竞赛数学教程数论专题.doc
高中数学竞赛《数论基础》
3 最大公因数数, n≥2. 若ai|m, 1≤i≤n, 则称m是 a1,a2,…,an的公倍数.
(b±c) mod n
加法消去律: 如果a+b a+c(mod n), 则 b c(mod n)
乘法消去律:
如果ab ac(mod n)且gcd(a,n)=1,则 b c(mod n)
如果ab dc(mod n)且 a d(mod n)以 及 gcd(a,n)=1,则 b c(mod n)
在个数不少于3个的互素正整数中, 不一 定是每二个正整数都是互素的.
例: (6,10,15)= 1, 但(6,10)=2, (6,15)=3, (10,15)=5.
3 最大公因数和最小公倍数
最大公因子有下列性质: 任何不全为0的两个整数的最大公因子存在且
唯一 设整数a与b不全为0,则存在整数x和y,使得
887 mod 187=(132 X 77 X88) mod 187=11
例A.4 参见教材P146。
消去律的条件
逆元的概念
加法逆元:设a,n∈Z且n>1,如果存在b∈Z使得 a+b≡0(modn),则称a、b为互为模n的加法逆元,也 称负元,记为b≡-a(modn)
乘法逆元:设a,n∈Z且n>1,如果存在b∈Z使得 ab≡1(modn),则称a、b为互为模n的乘法逆元,记为 b≡a-1(modn)
1 带余除法
若a,b是二个正整数,b≠0, 则唯一存在二 个整数k和r, 使得下式成立: a=bk+r, 0≤r<b.
数学竞赛第三章_数论20122
22.06.2020
第三章 数 论
15
3.2 同 余
一、同余的定义和性质 例题 例3.求证:x14 +x24 + x34 + … + x144 =1599无
② 任意三个连续整数之中至少有一个偶数且至少有一个 是3的倍数,所以它们之积一定可以被2整除,也可被3 整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
22.06.2020
第三章 数 论
8
3.1 整数的奇偶性和整除性
二、整数的整除性 例题
例10. 设p是大于5的素数,求证:240|p4-1.
22.06.2020
第三章 数 论
10
第三章 数 论
3.2 同 余
一、同余的定义和性质
定义
定义 1. 设
,若
,则称 和 对模 同余,
记作 a≡b(modm);
若不然,则称 和 对模 不同余,记作 a≢b(modm)
例如:
,
等等。
22.06.2020
第三章 数 论
11
3.2 同 余
一、同余的定义和性质
性质
(1)(反身性)
;
(2)(对称性)若
,则
(3)(传递性)若
,
(4)(同余式相加)若
,
(5)(同余式相乘)若
,
22.06.2020
第三章 数 论
性质
; ,则
,则 ,则
; ;
;
12
3.2 同 余
一、同余的定义和性质
性质
反复利用(4)(5),可以对多个(模相同的)同余式建立加、减和乘
法的运算公式。特别地,由(5)易推出:
数学竞赛中的数论问题
数学竞赛中的数论问题 罗增儒引言数论的认识:数论是关于数的学问,主要研究整数,重点对象是正整数,对中学生可以说,数论是研究正整数的一个数学分支.什么是正整数呢?人们借助于“集合”和“后继”关系给正整数(当时也即自然数)作过本质的描述,正整数1,2,3,…是这样一个集合N +:(1)有一个最小的数1.(2)每一个数a 的后面都有且只有一个后继数/a ;除1之外,每一个数的都是且只是一个数的后继数.这个结构很像数学归纳法,事实上,有这样的归纳公理:(3)对N +的子集M ,若1M ∈,且当a M ∈时,有后继数/a M ∈,则M N +=.就是这么一个简单的数集,里面却有无穷无尽的奥秘,有的奥秘甚至使得人们怀疑:人类的智慧还没有成熟到解决它的程度.比如,哥德巴赫猜想:1742年6月7日,普鲁士派往俄国的一位公使哥德巴赫写信给欧拉,提出“任何偶数,由4开始,都可以表示为两个素数和的形式,任何奇数,由7开始,都可以表示为三个素数的和.后者是前者的推论,也可独立证明(已解决).“表示为两个素数和的形式”就是著名的哥德巴赫猜想,简称1+1.欧拉认为这是对的,但证不出来.1900年希尔伯特将其归入23个问题中的第8个问题. 1966年陈景润证得:一个素数+素数⨯素数(1+2),至今仍无人超越. ●陈景润的数学教师沈元很重视利用名人、名言、名事去激励学生,他曾多次在开讲时,说过这样的话:“自然科学的皇后是数学,数学的皇冠是数论,哥德巴赫猜想则是皇冠上的明珠.……”陈景润就是由此而受到了启示和激励,展开了艰苦卓绝的终生奋斗和灿烂辉煌的奋斗终生,离摘取“皇冠上的明珠”仅一步之遥.●数论题涉及的知识不是很多,但用不多的知识来解决问题往往就需要较强的能力和精明多的技巧,有人说:用以发现数学人才,在初等数学中再也没有比数论教材更好的课程了.任何学生如能把当今一本数论教材中的练习做出,就应当受到鼓励,劝他(她)将来去从事数学方面的工作(U .Dudley 《数论基础》前言).下面,是一个有趣的故事.当代最高产的数学家厄尔多斯听说一个叫波萨(匈牙利,1948)的小男孩很聪明,就问了他一个问题加以考察(1959):如果你手头上有1n +个正整数,这些正整数小于或等于2n ,那么你一定有一对整数是互素的,你知道这是什么原因吗?不到12岁的波萨只用了1分半钟,就给出了问题的解答.他将1~2n 分成(1,2),(3,4),…,(21,2n n -)共n 个抽屉,手头的1n +个正整数一定有两个属于同一抽屉,这两个数是相邻的正整数,必定互素.通过这个问题,厄尔多斯认定波萨是个难得的英才,就精心加以培养,不到两年,14岁的波萨就发表了图论中“波萨定理”.●重视数学能力的数学竞赛,已经广泛采用数论题目,是数学竞赛四大支柱之一,四大支柱是:代数,几何,初等数论,组合初步(俗称代数题、几何题、算术题和智力题).高中竞赛加试四道题正好是四大模块各一题,分别是几何题、代数题、数论题、组合题,一试中也会有数论题.数论受到数学竞赛的青睐可能还有一个技术上的原因,就是它能方便地提供从小学到大学各个层面的、新鲜而有趣的题目.数论题的主要类型:在初中竞赛大纲中,数论的内容列有:十进制整数及表示方法;整除性,被2、3、4、5、8、9、11等数整除的判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;简单的一次不定方程.在高中竞赛大纲中,数论的内容列有:同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*.根据已出现的试题统计,中学数学竞赛中的数论问题的主要有8个重点类型:(1)奇数与偶数(奇偶分析法、01法);(2)约数与倍数、素数与合数;(3)平方数;(4)整除;(5)同余;(6)不定方程;ϕ欧拉函数;(7)数论函数、[]x高斯函数、()n(8)进位制(十进制、二进制).下面,我们首先介绍数论题的基本内容(10个定义、18条定理),然后,对数学竞赛中的数论问题作分类讲解.第一讲 数论题的基本内容中学数学竞赛中的数论问题涉及的数论内容主要有10个定义、18条定理. 首先约定,本文中的字母均表示整数.定义1 (带余除法)给定整数,,0,a b b ≠如果有整数(),0q r r b ≤<满足 a qb r =+,则q 和r 分别称为a 除以b 的商和余数.特别的,0r =时,则称a 被b 整除,记作b a ,或者说a 是b 的倍数,而b 是a 的约数.(,q r 的存在性由定理1证明)定义2 (最大公约数)设整数12,,,n a a a 中至少有一个不等于零,这n 个数的最大公约数是能整除其中每一个整数的最大正整数,记作()12,,,n a a a .()12,,,n a a a 中的i a 没有顺序,最大公约数也称最大公因数.简单性质:()()1212,,,,,,n n a a a a a a =.一个功能:可以把对整数的研究转化为对非负整数的研究. 定义3 (最小公倍数)非零整数12,,,n a a a 的最小公倍数是能被其中每一个()1i a i n ≤≤所整除的最小正整数,记作[]12,,,n a a a .简单性质:如果k 是正整数,a b 的公倍数,则存在正整数m 使[],k m a b =证明 若不然,有[],k m a b r =+([]0,r a b <<),由[],,k a b 都是,a b 的公倍数得r也是,a b 的公倍数,但[]0,r a b <<,与[],a b 的最小性矛盾.故[],k ma b =.定义4 如果整数,a b 满足(),1a b =,则称a 与b 是互素的(也称互质).定义5 大于1且除1及其自身外没有别的正整数因子的正整数,称为素数(也称质数).其余大于1的正整数称为合数;数1既不是素数也不是合数.定理1 若,a b 是两个整数,0b >,则存在两个实数,q r ,使()0a qb r r b =+≤<,并且,q r 是唯一性.证明1 先证存在性.作序列,3.2,,0,,2,3,b b b b b b ---则a 必在上述序列的某两项之间,从而存在一个整数q ,使()1qb a q b ≤<+,即 0a qb b ≤-<, 取 r a qb =-, 0r b ≤<, 得 a qb r =+,即存在两个实数,q r ,使()0a qb r r b =+≤<. 再证唯一性.假设不唯一,则同时存在11,q r 与12,q r ,使 ()1110a q b r r b =+≤<, ()2220a q b r r b =+≤<, 相减 ()1221q q b r r -=-, 1221q q b r r b -=-<, 1201q q ≤-<,但12q q -为整数,故120q q -=,得12q q =,从而12r r =.注:如果取消0r b ≤<,当0r <或r b >,不保证唯一.经典方法:紧扣定义,构造法证存在性,反证法证唯一性. 证明2 只证存在性,用高斯记号,由 01a a b b ⎡⎤≤-<⎢⎥⎣⎦, 有 0a a b b b⎡⎤≤-<⎢⎥⎣⎦,记a r a b b⎡⎤=-⎢⎥⎣⎦,故存在,,0a a q r a b r b b b ⎡⎤⎡⎤==-≤<⎢⎥⎢⎥⎣⎦⎣⎦使()0a qb r r b =+≤<.证明3 只证存在性,作集合{}|,0M a bx x Z a bx =-∈-≥这是一个有下界的非空整数集,其中必有最小的,设x q =时,有最小值r ()0r ≥ a qb r =+.再证r b <,若不然,r b ≥,记1r b r =+,有()()111a qb r qb b r b q r =+=++=++()11r a b q M =-+∈即M 有1r 比r 更小,这与r 为最小值矛盾. 故存在两个实数,q r ,使()0a qb r r b =+≤<.定理 2 设,,a b c 是三个不全为0的整数,满足a qb c =+,其中q 也为整数,则()(),,a b b c =.证明 设A ={,a b 的公约数}, B ={,b c 的公约数}.任取||||d a d c a bqd A d B A B d b d b=-⎧⎧∈⇒⇒⇒∈⇒⊆⎨⎨⎩⎩, 任取||||d b d bd B d A B A d c d a bq c ⎧⎧∈⇒⇒⇒∈⇒⊆⎨⎨=+⎩⎩,得 A B =.有A 中元素的最大值B =中元素的最大值,即()(),,a b b c =.注:这是辗转相除法求最大公约数的理论基础.经典方法:要证明A B =,只需证A B ⊆且B A ⊆. 定理3 对任意的正整数,a b ,有 ()[],,a b a b ab ⋅=.证明 因为ab 是,a b 的公倍数,所以,a b 的最小公倍数也是ab 的约数,存在q 使 [],ab q a b =,有[],a b a q b=且[],a b b为整数,故q 是a 的约数.同理q 是b 的约数,即q 是,a b 的公约数.下面证明,q 是,a b 的最大公约数.若不然,(),q a b <.有[]()[],,,ab q a b a b a b =<. ①设()(),,ab b k a a b a b ==,可见k 是a 的倍数,同样()(),,ab ak b a b a b ==,k 是b 的倍数,即k 是,a b 的公倍数,则存在正整数m 使[],k ma b =,有()[][],,,abm a b a b a b =≥, 得 []()[],,,ab q a b a b a b =≥与①矛盾,所以,(),q a b =,得证()[],,a b a b ab ⋅=.注 也可以由[]()(),1,,ab a b k q m ab a b a b q≤===,得(),q a b ≥,与(),q a b <矛盾.两步[](),,,ab q a b ab a b k ==可以交换吗?定理4 ,a b 是两个不同时为0的整数,若00ax by +是形如ax by +(,x y 是任意整数)的数中的最小正数,则(1)00ax by +|ax by +; (2)00ax by +(),a b =. 证明 (1)由带余除法有()00ax by ax by q r +=++,000r ax by ≤<+, 得 ()()0000r a x qx x b y qy ax by =-+-<+,知r 也是形如ax by +的非负数,但00ax by +是形如ax by +的数中的最小正数,故0r =,即00ax by +|ax by +.(2)由(1)有00ax by +|10a b a +=, 00ax by +|01a b b +=,得00ax by +是,a b 的公约数.另一方面,,a b 的每一个公约数都可以整除00ax by +,所以00ax by +是,a b 的最大公约数,00ax by +(),a b =.推论 若(),1a b =,则存在整数,s t ,使1as bt +=.(很有用) 定理5 互素的简单性质: (1)()1,1a =. (2)(),11n n +=. (3)()21,211n n -+=.(4)若p 是一个素数,a 是任意一个整数,且a 不能被p 整除,则(),1a p =. 证明 因为(),|a p p ,所以,素数p 的约数只有两种可能:()(),1,,a p a p p ==.但a 不能被p 整除,(),a p p ≠,得(),1a p =.推论 若p 是一个素数,a 是任意一个整数,则(),1a p =或(),a p p =. (5)若(),1a b =,则存在整数,s t ,使1as bt +=.(定理4推论) (6)若()(),1,,1a b a c ==,则(),1a bc =. 证明 由(),1a b =知存在整数,s t ,使1as bt +=. 有 ()a cs bct c +=, 得 ()(),,1a bc a c ==.(7)若(),1a b =,则(),1a b a ±=,(),1a b b ±=, (),1a b ab ±=. 证明 ()()(),,,1a b a b a b a ±=±==, ()(),,1a b b a b ±==, 由(6)(),1a b ab ±=.(8)若(),1a b =,则(),1m n a b =,其中,m n 为正整数. 证明 据(6),由(),1a b =可得(),1ma b =.同样,由(),1ma b =可得(),1m n a b =.定理6 设a 是大于1的整数,则a 的除1之外的最小的正约数q 必是素数,且当a 是合数时,q ≤证明 用反证法,假设q 不是素数,则存在正整数数1q ,11q q <<,使1|q q ,但|q a ,故有1|q a ,这与q 是a 的除1之外的最小正约数矛盾,故q 是素数.当a 是合数时,设1a a q =,则1a 也是a 的一个正约数,由q 的最小性得1q a ≤,从而21q a q a ≤=,开方得q ≤定理7 素数有无穷多个,2是唯一的偶素数. 证明 假设素数只有有限多个,记为12,,,n p p p ,作一个新数1211n p p p p =+>.若p 为素数,则与素数只有 n 个12,,,n p p p 矛盾.若p 为合数,则必有{}12,,,i n p p p p ∈,使|i p p ,从而|1i p ,又与1i p >矛盾.综上所述,素数不能只有有限多个,所以素数有无穷多个.2是素数,而大于2的偶数都是合数,所以2是唯一的偶素数.注:这个证明中,包含着数学归纳法的早期因素:若假设有n 个素数,便有1n +个素数.(构造法、反证法)秒定理8(整除的性质)整数,,a b c 通常指非零整数 (1)1a ,1|a -;当0a ≠时,|a a ,|0a .(2)若b a ,0a ≠,则b a ≤;若b a ,b a >,则0a =;若0ab >,且,b a a b ,则a b =.证明 由b a ,0a ≠,有a bq =,得a b q b =≥. 逆反命题成立“若b a ,b a >,则0a =”; 由b a ≤且b a ≥得a b =,又0ab >,得a b =. (3)若a b c d +=+,且|,|,|e a e b e c ,则|e d . (4)若c b ,b a ,则c a . 证明 (定义法)由c b ,b a ,有 12,b q c a q b ==, 得 ()12a q q c =,即 c a .(5)若c a ,则bc ab .(6)若c a ,c b ,则对任意整数,m n ,有c ma nb +. 证明 (定义法)由c a ,c b ,有 12,a q c b q c ==, 得 ()12ma nb mq nq c +=+, 即 c ma nb +.(7)若(),1a b =,且a bc ,则a c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有()()a cs bc t c +=,因为a a ,a bc ,所以a 整除等式的左边,进而整除等式的右边,即a c .注意 不能由a bc 且|a b /得出a c .如649⨯,但6|4/且6|9/. (8)若(),1a b =,且,a c b c ,则ab c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有acs bct c +=,又由,a c b c 有12,c aq c bq ==代入得()()21ab q s ab q t c +=,所以ab c .注意 不能由a c 且b c 得出ab c .如不能由630且10|30得出60|30. (9)若a 为素数,且a bc ,则a b 或a c .证明 若不然,则|a b /且|a c /,由a 为素数得()(),1,,1a b a c ==,由互素的性质(6)得(),1a bc =,再由a 为素数得|a bc /,与a bc 矛盾. 注意 没有a 为素数,不能由a bc 推出a b 或a c .如649⨯,但6|4/且6|9/.定义6 对于整数,,a b c ,且0c ≠,若()c a b -,则称,a b 关于模c 同余,记作(mod )a b c ≡;若()|c a b -/,则称,a b 关于模c 不同余,记作a(mod )b c .定理9(同余的性质)设,,,,a b c d m 为整数,0,m > (1)若(mod )a b m ≡且(mod )b c m ≡,则(mod )a c m ≡; 证明 由(mod )a b m ≡且(mod )b c m ≡,有 12,a b mq b c mq -=-=,()12a c m q q -=+,得(mod )a c m ≡.(2)若(mod )a b m ≡且(mod )c d m ≡,则(mod )a c b d m +≡+且(mod )ac bd m ≡. 