八年级数学上册《多边形的内角和》说课稿

合集下载

11.3.2多边形的内角和说课稿

11.3.2多边形的内角和说课稿

11.3.2多边形的内角和说课稿一、说教材本文为《11.3.2多边形的内角和》,在初中数学课程中具有重要作用和地位。

它是学生在学习了三角形、四边形的内角和的基础上,对多边形内角和概念进行拓展和深化的内容。

本节主要内容包括:多边形内角和的定义、计算公式及其推导过程,通过实际操作和例题分析,让学生更好地理解多边形的内角和性质,提高学生的空间想象能力和逻辑思维能力。

(1)作用与地位:多边形的内角和是几何学中的基础概念,对于培养学生的空间观念和逻辑思维具有重要作用。

它是连接平面几何与立体几何的桥梁,为后续学习多面体的内角和、表面积和体积等内容打下基础。

(2)主要内容:本节课主要围绕多边形的内角和展开,包括以下小节内容:1. 多边形内角和的定义;2. 多边形内角和的计算公式;3. 多边形内角和的推导过程;4. 应用多边形内角和解决实际问题。

二、说教学目标学习本课,学生需要达到以下教学目标:(1)理解多边形内角和的定义,掌握多边形内角和的计算公式;(2)通过实际操作和推导过程,培养学生的空间想象能力和逻辑思维能力;(3)能够运用多边形内角和的性质解决实际问题,提高学生的应用能力;(4)激发学生对几何学的兴趣,培养学生的探究精神。

三、说教学重难点(1)重点:多边形内角和的定义、计算公式及其推导过程。

(2)难点:多边形内角和的推导过程,以及运用多边形内角和解决实际问题。

在教学过程中,要注意引导学生理解多边形内角和的定义,突破推导过程的难点,同时注重培养学生的空间想象能力和逻辑思维能力,为解决实际问题打下基础。

四、说教法在教学《11.3.2多边形的内角和》这一课时,我计划采用以下几种教学方法,旨在提高学生的理解和应用能力,同时突出我的教学特色:1. 启发法:- 通过提出问题引导学生思考,例如:“一个三角形的内角和是多少?四边形的内角和又是多少?那么五边形、六边形呢?它们之间是否存在某种规律?”- 利用学生已知的三角形和四边形的内角和知识,启发学生发现多边形内角和的规律。

初中-数学-说课稿-《多边形的内角和》

初中-数学-说课稿-《多边形的内角和》

《多边形的内角和》说课稿我说课的内容是人教版八年级(上)册第11章第三节《多边形及其内角和》的第二课时。

我将在新课程理念的指导下从以下七个方面进行说课。

一、教材分析多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。

二、学情分析1、我所任教的班级,大部分学生来自农村,由于自小独立性较强,具有较强的理解能力和应用能力,喜欢合作讨论,对数学学习有较浓厚的兴趣。

大部分学生学习习惯和学习方式较好。

2、本节课让学生通过实验探索多边形内角和公式。

在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。

估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。

三、教学目标分析新的课程标准注重学生经历观察、操作、猜想、归纳等探索过程。

根据新课标和本节课的内容特点我确定以下教学目标及重点、难点。

【知识与技能】掌握多边形的内角和公式,并能熟练运用。

【数学思考】(1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

【解决问题】通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。

【情感态度】1、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。

2、体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。

并在探索过程中激发、培养学生的爱国主义热情。

基于以上教学目标,我确定以下教学重难点:【教学重点】探索多边形的内角和公式。

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计八年级上册《多边形的内角和》教学设计(精选8篇)作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更好地组织教学活动。

我们该怎么去写教学设计呢?下面是小编收集整理的八年级上册《多边形的内角和》教学设计,希望能够帮助到大家。

八年级上册《多边形的内角和》教学设计篇1教学目标:1、理解多边形及正多边形的定义2、掌握多边形内角和公式。

教学重、难点:教学重点:1、多边形内角和公式。

2、计算多边形的内角和及依据内角和确定多边形边数。

教学难点:多边形内角和公式的推导。

一、创设情境,导入新课前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。

(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。

)二、自主探究,发现新知自学教材内容,动手操作,并思考:1、三角形内角和多少度?2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗?3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?4、请结合图形计算四边形、五边形、六边形的内角和。

5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?6、用几何符号表示你的发现。

(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。

)(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。

人教版数学八年级上册《多边形的内角和》说课稿2

人教版数学八年级上册《多边形的内角和》说课稿2

人教版数学八年级上册《多边形的内角和》说课稿2一. 教材分析《多边形的内角和》是人教版数学八年级上册的一章内容。

本章主要让学生理解多边形的内角和的概念,掌握多边形内角和的计算方法,并能够应用这个知识解决实际问题。

本节课的内容是本章的一个重要部分,它为学生提供了计算多边形内角和的方法,也为后续学习多边形的性质和应用打下了基础。

二. 学情分析学生在学习本节课之前,已经学习了三角形的内角和定理,对多边形的基本概念有一定的了解。

但是,学生可能对多边形的内角和的概念还不够清晰,对多边形内角和的计算方法需要通过实例来理解和掌握。

三. 说教学目标1.知识与技能目标:学生能够理解多边形的内角和的概念,掌握多边形内角和的计算方法,并能够应用这个知识解决实际问题。

2.过程与方法目标:学生通过观察、操作、思考、交流等活动,培养自己的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学产生兴趣,培养自己的探索精神和合作意识。

