以a 1-2=-1为首项,2为公比的等比数列. 所以a n -2=(-1)×2n -1,即a n =2-2n -1.[通法在握]典型的递推数列及处理方法[演练冲关]根据下列条件,求数列{a n }的通项公式.(1)a 1=1,a n +1=a n +2n (n ∈N *); (2)a 1=1,2na n +1=(n +1)a n (n ∈N *); (3)a 1=1,a n =3a n -1+4(n ≥2). 解:(1)由题意知a n +1-a n =2n ,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+2+1=1-2n1-2=2n -1.(2)由2na n +1=(n +1)a n ,得a n +1a n=n +12n .所以a n =a n a n -1.a n -1a n -2.a n -2a n -3.....a 2a 1.a 1=n 2(n -1).n -12(n -2).n -22(n -3).. (2)2×1×1=n 2n -1.(3)因为a n =3a n -1+4(n ≥2), 所以a n +2=3(a n -1+2).因为a 1+2=3,所以{a n +2}是首项与公比都为3的等比数列. 所以a n +2=3n ,即a n =3n -2.一抓基础,多练小题做到眼疾手快1.(2018·嘉兴七校联考)已知数列{a n }的通项公式为a n =n 2+n ,则a 5=( ) A .25 B .30 C .10D .12解析:选B 因为a n =n 2+n ,所以a 5=25+5=30.2.(2018·浙江三地联考)已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n (n ∈N *),则数列{a n }的通项公式a n =( )A .2nB .2n -1C .2n -1-1D.⎩⎪⎨⎪⎧1,n =1,2n ,n ≥2 解析:选B 由log 2(S n +1)=n 可得S n =2n -1.当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1;当n =1时,a 1=S 1=21-1=1满足上式.所以数列{a n }的通项公式a n =2n -1.3.(2018·衢州模拟)已知数列{a n }满足:a 1=1,a n +1=2a na n +2,则数列{a n }的通项公式a n 为( ) A.1n +1 B.2n +1 C.1n D.2n解析:选B 由a n +1=2a n a n +2可得1a n +1=a n +22a n =1a n +12. 所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,公差为12的等差数列,所以1a n=n +12,即a n =2n +1.4.(2018·诸暨模拟)已知数列{a n }中,对任意的p ,q ∈N *都满足a p +q =a p a q ,若a 1=-1,则a 9=________.解析:由题可得,因为a 1=-1,令p =q =1,则a 2=a 21=1;令p =q =2,则a 4=a 22=1;令p =q =4,则a 8=a 24=1,所以a 9=a 8+1=a 1a 8=-1.答案:-15.(2019·杭州模拟)设数列{a n }的前n 项和S n =n 2,则a 8=________,a 2+a 3+a 4=________. 解析:因为S n =n 2,所以a 8=S 8-S 7=82-72=15,a 2+a 3+a 4=S 4-S 1=42-1=15. 答案:15 15二保高考,全练题型做到高考达标1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π解析:选D 令n =1,2,3,…,逐一验证四个选项,易得D 正确.2.(2019·天台模拟)已知数列{a n }的前n 项和S n ,且满足S n =2a n -3(n ∈N *),则S 6=( ) A .192 B .189 C .96D .93解析:选B 因为S n =2a n -3,当n =1时,S 1=2a 1-3=a 1,解得a 1=3.当n ≥2时,a n =S n -S n -1=2a n -3-2a n -1+3=2a n -2a n -1,解得a na n -1=2.所以数列{a n }是首项为3,公比为2的等比数列,所以S 6=3(1-26)1-2=189. 3.设数列{a n }的前n 项和为S n ,且S n +S n +1=a n +1(n ∈N *),则此数列是( ) A .递增数列 B .递减数列 C .常数列D .摆动数列解析:选C 因为S n +S n +1=a n +1,所以当n ≥2时,S n -1+S n =a n ,两式相减,得a n +a n +1=a n +1-a n ,所以有a n =0.当n =1时,a 1+a 1+a 2=a 2,所以a 1=0.所以a n =0.即数列是常数列.4.(2019·绍兴模拟)已知数列{a n }的通项公式a n =1n +n +1,若该数列的前n 项和为10,则项数n的值为( )A .11B .99C .120D .121解析:选C 因为a n =1n +n +1=n +1-n ,所以该数列的前n 项和S n =n +1-1=10,解得n=120.5.(2018·丽水模拟)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n <12,2a n-1,12≤a n<1,若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 由a 1=35∈⎣⎡⎭⎫12,1,得a 2=2a 1-1=15∈⎣⎡⎭⎫0,12,所以a 3=2a 2=25∈⎣⎡⎭⎫0,12,所以a 4=2a 3=45∈⎣⎡⎭⎫12,1,所以a 5=2a 4-1=35=a 1.由此可知,该数列是一个周期为4的周期数列,所以a 2 018=a 504×4+2=a 2=15.6.(2019·镇海模拟)已知数列{a n }满足a 1=2,a n +1=a 2n (a n >0,n ∈N *),则数列{a n }的通项公式a n =________.解析:对a n +1=a 2n 两边取对数,得log 2a n +1=log 2a 2n =2log 2a n .