证明 由(mod )a b m ≡且(mod )c d m ≡,有12,a b mq c d mq -=-=, ① 对①直接相加 ,有()()()12a c b d m q q +-+=+,得 (mod )a c b d m +≡+.对①分别乘以,c b 后相加,有()()()12ac bd ac bc bc bd m cq bq -=---=+,得 (mod )ac bd m ≡.(3)若(mod )a b m ≡,则对任意的正整数n 有(mod )nna b m =且(mod )an bn mn ≡. (4)若(mod )a b m ≡,且对非零整数k 有(,,)k a b m ,则mod a b m k k k ⎛⎫= ⎪⎝⎭. 证明 由(mod )a b m ≡、,有 a b mq =+, 又(,,)k a b m ,有,,a b mk k k均为整数,且a b mq k k k=+, 得mod a b m k k k ⎛⎫≡ ⎪⎝⎭. 定理10 设,a b 为整数,n 为正整数, (1)若a b ≠,则()()nna b a b--.()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++.(2)若a b ≠-,则()()2121n n a b ab --++.()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+.(3)若a b ≠-,则()()22nn a b ab +-.()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+-.定义7 设n 为正整数,k 为大于2的正整数, 12,,,m a a a 是小于k 的非负整数,且10a >.若12121m m m m n a k a k a k a ---=++++,则称数12m a a a 为n 的k 进制表示.定理11 给定整数2k ≥,对任意的正整数n ,都有唯一的k 进制表示.如12121101010m m m m n a a a a ---=++++,109,0i a a ≤≤>(10进制) 12121222m m m m n a a a a ---=++++.101,0i a a ≤≤>(2进制)定理12 (算术基本定理)每个大于1的正整数都可分解为素数的乘积,而且不计因数的顺序时,这种表示是唯一的1212k k n p p p ααα=,其中12k p p p <<<为素数,12,,,k ααα为正整数. (分解唯一性)证明1 先证明,正整数n 可分解为素数的乘积12m n p p p =. ①如果大于1的正整数n 为素数,命题已成立.当正整数n 为合数时,n 的正约数中必有一个最小的,记为1p ,则1p 为素数,有11n p a =,11a n <<.如果1a 为素数,命题已成立.当1a 为合数时,1a 的最小正约数2p 为必为素数,有11122n p a p p a ==,211a a n <<<.这个过程继续进行下去,由于n 为有限数,而每进行一步i a 就要变小一次,于是,经过有限次后,比如m 次,n 就变为素数的乘积12m n p p p =.下面证明分解式是唯一的.假设n 还有另一个分解式 12t n q q q =, ② 则有 1212m t p p p q q q =. ③因为等式的右边能被1q 整除,所以左边也能被1q 整除,于是1q 整除12,,,m p p p 中的某一个i p ,但i p 为素数,所以i p 与1q 相等,不妨设i p 为1p ,有11p q =.把等式③两边约去11p q =,得 2323m t p p p q q q =.再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有121m m t q q q ++=. ④但12,,,m m t q q q ++均为素数,素数都大于1,有121m m t q q q ++>,这表明等式④不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的. 将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得1212k k n p p p ααα=.其中12k p p p <<<为素数,12,,,k ααα为正整数.证明2 用第二数学归纳法证明12m n p p p =,12m p p p ≤≤≤.(1)当2n =,因为2为素数,命题成立.(2)假设命题对一切大于1而小于n 的正整数已成立. 这时,若n 为素数,命题成立;若n 不为素数,必存在,a b ,使 n ab =,1,1a n b n <<<<, 由归纳假设,小于n 的,a b 可分解为素数的乘积//////1212//////1212, ,, ,s s s s t s s ta p p p p p pb p pp pp p ++++=≤≤≤=≤≤≤得 //////1212s s s t n p p p q q q ++=,适当调整/i p 的顺序,可得命题对于正整数n 成立.由数学归纳法,命题对一切大于1的正整数n 成立.下面证明分解式是唯一的.假设n 的分解式不唯一,则至少有两个分解式12m n p p p =,12m p p p ≤≤≤, 12t n q q q =,12t q q q ≤≤≤,得 1212m t p p p q q q =.有 112|t p q q q 且112|m q p p p ,这就存在,i j q p ,使1|i p q 且1|j q p ,但11,,,i j p q q p 均为为素数,所以11,i j p q q p ==,又 111i j p q q p p =≥=≥, 所以 11p q =.把等式两边约去11p q =,得 2323m t p p p q q q =.再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有121m m t q q q ++=.但12,,,m m t q q q ++均为素数,素数都大于1,有121m m t q q q ++>,这表明上述等式不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的. 将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得1212k k n p p p ααα=.其中12k p p p <<<为素数,12,,,k ααα为正整数.定理13 若正整数n 的素数分解式为 1212k k n p p p ααα=则n 的正约数的个数为()()()()12111k d n a a a =+++,n 的一切正约数之和为()121111212111111k k k p p p S n p p p ααα+++---=⋅⋅⋅---. 证明 对于正整数1212k k n p p p ααα=,它的任意一个正约数可以表示为1212k k m p p p βββ=,0i i βα≤≤ , ①由于i β有0,1,2,,i α共1i α+种取值,据乘法原理得n 的约数的个数为()()()()12111k d n a a a =+++.考虑乘积 ()()()12010101111222k kk k p p p p p p pp p ααα+++++++++,展开式的每一项都是n 的某一个约数(参见①),反之,n 的每一个约数都是展开式的某一项,于是,n 的一切约数之和为()()()110101111kk k S n p p p pp p αα=++++++121111212111111k k k p p p p p p ααα+++---=⋅⋅⋅---. 注 构造法.定义8 (高斯函数)对任意实数x ,[]x 是不超过x 的最大整数.亦称[]x 为x 的整数部分,[][]1x x x ≤<+.定理14 在正整数!n 的素因子分解式中,素数p 作为因子出现的次数是23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.证明 由于p 为素数,故在!n 中p 的次方数是1,2,,n 各数中p 的次方数的总和(注意,若p 不为素数,这句话不成立).在1,2,,n 中,有n p ⎡⎤⎢⎥⎣⎦个p 的倍数;在n p ⎡⎤⎢⎥⎣⎦个p 的倍数的因式中,有2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数;在2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数的因式中,有3n p ⎡⎤⎢⎥⎣⎦个3p 的倍数;…,如此下去,在正整数!n 的素因子分解式中,素数p 作为因子出现的次数就为23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.注 省略号其实是有限项之和. 画线示意50!中2的指数.35678912450!23571113171923293137414347ααααααααα=定理15 (费玛小定理)如果素数p 不能整除整数a ,则()11p p a --.证明1 考察下面的1p -个等式: 11a pq r =+,10r p ≤<,222a pq r =+,20r p ≤<……()111p p p a pq r ---=+,10p r p -≤<由于素数p 不能整除整数a ,所以,p 不能整除每个等式的左边,得121,,,p r r r -均不为0,只能取1,2,,1p -.下面证明121,,,p r r r -各不相等.若不然,存在,,11t s t s p ≤<≤-,使,,,s s t t s t sa pq r ta pq r r r =+=+=相减 ()()s t s t a p q q -=-.应有素数p 整除()s t a -,但素数p 不能整除a ,所以素数p 整除()s t -,然而由11t s p ≤<≤-可得02s t p p <-≤-<, 要素数p 整除()s t -是不可能的,得121,,,p r r r -各不相等.有()()1211211!p rr r p p -=-=-.再把上述1p -个等式相乘,有 ()11211!p p p a Mp rr r ---=+,即 ()()11!1!p p a Mp p --=+-, 其中M 是一个整数.亦即 ()()11!1p p a Mp ---=.由于p 是素数,不能整除()1!p -,所以素数p 整除11p a --,得证()11p p a--证明2 改证等价命题:如果素数p 不能整除整数a ,则()mod pa a p ≡. 只需对1,2,,1a p =-证明成立,用数学归纳法.(1)1a =,命题显然成立.(2)假设命题对()11a k k p =≤<-成立,则当1a k =+时,由于()|1,2,,1i p p C i p =-,故有()11111ppp p p p k k C kC k --+=++++()11mod pk k p ≡+≡+.(用了归纳假设) 这表明,命题对1a k =+是成立. 由数学归纳法得()mod pa a p ≡.又素数p 不能整除整数a ,有(),1a p =,得()11p p a--.定义9 (欧拉函数)用()n ϕ表示不大于n 且与n 互素的正整数个数. 定理16 设正整数1212k k n p p p ααα=,则()12111111k n n p p p ϕ⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.证明 用容斥原理.设{}1,2,,S n =,记i A 为S 中能被i p 整除的数所组成的集合(1,2,i k =),用i A 表示i A 中元素的个数,有 i inA p =,1212,,i j k i jkn n A A A A A p p p p p ==.易知,{}1,2,,S n =中与n 互素的正整数个数为12k A A A ,由容斥原理得()12111211k i i ji ki j kkijm k i j m kA A A S A A A A A A A A A ≤≤≤<≤≤<<≤=-+-++-∑∑∑()()1111211112121111*********.ki ki j k i j m k i i j i j mk ki ki j k i j m k i i j i j mk k n n nn n p p p p p p p p p n p p p p p p p p p n p p p ≤≤≤<≤≤<<≤≤≤≤<≤≤<<≤=-+-++-⎡⎤=-+-++-⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑ 注 示意3n =的容斥原理.推论 对素数p 有()()11,p p p p p αααϕϕ-=-=-.定理17 整系数不定方程ax by c +=(0ab ≠)存在整数解的充分必要条件是(),a b c .证明 记(),d a b =.(1)必要性(方程有解必须满足的条件).若方程存在整数解,记为00,,x x y y =⎧⎨=⎩,则00ax by c +=,由|,|d a d b , 有00|d ax by +,得证(),|a b c .(2)充分性(条件能使方程有解).若|d c ,可设c de =由于形如ax by +的数中有最小正数00ax by +满足00ax by +(),a b =.两边乘以e ,得()()00a ex b ey c +=这表明方程有解00,.x ex y ey =⎧⎨=⎩定理18 若0ab ≠,(),1a b =,且00,,x x y y =⎧⎨=⎩是整系数不定方程ax by c +=的一个整数解,则方程的一切整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈. ①证明 直接代入知①是方程的整数解,下面证明任意一个整数解都有①的形式. 由()00,x y 是方程的一个解,有00ax by c +=,又方程的任意一个解(),x y 满足ax by c +=, ② 相减 ()()000a x x b y y -+-=. ③ 但(),1a b =,故有 ()0|a y y -, 有00,x x y y t t Z b a--==∈- 得方程的任意一个整数解可以表示为 00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈.定义10 (平面整点)在平面直角坐标系上,纵横坐标都是整数的点称为整点(也称格点).类似地可以定义空间整点.第二讲 数论题的范例讲解主要讲几个重要类型:奇数与偶数,约数与倍数(素数与合数),平方数,整除,同余,不定方程,数论函数等.重点是通过典型范例来分析解题思路、提炼解题方法和巩固基本内容.一、奇数与偶数整数按照能否被2整除可以分为两类,一类余数为0,称为偶数,一类余数为1,称为奇数.偶数可以表示为2n ,奇数可以表示为21n -或21n +.一般地,整数被正整数m 去除,按照余数可以分为m 类,称为模m 的剩余类(){}mod i C x x i m =≡,从每类中各取出一个元素i i a C ∈,可得模m 的完全剩余系(剩余类派出的一个代表团),0,1,2,,1m -称为模m 的非负最小完全剩余系.通过数字奇偶性质的分析而获得解题重大进展的技巧,常称作奇偶分析,这种技巧与分类、染色、数字化都有联系,在数学竞赛中有广泛的应用. 关于奇数和偶数,有下面的简单性质:(1)奇数≠偶数.(2)偶数的个位上是0、2、4、6、8;奇数的个位上是1、3、5、7、9. (3)奇数与偶数是相间排列的;两个连续整数中必是一个奇数一个偶数;. (4)奇数个奇数的和是奇数;偶数个奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数.(5)除2外所有的正偶数均为合数;(6)相邻偶数的最大公约数为2,最小公倍数为它们乘积的一半. (7)偶数乘以任何整数的积为偶数.(8)两数和与两数差有相同的奇偶性,()mod2a b a b +≡-. (9)乘积为奇数的充分必要条件是各个因数为奇数. (10)n 个偶数的积是2n的倍数.(11)()11k -=的充分必要条件是k 为偶数,()11k-=-的充分必要条件是k 为奇数.(12)()()()()()()22220mod 4,211mod 4,211mod8n n n ≡-≡-≡. (13)任何整数都可以表示为()221mn k =-.……例1 (1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积()()()1212n a a a n ---是偶数.解法1 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,奇数个奇数的和还是奇数奇数=()()()1212n a a a n -+-++-()()12120n a a a n =+++-+++=,这与“奇数≠偶数”矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法说明()()()1212n a a a n ---不为偶数是不行的,但没有指出为偶数的真正原因.体现了整体处理的优点,但掩盖了“乘积”为偶数的实质.解法2 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,i a 与i 的奇偶性相反,{}1,2,,n 中奇数与偶数一样多,n 为偶数.但已知条件n 为奇数,矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“n 为奇数”.那么为什么“n 为奇数”时“乘积”就为偶数呢?解法3 121,2,,,,,,n n a a a 中有1n +个奇数,放到n 个括号,必有两个奇数在同一个括号,这两个奇数的差为偶数,得()()()1212n a a a n ---为偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“当n 为奇数时,1,2,,n 中奇数与偶数个数不等,奇数多,某个括号必是两个奇数的差,为偶数”. 类似题:例1-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.(127,,,a a a 中奇数与偶数个数不等)例1-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.(暗藏3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4中奇数与偶数个数不等) 例2 能否从1,2,,15中选出10个数填入图的圆圈中,使得每两个有线相连的圈中的数相减(大数减小数),所得的14个差恰好为1,2,,14?解 考虑14个差的和S ,一方面1214105S =+++=为奇数.另一方面,每两个数,a b 的差与其和有相同的奇偶性 (mod2)a b a b -≡+,因此,14个差的和S 的奇偶性与14个相应数之和的和/S 的奇偶性相同,由于图中的每一个数a 与2个或4个圈中的数相加,对/S 的贡献为2a 或4a ,从而/S 为偶数,这与S 为奇数矛盾,所以不能按要求给图中的圆圈填数.评析:用了计算两次的技巧.对同一数学对象,当用两种不同的方式将整体分为部分时,则按两种不同方式所求得的总和应是相等的,这叫计算两次原理成富比尼原理.计算两次可以建立左右两边关系不太明显的恒等式.在反证法中,计算两次又可用来构成矛盾.