2019年江苏省中考数学真题分类汇编 专题10 图形的性质之选择题(解析版)
江苏省苏州市2019年中考数学真题试题(含解析)
D. 7
3. 苏州是全国重点旅游城市,2018 年实现旅游总收入约为 26000000 万元,数据
26000000 用科学记数法可表示为( )
A. .2 1
B. 2. 1
C. 2 1
D. 2. 1
4. 如图,已知直线 a∥b,直线 c 与直线 a,b 分别交于点 A,
B.若∠1=54°,则∠2 等于( )
故选:C.
根据三角函数和直角三角形的性质解答即可.
此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是
解此题的关键.
9.【答案】C
【解析】
解:∵四边形 ABCD 是菱形,
∴AC⊥BD,AO=OC= AC=2,OB=OD= BD=8,
∵△ABO 沿点 A 到点 C 的方向平移,得到△A'B'O',点 A'与点 C 重合, ∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°, ∴AO'=AC+O'C=6,
14. 若 a+2b=8,3a+4b=18,则 a+b 的值为______.
1 . “七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方
魔板”.图①是由边长为 10cm 的正方形薄板分为 7 块制作成的“七巧板”,图②
是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中 7 块图形之一的正方
3
23. 某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组, 要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组 的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制 成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息 解答下列问题: (1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的 数据); (2)m=______,n=______; (3)若该校共有 1200 名学生,试估计该校选择“围棋”课外兴趣小组的学生有多 少人?
(完整版)江苏苏州2019中考试卷-数学(解析版)
江苏苏州2019中考试卷-数学(解析版)【一】选择题〔此题共10个小题,每题3分,共30分〕1、2的相反数是〔〕A、﹣2B、2C、﹣D、考点:相反数。
专题:常规题型。
分析:依照相反数的定义即可求解、解答:解:2的相反数等于﹣2、应选A、点评:此题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键、2、假设式子在实数范围内有意义,那么x的取值范围是〔〕A、x<2B、x≤2C、x>2D、x≥2考点:二次根式有意义的条件。
分析:依照二次根式中的被开方数必须是非负数,即可求解、解答:解:依照题意得:x﹣2≥0,解得:x≥2、应选D、点评:此题考查的知识点为:二次根式的被开方数是非负数、3、一组数据2,4,5,5,6的众数是〔〕考点:众数。
分析:依照众数的定义解答即可、解答:解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5、应选C、点评:此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数能够有多个、停止时,指针指向阴影区域的概率是〔〕A、B、C、D、考点:几何概率。
分析:确定阴影部分的面积在整个转盘中占的比例,依照那个比例即可求出转盘停止转动时指针指向阴影部分的概率、解答:解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;应选B、点评:此题考查了几何概率、用到的知识点为:概率=相应的面积与总面积之比、5、如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,那么∠BDC的度数是〔〕A、20°B、25°C、30°D、40°考点:圆周角定理;圆心角、弧、弦的关系。
分析:由BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数、解答:解:∵=,∠AOB=60°,∴∠BDC=∠AOB=30°、应选C、点评:此题考查了圆周角定理、此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用、6、如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,假设AC=4,那么四边形CODE的周长〔〕A、4B、6C、8D、10考点:菱形的判定与性质;矩形的性质。
2019江苏省苏州市中考数学试卷(解析版)
2019年江苏省苏州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.5的相反数是()A. B. C. 5 D.2.有一组数据:2,2,4,5,7,这组数据的中位数为()A. 2B. 4C. 5D. 73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A. B. C. D.4.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠ = 4°,则∠2等于()A.B. 4C.D. 445.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO= °,则∠ADC的度数为()A. 4B.C.D.6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A. 4B. 4C. 4D. 47.若一次函数y=kx+b(k,b为常数,且k≠ )的图象经过点A(0,-1),B(1,1),则不等式kx+b>1的解为()A. B. C. D.8.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为°.则教学楼的高度是()A.B. 54mC.D. 18m9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A. 6B. 8C. 10D. 1210.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A. 4B. 4C.D. 8二、填空题(本大题共8小题,共24.0分)11.计算:a2•a3=______.12.因式分解:x2-xy=______.13.若在实数范围内有意义,则x的取值范围为______.14.若a+2b=8,3a+4b=18,则a+b的值为______.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为______cm(结果保留根号).16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为______.17.如图,扇形OAB中,∠AOB= °.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为______.18.如图,一块含有4 °角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为cm,则图中阴影部分的面积为______cm2(结果保留根号).三、计算题(本大题共1小题,共6.0分)19.先化简,再求值:÷(1-),其中,x=-3.四、解答题(本大题共9小题,共70.0分)20.计算:()2+|-2|-(π-2)021.解不等式组:422.在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是______;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).23.某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=______,n=______;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?24.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC= °,∠ACB= °,求∠FGC的度数.25.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.26.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.27.已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为______cm/s,BC的长度为______cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN 的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.28.如图①,抛物线y=-x2+(a+1)x-a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.答案和解析1.【答案】D【解析】解:5的相反数是-5.故选:D.根据只有符号不同的两数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【答案】B【解析】解:这组数据排列顺序为:2,2,4,5,7,∴这组数据的中位数为4,故选:B.将数据从小到大重新排列后根据中位数的定义求解可得.本题主要考查中位数,熟练掌握中位数的定义是解题的关键.3.【答案】D【解析】解:将26000000用科学记数法表示为: . × 7.故选:D.科学记数法的表示形式为a× n的形式,其中 ≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a× n的形式,其中 ≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:如图所示:∵a∥b,∠ = 4°,∴∠1=∠ = 4°,∴∠ = °- 4°= °.故选:A.直接利用平行线的性质得出∠3的度数,再利用邻补角的性质得出答案.此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.5.【答案】D【解析】解:∵AB为⊙O的切线,∴∠OAB= °,∵∠ABO= °,∴∠AOB= °-∠ABO= 4°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB= °;故选:D.由切线的性质得出∠OAB= °,由直角三角形的性质得出∠AOB= °-∠ABO= 4°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.6.【答案】A【解析】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.直接利用用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本,得出等式求出答案.此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.【答案】D【解析】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.直接利用已知点画出函数图象,利用图象得出答案.此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.【答案】C【解析】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为 °,∴∠ADE= °,∵BC=DE=18m,∴AE=DE•tan °= m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.根据三角函数和直角三角形的性质解答即可.此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.9.【答案】C【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'= °,∴AO'=AC+O'C=6,∴AB'===10;故选:C.由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'= °,得出AO'=AC+O'C=6,由勾股定理即可得出答案.本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.10.【答案】B【解析】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE= °,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC :S△ACB=1:4,∴S四边形ABDE :S△ACB=3:4,∵S四边形ABDE =S△ABD+S△ADE=× × +× × = + = ,∴S△ACB=4,故选:B.由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC面积.此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.11.【答案】a5【解析】解:a2•a3=a2+3=a5.故答案为:a5.根据同底数的幂的乘法,底数不变,指数相加,计算即可.熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.【答案】x(x-y)【解析】解:x2-xy=x(x-y).故答案为:x(x-y).直接提取公因式x,进而分解因式即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.【答案】x≥【解析】解:若在实数范围内有意义,则x- ≥ ,解得:x≥ .故答案为:x≥ .直接利用二次根式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.【答案】5【解析】解:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.直接利用已知解方程组进而得出答案.此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.【答案】【解析】解: × = (cm2)=(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.观察图形可知该“七巧板”中7块图形之一的正方形面积是大正方形面积的,先根据正方形面积公式求出大正方形面积,从而得到小正方形面积,进一步得到该“七巧板”中7块图形之一的正方形边长.考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.16.【答案】【解析】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.直接根据题意得出恰有三个面涂有红色的有8个,再利用概率公式求出答案.此题主要考查了概率公式的应用,正确得出三个面涂有红色小立方体的个数是解题关键.17.【答案】5【解析】解:连接OP,如图所示.∵OA=OB,∠AOB= °,∴∠OAB=4 °.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r-1,在Rt△POC中,∠PCO= °,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r-1)2+9,解得:r=5.故答案为:5.连接OP,利用等腰三角形的性质可得出∠OAB=4 °,结合PC⊥OA可得出△ACD为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r-1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.18.【答案】(10)【解析】解:如图,EF=DG=CH=,∵含有4 °角的直角三角板,∴BC=,GH=2,∴FG=8--2-=6-2,∴图中阴影部分的面积为:× ÷ -(6-2)×(6-2)÷=32-22+12=10+12(cm2)答:图中阴影部分的面积为(10)cm2.故答案为:(10).图中阴影部分的面积=外框大直角三角板的面积-内框小直角三角板的面积,根据等腰直角三角形的性质求出内框直角边长,再根据三角形面积公式计算即可求解.考查了等腰直角三角形,相似三角形的判定与性质,平行线之间的距离,关键是求出内框直角边长.19.【答案】解:原式=÷(-)=÷=•=,当x=-3时,原式===.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20.【答案】解:原式=3+2-1=4.【解析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:解不等式x+1<5,得:x<4,解不等式2(x+4)>3x+7,得:x<1,则不等式组的解集为x<1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】【解析】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.(2)根据题意列表得:由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.(1)直接利用概率公式计算可得;(2)用列表法将所有等可能的结果一一列举出来即可,找到符合条件的结果数,再利用概率公式计算.本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图或表格,求出相应的概率.23.【答案】36 16【解析】解:(1)参加这次问卷调查的学生人数为 ÷ %= (人),航模的人数为150-(30+54+24)=42(人),补全图形如下:(2)m%=× %= %,n%=× %= %,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有 × %= (人).(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;(2)根据百分比的概念可得m、n的值;(3)总人数乘以样本中围棋的人数所占百分比.本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,∠ ∠ ,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC= °,∴∠BAE= °- °× = °,∴∠FAG=∠BAE= °.∵△ABC≌△AEF,∴∠F=∠C= °,∴∠FGC=∠FAG+∠F= °+ °= °.【解析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF=BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE= °- °× = °,那么∠FAG= °.由△ABC≌△AEF,得出∠F=∠C= °,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F= °.本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC≌△AEF是解题的关键.25.【答案】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH==6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k= × = .(2)∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH-MH=.∵AM∥BC,∴△ADM∽△BDC,∴==.【解析】(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是:(1)利用等腰三角形的性质及勾股定理,求出点A的坐标;(2)利用相似三角形的性质求出的值.26.【答案】解:(1)∵点D是中点,OD是圆的半径,∴OD⊥BC,∵AB是圆的直径,∴∠ACB= °,∴AC∥OD;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DCA,∴CD2=DE•DA;(3)∵tan∠CAD=,∴△DCE和△DAC的相似比为:,设:DE=a,则CD=2a,AD=4a,AE=3a,∴=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.【解析】(1)点D是中点,OD是圆的半径,又OD⊥BC,而AB是圆的直径,则∠ACB= °,故:AC∥OD;(2)证明△DCE∽△DCA,即可求解;(3)=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,则AC=6k,AB=10k,即可求解.本题为圆的综合运用题,涉及到三角形相似等知识点,本题的关键是通过相似比,确定线段的比例关系,进而求解.27.【答案】2 10【解析】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5-2.5)× = (cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤ cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF-PF=6,∴S1=S△APM=S△APF+S梯形PFBM-S△ABM=×4× +(4+2x-5)× -× ×(2x-5)=-2x+15,S 2=S△DPM=S△DEP+S梯形EPMC-S△DCM=× × +(6+15-2x)× -× ×(15-2x)=2x,∴S1•S2=(-2x+15)× x=-4x2+30x=-4(x-)2+,∵2.5<<7.5,在BC边上可取,∴当x=时,S1•S2的最大值为.(1)由题意得t=2.5s时,函数图象发生改变,得出t=2.5s时,M运动到点B处,得出动点M的运动速度为:=2cm/s,由t=7.5s时,S=0,得出t=7.5s 时,M运动到点C处,得出BC=10(cm);(2)①由题意得出当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),即可得出答案;②过P作EF⊥AB于F,交CD于E,则EF∥BC,由平行线得出=,得出AF=2,DE=AF=2,CE=BF=3,由勾股定理得出PF=4,得出EP=6,求出S 1=S△APM=S△APF+S梯形PFBM-S△ABM=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=2x,得出S1•S2=(-2x+15)× x=-4x2+30x=-4(x-)2+,即可得出结果.本题是四边形综合题目,考查了矩形的性质、函数的图象、三角形面积公式、梯形面积公式、平行线的性质、勾股定理等知识;本题综合性强,有一定难度,正确理解函数图象是解题的关键.28.【答案】解:(1)∵y=-x2+(a+1)x-a令y=0,即-x2+(a+1)x-a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=-3,(a=4舍去)(2)设直线AC:y=kx+b,由A(-3,0),C(0,3),可得-3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(-,)∴线段AC的垂直平分线解析式为:y=-x,线段AB的垂直平分线为x=-1代入y=-x,解得:y=1∴△ABC外接圆圆心的坐标(-1,1)(3)作PM⊥x轴,则=4∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x-1联立解得:4∴点P坐标为(-4,-5)又∵∠PAQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:44解得:m=-4,m=-8(舍去)∴Q坐标为(-4,-1)【解析】(1)由y=-x2+(a+1)x-a,令y=0,即-x2+(a+1)x-a=0,可求出A、B坐标结合三角形的面积,解出a=-3;(2)三角形外接圆圆心是三边垂直平分线的交点,求出两边垂直平分线,解交点可求出;(3)作PM⊥x轴,则=由可得A、Q到PB的距离相等,得到AQ∥PB,求出直线PB的解析式,以抛物线解析式联立得出点P 坐标,由于△PBQ≌△ABP,可得PQ=AB=4,利用两点间距离公式,解出m值.本题考查二次函数的综合应用,函数和几何图形的综合题目,抛物线和直线“曲直”联立解交点,利用三角形的全等和二次函数的性质把数与形有机的结合在一起,转化线段长求出结果.。
2019年浙江省中考数学真题分类汇编 专题10 图形的性质之解答题(解析版)