所以数列{log 2a n }是以log 2a 1=1为首项,2为公比的等比数列,所以log 2a n =2n -1,所以a n =22n -1.答案:22n -17.(2018·海宁模拟)已知数列{a n }满足a n +1+a n =2n -1,则该数列的前8项和为________. 解析:S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=1+5+9+13=28. 答案:288.在一个数列中,如果对任意的n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知数列{a n }满足a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *).(1)求a 2,a 3的值; (2)证明:a n =3n -12.解:(1)因为a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *),所以a 2=32-1+1=4,a 3=33-1+a 2=9+4=13.(2)证明:因为a n =3n -1+a n -1(n ≥2,n ∈N *),所以a n -a n -1=3n -1,所以a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…+(a 2-a 1)+a 1 =3n -1+3n -2+…+3+1=3n -12(n ≥2,n ∈N *).当n =1时,a 1=3-12=1满足条件. 所以当n ∈N *时,a n =3n -12.10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 三上台阶,自主选做志在冲刺名校1.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行、第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵第10行、第3个数为97.答案:972.(2018·温州模拟)设函数f (x )=log 2x -log x 4(0<x <1),数列{a n }的通项公式a n 满足f (2a n )=2n (n ∈N *). (1)求数列{a n }的通项公式; (2)判定数列{a n }的单调性.解:(1)因为f (x )=log 2x -log x 4(0<x <1),f (2a n )=2n (n ∈N *) , 所以f (2a n )=log 22a n -log2a n 4=a n -2a n=2n ,且0<2a n <1, 解得a n <0.所以a n =n -n 2+2.(2)因为a n +1a n =(n +1)-(n +1)2+2n -n 2+2=n +n 2+2n +1+(n +1)2+2<1.因为a n <0,所以a n +1>a n . 故数列{a n }是递增数列.第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项. 2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. [小题体验]1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案:102.(2018·温州模拟)已知等差数列{a n }的前n 项和为S n ,若a 3=5,a 5=3,则a n =________;S 7=________. 答案:-n +8 283.(2018·温州十校联考)在等差数列{a n }中,若a 3+a 4+a 5=12,则S 7=______. 答案:281.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. [小题纠偏]1.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( ) A .(-3,+∞) B.⎝⎛⎭⎫-∞,-83 C.⎝⎛⎭⎫-3,-83 D.⎣⎡⎭⎫-3,-83 答案:D2.(2018·湖州模拟)设等差数列{a n }的前n 项和为S n ,已知a 3=16,a 6=10,则公差d =________;S n取到最大时的n 的值为________.解析:因为数列{a n }是等差数列,且a 3=16,a 6=10,所以公差d =a 6-a 36-3=-2,所以a n =-2n +22,要使S n 能够取到最大值,则需a n =-2n +22≥0,所以解得n ≤11.所以可知使得S n 取到最大时的n 的值为10或11.答案:-2 10或11考点一 等差数列的基本运算(基础送分型考点——自主练透)[题组练透]1.(2017·嘉兴二模)设S n 为等差数列{a n }的前n 项和,若S 1S 4=110,则S 3S 5=( )A.25 B.35 C.37D.47解析:选A 设数列{a n }的公差为d ,因为S n 为等差数列{a n }的前n 项和,且S 1S 4=110,所以10a 1=4a 1+6d ,所以a 1=d .所以S 3S 5=3a 1+3d 5a 1+10d =6d 15d =25.2.设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( ) A .5 B .6 C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9或k =0(舍去),故选C.3.公差不为零的等差数列{a n }中,a 7=2a 5,则数列{a n }中第________项的值与4a 5的值相等. 解析:设等差数列{a n }的公差为d ,∵a 7=2a 5,∴a 1+6d =2(a 1+4d ),则a 1=-2d ,∴a n =a 1+(n -1)d =(n -3)d ,而4a 5=4(a 1+4d )=4(-2d +4d )=8d =a 11,故数列{a n }中第11项的值与4a 5的值相等.答案:114.(2019·绍兴模拟)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=______,公差d=________.解析:由S 2=S 6,得S 6-S 2=a 3+a 4+a 5+a 6=4a 1+14d =0,即2a 1+7d =0.