例3 有一大筐苹果和梨分成若干堆,如果你一定可以找到这样的两堆,其苹果数之和与梨数之和都是偶数,问最少要把这些苹果和梨分成几堆?解 (1)4堆是不能保证的.如4堆的奇偶性为:(反例) (奇奇),(偶偶),(奇偶),(偶奇).(2)5堆是可以保证. 因为苹果和梨数的奇偶性有且只有上述4种可能,当把这些苹果和梨分成5堆时,必有2堆属于同一奇偶性,其和苹果数与梨数都是偶数.例4 有n 个数121,,,,n n x x x x -,它们中的每一个要么是1,要么是1-.若1223110n n n x x x x x x x x -+++++=,求证4|n .证明 由{}1,1i x ∈-,有{}11,1i i x x +∈-,再由1223110n n n x x x x x x x x -+++++=,知n 个1i i x x +中有一半是1,有一半是1-,n 必为偶数,设2n k =.现把n 个1i i x x +相乘,有2222122311121(1)(1)1k kn n n n n x x x x x x x x x x x x ---+===,可见,k 为偶数,设2k m =,有4n m =,得证4|n .例5 n 个整数121,,,,n n a a a a -,其积为n ,其和为0,试证4|n .证明 先证n 为偶数,若不然,由121n n a a a a n -=知,121,,,,n n a a a a -全为奇数,其和必为奇数,与其和为0(偶数),故n 必为偶数.(121,,,,n n a a a a -中至少有1个偶数)再证n 为4的倍数,若不然,由n 为偶数知,121,,,,n n a a a a -恰有一个为偶数,其余1n -个数全为奇数,奇数个奇数之和必为奇数,加上一个偶数,总和为奇数,与121,,,,n n a a a a -之和为0矛盾,所以,n 为4的倍数,4|n .(121,,,,n n a a a a -中至少有2个偶数)评析 要证4|n ,只须证121,,,,n n a a a a -中至少有2个偶数,分两步,第一步证至少有1个偶数,第二步证至少有2个偶数.例6 在数轴上给定两点1,在区间内任取n 个点,在此2n +个点中,每相邻两点连一线段,可得1n +条互不重叠的线段,证明在此1n +条线段中,以一个有理点和一个无理点为端点的线段恰有奇数条.证明 将2n +个点按从小到大的顺序记为122,,,n A A A +…,并在每一点赋予数值i a ,使1, 1,i i i A a A ⎧=⎨-⎩当为有理数点时, 当为无理数点时. 与此同时,每条线段1i i A A +也可数字化为1i i a a +(乘法)1111,, 1,,i i i i i i A A a a A A +++-⎧=⎨⎩ 当一为有理数点,另一为无理数时, 当同为有理数点或无理数点时,记11i i a a +=-的线段有k 条,一方面112233412()()()()(1)(1)(1)k n k k n n a a a a a a a a -+++=-+=-…另一方面 12233412()()()()n n a a a a a a a a ++…21231212()1n n n a a a a a a a -++===-…,得()11k-=-,故k 为奇数. 评析 用了数字化、奇偶分析的技巧. 二、约数与倍数最大公约数与最小公倍数的求法. (1)短除法.(2)分解质因数法.设1212,0,1,2,,k k i a p p p i k αααα=≥=, 1212,0,1,2,,k k i b p p p i k ββββ=≥=.记 {}{}min ,,max ,i i i i i i γαβδαβ==, 则 ()1212,k k a b p p p γγγ=, []1212,k k a b p p p δδδ=.(3)辗转相除法()()()()()121,,,,,0n n n n a b b r r r r r r r -======.例7 (1)求()8381,1015,[]8381,1015; (2)()144,180,108,[]144,180,108. 解(1)方法1 分解质因数法.由283811729,10155729,=⨯=⨯⨯得 ()8381,101529=,[]28381,1015571729293335=⨯⨯⨯=.方法2 辗转相除法.883811015381207831261232823223229或23214221313823226110158381232232783812029232261q q q q r r r r ========或 ()()()()()8381,1015261,1015261,23229,23229,029=====. []()83811015838110158381,10158381352933358381,101529⨯⨯===⨯=.(2)方法1 短除法.由2144 180 108272 90 54336 30 27312 10 9 4 5 3得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.方法2 分解质因数法.由42222314423,180235,10823,=⨯=⨯⨯=⨯,得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.例8 正整数n 分别除以2,3,4,5,6,7,8,9,10得到的余数依次为1,2,3,4,5,6,7,8,9,则n 的最小值为 .解 依题意,对最小的n ,则1n +是2,3,4,5,6,7,8,9,10的公倍数3212357n +=⨯⨯⨯,得2519n =.例9 有两个容器,一个容量为27升,一个容量为15升,如何利用它们从一桶油中倒出6升油来?解 相当于求不定方程15276x y +=的整数解. 由()15,273=知,存在整数,u v ,使15273u v +=,可得一个解2,1u v ==-,从而方程 ()1542726⨯+⨯-=.即往小容器里倒2次油,每次倒满之后就向大容器里倒,大容器倒满时,小容器里剩有3升油;再重复一次,可得6升.例10 对每一个2n ≥,求证存在n 个互不相同的正整数12,,,n a a a ,使i j i j a a a a -+,对任意的{},1,2,,,i j n i j ∈≠成立.证明 用数学归纳法.当2n =时,取121,2a a ==,命题显然成立. 假设n k =时,命题成立,即存在12,,,k a a a ,使 i j i j a a a a -+,对任意的{},1,2,,,i j k i j ∈≠成立.现取b 为12,,,k a a a 及它们每两个数之差的最小公倍数,则1k +个数12,,,,k b a b a b a b +++满足 ()()()()()(),,t t ij i j a b b a b b a b a b a b a b ⎧+-++⎪⎨+-++++⎪⎩即命题对1n k =+时成立.由数学归纳法知命题对2n ≥成立.例11 ()111959,IMO -证明对任意正整数n ,分数214143n n ++不可约.证明1 (反证法)假若214143n n ++可约,则存在1d >, ①使 ()214,143n n d ++=, 从而存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩②③消去n ,()()3322⨯-⨯,得()132d q p =-, ④ 的 1d =. ⑤由(1)、(5)矛盾,得1d =. 解题分析:(1)去掉反证法的假设与矛盾就是一个正面证法.(2)式④是实质性的进展,表明()()131432214n n =+-+, 可见 ()214,1431n n ++=. 由此获得2个解法.证明2 设()214,143n n d ++=.存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩①② 消去n ,②×3-①×2,得()132d q p =- ③ 得 1d =.证明3 由()()131432214n n =+-+ 得 ()214,1431n n ++=.证明4 ()214,143n n ++()71,143n n =++ ④ ()71,1n =+ ⑤1=.解题分析:第④ 相当于 ①-②;第⑤ 相当于②-2(①-②)=②×3-①×2;所以③式与⑤式的效果是一样的.例12 不存在这样的多项式()1110m m m m f n a n a n a n a --=++++,使得对任意的正整数n ,()f n 都是素数.证明 假设存在这样的多项式,对任意的正整数n ,()f n 都是素数,则取正整数n b =,有素数p 使()1110mm m m f b a b a ba b a p --=++++=,进而对任意的整数,k 有()()()()1110mm m m f b kp a b kp a b kp a b kp a --+=+++++++()1110m m m m a b a b a b a Mp --=+++++(二项式定理展开)()1P M =+,其中M 为整数,这表明()f b kp +为合数.这一矛盾说明,不存在这样的多项式,对任意的正整数n ,()f n 都是素数. 三、平方数若a 是整数,则2a 就叫做a 的完全平方数,简称平方数. 1.平方数的简单性质(1)平方数的个位数只有6个:0,1,4,5.6.9.(2)平方数的末两位数只有22个:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.(3)()()()()2220mod 4,211mod 4n n ≡-≡. (4)()()2211mod8n -≡.(6)凡是不能被3整除的数,平方后被3除余1.(7)在两个相邻整数的平方数之间,不能再有平方数. (8)非零平方数的约数有奇数个.。
奥数 六年级竞赛 数论(二).教师版word
小学奥数数论内容中,余数相关问题是最成体系的,也是各类竞赛考试中的重点.⑴同余性质是解决同余问题的重要依据,复习简单同余问题,学会灵活运用同余性质解决同余问题. ⑵熟练掌握余数定理在多位数除法以及高次冥末尾数字求解中的基本运用.⑶能用凑同余的办法解决一个数除以多个数,得不同余数的问题,学会使用中国剩余定理.带余除法:一般地,如果a 是整数,b 是整数()0b ≠,那么一定有另外两个整数q 和r ,0r b ≤<,使得a b q r =⨯+.当0r =时,我们称a 能被b 整除.当0r ≠时,我们称a 不能被b 整除,r 为a 除以b 的余数,q 为a 除以b 的不完全商(亦简称为商).用带余数除式又可以表示为a b q r ÷= ,0r b ≤<.同余式:若两个整数a ,b 被自然数m 除有相同的余数,那么称a ,b 对于模m 同余,用“同余式”表示为()mod a b m ≡意味着(我们假设a b ≥)a b mk -=,k 是整数,即()|m a b -.若两个数a ,b 除以同一个数c 得到的余数相同,则a ,b 的差一定能被c 整除.余数定理:①两数的和除以m 的余数等于这两个数分别除以m 的余数和.实例:7321÷= ,5312÷= ,这样()753+÷的余数就等于()123+÷的余数.②两数的差除以m 的余数等于这两个数分别除以m 的余数差.实例:8322÷= ,4311÷= ,这样()843-÷的余数就等于()213-÷的余数.③两数的积除以m 的余数等于这两个数分别除以m 的余数积.实例:7321÷= ,5312÷= ,这样()753⨯÷的余数就等于()123⨯÷的余数. 第 6讲数论(二)【例 1】 有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【分析】 (70110160)50290++-=,503162÷= ,除数应当是290的大于17小于70的约数,只可能是29和58,11058152÷= ,5250>,所以除数不是58.7029212÷= ,11029323÷= ,16029515÷= ,12231550++=,所以除数是29.【例 2】 一个两位数被它的各位数字之和去除,问余数最大是多少?【分析】 设两位数ab (a 表示十位数字,b 表示个位数字)1091ab a b a a b a b a b+==++++ 由于余数不会超过除数a b +的值,所以我们对a b +的值从最大值18开始往小进行尝试搜索:当18a b +=,此时余数为9. 当17a b +=,则两位数为89、98,余数为4、13.当16a b +=,则两位数为97、88、79,余数为1、8、15.则余数最大的为15,因为接下来,除数最大为15,这样余数中最大的也只可能为14,所以余数最大的是15.【例 1】 一个自然数除429、791、500所得的余数分别是5a +、2a 、a ,求这个自然数和a 的值. [分析] 将这些数转化被该自然数除后余数为2a 的数:()42952848-⨯=,791、50021000⨯=,这些数被这个自然数除所得的余数都是2a ,同余. 将这三个数相减,得到84879157-=、1000848152-=,所求的自然数一定是57和152的公约数,而()57,15219=,所以这个自然数是19的约数,显然1是不符合条件的,经过验证,当这个自然数是19时,除429、791、500所得的余数分别为11、12、6,6a =时成立,所以这个自然数是19,6a =.[拓展]已知60,154,200被某自然数除所得余数分别是1a -,2a ,31a -,求该自然数的值. [分析] 自然数61,154,201被该数除所得余数分别是a ,2a ,3a .自然数2613721=与154同余,611549394⨯=与201同余,所以除数是3567和9193的公约数,运用辗转相除法可得到该除数为29.经过检验成立.[拓展]甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?[分析] 设这个数为M ,则11603M A r ÷=22939M A r ÷=33393M A r ÷=122r r =,232r r =,要消去余数1r ,2r ,3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,这样被除数和余数都扩大2倍,同理,第三个式子乘以4. 这样我们可以得到下面的式子:11603M A r ÷=()22939222M A r ⨯÷=()33393424M A r ⨯÷=这样余数就处理成相同的.最后两两相减消去余数,意味着能被M 整除.93926031275⨯-=,3934603969⨯-=,()1275,30651317==⨯.603,939,393这三个数有公约数3.51317÷=.则A 等于17.【例 2】 一个自然数减去它的各位数字之和得到的差值,称为“好数”.例如,根据()757757738-++=是“好数”.在四位数20□○的方框中填入某个恰当的数字后,可以使得无论圆圈内填入09 中的哪个数字,该四位数都不是“好数”,那么在方框中应填写数字__________.【分析】 注意到所有“好数”都是9的倍数,但9的倍数不一定都是好数.200x 对应的“好数”是20021998x x --=;201x 对应的“好数”是201212007x x ---=;202x 对应的“好数”是202222016x x ---=;…… …… ……209x 对应的“好数”是209292079x x ---=;210x 对应的“好数”是210212097x x ---=;即在20□○中“好数”只能是2007、2016、2025、2034、2043、2052、2061、2070、2079、2097. 所以,如果在20□○的“□”内填入8,则不管“○”填入什么数都不能是“好数”.【例 3】 (南京市“兴趣杯”少年数学邀请赛决赛)现有糖果254粒,饼干210块和桔子186个.某幼儿园大班人数超过40.每人分得一样多的糖果,一样多的饼干,也分得一样多的桔子.余下的糖果、饼干和桔子的数量的比是:1:3:2,这个大班有_____名小朋友,每人分得糖果_____粒,饼干_____块,桔子_____个.【分析】 法一:设大班共有a 名小朋友.由于余下的糖果、饼干和桔子的数量之比是1:3:2,所以余下的糖果、桔子数目的和正好等于余下的饼干数,从而254186210+-一定是a 的倍数,即2541862102301230102325+-==⨯=⨯=⨯⨯是a 的倍数.同样,225418632223142327⨯-==⨯=⨯⨯也一定是a 的倍数.所以,a 只能是232⨯的因数.但40a >,所以46a =.此时25446524=⨯+,21046372=⨯+,18646348=⨯+.故大班有小朋友46名,每人分得糖果5粒,饼干3块,桔子3个.法二:如果糖果有25461524⨯=粒,饼干有2102420⨯=块,橘子有1863558⨯=个,那么余下的糖果、饼干、橘子的个数相等,所以1524、420、558这三个数的相互之差是大班人数的倍数,152********-=,558420138-=,()1104,138138=,所以幼儿园大班人数是138的大于40的约数,即138、69、46,经过检验,其中只有46满足条件.每人分得糖果5粒、饼干3块、橘子3块.【例 4】 试求105253168⨯的末两位数.【分析】 分别考虑这两个幂除以4和25所得的余数.首先考虑4,253除以4余数是1,所以25310除以4的余数仍是1;168是4的倍数,它的5次方仍是4的倍数,即除以4的余数为0,则原数除以4的余数也是0.再考虑25,253除以25余3,则只需看310除以25的余数,又310=27×27×27×3,则310除以25的余数为2×2×2×3=24;168除以25余18,则只需看51832432418=⨯⨯除以25的余数,可知余数为18;又2418432⨯=除以25的余数为7,所以原式除以25的余数即为7.两位数中,能被4整除,除以25余7的数只有32,则原式的末两位即为32.[拓展]试求20082007的末两位数.[分析]200720007=+,所以20082007的末两位数与20087的末两位数相同. ()()100450220082100425027749492401====,2401被100除余1所以5022401被100除得的余数等于5021,所以20082007的末两位数是01.[拓展]求89143除以7的余数.[分析] 法一:∵()1433mod7≡(143被7除余3)∴()89891433mod7≡(89143被7除所得余数与893被7除所得余数相等)而63729=,()7291mod7≡∴()8966655143333335mod7≡⨯⨯⨯⨯≡≡个. 89于是余数以6为周期变化.所以335mod7≡≡.【例 5】1234200512342005+++++ 除以10所得的余数为多少? 【分析】 求结果除以10的余数即求其个位数.从1到2005这2005个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把每个加数的个位数按20个(20是4和10的最小公倍数)一组,则不同组中对应的数字应该是一样的.首先计算123420123420+++++ 的个位数字,为4.2005个加数中有100组另5个数,100组的个位数是4100400⨯=的个位数即0,另外5个数为20012001、20022002、20032003、20042004、20052005,它们和的个位数字是1476523++++=的个位数 3,所以原式的个位数字是3,即除以10的余数是3.【例 6】 求{10031203308L 个除以19的余数. 