专题10 图形的性质之解答题参考答案与试题解析一.解答题(共23小题)1.(2019•舟山)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.【答案】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.【点睛】本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.2.(2019•温州)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED 的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【答案】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.【点睛】本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.3.(2019•杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B 的度数.【答案】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴P A=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.【点睛】本题主要考查了等腰三角形的性质、垂直平分线的性质以及三角形的外角性质,难度适中.4.(2019•衢州)已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连结AE,AF.求证:AE=AF.【答案】证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=CF.【点睛】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.5.(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.【答案】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形BEFD是平行四边形;(2)解:∵∠AFB=90°,D是AB的中点,AB=6,∴DF=DB=DA AB=3,∵四边形BEFD是平行四边形,∴四边形BEFD是菱形,∵DB=3,∴四边形BEFD的周长为12.【点睛】本题考查了平行四边形的性质和判定,菱形的判定和性质,三角形的中位线的性质,熟练掌握平行四边形的性质是解题的关键.6.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G 在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.【答案】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH,∵CH=0.5,CG,∴HG,∴HD=HG.【点睛】本题考查正方形的性质、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.7.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【答案】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【点睛】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.8.(2019•舟山)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).【答案】解:(1)由勾股定理得:CD=AB=CD',BD=AC=BD'',AD'=BC=AD'';画出图形如图1所示;(2)如图2所示.【点睛】本题考查了平行四边形的判定与性质、勾股定理、平行线分线段成比例定理;熟练掌握勾股定理好平行线分线段成比例定理是解题的关键.9.(2019•温州)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP =NQ.【答案】解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.【点睛】本题考查作图﹣应用与设计,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.10.(2019•衢州)如图,在4×4的方格子中,△ABC的三个顶点都在格点上.(1)在图1中画出线段CD,使CD⊥CB,其中D是格点.(2)在图2中画出平行四边形ABEC,其中E是格点.【答案】解:(1)线段CD即为所求.(2)平行四边形ABEC即为所求.【点睛】本题考查作图﹣应用与设计,平行四边形的判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.11.(2019•金华)如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.【答案】解:如图:从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F,则EG平分BC;EC,EF,FC,借助勾股定理确定F点,则EF⊥AC;借助圆规作AB的垂直平分线即可;【点睛】本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直、中点是解题的关键.12.(2019•绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.【答案】解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、矩形面积公式以及二次函数的应用等知识;熟练掌握矩形的性质,证明三角形是等腰直角三角形是解题的关键.13.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【答案】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.【点睛】本题为四边形综合题,涉及到直角三角形中线定理、三角形相似等知识点,这种新定义类题目,通常按照题设顺序逐次求解,较为容易.14.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(假)②若AD=BE=CF,则六边形ABCDEF是正六边形.(假)【答案】(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;假命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=F A,在△AEF、△CAB和△ECD中,,∴△AEF≌△CAB≌△ECD(SSS),如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假;②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下:如图4所示:连接AE、AC、CE、BF,在△BFE和△FBC中,,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△F AE和△BCA中,,∴△F AE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假.【点睛】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.15.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM 时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.【答案】(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴,即,解得PN.(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴,同理可得:,∴,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形.(4)解:如图3中,结论:∠QEM=90°.理由:由tan∠NBM,可以假设MN=3k,BM=4k,则BN=5k,BQ=k,BE=2k,∴,,∴,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.【点睛】本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.16.(2019•舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.【答案】(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴,即,解得PN(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴,同理可得:∴,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形(4)如图,过点N作ND⊥ME于点D∵MN=EN,ND⊥ME,∴∠NEM=∠MNE,ED=DM∵∠BMN=∠QEM=90°∴∠EQM+∠EMQ=90°,∠EMQ+∠EMN=90°∴∠EMN=∠EQM,且MN=QN,∠QEM=∠NDM=90°∴△QEM≌△MDN(AAS)∴EQ=DM EM,∵∠BMN=∠QEM=90°∴∠BEQ+∠NEM=90°,∠BME+∠NME=90°∴∠BEQ=∠BME,且∠MBE=∠MBE∴△BEQ∽△BME∴,∴BM=2BE,BE=2BQ∴BM=4BQ∴QM=3BQ=MN,BN=5BQ∴∴BN MN()【点睛】本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.17.(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE,∠C=30°,求的长.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.(2)解:连接AD,∵AC是直径,∴∠ADC=90°,∵AB=AC,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵DE,∠B=30°,∠BED=90°,∴CD=BD=2DE=2,∴OD=AD=tan30°•CD22,∴的长为:.【点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.18.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.【答案】解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA t,则HO t,∵OC=2OH,∴∠OCE=30°.【点睛】本题主要利用了切线和平行四边形的性质,其中(2),要利用(1)中△AOB是等腰直角三角形结论.19.(2019•温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD AB时,求⊙O的直径长.【答案】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF3,即⊙O的直径长为3.【点睛】本题考查了三角形的外接圆与外心,平行四边形的判定和性质,勾股定理,圆周角定理,熟练掌握平行四边形的判定定理是解题的关键.20.(2019•绍兴)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.【答案】解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC AB=1,∴AC BC.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.【答案】解:(1)①连接OB、OC,则∠BOD BOC=∠BAC=60°,∴∠OBC=30°,∴OD OB OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD,△ABC面积的最大值BC×AD2OB sin60°;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.【点睛】本题为圆的综合运用题,涉及到解直角三角形、三角形内角和公式,其中(2),∠AOD=∠COD+∠AOC是本题容易忽视的地方,本题难度适中.22.(2019•宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.【答案】证明:(1)∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE;(2)如图1,过点A作AG⊥BC于点G,∵△ABC是等边三角形,AC=6,∴BG,∴在Rt△ABG中,AG BG=3,∵BF⊥EC,∴BF∥AG,∴,∵AF:EF=3:2,∴BE BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,AE;(3)①如图1,过点E作EH⊥AD于点H,∵∠EBD=∠ABC=60°,∴在Rt△BEH中,,∴EH,BH,∵,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE BE=(2x)BE,∴在Rt△AHE中,tan∠EAD,∴y;②如图2,过点O作OM⊥BC于点M,设BE=a,∵,∴CG=BG=xBE=ax,∴EC=CG+BG+BE=a+2ax,∴EM EC a+ax,∴BM=EM﹣BE=ax a,∵BF∥AG,∴△EBF∽△EGA,∴,∵AG,∴BF,∴△OFB的面积,∴△AEC的面积,∵△AEC的面积是△OFB的面积的10倍,∴,∴2x2﹣7x+6=0,解得:,∴,【点睛】此题是圆的综合题,关键是根据等边三角形的性质、勾股定理和相似三角形的判定和性质解答.23.(2019•湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.【答案】解:(1)如图1,连接BC,∵∠BOC=90°,∴点P在BC上,∵⊙P与直线l1相切于点B,∴∠ABC=90°,而OA=OB,∴△ABC为等腰直角三角形,则⊙P的直径长=BC=AB=3;(2)过点作CM⊥AB,由直线l2:y=3x﹣3得:点C(1,0),则CM=AC sin45°=42圆的半径,故点M是圆与直线l1的切点,即:直线l1与⊙Q相切;(3)如图3,①当点M、N在两条直线交点的下方时,由题意得:MQ=NQ,∠MQN=90°,设点Q的坐标为(m,3m﹣3),则点N(m,m+3),则NQ=m+3﹣3m+3=2,解得:m=3;②当点M、N在两条直线交点的上方时,同理可得:m=3;故点P的坐标为(3,6﹣3)或(3,6+3).【点睛】本题为圆的综合运用题,涉及到一次函数、圆的切线性质等知识点,其中(2),关键要确定圆的位置,分类求解,避免遗漏.。
2019年江苏省苏州市中考数学试卷附解析
2019年江苏省苏州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.5的相反数是()A. B. C. 5 D.2.有一组数据:2,2,4,5,7,这组数据的中位数为()A. 2B. 4C. 5D. 73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A. B. C. D.4.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.B.C.D.5.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A. B. C. D.6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A. B. C. D.7.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,-1),B(1,1),则不等式kx+b>1的解为()A. B. C. D.8.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.B. 54mC.D. 18m9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A. 6B. 8C. 10D. 1210.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A. B. 4 C. D. 8二、填空题(本大题共8小题,共24.0分)11.计算:a2•a3=______.12.因式分解:x2-xy=______.13.若在实数范围内有意义,则x的取值范围为______.14.若a+2b=8,3a+4b=18,则a+b的值为______.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为______cm(结果保留根号).16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为______.17.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为______.18.如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为cm,则图中阴影部分的面积为______cm2(结果保留根号).三、计算题(本大题共1小题,共6.0分)19.先化简,再求值:÷(1-),其中,x=-3.四、解答题(本大题共9小题,共70.0分)20.计算:()2+|-2|-(π-2)021.解不等式组:22.在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是______;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).23.某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=______,n=______;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?24.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.25.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.26.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.27.已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为______cm/s,BC的长度为______cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D 出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.28.如图①,抛物线y=-x2+(a+1)x-a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.答案和解析1.【答案】D【解析】解:5的相反数是-5.故选:D.根据只有符号不同的两数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【答案】B【解析】解:这组数据排列顺序为:2,2,4,5,7,∴这组数据的中位数为4,故选:B.将数据从小到大重新排列后根据中位数的定义求解可得.本题主要考查中位数,熟练掌握中位数的定义是解题的关键.3.【答案】D【解析】解:将26000000用科学记数法表示为:2.6×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°-54°=126°.故选:A.直接利用平行线的性质得出∠3的度数,再利用邻补角的性质得出答案.此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.5.【答案】D【解析】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°;故选:D.由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.6.【答案】A【解析】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.直接利用用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本,得出等式求出答案.此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.【答案】D【解析】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.直接利用已知点画出函数图象,利用图象得出答案.此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.【答案】C【解析】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为30°,∴∠ADE=30°,∵BC=DE=18m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.根据三角函数和直角三角形的性质解答即可.此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.9.【答案】C【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故选:C.由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.10.【答案】B【解析】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC 面积.此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.11.【答案】a5【解析】解:a2•a3=a2+3=a5.故答案为:a5.根据同底数的幂的乘法,底数不变,指数相加,计算即可.熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.【答案】x(x-y)【解析】解:x2-xy=x(x-y).故答案为:x(x-y).直接提取公因式x,进而分解因式即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.【答案】x≥6【解析】解:若在实数范围内有意义,则x-6≥0,解得:x≥6.故答案为:x≥6.直接利用二次根式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.解:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.直接利用已知解方程组进而得出答案.此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.【答案】【解析】解:10×10=100(cm2)=(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.观察图形可知该“七巧板”中7块图形之一的正方形面积是大正方形面积的,先根据正方形面积公式求出大正方形面积,从而得到小正方形面积,进一步得到该“七巧板”中7块图形之一的正方形边长.考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.16.【答案】【解析】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.直接根据题意得出恰有三个面涂有红色的有8个,再利用概率公式求出答案.此题主要考查了概率公式的应用,正确得出三个面涂有红色小立方体的个数是解题关键.解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r-1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r-1)2+9,解得:r=5.故答案为:5.连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r-1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.18.【答案】(10)【解析】解:如图,EF=DG=CH=,∵含有45°角的直角三角板,∴BC=,GH=2,∴FG=8--2-=6-2,∴图中阴影部分的面积为:8×8÷2-(6-2)×(6-2)÷2=32-22+12=10+12(cm2)答:图中阴影部分的面积为(10)cm2.故答案为:(10).图中阴影部分的面积=外框大直角三角板的面积-内框小直角三角板的面积,根据等腰直角三角形的性质求出内框直角边长,再根据三角形面积公式计算即可求解.考查了等腰直角三角形,相似三角形的判定与性质,平行线之间的距离,关键是求出内框直角边长.19.【答案】解:原式=÷(-)=÷=•=,当x=-3时,原式===.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20.【答案】解:原式=3+2-1=4.【解析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:解不等式x+1<5,得:x<4,解不等式2(x+4)>3x+7,得:x<1,则不等式组的解集为x<1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】【解析】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.(2)根据题意列表得:1 2 3 41 3 4 52 3 5 63 4 5 74 5 6 7由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.(1)直接利用概率公式计算可得;(2)用列表法将所有等可能的结果一一列举出来即可,找到符合条件的结果数,再利用概率公式计算.本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图或表格,求出相应的概率.23.【答案】36 16【解析】解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150-(30+54+24)=42(人),补全图形如下:(2)m%=×100%=36%,n%=×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;(2)根据百分比的概念可得m、n的值;(3)总人数乘以样本中围棋的人数所占百分比.