由S 55-S 44=2,得52(a 1+a 5)5-42(a 1+a 4)4=12(a 5-a 4)=12d =2,解得d =4,所以a 1=-14. 答案:-14 4[谨记通法]等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.解决这些问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n=n (a 1+a n )2结合使用,体现整体代入的思想. 考点二 等差数列的判断与证明(重点保分型考点——师生共研)[典例引领](2019·温州模拟)已知数列{a n }中,a 1=12,a n +1=1+a n a n +12(n ∈N *).(1)求证:⎩⎨⎧⎭⎬⎫1a n -1是等差数列;(2)求数列{a n }的通项公式.解:(1)证明:因为对于n ∈N *,a n +1=1+a n a n +12, 所以a n +1=12-a n, 所以1a n +1-1-1a n -1=112-a n-1-1a n -1=2-a n -1a n -1=-1.所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为1a 1-1=-2,公差为-1的等差数列.(2)由(1)知1a n -1=-2+(n -1)(-1)=-(n +1), 所以a n -1=-1n +1,即a n =n n +1. [由题悟法]等差数列的判定与证明方法已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n (n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2+1a n , ∴b n +1-b n =2+1a n -1a n =2.又b 1=1a 1=1,∴数列{b n }是首项为1,公差为2的等差数列. (2)由(1)知数列{b n }的通项公式为 b n =1+(n -1)×2=2n -1, 又b n =1a n ,∴a n =1b n =12n -1.∴数列{a n }的通项公式为a n =12n -1. 考点三 等差数列的性质及最值(重点保分型考点——师生共研)[典例引领]1.(2019·宁波模拟)在等差数列{a n }中,若a 9a 8<-1,且其前n 项和S n 有最小值,则当S n >0时,n 的最小值为( )A .14B .15C .16D .17解析:选C ∵数列{a n }是等差数列,它的前n 项和S n 有最小值,∴公差d >0,首项a 1<0,{a n } 为递增数列,∵a 9a 8<-1,∴a 8·a 9<0,a 8+a 9>0,由等差数列的性质知2a 8=a 1+a 15<0,a 8+a 9=a 1+a 16>0.∵S n =(a 1+a n )n 2,∴当S n >0时,n 的最小值为16.2.(2018·嘉兴一中模拟)设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足a n >0的最大n 的值为______,满足S k S k +1<0的正整数k =______.解析:由题可得a 6=S 6-S 5>0,a 7=S 7-S 6<0,所以使得a n >0的最大n 的值为6.又a 6+a 7=S 7-S 5>0,则S 11=11(a 1+a 11)2=11a 6>0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,S 13=13(a 1+a 13)2=13a 7<0,因为{a n }是递减的等差数列,所以满足S k S k +1<0的正整数k =12.答案:6 12[由题悟法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时应用]1.(2018·浙江新高考联盟)已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.310 B.37 C.13D.12解析:选A 因为数列{a n }是等差数列,所以S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列,因为S 4S 8=13,所以不妨设S 4=1,则S 8=3,所以S 8-S 4=2,所以S 16=1+2+3+4=10,所以S 8S 16=310.2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18一抓基础,多练小题做到眼疾手快1.(2018·杭州模拟)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4.则数列{a n }的通项公式为( )A .a n =2n -1B .a n =-2n +3C .a n =2n -1或-2n +3D .a n =2n解析:选A 设数列{a n }的公差为d ,由a 3=a 22-4可得1+2d =(1+d )2-4,解得d =±2.因为数列{a n }是递增数列,所以d >0,故d =2.所以a n =1+2(n -1)=2n -1.2.(2018·舟山期末)在等差数列{a n }中,若a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .25解析:选B 因为a 2=1,a 4=5,所以S 5=5(a 1+a 5)2=5(a 2+a 4)2=15.3.(2019·缙云模拟)已知{a n }为等差数列,其公差d 为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( )A .-110B .-90C .90D .110解析:选D 设数列{a n }的首项为a 1,因为a 7是a 3与a 9的等比中项,所以(a 1-12)2=(a 1-4)(a 1-16),解得a 1=20.所以S 10=10a 1+45d =200-90=110.4.(2019·腾远调研)我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:________日相逢?解析:由题意知,良马每日行的距离成等差数列,记为{a n },其中a 1=103,d 1=13;驽马每日行的距离成等差数列,记为{b n },其中b 1=97,d 2=-0.5.