二次根式 测试题及答案
二次根式练习题及参考答案
二次根式练习题及参考答案一、选择题1. 下列各式中,是二次根式的是()A. √2B. 2+√3C. (√2)^2D. 1/√22. 二次根式的定义域是()A. 正实数集B. 全体实数集C. 负实数集D. 零集3. 已知a为正数,b为非负数,则必有()A. √a ≠ √bB. √a > √bC. √a < √bD. √a = √b4. 如果√a = √b,则()A. a = bB. a ≤ bC.a ≥ bD. a > b5. 下列哪个数是二次根式()A. 2B. 49C. 5^2D. 3^2二、计算题1. 计算√(3+2√2) 的值。
解答:将√(3+2√2) 分解成 r+s 的形式,即等于√2 + r + s,其中 r 和 s 都是实数。
则有:√2 + r + s = √(3+2√2)√2 = √(3+2√2) - r - s为了消去开方,上式两边平方可得:2 =3 + 2√2 - 2(r+s) + r^2 + s^2 + 2rs2 =3 + r^2 + s^2 + 2rs + √2(2 - 2(r+s))由于√2和(2 - 2(r+s))都是独立存在的,所以它们的系数和常数必须分别为零。
根据此条件可以整理出以下两个方程:2 - 2(r+s) = 02 =3 + r^2 + s^2 + 2rs解得 r = 1,s = 0。
因此:√(3+2√2) = √2 + 1 + 0 = √2 + 12. 计算(√3+1)(√3-1) 的值。
解答:使用公式 (a + b)(a - b) = a^2 - b^2,将a = √3,b = 1 代入,得到:(√3+1)(√3-1) = (√3)^2 - 1^2= 3 - 1= 2三、解答题1. 计算√18 - √8 的值。
解答:将√18 和√8 分别化简,得到:√18 = √(9 × 2) = √9 × √2 = 3√2√8 = √(4 × 2) = √4 × √2 = 2√2因此,√18 - √8 = 3√2 - 2√2 = √22. 计算√(6 + 3√2) + √(6 - 3√2) 的值。
二次根式测试题及答案
二次根式测试题及答案一、选择题1. 下列二次根式中,最简二次根式是_____。
A. √36B. √18C. √27D. √50答案:B2. 下列各数中是无理数的是_____。
A. √9B. √16C. √20D. √39答案:D3. 若|x|≤5,则_____。
A. -5≤x≤5B. 0≤x≤5C. -5≤x≤0D.0≤x≤-5答案:A4. 下列等式中,正确的是_____。
A. √(2+√3) = √3 + √2B.√(2-√3) = √3 - √2C. √(2+√3)(2-√3) = 2D. √(2+√3)(2-√3) = √2 - √3答案:C5. 已知 a、b 是正数,且 a+b=1,则_____。
A. √a+√b>1B. √a+√b<1C. √a+√b=1D. 无法确定答案:A二、填空题1. 若一个二次根式的被开方数含有同类项,则可以合并同类项后,再开平方根,即_____。
答案:√(a+b) = √a + √b2. 下列等式中,正确的是_____。
答案:√(2+√3)(2-√3) = 2-√33. 若|x|≤4,则 -4≤x≤4,若将|x|≤4 改写为二次根式,则为_____。
答案:√4≤√x≤√(-4) 或 -√4≤√x≤√44. 已知 a、b 是正数,且 a+b=1,则_____。
答案:√a+√b>1三、解答题1. 化简二次根式:√(3x^2+6x+9)答案:√(3x^2+6x+9) = √(3(x+1)^2) = √3(x+1)2. 求解二次根式方程:√2x-3=5答案:首先将方程两边平方,得 2x-3=25,解得x=14/2=7。
然后将 x=7 代入原方程检验,得√27-3=5,左右两边相等,所以 x=7 是方程的解。
3. 若 |x-1|≤2,求 |x+1| 的最小值。
答案:首先根据 |x-1|≤2,得 -1≤x≤3。
然后根据 |x+1| 的性质,当 x=-1 时,|x+1| 取最小值 0。
二次根式基础测试题及答案解析
二次根式基础测试题及答案解析一、选择题1.-中,是最简二次根式的有( )A.2个B.3个C.4个D.5个【答案】A【解析】,不是最简二次根式;-,不是最简二次根式;是最简二次根式.共有2个最简二次根式.故选A.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.下列各式中计算正确的是()=A+=B.2+=C=D.22【答案】C【解析】【分析】结合选项,分别进行二次根式的乘法运算、加法运算、二次根式的化简、二次根式的除法运算,选出正确答案.【详解】解:不是同类二次根式,不能合并,故本选项错误;B.2=D.=1,原式计算错误,故本选项错误.2故选:C.【点睛】本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键.3.下列各式计算正确的是( )A 1082==-= B .()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.已知n 是整数,则n 的最小值是( ).A .3B .5C .15D .25 【答案】C【解析】【分析】【详解】解:135n =也是整数,∴n 的最小正整数值是15,故选C .5.下列各式计算正确的是( )A .2+b =2bB =C .(2a 2)3=8a 5D .a 6÷ a 4=a 2【答案】D【解析】解:A.2与b不是同类项,不能合并,故错误;B不是同类二次根式,不能合并,故错误;C.(2a2)3=8a6,故错误;D.正确.故选D.6.x的取值范围是()A.x<1 B.x≥1C.x≤﹣1 D.x<﹣1【答案】B【解析】【分析】根据二次根式有意义的条件判断即可.【详解】解:由题意得,x﹣1≥0,解得,x≥1,故选:B.【点睛】本题主要考查二次根式有意义的条件,熟悉掌握是关键.7.若x、y4y=,则xy的值为()A.0 B.12C.2 D.不能确定【答案】C【解析】由题意得,2x−1⩾0且1−2x⩾0,解得x⩾12且x⩽12,∴x=12,y=4,∴xy=12×4=2.故答案为C.8.m的值不可以是()A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】 将m 与18化简,根据同类二次根式的定义进行判断. 【详解】解:18=32A. 18m =时,12==84m ,是同类二次根式,故此选项不符合题意; B. 4m =时,=2m ,此选项符合题意C. 32m =时,=32=42m ,是同类二次根式,故此选项不符合题意;D. 627m =时,62==273m ,是同类二次根式,故此选项不符合题意 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.9.如果最简二次根式38a -与172a -能够合并,那么a 的值为( ) A .2B .3C .4D .5 【答案】D【解析】【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【详解】根据题意得,3a-8=17-2a ,移项合并,得5a=25,系数化为1,得a=5.故选:D .【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.10.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b<0<a,且|a|<|b|,则a+b<0,b-a<0,∴原式=-(a+b)+(b-a)=-a-b+b-a=-2a,故选A.【点睛】.11.下列各式中,属于同类二次根式的是()A B.C.3D.【答案】C【解析】【分析】化简各选项后根据同类二次根式的定义判断.【详解】A的被开方数不同,所以它们不是同类二次根式;故本选项错误;B、C、3的被开方数相同,所以它们是同类二次根式;故本选项正确;D故选:C.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.12.的结果是A.-2 B.2 C.-4 D.4【答案】B【解析】2(2)22-=-=故选:B13.如果代数式1m mn -+有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.14.若2a a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A 项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.15.