本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°-65°×2=50°,∴∠FAG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠FAG+∠F=50°+28°=78°.【解析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF=BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°-65°×2=50°,那么∠FAG=50°.由△ABC≌△AEF,得出∠F=∠C=28°,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F=78°.本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC≌△AEF是解题的关键.25.【答案】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH==6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k=2×6=12.(2)∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH-MH=.∵AM∥BC,∴△ADM∽△BDC,∴==.【解析】(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是:(1)利用等腰三角形的性质及勾股定理,求出点A的坐标;(2)利用相似三角形的性质求出的值.26.【答案】解:(1)∵点D是中点,OD是圆的半径,∴OD⊥BC,∵AB是圆的直径,∴∠ACB=90°,∴AC∥OD;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DCA,∴CD2=DE•DA;(3)∵tan∠CAD=,∴△DCE和△DAC的相似比为:,设:DE=a,则CD=2a,AD=4a,AE=3a,∴=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.【解析】(1)点D是中点,OD是圆的半径,又OD ⊥BC,而AB是圆的直径,则∠ACB=90°,故:AC∥OD;(2)证明△DCE∽△DCA,即可求解;(3)=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,则AC=6k,AB=10k,即可求解.本题为圆的综合运用题,涉及到三角形相似等知识点,本题的关键是通过相似比,确定线段的比例关系,进而求解.27.【答案】2 10【解析】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5-2.5)×2=10(cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤6cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF-PF=6,∴S1=S△APM=S△APF+S梯形PFBM-S△ABM=×4×2+(4+2x-5)×3-×5×(2x-5)=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=×2×6+(6+15-2x)×3-×5×(15-2x)=2x,∴S1•S2=(-2x+15)×2x=-4x2+30x=-4(x-)2+,∵2.5<<7.5,在BC边上可取,∴当x=时,S1•S2的最大值为.(1)由题意得t=2.5s时,函数图象发生改变,得出t=2.5s时,M运动到点B处,得出动点M的运动速度为:=2cm/s,由t=7.5s时,S=0,得出t=7.5s时,M运动到点C处,得出BC=10(cm);(2)①由题意得出当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),即可得出答案;②过P作EF⊥AB于F,交CD于E,则EF∥BC,由平行线得出=,得出AF=2,DE=AF=2,CE=BF=3,由勾股定理得出PF=4,得出EP=6,求出S1=S△APM=S△APF+S梯形PFBM-S△ABM=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=2x,得出S1•S2=(-2x+15)×2x=-4x2+30x=-4(x-)2+,即可得出结果.本题是四边形综合题目,考查了矩形的性质、函数的图象、三角形面积公式、梯形面积公式、平行线的性质、勾股定理等知识;本题综合性强,有一定难度,正确理解函数图象是解题的关键.28.【答案】解:(1)∵y=-x2+(a+1)x-a令y=0,即-x2+(a+1)x-a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=-3,(a=4舍去)(2)设直线AC:y=kx+b,由A(-3,0),C(0,3),可得-3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(-,)∴线段AC的垂直平分线解析式为:y=-x,线段AB的垂直平分线为x=-1代入y=-x,解得:y=1∴△ABC外接圆圆心的坐标(-1,1)(3)作PM⊥x轴,则=∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x-1联立解得:∴点P坐标为(-4,-5)又∵∠PAQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=-4,m=-8(舍去)∴Q坐标为(-4,-1)【解析】(1)由y=-x2+(a+1)x-a,令y=0,即-x2+(a+1)x-a=0,可求出A、B坐标结合三角形的面积,解出a=-3;(2)三角形外接圆圆心是三边垂直平分线的交点,求出两边垂直平分线,解交点可求出;(3)作PM⊥x轴,则=由可得A、Q到PB的距离相等,得到AQ∥PB,求出直线PB 的解析式,以抛物线解析式联立得出点P坐标,由于△PBQ≌△ABP,可得PQ=AB=4,利用两点间距离公式,解出m值.本题考查二次函数的综合应用,函数和几何图形的综合题目,抛物线和直线“曲直”联立解交点,利用三角形的全等和二次函数的性质把数与形有机的结合在一起,转化线段长求出结果.。
2019年江苏省中考数学真题分类汇编 专题13 图形的变化之选择题(解析版)
专题13 图形的变化之选择题参考答案与试题解析一.选择题(共17小题)1.(2019•徐州)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.【答案】解:不是轴对称图形,故选:D.【点睛】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.2.(2019•泰州)如图图形中的轴对称图形是()A.B.C.D.【答案】解:A、不是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选:B.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(2019•无锡)下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、是中心对称图形,也是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项正确;D、不是中心对称图形,也不是轴对称图形,故此选项错误;故选:C.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(2019•扬州)下列图案中,是中心对称图形的是()A.B.C.D.【答案】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,正确.故选:D.【点睛】本题考查的是中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(2019•南京)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【答案】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【点睛】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.6.(2019•盐城)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、既是中心对称图形也是轴对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.7.(2019•常州)若△ABC~△A′B'C′,相似比为1:2,则△ABC与△A'B′C'的周长的比为()A.2:1 B.1:2 C.4:1 D.1:4【答案】解:∵△ABC~△A′B'C′,相似比为1:2,∴△ABC与△A'B′C'的周长的比为1:2.故选:B.【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.相似三角形的面积的比等于相似比的平方.8.(2019•苏州)如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.8【答案】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE2×22×1=2+1=3,∴S△ACB=4,故选:B.【点睛】此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.9.(2019•连云港)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似()A.①处B.②处C.③处D.④处【答案】解:帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2、2、4;“车”、“炮”之间的距离为1,“炮”②之间的距离为,“车”②之间的距离为2,∵,∴马应该落在②的位置,故选:B.【点睛】本题考查了相似三角形的知识,解题的关键是利用勾股定理求得三角形的各边的长,难度不大.10.(2019•苏州)如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.55.5m B.54m C.19.5m D.18m【答案】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为30°,∴∠ADE=30°,∵BC=DE=18m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.【点睛】此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.11.(2019•镇江)一个物体如图所示,它的俯视图是()A.B.C.D.【答案】解:俯视图从图形上方观察即可得到,故选:D.【点睛】本题考查几何体的三视图;熟练掌握组合体图形的观察方法是解题的关键.12.(2019•常州)如图是某几何体的三视图,该几何体是()A.圆柱B.正方体C.圆锥D.球【答案】解:该几何体是圆柱.故选:A.【点睛】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助.13.(2019•淮安)如图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是()A.B.C.D.【答案】解:从正面看,下面一行是横放3个正方体,上面一行是一个正方体.如图所示:故选:C.【点睛】本题考查了三种视图中的主视图,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.14.(2019•宿迁)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A.20πB.15πC.12πD.9π【答案】解:由勾股定理可得:底面圆的半径,则底面周长=6π,底面半径=3,由图得,母线长=5,侧面面积6π×5=15π.故选:B.【点睛】本题考查了由三视图判断几何体,利用了勾股定理,圆的周长公式和扇形面积公式求解.15.(2019•扬州)如图所示物体的左视图是()A.B.C.D.【答案】解:左视图为:,故选:B.【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.16.(2019•盐城)如图是由6个小正方体搭成的物体,该所示物体的主视图是()A.B.C.D.【答案】解:从正面看易得第一层有3个正方形,第二层中间有一个正方形,如图所示:故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.17.(2019•无锡)一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是()A.长方体B.四棱锥C.三棱锥D.圆锥【答案】解:∵有2个视图是长方形,∴该几何体为柱体,∵第3个视图是长方形,∴该几何体为长方体.故选:A.【点睛】此题考查了由视图判断几何体;用到的知识点为:有2个视图是长方形的几何体是柱体;主视图表现物体的长与高,左视图表现物体的宽与高.。
2019年江苏省苏州市中考数学试卷解析版
2019年江苏省苏州市中考数学试卷解析版一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.(3分)5的相反数是( ) A .15B .−15C .5D .﹣5【解答】解:5的相反数是﹣5. 故选:D .2.(3分)有一组数据:2,2,4,5,7,这组数据的中位数为( ) A .2B .4C .5D .7【解答】解:这组数据排列顺序为:2,2,4,5,7, ∴这组数据的中位数为4, 故选:B .3.(3分)苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为( ) A .0.26×108B .2.6×108C .26×106D .2.6×107【解答】解:将26000000用科学记数法表示为:2.6×107. 故选:D .4.(3分)如图,已知直线a ∥b ,直线c 与直线a ,b 分别交于点A ,B .若∠1=54°,则∠2等于( )A .126°B .134°C .136°D .144°【解答】解:如图所示: ∵a ∥b ,∠1=54°, ∴∠1=∠3=54°,∴∠2=180°﹣54°=126°. 故选:A .5.(3分)如图,AB 为⊙O 的切线,切点为A ,连接AO 、BO ,BO 与⊙O 交于点C ,延长BO 与⊙O 交于点D ,连接AD .若∠ABO =36°,则∠ADC 的度数为( )A .54°B .36°C .32°D .27°【解答】解:∵AB 为⊙O 的切线, ∴∠OAB =90°, ∵∠ABO =36°,∴∠AOB =90°﹣∠ABO =54°, ∵OA =OD , ∴∠ADC =∠OAD , ∵∠AOB =∠ADC +∠OAD , ∴∠ADC =12∠AOB =27°; 故选:D .6.(3分)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .15x=24x+3B .15x=24x−3C .15x+3=24xD .15x−3=24x【解答】解:设软面笔记本每本售价为x 元, 根据题意可列出的方程为:15x=24x+3.故选:A .7.(3分)若一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象经过点A (0,﹣1),B (1,1),则不等式kx+b>1的解为()A.x<0B.x>0C.x<1D.x>1【解答】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.8.(3分)如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18√3m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.55.5m B.54m C.19.5m D.18m【解答】解:过D作DE⊥AB,∵在D处测得教学楼的顶部A的仰角为30°,∴∠ADE=30°,∵BC=DE=18√3m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.9.(3分)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6B.8C.10D.12【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=12AC=2,OB=OD=12BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'=2+AO′2=√82+62=10;故选:C.10.(3分)如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4√2B.4C.2√5D.8【解答】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=12×2×2+12×2×1=2+1=3,∴S△ACB=4,故选:B.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.(3分)计算:a2•a3=a5.【解答】解:a2•a3=a2+3=a5.故答案为:a5.12.(3分)因式分解:x2﹣xy=x(x﹣y).【解答】解:x2﹣xy=x(x﹣y).故答案为:x(x﹣y).13.(3分)若√x−6在实数范围内有意义,则x的取值范围为x≥6.【解答】解:若√x−6在实数范围内有意义,则x﹣6≥0,解得:x≥6.故答案为:x≥6.14.(3分)若a+2b=8,3a+4b=18,则a+b的值为5.【解答】解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.15.(3分)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm 的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为5√22cm (结果保留根号).【解答】解:10×10=100(cm 2)√1008=5√22(cm ) 答:该“七巧板”中7块图形之一的正方形边长为5√22cm . 故答案为:5√22. 16.(3分)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为827.【解答】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个, 故取得的小正方体恰有三个面涂有红色的概率为:827.故答案为:827.17.(3分)如图,扇形OAB 中,∠AOB =90°.P 为弧AB 上的一点,过点P 作PC ⊥OA ,垂足为C ,PC 与AB 交于点D .若PD =2,CD =1,则该扇形的半径长为 5 .【解答】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r﹣1)2+9,解得:r=5.故答案为:5.18.(3分)如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为√2cm,则图中阴影部分的面积为(10+12√2)cm2(结果保留根号).【解答】解:如图,EF=DG=CH=√2,∵含有45°角的直角三角板,∴BC=√2,GH=2,∴FG=8−√2−2−√2=6﹣2√2,∴图中阴影部分的面积为:8×8÷2﹣(6﹣2√2)×(6﹣2√2)÷2=32﹣22+12√2=10+12√2(cm2)答:图中阴影部分的面积为(10+12√2)cm2.故答案为:(10+12√2).三、解答题;本大题共10小题,共76分.把解答过程写答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签宇笔.19.(5分)计算:(√3)2+|﹣2|﹣(π﹣2)0【解答】解:原式=3+2﹣1=4.20.(5分)解不等式组:{x+1<52(x+4)>3x+7【解答】解:解不等式x+1<5,得:x<4,解不等式2(x+4)>3x+7,得:x<1,则不等式组的解集为x<1.21.(6分)先化简,再求值:x−3x2+6x+9÷(1−6x+3),其中,x=√2−3.【解答】解:原式=x−3(x+3)2÷(x+3x+3−6x+3)=x−3 (x+3)2÷x−3 x+3=x−3 (x+3)2•x+3 x−3=1x+3,当x=√2−3时,原式=2−3+3=2=√22.22.(6分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是12;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).【解答】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为24=12,故答案为:12.(2)根据题意列表得:1 2 3 4 1 3 4 5 2 3 5 6 3 4 5 7 4567由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为812=23.23.(8分)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题: (1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据); (2)m = 36 ,n = 16 ;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?【解答】解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150﹣(30+54+24)=42(人),补全图形如下:(2)m%=54150×100%=36%,n%=24150×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).24.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.【解答】(1)证明:∵∠CAF =∠BAE ,∴∠BAC =∠EAF .∵将线段AC 绕A 点旋转到AF 的位置,∴AC =AF .在△ABC 与△AEF 中,{AB =AE ∠BAC =∠EAF AC =AF,∴△ABC ≌△AEF (SAS ),∴EF =BC ;(2)解:∵AB =AE ,∠ABC =65°,∴∠BAE =180°﹣65°×2=50°,∴∠F AG =∠BAE =50°.∵△ABC ≌△AEF ,∴∠F =∠C =28°,∴∠FGC =∠F AG +∠F =50°+28°=78°.25.(8分)如图,A 为反比例函数y =k x (其中x >0)图象上的一点,在x 轴正半轴上有一点B ,OB =4.连接OA ,AB ,且OA =AB =2√10.(1)求k 的值;(2)过点B 作BC ⊥OB ,交反比例函数y =k x (其中x >0)的图象于点C ,连接OC 交AB 于点D ,求AD DB 的值.【解答】解:(1)过点A 作AH ⊥x 轴,垂足为点H ,AH 交OC 于点M ,如图所示. ∵OA =AB ,AH ⊥OB ,∴OH =BH =12OB =2,∴AH =√OA 2−OH 2=6,∴点A 的坐标为(2,6).∵A 为反比例函数y =k x 图象上的一点,∴k =2×6=12.(2)∵BC ⊥x 轴,OB =4,点C 在反比例函数y =12x 上, ∴BC =k OB =3.∵AH ∥BC ,OH =BH ,∴MH =12BC =32,∴AM =AH ﹣MH =92.∵AM ∥BC ,∴△ADM ∽△BDC ,∴AD DB =AM BC =32.26.(10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 是弧BC 的中点,BC 与AD 、OD 分别交于点E 、F .(1)求证:DO ∥AC ;(2)求证:DE •DA =DC 2;(3)若tan ∠CAD =12,求sin ∠CDA 的值.【解答】解:(1)因为点D是弧BC的中点,所以∠CAD=∠BAD,即∠CAB=2∠BAD,而∠BOD=2∠BAD,所以∠CAB=∠BOD,所以DO∥AC;(2)∵CD̂=BD̂,∴∠CAD=∠DCB,∴△DCE∽△DAC,∴CD2=DE•DA;(3)∵tan∠CAD=12,连接BD,则BD=CD,∠DBC=∠CAD,在Rt△BDE中,tan∠DBE=DEBD=DECD=12,设:DE=a,则CD=2a,而CD2=DE•DA,则AD=4a,∴AE=3a,∴AEDE=3,而△AEC∽△DEF,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=1 2,∴AC=6k,AB=10k,∴sin∠CDA=3 5.27.(10分)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2√5cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为2cm/s,BC的长度为10cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N 的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.【解答】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:52.5=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5﹣2.5)×2=10(cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v=57.5=23(cm/s),当在点B 相遇时,v =5+102.5=6(cm /s ), ∴动点N 运动速度v (cm /s )的取值范围为23cm /s <v ≤6cm /s ;②过P 作EF ⊥AB 于F ,交CD 于E ,如图3所示:则EF ∥BC ,EF =BC =10,∴AF AB =AP AC ,∵AC =√AB 2+BC 2=5√5,∴AF 5=√55√5, 解得:AF =2,∴DE =AF =2,CE =BF =3,PF =√AP 2−AF 2=4,∴EP =EF ﹣PF =6,∴S 1=S △APM =S △APF +S梯形PFBM ﹣S △ABM =12×4×2+12(4+2x ﹣5)×3−12×5×(2x ﹣5)=﹣2x +15,S 2=S △DPM =S △DEP +S 梯形EPMC ﹣S △DCM =12×2×6+12(6+15﹣2x )×3−12×5×(15﹣2x )=2x ,∴S 1•S 2=(﹣2x +15)×2x =﹣4x 2+30x =﹣4(x −154)2+2254,∵2.5<154<7.5,在BC 边上可取,∴当x =154时,S 1•S 2的最大值为2254.28.(10分)如图①,抛物线y =﹣x 2+(a +1)x ﹣a 与x 轴交于A ,B 两点(点A 位于点B的左侧),与y 轴交于点C .已知△ABC 的面积是6.(1)求a 的值;(2)求△ABC 外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,△QPB 的面积为2d ,且∠P AQ =∠AQB ,求点Q 的坐标.【解答】解:(1)∵y =﹣x 2+(a +1)x ﹣a令y =0,即﹣x 2+(a +1)x ﹣a =0解得x 1=a ,x 2=1由图象知:a <0∴A (a ,0),B (1,0)∵S △ABC =6∴12(1−a)(−a)=6 解得:a =﹣3,(a =4舍去)(2)∵A (﹣3,0),C (0,3),∴OA =OC ,∴线段AC 的垂直平分线过原点,∴线段AC 的垂直平分线解析式为:y =﹣x ,∵由A (﹣3,0),B (1,0),∴线段AB 的垂直平分线为x =﹣1将x =﹣1代入y =﹣x ,解得:y =1∴△ABC 外接圆圆心的坐标(﹣1,1)(3)作PM ⊥x 轴交x 轴于M ,则S △BAP =12AB •PM =12×4d ∵S △PQB =S △P AB∴A 、Q 到PB 的距离相等,∴AQ ∥PB设直线PB 解析式为:y =x +b∵直线经过点B (1,0)所以:直线PB 的解析式为y =x ﹣1联立{y =−x 2−2x +3y =x −1解得:{x =−4y =−5∴点P 坐标为(﹣4,﹣5)又∵∠P AQ =∠AQB ,∴∠BP A =∠PBQ ,∴AP =QB ,在△PBQ 与△BP A 中,{AP =QB ∠BPA =∠PBQ PB =BP,∴△PBQ ≌△ABP (SAS ),∴PQ =AB =4设Q (m ,m +3)由PQ =4得:(m +4)2+(m +3+5)2=42 解得:m =﹣4,m =﹣8(当m =﹣8时,∠P AQ ≠∠AQB ,故应舍去) ∴Q 坐标为(﹣4,﹣1)。