四. 说教学重难点1.教学重点:学生能够理解多边形的内角和的概念,掌握多边形内角和的计算方法。

2.教学难点:学生能够灵活运用多边形的内角和的知识解决实际问题。

五. 说教学方法与手段本节课采用讲授法、探究法、小组合作法等教学方法。

通过实例引入多边形的内角和的概念,引导学生进行观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

同时,利用多媒体教学手段,展示多边形的内角和的计算过程,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过展示一个多边形,引导学生思考多边形的内角和是多少。

2.新课引入:讲解多边形的内角和的概念,引导学生理解多边形的内角和与边数的关系。

3.实例讲解:通过具体的例子,讲解多边形内角和的计算方法。

4.学生练习:学生独立完成一些多边形内角和的计算题目。

5.拓展与应用:引导学生思考如何应用多边形的内角和的知识解决实际问题。

6.总结与反思:学生总结本节课所学的内容,反思自己的学习过程。

八年级数学上册《多边形的内角和》说课稿

八年级数学上册《多边形的内角和》说课稿

编号:000222217954555385825983331学校:玄国虎市冥中之镇肖家塞小学*教师:古因丰*班级:大力士参班*《多边形的内角和》说课稿各位评委、各位老师:大家好!我说课的内容是《多边形的内角和》。

下面,我从以下几个方面对本节课的教学设计进行说明。

一、教材分析1、教材的地位和作用本节课作为第三节,起着承上启下的作用。

在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。

2、教学重点和难点重点:多边形的内角和与外角和难点:探索多边形内角和时,如何把多边形转化成三角形。

二、教学目标分析1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。

2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。

3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。

4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。

三、教法和学法分析本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:1、教学方法的设计我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。

多边形的内角和说课稿

多边形的内角和说课稿

多边形的内角和说课稿一、引言多边形是几何学中的重要概念,它由多个边和角组成。

在本次说课中,我将重点介绍多边形的内角和相关概念。

通过本节课的学习,学生将能够理解多边形的内角和的计算方法,并能够应用所学知识解决与多边形内角和相关的问题。

二、教学目标1. 知识与技能:a. 掌握多边形的定义和内角的概念;b. 理解多边形内角和的计算方法;c. 能够应用所学知识解决多边形内角和的问题。

2. 过程与方法:a. 通过教师讲解、示例演示和学生练习相结合的方式,引导学生理解内角和的计算方法;b. 通过小组合作、讨论和展示的方式,培养学生合作能力和表达能力;c. 通过解决实际问题的方式,培养学生的应用能力和解决问题的能力。

3. 情感态度与价值观:a. 培养学生对几何学的兴趣和好奇心;b. 培养学生合作学习的意识和团队精神;c. 培养学生解决问题的积极态度和创新思维。

三、教学重难点1. 教学重点:a. 多边形的定义和内角的概念;b. 多边形内角和的计算方法。

2. 教学难点:a. 引导学生理解多边形内角和的计算方法;b. 培养学生应用所学知识解决相关问题的能力。

四、教学过程1. 导入(5分钟)a. 引入多边形的概念,让学生回顾多边形的定义;b. 提问:你们知道什么是多边形?请举例说明。

2. 讲解多边形的内角和(15分钟)a. 通过示意图,让学生观察多边形的内角;b. 引导学生发现多边形内角和的规律:n边形的内角和等于180°×(n-2);c. 通过具体例子,让学生运用公式计算多边形的内角和。

3. 学生练习与合作(20分钟)a. 将学生分成小组,每一个小组完成一道多边形内角和的计算题目;b. 学生相互讨论,合作解决问题,并记录解题过程;c. 鼓励学生展示自己的解题思路和答案,促进学生之间的交流与合作。

4. 拓展与应用(15分钟)a. 提供一些实际问题,要求学生运用所学知识解决;b. 学生个别或者小组完成拓展问题,鼓励学生思量和创新。

多边形及其内角和 多边形的内角和说课稿 2024-2025学年人教版数学八年级上册

多边形及其内角和   多边形的内角和说课稿 2024-2025学年人教版数学八年级上册

《多边形的内角和》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《多边形的内角和》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析《多边形的内角和》是人教版八年级上册第十一章第三节的内容。

在此之前,学生已经学习了三角形的内角和定理,为本节课的学习奠定了基础。

本节课主要探讨多边形内角和的计算公式,通过探究活动,让学生经历从特殊到一般的过程,体会转化的数学思想,发展学生的合情推理能力和逻辑思维能力。

多边形内角和公式是多边形的一个重要性质,它不仅在几何计算中有着广泛的应用,而且对于后续学习多边形的外角和、平面镶嵌等内容也起着重要的铺垫作用。

二、学情分析八年级的学生已经具备了一定的观察、分析和推理能力,能够在教师的引导下通过自主探究和合作交流来解决问题。

但是,他们对于抽象的数学概念和复杂的推理过程可能会感到困难,需要教师通过具体的实例和直观的演示来帮助他们理解。

此外,学生在之前的学习中已经掌握了三角形内角和定理,这为本节课的学习提供了知识储备和方法借鉴。

但如何将三角形内角和的知识迁移到多边形内角和的探究中,对于学生来说可能是一个挑战。

三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)掌握多边形内角和公式,并能运用公式进行简单的计算。

(2)通过探索多边形内角和公式的过程,培养学生的合情推理能力和逻辑思维能力。

2、过程与方法目标(1)经历把多边形内角和问题转化为三角形内角和问题的过程,体会转化的数学思想。

(2)通过小组合作探究,培养学生的合作交流能力和创新意识。

3、情感态度与价值观目标(1)通过数学活动,让学生体验数学与生活的密切联系,激发学生学习数学的兴趣。

(2)在探究过程中,培养学生勇于探索、敢于创新的精神。

四、教学重难点教学重点:多边形内角和公式的推导及应用。

教学难点:如何将多边形内角和问题转化为三角形内角和问题,以及对公式的理解和灵活运用。

《多边形的内角和》的说课稿(精选9篇)