如果,则a 的取值范围是( ) A . B . C . D .【答案】B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B.. 考点:二次根式的性质.16.下列计算错误的是( )A.BC D【答案】A【解析】【分析】【详解】选项A,不是同类二次根式,不能够合并;选项B,原式=2÷=选项C,原式=选项D,原式==.故选A.17.下列计算或化简正确的是()A.=BC3=-D3=【答案】D【解析】解:A.不是同类二次根式,不能合并,故A错误;B=,故B错误;C3=,故C错误;D3===,正确.故选D.18.有意义时,a的取值范围是()A.a≥2B.a>2 C.a≠2D.a≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a﹣2≥0,解得:a≥2,根据分式有意义的条件:a﹣2≠0,解得:a≠2,∴a>2.故选B.19.计算÷的结果是()A B C.23D.34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:4÷ 1(24=⨯÷=16=⨯=. 故选:A .【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.20.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.。
二次根式测试题及答案
二次根式测试题及答案一、选择题(每题 3 分,共 30 分)1、下列式子一定是二次根式的是()A √xB √x²+1C √x² 1D √1 / x答案:B解析:二次根式的被开方数必须是非负数。
选项 A 中,当 x < 0 时,√x 无意义;选项 C 中,当-1 < x < 1 时,x² 1 < 0 ,√x² 1 无意义;选项 D 中,当 x < 0 时,√1 / x 无意义。
而对于选项 B,因为x² ≥ 0 ,所以 x²+1 ≥ 1 ,√x² + 1 一定有意义。
2、若√(2 a)²= a 2 ,则 a 的取值范围是()A a < 2B a >2C a ≤ 2D a ≥ 2答案:D解析:因为√(2 a)²=|2 a| ,而√(2 a)²= a 2 ,所以|2 a|= a 2 ,即2 a ≤ 0 ,解得a ≥ 2 。
3、下列计算正确的是()A √2 +√3 =√5B 2 +√2 =2√2C 3√2 √2 =3D √2 × √3 =√6答案:D解析:选项 A,√2 与√3 不是同类二次根式,不能合并;选项 B,2 与√2 不是同类二次根式,不能合并;选项 C,3√2 √2 =2√2 。
4、化简√( 5)²的结果是()A 5B 5C ± 5D 25答案:A解析:√( 5)²=| 5| = 5 。
5、若√x 1 +√1 x = 0 ,则 x 的值为()A 0B 1C 1D 2答案:B解析:因为二次根式有意义的条件是被开方数为非负数,所以 x 1 ≥ 0 且1 x ≥ 0 ,解得 x = 1 。
6、下列二次根式中,最简二次根式是()A √1 /2B √02C √2D √20答案:C解析:选项 A,√1 / 2 =√2 / 2 ;选项 B,√02 =√1 / 5 =√5 / 5 ;选项 D,√20 =2√5 。
初中数学二次根式基础测试题附答案
B 、 a3 a2 a5 ,故本选项错误;
C 、 ( 5 1)( 5 1) 5 1 4 ,故本选项正确;
D 、 a2 2 a4 ,故本选项错误;
故选: C .
【点睛】 本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法 是解题的关键.
8.下列计算或运算中,正确的是()
A. 2 a a 2
B. 18 8 2
C. 6 15 2 3 3 45
D. 3 3 27
【答案】B
【解析】
【分析】
根据二次根性质和运算法则逐一判断即可得.
【详解】
A、2 a =2× a 2a ,此选项错误;
2
2
B、 18 8 =3 2 -2 2 = 2 ,此选项正确; C、 6 15 2 3 3 5 ,此选项错误;
B、 1 2 , 2 与 1 是同类二次根式;
22
2
C、 4ab 2 ab, ab4 b2 a , 4ab 与 ab4 不是同类二次根式;
D、 a 1 与 a 1 不是同类二次根式;
故选:B. 【点睛】 本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式 后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
【点睛】
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
16.下列各式中是二次根式的是( )
A. 3 8
【答案】C 【解析】 【分析】
B. 1
C. 2
根据二次根式的定义逐一判断即可. 【详解】
A、 3 8 的根指数为 3,不是二次根式;
B、 1 的被开方数﹣1<0,无意义;
二次根式测试题及答案
二次根式测试题及答案一、选择题(每题4分,共20分)1. 下列哪个数是一个二次根式?A) 3 B) 9 C) -4 D) 132. 下列哪一项是二次根式的定义?A) a² = b B) √a = b C) a = b² D) √a² = b3. √64的值等于:A) 6 B) 8 C) 4 D) 164. √(25 + 9)的值等于:A) 34 B) 7 C) 8 D) 65. 下列哪个数是一个无理数?A) 5 B) 36 C) -9 D) √3二、填空题(每题4分,共20分)1. 一个二次根式的指数为_________。
2. √(16 + 9)的值等于_________。
3. 5的二次根式是_________。
4. √(25 - 16)的值等于_________。
5. √49的值等于_________。
三、解答题(每题10分,共40分)1. 计算以下二次根式的值:√(5² + √16)解:首先计算5²,得到25。
然后计算√16,得到4。
最后将25与4相加,得到29。
所以,√(5² + √16)的值等于29。
2. 解方程:√(x - 2) + 3 = 7解:首先将方程两边减去3,得到√(x - 2) = 4。
然后两边进行平方运算,得到x - 2 = 16。
最后将方程两边加上2,得到x = 18。
所以,方程的解为x = 18。
3. 计算以下二次根式的值:√(2 - √3) + √(2 + √3)解:首先计算√3,得到一个无理数。
然后根据加法和减法的运算法则,将两个二次根式相加。
最后计算得到的结果。
由于表达式较复杂,无法直接计算出精确值。
所以,结果可以近似表示为一个无理数。
4. 计算以下二次根式的值:√(2√5 + √20)解:首先计算√5,得到一个无理数。
然后计算√20,得到另一个无理数。
接下来将两个无理数相加,并且进行化简。
最后计算得到的结果。
二次根式单元测试题及答案
二次根式单元测试题及答案题目1. 化简下列根式:$\sqrt{12}$答案:$\sqrt{12} = \sqrt{4 \cdot 3}=2\sqrt{3}$题目2. 计算下列各根式的值并化简:$\sqrt{9}+\sqrt{16}$答案:$\sqrt{9}+\sqrt{16} = 3+4=7$题目3. 计算下列各根式的值:$\sqrt{25} - \sqrt{9}$答案:$\sqrt{25} - \sqrt{9} = 5 - 3 = 2$题目4. 计算下列各根式的值:$2\sqrt{8} - 3\sqrt{18}$答案:$2\sqrt{8} - 3\sqrt{18} = 2\sqrt{4 \cdot 2} - 3\sqrt{9 \cdot 2} \\ = 2 \cdot 2\sqrt{2} - 3 \cdot 3\sqrt{2} \\= 4\sqrt{2} - 9\sqrt{2} \\= -5\sqrt{2}$题目5. 求下列各根式的值:$(\sqrt{5}+2)^2$答案:$(\sqrt{5}+2)^2 = (\sqrt{5}+2)(\sqrt{5}+2) \\= 5 + 2\sqrt{5} + 2\sqrt{5} + 4 \\= 9 + 4\sqrt{5}$题目6. 将下列各根式化为最简根式:$\sqrt{72}$答案:$\sqrt{72} = \sqrt{36 \cdot 2} = \sqrt{6^2 \cdot 2} \\= 6\sqrt{2}$题目7. 将下列各根式化为最简根式:$2\sqrt{50}$答案:$2\sqrt{50} = 2 \cdot \sqrt{25 \cdot 2} = 2 \cdot 5\sqrt{2} \\ = 10\sqrt{2}$题目8. 