2019年江苏省苏州市中考数学试题及参考答案(word解析版)
2019年江苏省苏州市中考数学试题及参考答案与解析(满分130分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题要求的.1.5的相反数是()A.B.﹣C.5 D.﹣52.有一组数据:2,2,4,5,7,这组数据的中位数为()A.2 B.4 C.5 D.73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A.0.26×108B.2.6×108C.26×106D.2.6×1074.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.126°B.134°C.136°D.144°5.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A.=B.=C.=D.=7.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解为()A.x<0 B.x>0 C.x<1 D.x>18.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18 m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.55.5m B.54m C.19.5m D.18m9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.1210.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.8二、填空题:本大题共8小题,每小题3分,共24分.11.计算:a2•a3=.12.因式分解:x2﹣xy=.13.若在实数范围内有意义,则x的取值范围为.14.若a+2b=8,3a+4b=18,则a+b的值为.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为cm(结果保留根号).16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.17.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC 与AB交于点D.若PD=2,CD=1,则该扇形的半径长为.18.如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为cm,则图中阴影部分的面积为cm2(结果保留根号).三、解答题;本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算:()2+|﹣2|﹣(π﹣2)020.(5分)解不等式组:21.(6分)先化简,再求值:÷(1﹣),其中,x=﹣3.22.(6分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).23.(8分)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=,n=;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?24.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.25.(8分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.26.(10分)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.27.(10分)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v (cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.28.(10分)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A 是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.参考答案与解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题要求的.1.5的相反数是()A.B.﹣C.5 D.﹣5【知识考点】相反数.【思路分析】根据只有符号不同的两数叫做互为相反数解答.【解答过程】解:5的相反数是﹣5.故选:D.【总结归纳】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.有一组数据:2,2,4,5,7,这组数据的中位数为()A.2 B.4 C.5 D.7【知识考点】中位数.【思路分析】将数据从小到大重新排列后根据中位数的定义求解可得.【解答过程】解:这组数据排列顺序为:2,2,4,5,7,∴这组数据的中位数为4,故选:B.【总结归纳】本题主要考查中位数,熟练掌握中位数的定义是解题的关键.3.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A.0.26×108B.2.6×108C.26×106D.2.6×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将26000000用科学记数法表示为:2.6×107.故选:D.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.126°B.134°C.136°D.144°【知识考点】平行线的性质.【思路分析】直接利用平行线的性质得出∠3的度数,再利用邻补角的性质得出答案.【解答过程】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°﹣54°=126°.故选:A.【总结归纳】此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.5.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°【知识考点】圆周角定理;切线的性质.【思路分析】由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°﹣∠ABO =54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.【解答过程】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°﹣∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°;故选:D.【总结归纳】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A.=B.=C.=D.=【知识考点】由实际问题抽象出分式方程.【思路分析】直接利用用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本,得出等式求出答案.【解答过程】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.【总结归纳】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解为()A.x<0 B.x>0 C.x<1 D.x>1【知识考点】一次函数与一元一次不等式.【思路分析】直接利用已知点画出函数图象,利用图象得出答案.【解答过程】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.【总结归纳】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18 m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.55.5m B.54m C.19.5m D.18m【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】根据三角函数和直角三角形的性质解答即可.【解答过程】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为30°,∴∠ADE=30°,∵BC=DE=18m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.【总结归纳】此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.12【知识考点】菱形的性质;平移的性质.【思路分析】由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.【解答过程】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故选:C.【总结归纳】本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.10.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.8【知识考点】等腰直角三角形;相似三角形的判定与性质.【思路分析】由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC面积.【解答过程】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.【总结归纳】此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.二、填空题:本大题共8小题,每小题3分,共24分.11.计算:a2•a3=.【知识考点】同底数幂的乘法.【思路分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答过程】解:a2•a3=a2+3=a5.故答案为:a5.【总结归纳】熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.因式分解:x2﹣xy=.【知识考点】因式分解﹣提公因式法.【思路分析】直接提取公因式x,进而分解因式即可.【解答过程】解:x2﹣xy=x(x﹣y).故答案为:x(x﹣y).【总结归纳】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.若在实数范围内有意义,则x的取值范围为.【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解答过程】解:若在实数范围内有意义,则x﹣6≥0,解得:x≥6.故答案为:x≥6.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.若a+2b=8,3a+4b=18,则a+b的值为.【知识考点】整式的加减;解二元一次方程组.【思路分析】直接利用已知解方程组进而得出答案.【解答过程】解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.【总结归纳】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为cm(结果保留根号).【知识考点】七巧板.【思路分析】观察图形可知该“七巧板”中7块图形之一的正方形面积是大正方形面积的,先根据正方形面积公式求出大正方形面积,从而得到小正方形面积,进一步得到该“七巧板”中7块图形之一的正方形边长.【解答过程】解:10×10=100(cm2)=(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.【总结归纳】考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.【知识考点】概率公式.【思路分析】直接根据题意得出恰有三个面涂有红色的有8个,再利用概率公式求出答案.【解答过程】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.【总结归纳】此题主要考查了概率公式的应用,正确得出三个面涂有红色小立方体的个数是解题关键.17.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC 与AB交于点D.若PD=2,CD=1,则该扇形的半径长为.【知识考点】勾股定理;等腰直角三角形;圆的认识.【思路分析】连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD 为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.【解答过程】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r﹣1)2+9,解得:r=5.故答案为:5.【总结归纳】本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.18.如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为cm,则图中阴影部分的面积为cm2(结果保留根号).【知识考点】平行线之间的距离;等腰直角三角形;相似三角形的判定与性质.【思路分析】图中阴影部分的面积=外框大直角三角板的面积﹣内框小直角三角板的面积,根据等腰直角三角形的性质求出内框直角边长,再根据三角形面积公式计算即可求解.【解答过程】解:如图,EF=DG=CH=,∵含有45°角的直角三角板,∴BC=,GH=2,∴FG=8﹣﹣2﹣=6﹣2,∴图中阴影部分的面积为:8×8÷2﹣(6﹣2)×(6﹣2)÷2=32﹣22+12=10+12(cm2)答:图中阴影部分的面积为(10)cm2.故答案为:(10).【总结归纳】考查了等腰直角三角形,相似三角形的判定与性质,平行线之间的距离,关键是求出内框直角边长.三、解答题;本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算:()2+|﹣2|﹣(π﹣2)0【知识考点】实数的运算;零指数幂.【思路分析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.【解答过程】解:原式=3+2﹣1=4.【总结归纳】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)解不等式组:【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:解不等式x+1<5,得:x<4,解不等式2(x+4)>3x+7,得:x<1,则不等式组的解集为x<1.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)先化简,再求值:÷(1﹣),其中,x=﹣3.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答过程】解:原式=÷(﹣)=÷=•=,当x=﹣3时,原式===.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.(6分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).【知识考点】概率公式;列表法与树状图法.【思路分析】(1)直接利用概率公式计算可得;(2)用列表法将所有等可能的结果一一列举出来即可,找到符合条件的结果数,再利用概率公式计算.【解答过程】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.(2)根据题意列表得:由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.【总结归纳】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图或表格,求出相应的概率.23.(8分)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=,n=;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;(2)根据百分比的概念可得m、n的值;(3)总人数乘以样本中围棋的人数所占百分比.【解答过程】解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150﹣(30+54+24)=42(人),补全图形如下:(2)m%=×100%=36%,n%=×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).【总结归纳】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.【知识考点】全等三角形的判定与性质;旋转的性质.【思路分析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF=BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°﹣65°×2=50°,那么∠FAG=50°.由△ABC≌△AEF,得出∠F=∠C=28°,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F=78°.【解答过程】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°﹣65°×2=50°,∴∠FAG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠FAG+∠F=50°+28°=78°.【总结归纳】本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC≌△AEF是解题的关键.25.(8分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.【知识考点】反比例函数图象上点的坐标特征;相似三角形的判定与性质.【思路分析】(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.【解答过程】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH==6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k=2×6=12.(2)∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴==.【总结归纳】本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是:(1)利用等腰三角形的性质及勾股定理,求出点A的坐标;(2)利用相似三角形的性质求出的值.26.(10分)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.【知识考点】圆的综合题.【思路分析】(1)点D是中点,OD是圆的半径,又OD⊥BC,而AB是圆的直径,则∠ACB =90°,故:AC∥OD;(2)证明△DCE∽△DCA,即可求解;(3)=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD =,则AC=6k,AB=10k,即可求解.【解答过程】解:(1)∵点D是中点,OD是圆的半径,∴OD⊥BC,∵AB是圆的直径,∴∠ACB=90°,∴AC∥OD;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DCA,∴CD2=DE•DA;(3)∵tan∠CAD=,∴△DCE和△DAC的相似比为:,设:DE=a,则CD=2a,AD=4a,AE=3a,∴=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.【总结归纳】本题为圆的综合运用题,涉及到三角形相似等知识点,本题的关键是通过相似比,确定线段的比例关系,进而求解.27.(10分)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v (cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.【知识考点】四边形综合题.【思路分析】(1)由题意得t=2.5s时,函数图象发生改变,得出t=2.5s时,M运动到点B处,得出动点M的运动速度为:=2cm/s,由t=7.5s时,S=0,得出t=7.5s时,M运动到点C处,得出BC=10(cm);(2)①由题意得出当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),即可得出答案;②过P作EF⊥AB于F,交CD于E,则EF∥BC,由平行线得出=,得出AF=2,DE=AF=2,CE=BF=3,由勾股定理得出PF=4,得出EP=6,求出S1=S△APM=S△APF+S梯形PFBM ﹣S△ABM=﹣2x+15,S2=S△DPM=S△DEP+S梯形EPMC﹣S△DCM=2x,得出S1•S2=(﹣2x+15)×2x=﹣4x2+30x=﹣4(x﹣)2+,即可得出结果.【解答过程】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5﹣2.5)×2=10(cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤6cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF﹣PF=6,∴S1=S△APM=S△APF+S梯形PFBM﹣S△ABM=×4×2+(4+2x﹣5)×3﹣×5×(2x﹣5)=﹣2x+15,。
2019年江苏省中考数学试题分类汇编之圆(解析版)