《多边形的内角和》的说课稿(精选9篇)

《多边形的内角和》的说课稿(精选9篇)《多边形的内角和》的篇1一、教材分析1、教学内容“多边形的内角和”一节包括的内容主要有多边形的有关概念以及多边形内角和公式的推导和运用。

2、本章及本节的地位与作用本章《多边形》,探索的是三角形和多边形的有关概念和性质,是学生在上学期初步认识和感受空间图形之后的延伸,也为今后进一步学习各种多边形打好基础。

本节课“多边形的内角和”作为本章的一个重点,是三角形有关知识的拓展,学习四边形的基础,公式的运用还充分地体现了图形与客观世界的密切联系。

3、重点与难点多边形内角和的公式及公式的推导和运用是本节课的重点;因为公式的得出可以用多种不同的方法推导,所以我确定本节课的难点是如何引导学生通过自主学习,探索多边形内角和的公式。

二、教学目标根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。

因此,我把本节课的教学目标确定为以下三个方面:知识目标:①识别多边形的顶点、边、内角及对角线;②理解多边形内角和公式的推导过程;③掌握多边形内角和公式的内涵及其运用。

能力目标:①培养学生类比归纳、转化的能力;②培养学生观察分析、猜想和概括的能力。

思想情感目标:通过体会数学图形的美感,提高审美能力,树立认识数学来源于生活,又服务于实践的观点。

三、教法分析在教法上树立以学生为本的思想,通过创设问题情境,启发引导学生观察————分析————猜想————概括,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性。

学法指导是培养学生学习能力的关键,本节课针对学生的认知规律,指导他们动手操作、交流合作,体验发现问题、探索问题和解决问题的学习过程。

教学手段上采用多媒体辅助教学,通过直观演示,更好地实现了“数形结合”的教学,切实有效地提高了课堂教学的效果。

四、过程设计1、创设问题情境,引入新课我是这样设计问题的:在一个平面内,把一个三角形的三个顶点固定,一边套上橡皮筋往外拉成一条折线,该折线与三角形的另外两边围成一个什么图形?再把橡皮筋的一边又往外拉,再固定,又围成什么图形?……不断地向外拉,结果围成什么图形?如果上述情况不是往外拉而是往里推,那是什么图形?在学生的回答中引出主题:今天我们来学习多边形的有关知识。

多边形内角和说课稿(人教版)

多边形内角和说课稿(人教版)

教学反思:
计算机辅助教学进入课堂可使抽象的概念具体 化形象化,尤其是计算机能进行动态演示,弥补了 传统教学方式在直观感立体感和动态感等方面的不 足,利用这个特点可处理其他教学手段难以处理的 问题,并能引起学生的兴趣、增强直观印象、减少 运算量为教师化解教学重点、突破教学难点、提高 课堂效率和教学效果,便于学生对学习目标的达成,
谢谢大家 再见!
证明: 180°×(n—1)—180°
= 180°×(n—2)
活动五:针对训练
(1)一个八边形的内角和为____1_0_8_0_°______ (2)一个多边形的内角和是720°则这个多边形是__六__边形
(3)一个正多边形每一个内角都是120°,则这个多边形 是( C )
A.正四边形 B.正五边形 C.正六边形 D.正七边形
一、教材分析:
根据多边形的内角和公式确定多边 形的边数是中考常考内容,多以选择题, 填空题形式出现,与其他知识综合考察 时也经常以探究性题目出现。
一、教材分析:
对于本节所运用的从特殊到一般的 研究问题的方法,将复杂图形转化为简 单的基本图形的化归思想,从未知到已 知等转化思想,是学生学习数学知识的 重要思想方法,因此,本节课的学习对学 生的学习具有重要的意义。
多边形 边数 从一个顶点引出 对角线条数
分成三角形的个数
三角形 3
0
1
内角和 180°
计算规律 1×180°
四边形 4
1
2
360° 2×180°
五边形 5
2
3
540° 3×180°
六边形 6
七边形 7 ···
n边形 n
3
4 ···
n—3
4
5 ···

《多边形及其内角和》说课稿

《多边形及其内角和》说课稿

《多边形及其内角和》说课稿《多边形及其内角和》说课稿1今天我说课的题目《多边形及其内角和》,这是我在进行完这节课的教学后结合着课堂进行情况以及我对《新课程标准理》的理解从以下几个方面进行的反思。

一、教材分析《多边形的内角和》选自人教版八年级上册的第十一章第三节,《多边形内角和》是本章的一个重点,是三角形有关知识的拓展,是以后学平面镶嵌的基础,多边形内角和公式的运用还充分体现了图形与客观世界的联系。

在内容上,起着承上启下的作用,是在学生学习了一元一次方程、三角形内角和知识和多种平面几何图形的基础上进行的,目的是使学生进一步了解多边形的性质,感受图形世界的现实性和丰富多彩,同时在教学中渗透类比,转化等思想方法培养学生用联系的变换的观点思考问题。