【分析】 法一:{{{10161003101312033081266406332=-L L L 个个个 {{101310132063326332=⨯-L L 个个 {1013196332=⨯L 个 所以{10031203308L 个除以19的余数为0. 法二:首先计算120308被19除所得余数为0,120330812030810228=⨯+,228也是19的倍数,所以1203308也是19的倍数.12033308120330810228=⨯+,所以1203308也是19的倍数.以此递推可得到{10031203308L 个也是19的倍数.[拓展](2008年奥数网杯)已知20082008200820082008a = 个,问:a 除以13所得余数是______.[分析]2008除以13余6,10000除以13余3, 注意到200820082008100002008=⨯+;20082008200820082008100002008=⨯+;2008200820082008200820082008100002008=⨯+;根据这样的递推规律求出余数的变化规律:20082008除以13余6361311⨯+-=,200820082008除以13余1136390⨯+-=,即200820082008是13的倍数,而2008除以3余1,所以20082008200820082008a = 个除以13的余数与2008除以13的余数相同,为6.【例 7】 对任意的自然数n ,证明2903803464261n n n n A =--+能被1897整除.【分析】18977271=⨯,7与271互质,因为29035(mod 7)≡,8035(mod7)≡,4642(mod 7)≡,2612(mod7)≡,所以,290380346426155220(mod7)n n n n n n n n A =--+≡--+≡,故A 能被7整除.又因为2903193(mod 271)≡,803261(mod 271)≡,464193(mod 271)≡,所以29038034642611932611932610(mod271)n n n n n n n n A =--+≡--+≡,故A 能被271整除. 因为7与271互质,所以A 能被1897整除.【例 8】 在下表中填入自然数,要求第一行中所填入的自然数从左到右依次是31,32,33, ,第中填入的自然数从左到右依次是13,23,33, ,第三行中填入的自然数是同一列当中第一行、7【分析】 第一行的数被7除所得余数依次是1,1,6,1,6,6,0,……,以7为周期.第二行的数被7除所得的余数依次是3,2,6,4,5,1……,以6为周期.第三行的自然数如果除以7余1,那么对应第一行、第二行的自然数被7除,只有0+1和6+2两种情况,其中第一种情况下,对应的列数能被7和6整除,所以在第42列才能出现该情况,第二种情况下,对应的列数被7除余3,5,6,被6除余2,符合条件的最小列数是20.“物不知数问题”一般解题步骤:①凑“多”相同,即把余数处理成相同 条件:余数与除数的和相同②凑“缺”相同,即把余数处理成缺的数字相同 条件:除数与余数的差相同③先考虑上面两种,如果都不行,可使用逐步满足法或使用“中国剩余定理” .④逐步满足法:先满足条件一,得N ,再用“M N =+已满足除数公倍数”来满足下一个条件.《孙子算经》中有记载:“今有物不知其数:三三数之余二,五五数之余三,七七数之余二,问物几何?”它的意思就是,有一些物品,如果3个3个的数,最后剩2个;如果5个5个的数,最后剩3个;如果7个7个的数,最后剩2个;求这些物品一共有多少?这个问题人们通常把它叫作“孙子问题”, 西方数学家把它称为“中国剩余定理”.到现在,这个问题已成为世界数学史上闻名的问题.到了明代,数学家程大位把这个问题的算法编成了四句歌诀:三人同行七十稀,五树梅花廿一枝;七子团圆正半月,除百零五便得知.用现在的话来说就是:一个数用3除,除得的余数乘70;用5除,除得的余数乘21;用7除,除得的余数乘15.最后把这些乘积加起来再减去105的倍数,就知道这个数是多少.《孙子算经》中这个问题的算法是:702213152233⨯+⨯+⨯=;23310510523--=;所以这些物品最少有23个.得出问题中的系数70、21、15,实际上是非常巧妙的构造过程,这三个数满足以下条件70是5和7的公倍数,且被3除余1;21是3和7的公倍数,且被5除余1;15是3和5的公倍数,且被7除余1.在这样的条件下,任意一个系数乘以对应余数所得的积,被对应除数除后所得的余数恰好等于对应余 数,且该积仍然能被其他两个除数整除,因此三个积相加并不相互影响各自被对应除数除后所得的余数. 即702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数.【例 9】 一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?【分析】 法一:仔细分析可以发现321527⨯+=+=,所以这个数可以看成被3、5、11除余7,[]3,5,11165=,所以这个数最小是1657172+=.法二:事实上,如果没有“大于10”这个条件,7即可符合条件,在7的基础上加上3,5,11的最小公倍数,得到172即为所求的数.[铺垫]一个大于10的数,除以5余3,除以7余1,除以9余8,问满足条件的最小自然数为____. [分析] 根据总结,我们发现三个数中两个数的除数与余数的和都是53718+=+=,这样我们可以把余数都处理成8,所以[]5,7,9315=,所以这个数最小为3158323+=.[铺垫]一个小于200的数,它除以11余8,除以13余10,这个数是多少?[分析] 根据总结,我们发现这两个除数与余数的差都等于11813103-=-=,观察发现这个数加上3后就能同时被11和13整除,所以[]11,13143=,所以这个数是1433140-=.【例10】 一个数除以3余2,除以5余3,除以7余4,问满足条件的最小自然数为____.【分析】 法一:根据总结,我们发现前面两种都不符合,所以可以使用普遍适用的“中国剩余定理”,步骤如下:分别找出除以7余7的公倍数,除以3余2的5、7的公倍数,分别是:60、63、35可见60+63+35=158满足我们的条件,但不是最小的自然数,处理方法就是减去最小公倍数的若干倍,使结果小于最小公倍数.所以答案为:158-105=53.法二:逐步构造符合条件的最小自然数,首先求符合前两个条件的最小自然数,用3不断加2,当2被加上两个3时得到8,检验符合前两个条件,再用3和5的最小公倍数不断加8,当8被加上3个15,得到53,检验符合三个条件.法三:逐步构造符合条件的最小自然数,首先求符合后面两个条件的最小自然数,用7不断加4,当4被加上两个7时得到18,检验符合后两个条件,再用7和5的最小公倍数不断加18,当18被加上1个35,得到53,检验符合三个条件.【例11】有连续的三个自然数a、1a+,它们恰好分别是9、8、7的倍数,求这三个自然数中最a+、2小的数至少是多少?【分析】法一:由1a+是7的倍数,得到a被7除余5,运用中国a+是8的倍数,得到a被8除余7,由2剩余定理求a:(⨯+⨯=495是满足各个余数条件的最小441728854527值,所以a至少是495.法二:a、1a++也分别是9、a++、27a+、18a+、2a+恰好分别是9、8、7的倍数,那么9a+的最小值是987504⨯⨯=,即a至少是495.8、7的倍数,即9a+是9、8、7的倍数,9【例12】一个数除以3、5、7、11的余数分别是2、3、4、5,求符合条件的最小的数:【分析】将33210×5=1050被11除余5,由此可知770+693+165+1050=2678是符合条件的一个值,又3、5、7、11的最小公倍数是1155,所以2678-1155×2=368是符合条件的最小值.[拓展]一个数除以2、3、5、7、11的余数分别是1、2、3、4、5,求符合条件的最小数.[分析]本题实际上就是求被3、5、7、11除的余数分别是2、3、4、5的最小奇数,符合条件的最小偶数是368,只要将368加上3×5×7×11就能求得符合条件的最小奇数,这个数是368+3×5×7×11=1523.1. 有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?【分析】 由于这三个数除以这个自然数后所得的余数和为25,所以63、90、130的和除以这个自然数后所得的余数为25,所以63+90+130-25=258能被这个自然数整除.258=2×3×43,显然当除数为2、3、6时,3个余数的和最大为3×(2-1)=3,3×(3-1)=6,3×(6-1)=15,所以均不能满足条件.当除数为43×2、43×3、43×6时,它除63的余数均是63,所以也不满足.那么除数只能是43,它除63,90,130的余数依次为20,4,1,余数的和为25,满足. 显然这3个余数中最大的为20.2. ()200831312008+被13除所得的余数是多少?【分析】31被13除所得的余数为5,31n 当n 取1,2,3, 时31n 被13除所得余数分别是5,12,8,1,5,12, 所以200831被13除余1.2008被13除所得的余数是6,6n 当n 取1,2,3, 时,6n 被13除所得的余数分别是6,10,8,9,2,12,7,3,5,4,11,1,6, 所以316被13除所得的余数等于76被13除所得的余数,即7,所以()200831312008+被13除所得的余数是178+=.3. 一个自然数除以7、8、9后分别余3、5、7,而所得的三个商的和是758,这个数是___________.【分析】 这个数加上11后能被7、8、9整除.7、8、9的最小公倍数是789504⨯⨯=,所以除以7,8,9后分别余3、5、7的数最小为50411-.504分别除以7、8、9所得的商之和是897879191⨯+⨯+⨯=,则50411-分别除以7、8、9所得的商之和是19123185-⨯=.7581851913=+⨯,所以这个数为5041150432005-+⨯=.4. 一个数除以5余3,除以6余4,除以7余1,求适合条件的最小的自然数.【分析】 “除以5余3”即“加2后被5整除”,同样“除以6余4”即“加2后被6整除”.[]5,6228-=,即28适合前两个条件.分析[]285,6x +⨯中能满足“除以7余1”的x 的值.可得到4x =是满足条件的最小值,所以,适合条件的最小的自然数是28304148+⨯=.5. 将一些水果装盘(少于100)个,如果7个7个装盘则剩下2个不能装,如果11个11个装盘则剩下6个不能装盘,如果13个13个装盘,那么还剩下7个不能装盘,那么这些水果有多少个?【分析】 11×13的倍数:143、286、429,……其中被7除余2的有429;7×13的倍数:91,182,……除以11余6的有182;7×11的倍数:77,154,……除以13余7的有462.1824624291073++=,由于水果数少于100,所以水果数有1073100172-=个.选绿色包装——减少垃圾灾难每人每年丢掉的垃圾重量超过人体平均重量的五六倍.北京年产垃圾430万吨,日产垃圾1.2万吨,人均每天扔出垃圾约1千克,相当于每年堆起两座景山.我国目前垃圾的产生量是1989年的4倍,其中很大一部分是过度包装造成的.不少商品特别是化妆品、保健品的包装费用已占到成本的30%—50%.过度包装不仅造成了巨大的浪费,也加重了消费者的经济负担,同时还增加了垃圾量,污染了环境.我们选购产品的时候还是以使用价值为主,尽量避免选购过度包装的产品,减少垃圾的制造量.拒子入门子发是战国时期楚国的一位将军.一次,他带兵与秦国作战,前线断了粮草,他派人向楚王告急.使者顺便去看望子发的老母.老人问使者:“兵士都好吗?”使者回答:“还有点儿豆子,只能一粒一粒分着吃.”“你们将军呢?”母亲问.使者回答道:“将军每餐都能吃到肉和米饭,身体很好.”子发得胜归来,母亲紧闭大门不让他进家门,并派人去告诉子发:“你让士兵饿着肚子打仗,自己却有吃有喝,这样做将军,打了胜仗也不是你的功劳.”母亲又说:“越王勾践伐吴的时候,有人献给他一罐酒,越王让人把酒倒在江的上游,叫士兵们一起饮下游的水.虽然大家没尝到酒味,却鼓舞了全军的士气,提高了战斗力.现在你却只顾自己不顾士兵,你不是我的儿子,你不要进我的门.”子发听了母亲的批评,向母亲认了错,决心改正,才得以进家门.俗话说:“子不教,父之过.”子女成长的好坏,长辈有着极大的责任.父母为了使孩子成长成参天大树,就必须在我们心中植下博爱之心,有了博爱之心,才有施爱于他人的可能.多以有时候,责备也蕴涵着父母对子女深沉的爱.。
高中数学竞赛专题讲座---竞赛中的数论问题
竞赛中的数论问题的思考方法一. 条件的增设对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。
1. 大小顺序条件与实数范围不同,若整数x ,y 有大小顺序x <y ,则必有y ≥x +1,也可以写成y =x +t ,其中整数t ≥1。
例1. (IMO-22)设m ,n 是不大于1981的自然数,1)(222=--m nm n ,试求22n m +的最大值。
解:易知当m =n 时,222=+n m 不是最大值。
于是不访设n >m ,而令n =m +u 1,n >u 1≥1,得-2(m -1mu 1)22112=--u mu 。
同理,又可令m = u 1+ u 2,m >u 2≥1。
如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。
故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。
例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。
因为所求的都是整数,所以原不等式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12(3)2(222≤-+-+-c b ba ,从而只有a =1,b =2,c =1。
2. 整除性条件对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ∤y ,则可令y =tx +r ,0<r ≤|x |-1。
这里字母t ,r 都是整数。
进一步,若a q |,b q |且a b >,则q a b +≥。
数论竞赛题
数论竞赛题数论竞赛题是在数学竞赛中常见的一类题型,主要考察学生在数论领域的理解和运用能力。
数论是研究整数性质及其运算规律的数学分支,涉及到诸多定理和性质。
以下是一个典型的数论竞赛题目,供参考。
题目:证明对于任意正整数 n,都存在一个正整数 k,使得 n(n+1)(n+2)(n+3) 可以被 24 整除。
解法:我们可以通过数学归纳法来证明这一命题。
首先,观察到 24 可以分解为 3 × 2^3。
我们分两种情况进行讨论:情况一:n 是 4 的倍数。
设 n=4k,其中 k 是一个正整数。
则有:n(n+1)(n+2)(n+3) = 4k(4k+1)(4k+2)(4k+3)= 4 × k × (4k+1) × 2 × (2k+1) × 3 × (2k+2) 。
我们发现此时,n(n+1)(n+2)(n+3) 能够被 24 整除。
情况二:n 不是 4 的倍数。
设 n=4k+r,其中 k 是一个正整数,r 是余数,r=1,2 或 3。
则有:n(n+1)(n+2)(n+3) = (4k+r)(4k+r+1)(4k+r+2)(4k+r+3)我们观察到,至少存在一个连续的四个数中,必然包含一个数能被 2 整除,一个数能被 4 整除,一个数能被 3 整除,因而有 2×4×3=24,即可以被 24 整除。
综上所述,对于任意的正整数 n,都存在一个正整数 k,使得 n(n+1)(n+2)(n+3) 能够被 24 整除。
证毕。
数论竞赛题通常涉及到数的整除性质、奇偶性、模运算等概念,要求学生具备较强的逻辑推理和数学证明能力。
通过解决这类题目,学生可以加深对数论相关概念和方法的理解,培养思考和解决问题的能力。
高中数学竞赛——数论
高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。
K 0,K 1,…,K m-1为模m 的全部剩余类.(2)性质(ⅰ)i m i K Z 10-≤≤= 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里.(ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ⇔a ≡b(modm).2.剩余系的定义与性质(1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,21,,1,0,1,,121,21--+----m m m ;当m 为偶数时,12,,1,0,1,,12,2--+--m m m 或2,,1,0,1,,12m m -+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系⇔两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系.证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!(ⅲ)设m1,m2是两个互质的正整数,而x,y分别遍历模m1,m2的完系,则m2x+m1y历遍模m1m2的完系.证明:因x,y分别历遍m1,m2个整数,所以,m2x+m1y历遍m1m2个整数.假定m2x/+m1y/≡m2x//+m1y//(modm1m2),其中x/,x//是x经历的完系中的数,而y/,y//是y经历的完系中的数.因(m1,m2)=1,所以,m2x/≡m2x//(modm1),m1y/≡m1y// (modm2),从而x/≡x//(modm1),y/≡y//(modm2),矛盾!3.既约剩余系的定义与性质(1)定义3如果剩余类K r里的每一个数都与m互质,则K r叫与m互质的剩余类.在与模m互质的全部剩余类中,从每一类中任取一个数所做成的数组,叫做模m的一个既约(简化)剩余系.如:模5的简系1,2,3,4;模12的简系1,5,7,11.(2)性质(ⅰ)K r与模m互质⇔K r中有一个数与m互质;证明:设a∈K r,(m,a)=1,则对任意b∈K r,因a≡b≡r(modm),所以,(m,a)=(m,r)= (m,b)=1,即K r与模m互质.(ⅱ)与模m互质的剩余类的个数等于)m(ϕ,即模m的一个既约剩余系由)m(ϕ个整数组成()m(ϕ为欧拉函数);(ⅲ)若(a,m)=1,则x与ax同时遍历模m的既约剩余系.证明:因(a,m)=1,(x,m)=1,所以,(ax,m)=1.若ax1≡ax2(modm),则有x1≡x2(modm),矛盾!(ⅳ)若a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,则a1,a2,…,aφ(m)是模m的一个既约剩余系.证明:因a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,所以,a1,a2,…,aφ(m)属于)m(ϕ个剩余类,且每个剩余类都与m互质,故a1,a2,…,aφ(m)是模m 的一个既约剩余系.(ⅴ)设m 1,m 2是两个互质的正整数,而x,y 分别历遍模m 1,m 2的既约剩余系,则m 2x+m 1y 历遍模m 1m 2的既约剩余系.证明:显然,既约剩余系是完系中所有与模互质的整数做成的.因x,y 分别历遍模m 1,m 2的完系时,m 2x+m 1y 历遍模m 1m 2的完系.