2019江苏省中考数学试题分类汇编之圆一、选择题1.(2019江苏镇江)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若∠C =110°,则∠ABC 的度数等于( )A .55°B .60°C .65°D .70° 【答案】A .【解析】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∴DAB =180°﹣∴C =70°,∴DC CB =,∴∴CAB =12∴DAB =35°, ∴AB 是直径,∴∴ACB =90°,∴∴ABC =90°﹣∴CAB =55°,故选:A .2.(2019年江苏无锡)如图,P A 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P =40°,则∠B 的度数为( )A .20°B .25°C .40°D .50°OA B【答案】B.【解析】连结AO ,因为P A 是切线,所以∠P AO =90°,则∠AOP =90°-40°=50°,又因为同弧所对的圆周角=圆心角的一半,所以∴B =50°÷2=25°,故选B.3.(2019江苏苏州)如图,AB 为O ⊙的切线,切点为A ,连接AO BO 、,BO 与O ⊙交于点C ,延长BO 与O ⊙交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为()A .54B .36C .32D .27【答案】D.【答案】由切线性质得到90BAO ∠=,903654AOB ∴∠=-=.OD OA =,OAD ODA ∴∠=∠.AOB OAD ODA ∠=∠+∠,27ADC ADO ∴∠=∠=.故选D.4.(2019江苏宿迁)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积 是( )A .20πB .15πC .12πD .9π【答案】B .【解析】解:由勾股定理可得:底面圆的半径=3,则底面周长=6π,底面半径=3,PD由图得,母线长=5,侧面面积=12×6π×5=15π. 故选:B . 5.(2019江苏宿迁)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半 圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是( )A .πB .2πC .+πD .+2π 【答案】A .【解答】解:6个月牙形的面积之和=3π﹣(22π﹣6×12×2)=π, 故选:A .二、填空题6.(2019江苏泰州)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【答案】12π.【解析】∵l=180R n π=1806120⨯π=4π,∴4π×3=12π. 故答案为:12π.7.(2019江苏连云港)如图,点A 、B 、C 在⊙O 上,BC =6,∠BAC =30°,则⊙O 的半径为 .【答案】6.【解析】连结OB,OC,因为∠BOC=2∠A=60°,则△BOC为等边三角形,所以半径为6. 8.(2019江苏盐城)如图,点A、B、C、D、E在⊙O上,且AB的度数为50°,则∠E+∠C=°.【答案】155.【解析】解:连接EA,∵AB为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°﹣25°=155°,故答案为:155.9.(2019江苏南京)如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.【答案】219°.【解析】解:连接AB,∵P A、PB是⊙O的切线,∴P A=PB,∵∠P=102°,∴∠P AB=∠PBA=12(180°﹣102°)=39°,∵∠DAB+∠C=180°,∴∠P AD+∠C=∠P AB+∠DAB+∠C=180°+39°=219°,故答案为:219°.10.(2019江苏常州)如图,AB是⊙O的直径,C、D是⊙O上的两点,∠AOC=120°,则∠CDB=°.【答案】30.【解析】解:∵∠BOC=180°﹣∠AOC=180°﹣120°=60°,∴∠CDB=12∠BOC=30°.故答案为30.11.(2019O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则tan∠OCB=.【答案】5.【解析】解:连接OB,作OD⊥BC于D,∵⊙O与等边三角形ABC的两边AB、BC都相切,∴∠OBC=∠OBA=12∠ABC=30°,∴tan∠OBC=OD BD,∴BD =3tan303OD=3,∴CD=BC﹣BD=8﹣3=5,∴tan∠OCB=OD CD=故答案为5.12.(2019江苏扬州)如图,AC是⊙O的内接正六边形的一边,点B在弧AC上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=.【答案】15.【解析】 解:连接OB ,∵AC 是⊙O 的内接正六边形的一边,∴∠AOC =360°÷6=60°,∵BC 是⊙O 的内接正十边形的一边,∴∠BOC =360°÷10=36°,∴∠AOB =60°-36°=24°,即360°÷n =24°,∴n =1513.(2019江苏连云港)一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为 .【答案】π6.【解析】根据圆锥侧面积公式πππ632=⨯⨯==rl S 侧.14.(2019年江苏无锡)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【答案】3【解析】因为圆锥侧面积公式是:rl S π=侧,所以圆锥底面圆的半径r=15π÷5π=3.15.(2019江苏淮安)若圆锥的侧面积是15π,母线长是5,则该圆锥底面圆的半径是 .【答案】3.【解析】解:设该圆锥底面圆的半径是为r ,根据题意得12×2π×r ×5=15π,解得r =3. 即该圆锥底面圆的半径是3.故答案为3.16.(2019江苏徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的 底面圆的半径r =2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为 cm .【答案】6.【解析】解:圆锥的底面周长=2π×2=4πcm ,设圆锥的母线长为R ,则:=4π,解得R =6.故答案为:6.17.(2019江苏扬州)如图,将四边形ABCD 绕顶点A 顺时针旋转45°至AB′C′D′的位置,若AB =16cm ,则图中阴影部分的面积为 .【答案】32π.【解析】∵阴影部分面积=扇形BB′A 的面积+四边形ABCD 的面积-四AB′C′D′的面积 ∴阴影部分面积=扇形BB′A 的面积=ππ2451632360⨯=. 18.(2019江苏苏州)如图,扇形OAB 中,90AOB ∠=︒,P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D ,若2,1PD CD ==,则该扇形的半径长为___________.【答案】5.【解析】解:∵OA=OB ,90AOB ∠=︒∴∠OAB =∠OBA =45°,∵PC ⊥OA ,∴∠CAD =∠CDA =45°,∴CA=CD =1,∵PD =2,∴PC =3,设扇形半径为x ,连接OP ,则OP=x ,OC=x -1,在Rt △OPC 中,由勾股定理得:222OC PC OP +=,即2223(1)x x +-=,解得x =5. 所以扇形的半径长为5.19.(2019江苏泰州)如图,⊙O 的半径为5,点P 在⊙O 上,点A 在⊙O 内,且AP =3,过点A 作AP 的垂线交于⊙O 点B 、C.设PB=x ,PC=y ,则y 与x 的函数表达式为 .【答案】y=x30. 【解析】如图,连接PO 并延长交⊙O 于点N ,连接BN ,∵PN 是直径,∴∠PBN =90°.∵AP ⊥BC ,∴∠P AC =90°,OC∴∠PBN =∠P AC ,又∵∠PNB =∠PCA ,∴△PBN ∽△P AC , ∴PA PB =PC PN ,∴3x =y 10. ∴y =x30. 故答案为:y =x 30. 20.(2019年江苏无锡)如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内 自由移动,若⊙O 的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 . 【答案】25【解析】圆心能到达的面积为图中阴影区域,如图1,设OO 1=5x ,OO 2=12x ,则11051223x x =, 解得13x =,∴OO 1=53,∴DF =53,四边形ADO 1E 、四边形CFOG 、四边形MNO 2B 拼起来, 恰好拼成一个5:12:13的三角形,扇形O 1DE 、扇形OFG 、扇形O 2MN 恰好拼成一个整圆, 如图2设图2中的AC =5x ,BC =12x ,AB =13x ,则内切圆半径为51213212x x x x +-==, ∴12x =,∴AC =52,即AD +CF =52.∴图1中的AC =256,周长为25256AC BC AB AC ++⨯=.CBC图1 图221.(2019江苏连云港)如图,在矩形ABCD 中,AB =4,AD =3,以点C 为圆心作⊙C 与 直线BD 相切,点P 是⊙C 上一个动点,连接AP 交BD 于点T ,则ATAP的最大值是 .【答案】3.【解析】连接AC ,由勾股定理得AC =5,依据等面积可得⊙C 半径r =3×4÷5=512.设⊙C 与 直线BD 相切于点Q ,则CQ =512.如图1,过点A 作AM ∥BD ,过点P 作PH ⊥AM 于点H , 交BD 于点G ,则AP PH AT GH,∵GH=CQ =512,∴所以求ATAP的最大值就转化为求PH 的 最大值,即求PG 的最大值,显然当点P 在QC 的延长线上时PG 最大,如图2此时 PG =2CQ =2GH ,所以ATAP的最大值是3.图1 图2三、解答题22.(2019江苏南京)如图,⊙O 的弦AB 、CD 的延长线相交于点P ,且AB =CD .F CBCB求证:P A =PC .【答案】见解析. 【解析】证明:连接AC , ∵AB =CD , ∴AB CD =,∴AB BD CD BD +=+,即AD CB =, ∴∠C =∠A , ∴P A =PC .23.(2019年江苏无锡)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin∠ABOOAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.【答案与解析】(1)作MN BO ,由垂径定理得N 为OB 中点,MN =12OA . ∵MN =3,∴OA =6,即A (-6,0). ∵sin ∠ABO=2,OA =6, ∴OB=即B (0,.设y kx b ,将A 、B 带入得到3233yx . (2)∵第一问解得∠ABO =60°,∴∠AMO =120°所以阴影部分面积为22132323=43334Sπ()()π.24.(2019江苏徐州)如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 为的中点.过点D作直线AC 的垂线,垂足为E ,连接OD . (1)求证:∠A =∠DOB ;(2)DE 与⊙O 有怎样的位置关系?请说明理由.【答案】(1)见解析;(2)DE 与⊙O 相切,理由见解析.【解析】(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由如下:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.25.(2019江苏宿迁)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC 于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【答案】(1)见解析;(2)见解析.【解析】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.26.(2019江苏盐城)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,以CD为直径的⊙O分别交AC、BC于点M、N,过点N作NE⊥AB,垂足为E.(1)若⊙O的半径为52,AC=6,求BN的长;(2)求证:NE与⊙O相切.【答案】(1)BN=4;(2)见解析.【解析】解:(1)连接DN,ON,∵⊙O的半径为52,∴CD=5.∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD=5,∴AB=10,∴由勾股定理得BC=8,∵CD为直径,∴∠CND=90°,且BD=CD.∴BN=NC=4.(2)∵∠ACB=90°,D为斜边的中点,∴CD=DA=DB=12 AB,∴∠BCD=∠B,∵OC=ON,∴∠BCD=∠ONC,∴∠ONC=∠B,∴ON∥AB,∵NE⊥AB,∴ON⊥NE,∴NE为⊙O的切线.27.(2019江苏镇江)如图,在△ABC中,AB=AC,过AC延长线上的点O作OD⊥AO,交BC的延长线于点D,以O为圆心,OD长为半径的圆过点B.(1)求证:直线AB与⊙O相切;(2)若AB=5,⊙O的半径为12,则tan∠BDO=.【答案】(1)见解析;(2)23.【解析】(1)证明:连接AB,如图所示:∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠OCD,∴∠ABC=∠OCD,∵OD⊥AO,∴∠COD=90°,∴∠D+∠OCD=90°,∵OB=OD,∴∠OBD=∠D,∴∠OBD+∠ABC=90°,即∠ABO=90°,∴AB⊥OB,∵点B在圆O上,∴直线AB与⊙O相切;(2)解:∵∠ABO=90°,∴OA13==,∵AC=AB=5,∴OC=OA﹣AC=8,∴tan∠BDO=82123 OCOD==;故答案为:23.28.(2019江苏泰州)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为弧AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.【答案】(1)相切;(2)CE =425. 【解析】(1) DE 为⊙O 的切线, 理由:连接OD ,∵AC 为⊙O 的直径,D 为弧AC 的中点, ∴AD CD =,∴∠AOD =∠COD =90°, 又∵DE ∥AC ,∴∠EDO =∠AOD =90°, ∴DE 为⊙O 的切线.(2)解:∵DE ∥AC , ∴∠EDO =∠ACD, ∵∠ACD =∠ABD, ∵∠DCE =∠BAD, ∴△DCE ∽△BAD , ∴CE DCAD AB=, ∵半径为5,∴AC =10, ∵ D 为弧AC 的中点,∴AD=CD=,8,∴CE=425.29.(2019江苏扬州)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交于AB于P,且CP=CB.(1)求证:BC是⊙O的切线;(2)已知∠BAO=25°,点Q是弧AmB上的一点,①求∠AQB的度数;②若OA=18,求弧AmB的长.【答案】(1)见解析;(2)①65°,②23π.【解析】解(1)连接OB,∵CP=CB,∴∠CPB=∠CBP,∵OA⊥OC,∴∠AOC=90°,∵OA=OB,∴∠OAB=∠OBA.∵∠PAO+∠APO=90°,∴∠ABO+∠CBP=90°.∴∠OBC=90°,∴BC是⊙O的切线.(2)①∵∠BAO =25°,OA=OB ,∴∠BAO =∠OBA =25°.∴∠AOB =130°,∴∠AQB =65°.②∵∠AOB =130°,OB =18,∴l 弧AmB =(360°-130°)π×18÷180=23π.30.(2019江苏苏州)如图,AE 为O 的直径,D 是弧BC 的中点BC 与AD ,OD 分别交于点E ,F .(1)求证:DO AC ∥;(2)求证:2DE DA DC ⋅=;(3)若1tan 2CAD ∠=,求sin CDA ∠的值.【答案】(1)见解析;(2)见解析;(3)35. 【解析】(1)证明:∵D 为弧BC 的中点,OD 为O 的半径,∴OD BC ⊥.又∵AB 为O 的直径,∴90ACB ∠=︒.∴AC OD ∥.(2)证明:∵D 为弧BC 的中点,CA∴CD BD =.∴DCB DAC ∠=∠.∴DCE DAC ∆∆∽. ∴DC DE DA DC=. 即2DE DA DC ⋅=.(3)解:∵DCE DAC ∆∆∽,1tan 2CAD ∠=, ∴12CD DE CE DA DC AC ===. 设CD =2a ,则DE =a ,4DA a =,又∵AC OD ∥,∴△AEC ∽△DEF , ∴3CE AE EF DE==. 所以83BC CE =. 又2AC CE =, ∴103AB CE =. 即3sin sin 5CA CDA CBA AB ∠=∠==. 31.(2019江苏淮安)如图,AB 是⊙O 的直径,AC 与⊙O 交于点F ,弦AD 平分∠BAC , DE ⊥AC ,垂足为E .(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径为2,∠BAC =60°,求线段EF 的长.【答案】(1)DE 与⊙O 相切,理由见解析;(2)1.【解析】解:(1)直线DE 与⊙O 相切,理由如下:连结OD .∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)过O作OG⊥AF于G,∴AF=2AG,∵∠BAC=60°,OA=2,∴AG=12OA=1,∴AF=2,∴AF=OD,∴四边形AODF是菱形,∴DF∥OA,DF=OA=2,∴∠EFD=∠BAC=60°,∴EF=12DF=1.32.(2019江苏镇江)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ是⊙O的直径,PQ⊥ON.(1)求∠POB的度数;(2)已知OP=6400km,求这两个观测点之间的距离即⊙O上AB的长.(π取 3.1)【答案】(1)67°;(2)3968 km.【解答】解:(1)设点B的切线CB交ON延长线于点E,HD⊥BC于D,CH⊥BH交BC 于点C,如图所示:则∠DHC=67°,∵∠HBD+∠BHD=∠BHD+∠DHC=90°,∴∠HBD=∠DHC=67°,∵ON∥BH,∴∠BEO=∠HBD=67°,∴∠BOE=90°﹣67°=23°,∵PQ⊥ON,∴∠POE=90°,∴∠POB=90°﹣23°=67°;(2)同(1)可证∠POA=31°,∴∠AOB=∠POB﹣∠POA=67°﹣31°=36°,∴AB的长=366400180π⨯=3968(km).33.(2019江苏常州)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆:;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形”:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.①若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);②若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.【答案】(1)①1;②(2)①如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.②M(﹣1,2)或(1,2),当点M在y轴的右侧时,满足条件的点M的横坐标的范围为1≤x≤1;当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣≤x﹣.【解析】解:(1)①半径为1的圆的宽距离为1,故答案为1.②如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.在Rt△ODC中,OC==∴OP+OC≥PC,∴PC≤∴这个“窗户形“的宽距为故答案为(2)①如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.②如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊥x轴于T.∵AC≤AM+CM,又∵5≤d≤8,∴当d=5时.AM=4,∴AT=M(﹣1,2),当d=8时.AM=7,∴AT=M(1,2),∴满足条件的点M的横坐标的范围为1≤x≤1.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣≤x﹣.。
江苏省南通市2019年中考数学试题含答案解析
江苏省南通市2019年中考数学试题(解析版) 注 意 事 项考生在答题前请认真阅读本注意事项1. 本试卷共6页,满分150分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置。
3. 答案必须按要求填涂、书写在答题卡上,在草稿纸、试卷上答题一律无效。
恰有一项是符合题目要求的)1.下列选项中,比—2℃低的温度是( )A .—3℃B .—1℃C .0℃D .1℃2.化简12的结果是( )A .34B .32C .23D .623.下列计算,正确的是( )A .632a a a =•B .a a a =-22C .326a a a =÷D .632a a =)( 4.如图是一个几何体的三视图,该几何体是( )A .球B .圆锥C .圆柱D .棱柱5.已知a 、b 满足方程组⎩⎨⎧=+=+,632,423b a b a 则a+b 的值为( ) A .2 B .4 C .—2 D .—4 6.用配方法解方程0982=++x x ,变形后的结果正确的是( )A .()942-=+xB .()742-=+xC .()2542=+xD .()742=+x7.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间8.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 读数为( )A .110°B .125°C .135°D .140°9.如图是王阿姨晚饭后步行的路程s (单位:m )与时间t (单位:min )的函数图像,其中曲线段AB 是以B 为顶点的抛物线一部分。
2019年江苏省中考数学真题分类汇编 专题12 图形的性质之解答题(原卷版)
专题12图形的性质之解答题一.解答题(共31小题)1.(2019•南京)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.2.(2019•无锡)如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.3.(2019•镇江)如图,四边形ABCD中,AD∥BC,点E、F分别在AD、BC上,AE=CF,过点A、C分别作EF的垂线,垂足为G、H.(1)求证:△AGE≌△CHF;(2)连接AC,线段GH与AC是否互相平分?请说明理由.4.(2019•扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T,特别地线段AC在直线l2上的正投影就是线段A1C.请依据上述定义解决如下问题:(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)=;(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)═9,求△ABC的面积;(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD),5.(2019•淮安)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.6.(2019•宿迁)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF.(1)求证:四边形AECF是菱形;(2)求线段EF的长.7.(2019•扬州)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE.8.(2019•连云港)如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.9.(2019•连云港)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD 沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG,请直接写出FH的长.10.(2019•无锡)如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.11.(2019•盐城)如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.【探究】(1)证明:△OBC≌△OED;(2)若AB=8,设BC为x,OB2为y,求y关于x的关系式.12.(2019•苏州)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.13.(2019•扬州)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG 运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.14.(2019•泰州)如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.15.(2019•常州)【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n2=;【运用】(3)n边形有n个顶点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形.当n=3,m=3时,如图3,最多可以剪得7个这样的三角形,所以y=7.①当n=4,m=2时,如图4,y=;当n=5,m=时,y=9;②对于一般的情形,在n边形内画m个点,通过归纳猜想,可得y=(用含m、n的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.16.(2019•徐州)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.17.(2019•镇江)在三角形纸片ABC(如图1)中,∠BAC=78°,AC=10.小霞用5张这样的三角形纸片拼成了一个内外都是正五边形的图形(如图2).(1)∠ABC=°;(2)求正五边形GHMNC的边GC的长.参考值:sin78°≈0.98,cos78°=0.21,tan78°≈4.7.18.(2019•南京)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:P A=PC.19.(2019•镇江)如图,在△ABC中,AB=AC,过AC延长线上的点O作OD⊥AO,交BC的延长线于点D,以O为圆心,OD长为半径的圆过点B.(1)求证:直线AB与⊙O相切;(2)若AB=5,⊙O的半径为12,则tan∠BDO=.20.(2019•淮安)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.21.(2019•苏州)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD,求sin∠CDA的值.22.(2019•泰州)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.23.(2019•扬州)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC.(1)求证:BC是⊙O的切线;(2)已知∠BAO=25°,点Q是上的一点.①求∠AQB的度数;②若OA=18,求的长.24.(2019•盐城)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,以CD为直径的⊙O分别交AC、BC于点M、N,过点N作NE⊥AB,垂足为E.(1)若⊙O的半径为,AC=6,求BN的长;(2)求证:NE与⊙O相切.25.(2019•宿迁)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)26.(2019•镇江)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ是⊙O的直径,PQ⊥ON.(1)求∠POB的度数;(2)已知OP=6400km,求这两个观测点之间的距离即⊙O上的长.(π取 3.1)27.(2019•常州)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆:;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.①若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);②若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.28.(2019•徐州)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.29.(2019•盐城)如图,AD是△ABC的角平分线.(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是形.(直接写出答案)30.(2019•泰州)如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.31.(2019•无锡)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.。