将下列各根式化为最简根式:$3\sqrt{27}$答案:$3\sqrt{27} = 3\sqrt{9 \cdot 3} = 3 \cdot 3\sqrt{3} \\= 9\sqrt{3}$题目9. 求解下列方程:$x^2 - 4 = 0$答案:$x^2 - 4 = 0 \\(x - 2)(x + 2) = 0 \\x - 2 = 0 \quad \text{或} \quad x + 2 = 0 \\x = 2 \quad \text{或} \quad x = -2$题目10. 求解下列方程:$2x^2 - 16 = 0$答案:$2x^2 - 16 = 0 \\2(x^2 - 8) = 0 \\x^2 - 8 = 0 \\(x - \sqrt{8})(x + \sqrt{8}) = 0 \\x - \sqrt{8} = 0 \quad \text{或} \quad x + \sqrt{8} = 0 \\x = \sqrt{8} \quad \text{或} \quad x = -\sqrt{8} \\x = 2\sqrt{2} \quad \text{或} \quad x = -2\sqrt{2}$题目11. 求解下列方程:$x^2 + 5x + 6 = 0$答案:$x^2 + 5x + 6 = 0 \\(x + 2)(x + 3) = 0 \\x + 2 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -2 \quad \text{或} \quad x = -3$题目12. 求解下列方程:$2x^2 + 7x + 3 = 0$答案:$2x^2 + 7x + 3 = 0 \\(2x + 1)(x + 3) = 0 \\2x + 1 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -\frac{1}{2} \quad \text{或} \quad x = -3$题目13. 解方程组:$$\begin{cases}x^2 + y^2 = 25 \\x + y = 7\end{cases}$$答案:将第二个方程展开得到 $y = 7-x$,代入第一个方程得到:$$x^2 + (7-x)^2 = 25 \\x^2 + 49 - 14x + x^2 = 25 \\2x^2 - 14x + 24 = 0 \\x^2 - 7x + 12 = 0 \\(x - 3)(x - 4) = 0 \\x - 3 = 0 \quad \text{或} \quad x - 4 = 0 \\x = 3 \quad \text{或} \quad x = 4$$代入第二个方程可得:当 $x = 3$ 时,$y = 7 - 3 = 4$;当 $x = 4$ 时,$y = 7 - 4 = 3$。
(完整版)二次根式测试题附答案
二次根式测试题(1)时间:45分钟 分数:100分一、选择题(每小题2分,共20分)1. 下列式子一定是二次根式的是( )A .B .C .D .2--x x 22+x 22-x 2.若,则( )b b -=-3)3(2A .b>3 B .b<3 C .b≥3 D .b≤33.若有意义,则m 能取的最小整数值是( )13-m A .m=0 B .m=1 C .m=2 D .m=34.若x<0,则的结果是( )xx x 2-A .0 B .—2 C .0或—2 D .25.下列二次根式中属于最简二次根式的是( )A .B .C .D .1448b a 44+a 6.如果,那么( ))6(6-=-∙x x x x A .x≥0 B .x≥6 C .0≤x≤6 D .x 为一切实数7.小明的作业本上有以下四题:①;②;③;④24416a a =a a a 25105=⨯a aa a a =∙=112.做错的题是( )a a a =-23A .① B .② C .③ D .④8.化简的结果为( )6151+A . B . C . D .3011330303033011309.若最简二次根式的被开方数相同,则a 的值为( )a a 241-+与A .B .C .a=1D .a= —143-=a 34=a 10.化简得( ))22(28+-A .—2 B . C .2 D . 22-224-二、填空题(每小题2分,共20分)11.① ;② .=-2)3.0(=-2)52(12.二次根式有意义的条件是 .31-x 13.若m<0,则= .332||m m m ++14.成立的条件是 .1112-=-∙+x x x 15.比较大小: .321316. , .=∙y xy 82=∙271217.计算= .3393a a a a -+18.的关系是 .23231+-与19.若,则的值为 .35-=x 562++x x 20.化简的结果是 .⎪⎪⎭⎫ ⎝⎛--+1083114515三、解答题(第21~22小题各12分,第23小题24分,共48分)21.求使下列各式有意义的字母的取值范围:(1) (2)(3) (4)43-x a 831-42+m x 1-22.化简:(1) (2))169()144(-⨯-22531-(3) (4)5102421⨯-n m 21823.计算:(1) (2) 21437⎪⎪⎭⎫ ⎝⎛-225241⎪⎪⎭⎫ ⎝⎛--(3) (4) )459(43332-⨯⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(5) (6) 2484554+-+2332326--四、综合题(每小题6分,共12分)24.若代数式有意义,则x 的取值范围是什么?||112x x -+25.若x ,y 是实数,且,求的值.2111+-+-<x x y 1|1|--y y 二次根式测试题(2)时间:45分钟分数:100分一、选择题(每小题2分,共20分)1.下列说法正确的是( )A .若,则a<0B .a a -=20,2>=a a a 则若C . D . 5的平方根是4284b a b a =52.二次根式的值是( )13)3(2++m m A . B . C . D .02332223.化简的结果是( ))0(||2<<--y x x y x A .x y 2- B .y C .y x -2 D .y -4.若是二次根式,则a ,b 应满足的条件是( )ba A .a ,b 均为非负数 B .a ,b 同号C .a≥0,b>0D .0≥ba5.已知a<b ,化简二次根式的正确结果是( )b a 3-A . B . ab a --ab a -C . D .ab a aba -6.把根号外的因式移到根号内,得( )mm 1-A . B . C . D .m m -m --m-7.下列各式中,一定能成立的是( ).A .B .22)5.2()5.2(=-22)(a a =C .=x-1 D .122+-x x 3392+⋅-=-x x x 8.若x+y=0,则下列各式不成立的是( )A .B .022=-y x 033=+y x C . D .022=-y x 0=+y x 9.当时,二次根式的值为,则m 等于( )3-=x 7522++x x m 5A . B . C . D .22255510.已知,则x 等于( )1018222=++x x x x A .4 B .±2 C .2 D .±4二、填空题(每小题2分,共20分)11.若不是二次根式,则x 的取值范围是 .5-x 12.已知a<2, .=-2)2(a 13.当x= 时,二次根式取最小值,其最小值为 .1+x 14.计算: ; .=⨯÷182712=÷-)32274483(15.若一个正方体的长为,宽为,高为,则它的体积cm 62cm 3cm 2为 .3cm 16.若,则 .433+-+-=x x y =+y x 17.若的整数部分是a ,小数部分是b ,则 .3=-b a 318.若,则m 的取值范围是 .3)3(-∙=-m m m m 19.若 .=-⎪⎪⎭⎫ ⎝⎛-=-=y x y x 则,432311,13220.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+= .三、解答题(21~25每小题4分,第26小题6分,第27小题8分,共44分)21. 22.21418122-+-3)154276485(÷+-23. 24. x xx x 3)1246(÷-21)2()12(18---+++25. 26.已知:,求的0)13(27132--+-132-=x 12+-x x 值.27.已知:。
二次根式练习题及答案