由(m 1,x )=(m 2,y )=1, (m 1,m 2)=1得(m 2x,m 1)=(m 1y,m 2)=1,所以,(m 2x+m 1y,m 1)=1,(m 2x+m 1y,m 2)=1,故 (m 2x+m 1y, m 1m 2)=1.反之若(m 2x+m 1y, m 1m 2)=1,则(m 2x+m 1y,m 1)=(m 2x+m 1y,m 2) =1,所以,(m 2x,m 1)=(m 1y,m 2)=1,因(m 1,m 2)=1,所以,(m 1,x )=(m 2,y )=1.证毕.推论1若m 1,m 2是两个互质的正整数,则)()()(2121m m m m ϕϕϕ=.证明:因当x,y 分别历遍模m 1,m 2的既约剩余系时,m 2x+m 1y 也历遍模m 1m 2的既约剩余系,即m 2x+m 1y 取遍)(21m m ϕ个整数,又x 取遍)(1m ϕ个整数,y 取遍 )(2m ϕ个整数,所以, m 2x+m 1y 取遍)()(21m m ϕϕ个整数,故)()()(2121m m m m ϕϕϕ=.推论2 设整数n 的标准分解式为k k p p p n ααα 2121=(k p p ,,1 为互异素数, *1,,N k ∈αα ),则有)11()11)(11()(21kp p p n n ---= ϕ. 证明:由推论1得)()()()(2121k k p p p n αααϕϕϕϕ =,而1)(--=αααϕp p p ,(即从1到αp 这αp 个数中,减去能被p 整除的数的个数),所以,)())(()(11221112211------=kk k k p p p p p p n ααααααϕ )11()11)(11(21kp p p n ---= . 4.欧拉(Euler)与费尔马(Fermat)定理欧拉(Euler)定理 设m 是大于1的整数,(a ,m)=1,则)(m od 1)(m a m ≡ϕ. 证明:设r 1,r 2,…,r )(m ϕ是模m 的既约剩余系,则由性质3知a r 1,a r 2,…,a r )(m ϕ也是模m 的既约剩余系,所以, a r 1a r 2…a r )(m ϕ≡r 1r 2…r )(m ϕ(modm),即≡)(21)(m m r r r a ϕϕ )(21m r r r ϕ ,因()(21m r r r ϕ ,m)=1,所以,)(m od 1)(m a m ≡ϕ.推论(Fermat 定理) 设p 为素数,则对任意整数a 都有)(m od p a a p ≡.证明:若(a , p )=1,由1)(-=p p ϕ及Euler 定理得)(m od 11p a p ≡-即)(m od p a a p ≡;若(a , p )≠1,则p |a ,显然有)(m od p a a p ≡.例1设m>0,证明必有一个仅由0或1构成的自然数a 是m 的倍数.证明:考虑数字全为1的数:因1,11,111,1111,…中必有两个在modm 的同一剩余类中,它们的差即为所求的a .例2证明从任意m 个整数a 1,a 2,…,a m 中,必可选出若干个数,它们的和(包括只一个加数)能被m 整除.证明:考虑m 个数a 1,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a m ,如果其中有一个数能被m 整除,则结论成立,否则,必有两个数属于modm 的同一剩余类,这两个数的差即满足要求.例3设f(x)=5x+2=f 1(x), f n+1(x)=f[f n (x)].求证:对任意正整数n,存在正整数m,使得2011|f n (m).证明:因f 2(x)=f[f(x)]=5(5x+2)+2=52x+5×2+2,f 3(x)=f[f 2(x)]=53x+52×2+5×2+2,..., f n (x)=5n x+5n-1×2+5n-2×2+ (2)因(5n ,2011)=1,所以,x 与f n (x)同时历遍mod2011的完系,1≤x ≤2011,所以,存在正整数m(1≤m ≤2011)使得f n (m)≡0(mod2011),即2011|f n (m).例4设123,,,a a a 是整数序列,其中有无穷多项为正整数,也有无穷多项为 负整数.假设对每个正整数n ,数123,,,,n a a a a 被n 除的余数都各不相同.证明:在数列123,,,a a a 中,每个整数都刚好出现一次.证明:数列各项同时减去一个整数不改变本题的条件和结论,故不妨设a 1=0.此时对每个正整数k 必有∣a k ∣<k:若∣a k ∣≥k,则取n=∣a k ∣,则a 1≡a k ≡0(mod n),矛盾.现在对k 归纳证明a 1,a 2,…,a k 适当重排后是绝对值小于k 的k 个相邻整数.k=1显然.设a 1,a 2,…,a k 适当重排后为-(k -1-i),…,0,…,i (0≤i ≤k -1),由于a 1,a 2,…,a k ,a k+1是(mod k+1)的一个完全剩余系,故必a k+1≡i+1(mod k+1), 但 ∣a k+1∣<k+1,因此a k+1只能是i+1或-(k -i),从而a 1,a 2,…,a k ,a k+1适当重排后是绝对值小于k+1的k+1个相邻整数.由此得到:1).任一整数在数列中最多出现一次;2).若整数u 和v (u<v) 都出现在数列中,则u 与v 之间的所有整数也出现在数列中.最后由正负项均无穷多个(即数列含有任意大的正整数及任意小的负整数)就得到:每个整数在数列中出现且只出现一次.例5偶数个人围着一张圆桌讨论,休息后,他们依不同次序重新围着圆桌坐下,证明至少有两个人,他们中间的人数在休息前与休息后是相等的。
数学竞赛中的数论问题题型全
数学竞赛中的数论问题定理4 ,a b 是两个不同时为0的整数,若00ax by +是形如ax by +(,x y 是任意整数)的数中的最小正数,则(1)00ax by +|ax by +;(2)00ax by +(),a b =.证明 (1)由带余除法有()00ax by ax by q r +=++,000r ax by ≤<+, 得 ()()0000r a x qx x b y qy ax by =-+-<+,知r 也是形如ax by +的非负数,但00ax by +是形如ax by +的数中的最小正数,故0r =,即00ax by +|ax by +. (2)由(1)有00ax by +|10a b a +=g g ,00ax by +|01a b b +=g g ,得00ax by +是,a b 的公约数.另一方面,,a b 的每一个公约数都可以整除00ax by +,所以00ax by +是,a b 的最大公约数,00ax by +(),a b =.推论 若(),1a b =,则存在整数,s t ,使1as bt +=.(很有用)定理5 互素的简单性质: (1)()1,1a =.(2)(),11n n +=.(3)()21,211n n -+=. (4)若p 是一个素数,a 是任意一个整数,且a 不能被p 整除,则(),1a p =. 推论 若p 是一个素数,a 是任意一个整数,则(),1a p =或(),a p p =. (6)若()(),1,,1a b a c ==,则(),1a bc =.证明 由(),1a b =知存在整数,s t ,使1as bt +=.有 ()a cs bct c +=,得 ()(),,1a bc a c ==. (7)若(),1a b =,则(),1a b a ±=,(),1a b b ±=, (),1a b ab ±=.证明 ()()(),,,1a b a b a b a ±=±==,()(),,1a b b a b ±==,由(6)(),1a b ab ±=. (8)若(),1a b =,则(),1m n a b =,其中,m n 为正整数.证明 据(6),由(),1a b =可得(),1m a b =.同样,由(),1m a b =可得(),1m n a b =. 定理7 素数有无穷多个,2是唯一的偶素数.证明 假设素数只有有限多个,记为12,,,n p p p L ,作一个新数 1211n p p p p =+>g gL g . 若p 为素数,则与素数只有 n 个12,,,n p p p L 矛盾.若p 为合数,则必有{}12,,,i n p p p p ∈L ,使|i p p ,从而|1i p ,又与1i p >矛盾. 综上所述,素数不能只有有限多个,所以素数有无穷多个. 2是素数,而大于2的偶数都是合数,所以2是唯一的偶素数.注:这个证明中,包含着数学归纳法的早期因素:若假设有n 个素数,便有1n +个素数.(构造法、反证法)定理8(整除的性质)整数,,a b c 通常指非零整数 (1)1a ,1|a -;当0a ≠时,|a a ,|0a .(2)若b a ,0a ≠,则b a ≤;若b a ,b a >,则0a =;若0ab >,且,b a a b ,则a b =.证明 由b a ,0a ≠,有a bq =,得a b q b =≥.逆反命题成立“若b a ,b a >,则0a =”; 由b a ≤且b a ≥得a b =,又0ab >,得a b =. (7)若(),1a b =,且a bc ,则a c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有()()a cs bc t c +=, 因为a a ,a bc ,所以a 整除等式的左边,进而整除等式的右边,即a c .(8)若(),1a b =,且,a c b c ,则ab c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有acs bct c +=,又由,a c b c 有12,c aq c bq ==代入得()()21ab q s ab q t c +=,所以ab c .注意 不能由a c 且b c 得出ab c .如不能由630且10|30得出60|30. (9)若a 为素数,且a bc ,则a b 或a c .证明 若不然,则|a b /且|a c /,由a 为素数得()(),1,,1a b a c ==,由互素的性质(6)得(),1a bc =,再由a 为素数得|a bc /,与a bc 矛盾.定义6 对于整数,,a b c ,且0c ≠,若()c a b -,则称,a b 关于模c 同余,记作(mod )a b c ≡;若()|c a b -/,则称,a b 关于模c 不同余,记作a(mod )b c .定理9(同余的性质)设,,,,a b c d m 为整数,0,m >若(mod )a b m ≡且(mod )c d m ≡,则(mod )a c b d m +≡+且(mod )ac bd m ≡.证明 由(mod )a b m ≡且(mod )c d m ≡,有12,a b mq c d mq -=-=, ① 对①直接相加 ,有()()()12a c b d m q q +-+=+,得 (mod )a c b d m +≡+.对①分别乘以,c b 后相加,有()()()12ac bd ac bc bc bd m cq bq -=---=+,得 (mod )ac bd m ≡. (3)若(mod )a b m ≡,则对任意的正整数n 有(mod )nna b m =且(mod )an bn mn ≡.(4)若(mod )a b m ≡,且对非零整数k 有(,,)k a b m ,则mod a b m k k k ⎛⎫= ⎪⎝⎭. 证明 由(mod )a b m ≡、,有 a b mq =+,又(,,)k a b m ,有,,a b mk k k均为整数,且 a b mq k k k=+,得 mod a b m k k k ⎛⎫≡ ⎪⎝⎭.定理10 设,a b 为整数,n 为正整数, (1)若a b ≠,则()()nna b a b--.()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++L .(2)若a b ≠-,则()()2121n n a b ab --++.()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+L .(3)若a b ≠-,则()()22nn a b ab +-.()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+-L .定义7 设n 为正整数,k 为大于2的正整数, 12,,,m a a a L 是小于k 的非负整数,且10a >.若 12121m m m m n a ka k a k a ---=++++L ,则称数12m a a a L 为n 的k 进制表示.定理11 给定整数2k ≥,对任意的正整数n ,都有唯一的k 进制表示.如12121101010m m m m n a a a a ---=++++L ,109,0i a a ≤≤>(10进制) 12121222m m m m n a a a a ---=++++L .101,0i a a ≤≤>(2进制)定理12 (算术基本定理)每个大于1的正整数都可分解为素数的乘积,而且不计因数的顺序时,这种表示是唯一的1212kkn p p p ααα=L ,其中12k p p p <<<L 为素数,12,,,k αααL 为正整数. (分解唯一性)定理13 若正整数n 的素数分解式为 1212kkn p p p ααα=L 则n 的正约数的个数为()()()()12111k d n a a a =+++L ,n 的一切正约数之和为 ()121111212111111k k k p p p S n p p p ααα+++---=⋅⋅⋅---L . 证明 对于正整数1212kk n p p p ααα=L ,它的任意一个正约数可以表示为1212kkm p p p βββ=L ,0i i βα≤≤ , ①由于i β有0,1,2,,i αL 共1i α+种取值,据乘法原理得n 的约数的个数为()()()()12111k d n a a a =+++L .考虑乘积()()()12010101111222k k k k p p p pp p p p p ααα+++++++++L L L L , 展开式的每一项都是n 的某一个约数(参见①),反之,n 的每一个约数都是展开式的某一项,于是,n 的一切约数之和为()()()11101111kk kS n p p p pp p αα=++++++L L L 121111212111111k k k p p p p p p ααα+++---=⋅⋅⋅---L . 注 构造法.定义8 (高斯函数)对任意实数x ,[]x 是不超过x 的最大整数.亦称[]x 为x 的整数部分,[][]1x x x ≤<+. 定理14 在正整数!n 的素因子分解式中,素数p 作为因子出现的次数是 23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L . 证明 由于p 为素数,故在!n 中p 的次方数是1,2,,n L 各数中p 的次方数的总和(注意,若p 不为素数,这句话不成立).在1,2,,n L 中,有n p ⎡⎤⎢⎥⎣⎦个p 的倍数;在n p ⎡⎤⎢⎥⎣⎦个p 的倍数的因式中,有2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数;在2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数的因式中,有3n p ⎡⎤⎢⎥⎣⎦个3p 的倍数;…,如此下去,在正整数!n 的素因子分解式中,素数p 作为因子出现的次数就为23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L .注 省略号其实是有限项之和. 定理15 (费玛小定理)如果素数p 不能整除整数a ,则()11p p a--.证明2 改证等价命题:如果素数p 不能整除整数a ,则()mod pa a p ≡. 只需对1,2,,1a p =-L 证明成立,用数学归纳法. (1)1a =,命题显然成立.(2)假设命题对()11a k k p =≤<-成立,则当1a k =+时,由于()|1,2,,1ip p C i p =-L ,故有()11111ppp p p p k k C kC k --+=++++L ()11mod p k k p ≡+≡+.(用了归纳假设) 这表明,命题对1a k =+是成立. 由数学归纳法得()mod pa a p ≡.又素数p 不能整除整数a ,有(),1a p =,得()11p p a--.定义9 (欧拉函数)用()n ϕ表示不大于n 且与n 互素的正整数个数. 定理16 设正整数1212kkn p p p ααα=L ,则 ()12111111k n n p p p ϕ⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭L . 推论 对素数p 有()()11,p p p pp αααϕϕ-=-=-..第二讲 数论题的范例讲解(12)()()()()()()22220mod 4,211mod 4,211mod8n n n ≡-≡-≡. (13)任何整数都可以表示为()221m n k =-.例1-1(1986,英国)设127,,,a a a L 是整数,127,,,b b b L 是它们的一个排列,证明()()()112277a b a b a b ---L 是偶数.(127,,,a a a L 中奇数与偶数个数不等)例1-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a L 为该24个数字的任一排列,求证()()()12342324a a a a a a ---L 必为偶数.(暗藏3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4中奇数与偶数个数不等)例2 能否从1,2,,15L 中选出10个数填入图的圆圈中,使得每两个有线相连的圈中的数相减(大数减小数),所得的14个差恰好为1,2,,14L ?解 考虑14个差的和S ,一方面1214105S =+++=L 为奇数.另一方面,每两个数,a b 的差与其和有相同的奇偶性 (mod2)a b a b -≡+,因此,14个差的和S 的奇偶性与14个相应数之和的和/S 的奇偶性相同,由于图中的每一个数a 与2个或4个圈中的数相加,对/S 的贡献为2a 或4a ,从而/S 为偶数,这与S 为奇数矛盾,所以不能按要求给图中的圆圈填数.评析:用了计算两次的技巧.对同一数学对象,当用两种不同的方式将整体分为部分时,则按两种不同方式所求得的总和应是相等的,这叫计算两次原理成富比尼原理.计算两次可以建立左右两边关系不太明显的恒等式.在反证法中,计算两次又可用来构成矛盾.例3 有一大筐苹果和梨分成若干堆,如果你一定可以找到这样的两堆,其苹果数之和与梨数之和都是偶数,问最少要把这些苹果和梨分成几堆?解 (1)4堆是不能保证的.如4堆的奇偶性为:(反例) (奇奇),(偶偶),(奇偶),(偶奇).(2)5堆是可以保证. 因为苹果和梨数的奇偶性有且只有上述4种可能,当把这些苹果和梨分成5堆时,必有2堆属于同一奇偶性,其和苹果数与梨数都是偶数.例4 有n 个数121,,,,n n x x x x -L ,它们中的每一个要么是1,要么是1-.若1223110n n n x x x x x x x x -+++++=L L ,求证4|n .证明 由{}1,1i x ∈-,有{}11,1i i x x +∈-,再由1223110n n n x x x x x x x x -+++++=L L , 知n 个1i i x x +中有一半是1,有一半是1-,n 必为偶数,设2n k =.