2019年江苏省中考数学附解析
2019年江苏省中考数学学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.tan30°的值等于( )A .12B .32C .33D .32.如图,BD 是△ABC 的角平分线,∠ADB=∠DEB ,则与△ABD 相似的三角形是( )A . △DBCB .△DEC C .△ABCD .△DBE3. 若代数式232x x ++的值为 6,则代数式2395x x +−的值为( )A .17B .7C .0D .-74.利用反证法证明“三角形中至少有1个内角不小于60°”应先假设( )A .三角形每个内角都大于60°B .三角形有一个内角大于60°C .三角形每个内角都小于60°D .三角形有一个内角小于60° 5.以下可以用来证明命题“任何偶数都是4的倍数”是假命题的反例为( ) A .3B .4C .8D .6 6.在对50个数进行整理的频数分布表中,各组的频数之和与频率之和分别等于 ( )A .50,1B . 50,50C .1,50D .1,1 7.某商场的营业额2002年比2001年上升10%,2003年比2002年又上升l0%,而2004年和2005年连续两年平均每年比上年降低10%,那么2005年的营业额比2001年的营业额 ( )A .降低了2%B .没有变化C .上升了2%D .降低了l .99%8.如图,天平右盘中的每个砝码的质量都是1g ,则图中显示出某药品A 的质量范围是( )A .大于2 gB .小于3 gC .大于2 g 或小于3 gD .大于2 g 且小于3 g9.如果不等式组731x x x n +<−⎧⎨>⎩的解集是4x >,那么n 的取值范围是( )A .4n ≥B .4n ≤C .4n =D .64n <10.下列图形中,不是正方体的表面展开图的是( )11.下列事件中,属于随机事件的是( )A .掷一枚普通正六面体骰子所得点数不超过 6B .买一张体育彩票中奖C .太阳从西边落下D .口袋中只装有 10个红球,从中摸出一个白球12.下列各式中,能用平方差公式分解因式的是( )A .321x −B .21x −−C .21x +D .21x −+13.下列各图中,是轴对称图案的是( )A .B .C .D . 14.把多项式22()4()x y x y −+−分解因式,其正确的结果是( ) A .(22)(2)x y x y x y x y +−−++− B .(53)(53)x y y x −−C .(3)(3)x y y x −−D . (3)(2)x y y x −− 二、填空题15.两圆内切,圆心距等于 3 cm ,一个圆的半径为 5 cm ,则另一个圆的半径是 cm .16.两圆半径分别为2、3,两圆圆心距为d ,则两圆相交时d 的取值范围为 .17.课堂上老师用投影仪在屏幕上投影了一蝠风景图,它和原图是 .18.矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如: (填一条即可).19.如图所示,已知:∠l=∠2=∠3,EF ⊥AB 于点F .求证:CD ⊥AB .证明:∵∠1=∠2( ).∴ ∥ ( ). ∴∠ADG= ( ). ∵∠l=∠3( ),∴∠ADG+∠1= + .∵EF ⊥AB( ),∴∠B+∠3=180°-90°=90° ( ).∴∠ADG+∠1=90°.∴CD ⊥AB( ).20.如图,若AB CD ∥,EF 与AB CD ,分别相交于点E F EP EF EFD ∠,,,⊥的平分线与EP 相交于点P ,且40BEP ∠=,则EPF ∠= 度.21.如图,将△ABC 绕着点A 按逆时针方向旋转70°后与△ADE 重合,已知∠B=105°,∠E=30°,那么∠BAE= 度.22. 有四张不透明的卡片的正面分别写有 2,227,π,2,除正面的数不同外,其余都相同. 将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为 .23.根据图,完成下列填空:∠BOD=∠B0C+ ;∠AOC= + ;∠AOB= + + ;∠AOD+∠BOC= - .24.用代数式表示:(1)a 的平方根(a ≥0) ;(2)a 的立方根 .25.若一个数的平方等于3,则这个数是 .三、解答题26.如图,已知在⊙O 中,AB 为弦,C 、D 两点在 AB 上,且 AC= BD .请你仔细观察后回答,图中共有几个等腰三角形?把它们写出来,并说明理由.27.如图,□ABCD 中,已知BC=AB=2 cm ,O 是对角线AC ,BD 的交点,则△AOB 的周长比△BOC 的周长短多少?28.已知关于x 的方程11x a =+的解是3x =,求关于y 的不等式(3)6a y −<−的解集.29.如图,△ABC 的顶点A 平移到了点D ,请你作出△ABC 经平移变换后所得的像.30.现有一条直径为l2 cm 的圆柱形铅柱,若要铸造12个直径为l2 cm 的铅球,应截取多长的铅柱(损耗不计)?(球的体积公式343R π,R 为球半径)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.B4.C5.D6.A7.D8.D9.B10.C11.B12.D13.B14.C二、填空题15.2 或816.1<d<517.相似形18.略(只要符合即可)19.已知;DG;BC;内错角相等,两直线平行;∠B;两直线平行,同位角相等;已知;∠B;∠3;已知;三角形的内角和为l80°;垂直的定义20.6521.2522.123.2∠DOC;∠AOD,∠DOC;∠AOD,∠DOC,∠COB;∠AOB,∠DOC24.(1)25.三、解答题26.共有 2 个等腰三角形:△QAB 和△OCD.∵OA=OB,∴△QAB 是等腰三角形.OA=OB,∴∠A=∠B.∵AC=BD..∴△OAC≌△OBD(SAS),OC=OD,∴△OCD是等腰三角形.27.2cm28.解:根据题意可得,311a=+,两边同乘以(1)a+得:31a=+,2a∴=(3)6a y−<−即(23)6y−<−,6y−<−,∴不等式的解集为6y>.29.略30.96cm。
2019年江苏省中考数学真题分类汇编 专题11 图形的性质之填空题(解析版)
专题11 图形的性质之填空题参考答案与试题解析一.填空题(共33小题)1.(2019•泰州)命题“三角形的三个内角中至少有两个锐角”是真命题(填“真命题”或“假命题”).【答案】解:三角形的三个内角中至少有两个锐角,是真命题;故答案为:真命题【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.2.(2019•常州)如果∠α=35°,那么∠α的余角等于55°.【答案】解:∵∠α=35°,∴∠α的余角等于90°﹣35°=55°故答案为:55.【点睛】本题考查的两角互余的基本概念,题目属于基础概念题,比较简单.3.(2019•苏州)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为cm(结果保留根号).【答案】解:10×10=100(cm2)(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.【点睛】考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.4.(2019•扬州)将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=128°.【答案】解:延长DC,由题意可得:∠ABC=∠BCE=∠BCA=26°,则∠ACD=180°﹣26°﹣26°=128°.故答案为:128.【点睛】此题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.5.(2019•南京)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵∠1+∠3=180°,∴a∥b.【答案】解:∵∠1+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故答案为:∠1+∠3=180°.【点睛】本题主要考查了平行的判定,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.6.(2019•盐城)如图,直线a∥b,∠1=50°,那么∠2=50°.【答案】解:∵a∥b,∠1=50°,∴∠1=∠2=50°,故答案为:50.【点睛】此题主要考查了平行线的性质,正确掌握平行线的性质是解题关键.7.(2019•镇江)如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD 是等边三角形,∠A=20°,则∠1=40°.【答案】解:∵△BCD是等边三角形,∴∠BDC=60°,∵a∥b,∴∠2=∠BDC=60°,由三角形的外角性质可知,∠1=∠2﹣∠A=40°,故答案为:40.【点睛】本题考查的是等边三角形的性质、平行线的性质,掌握三角形的三个内角都是60°是解题的关键.8.(2019•扬州)如图,在△ABC中,AB=5,AC=4,若进行以下操作,在边BC上从左到右依次取点D1、D2、D3、D4、…;过点D1作AB、AC的平行线分别交AC、AB于点E1、F1;过点D1作AB、AC的平行线分别交AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=40380.【答案】解:∵D1F1∥AC,D1E1∥AB,∴,即,∵AB=5,BC=4,∴4D1E1+5D1F1=20,同理4D2E2+5D2F2=20,…,4D2019E2019+5D2019F2019=20,∴4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=20×2019=40380;故答案为40380.【点睛】本题考查平行线的性质,探索规律;能够根据平行线的性质和等量代换得到4D1E1+5D1F1=20是解题的关键.9.(2019•苏州)如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为5.【答案】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r﹣1)2+9,解得:r=5.故答案为:5.【点睛】本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.10.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是4<BC.【答案】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB AC=4,∴AC,∴BC;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC;故答案为:4<BC.【点睛】本题考查了三角形的三边关系、直角三角形的性质、等边三角形的性质;作出△ABC的外接圆进行推理计算是解题的关键.11.(2019•南京)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.【答案】解:由题意可得:杯子内的筷子长度为:15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.【点睛】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.12.(2019•常州)平面直角坐标系中,点P(﹣3,4)到原点的距离是5.【答案】解:作P A⊥x轴于A,则P A=4,OA=3.则根据勾股定理,得OP=5.故答案为5.【点睛】此题考查了点的坐标的知识以及勾股定理的运用.点到x轴的距离即为点的纵坐标的绝对值.13.(2019•徐州)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=30°.【答案】解:连接OB、OC,多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠AOB,∴∠AOD=40°×3=120°.∴∠OAD.故答案为:30°【点睛】本题主要考查了正多边形的外角以及内角,熟记公式是解答本题的关键.14.(2019•徐州)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16.【答案】解:∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.【点睛】本题主要考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.15.(2019•常州)如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN=6或.【答案】解:分两种情况:①MN为等腰△PMN的底边时,作PF⊥MN于F,如图1所示:则∠PFM=∠PFN=90°,∵四边形ABCD是矩形,∴AB=CD,BC=AD=3AB=3,∠A=∠C=90°,∴AB=CD,BD10,∵点P是AD的中点,∴PD AD,∵∠PDF=∠BDA,∴△PDF∽△BDA,∴,即,解得:PF,∵CE=2BE,∴BC=AD=3BE,∴BE=CD,∴CE=2CD,∵△PMN是等腰三角形且底角与∠DEC相等,PF⊥MN,∴MF=NF,∠PNF=∠DEC,∵∠PFN=∠C=90°,∴△PNF∽△DEC,∴2,∴MF=NF=2PF=3,∴MN=2NF=6;②MN为等腰△PMN的腰时,作PF⊥BD于F,如图2所示:由①得:PF,MF=3,设MN=PN=x,则FN=3﹣x,在Rt△PNF中,()2+(3﹣x)2=x2,解得:x,即MN;综上所述,MN的长为6或;故答案为:6或.【点睛】本题考查了矩形的性质、等腰三角形的性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和等腰三角形的性质,证明三角形相似是解题的关键.16.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD 为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.【答案】解:过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.∵AB=AC=5,BC=4,∴BM=CM=2,易证△AMB∽△CGB,∴,即∴GB=8,设BD=x,则DG=8﹣x,易证△EDH≌△DCG(AAS),∴EH=DG=8﹣x,∴S△BDE,当x=4时,△BDE面积的最大值为8.故答案为8.【点睛】本题考查了正方形,熟练运用正方形的性质与相似三角形的判定与性质以及全等三角形的判定与性质是解题的关键.17.(2019•扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=.【答案】解:连接CF,∵正方形ABCD和正方形BEFG中,AB=7,BE=5,∴GF=GB=5,BC=7,∴GC=GB+BC=5+7=12,∴13.∵M、N分别是DC、DF的中点,∴MN.故答案为:.【点睛】本题考查了正方形的性质及中位线定理、勾股定理的运用.构造基本图形是解题的关键.18.(2019•淮安)若一个多边形的内角和是540°,则该多边形的边数是5.【答案】解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.【点睛】本题考查了多边形外角与内角.此题比较简单,只要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.19.(2019•泰州)八边形的内角和为1080°.【答案】解:(8﹣2)•180°=6×180°=1080°.故答案为:1080°.【点睛】本题考查了多边形的内角和,熟记内角和公式是解题的关键.20.(2019•常州)如图,AB是⊙O的直径,C、D是⊙O上的两点,∠AOC=120°,则∠CDB=30°.【答案】解:∵∠BOC=180°﹣∠AOC=180°﹣120°=60°,∴∠CDB∠BOC=30°.故答案为30.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.21.(2019•常州)如图,半径为的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则tan∠OCB=.【答案】解:连接OB,作OD⊥BC于D,∵⊙O与等边三角形ABC的两边AB、BC都相切,∴∠OBC=∠OBA∠ABC=30°,∴tan∠OBC,∴BD3,∴CD=BC﹣BD=8﹣3=5,∴tan∠OCB.故答案为.【点睛】本题考查了切线的性质,等边三角形的性质,解直角三角形等,作出辅助线构建直角三角形是解题的关键.22.(2019•泰州)如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为y.【答案】解:连接PO并延长交⊙O于D,连接BD,则∠C=∠D,∠PBD=90°,∵P A⊥BC,∴∠P AC=90°,∴∠P AC=∠PBD,∴△P AC∽△PBD,∴,∵⊙O的半径为5,AP=3,PB=x,PC=y,∴,∴y,故答案为:y.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.23.(2019•连云港)如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为6.【答案】解:∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.【点睛】本题综合运用圆周角定理以及等边三角形的判定和性质.24.(2019•泰州)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为6πcm.【答案】解:该莱洛三角形的周长=36π(cm).故答案为6π.【点睛】本题考查了弧长公式:l(弧长为l,圆心角度数为n,圆的半径为R).也考查了等边三角形的性质.25.(2019•盐城)如图,点A、B、C、D、E在⊙O上,且为50°,则∠E+∠C=155°.【答案】解:连接EA,∵为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°﹣25°=155°,故答案为:155.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.26.(2019•扬州)如图,AC是⊙O的内接正六边形的一边,点B在上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=15.【答案】解:连接BO,∵AC是⊙O内接正六边形的一边,∴∠AOC=360°÷6=60°,∵BC是⊙O内接正十边形的一边,∴∠BOC=360°÷10=36°,∴∠AOB=∠AOC﹣∠BOC=60°﹣36°=24°,∴n=360°÷24°=15;故答案为:15.【点睛】本题考查了正多边形和圆、正六边形的性质、正十边形的性质;根据题意求出中心角的度数是解题的关键.27.(2019•南京)如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=219°.【答案】解:连接AB,∵P A、PB是⊙O的切线,∴P A=PB,∵∠P=102°,∴∠P AB=∠PBA(180°﹣102°)=39°,∵∠DAB+∠C=180°,∴∠P AD+∠C=∠P AB+∠DAB+∠C=180°+39°=219°,故答案为:219°.【点睛】本题考查了切线的性质,圆内接四边形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.28.(2019•连云港)一圆锥的底面半径为2,母线长3,则这个圆锥的侧面积为6π.【答案】解:该圆锥的侧面积2π×2×3=6π.故答案为6π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.29.(2019•淮安)若圆锥的侧面积是15π,母线长是5,则该圆锥底面圆的半径是3.【答案】解:设该圆锥底面圆的半径是为r,根据题意得2π×r×5=15π,解得r=3.即该圆锥底面圆的半径是3.故答案为3.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.30.(2019•宿迁)直角三角形的两条直角边分别是5和12,则它的内切圆半径为2.【答案】解:直角三角形的斜边13,所以它的内切圆半径2.故答案为2.【点睛】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角;直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边).31.(2019•无锡)已知圆锥的母线长为5cm,侧面积为15πcm2,则这个圆锥的底面圆半径为3cm.【答案】解:∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r3cm,故答案为:3.【点睛】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.32.(2019•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为6cm.【答案】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:4π,解得R=6.故答案为:6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.33.(2019•无锡)如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△ABC内所能到达的区域的面积为,则△ABC的周长为25.【答案】解:如图,由题意点O所能到达的区域是△EFG,连接AE,延长AE交BC于H,作HM⊥AB 于M,EK⊥AC于K,作FJ⊥AC于J.∵EG∥AB,EF∥AC,FG∥BC,∴∠EGF=∠ABC,∠FEG=∠CAB,∴△EFG∽△ACB,∴EF:FG:EG=AC:BC:AB=5:12:13,设EF=5k,FG=12k,∵5k×12k,∴k或(舍弃),∴EF,∵四边形EKJF是矩形,∴KJ=EF,设AC=5m,BC=12m,AB=13m,∵∠ACH=∠AMH=90°,∠HAC=∠HAM,AH=AH,∴△HAC≌△HAM(AAS),∴AM=AC=5m,CH=HM,BM=8m,设CH=HM=x,在Rt△BHM中,则有x2+(8m)2=(12m﹣x)2,∴x m,∵EK∥CH,∴,∴,∴AK,∴AC=AK+KJ+CJ1,∴BC12=10,AB13,∴△ABC的周长=AC+BC+AB1025,故答案为25.【点睛】本题考查动点问题,轨迹,相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题。
2019年江苏省中考数学真题汇编专题04图形的性质