二次根式练习题及答案一、选择题1. 计算下列二次根式的结果:A. √16 = 4B. √25 = 5C. √36 = 6D. √49 = 7正确答案:A2. 以下哪个二次根式是同类二次根式?A. √2 和3√2B. √3 和√12C. √5 和2√5D. √7 和√49正确答案:B3. 计算下列二次根式的加法:√5 + √3 =A. √8B. √15C. √18D. 无法计算正确答案:D二、填空题4. 将下列二次根式化简:√121 = ____答案:115. 合并同类二次根式:3√2 + √2 = ____答案:4√26. 计算二次根式的除法:(√6 / √3) = ____答案:√2三、计算题7. 计算下列表达式的值:(√8 + √18) / √2解:首先化简根式,√8 = 2√2,√18 = 3√2,代入原式得:(2√2 + 3√2) / √2 = 5√2/ √2 = 58. 解二次根式方程:x√2 = √3解:将方程两边同时除以√2,得:x = √(3/2) = √6 / 2四、应用题9. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
解:根据勾股定理,斜边长度为:c = √(3² + 4²) = √(9 + 16) = √25 = 510. 一个正方形的面积为16平方厘米,求其边长。
解:设边长为a,则a² = 16,所以a = √16 = 4厘米。
五、证明题11. 证明√2是一个无理数。
证明:假设√2是有理数,即存在两个互质整数m和n,使得√2= m/n。
根据有理数的性质,可以设m和n的最大公约数为1。
将等式两边平方,得到2n² = m²,从而m²是偶数,所以m也是偶数,设m = 2k。
代入原等式,得到2n² = (2k)²,即n² = 2k²,说明n也是偶数,这与m和n互质矛盾。
二次根式单元测试题及答案word
二次根式单元测试题及答案word一、选择题(每题3分,共30分)1. 下列选项中,哪一个是二次根式?A. \(\sqrt{2}\)B. \(2\sqrt{2}\)C. \(\sqrt{2} + 1\)D. \(\sqrt{2} \times 3\)答案:A2. 计算 \(\sqrt{4}\) 的值是多少?A. 1B. 2C. 4D. -2答案:B3. 如果 \(x = \sqrt{9}\),那么 \(x\) 的值是多少?A. 3B. -3C. 3或-3D. 9答案:A4. 将 \(\sqrt{3} \times \sqrt{3}\) 化简,结果是多少?A. \(\sqrt{9}\)B. \(3\sqrt{3}\)C. 3D. \(\sqrt{3}\)答案:C5. 计算 \(\sqrt{16} - \sqrt{4}\) 的值是多少?A. 2B. 4C. 0D. 2\(\sqrt{2}\)答案:A6. 根据二次根式的性质,\(\sqrt{a^2} = |a|\),下列哪个选项是正确的?A. \(\sqrt{(-2)^2} = 2\)B. \(\sqrt{(-2)^2} = -2\)C. \(\sqrt{(-2)^2} = \pm 2\)D. \(\sqrt{(-2)^2} = -\sqrt{2}\)答案:A7. 计算 \(\sqrt{2} + \sqrt{2} = ?\)A. \(2\sqrt{2}\)B. \(\sqrt{4}\)C. 4D. \(\sqrt{8}\)答案:A8. 已知 \(a = \sqrt{7}\),\(b = \sqrt{3}\),那么 \(a^2 - b^2\) 的值是多少?A. 4B. 7C. 10D. 14答案:C9. 下列哪个表达式可以化简为 \(\sqrt{2}\)?A. \(\sqrt{4}\)B. \(\sqrt{8} \div 2\)C. \(\sqrt{2} \times \sqrt{2}\)D. \(\sqrt{2} + \sqrt{2}\)答案:B10. 计算 \(\sqrt{25} \times \sqrt{4}\) 的值是多少?A. 10B. 20C. 50D. 100答案:A二、填空题(每题4分,共20分)1. \(\sqrt{81}\) 的值是 ________。
二次根式经典测试题及答案
二次根式经典测试题及答案一、选择题1.a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A 项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.2.下列计算错误的是( )A =B =C .3=D =【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】解:==,正确;==C. =D. ==故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.3.下列式子正确的是( )A 6=±B C 3=- D 5=-【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】解:6=,故A 错误.B 错误.3=-,故C 正确.D. 5=,故D 错误.故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.4.若代数式1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.5.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.6.下列运算正确的是( )A .B)2=2 CD==3﹣2=1【答案】B【解析】【分析】根据二次根式的性质和加减运算法则判断即可.【详解】根据二次根式的加减,可知A 选项错误;根据二次根式的性质2=a (a≥02=2,所以B 选项正确;(0)=0(=0)(0)a a a a a a ⎧⎪=⎨⎪-⎩><﹣11|=11,所以C 选项错误;DD 选项错误.故选B .【点睛】此题主要考查了的二次根式的性质2=a (a≥0(0)=0(=0)(0)a a a a a a ⎧⎪=⎨⎪-⎩><,正确利用性质和运算法则计算是解题关键.7.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=- C.1)4=D .()422a a -=【答案】C【解析】【分析】根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、1)514=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.8.+在实数范围内有意义的整数x 有( ) A .5个B .3个C .4个D .2个【答案】C【解析】∴30430x x +>⎧⎨-≥⎩ ,解得:433x -<≤, 又∵x 要取整数值,∴x 的值为:-2、-1、0、1.即符合条件的x 的值有4个.故选C.9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<<【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数, 则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.在下列各组根式中,是同类二次根式的是()A BC D【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A=不是同类二次根式;=是同类二次根式;B2C b==D不是同类二次根式;故选:B.【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.11.若x+y=,x﹣y=3﹣的值为()A.B.1 C.6 D.3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=,x﹣y=3﹣,==1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.12.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、2==D 2==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.13.下列二次根式中,属于最简二次根式的是( )A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.14.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩可求解.15.下列二次根式是最简二次根式的是( )ABCD【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.16.