二、学情分析1、我所任教的班级,大部分学生来自农村,基础知识参差不齐,但从小独立性较强,性格活泼,喜欢合作讨论,对数学学习有较浓厚的兴趣。

经过了一年的小组合作方式的磨合,大部分学生已经养成了良好的学习习惯,具有一定的理解能力和归纳能力。

2、学生已经学习了三角形的内角和,这为本节课的学习打下了一定的基础。

八年级学生好奇心比较强,观察能力、动手能力、自主探究能力都得到一定的训练,所以在探究任意四边形内角和时学生采用了测量、拼图、折纸、分割的方法,但是把多边形转化为三角形这一过程是学生学习的难点,所以在探究的过程中注重了把难点分散,有利于学生对本课知识的学习和掌握。

三、教学目标分析根据《新课程标准》的要求,本节内容的特点以及学生的情况,我确定以下教学目标和重、难点。

【知识与技能】认识多边形,了解多边形的定义,多边形的顶点、边、对角线、内角及外角等概念;探索并掌握多边形内角和定理与外角和公式,在理解的基础上运用其解决简单的实际问题。

【数学思考】学生通过猜想、动手实践、合作交流,归纳等活动探索多边形的内角和公式与外角和公式,激发学生兴趣、调动学生积极性、鼓励学生的的创造性思维,感受数学思考过程的条理性。

《多边形内角和》说课稿

《多边形内角和》说课稿

《多边形内角和》说课稿一、说教材《多边形内角和》是中学数学教学中的重要内容,它位于几何学的核心部分,是学生在学习了三角形内角和的基础上,对多边形内角和性质进行探究的课程。

本文在教材中的作用和地位主要体现在以下几方面:1. 拓展知识层面:通过学习多边形内角和,使学生能够从三角形的内角和推广到一般多边形的内角和,增强学生对几何图形的观察和分析能力。

2. 培养逻辑思维:本节课通过引导学生利用已学知识推导多边形内角和公式,培养学生的逻辑思维和推理能力。

3. 应用数学方法:通过解决多边形内角和的问题,让学生学会运用数学方法解决实际问题,提高学生的数学应用能力。

主要内容:1. 多边形的定义及性质:回顾多边形的定义,了解多边形的基本性质,为后续学习多边形内角和打下基础。

2. 多边形内角和公式的推导:引导学生从三角形的内角和出发,通过观察、分析、归纳,推导出多边形内角和的一般性公式。

3. 多边形内角和公式的应用:运用所学的公式解决实际问题,提高学生的实际操作能力。

二、说教学目标学习本课需要达到以下教学目标:1. 知识与技能目标:掌握多边形内角和的定义,能够运用公式计算多边形的内角和。

2. 过程与方法目标:通过观察、分析、归纳,培养学生的逻辑思维和推理能力;学会运用数学方法解决实际问题。

3. 情感态度与价值观目标:激发学生对几何学的兴趣,培养学生积极探究、主动学习的良好习惯。

三、说教学重难点本节课的教学重难点主要包括:1. 多边形内角和公式的推导:如何引导学生从已知的知识点出发,通过观察、分析、归纳,推导出多边形内角和的一般性公式。

2. 多边形内角和公式的应用:在实际问题中,如何选择合适的方法和技巧运用所学的公式进行计算。

四、说教法在本节课的教学过程中,我将采用以下几种教学方法,旨在突出我的教学特色和亮点:1. 启发法:- 通过提出问题引导学生思考,激发学生的好奇心和求知欲。

例如,我会提出“三角形的内角和是180°,那么四边形的内角和是多少?”这样的问题,让学生在思考中自然过渡到多边形内角和的探究。

《多边形内角和》说课稿

《多边形内角和》说课稿

4.6《多边形的内角和》说课稿银川市回民中学陈惠琴4.6《多边形的内角和》说课稿回民中学陈惠琴各位领导、各位老师:大家好!我说课的内容是北师大版义务教育课程标准教科书,八年级数学(上)第四章第六节《探索多边形的内角和与外角和》。

下面,我从以下几个方面对本节课的教学设计进行说明。

一、教材分析1、教材的地位和作用本节课作为第四章第六节,起着承上启下的作用。

在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。

二、教学目标分析1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。

2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。

3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。

4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。

2、教学重点和难点重点:多边形的内角和与外角和难点:探索多边形内角和时,如何把多边形转化成三角形。

三、教法和学法分析本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:1、教学方法的设计我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。

多边形内角和说课稿

多边形内角和说课稿

多边形内角和说课稿一、说教材本文《多边形内角和》是中学数学课程中关于几何知识的一个重要部分。

在教材中,它起着承上启下的作用,既是对之前学习的三角形内角和概念的拓展,也为后续学习多边形外角和、四边形、圆等几何知识打下基础。

这部分内容在几何教学中占据重要地位,它不仅强化学生对几何图形内角和计算方法的理解,而且通过探索多边形的性质,培养学生的空间想象能力和逻辑思维能力。

本文主要内容围绕多边形的内角和定理展开,通过具体的例子和图形,引导学生理解并掌握多边形内角和的计算方法。

此外,还涉及多边形内角和与边形边数之间的关系,以及如何运用这一知识解决实际问题。

(1)作用与地位《多边形内角和》是中学数学几何知识体系中的一个重要环节,它有助于学生形成系统的几何知识结构,同时,对于培养学生的几何直观能力和逻辑推理能力具有重要意义。