专题04图形的性质参考答案与试题解析一.选择题(共19小题)1.(2019•连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】解:由题意可知,该几何体为四棱锥,所以它的底面是四边形.故选:B.【点睛】本题主要考查了几何体的展开图,熟练掌握棱锥的展开图是解答本题的关键.2.(2019•常州)如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD【答案】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.【点睛】本题考查的是直线外一点到直线上所有点的连线中,垂线段最短,这属于基本的性质定理,属3.(2019•苏州)如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.126°B.134°C.136°D.144°【答案】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°﹣54°=126°.故选:A.【点睛】此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.4.(2019•宿迁)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°【答案】解:由题意知∠E=45°,∠B=30°,∴∠BCF=∠E=45°,在△CFB中,∠BFC=180°﹣∠B﹣∠BCF=180°﹣30°﹣45°=105°,故选:A.【点睛】本题考查了特殊直角三角形的性质,平行线的性质,三角形内角和定理等,解题关键是要搞清楚一副三角板是指一个等腰直角三角形和一个含30°角的直角三角形.5.(2019•徐州)下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,10【答案】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点睛】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.6.(2019•淮安)下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm【答案】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.【点睛】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.7.(2019•泰州)如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G【答案】解:根据题意可知,直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.【点睛】本题主要考查了三角形的重心的定义,属于基础题意,比较简单.8.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个【答案】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.【点睛】本题主要考查了三角形三边关系的运用,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.(2019•盐城)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A.2B.C.3D.【答案】解:∵点D、E分别是△ABC的边BA、BC的中点,∴DE是△ABC的中位线,∴DE AC=1.5.故选:D.【点睛】此题主要考查了三角形中位线定理,正确得出DE是△ABC的中位线是解题关键.10.(2019•镇江)如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD的长是,点E(﹣2,0)为BC的中点,点P在菱形ABCD的边上运动.当点F(0,6)到EP所在直线的距离取得最大值时,点P恰好落在AB的中点处,则菱形ABCD的边长等于()A.B.C.D.3【答案】解:如图1中,当点P是AB的中点时,作FG⊥PE于G,连接EF.∵E(﹣2,0),F(0,6),∴OE=2,OF=6,∴EF2,∵∠FGE=90°,∴FG≤EF,∴当点G与E重合时,FG的值最大.如图2中,当点G与点E重合时,连接AC交BD于H,PE交BD于J.设BC=2a.∵PA=PB,BE=EC=a,∴PE∥AC,BJ=JH,∵四边形ABCD是菱形,∴AC⊥BD,BH=DH,BJ,∴PE⊥BD,∵∠BJE=∠EOF=∠PEF=90°,∴∠EBJ=∠FEO,∴△BJE∽△EOF,∴,∴,∴a,∴BC=2a,故选:A.【点睛】本题考查菱形的性质,坐标与图形的性质,相似三角形的判定和性质,垂线段最短等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考选择题中的压轴题.11.(2019•连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC 与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18m2C.24m2D.m2【答案】解:如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则∠BCE=∠BCD﹣∠DCE=30°,BC=12﹣x,在Rt△CBE中,∵∠CEB=90°,∴BE BC=6x,∴AD=CE BE=6x,AB=AE+BE=x+6x x+6,∴梯形ABCD面积S(CD+AB)•CE(x x+6)•(6x)x2+3x+18(x﹣4)2+24,∴当x=4时,S=24.最大即CD长为4m时,使梯形储料场ABCD的面积最大为24m2;故选:C.【点睛】此题考查了梯形的性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键.12.(2019•苏州)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6B.8C.10D.12【答案】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC AC=2,OB=OD BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'10;故选:C.【点睛】本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.13.(2019•无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直【答案】解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,∴矩形具有而菱形不具有的性质为对角线相等,故选:C.【点睛】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.14.(2019•镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,.若∠C=110°,则∠ABC 的度数等于()A.55°B.60°C.65°D.70°【答案】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°﹣∠C=70°,∵,∴∠CAB∠DAB=35°,∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=55°,故选:A.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.15.(2019•宿迁)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6πB.62πC.6πD.62π【答案】解:6个月牙形的面积之和=3π﹣(22π﹣62)=6π,故选:A.【点睛】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键.16.(2019•苏州)如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O 交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°【答案】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°﹣∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC∠AOB=27°;故选:D.【点睛】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.17.(2019•连云港)如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN;沿着CM 折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC MP;④BP AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个【答案】解:∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME180°=90°,∴△CMP是直角三角形;故①正确;∵沿着CM折叠,点D的对应点为E,∴∠D=∠MEC=90°,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠MEG=∠A=90°,∴∠GEC=180°,∴点C、E、G在同一条直线上,故②错误;∵AD=2AB,∴设AB=x,则AD=2x,∵将矩形ABCD对折,得到折痕MN;∴DM AD x,∴CM x,∵∠PMC=90°,MN⊥PC,∴CM2=CN•CP,∴CP x,∴PN=CP﹣CN x,∴PM x,∴,∴PC MP,故③错误;∵PC x,∴PB=2x x x,∴,∴PB AB,故④,∵CD=CE,EG=AB,AB=CD,∴CE=EG,∵∠CEM=∠G=90°,∴FE∥PG,∴CF=PF,∵∠PMC=90°,∴CF=PF=MF,∴点F是△CMP外接圆的圆心,故⑤正确;故选:B.【点睛】本题考查了三角形的外接圆与外心,折叠的性质,直角三角形的性质,矩形的性质,正确的识别图形是解题的关键.18.(2019•无锡)如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°【答案】解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B∠AOP50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.19.(2019•常州)判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.C.0D.【答案】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二.填空题(共33小题)1.(2019•泰州)命题“三角形的三个内角中至少有两个锐角”是真命题(填“真命题”或“假命题”).【答案】解:三角形的三个内角中至少有两个锐角,是真命题;故答案为:真命题【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.2.(2019•常州)如果∠α=35°,那么∠α的余角等于55°.【答案】解:∵∠α=35°,∴∠α的余角等于90°﹣35°=55°故答案为:55.【点睛】本题考查的两角互余的基本概念,题目属于基础概念题,比较简单.3.(2019•苏州)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为cm(结果保留根号).【答案】解:10×10=100(cm2)(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.【点睛】考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.4.(2019•扬州)将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=128°.【答案】解:延长DC,由题意可得:∠ABC=∠BCE=∠BCA=26°,则∠ACD=180°﹣26°﹣26°=128°.故答案为:128.【点睛】此题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.5.(2019•南京)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵∠1+∠3=180°,∴a∥b.【答案】解:∵∠1+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故答案为:∠1+∠3=180°.【点睛】本题主要考查了平行的判定,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.6.(2019•盐城)如图,直线a∥b,∠1=50°,那么∠2=50°.【答案】解:∵a∥b,∠1=50°,∴∠1=∠2=50°,故答案为:50.【点睛】此题主要考查了平行线的性质,正确掌握平行线的性质是解题关键.7.(2019•镇江)如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=40°.【答案】解:∵△BCD是等边三角形,∴∠BDC=60°,∵a∥b,∴∠2=∠BDC=60°,由三角形的外角性质可知,∠1=∠2﹣∠A=40°,故答案为:40.【点睛】本题考查的是等边三角形的性质、平行线的性质,掌握三角形的三个内角都是60°是解题的关键.8.(2019•扬州)如图,在△ABC中,AB=5,AC=4,若进行以下操作,在边BC上从左到右依次取点D1、D2、D3、D4、…;过点D1作AB、AC的平行线分别交AC、AB于点E1、F1;过点D1作AB、AC的平行线分别交AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=40380.【答案】解:∵D1F1∥AC,D1E1∥AB,∴,即,∵AB=5,BC=4,∴4D1E1+5D1F1=20,同理4D2E2+5D2F2=20,…,4D2019E2019+5D2019F2019=20,∴4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=20×2019=40380;故答案为40380.【点睛】本题考查平行线的性质,探索规律;能够根据平行线的性质和等量代换得到4D1E1+5D1F1=20是解题的关键.9.(2019•苏州)如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为5.【答案】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r﹣1)2+9,解得:r=5.故答案为:5.【点睛】本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.10.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是4<BC.【答案】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB AC=4,∴AC,∴BC;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC;故答案为:4<BC.【点睛】本题考查了三角形的三边关系、直角三角形的性质、等边三角形的性质;作出△ABC的外接圆进行推理计算是解题的关键.11.(2019•南京)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.【答案】解:由题意可得:杯子内的筷子长度为:15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.【点睛】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.12.(2019•常州)平面直角坐标系中,点P(﹣3,4)到原点的距离是5.【答案】解:作PA⊥x轴于A,则PA=4,OA=3.则根据勾股定理,得OP=5.故答案为5.【点睛】此题考查了点的坐标的知识以及勾股定理的运用.点到x轴的距离即为点的纵坐标的绝对值.13.(2019•徐州)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=30°.【答案】解:连接OB、OC,多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠AOB,∴∠AOD=40°×3=120°.∴∠OAD.故答案为:30°【点睛】本题主要考查了正多边形的外角以及内角,熟记公式是解答本题的关键.14.(2019•徐州)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16.【答案】解:∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.【点睛】本题主要考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.15.(2019•常州)如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN=6或.【答案】解:分两种情况:①MN为等腰△PMN的底边时,作PF⊥MN于F,如图1所示:则∠PFM=∠PFN=90°,∵四边形ABCD是矩形,∴AB=CD,BC=AD=3AB=3,∠A=∠C=90°,∴AB=CD,BD10,∵点P是AD的中点,∴PD AD,∵∠PDF=∠BDA,∴△PDF∽△BDA,∴,即,解得:PF,∵CE=2BE,∴BC=AD=3BE,∴BE=CD,∴CE=2CD,∵△PMN是等腰三角形且底角与∠DEC相等,PF⊥MN,∴MF=NF,∠PNF=∠DEC,∵∠PFN=∠C=90°,∴△PNF∽△DEC,∴2,∴MF=NF=2PF=3,∴MN=2NF=6;②MN为等腰△PMN的腰时,作PF⊥BD于F,如图2所示:由①得:PF,MF=3,设MN=PN=x,则FN=3﹣x,在Rt△PNF中,()2+(3﹣x)2=x2,解得:x,即MN;综上所述,MN的长为6或;故答案为:6或.【点睛】本题考查了矩形的性质、等腰三角形的性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和等腰三角形的性质,证明三角形相似是解题的关键.16.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD 为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.【答案】解:过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.∵AB=AC=5,BC=4,∴BM=CM=2,易证△AMB∽△CGB,∴,即∴GB=8,设BD=x,则DG=8﹣x,易证△EDH≌△DCG(AAS),∴EH=DG=8﹣x,∴SBDE,△当x=4时,△BDE面积的最大值为8.故答案为8.【点睛】本题考查了正方形,熟练运用正方形的性质与相似三角形的判定与性质以及全等三角形的判定与性质是解题的关键.17.(2019•扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=.【答案】解:连接CF,∵正方形ABCD和正方形BEFG中,AB=7,BE=5,∴GF=GB=5,BC=7,∴GC=GB+BC=5+7=12,∴13.∵M、N分别是DC、DF的中点,∴MN.故答案为:.【点睛】本题考查了正方形的性质及中位线定理、勾股定理的运用.构造基本图形是解题的关键.18.(2019•淮安)若一个多边形的内角和是540°,则该多边形的边数是5.【答案】解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.【点睛】本题考查了多边形外角与内角.此题比较简单,只要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.19.(2019•泰州)八边形的内角和为1080°.【答案】解:(8﹣2)•180°=6×180°=1080°.故答案为:1080°.【点睛】本题考查了多边形的内角和,熟记内角和公式是解题的关键.20.(2019•常州)如图,AB是⊙O的直径,C、D是⊙O上的两点,∠AOC=120°,则∠CDB=30°.【答案】解:∵∠BOC=180°﹣∠AOC=180°﹣120°=60°,∴∠CDB∠BOC=30°.故答案为30.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.21.(2019•常州)如图,半径为的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则tan∠OCB=.【答案】解:连接OB,作OD⊥BC于D,∵⊙O与等边三角形ABC的两边AB、BC都相切,∴∠OBC=∠OBA∠ABC=30°,∴tan∠OBC,∴BD3,∴CD=BC﹣BD=8﹣3=5,∴tan∠OCB.故答案为.【点睛】本题考查了切线的性质,等边三角形的性质,解直角三角形等,作出辅助线构建直角三角形是解题的关键.22.(2019•泰州)如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为y.【答案】解:连接PO并延长交⊙O于D,连接BD,则∠C=∠D,∠PBD=90°,∵PA⊥BC,∴∠PAC=90°,∴∠PAC=∠PBD,∴△PAC∽△PBD,∴,∵⊙O的半径为5,AP=3,PB=x,PC=y,∴,∴y,故答案为:y.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.23.(2019•连云港)如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为6.【答案】解:∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.【点睛】本题综合运用圆周角定理以及等边三角形的判定和性质.24.(2019•泰州)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为6πcm.【答案】解:该莱洛三角形的周长=36π(cm).故答案为6π.【点睛】本题考查了弧长公式:l(弧长为l,圆心角度数为n,圆的半径为R).也考查了等边三角形的性质.25.(2019•盐城)如图,点A、B、C、D、E在⊙O上,且为50°,则∠E+∠C=155°.【答案】解:连接EA,∵为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°﹣25°=155°,故答案为:155.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.26.(2019•扬州)如图,AC是⊙O的内接正六边形的一边,点B在上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=15.【答案】解:连接BO,∵AC是⊙O内接正六边形的一边,∴∠AOC=360°÷6=60°,∵BC是⊙O内接正十边形的一边,∴∠BOC=360°÷10=36°,∴∠AOB=∠AOC﹣∠BOC=60°﹣36°=24°,∴n=360°÷24°=15;故答案为:15.【点睛】本题考查了正多边形和圆、正六边形的性质、正十边形的性质;根据题意求出中心角的度数是解题的关键.27.(2019•南京)如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=219°.【答案】解:连接AB,∵PA、PB是⊙O的切线,∴PA=PB,∵∠P=102°,∴∠PAB=∠PBA(180°﹣102°)=39°,∵∠DAB+∠C=180°,∴∠PAD+∠C=∠PAB+∠DAB+∠C=180°+39°=219°,故答案为:219°.【点睛】本题考查了切线的性质,圆内接四边形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.28.(2019•连云港)一圆锥的底面半径为2,母线长3,则这个圆锥的侧面积为6π.【答案】解:该圆锥的侧面积2π×2×3=6π.故答案为6π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.29.(2019•淮安)若圆锥的侧面积是15π,母线长是5,则该圆锥底面圆的半径是3.【答案】解:设该圆锥底面圆的半径是为r,根据题意得2π×r×5=15π,解得r=3.即该圆锥底面圆的半径是3.故答案为3.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.30.(2019•宿迁)直角三角形的两条直角边分别是5和12,则它的内切圆半径为2.【答案】解:直角三角形的斜边13,所以它的内切圆半径2.故答案为2.【点睛】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角;直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边).31.(2019•无锡)已知圆锥的母线长为5cm,侧面积为15πcm2,则这个圆锥的底面圆半径为3cm.【答案】解:∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r3cm,故答案为:3.【点睛】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.32.(2019•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为6cm.【答案】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:4π,解得R=6.故答案为:6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.33.(2019•无锡)如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△ABC内所能到达的区域的面积为,则△ABC的周长为25.【答案】解:如图,由题意点O所能到达的区域是△EFG,连接AE,延长AE交BC于H,作HM⊥AB 于M,EK⊥AC于K,作FJ⊥AC于J.