下列运算正确的是( )A=B=C123= D2=-【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A.≠A错误;B.=,故B正确;=,故C错误;C.3D.2=,故D错误.故选:B.【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.17.若a b>)A.-B.-C.D.【答案】D【解析】【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a3b≥0∵a>b,∴a>0,b<02=-,ab a a ab故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.18.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】=解:2<<∵91216<<∴34<<∴估计值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.下列二次根式中的最简二次根式是()A B C D【答案】A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D,不是最简二次根式;2故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.20.的结果是A.-2 B.2 C.-4 D.4【答案】B【解析】22故选:B。
二次根式测试题及答案
二次根式测试题及答案一、选择题(每题3分,共15分)1. 计算下列二次根式的结果:\(\sqrt{4}\) 的值是()A. 2B. -2C. 4D. 02. 对于二次根式 \(\sqrt{9+x}\),若 \(x\) 的值为负数,则下列哪个选项是正确的?A. \(x\) 必须小于 -9B. \(x\) 必须大于 -9C. \(x\) 可以是任何实数D. \(x\) 必须等于 -93. 将下列二次根式化简为最简形式:\(\sqrt{64x^2}\) 可以化简为()A. \(8x\)B. \(8|x|\)C. \(-8x\)D. \(16x\)4. 若 \(\sqrt{a}\) 是有理数,那么 \(a\) 必须满足的条件是()A. \(a\) 必须大于0B. \(a\) 必须等于0C. \(a\) 必须小于0D. \(a\) 可以是任何实数5. 计算下列二次根式的加法:\(\sqrt{7} + \sqrt{7}\) 的结果是()A. \(2\sqrt{7}\)B. \(7\)C. \(14\)D. \(\sqrt{14}\)二、填空题(每题2分,共10分)1. 计算 \(\sqrt{25}\) 的结果是______。
2. 若 \(\sqrt{x} = 5\),则 \(x\) 的值是______。
3. 化简 \(\sqrt{121}\) 的结果是______。
4. 若 \(\sqrt{y} = -4\),那么 \(y\) 是______(填“有理数”或“无理数”)。
5. 计算 \(\sqrt{8} - \sqrt{18}\) 的结果是______。
三、解答题(每题7分,共28分)1. 计算并化简下列二次根式:\(\sqrt{50} - \sqrt{32}\)2. 解下列方程:\(2\sqrt{x} + 5 = 13\)3. 证明:\(\sqrt{2}\) 是无理数。
四、综合题(每题8分,共16分)1. 若 \(\sqrt{3a+1} + 4 = 9\),求 \(a\) 的值。
二次根式测试题及答案
二次根式混合运算21、4、(1一血)2+4,1、•五-可2、龙XTJ53、〔迈我.刁)(.2-2.3)5、.2『5[6(伤+需)-(伍弋+7^)7、〔迈十.了一1)(.2-,空+1)-8、〔2,忑-,可)三&9、10、+(丙+④_彳(.;2-尬;「、(莎甘)十所12、昉+.折_g ;「3、伍_V^i ;、'V125'14、(7+7)2-(7-⑦215、器打4i x 匸鬲一31000;16、丨.了-刃-|1-迈丨-丨迈十飞-5|.17、.爲•左-.莎+,-|-18、(3厅一卫)(Is+2弓)20、可■(一而)三E ;苗-诉)x(価+術)辽丐-3迈)2⑸;訥帯2亠迟1 3莎-9g+3•壬i 乔(3,gx 卫)血让电+(虽一1)HI(33_一2b )(且+b )・(V3-2-(应-岛)(五+屈C-gVzS X V14律礙唸)¥(3^2-1)(L+3伍)-(3近-1)2;22、 23、 24、 25、 26、27、2&29、 30、31、32、33、34、35、 36、 37、 38、 39、 40、 41、 2;12+3-..;_45;Ve 葩圧+1)殛-血壬骨Cflx 而CV3-V2)(_■.帀)2-(-T )V27+2VsV2+1(血+V5)2-(血+価)(伍■近):;(°飞一4g+g.§)十殳E(V5"V3+V2)(V5+V3~V2)(-2)=屆-4运(4-亦)-片-(2-2)2*顶-2巫+(-号-1)243、 44、45、46、47、 4&49、50、 51、 52、53、 54、55、 56、57、58、 59、 60、61、62、63、3.莎-一虧-g+Cs-2)Cs+2)10VE X 弋_V16X V18-9.45■=■3.15x_|「眉_2〔眈(V3+V2+V5)(V3~V2~V5)V1S+2^32CV2_2^3)(V2+2V3)V18-(V12+2V2)73(V27+SV3)_3±_X_JLV3~V2V&(屈+顶)-(V&V125)(V5+V6)(V5~V6)(二+1)2_2..玩(.1+1)(1_2)_C2_1)2+C2+1)2_\5+Q2005_^2004)65、66、67、68、 69、 70、 71、 72、 73、 74、 75、 76、 77、 7& 79、 80、 81、82、 83、 84、85、86、87、Ex 适+左+亏_89、血~^2怖-屈90、•可-汙1皿91、.五X(帀+垃1_药).92、空193、93工一F十2&崇38K;94、(升43(「_引2+(2+弓(2-引;95、-几$+3弓〔3-衣弓)一!^冷;97、2a[98、丨.亏一角丨+.可一.伍;101、(刁+.可2008(一了-迈)2009. 102、3亍一218+5馬;103、-跖弓4-|「J;104、容105、(3•.左+書)1亏106、(巧-1)(,孕1)-(,住-24)三飞107、;108、—宀(〒-可(3+可;109、一晋+一五7_.弓?1_1 Vs (.电-一〒)(一E+一〒)+2 〔茁可0+1_3|_2_1⑷(飞_2「可)x .亏_6.1■1(2.卫帀);CV5+V2)(亦_(73~V2)2 〔血一1)2+^-Q2010+2010)° VoTsWii~(書_雇) ■-y^2712■^/48) +6o ; 3 M 4Vs110、111、114、 115、 116、117、118、119、120、121、122、 123、124、125、 Word ⑵(7+4了)(7_4七) +(2+二) 飞3V 2参考合案1、原式=2二-3予-亏;2、原式=.^jx£j=丽=30;3、原式=2-12=-10.4、原式=1-2迈+2+2迈4〔迈-1)-迈=2.5、原式=2,5才(u+2,5“5n)=2,5勺-6u-2,5a=-6a.7、原式=(二)2-(.亏-1)2=2-(3-231)=2亏-28、原式U严W飞二_*二二一乎9、.原式=(布—2肩+")x疼(羽+3^)x逅=1+^[^3310、原式=—+』2P44丁‘彳乙11、原式=(12、原式=2j+33-=;13、原式==-2;33祈514、原式=(7+〒+「了)(7+〒-升了)=14x2斤=23.了15、原式=号心冷X12-10=3+6-10=-1;16、原式=2-計1一戈+2+3一5=-2.17、原式=_恳•.花-2.書+=3書—2爲+.=55518、原式=(3.^-2亏)(3.亍2二)=18-12=6;19、原式=長(2迈-迈+二!)=亏(「◎+£)=E+1__3320、原式=-3g・52宁.&=-15一6宁一&=-15;21、原式=3.予;-2〔+T尾22、原式=3a+-2b23、原式=3-2运+1-(2-3)=5-2二.24、原式专律14一為屈X14=7厂”乙原式=(2号+号)X 1 V -2=3-2=1 原式=,+予X 63ir -m .3ir=2m 3ir +3m .3ir -m .3ir=°;原式=咼犬壬F¥+1Y -1+¥+1『原式=12•方-〉弓+6•込=(12-3-+6).手15.亏;X2迁)=6.㊁+6=迈+3-2孑3很+3-2孑3+_2-原式=.6X.&+&x_&X 1=6+1+6=7+&•原式普X3工+6X !