设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m (m -1)×132+97m +m (m -1)×(-0.5)2=2×1 125,解得m =9(负值舍去).即二马需9日相逢.答案:95.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5二保高考,全练题型做到高考达标1.(2018·金丽衢十二校联考)已知正项数列{a n }中,a 1=1,a 2=2,当n ≥2,n ∈N *时,a n =a 2n +1+a 2n -12,则a 6=( )A .2 2B .4C .16D .45解析:选B 因为a n =a 2n +1+a 2n -12,所以2a 2n =a 2n +1+a 2n -1,即a 2n +1-a 2n =a 2n -a 2n -1,所以数列{a 2n }是等差数列,公差d =a 22-a 21=4-1=3,所以a 2n =1+3(n -1)=3n -2,所以a n =3n -2,所以a 6=18-2=4.2.(2018·浙江五校联考)等差数列{a n }中,a 1=0,等差d ≠0,若a k =a 1+a 2+…+a 7,则实数k =( ) A .22 B .23 C .24D .25解析:选A 因为a 1=0,且a k =a 1+a 2+…+a 7, 即(k -1)d =21d ,又因为d ≠0,所以k =22.3.(2018·河南六市一联)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A.114 B.32 C.72D .1解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,又{a n }和{S n }都是等差数列,且公差相同,∴⎩⎨⎧d = d 2,a 1-d2=0,解得⎩⎨⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(2018·东阳模拟)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nbn为整数的正整数的个数为( )A .2B .3C .4D .5解析:选D 由A n B n =7n +45n +3,可得a n b n =A 2n -1B 2n -1=7n +19n +1=7+12n +1,所以要使a n b n为整数,则需12n +1为整数,所以n =1,2,3,5,11,共5个.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0, 解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.(2019·台州中学期中)已知等差数列{a n }的前n 项和为S n ,若a 2=18,S 18=54,则a 17=________,S n =__________.解析:设等差数列{a n }的首项为a 1,公差为d ,因为a 2=18,S 18=54,所以⎩⎪⎨⎪⎧a 1+d =18,18a 1+18×172d =54,解得a 1=20,d =-2.所以a 17=a 1+16d =20-32=-12,S n =na 1+n (n -1)2d =-n 2+21n .答案:-12 -n 2+21n7.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 8.(2018·金华浦江适考)设数列{a n },{b n }的前n 项和分别为S n ,T n ,其中a n =-3n +20,b n =|a n |,则使T n =S n 成立的最大正整数n 为________,T 2 018+S 2 018=________.解析:根据题意,数列{a n }中,a n =-3n +20,则数列{a n }是首项为17,公差为-3的等差数列,且当n ≤6时,a n >0,当n ≥7时,a n <0,又由b n =|a n |,当n ≤6时,b n =a n ,当n ≥7时,b n =-a n ,则使T n =S n 成立的最大正整数为6,T 2 018+S 2 018=(a 1+a 2+…+a 6+a 7+a 8+…+a 2 018)+(b 1+b 2+…+b 6+b 7+b 8+…+b 2 018)=2(a 1+a 2+…+a 6)=(17+2)×6=114.答案:6 1149.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n . 解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1), 则b n =S nn =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.10.(2018·南昌调研)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0.当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列, 所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(2018·浙江五校联考)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 为数列{a n }的前n 项和,则2S n +16a n +3的最小值为________. 解析:设公差为d .因为a 1,a 3,a 13成等比数列,所以(1+2d )2=1+12d ,解得d =2.所以a n =2n -1,S n =n 2.所以2S n +16a n +3=2n 2+162n +2=n 2+8n +1.令t =n +1,则原式=t 2+9-2t t =t +9t -2.因为t ≥2,t ∈N *,所以当t =3,即n =2时,⎝ ⎛⎭⎪⎫2S n +16a n +3min=4. 答案:42.已知数列{a n }满足a n +1+a n =4n -3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值; (2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3, ∴2dn +(2a 1-d )=4n -3, 即2d =4,2a 1-d =-3, 解得d =2,a 1=-12.