(2)主要内容本文主要内容包括:- 多边形内角和的定义及计算公式;- 多边形内角和与边形边数的关系;- 运用多边形内角和定理解决实际问题。

二、说教学目标学习本课需要达到以下教学目标:(1)理解多边形内角和的定义,掌握多边形内角和的计算方法;(2)掌握多边形内角和与边形边数之间的关系,并能运用这一关系解决实际问题;(3)通过探索多边形内角和的性质,培养学生的空间想象能力和逻辑思维能力;(4)激发学生对几何学习的兴趣,提高学生的自主学习能力和合作交流能力。

三、说教学重难点(1)教学重点:- 多边形内角和的定义及计算公式;- 多边形内角和与边形边数的关系。

(2)教学难点:- 理解并运用多边形内角和定理解决实际问题;- 培养学生的空间想象能力和逻辑思维能力。

在教学过程中,要注意把握重点,突破难点,引导学生通过观察、思考、实践等方式,深入理解多边形内角和的性质,提高学生的几何素养。

四、说教法在教学《多边形内角和》这一课时,我计划采用以下几种教学方法,旨在提高教学效果,激发学生的学习兴趣,并培养学生的自主学习能力和逻辑思维能力。

多边形的内角和说课稿

多边形的内角和说课稿

多边形的内角和说课稿一、说教材《多边形的内角和》是初中数学教学中的重要内容,它位于几何学的范畴,是学生在学习了三角形和四边形的内角和基础上的拓展与深化。

本文在课文中起着承上启下的作用,既巩固了学生对三角形和四边形内角和的理解,又为后续学习多边形的外角和、平面几何图形的面积等知识奠定了基础。

主要内容方面,本文主要围绕多边形的内角和进行讲解,包括但不限于:多边形内角和的定义、计算公式、推导过程以及在实际问题中的应用。

通过本课的学习,学生可以更加深入地理解多边形的性质,培养几何逻辑思维能力和解决问题的能力。

二、说教学目标学习本课后,学生应达到以下教学目标:1. 知识与技能:- 理解多边形内角和的概念,掌握多边形内角和的计算公式。

- 能够运用多边形内角和的公式解决实际问题。

- 了解多边形内角和与边形边形数的关系。

2. 过程与方法:- 通过观察、分析、推导,培养学生的几何逻辑思维能力。

- 学会运用数学语言和符号表达几何问题,提高数学表达和交流能力。

3. 情感态度与价值观:- 培养学生对几何学的兴趣,激发他们主动探索几何问题的热情。

- 增强学生的团队合作意识,培养合作学习的能力。

三、说教学重难点本课的教学重难点包括:1. 理解并掌握多边形内角和的计算公式。

2. 能够运用公式解决实际问题,特别是在多边形形状复杂时,如何正确计算内角和。

3. 理解多边形内角和与边形数的关系,以及如何运用这一关系简化计算过程。

四、说教法在本课的教学中,我计划采用以下几种教学方法,旨在提高学生的学习兴趣,促进学生的主动参与,以及深化学生对多边形内角和概念的理解。

1. 启发法:- 通过引导学生回顾已学的三角形和四边形的内角和知识,激发学生的思考,为新知识的学习做好铺垫。

- 设计具有启发性的问题,如“一个五边形可以被分割成几个三角形?”或“多边形的内角和与边形数之间是否存在某种关系?”,鼓励学生进行探索和发现。

2. 问答法:- 在课堂上,我会提出一系列问题,如“多边形内角和的计算公式是什么?”或“如何将一个复杂的多边形分割成简单的图形来计算内角和?”,让学生通过回答问题来检验和巩固学习成果。

多边形的内角和说课稿(省级一等奖)

多边形的内角和说课稿(省级一等奖)

多边形的内角和说课稿(省级一等奖)尊敬的评委、老师们,今天我将为大家介绍人教版八年级上册第十一章第四节《多边形的内角和》的教学设计。

本节内容是在学生掌握三角形内角和定理的基础上进行的,对今后研究四边形、圆等知识有着重要的作用。

下面我将从教材、教法、学法、教学过程、板书设计、反思这六个方面为大家详细介绍。

一、教材分析本节内容是从特殊到一般的深化,体现知识螺旋上升的特点。

通过类比、化未知为已知的数学思想,让学生体会从具体到抽象、化繁为简的转化思想方法在数学中的应用。

本节课程符合新课程理念,体现了“人人学有价值的数学,人人都能获得必需的数学”的教育目标。

二、教法为使课堂生动、有趣、高效,我将视觉图像法、情景教学法、启发发现法贯穿于整个教学环节之中。

这些教学方法能够满足八年级学生理解能力和思维特征依赖直观、具体、形象的图形的需求。

三、学法针对八年级学生的学情分析,我将采用小组合作研究和自主研究相结合的研究方法。

这样有利于学生对新知识的研究和掌握。

四、教学程序1.情境导入2.学生合作探究多边形的内角和公式3.教师引导学生通过测量、类比、推理等教学活动归纳出多边形的内角和公式4.学生自主练,巩固所学知识5.教师总结本节课的重点,梳理知识点6.学生自主探究拓展知识五、板书设计板书设计要简洁明了,重点突出,符合学生认知规律。