现把n 个1i i x x +相乘,有2222122311121(1)(1)1k kn n n n n x x x x x x x x x x x x ---+===g gL g g g L g ,可见,k 为偶数,设2k m =,有4n m =,得证4|n .例6 在数轴上给定两点1,在区间内任取n 个点,在此2n +个点中,每相邻两点连一线段,可得1n +条互不重叠的线段,证明在此1n +条线段中,以一个有理点和一个无理点为端点的线段恰有奇数条.证明 将2n +个点按从小到大的顺序记为122,,,n A A A +…,并在每一点赋予数值i a ,使1, 1,i i i A a A ⎧=⎨-⎩当为有理数点时, 当为无理数点时.与此同时,每条线段1i i A A +也可数字化为1i i a a +(乘法) 1111,, 1,,i i i i i i A A a a A A +++-⎧=⎨⎩ 当一为有理数点,另一为无理数时, 当同为有理数点或无理数点时,记11i i a a +=-的线段有k 条,一方面112233412()()()()(1)(1)(1)k n k k n n a a a a a a a a -+++=-+=-... 另一方面 12233412()()()()n n a a a a a a a a ++ (2)1231212()1n n n a a a a a a a -++===-…,得()11k-=-,故k 为奇数.评析 用了数字化、奇偶分析的技巧. 二、约数与倍数最大公约数与最小公倍数的求法. (1) 短除法.(2)分解质因数法.设1212,0,1,2,,k k i a p p p i k αααα=≥=L L ,1212,0,1,2,,k k i b p p p i k ββββ=≥=L L .记 {}{}min ,,max ,i i i i i i γαβδαβ==,则 ()1212,k k a b p p p γγγ=L ,[]1212,k k a b p p p δδδ=L .(3)辗转相除法 ()()()()()121,,,,,0n n n n a b b r r r r r r r -======L . 例7 (1)求()8381,1015,[]8381,1015; (2)()144,180,108,[]144,180,108.解(1)方法1 分解质因数法.由283811729,10155729,=⨯=⨯⨯得()8381,101529=,[]28381,1015571729293335=⨯⨯⨯=. 方法2 辗转相除法.或 ()()()()()8381,1015261,1015261,23229,23229,029=====.[]()83811015838110158381,10158381352933358381,101529⨯⨯===⨯=.(2)方法1 短除法.由()22144,180,1082336=⨯=,得2144 180 108272 90 54336 30 27312 10 9 4 5 3[]43144,180,1082352160=⨯⨯=.方法2 分解质因数法.由42222314423,180235,10823,=⨯=⨯⨯=⨯,得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.例8 正整数n 分别除以2,3,4,5,6,7,8,9,10得到的余数依次为1,2,3,4,5,6,7,8,9,则n 的最小值为 . 解 依题意,对最小的n ,则1n +是2,3,4,5,6,7,8,9,10的公倍数3212357n +=⨯⨯⨯,得2519n =. 例9 有两个容器,一个容量为27升,一个容量为15升,如何利用它们从一桶油中倒出6升油来? 解 相当于求不定方程15276x y +=的整数解.由()15,273=知,存在整数,u v ,使15273u v +=,可得一个解2,1u v ==-,从而方程 ()1542726⨯+⨯-=.即往小容器里倒2次油,每次倒满之后就向大容器里倒,大容器倒满时,小容器里剩有3升油;再重复一次,可得6升.例10 对每一个2n ≥,求证存在n 个互不相同的正整数12,,,n a a a L ,使i j i j a a a a -+,对任意的{},1,2,,,i j n i j ∈≠L 成立.证明 用数学归纳法.当2n =时,取121,2a a ==,命题显然成立.假设n k =时,命题成立,即存在12,,,k a a a L ,使 i j i j a a a a -+,对任意的{},1,2,,,i j k i j ∈≠L 成立. 现取b 为12,,,k a a a L 及它们每两个数之差的最小公倍数,则1k +个数12,,,,k b a b a b a b +++L 满足 ()()()()()(),,t t ij i j a b b a b b a b a b a b a b ⎧+-++⎪⎨+-++++⎪⎩即命题对1n k =+时成立.由数学归纳法知命题对2n ≥成立.例11 ()111959,IMO -证明对任意正整数n ,分数214143n n ++不可约.证明1 (反证法)假若214143n n ++可约,则存在1d >, ①使 ()214,143n n d ++=,从而存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩②③消去n ,()()3322⨯-⨯,得 ()132d q p =-, ④的 1d =. ⑤由(1)、(5)矛盾,得1d =. 解题分析:(1)去掉反证法的假设与矛盾就是一个正面证法.(2)式④是实质性的进展,表明 ()()131432214n n =+-+,可见 ()214,1431n n ++=.由此获得2个解法. 证明2 设()214,143n n d ++=.存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩①② 消去n ,②×3-①×2,得()132d q p =- ③ 得 1d =.证明3 由()()131432214n n =+-+ 得 ()214,1431n n ++=.证明4 ()214,143n n ++ ()71,143n n =++ ④()71,1n =+ ⑤ 1=. 解题分析:第④ 相当于 ①-②;第⑤ 相当于②-2(①-②)=②×3-①×2;所以③式与⑤式的效果是一样的.例12 不存在这样的多项式 ()1110mm m m f n a n a na n a --=++++L ,使得对任意的正整数n ,()f n 都是素数.证明 假设存在这样的多项式,对任意的正整数n ,()f n 都是素数,则取正整数n b =,有素数p 使 ()1110mm m m f b a b a ba b a p --=++++=L ,进而对任意的整数,k 有 ()()()()1110mm m m f b kp a b kp a b kp a b kp a --+=+++++++L()1110m m m m a b a b a b a Mp --=+++++L (二项式定理展开)()1P M =+,其中M 为整数,这表明()f b kp +为合数.这一矛盾说明,不存在这样的多项式,对任意的正整数n ,()f n 都是素数.三、平方数若a 是整数,则2a 就叫做a 的完全平方数,简称平方数. 1.平方数的简单性质(1)平方数的个位数只有6个:0,1,4,5.6.9.(2)平方数的末两位数只有22个:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.(3)()()()()2220mod 4,211mod 4n n ≡-≡.(4)()()2211mod8n -≡.(6)凡是不能被3整除的数,平方后被3除余1.(7)在两个相邻整数的平方数之间,不能再有平方数. (8)非零平方数的约数有奇数个.(9)直角三角形的三边均为整数时,我们把满足222a b c +=的整数(),,a b c 叫做勾股数.勾股数的公式为2222,2,,a m n b mn c m n ⎧=-⎪=⎨⎪=+⎩其中,m n 为正整数,(),1m n =且,m n 一奇一偶.这个公式可给出全部素勾股数.2.平方数的证明方法(1)反证法.(2)恒等变形法.(3)分解法.设a 为平方数,且a bc =,(),1b c =,则,b c 均为平方数. (4)约数法.证明该数有奇数个约数. 3.非平方数的判别方法(1)若()221n x n <<+,则x 不是平方数.(2)约数有偶数个的数不是平方数.(3)个位数为2,3,7,8的数不是平方数.(4)同余法:满足下式的数n 都不是平方数.()2mod3n ≡, ()23mod4n ≡或, ()23mod5n ≡或, ()23567mod8n ≡或或或或,()2378mod10n ≡或或或.(5)末两位数不是:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.如个位数与十位数都是都是奇数的数, 个位数是6、而十位数是偶数的数.例13 有100盏电灯,排成一横行,从左到右,我们给电灯编上号码1,2,…,99,100.每盏灯由一个拉线开关控制着.最初,电灯全是关着的.另外有100个学生,第一个学生走过来,把凡是号码为1的倍数的电灯的开关拉了一下;接着第2个学生走过来,把凡是号码为2的倍数的电灯的开关拉了一下;第3个学生走过来,把凡是号码为3的倍数的电灯的开关拉了一下,如此等等,最后那个学生走过来,把编号能被100整除的电灯的开关拉了一下,这样过去之后,问哪些灯是亮的?讲解 (1)直接统计100次拉线记录,会眼花缭乱.(2)拉电灯的开关有什么规律:电灯编号包含的正约数(学生)才能拉、不是正约数(学生)不能拉,有几个正约数就被拉几次.(3)灯被拉的次数与亮不亮(开、关)有什么关系:灯被拉奇数次的亮!(4)哪些数有奇数个约数:平方数. (5)1~100中有哪些平方数:共10个:1,4,9,16,25,36,49,64,81,100.答案:编号为1,4,9,16,25,36,49,64,81,100共10个灯还亮.例14 已知直角三角形的两条直角边分别为正整数,a b ,斜边为正整数c ,若a 为素数,求证()21a b ++为平方数.证明 由勾股定理222c a b =+,有 ()()2c b c b a +-=,但a 为素数,必有 2,1,c b a c b ⎧+=⎨-=⎩解得 ()2112b a =-,从而 ()()()22212121a b a a a ++=+-+=+,为平方数.例15 求证,任意3个连续正整数的积不是平方数.证明 设存在3个连续正整数1,,1n n n -+(1n >)的积为平方数,即存在整数m ,使 ()()211n n n m -+=,即 ()221n n m -=,但()21,1n n -=,故21,n n -均为平方数,有2221,,,n a n b m ab ⎧-=⎪=⎨⎪=⎩得 ()222211211n a n n n =-≥--=->,(注意1n >)这一矛盾说明,3个连续正整数的积不是平方数.四.整除整除的判别方法主要有7大类.1.定义法.证b a a bq ⇔=,有三种方式.(1)假设a qb r =+,然后证明0r =.(定理4)(2)具体找出q ,满足a bq =.(3)论证q 的存在. 例18 任意一个正整数m 与它的十进制表示中的所有数码之差能被9整除.证明 设1110101010n n n n m a a a a --=⨯+⨯++⨯+L ,其中09,0i n a a ≤≤≠,则()()()(){{110111121111101101101911111111,n n nn n n n n n n m a a a a a a a a a a a ------++++=-+-++-⎛⎫=⨯-+⨯++⨯+ ⎪⎝⎭L L L L L 个个按定义 ()1109n n m a a a a --++++L . 2.数的整除判别法.(1)任何整数都能被1整除.(2)如果一个整数的末位能被2或5整除,那么这个数就能被2或5整除. (3)如果一个整数的末两位能被4或25整除,那么这个数就能被4或25整除. (4)如果一个整数的末三位能被8或125整除,那么这个数就能被8或125整除. (5)如果一个整数各数位上的数字之和能被3或9整除,那么这个数就能被3或9整除.证明 由()()101mod3,101mod9≡≡,有()1110110101010mod3n n n n n n a a a a a a a a ---⨯+⨯++⨯+≡++++L L ,3.分解法.主要用乘法公式.如()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++L .()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+L .()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+-L .例19 试证()()555129129++++++L L .证明 改证()55545129+++L .设555129S =+++L ,则()()()()()()()()()555555555512344123418273645918273645999,S m m m m m m m m =++++++++=++++++++=++++得9S .又 ()()()()555555555192837465S =++++++++()()()()()5123441234192837465522225,m m m m m m m m =++++++++=++++得5S .但()9,51=,得45S ,即()()555129129++++++L L .例20 ()2111979,IMO -设p 与q 为正整数,满足111112313181319p q =-+--+L ,求证p 可被1979整除(1979p ) 证明111112313181319p q =-+--+L 1111111122313181319241318⎛⎫⎛⎫=+++++-+-+ ⎪ ⎪⎝⎭⎝⎭L L111111111231318131923659⎛⎫⎛⎫=+++++-++-+ ⎪ ⎪⎝⎭⎝⎭L L111166066113181319=++++L 6601319661131898999066013196611318989990+++=+++⨯⨯⨯L 19796606611319659!19791319!MM=⨯⨯⨯⨯=⨯L得1979整除1319!p ,但1979为素数,()1979,1319!1=,得p 可被1979整除.例20-1 2009年9月9日的年、月、日组成“长长久久、永不分离”的吉祥数字20090909,而它也恰好是一个不能再分解的素数.若规定含素因子20090909的数为吉祥数,请证明最简分数111220090908m n =+++L 的分子m 是吉祥数.证明:由111220090908m n =+++L 1111111200909082200909071004545410045455200909092009090920090909120090908220090907100454541004545520090909,122009090720090908p⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=+++⨯⨯⨯=⨯⨯⨯⨯⨯L L L 其中p 为正整数,有 20090909122009090720090908n p m ⨯⨯=⨯⨯⨯⨯⨯L ,这表明,20090909整除122009090720090908m ⨯⨯⨯⨯⨯L ,但20090909为素数,不能整除122009090720090908⨯⨯⨯⨯L ,所以20090909整除m ,得m 是吉祥数.4. 余数分类法.例21 试证()()3121n n n ++.证明1 任何整数n 被3除其余数分为3类 3,31,32,n k n k n k k Z ==+=+∈,(1)3n k =时,有 ()()()()12133161,n n n k k k ++=++⎡⎤⎣⎦有()()3121n n n ++.(2)31n k =+时,有()()()()()1213313221,n n n k k k ++=+++⎡⎤⎣⎦ 有()()3121n n n ++.(3)32n k =+()()()()()121332165,n n n k k k ++=+++⎡⎤⎣⎦ 有()()3121n n n ++.综上得,()()3121n n n ++. 证明 2 ()()()()222211214n n n n n n ++++=,得 ()()322221n n n ++,又()3,41=,得()()3121n n n ++.5.数学归纳法.6.反证法.7.构造法. 例22 k 个连续整数中必有一个能被k 整除. 证明 设k 个连续整数为,1,2,,1a a a a k +++-L ,若这k 个数被k 除没有一个余数为0,则这k 个数的余数只能取1,2,,1k -L ,共1k -种情况,必存在两个数 ,,0a i a j i j k ++<-< ,使 1,a i kq r +=+2,a j kq r +=+ 其中12q q ≠,相减 ()12i j k q q -=-,有 12i j k q q k -=-≥, 即 i j k -≥与i j k -<矛盾.故k 个连续整数中必有一个能被k 整除.也可以由()12i j k q q -=-得 ()120i j k q q k <-=-<,推出1201q q <-<,与12q q -为整数矛盾.例23 k 个连续整数之积必能被!k 整除.证明 设k 个连续整数为,1,2,,1n n n n k +++-L , (1)若这k 个连续整数为正整数,则()()()()121!!!!n n n n k n k k n k +++-=+L ()k nC =只须证明,对任何一个素数p ,分子中所含p 的方次不低于分母中所含p 的方次,由高斯函数的性质[][][]x y x y +≥+,有()s s s s k n k n k n k p p p p +-⎡⎤⎡⎤⎡⎤⎡⎤-=≥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦∑∑∑∑ 得k nC为整数(证实了组合数的实际意义)(2)若这k 个连续整数中有0,则连乘积为0,必能被!k 整除.(3)若这k 个连续整数为负整数,则()()()()()()()()()121!1211!1,k kk nn n n n k k n n n n k k C-+++--------+=-=-L L由(1)知kn C -为整数,故()()()121!n n n n k k +++-L 为整数.例24 有男孩、女孩共n 个围坐在一个圆周上(3n ≥),若顺序相邻的3人中恰有一个男孩的有a 组,顺序相邻的3人中恰有一个女孩的有b 组,求证3a b -.证明 现将小孩记作(1,2,,)i a i n =…,且数字化1,1, i i i a a a ⎧=⎨-⎩ 表示男孩时表示女孩时则“3人组”数值化为12121212123,,,3,,,1,,,1,,,i i i i i i i i i i i i i i i i a a a a a a A a a a a a a a a a ++++++++++⎧⎪-⎪=++=⎨⎪⎪-⎩ 均为男孩 均为女孩 恰有一个女孩 恰有一个男孩其中n j j a a +=.