∵EG∥AB,EF∥AC,FG∥BC,∴∠EGF=∠ABC,∠FEG=∠CAB,∴△EFG∽△ACB,∴EF:FG:EG=AC:BC:AB=5:12:13,设EF=5k,FG=12k,∵5k×12k,∴k或(舍弃),∴EF,∵四边形EKJF是矩形,∴KJ=EF,设AC=5m,BC=12m,AB=13m,∵∠ACH=∠AMH=90°,∠HAC=∠HAM,AH=AH,∴△HAC≌△HAM(AAS),∴AM=AC=5m,CH=HM,BM=8m,设CH=HM=x,在Rt△BHM中,则有x2+(8m)2=(12m﹣x)2,∴x m,∵EK∥CH,∴,∴,∴AK,∴AC=AK+KJ+CJ1,∴BC12=10,AB13,∴△ABC的周长=AC+BC+AB1025,故答案为25.【点睛】本题考查动点问题,轨迹,相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题三.解答题(共31小题)1.(2019•南京)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.【解答】证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形,∴BD=CE,∵D是AB的中点,∴AD=BD,∴AD=EC,∵CE∥AD,∴∠A=∠ECF,∠ADF=∠E,∴△ADF≌△CEF(ASA).【点睛】本题主要考查了平行四边形的判定与性质以及全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.2.(2019•无锡)如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.【解答】(1)证明:∵AB=AC,∴∠ECB=∠DBC,在△DBC与△ECB中,∴△DBC≌△ECB(SAS);(2)证明:由(1)知△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.3.(2019•镇江)如图,四边形ABCD中,AD∥BC,点E、F分别在AD、BC上,AE=CF,过点A、C分别作EF的垂线,垂足为G、H.(1)求证:△AGE≌△CHF;(2)连接AC,线段GH与AC是否互相平分?请说明理由.【解答】(1)证明:∵AG⊥EF,CH⊥EF,∴∠G=∠H=90°,AG∥CH,∵AD∥BC,∴∠DEF=∠BFE,∵∠AEG=∠DEF,∠CFH=∠BFE,∴∠AEG=∠CFH,在△AGE和△CHF中,,∴△AGE≌△CHF(AAS);(2)解:线段GH与AC互相平分,理由如下:连接AH、CG,如图所示:由(1)得:△AGE≌△CHF,∴AG=CH,∵AG∥CH,∴四边形AHCG是平行四边形,∴线段GH与AC互相平分.【点睛】本题考查了全等三角形的判定与性质、平行四边形的判定与性质、平行线的性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.4.(2019•扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作TAB,CD)或T,特别地线段AC在直线l2上的正投影就是线段A1C.(请依据上述定义解决如下问题:(1)如图1,在锐角△ABC中,AB=5,TAC,AB)=3,则T(BC,AB)=2;((2)如图2,在Rt△ABC中,∠ACB=90°,TAC,AB)=4,T(BC,AB)═9,求△ABC的面积;((3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,TAD,AC)=2,T(BC,AB)=6,(求TBC,CD),(【解答】解:(1)如图1中,作CH⊥AB.∵TAC,AB)=3,(∴AH=3,∵AB=5,∴BH=5﹣3=2,∴TBC,AB)=BH=2,(故答案为2.(2)如图2中,作CH⊥AB于H.∵TAC,AB)=4,T(BC,AB)═9,(∴AH=4,BH=9,∵∠ACB=∠CHA=∠CHB=90°,∴∠A+∠ACH=90°,∠ACH+∠BCH=90°,∴∠A=∠BCH,∴△ACH∽△CBH,∴,∴,∴CH=6,∴SABC•AB•CH13×6=39.△(3)如图3中,作CH⊥AD于H,BK⊥CD于K.∵∠ACD=90°,TAD,AC)=2,(∴AC=2,∵∠A=60°,∴∠ADC=∠BDK=30°,∴CD AC=2,AD=2AC=4,AH AC=1,DH=AD﹣AH=3,∵TBC,AB)=6,CH⊥AB,(∴BH=6,∴DB=BH﹣DH=3,在Rt△BDK中,∵∠K=90°,BD=3,∠BDK=30°,∴DK=BD•cos30°,∴CK=CD+DK=2,∴TBC,CD)=CK.(【点睛】本题属于三角形综合题,考查了正投影的定义,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.5.(2019•淮安)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是▱ABCD边AD、BC的中点,∴DE AD,BF BC,∴DE=BF,∴四边形BFDE是平行四边形,∴BE=DF.【点睛】此题考查了平行四边形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.6.(2019•宿迁)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF.(1)求证:四边形AECF是菱形;(2)求线段EF的长.【解答】(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BD=2,CD∥AB,∠D=∠B=90°,∵BE=DF,∴CF=AE=4,∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF,FH=AD=2,∴EH1,∴EF.【点睛】本题考查了矩形的性质,菱形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.7.(2019•扬州)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC=AB=,AD=BC,DC∥AB,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA∴AD=DE=10,∴BC=10,AB=CD=DE+CE=16,∵CE2+BE2=62+82=100=BC2,∴△BCE是直角三角形,∠BEC=90°;(2)解:∵AB∥CD,∴∠ABE=∠BEC=90°,∴AE8,∴cos∠DAE=cos∠EAB.【点睛】本题考查了平行四边形性质,角平分线定义,平行线的性质,等腰三角形的判定、三角函数等知识点,证明AD=DE是解题的关键.8.(2019•连云港)如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,∵△ABC平移得到△DEF,。
2019江苏省苏州市中考数学试题(解析版)
2019年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共2小题,满分130分,考试时间120分钟,注意事项:1.答题前,考生务必将自己的姓名、考点名、考场号、座位号、用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题要求的。
请将选择题的答案用2B 铅笔涂在答题卡相应位置上。
1.5的相反数是( )A .15B .15-C .5D .5-2.有一组数据:2,2,4,5,7这组数据的中位数为( ) A .2B .4C .5D .73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26 000 000万元,数据26 000 000用科学记数法可表示为( ) A .80.2610⨯B .82.610⨯C .62610⨯D .72.610⨯4.如图,已知直线//a b ,直线c 与直线a b ,分别交于点A B ,.若154∠=o ,则2∠=( ) A .126oB .134oC .136oD .144oa5.如图,AB 为O ⊙的切线,切点为A ,连接AO BO 、,BO 与O ⊙交于点C ,延长BO 与O ⊙交于点D ,连接AD ,若36ABO ∠=o ,则ADC ∠的度数为( )A .54oB .36oC .32oD .27o6.小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .15243x x =+ B .15243x x =- C .15243x x=+ D .15243x x=- 7.若一次函数y kx b =+(k b 、为常数,且0k ≠)的图像经过点()01A -,,()11B ,,则不等式1kx b +>的解为( ) A .0x <B .0x >C .1x <D .1x >8.如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30o ,则教学楼的高度是( )A .55.5mB .54mC .19.5mD .18m9.如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO V 沿点A 到点C 的方向平移,得到A B C '''V ,当点A '与点C 重合时,点A 与点B '之间的距离为( ) A .6B .8C .10D .12DCB10.如图,在ABC V 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC V 的面积为( )A .42B .4C .25D .8二、填空:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上。
(晨鸟)2019年江苏省中考数学真题分类汇编专题11图形的性质之填空题(原卷版)
专题11 图形的性质之填空题一.填空题(共33小题)1.(2019?泰州)命题“三角形的三个内角中至少有两个锐角”是(填“真命题”或“假命题”).2.(2019?常州)如果∠α=35°,那么∠α的余角等于°.3.(2019?苏州)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为cm(结果保留根号).4.(2019?扬州)将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=°.5.(2019?南京)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.6.(2019?盐城)如图,直线a∥b,∠1=50°,那么∠2=°.7.(2019?镇江)如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD 是等边三角形,∠A=20°,则∠1=°.8.(2019?扬州)如图,在△ABC中,AB=5,AC=4,若进行以下操作,在边BC上从左到右依次取点D1、D2、D3、D4、…;过点D1作AB、AC的平行线分别交AC、AB于点E1、F1;过点D1作AB、AC的平行线分别交AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=.9.(2019?苏州)如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为.10.(2019?南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.11.(2019?南京)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.12.(2019?常州)平面直角坐标系中,点P(﹣3,4)到原点的距离是.13.(2019?徐州)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.14.(2019?徐州)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.15.(2019?常州)如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN=.16.(2019?无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD 为一边作正方形CDEF,连接BE,则△BDE面积的最大值为.17.(2019?扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=.18.(2019?淮安)若一个多边形的内角和是540°,则该多边形的边数是.19.(2019?泰州)八边形的内角和为°.20.(2019?常州)如图,AB是⊙O的直径,C、D是⊙O上的两点,∠AOC=120°,则∠CDB=°.21.(2019?常州)如图,半径为的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则tan∠OCB=.22.(2019?泰州)如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为.23.(2019?连云港)如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为.24.(2019?泰州)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为cm.25.(2019?盐城)如图,点A 、B 、C 、D 、E 在⊙O 上,且为50°,则∠E+∠C =°.26.(2019?扬州)如图,AC 是⊙O 的内接正六边形的一边,点B 在上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n =.27.(2019?南京)如图,P A 、PB 是⊙O 的切线,A 、B 为切点,点C 、D 在⊙O 上.若∠P =102°,则∠A+∠C =.28.(2019?连云港)一圆锥的底面半径为2,母线长3,则这个圆锥的侧面积为.29.(2019?淮安)若圆锥的侧面积是15π,母线长是5,则该圆锥底面圆的半径是.30.(2019?宿迁)直角三角形的两条直角边分别是5和12,则它的内切圆半径为.31.(2019?无锡)已知圆锥的母线长为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为cm .32.(2019?徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为cm .33.(2019?无锡)如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△ABC内所能到达的区域的面积为,则△ABC的周长为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题10 图形的性质之选择题参考答案与试题解析一.选择题(共19小题)1.(2019•连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】解:由题意可知,该几何体为四棱锥,所以它的底面是四边形.故选:B.【点睛】本题主要考查了几何体的展开图,熟练掌握棱锥的展开图是解答本题的关键.2.(2019•常州)如图,在线段P A、PB、PC、PD中,长度最小的是()A.线段P A B.线段PB C.线段PC D.线段PD【答案】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.【点睛】本题考查的是直线外一点到直线上所有点的连线中,垂线段最短,这属于基本的性质定理,属于简单题.3.(2019•苏州)如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.126°B.134°C.136°D.144°【答案】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°﹣54°=126°.故选:A.【点睛】此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.4.(2019•宿迁)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°【答案】解:由题意知∠E=45°,∠B=30°,∵DE∥CB,∴∠BCF=∠E=45°,在△CFB中,∠BFC=180°﹣∠B﹣∠BCF=180°﹣30°﹣45°=105°,故选:A.【点睛】本题考查了特殊直角三角形的性质,平行线的性质,三角形内角和定理等,解题关键是要搞清楚一副三角板是指一个等腰直角三角形和一个含30°角的直角三角形.5.(2019•徐州)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【答案】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点睛】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.6.(2019•淮安)下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm【答案】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.【点睛】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.7.(2019•泰州)如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G【答案】解:根据题意可知,直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.【点睛】本题主要考查了三角形的重心的定义,属于基础题意,比较简单.8.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个【答案】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.【点睛】本题主要考查了三角形三边关系的运用,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.(2019•盐城)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A.2 B.C.3 D.【答案】解:∵点D、E分别是△ABC的边BA、BC的中点,∴DE是△ABC的中位线,∴DE AC=1.5.故选:D.【点睛】此题主要考查了三角形中位线定理,正确得出DE是△ABC的中位线是解题关键.10.(2019•镇江)如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD的长是,点E(﹣2,0)为BC的中点,点P在菱形ABCD的边上运动.当点F(0,6)到EP所在直线的距离取得最大值时,点P恰好落在AB的中点处,则菱形ABCD的边长等于()A.B.C.D.3【答案】解:如图1中,当点P是AB的中点时,作FG⊥PE于G,连接EF.∵E(﹣2,0),F(0,6),∴OE=2,OF=6,∴EF2,∵∠FGE=90°,∴FG≤EF,∴当点G与E重合时,FG的值最大.如图2中,当点G与点E重合时,连接AC交BD于H,PE交BD于J.设BC=2a.∵P A=PB,BE=EC=a,∴PE∥AC,BJ=JH,∵四边形ABCD是菱形,∴AC⊥BD,BH=DH,BJ,∴PE⊥BD,∵∠BJE=∠EOF=∠PEF=90°,∴∠EBJ=∠FEO,∴△BJE∽△EOF,∴,∴,∴a,∴BC=2a,故选:A.【点睛】本题考查菱形的性质,坐标与图形的性质,相似三角形的判定和性质,垂线段最短等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考选择题中的压轴题.11.(2019•连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC 与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18m2C.24m2D.m2【答案】解:如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则∠BCE=∠BCD﹣∠DCE=30°,BC=12﹣x,在Rt△CBE中,∵∠CEB=90°,∴BE BC=6x,∴AD=CE BE=6x,AB=AE+BE=x+6x x+6,∴梯形ABCD面积S(CD+AB)•CE(x x+6)•(6x)x2+3x+18(x ﹣4)2+24,∴当x=4时,S最大=24.即CD长为4m时,使梯形储料场ABCD的面积最大为24m2;故选:C.【点睛】此题考查了梯形的性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键.12.(2019•苏州)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.12【答案】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC AC=2,OB=OD BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'10;故选:C.【点睛】本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.13.(2019•无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直【答案】解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,∴矩形具有而菱形不具有的性质为对角线相等,故选:C.【点睛】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.14.(2019•镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°【答案】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°﹣∠C=70°,∵,∴∠CAB∠DAB=35°,∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=55°,故选:A.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.15.(2019•宿迁)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6πB.62πC.6πD.62π【答案】解:6个月牙形的面积之和=3π﹣(22π﹣62)=6π,故选:A.【点睛】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键.16.(2019•苏州)如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O 交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°【答案】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°﹣∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC∠AOB=27°;故选:D.【点睛】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.17.(2019•连云港)如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN;沿着CM 折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC MP;④BP AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个【答案】解:∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME180°=90°,∴△CMP是直角三角形;故①正确;∵沿着CM折叠,点D的对应点为E,∴∠D=∠MEC=90°,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠MEG=∠A=90°,∴∠GEC=180°,∴点C、E、G在同一条直线上,故②错误;∵AD=2AB,∴设AB=x,则AD=2x,∵将矩形ABCD对折,得到折痕MN;∴DM AD x,∴CM x,∵∠PMC=90°,MN⊥PC,∴CM2=CN•CP,∴CP x,∴PN=CP﹣CN x,∴PM x,∴,∴PC MP,故③错误;∵PC x,∴PB=2x x x,∴,∴PB AB,故④,∵CD=CE,EG=AB,AB=CD,∴CE=EG,∵∠CEM=∠G=90°,∴FE∥PG,∴CF=PF,∵∠PMC=90°,∴CF=PF=MF,∴点F是△CMP外接圆的圆心,故⑤正确;故选:B.【点睛】本题考查了三角形的外接圆与外心,折叠的性质,直角三角形的性质,矩形的性质,正确的识别图形是解题的关键.18.(2019•无锡)如图,P A是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B 的度数为()A.20°B.25°C.40°D.50°【答案】解:连接OA,如图,∵P A是⊙O的切线,∴OA⊥AP,∴∠P AO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B∠AOP50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.19.(2019•常州)判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2 B.C.0 D.【答案】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.。