我会在板书上清晰地呈现多边形的内角和公式,以及相关的示意图。

六、反思教学过程中,我将不断观察学生的研究情况,及时调整教学策略,使教学过程更加顺畅。

同时,我也会及时反思自己的教学方法,不断完善教学设计,提高教学质量。

展示图片,让学生找出多边形,激发研究兴趣和爱国主义热情,让学生体会数学来源于生活并服务于生活。

猜想探究活动一:探索多边形的定义和相关概念。

让学生分组动手操作,用纸条和大头针组合多边形,结合从前学过的三角形概念,类比得出多边形及凸多边形的概念,让学生在活动中掌握数学概念。

猜想探究活动二:探索多边形的内角和。

人教版八年级上册 11.3 多边形内角和 说课稿

人教版八年级上册 11.3 多边形内角和 说课稿

多边形的内角和说课一、教材分析《多边形的内角和》选自人教版义务教育课程标准教科书《数学》八年级上册第11章第三节《多边形及其内角和》的第二课。

教学内容是多边形的内角和公式的推导和应用。

在教学中要运用转化思想,观察图形和运用代数方法计算的数形结合思想。

二、学生分析学生已经学习了求三角形的内角和的方法,掌握了多边形有关概念,理解了多边形的对角线。

这为本节课的学习打下了一定的基础。

在设计推导多边形内角和定理时首先采用作对角线将多边形划分为若干三角形的方法,然后再探索其他方法,这样比较符合学生的认知规律。

另外,在以往的学习中,学生的动手实践、自主探究能力都得到一定的训练,本节课将进一步培养学生这些方面的能力。

三、设计理念新课程要求老师要有先进的教学理念,要注重引导学生自主探究,培养学生的动手实践能力;要注重培养学生的创新精神;在学习过程中要让学生主动地进行观察、实验、猜想、验证、推理与交流等数学活动;要想方设法营造出良好的学习氛围,让学生当学习的主人,要多给学生机会,充分调动学生自主探究学习的积极性。

“数学教学必须建立在学生的认知发展水平和已有的- 1 -知识经验基础之上。

”本节课的教学设计正是遵循这一原则进行的。

四、教学目标1.知识与技能:(1)探索并了解多边形的内角和公式。

(2)能对多边形的内角和公式进行应用,解决实际问题。

2.过程与方法:(1)经历探索多边形内角和定理的过程,进一步发展学生的合情推理意识和主动探究习惯,进一步体会数学与现实生活的紧密联系。

(2)通过学生自己动手操作,积极参加数学活动的“做数学”的过程,让学生亲身体验数学发现,增强动手能力。

(3)在对多边形的内角和公式进行应用,解决实际问题过程中,培养学生“用数学”的能力。

3.情感态度与价值观:(1)通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。

(2)向学生渗透类比、转化的数学思想,并使学生学会与他人合作。

五、教学重点多边形内角和定理的推导及运用。

人教版八年级数学上册11.3.2《多边形的内角和》说课稿

人教版八年级数学上册11.3.2《多边形的内角和》说课稿

人教版八年级数学上册11.3.2《多边形的内角和》说课稿一. 教材分析《多边形的内角和》是人教版八年级数学上册第11.3.2节的内容,本节课主要介绍了多边形的内角和的概念以及计算方法。

通过本节课的学习,学生能够理解多边形内角和的性质,掌握多边形内角和的计算公式,并为后续学习多边形的其他性质和计算打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的内角和定理,对四边形及以上的多边形有一定的了解。

但学生对多边形的内角和的概念和计算方法可能还不够清晰,需要通过本节课的学习来进一步巩固和提高。

三. 说教学目标1.知识与技能目标:学生能够理解多边形的内角和的概念,掌握多边形内角和的计算方法,能够运用所学知识解决一些实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的空间观念和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 说教学重难点1.教学重点:多边形的内角和的概念,多边形内角和的计算方法。

2.教学难点:多边形内角和的计算方法的推导和理解。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂,积极思考。