又设取值为3的i A 有p 个,取值为3-的i A 有q 个,依题意,取值为1的i A 有b 个,取值为1-的i A 有a 个,得 12123234123()()()()n n a a a a a a a a a a a a +++=+++++++++……3(3)(1)3()()p q a b p q b a =+-+-+=-+-, 可见3a b -.例25 (1956,中国北京)证明3231122n n n ++-对任何正整数n 都是整数,并且用3除时余2. 分析 只需说明()23131222n n n n -+=为整数,但不便说明“用3除时余2”,应说明()()3212131222n n n n n n ++++=是3的倍数.作变形 ()()()32222213111,3,81228n n n n n n ++++-=-= , 命题可证.证明 已知即()()321213111222n n n n n n ++++-=-, ① 因为相邻2个整数(),1n n +必有偶数,所以3231122n n n ++-为整数.又①可变为 ()()32222213111228n n n n n n ++++-=-,因为相邻3个整数()()2,22,21n n n ++必有3的倍数,故()()22221n n n ++能被3整除;又()3,81=,所以()()222218n n n ++能被3整除;得3231122n n n ++-用3除时余2.五、同余根据定义,同余问题可以转化为整除问题来解决;同时,同余本身有很多性质,可以直接用来解题.例26 正方体的顶点标上1+或1-,面上标上一个数,它等于这个面四个顶点处的数的乘积,求证,这样得出的14个数之和不能为0.证明 记14个数的和为S ,易知,这14个数不是1+就是1-,若八个顶点都标上1+,则14S =,命题成立.对于顶点有1-的情况,我们改变1-为1+,则和S 中有4的数,,,a b c d 改变了符号,用/S 表示改变后的和,由()0mod2a b c d +++≡知 ()/20mod 4S S a b c d -=+++≡, 这表明,改变一个1-,和S 关于模4的余数不变,重复进行,直到把所有的1-都改变为1+,则()/111142mod4S S ≡≡+++≡≡L ,所以,0S ≠.例27 设多项式()n n n n a x a x a x a x f ++++=--1110Λ的系数都是整数,并且有一个奇数α及一个偶数β使得()αf 及()βf 都是奇数,求证方程()0=x f 没有整数根.证明 由已知有()()()0121mod21mod2n fa a a a α≡⇔++++≡L , ①()()()1mod21mod2n f a β≡⇔≡, ②若方程()0=x f 存在整数根0x ,即()00f x =.当0x 为奇数时,有()()()00120mod20mod2n f x a a a a ≡⇔++++≡L ,与①矛盾.有0x 为偶数时,有()()()00mod20mod2n f x a ≡⇔≡,与②矛盾.所以方程()0=x f 没有整数根. 六、不定方程未知数的个数多于方程个数的整系数代数方程,称为不定方程.求不定方程的整数解,叫做解不定方程. 解不定方程通常要解决3个问题,方程是否有解?有解时,有几个解,解数是有限还是无穷?求出全部解.例28 解方程719213x y +=. 解法1 由()7,191=知方程有整数解. 观察特解,列表得一个特解0025,2,x y =⎧⎨=⎩从而通解为2519,27.x t y t =-⎧⎨=+⎩方法总结:第1步,验证(),a b c ,经常是(),1a b =.第2步,求特解(观察、列举、辗转相除等). 第3步,代入公式.方法总结:()mod ax by c ax c b +=⇔≡或()mod by c a ≡. 例29 求方程3222009x x y +=的整数解. 解 由2009的分解式,有 ()222212009741xx y +=⨯=⨯,有 21,1,1,1004,1005,22009,x x x y y x y ==-⎧=⎧⎧⇒⎨⎨⎨==+=⎩⎩⎩ 227,7,7,17,24.241,x x x y y x y ==-⎧=⎧⎧⇒⎨⎨⎨==+=⎩⎩⎩例30 甲乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,…直到有一方队员全被淘汰为止,另一方获得胜利,形成一种比赛过程,那么所有可能出现的比赛过程的种数为 .(1988,高中联赛)解法1 设甲、乙两队的队员按出场顺序分别为1234567,,,,,,A A A A A A A 和1234567,,,,,,B B B B B B B .如果甲方获胜,设i A 获胜的场数是i x ,则07,17i x i ≤≤≤≤而且1277x x x +++=L , ①容易证明以下两点:在甲方获胜时(i )不同的比赛过程对应着方程①的不同非负整数解;(ii )方程①的不同非负整数解对应着不同的比赛过程,例如,解(2,0,0,1,3,1,0)对应的比赛过程为:1A 胜1B 和2B ;3B 胜1A 、和3A ;4A 胜3B 后负于4B ;5A 胜4B 、5B 和6B 但负于7B ;最后6A 胜7B 结束比赛.下面求方程①的非负整数解个数,设1i i y x =+,问题等价于方程123456714y y y y y y y ++++++=,正整数解的个数,将上式写成1111111111111114+++++++++++++=,从13个加号取6个的方法数613C 种.得甲方获胜的不同的比赛过程有613C 种.同理,乙方获胜的不同的比赛过程也有713C 种,合计61323432C =种比赛过程例31(1989,高中)如果从数1,2,…,14中按由小到大的顺序取出123,,a a a ,使同时满足 21323, 3a a a a -≥-≥,那么,所有符合上述要求的不同取法有多少种?解 由已知得121323 10,30 30, 140,a a a a a a -≥--≥--≥-≥4项均为非负数,相加得()()()()121323133 147a a a a a a -+--+--+-=,于是123,,a a a 的取法数就是不定方程 12347x x x x +++=的非负整数解的个数,作一一对应11i y x =+,问题又等价于不定方 123411y y y y +++= 的正整数解.由 11111+++=L ,得310C 个解,即符合要求的不同取法有310C 种.七.数论函数主要是[]x 高斯函数,()n ϕ欧拉函数.例32 某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([]x 表示不大于x 的最大整数)可以表示为(A)10x y ⎡⎤=⎢⎥⎣⎦ (B)310x y +⎡⎤=⎢⎥⎣⎦ (C) 410x y +⎡⎤=⎢⎥⎣⎦ (D)510x y +⎡⎤=⎢⎥⎣⎦ (2010年全国高考数学陕西卷理科第10题)解法1 选(B ).(求解对照).规则是“六舍七入”,故加3即可进1. 选310x y +⎡⎤=⎢⎥⎣⎦. 解法2 选(B ).(特值否定).取56x =,按规定应选5人,可否定(C)、(D);再取57x =,按规定应选6人,可否定(A).注:主要错误选(C) ,误为“五舍六入”.例33 用[]x 表示不大于x 的最大整数,求122004366366366366⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦L . 讲解 题目的内层有2004个高斯记号,外层1个高斯记号.关键是弄清[]x 的含义,进而弄清加法谁与谁加、除法谁与谁除:(1)分子是那些数相加,求出和来;由36651830200421963666⨯=<<=⨯,知分子是0~5的整数相加,弄清加数各有几个(2)除法谁除以366,求出商的整数部分.原式()036536612345175366⨯+++++⨯⎡⎤=⎢⎥⎣⎦1036687536614310236612.⨯+⎡⎤=⎢⎥⎣⎦⎡⎤=++⎢⎥⎣⎦= 命题背景2004年有12个月、366天.例34 50!的标准分解式中2的指数.解 35678912450!23571113171923293137414347ααααααααα=gg g g g 2的指数为2345505050505025126314722222⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤++++=++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦. 图示(5条横线,25个偶数中2的方次,按横线求和)八、综合练习例35 整数勾股形中,证明(1)必有一条直角边长是3的倍数;(2)必有一条直角边长是4的倍数; (3)必有一条边长是5的倍数;(4)三角形的面积是6的倍数.证明 当整数勾股形的三边有公约数时,可以先约去,使三边长,,x y z 互素,且满足222x y z +=.这时,若,x y 两个均为偶数,则z 也为偶数,与,,x y z 互素矛盾;若,x y 两个均为奇数,有()()221mod4,1mod4x y ≡≡,得 ()2222mod4z x y ≡+≡, 这与平方数模4只能取0,1矛盾.所以,,x y 中有且只有一个为偶数,不妨设x 为偶数.(1)设,x y 中无一为3的倍数,则()()221mod3,1mod3x y ≡≡,得 ()2222mod3z x y ≡+≡,这与平方数模3只能取0,1矛盾,故,x y 中有一个为3的倍数. (2)由x 为偶数.,必有,y z 均为奇数,记2,21,21x m y p z q ==+=+有 ()()()22222222421214m x z y q p q q p p ==-=+-+=+--则 ()()211m q q p p =+-+右边是两个偶数的差,必为偶数,从而x 为4的倍数.(3)若,x y 中有5的倍数,命题已成立. 若,x y 均不是5的倍数,则若,x y 只能是形如51k ±或52k ±的正整数.若,x y 均为51k ±型,则()222112mod5z x y ≡+≡+≡这与平方数模5只能取0,1,4矛盾若,x y 均为52k ±型,则()222443mod5z x y ≡+≡+≡这与平方数模5只能取0,1,4矛盾.所以,,x y 只能分别取51k ±与52k ±型,有 ()222410mod5z x y ≡+≡+≡得25z ,但5是素数,得5z .(4)由上证(1)、(2)及()3,41=知,xy 是12的倍数,则12xy 是6的倍数,得三角形的面积是6的倍数. 例36 已知ABC V 内有n 个点,连同,,A B C 共有3n +个点,以这些点为顶点,把ABC V 分割为若干个互不重叠的小三角形,现把,,A B C 分别染上红色、蓝色、黄色,而其余n 个点,每点任意染上红、蓝、黄三色之一,证明三顶点都不同色的小三角形的总数必是奇数.(斯潘纳定理)证明1 给这些小三角形的边赋值:当边的两端点同色时,记为0;当边的两端点异色时,记为1;再用三边之和给小三角形赋值:当三角形的三顶点同色时,和值为0,记这样的小三角形有a 个;当三角形的三顶点中仅有两点同色时,和值为2,记这样的小三角形有b 个;当三角形的三顶点两两异色时,和值为3,记这样的小三角形有c 个.下面用两种方法计算所有三角形赋值的总和S ,一方面02323S a b c b c =⨯+⨯+⨯=+. ①另方面,,,AB BC CA 的赋值均为1,和为奇数;而ABC V 内的每一条连线,在上述S 的计算中都被计算了两次,和为偶数;这两者之和得S 为奇数,记为21S k =+ ②由①,②得 2123k b c +=+可见c 为奇数,即三顶点都不同色的小三角形的总数必是奇数.(证明:n 个连续整数的乘积一定能被n!整除设a 为任一整数,则式: (a+1)(a+2)...(a+n) =(a+n)!/a! =n!*[(a+n)!/(a!n!)]而式中[(a+n)!/(a!n!)]恰为C(a+n,a),也即是从a+n 中取出a 的组合数,当然为整数。
高中数学竞赛 数论部分
初等数论简介绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。
1. 请看下面的例子:(1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。
(1894年首届匈牙利 数学竞赛第一题) (2) ①设n Z ∈,证明2131n -是168的倍数。
②具有什么性质的自然数n ,能使123n ++++能整除123n ⋅⋅⋅(1956年上海首届数学竞赛第一题)(3) 证明:3231122n n n ++-对于任何正整数n 都是整数,且用3除时余2。
(1956年北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数214143n n ++不可约简。
(1956年首届国际数学奥林匹克竞赛第一题)(5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证:[][][][]()()()()22,,,,,,,,,,a b c a b c a b b c c a a b b c c a =⋅⋅(1972年美国首届奥林匹克数学竞赛第一题)这些例子说明历来数论题在命题者心目中首当其冲。
2.再看以下统计数字:(1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。
(2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占% 。
这说明:数论题在命题者心目中总是占有一定的分量。
如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。
3.请看近年来国内外重大竞赛中出现的数论题:(1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( )A 、 0B 、1C 、3D 、无穷多(2007全国初中联赛5)(2)已知,a b 都是正整数,试问关于x 的方程()2102x abx a b -++=是否有两个整数解如果有,请把它们求出来;如果没有,请给出证明。
高中数学竞赛专题讲座---竞赛中的数论问题
高中数学竞赛专题讲座---竞赛中的数论问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN竞赛中的数论问题的思考方法一. 条件的增设对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。
1. 大小顺序条件与实数范围不同,若整数x ,y 有大小顺序x <y ,则必有y ≥x +1,也可以写成y =x +t ,其中整数t ≥1。
例1. (IMO-22)设m ,n 是不大于1981的自然数,1)(222=--m nm n ,试求22n m +的最大值。
解:易知当m =n 时,222=+n m 不是最大值。
于是不访设n >m ,而令n =m +u 1,n >u 1≥1,得-2(m -1mu 1)(22112=--u mu m 。
同理,又可令m = u 1+ u 2,m >u 2≥1。
如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。
故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。
例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。
因为所求的都是整数,所以原不等式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12(3)2(222≤-+-+-c b ba ,从而只有a =1,b =2,c =1。
2. 整除性条件对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ∤y ,则可令y =tx +r ,0<r ≤|x |-1。
高中数学竞赛——数论
高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类((2)2.(1)a r ,得m 个数特别地,完全为偶数时,,2-m (2)证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系,因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm),矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有aa i +b ≡aa j +b(modm),也矛盾!(ⅲ)设m 1,m 2是两个互质的正整数,而x,y 分别遍历模m 1,m 2的完系,则m2x+m1y历遍模m1m2的完系.证明:因x,y分别历遍m1,m2个整数,所以,m2x+m1y历遍m1m2个整数.假定m2x/+m1y/≡m2x//+m1y//(modm1m2),其中x/,x//是x经历的完系中的数,而y/,y//是y经历的完系中的数.因(m1,m2)=1,所以,m2x/≡m2x//(modm1),m1y/≡m1y// (modm2),从而x/≡x//(modm1),y/≡y//(modm2),矛盾!3.(1).在与模m的一个(2)(ϕm)x1≡x2,则a1,a2,…,aφ(m)是模m的一个既约剩余系.证明:因a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,所以,a1,a2,…,aφ(m)属于)m(ϕ个剩余类,且每个剩余类都与m互质,故a1,a2,…,aφ(m)是模m的一个既约剩余系.(ⅴ)设m1,m2是两个互质的正整数,而x,y分别历遍模m1,m2的既约剩余系,则m 2x+m 1y 历遍模m 1m 2的既约剩余系.证明:显然,既约剩余系是完系中所有与模互质的整数做成的.因x,y 分别历遍模m 1,m 2的完系时,m 2x+m 1y 历遍模m 1m 2的完系.由(m 1,x )=(m 2,y )=1,(m 1,m 2)=1得(m 2x,m 1)=(m 1y,m 2)=1,所以,(m 2x+m 1y,m 1)=1,(m 2x+m 1y,m 2)=1,故 (m 2x+m 1y, m 1m 2)=1.反之若(m 2x+m 1y, m 1m 2)=1,则(m 2x+m 1y,m 1)=(m 2x+m 1y,m 2) =1,1m 2的既)(2m ϕ)., 1,α(4.欧拉欧拉(Euler)定理 设m 是大于1的整数,(a ,m)=1,则)(m od 1)(m a m ≡ϕ. 证明:设r 1,r 2,…,r )(m ϕ是模m 的既约剩余系,则由性质3知a r 1,a r 2,…,a r )(m ϕ也是模m 的既约剩余系,所以, a r 1a r 2…a r )(m ϕ≡r 1r 2…r )(m ϕ(modm),即≡)(21)(m m r r r a ϕϕ)(21m r r r ϕ ,因()(21m r r r ϕ ,m)=1,所以,)(m od 1)(m a m ≡ϕ.推论(Fermat 定理) 设p 为素数,则对任意整数a 都有)(m od p a a p ≡.证明:若(a , p )=1,由1)(-=p p ϕ及Euler 定理得)(m od 11p a p ≡-即)(m od p a a p ≡;若(a , p )≠1,则p |a ,显然有)(m od p a a p ≡.例1设m>0,证明必有一个仅由0或1构成的自然数a 是m 的倍数.