法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1, ∴2d =a n +2-a n =(a n +2+a n +1)-(a n +1+a n ) =4n +1-(4n -3)=4, ∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=4×1-3=1, ∴a 1=-12.(2)由题意,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n ) =2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52.②当n 为偶数时,S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7) =2n 2-3n 2.第三节等比数列及其前n 项和1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .[小题体验]1.(教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4,…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列C .公比为q 3的等比数列D .不一定是等比数列答案:B2.(2018·台州模拟)已知等比数列{a n }各项都是正数,且a 4-2a 2=4,a 3=4,则a n =________;S 10=________.解析:设公比为q ,因为a 4-2a 2=4,a 3=4, 所以有4q -8q =4,解得q =2或q =-1.因为q >0,所以q =2.所以a 1=a 3q 2=1,a n =a 1q n -1=2n -1.所以S 10=1-2101-2=210-1=1 023.答案:2n -1 1 0233.在数列{a n }中,a 1=1,a n +1=3a n (n ∈N *),则a 3=______;S 5=_________. 答案:9 1211.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.[小题纠偏]1.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4D .±4解析:选C a 25=a 3a 7=2×8=16,∴a 5=±4,又∵a 5=a 3q 2>0,∴a 5=4. 2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 答案:-12或1考点一 等比数列的基本运算(重点保分型考点——师生共研)[典例引领]1.(2018·绍兴模拟)等比数列{a n }的公比为2,前n 项和为S n .若1+2a 2=S 3,则a 1=( ) A .17 B.15 C.13D .1解析:选C 由题可得,1+4a 1=a 1+2a 1+4a 1,解得a 1=13.2.(2018·杭二中仿真)各项都是正数的等比数列{a n }中,若a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A.5+12B.5-12C.1-52D.5+12或1-52解析:选B 设数列{a n }的公比为q (q >0,q ≠1),由a 2,12a 3,a 1成等差数列可得a 3=a 2+a 1,所以有q 2-q -1=0,解得q =5+12(负值舍去).所以a 3+a 4a 4+a 5=1q =5-12. [由题悟法]解决等比数列有关问题的2种常用思想1.(2019·浙北联考)设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4 C.152D.172解析:选C 因为q =2,所以S 4a 2=a 1+a 2+a 3+a 4a 2=1+q +q 2+q 3q =1+2+4+82=152. 2.(2018·宁波模拟)已知等比数列{a n }满足a 2=14,a 2a 8=4(a 5-1),则a 4+a 5+a 6+a 7+a 8的值为( )A .20B .31C .62D .63解析:选B 因为a 2a 8=a 25=4(a 5-1),解得a 5=2.所以q =2.所以a 4+a 5+a 6+a 7+a 8=1+2+4+8+16=31.3.(2018·杭州二检)设各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=80,S 2=8,则公比q =________,a 5=________.解析:由题可得,设数列{a n }的公比为q (q >0,q ≠1),根据题意可得a 1(1-q 4)1-q =80,a 1(1-q 2)1-q =8,解得a 1=2,q =3,所以a 5=a 1q 4=2×34=162.答案:3 162考点二 等比数列的判定与证明(重点保分型考点——师生共研)[典例引领](2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.[由题悟法]等比数列的4种常用判定方法[中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[即时应用](2018·衢州模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若数列{b n }满足b n =a n +1-2a n ,求证:{b n }是等比数列.证明:因为S n +1=4a n +2, 所以S 2=a 1+a 2=4a 1+2,又a 1=1,所以a 2=5,b 1=a 2-2a 1=3, 当n ≥2时,S n =4a n -1+2. 所以S n +1-S n =a n +1=4a n -4a n -1. 因为b n =a n +1-2a n , 所以当n ≥2时,b n b n -1=a n +1-2a n a n -2a n -1=4a n -4a n -1-2a n a n -2a n -1=2(a n -2a n -1)a n -2a n -1=2. 所以{b n }是以3为首项,2为公比的等比数列.考点三 等比数列的性质(重点保分型考点——师生共研)[典例引领]1.