2.教学手段:利用多媒体课件、实物模型、图形软件等辅助教学,直观展示多边形的内角和的特点和计算过程。

六. 说教学过程1.导入新课:通过展示一些多边形的图片,引导学生思考多边形的内角和的概念。

2.探究多边形的内角和:引导学生通过观察和操作,发现多边形内角和的规律,推导出计算公式。

3.讲解与演示:教师对多边形的内角和的概念和计算方法进行讲解,并利用多媒体课件和实物模型进行演示。

4.练习与交流:学生进行课堂练习,教师引导学生相互交流、讨论,共同解决问题。

5.总结与拓展:教师引导学生总结本节课的主要内容和知识点,并进行适当的拓展。

七. 说板书设计板书设计要简洁明了,能够突出多边形的内角和的概念和计算方法。

11.3.2多边形的内角和说课稿-2022-2023学年人教版八年级上册数学

11.3.2多边形的内角和说课稿-2022-2023学年人教版八年级上册数学

11.3.2 多边形的内角和说课稿一、教材分析本节课是人教版八年级上册数学第11章《平面图形的认识》中的第3节课,主要内容是多边形的内角和。

根据教材的描述,本节课的教学目标有: 1. 掌握多边形内角和的计算方法;2. 能够应用内角和的概念解决实际问题;3. 培养学生的逻辑思维、分析问题的能力。

本节课的重点是通过多边形内角和的计算方法和实际问题的讨论,加深学生对多边形内角和的理解。

二、教学设计本节课的教学内容设计如下:1. 导入与激发兴趣通过一道有关多边形内角和的问题,引导学生思考多边形内角和的概念,并激发学生的兴趣。

2. 概念讲解介绍多边形内角和的定义,解释如何计算多边形的内角和,并通过几个简单的例子巩固学生对内角和的理解。

3. 计算练习通过一些练习题,让学生巩固和运用所学的知识,计算多边形的内角和。

4. 实际问题探究给出一些实际问题,让学生运用多边形内角和的概念解决问题,培养学生的思维能力和解决问题的能力。

5. 总结与拓展对本节课的内容进行总结,概括多边形内角和的计算方法,展望下节课的学习内容。

三、教学过程本节课的教学过程安排如下:导入与激发兴趣通过一个问题引导学生思考:一个多边形的所有内角和是多少?查找学生的答案并引导他们探究解决方法。

概念讲解通过教师的讲解,介绍多边形的定义和内角和的概念,解释如何计算多边形的内角和。

计算练习给学生一些简单的多边形,让他们计算多边形的内角和,并与同桌交流解决方法。

实际问题探究给出一些实际问题,让学生运用多边形内角和的概念进行计算和解决问题,引导学生思考和讨论。

总结与拓展对本节课的内容进行总结,概括多边形内角和的计算方法,并预告下节课的内容。

四、板书设计本节课的板书设计如下:多边形的内角和计算方法:(以三角形为例)内角和= 180°五、教学反思通过本节课的教学设计,学生能够通过计算多边形的内角和,掌握多边形内角和的计算方法。

同时,通过实际问题的讨论,培养学生的思维能力和解决问题的能力。

《多边形的内角和》教案【优秀5篇】

《多边形的内角和》教案【优秀5篇】

《多边形的内角和》教案【优秀5篇】《多边形的内角和》教案篇一一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理。

2.了解四边形的不稳定性及它在实际生产,生活中的应用。

(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。

2.通过推导四边形内角和定理,对学生渗透化归思想。

3.会根据比较简单的条件画出指定的四边形。

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。

(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好。

(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美。

二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。

四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。

第2课时七、教学步骤复习提问1.什么叫四边形?四边形的内角和定理是什么?2.如图4-9, 求的度数(打出投影).引入新课前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题。

人教版数学八年级上册11.3.2多边形的内角和说课稿

人教版数学八年级上册11.3.2多边形的内角和说课稿
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一组美丽的多边形图案,让学生观察并提出问题:“这些多边形的内角和是多少?”引发学生思考。
2.生活实例:引用学生在生活中常见的多边形物体,如操场、地板等,让学生感受到多边形内角和在实际生活中的应用,激发学生学习兴趣。
3.实例演示:通过具体例题,展示多边形内角和公式的应用,让学生在观察、思考和解答过程中深入理解知识点。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.课堂练习:设计具有代表性的习题,让学生独立完成,巩固多边形内角和的计算方法。
2.小组讨论:组织小组讨论,让学生互相交流解题思路,提高学生的合作能力和解决问题的能力。
在教学过程中,教师应关注学生对重点知识的掌握,同时注重对难点的突破,通过设计有针对性的教学活动,帮助学生理解多边形内角和的概念,提高学生的计算和应用能力。
二、学情分析导
(一)学生特点
本节课面向的是八年级学生,这个年龄段的学生正处于青春期,好奇心强,求知欲旺盛,具备一定的独立思考能力。在认知水平上,他们已经能够理解并运用基本的几何知识,具备一定的逻辑推理能力。在学习兴趣方面,学生对新颖有趣、富有挑战性的内容表现出较高的兴趣,而对枯燥的理论知识较为抵触。在学习习惯上,部分学生养成了良好的自主学习习惯,但仍有不少学生依赖性强,缺乏主动探究的精神。
作业的目的是:巩固课堂所学知识,提高学生的计算和应用能力;培养学生的独立思考能力和创新意识;让学生体会数学与生活的紧密联系,增强学习兴趣。
五、板书设计与教学反思
(一)板书设计
我的板书设计将遵循清晰、简洁、结构化的原则。板书布局分为三个部分:左侧为概念和定义,中间为推导过程和公式,右侧为实例和注意事项。主要内容将包括:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:000222217954555385825983331
学校:玄国虎市冥中之镇肖家塞小学*
教师:古因丰*
班级:大力士参班*
《多边形的内角和》说课稿
各位评委、各位老师:
大家好!我说课的内容是《多边形的内角和》。

下面,我从以下几个方面对本节课的教学设计进行说明。

一、教材分析
1、教材的地位和作用
本节课作为第三节,起着承上启下的作用。

在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。

2、教学重点和难点
重点:多边形的内角和与外角和
难点:探索多边形内角和时,如何把多边形转化成三角形。

二、教学目标分析
1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。

2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。

3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。

4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。

三、教法和学法分析
本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:
1、教学方法的设计
我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展
利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用
我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。

四、教学过程分析
1、本节教学将按以下六个流程展开
互动环节互动内容设计意图
1、创设情境
引入新课
(1)在一次数学基础知识抢答赛上,
王老师出了这么一个问题:某个多边形所
有的角加起来等于它的外角和,那么该多
边形是几边形?小明同学仅用几秒钟就
解决了问题,你能吗?
(2)(演示教具)用四块大小形状完
全相同的四边形可拼成一块无空隙的纸
板,你知道这是为什么吗?
通过今天的学习,我们就能明白其中
的道理,引出课题。

这样一开始就利
用抢答赛问题以及教
具演示实验来提问设
疑,学生很容易发问:
这个多边形是几边形
呢?用四块大小形状
完全相同的四边形可
拼成一块无空隙的纸
板,为什么会产生这种
效果呢?从而可调动
学生的学习兴趣和注
意力,创设恰当的教学
情境。