_^-2x ・J=2Q+3.Q -24; 原式=2飞- 言夂弓+3-2=2-&-23+1 =(63-+E-2可+2長-3=3-3+辽--3=-2+二- 3323323原式=,©+(迈+刀(迈-1)+1-迈=3+殳-迈-2+1-公4 原式=2.号+3飞-7号=-2疋;原式=2」牛21xg=Z 討沪14-原式=10-7+=3+!;22 原式=1X (22-刁+仝)=山咒2+lx =£+1;_33 原式=.1-1;__原式=2+3+2,.'3X2-(2-3)=5+2&+1=6+2&原式=2+1-(•厉-込)=3-1=2^ 原式=17-(19-)=-2+£迈; 原式=2.兰-3兰-2迁-3_K - 原式=4.3+12込=1@帀; 原式=¥+2..〒-10‘万=—罟〒; 原式=4:-+迄卫 244'三 原式=6-5=1; 原式=12+18-12乞=賀-1殳飞;25、26、27、2&29、30、31、 32、33、34、35、36、37、 38、 39、 40、41、42、43、44、45、 46、47、 4& 49、 50、原式=-4=(6—3—丄)疋+1=+1 55原式=[.*-(.亏-一劝][上+(二-二)】=5—(.£-一可2=5-(5-2电)=2g. 原式=4x2§-16,+12-16-8了=-4-16兀;原式=2-(4-42+2)=2p-6+42=6至-6.V 23 原式=2x2号—2x3号+5—2号+1=上—6号—2号+6=6—7g. ■ila原式=0+2^-3=^-. 原式=一技斤; 原式=-+6=-■&+"6=0- V 57 *X 打和.疋一卫-互x 卫=2-了+方-2去左 (18-莎三2p=g 亟W-号莎巨=壬_斗1原式=9.乜-14.矛4了=-了;原式=:曲*-4只3.去.㊁-12二=-11_瓦原式=2.3x =12.6;原式=X3gx.=-些;V57V105原式=12乜-2亍6了=16‘方;原式=(4乞-2左+6•迈)x.=2亍2241原式=27*+(3x 亏X¥)x.—&迈=3亏x.-&W=-8㊁;93原式=Cl )2-('E+;E )2=3-(2+2[75+5)=-4-2I 'T5 原式=3立+8立=11迈; 原式=2-12=-10; 原式=^23^23-61石=0; 51、52、 53、54、55、56、57、58、 59、 60、 61、62、63、64、65、66、 67、 68、 69、 70、 71、 72、 73、74、75、76、 原式=(4飞-2.空+6込)+2迁=2.审2原式=6.号-3飞-£<+577、原式=十=一=1.4从22278、原式之页":环-爭而£-寺戶+匸送戶+乎79、原式=3飞-锂了+2至)=3迈-殳,了-殳迈=迈-殳,了;80、原式=,3(3,3+2,3)=9+6=1581、原式=(一了+込)2-^=3+2+2乞-乙=5+E82、原式=4;5+315—2,2+4'.■2=F.「5+Z/2;83、原式=北电+孔迈-10.15;84、原式=5-6=-1;85、原式=4+2二_呂飞=4_&飞86、(1+_劝(1-3-(.㊁-1)2+(迈+1)2=1-C2)2-(2-2_卫+1)+2+2空+1=1-2—2+2•.龙-1+2+2・「戈+1=4・「2-1.87、原式=亏+4x.—亏+1=亏+门-,亏+1=1+2488、原式=(40了-诣了+8^)十飞=30上十主=15卫;89、原式=2迈-迈+2=2+p.90、原式=3飞-锂+.引+1=3弓+1=2了-1;91、原式=2弓况(5弓+3-4弓)=2.茅X2.亏=12.92、原式=2+2•迈+4+2:=姑93、原式=9I'3X-14:+24l3H=;94、原式=(7+4二)(7-4手)+4-3=49-48+1=2;95、原式=-4x殳匕+9.空-12-O-D=-8七+9匕-12-㊁+1=-11;96、原式=.-:+'•=2x工-工+=空j X可*4zz97、原式=2a(b爲-2x3b一:爲+)=2ob書-+ab£=512222v0398、原式=电—+3-5戈=2二-4上;99、原式=12-4二+1=13-4手;100、原式=22+—护2SS101、原式=()=迓一乜102、原式=3x2迈-2x3-「^5x4力=6迈-6「020迈=20•力;103、原式=7-..&-3':Q|+2=6|;e原式¥・(-舟)乂=-暑扣=春%忑原式=3飞+.电+右上=3込+孑普-亏; 原式=3-1-=2-3+ 原式仝2+1—;x2亏=2+1-2=1; V55_ 原式=3-2二+1-1=3-2j 原式=+4•二-3工=丄 22 五二亏—空二飞_1^3-1=0;V3V3V3' (.号一刁(■角+万)+2=(可'-行)2+2=5-7+2=0;(飞_2.可)x .亏-6g=玉-4玉-号三=-9.◎-号亍-普原式=4-5=-1; 原式Px 巴=1;ba原式=5-2-5+2乞=2飞一戈; 原式=- 原式=2,了(5〒+了-4引=2jj-2.1=12;原式=49-48+2+,「&=3+&.原式==弓一方-殳了+3卫=-飞 •L105、106、107、108、109、110、111、 112、 113、 114、115、116、117、118、119、120、 121、 122、 123、 124、125、-3|-2-1=1+3-2=32; 22 原式=4-2了+一了-1=3-込原式==3-2=1. V5 原式=_2.&+1+6J 3=4飞+1。
二次根式经典测试题(附答案解析)
二次根式经典测试题(附答案解析)1. 问题:求下列二次根式的值并化简:$$\sqrt{9}$$解析:根据定义,$\sqrt{9}$表示求一个数的平方根,而9的平方根等于3,因此$\sqrt{9}=3$。
2. 问题:计算下列二次根式的值:$$\sqrt{16}+\sqrt{25}$$解析:根据定义,$\sqrt{16}$表示求一个数的平方根,而16的平方根等于4;同样,$\sqrt{25}$表示求一个数的平方根,而25的平方根等于5。
将两个平方根相加得到$$\sqrt{16}+\sqrt{25}=4+5=9$$3. 问题:化简下列二次根式:$$\sqrt{18}$$解析:18可以分解为$2\times9$,而$\sqrt{16}=\sqrt{2\times9}=\sqrt{2}\times\sqrt{9}=\sqrt{2}\times3=\sq rt{18}=3\sqrt{2}$4. 问题:将下列二次根式化为最简形式:$$\sqrt{48}$$解析:48可以分解为$16\times3$,而$\sqrt{48}=\sqrt{16\times3}=\sqrt{16}\times\sqrt{3}=4\sqrt{3}$5. 问题:计算下列二次根式的值:$$\sqrt{64}+\sqrt{81}-2\sqrt{36}$$解析:根据定义,$\sqrt{64}=8$,$\sqrt{81}=9$,$\sqrt{36}=6$。
将这三个值代入原式得到 $$\sqrt{64}+\sqrt{81}-2\sqrt{36}=8+9-2\times6=8+9-12=5$$6. 问题:对于一个正实数x,求下列表达式的值:$$(\sqrt{x}+2)(\sqrt{x}-2)$$解析:根据乘法公式$$(a+b)(a-b)=a^2-b^2$$,将表达式$(\sqrt{x}+2)(\sqrt{x}-2)$代入公式得到 $$(\sqrt{x}+2)(\sqrt{x}-2)=\sqrt{x}^2-(2)^2=x-4$$7. 问题:求下列方程的解集:$$\sqrt{x^2+6x+9}=3$$解析:根据定义,$\sqrt{a}=b$可以转化为$a=b^2$,将方程$\sqrt{x^2+6x+9}=3$转化为$x^2+6x+9=(3)^2=9$。
二次根式测试题及答案
二次根式测试题及答案第二十一章二次根式填空题:1.要使根式 x-3 有意义,则字母 x 的取值范围是x≥3.2.当 x>1/2 时,式子 1/(2x-1) 有意义。
3.要使根式 4-3x/(x+2) 有意义,则字母 x 的取值范围是x<4/3.4.若 4a+1 有意义,则 a 能取得的最小整数值是 a=-1/4.5.若 x-√x 有意义,则 x+1=2.6.使等式 x+2x-3=0 成立的 x 的值为 x=3.7.一只蚂蚁沿图 1 中所示的折线由 A 点爬到了 C 点,则蚂蚁一共爬行了 10 cm。
选择题:8.使式子 3x+2 有意义的实数 x 的取值范围是x≥-2/3.9.使式子 (x-1)/(|x|+2) 有意义的实数 x 的取值范围是x≥1 或 x<-2.10.x 为实数,下列式子一定有意义的是 1/(x2-1)。
11.有一个长、宽、高分别为 5cm、4cm、3cm 的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是5√2 cm。