(2018·宁波模拟)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=( )A .1B .2C .4D .8解析:选D 由等差数列的性质,得a 6+a 8=2a 7. 由a 6-a 27+a 8=0,可得a 7=2, 所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.2.若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.解析:由题可得,S 2,S 4-S 2,S 6-S 4,S 8-S 6成等比数列,因为S 4S 2=5,不妨设S 2=1,则S 4=5,所以S 4-S 2=4, 所以S 8=1+4+16+64=85, 所以S 8S 4=855=17.答案:17[由题悟法]等比数列的性质可以分为3类1.(2018·诸暨模拟)已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20.则该数列的前9项和为( ) A .50B .70C .80D .90解析:选B 由等比数列的性质得S 3,S 6-S 3,S 9-S 6也成等比数列,由S 3=40,S 6-S 3=20,知公比为12,故S 9-S 6=10,S 9=70. 2.(2018·浙江联盟模拟)已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5=________;a 4的最大值为________.解析:因为a n >0,a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25,所以a 3+a 5=5,所以a 3+a 5=5≥2a 3a 5=2a 4,所以a 4≤52.即a 4的最大值为52.答案:552一抓基础,多练小题做到眼疾手快1.(2018·舟山模拟)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3C .-3 3D .±3 3解析:选C 因为-1,x ,y ,z ,-3成等比数列,由等比数列的性质及等比中项可知,xz =3,y 2=3,且y 与-1,-3符号相同,所以y =-3,所以xyz =-3 3.2.(2019·湖州六校联考)已知等比数列的前n 项和为54,前2n 项和为60,则前3n 项和为( ) A .66 B .64C .6623D .6023解析:选D 因为等比数列中,S n ,S 2n -S n ,S 3n -S 2n 成等比数列,所以54(S 3n -60)=36,解得S 3n =6023. 3.(2018·金华十校联考)在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为( ) A .10 B .25C .50D .75解析:选B 因为a 7a 12=a 8a 11=a 9a 10=5,所以a 8a 9a 10a 11=52=25.4.(2018·浙江名校协作体测试)设等比数列{a n }的前n 项和为S n ,且对任意的正整数n ,均有S n +3=8S n+3,则a 1=_________,公比q =________.解析:因为S n +3=8S n +3,所以当n ≥2时,S n +2=8S n -1+3,两式相减,可得a n +3=8a n ,所以q 3=8,解得q =2;当n =1时,S 4=8S 1+3,即15a 1=8a 1+3,解得a 1=37.答案:3725.(2018·永康适应性测试)数列{a n }的前n 项和为S n ,S n =2a n +n ,则a 1=______,数列{a n }的通项公式a n =_______.解析:因为S n =2a n +n ,所以当n =1时,S 1=a 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n +n -2a n -1-n +1,即a n =2a n -1-1,即a n -1=2(a n -1-1),所以数列{a n -1}是以-2为首项,2为公比的等比数列,所以a n -1=-2n ,所以a n =1-2n .答案:-1 1-2n二保高考,全练题型做到高考达标1.(2019·浙大附中模拟)已知数列{a n }的前n 项和为S n ,且a n +1=pS n +q (n ∈N *,p ≠-1),则“a 1=q ”是“{a n }为等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为a n +1=pS n +q ,所以当n ≥2时,a n =pS n -1+q ,两式相减得a n +1-a n =pa n ,即当n ≥2时,a n +1a n =1+p .当n =1时,a 2=pa 1+q .所以当a 1=q 时,a 2a 1=1+p ,满足上式,故数列{a n }为等比数列,所以是充分条件;当{a n }为等比数列时,有a 2=pa 1+q =(1+p )a 1,解得a 1=q ,所以是必要条件,从而选C.2.(2019·乐清模拟)设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44 B .45 C.46-13D.45-13解析:选B 因为a 1=1,a n +1=3S n =S n +1-S n ,所以S n +1=4S n ,所以数列{S n }是首项为S 1=a 1=1,公比为4的等比数列,所以S 6=45.3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.15解析:选A ∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是以公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.4.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为( )A .7B .8C .9D .10解析:选B 设该女子第一天织布x 尺,则x (1-25)1-2=5,得x =531,∴前n 天所织布的尺数为531(2n -1).由531(2n-1)≥30,得2n ≥187,则n 的最小值为8.。

相关文档
最新文档