2、合作交流
探索新知
(1)问题:三角形的内角和等于多
少度?外角和等于多少度?长方形的内
角和等于多少度?正方形的内角和等于
多少度?
(2)问题:任意四边形的内角和等
于多少度呢?你是怎样得到的?你能找
到几种方法?
(3)学生思考,并分组交流讨论,
教师深入小组参与活动,指导、倾听学生
交流。

(4)学生分组选代表展示小组的探
索成果,师生共同进行评判,对学生找到
的不同方法要加以及时肯定。

学生可能找到以下几种方法:①“量”
—即先测量四边形四个内角的度数,然后
求四个内角的和;②“拼”—即把四边形
先回顾三角形、正
方形和长方形的内角
和,促使学生对新问题
进行思考与猜想。

从简单的四边形
入手,让学生亲自操作
寻求结论,易于引起学
习兴趣,鼓励学生找到
多种方法,让学生体会
多种分割形式,有利于
深入领会转化的本质
——四边形转化为三
角形,也让学生体验数
学活动充满探索和解
决问题方法的多样性。

通过交流,让学生
创设情境引入新课合作交流
探索新知
自主探究
得出结论
应用新知
尝试练习
归纳总结
形成体系
分组竞赛
升华情感
的四个内角剪下来,拼在一起,得到一个周角;③“分”—即通过添加辅助线的方法,把四边形分割成三角形。

教师在学生展示完后提问:①在“量”、“拼”、“分”这几种方法中,哪种方法操作简单又相对准确?②我们刚才找到了几种不同的辅助线的作法,它们的共同点是什么?用自己的语言清楚地表达解决问题的过程,可以提高语言表达能力。

3、自主探究
得出结论
(1)问题:用刚才类似的方法,你
能算出五边形、六边形、七边形的内角和
吗?
学生先独立思考,分组讨论,然后再
叙述结论。

(2)问题:依此类推,n边形的内角
和等于多少度呢?
让学生自己归纳总结,得出n边形的
内角和公式为(n-2)·180°。

从探索四边形的
内角和,到五边形、六
边形、七边形乃至n边
形,通过增强图形的复
杂性,让学生体会由简
单到复杂,由特殊到一
般的思想方法,再一次
经历转化的过程,同时
在分组交流的过程中,
感受合作的重要性。

互动环节互动内容设计意图
4、应用新知
尝试练习
(1)想一想:
如果一个四边形的一组对角互
补,那么另一组对角有什么关系?为
什么?
(2)算一算
A.四边形的外角和等于多少
度?
B.五边形的外角和,六边形以及
n边形的外角和呢?
通过做例题和练习来
巩固新知识。

先求四边形的外角和,
再求五边形、六边形以及n
边形的外角和,我提出阶梯
式的问题,让学生逐步归纳
得出多边形的外角和等于
360°。

这两段是新增加的内
容,从另一个角度增加对任
意多边形外角和理解与认
识。

这样处理,注重教材阅
读学习,同时用课件演示更
加形象直观,便于理解。

5、归纳总结
形成体系
我从以下几个方面引导学生进
行小结:
(1)现在你能解决数学知识抢
答赛上,王老师提出的问题了吗?你
知道为什么能用四块大小形状完全
相同的四边形拼成一块无空隙的纸
板了吗?
让学生运用所学知识
解决引问中的问题,提高解
决问题的能力,鼓励学生畅
所欲言总结对本节课的收
获和体会,有利于培养归
纳、总结的习惯和能力,让
学生自主建构知识体系。

(2)这节课我们学习了哪些知识和方法?你有什么收获?
6、分组竞赛
升华情感
我制作了A、B、C、D四组不同
的电子试卷,让学生运用所学知识通
过小组竞赛的形式合作完成,自检掌
握情况。

通过竞赛的方式,激发
学生的学习兴趣,引导他们
在做练习的过程中,通过小
组协作来巩固知识和获得
技能。

在每组试卷中,大部分
选自教材的练习题。

另外,
我还另增加了1个思考题,
实际上是对证明四边形内
角和方法的补充,主要是通
过一题多解发散思维,提高
思维的灵活性,还可以复习
旧知识,把握知识间的相互
联系,让学生再次体会转化
的思想方法。

五、评价分析
1、注意评价内容的多元化
通过课堂中学生展示自己对所学内容的理解,交流对某一问题的看法,动手操作的表演,各种问题尝试解答等活动,使教师从学生思维活动、有关内容的理解和掌握,以及学生参与活动的程序等多层面地了解学生。

2、注重对学生学习过程的评价
在整个教学过程中,通过对学生参与数学活动的程度、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生中出现的独特的想法或结论给予鼓励性评价。

六、设计说明
1、指导思想
根据义务教育阶段数学课程的要求,结合教材的编写意图,在本节课设计时,我遵循以下原则:情境引入激发兴趣,学习过程体现自主,知识建构循序渐进,思想方法有机渗透。

2、关于教材处理
本教案设计时,我对教材作了如下改变:①将教材例1作为练习中的“想一想”,由学生自已尝试解答;②将例2中的求“六边形”的外角和,改为练习中的“算一算”,先让学生求“四边形”的外角和,再探索“五边形、六边形,以及n边形的外角和”。

这样处理仍然是为了体现学生的自主探索,使学生学习变“被动”为“主动”。

③作业采取分组竞赛的形式合作完成。

这样,在情感上,本节课学生由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。

这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师可稍加点拨,适可而止,把更多的思考空间留给学生。

以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!。

相关文档
最新文档