解答题:13.要使下列式子有意义,字母 x 的取值必须满足以下条件:分母不能为 0,即x≠-1 或x≠1/2.分子的平方根存在,即x≥1.14.△ABC 的周长为 12 cm。
15.等面积的正方形的边长为√(π/4) cm。
16.挖去的圆的半径为 b/2a。
17.(1) x=-4 或 x=1/2.(2) y=-2 或 y=-3.18.2006年黄城市的国内生产总值为264亿元,比2005年增长了23%。
问题:(1) 2005年黄城市的国内生产总值是多少亿元(精确到1亿元)?(2) 预计黄城市在2008年的国内生产总值可达到386.5224亿元,那么2006年到2008年的平均年增长率是多少?(下列数据供计算时选用:1.4641=1.21,1.4884=1.22)探究问题:已知实数x、y满足y=x^2-4+(4-x^2)/(x-2)+3,求9x+8y的值。
(完整版)二次根式测试题及答案
九年级数学第二十一章二次根式测试题(A )时间:45分钟分数:100分一、选择题(每小题2分,共20分)1. 下列式子一定是二次根式的是( )A .B .C .D .2--x x 22+x 22-x 2.若,则( )b b -=-3)3(2A .b>3B .b<3C .b ≥3D .b ≤33.若有意义,则m 能取的最小整数值是( )13-m A .m=0B .m=1C .m=2D .m=34.若x<0,则的结果是( )xx x 2-A .0 B .—2 C .0或—2 D .25.(2005·岳阳)下列二次根式中属于最简二次根式的是( )A .B .C .D .1448ba44+a 6.如果,那么( ))6(6-=-∙x x x x A .x ≥0 B .x ≥6 C .0≤x ≤6 D .x 为一切实数7.(2005·湖南长沙)小明的作业本上有以下四题:①;②;③;④24416a a =a a a 25105=⨯a aa a a=∙=112。
做错的题是( )a a a =-23A .① B .② C .③ D .④8.化简的结果为( )6151+A .B .C .D .3011330303033011309.(2005·青海)若最简二次根式的被开方数相同,则a 的值为a a 241-+与( )A . B . C .a=1 D .a= —143-=a 34=a 10.(2005·江西)化简得( ))22(28+-A .—2B .C .2D . 22-224-二、填空题(每小题2分,共20分)11.① ;② 。
=-2)3.0(=-2)52(12.二次根式有意义的条件是。
31-x 13.若m<0,则=。
332||m m m ++14.成立的条件是。
1112-=-∙+x x x 15.比较大小: 。
321316. ,。
=∙y xy 82=∙271217.计算= 。
二次根式经典测试题及答案解析
二次根式经典测试题及答案解析一、选择题1.一次函数 y mx n 的图象经过第二、三、四象限,则化简 (m n)2 n 2 所得的 结果是 ( ) A .mB . mC . 2m nD . m 2n【答案】 D 【解析】 【分析】根据题意可得﹣ m < 0,n <0,再进行化简即可. 【详解】∵一次函数 y =﹣ mx+n 的图象经过第二、三、四象限, ∴﹣ m <0, n < 0, 即 m >0,n < 0, ∴ (m n)2 n 2=| m ﹣ n|+| n| =m ﹣ n ﹣n =m ﹣ 2n , 故选 D .【点睛】 本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数 的图象与性质是解题的关键 .2.把 a b 根号外的因式移到根号内的结果为( ) .A . a bB . b aC . b aD . a b【答案】 C 【解析】 【分析】先判断出 a-b 的符号,然后解答即可. 【详解】 故选 C . 【点睛】本题考查了二次根式的性质与化简:∵被开方数ba1b 1a0,分母 b a 0,∴ b a 0,∴a b 1a b a 1 b a . bab 0 ,∴原式a 2 | a| .也考查了二次根式的成立的条件以及二次根式的乘法.3.如果最简二次根式 3a 8 与 17 2a 能够合并,那么 a 的值为( ) A .2B . 3C . 4D . 5【答案】 D 【解析】【分析】 根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可. 【详解】根据题意得, 3a-8=17-2a , 移项合并,得 5a=25, 系数化为 1 ,得 a=5. 故选: D .【点睛】 本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.4.下列各式计算正确的是( )A . 102 82102 82 10 8 2解析】 分析】详解】 解: A 、原式 = 36 =6,所以 A 选项错误;B 、原式 = 4 9 = 4 9 =2× 3=,6 所以 B 选项错误;故选: D .点睛】 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.215 36B .C 、D 、,所以 C 选项错误;5,所以 D 选项正确.4式的性质,选择恰当的解题途径,往往能事半功倍.5.在下列算式中: ① 2 5 7 ; ② 5 x 2 x 3 x ;③ 18 8 9 4 4 ;④ a 9a 4 a ,其中正确的是( )2A .①③B . ②④C . ③④D . ①④【答案】 B 【解析】【分析】 根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案 . 【详解】解: 2 与 5 不能合并,故 ① 错误;5 x 2 x 3 x ,故②正确;18 8 3 2 2 2 5 2,故③ 错误; 2 2 2a 9a a 3 a 4 a ,故 ④ 正确; 故选: B.【点睛】 本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行 解题 .6.若 (2a 1)2 1 2a ,则 a 的取值范围是( )分析】根据二次根式的性质得 (2a 1)2 |2a-1| ,则 |2a-1|=1-2a ,根据绝对值的意义得到1≤0,然后解不等式即可.【详解】 解:∵ (2a 1)2 |2a-1| , ∴|2a-1|=1-2a , ∴2a-1 ≤0,1∴a .2 故选: C .1 A . a2【答案】 C【解析】 1B . aC .a 1D .无解2a-【点睛】此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质17.若式子6x1在实数范围内有意义,则x 的取值范围是(77 A.x≥6 【答案】B 【解析】7B.x>67C.x≤6D.7 x<6【分析】根据被开方数大于等于0,分母不等于0 列式计算即可得解.详解】∵ 6x 7 是被开方数,∴ 6x 7 0 ,又∵分母不能为零,∴ 6x 7 0,解得,x> 7;6故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为关键是熟练掌握其意义的条件.0;二次根式的被开方数是非负数,解题的8.计算( 3)2的结果为( )A.± 3 B.-3【答案】C【解析】【分析】C.3 D.9根据a2=|a| 进行计算即可.【详解】( 3) =|-3|=3 ,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键9.下列式子正确的是( )A.36 6 B.3 7 2=-372C.3333D. 5 2 5 【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可【详解】解:A.366,故A 错误.B. 32372,故B 错误C. 3333,故C正确.D.525,故D错误.故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键10.已知12 n 是正偶数,则实数n的最大值为()A.12 B.11 C.8 D.3【答案】C【解析】【分析】如果实数n取最大值,那么12-n有最小值,又知12 n 是正偶数,而最小的正偶数是2,则12 n =2,从而得出结果.【详解】解:当12 n 等于最小的正偶数2 时,n 取最大值,则n=8,故选:C【点睛】本题考查二次根式的有关知识,解题的关键是理解“ 12 n 是正偶数”的含义.11.下列运算正确的是()A.C.(a﹣3)2=a2﹣9【答案】B【解析】【分析】各式计算得到结果,即可做出判断.【详解】解:A、原式不能合并,不符合题意;B.D.原式=a 2﹣ 6a+9,不符合题意; 原式=﹣ 8a 6,不符合题意, 故选: B .点睛】 考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法, 练掌握运算法则是解本题的关键.12.使代数式 a a 有意义的 a 的取值范围为 nnA . a 0B . a 0C . aD .不存在【答案】 C【解析】试题解析: 根据二次根式的性质, 被开方数大于等于 0,可知: a ≥0,且 -a ≥0.所以 a=0.故选 C .【解析】【分析】 判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件 不含分母 ② 被开方数不含能开的尽方的因数或因式,据此可解答 . 【详解】(1) A 被开方数含分母,错误 . (2) B 满足条件,正确 .(3) C 被开方数含能开的尽方的因数或因式 ,错误 .(4) D 被开方数含能开的尽方的因数或因式 ,错误 . 所以答案选 B.【点睛】 本题考查最简二次根式的定义,掌握相关知识是解题关键 .14.下列根式中是最简二次根式的是( A .B . 【答案】 D 【解析】 【分析】A 、B 、C 三项均可化简 .【详解】 解: , , ,故 A 、B 、C 均不是最简二次根式,为最简二次根式,故选择 D. 【点睛】本题考查了最简二次根式的概念 .13.下列各式中,是最简二次根式的是 答案】 B ( )C . 18D . a 2B 、C 、D 、 ① 被开方数)C .D .原式= ,符合题意;15.下列各式中,运算正确的是( )A.B.2 8 4 C.2 8 10 D.2 2 2( 2) 2【答案】B【解析】【分析】根据a2=|a| ,a b ab ( a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】A、 2 2 2 ,故原题计算错误;B、2 8 16 =4,故原题计算正确;C、2 8 3 2 ,故原题计算错误;D、2 和2不能合并,故原题计算错误;故选B.【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.16.当实数x的取值使得x 2有意义时,函数y 4x 1中y 的取值范围是( )A.y 7 B.y 9 C.y 9 D.y 7【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得x 2 0 ,解得x 2 ,4x 1 9 ,即y 9 .故选:B.【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到 题的关键.答案】 B 解析】分析】 根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择. 【详解】A . 5 3 2,故 A 错误; B . 82 2 2- 2= 2 ,故 B 正确;C .41937= 37 ,故 C 错误; 93D .2522 5 = 5-2 ,故 D 错误故选:B .【点睛】 本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.18.二次根式 x 3 有意义的条件是( ) A . x>3B . x>-3C .x ≥3D . x ≥-3【答案】 D 【解析】【分析】 根据二次根式被开方数大于等于 0 即可得出答案. 【详解】根据被开方数大于等于 0 得, x 3 有意义的条件是 x+3 0 解得: x -3 故选: D【点睛】 本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.19.若 x 2在实数范围内有意义,则 x 的取值范围在数轴上表示正确的是( )x 的取值是解决本17. 下列运算正确的是 ( )A . 5 3 2B . 8 2 2 D . 2 5 2 5A.B.C.D.答案】D解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.详解】∵二次根式x 2 在实数范围内有意义,∴被开方数x+2 为非负数,∴x+2≥0,解得:x≥-2. 故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件20.已知实数a、b在数轴上的位置如图所示,化简| a+b|- (b a)2,其结果是()C.2b D.2b A.2a B.2a【答案】A【解析】【分析】根据二次根式的性质可得a2=|a| ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b<0<a,且|a| < |b| ,则a+b< 0,b-a< 0,∴原式=-(a+b)+(b-a)=-a-b+b-a=-2a,故选A.【点睛】2=|a| .此题主要考查了二次根式的性质和绝对值的性质,关键是掌握a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 二次根式 测试题
(时间:90分钟 满分:120 分)
班级: 姓名: 得分:
一、选择题(每小题3分,共24分)
1.下列各式中,一定是二次根式的是( )
A B C D
2在实数范围内有意义,则x 应满足的条件是( )
A .x ≥5
B .x ≤5
C .x >5
D .x <5
3合并的是( )
A B C D .
4 )
A. 5.下列计算正确的是( )
A =
B =
C =
D 2=
6
7===7===. 对于两位同学的解法,正确的判断是( )
A .小燕、小娟的解法都正确
B .小燕的解法正确,小娟的解法不正确
C .小燕、小娟的解法都不正确
D .小娟的解法正确,小燕的解法不正确
7.若23x << )
A .1
B .25x -
C .1或25x -
D .1- 8.已知226a b ab +=,且0a b >>,则a b a b
+-的值是( )
B. C
二、填空题(每小题4分,共32分)
9n 的最小值为 .
10的结果是 .
11可以合并,则_____m =.
12.用“<”号把下列各数连接起来:0.13-π--,,,
13.已知x =y =x y y x
+的值是 . 14.已知21+=m ,21-=n ,则代数式mn n m 322-+的值为_______.
15.大于的整数是 .
16.三角形的周长为cm cm ,第三边的长
是 cm .
三、解答题(共64分)
17.(每小题6分,共12分)计算:
(1)220(3)
1)3)
---;
(2)2÷
18.(10分)先化简,再求值:2222)11(y
xy x y y x y x +-÷+--,其中x =1+2,y =1-2.
19. (10分)假期中,王强和同学们到某海岛上去玩探宝旅游,按照探宝图(如图1),他们在A点
H 到
千米就找到宝藏埋藏点B.问:他们共走了多少千米?
(10分)已知12y =.
21.(10分)如图2所示,某学校计划在校园内修建一个正方形的花坛,在花坛中央还要修一个正方形的小喷水池.设计方案需要考虑有关的周长,如果小喷水池的面积是2平方米,花坛的边长是小喷水池的3倍,问花坛的外周长与小喷水池的周长一共是多少米?
图2
22.(12分)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:
S = ①(其中a ,b ,c 为三角形的三边长,S 为面积.) 而古希腊也有求三角形面积的海伦公式:
S =,② (其中2a b c p ++=
.) 若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积S.
参考答案
一、1. B 2. A 3. C 4. C 5. A 6. A 7. A 8. D
二、9.6 10. 6 11. 1 12.0.13 3.14-<--<<π 13.6
14.3
15. -1,0,1,2,3 16.
三、17. (1)原式=1(319+---1319
=++-359=-.
(2)原式=÷=32
=. 18.原式=))((2y x y x y -+·y y x 2)(2
-=y x y x +-.当x =1+2, y =1-2时,原式=2
121)21(21-++--+=2.
19. 他们共走了.
20. 8101881,018,081=
∴=-=-∴≥-≥-x x x x x , ∴2
1=y . ∴111824x y =÷=,11428
y x =÷=.
因此,原式53122
==-=.
21.设小喷水池正方形的边长为x 米,则22x =,所以x =
因此,花坛的外周与小喷水池的周长一共是:=(米).
22.解:S ====
又1(578)102
p =
++=.所以S ==.。