证明:考虑数字全为1的数:因1,11,111,1111,…中必有两个在modm 的同一剩余类中,它们的差即为所求的a .例(m 整除,.例m,使得2011|f n f 3因所以,例,是整数序列负整数假设对每个正整数:在数列123,,,a a a 中,每个整数都刚好出现一次.证明:数列各项同时减去一个整数不改变本题的条件和结论,故不妨设a 1=0.此时对每个正整数k 必有∣a k ∣<k:若∣a k ∣≥k,则取n=∣a k ∣,则a 1≡a k ≡0(mod n),矛盾.现在对k 归纳证明a 1,a 2,…,a k 适当重排后是绝对值小于k 的k 个相邻整数.k=1显然.设a 1,a 2,…,a k 适当重排后为-(k -1-i),…,0,…,i (0≤i ≤k -1),由于a 1,a 2,…,a k ,a k+1是(mod k+1)的一个完全剩余系,故必a k+1≡i+1(mod k+1), 但∣a k+1∣<k+1,因此a k+1只能是i+1或-(k -i),从而a 1,a 2,…,a k ,a k+1适当重排后是绝对值小于k+1的k+1个相邻整数.由此得到:1).任一整数在数列中最多出现一次;2).若整数u 和v (u<v) 都出现在数列中,则u 与v 之间的所有整数也出现在数列中.得到:例,(i,j)也历mod2n 的和≡例可被,且是周期数列,所以, 数列{a n }中存在无穷多项可被2011整除.例7证明:存在无穷多个正整数n,使得n 2+1∤n!.证明:引理1对素数p >2,⇔≡)4(mod 1p 存在x(1≤x ≤p -1)使)(m od 12p x -≡. 证:充分性:因对1≤x ≤p -1,( p ,x)=1,所以,)(mod 1)(2121p x x p p ≡=--,≡-212)(p x)(mod 1)1(21p p ≡--,所以,21-p 为偶数,即).4(mod 1≡p 必要性:因1≤x ≤p -1时,x,2x,…,(p -1)x 构成modp 的既约剩余系,所以,存在1≤a ≤p -1,使得a x ≡-1(mod p ),若不存在a (1≤a ≤p -1), a =x,使a x ≡-1(mod p ),则这样的a ,x 共配成21-p 对,则有)(mod 1)!1()1(21p p p -≡-≡--,即21-p 为奇数,与 p 2证a =4(p 1p 设2p 1 p 2…12x -≡,相应的x 例(1)(2)n n+1n (n=1,2, …),且每个a n 都是f(x)的周期.证明:(1)设T=nm (正整数m,n 互质,且n ≥2),因(m,n)=1,所以,m,2m,…,nm 构成 modn 的完系,故存在k ∈N *使得km ≡1(modn),即存在t ∈N *使得km=nt+1,因f(x)=f(x+kT)=f(x+n km )=f(x+t+n 1)=f(x+n 1),所以n1是周期. 设n=kp ,其中k ∈N *, p 为素数,则n k p 11⋅=是周期.故存在素数p,使p 1是周期. (2)当T 为无理数时,取a 1=T,则T 为无理数, 0<T<1.设k≤n 时存在无理数a k ,使得0<a k <a k-1<1,且a k 是周期.对k+1,总存在存在u,v ∈N *,使得0<u a k -v<a k <1,取例解:,对任意}包含了modn+1零剩余,≤k ≤n, a 1+a 2+取例. 例11求所有的奇质数p ,使得∑=-11|k p k p .例12求所有质数p ,使得2122213)()()(|-+++p p p p C C C p .例13设n 为大于1的奇数,k 1,k 2,…,k n 是n 个给定的整数,对1,2,…,n 的每一个排列a=(a 1,a 2,…,a n ),记S(a)=∑=ni i i a k 1.证明:存在两个1,2,…,n 的排列b 和c(b ≠c),使得n!|S(b)-S(c).证明:如果对1,2,…,n 的任意两个不同排列b 和c(b ≠c),都有n!∤S(b)-S(c),那么当a 取遍所有排列时(共n!个),S(a)遍历模n!的一个完系, 因此,有∑a a S )(≡1+2+…+n!≡2!2)1!(!n n n ≡+(modn!) ①, 另一方面,我们有 ∑a a S )(=)!(mod 0)1(!])!1[(n k n n j n k a k a k n i n n in i i n i i ≡+=-==∑∑∑∑∑∑∑ ②. 由①∑a .例modm 因(m,2n 例x 例在A同余方程与同余方程组1.同余方程(组)及其解的概念定义1 给定正整数m 及n 次整系数多项式0111)(a x a x a x a x f n n n n ++++=--,则同余式f(x)≡0(modm)①叫做模m 的同余方程,若a n 0(modm),则n 叫做方程①的次数.若x=a是使f(a)≡0(modm)成立的一个整数,则x≡a(modm)叫做方程①的一个解,即把剩余类a(modm)叫做①的一个解.若a1(modm),a2(modm)均为方程①的解,且a1,a2对模m不同余,就称它们是方程①的不同解.由此可见,只需在模m的任一组完系中解方程①即可.例12解:例2解:.2.设a x解,例3解:tx即)8-≡x.3,1-(mod≡t),1,08(mod1=4+例4解方程12x≡6(mod9).因(12,9)=3,且-1是一个特解,所以,方程12x≡6(mod9)的解为:(modx即)8t5,2,1,≡t≡-x.(mod),2,1,083+1=-3.同余方程组定义3给定正整数m 1,m 2,…,m k 和整系数多项式f 1(x),f 2(x),…,f k (x),则同余式组 ⎪⎪⎩⎪⎪⎨⎧≡≡≡)(mod 0)()(mod 0)()(mod 0)(2211k k m x f m x f m x f ②,叫做同余方程组.若x=a 是使f j (a )≡0(modm j )(1≤j ≤k)成立的一个整数,则x ≡a (modm)叫做方程组②的一个解,即把剩余类a (modm)叫做②的一个解.例5解:⎩⎨⎧-≡≡13x x .M=m 1m ⎪⎪⎩⎪⎪⎨⎧≡≡≡21k a x a x a x 其中M j ).(2)j j j j 则x ≡y (modm j ),即m j |x -y ,因m 1,m 2,…,m k 两两互质,所以M| x-y 即x ≡y (modM). 注:(1)存在无穷多个整数x 满足同余方程组③,这些x 属于同一模m 的剩余类;(2)同余方程组③仅有一个解x ≡a 1M 1M 1-1+a 2M 2M 2-1+…+a k M k M k -1(modM).(3)当(a ,m i )=1(=1,2,…,n)时,同余方程组⎪⎪⎩⎪⎪⎨⎧≡≡≡⇔⎪⎪⎩⎪⎪⎨⎧≡≡≡---)(mod )(mod )(mod )(mod )(mod )(mod 12211112211k k k k m a a x m a a x m a a x m a ax m a ax m a ax仍然具有定理结论. 这在数论解题中具有重要应用.例6“今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何”.解,352115≡x 例.解:210×210-1≡210-1≡1(mod11)⇔210-1≡1(mod11),所以,同余方程组的解为: )2310(mod 2111637121010330438553462≡=⨯+⨯+⨯+⨯≡x ,即x=2310k+2111(k ∈N).例8证明:对任意n 个两两互质的正整数:m 1,m 2,…,m n ,总存在n 个连续的自然数k+1,k+2,…,k+n 使得m i |k+i(i=1,2,…,n).证明:由剩余定理知,总存在整数k 使得⎪⎪⎩⎪⎪⎨⎧-≡-≡-≡)(mod )(mod 2)(mod 121n m n k m k m k,即存在连续的自然数k+1,k+2,…,k+n 使得m i |k+i(i=1,2,…,n).例9证明:对任意n ∈N *,存在n 个连续正整数它们中每一个数都不是素数的幂(当 数⎪⎪⎩⎪⎪⎨⎧-≡-≡-≡21n m m m例,且A 例 {k +a n }⎩⎨⎧-≡≡)(mod 102p x x 123⎪⎩-≡)(mod 232p x 2的最小正整数a 2=38.假定a 1,a 2,…,a n 都已确定,则取a n+1适合⎪⎪⎩⎪⎪⎨⎧-≡-≡≡+)(mod )(mod 1)(mod 0121n p n x p x p x 且大于a n 的最小正整数,由剩余定理知满足条件的a n+1存在.则上述递推关系定义的数列{a n }满足题意:因对任意k ∈N *,当n ≥k+1时,都有k+a n ≡0(mod p k+1),由{a n }递增可知{k +a n }从第k+2项起每一项都是p k+1的倍数,且都大于p k+1,所以,数列{k +a n }中至多有k+1项为素数.例12是否存在一个由正整数组成的数列,使得每个正整数都恰在该数列中出现一次,且对任意正整数k ,该数列的前k 项之和是k 的倍数?解:,S=a 1+a 2⎩⎨⎧++≡+t r S r S {a n }例的质因数.例例。
竞赛辅导数论问题共46页
esult=result/prime[i]*(prime[i]-
1);k=sqrt(temp);}if(temp-1)
//如果n的素数因子超过46340的范围
result=result/temp*(temp-1); return
result;}
核心代码及解释 (4)
• int main(){sieve();while(scanf("%d",&n)!=EOF) {if(n<2||!(n&1))
• 求某个数A的所有因子和,首先将该数分解:
Ap1r1p2r2 pnrn
• 其中p1,p2,...,pn都是素数,则A的任意因子可以
表示为: dp1i1p2i2 pnin
•其中0i1r1,....0inrn
解题思路(2)
Sp1r111p2r211 pnrn11
核心代码及解释 (1)
• int prime[5000], no_prime;
•
//根据素数分布定律,小于46340的素数约5000个
• sieve()
• //采用筛法求所有小于46340的素数{short p[23170];
• //求所有小于46340的素数,因为大于2的偶数都不是素数,所以筛法 只对应所有的大于1小于46340的奇数
果 • cal(r,a,m);//计算r[i] • while(b){//将b用二进制形式表示,结果保存在bl中 • bl[i++]=b%2; • b>>=1;} • for(j=0,k=1;j<i;++j)//计算乘方,时间复杂度为i=O(log2b) • if(bl[j])//如果b对应二进制位bj为1,则对应的rbj在幂的乘积表达式中,
《数学竞赛》第三章_数论2012.2
2017/3/22
第三章 数 论
11
3.2 同 余
一、同余的定义和性质
性质
性质
(1) (反身性) (2) (对称性)若 (3) (传递性)若 (4) (同余式相加)若 (5) (同余式相乘)若
2017/3/22
; ,则 , , ,
第三章 数 论
; ,则 ,则 ,则 ;
12
; ;
3.2 同 余
一、同余的定义和性质
2017/3/22 第三章 数 论 3
第三章 数 论
例题
3.1 整数的奇偶性和整除性
一、整数的奇偶性 例1.在1, 2, 3, ⋯, 1999 这1999 个数的前面任
意添上正号或负号, 问它们的代数和是奇数
还是偶数? 例2.设a1 , a2 , ⋯, an 是自然数 1, 2, ⋯, n 的一个 排列, 若n 为奇数,求证: ( a1 - 1) ( a2- 2) ⋯( ann) 为偶数。
2017/3/22 第三章 数 论 15
3. 2 同 余
一、同余的定义和性质 例题 例3.求证:x14 +x24 + x34 + „ + x144 =1599无
整数解. 练习
1. (1898年匈牙利奥林匹克竞赛题)求使 2n+1能被3整除的一切自然数n. 2. 求证31980+41981能被5整除.
例题
练习
习题3.2
5.求19992000被29除的余数.
2017/3/22 第三章 数 论 17
第三章 数 论
3.3 不定方程
不定方程是数论中最古老的分支之一。
历史
古希腊的丢番图(Diophantus)早在公元3世纪就 开始研究不定方程,因此常称不定方程为丢番图方程. 中国是研究不定方程最早的国家.公元5世纪的 《 张丘建算经》中的百鸡问题标志中国对不定方程理 论有了系统研究.秦九韶的大衍求一术将不定方程与同 余理论联系起来. 百鸡问题说:“鸡翁一,直钱五,鸡母一,直钱 三,鸡雏三,直钱一.百钱买百鸡,问鸡翁、母、雏各 几何?”. 费马(Fermat)大定理(当n>2时,xn+yn=zn没有 非平凡的整数解),历经300余年,已由英国数学家安 德鲁 · 维尔斯(A.Wiles )证明。
高中数学竞赛数论
高中数学竞赛数论数论作为数学的一个分支,是数学竞赛中重要的考查内容之一。
高中数学竞赛数论题目常常涵盖了整数性质、模运算、质数等各个方面的知识。
在数论的学习和应用中,往往需要我们灵活运用各种技巧和方法来解决问题。
本文将从基本概念、常见性质、解题技巧等方面来介绍高中数学竞赛数论的相关内容。
一、基本概念1. 整数的性质:整数的奇偶性、整数的除尽性等都是数论中基本的概念。
在解题过程中,我们常常需要利用整数的性质来简化问题。
2. 算术基本定理:任何一个大于1的正整数,都可以表示为若干个质数的乘积,且这种表示方法是唯一的。
这一定理在数论中有着非常重要的作用,解决了很多关于因数分解的问题。
3. 同余方程:在数论中,我们常常会接触到模运算和同余方程。
同余方程是指在整数集合Z上定义的一种关系,通常用符号“≡”来表示。
在解决问题时,求解同余方程是一个常见的手段。
二、常见性质1. 质数性质:质数是指只有1和它本身两个正因数的自然数。
在解题中,我们需要掌握质数的性质,如质数的判定方法、质数之间的性质等。
2. 欧拉定理:欧拉定理是数论中的一个重要定理,它描述了正整数幂的同余性质。
欧拉定理在数论中的应用非常广泛,是解决一类数论问题的重要工具。
3. 数列与递推关系:在数论竞赛中,常常会涉及到数列和递推关系。
我们需要熟练掌握数列的性质和常见的数列递推方法,以便解题时能够迅速找到规律。
三、解题技巧1. 数学归纳法:数学归纳法是数论中常用的证明方法,通过数学归纳法可以证明某个结论对于所有正整数都成立。
在数论竞赛中,经常可以用到数学归纳法来解决问题。
2. 等价转化:有时候,我们需要将原来的问题进行等价转化,从而简化解题过程。
通过巧妙的等价转化,我们可以找到更容易解决的问题。
3. 假设反证法:假设反证法是一种解题思路,通过假设问题的否定,再通过逻辑推导得出矛盾,从而证明原命题成立。
在数论中,假设反证法常常被用来解决一些猜想和证明问题。
奥数讲义数论专题:数论综合
华杯赛数论专题:数论综合例1.小于2000又与2000互质的数有800个,这800个数相加的和是多少?【答案】800000【解答】如果a是小于2000且与2000互质的数,则(2000-a)也是这种数。
因为1000不与2000互质,所以a≠2000-a。
又因为a与(2000-a)之和是2000,所以800个小于2000且与2000互质的数可以分为400组,每组的和都是2000,这800个数的和是2000×400=800000。
例2.有四个不同的非零自然数,其中任意两个数的和是2的倍数,任意三个数的和是3的倍数。
为使这四个数的和尽可能小,这四个数应分别是几?【答案】1,7,13,19【解答】任意两(或三)个数的和是2(或3)的倍数,说明四个数除以2(或3)的余数相同,所以四个数除以6的余数相同。
最小是1,7,13,19。
例3.有些三位数,如果它本身增加3,那么新的三位数的各位数字的和就减少到原来三位数的。
求所有这样的三位数。
【答案】117,108,207【解答】一个三位数,如果这本身增加3,得到的新三位数的各位数字之和就减少到原来三位数的。
则增加3时,计算中有进位。
我们知道:如果进行加法计算时,有进位,每进位一次,则和的各位数字之和比各个加数的数字之和的总和减少9。
设原来三位数的数字之和是x。
因增加3,得到的仍是一个三位数,则最多有两次进位。
如果有一次进位,则新三位数的各位数字之和是x+3-9=x-6。
得到方程:(x-6)×3=x。
解得:x=9。
如果有两次进位,则新三位数的各位数字之和是x+3-9×2=x-15。
得到方程:(x-15)×3=x。
此方程无整数解。
所以原三位数的各位数字之和是9。
原三位数的百位数字最小是1,个位数字最小是7。
这样的三位数有三个:117,108,207。
验证:117+3=120。
117的各位数字之和是9,120的各位数字之和是3,3=9×。
[实用参考]高中数学联赛数论专题.doc
课程简介:全国高中数学联赛是中国高中数学学科的最高等级的数学竞赛,其地位远高于各省自行组织的数学竞赛。
在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”。
优胜者可以自动获得各重点大学的保送资格。
各省赛区一等奖前6名可参加中国数学奥林匹克,获得进入国家集训队的机会。
中小学教育网重磅推出“全国高中数学联赛”辅导课程,无论是有意向参加竞赛的初学者,还是已入围二试的竞赛选手,都有适合的课程提供。
本套课程由中国数学奥林匹克高级教练熊斌、人大附中数学教师李秋生等名师主讲,轻松突破你的数学极限!课程招生简章:/webhtml/project/liansaigz.shtml 选课中心地址:/selectcourse/commonCourse.shtm?course eduid=170037#_170037_第一章数论专题我们把未知数的个数多于方程的个数,且其解受到某种限制的方程,叫做不定方程.通常主要研究不定方程的正整数解、整数解、有理数解等.不定方程问题的常见类型是:(1)求不定方程的解;(2)判定不定方程是否有解;(3)确定不定方程解的数量(有限还是无限).不定方程问题的常用解法是:(1)代数分析与恒等变形法,如因式分解、配方、换元等;(2)估计范围法,利用不等式放缩等方法,确定出方程中某些变量的取值范围,进而求整解;(3)同余法,即恰当选取模m,对方程两边做同余分析,以缩小变量的范围或发现性质,从而得出整解或判定无解;(4)构造法,构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;(5)无穷递降法,无穷递降法是一种用反证法表现的特殊形式的归纳法,由Fermat创立并运用它证明了方程G4+P4=z4没有非零整解.从此,无穷递降作为一种重要的数学思想方法广为流传应用,并在平面几何、图论及组合中经常用到它.引例:求所有正整数对(G,P)满足G P=P G-P.1.二元一次不定方程定义1形如aG+bP=c(a,b,c∈Z,a,b不同时为0)的方程,称为二元一次不定方程.定理1不定方程aG+bP=c有整数解的充要条件是(a,b)|c.定理2设(G0,P0)是不定方程aG+bP=c的一组整解,则此方程的一切整数解为(G,P)=(),其中t∈Z.当(a,b)=1时,(G,P)=(G0+bt,P0-at).例1求不定方程3G+2P+8z=40的正整数解。
高中数学竞赛专题讲座---竞赛中的数论问题
解:令()。
若中有一个数被m 整除,则结论成立。
i i a a a b +++= 21m i ,,2,1 =m b b b ,,,21 否则,各均不能被m 整除,此时可设。
这样,m 个余数i b )11(-≤≤+=m r r mq b i i i i 只能从1至m -1这m -1个数中取值,由抽屉原理知,必有,使得m r r r ,,,21 )1(,m j k j k ≤<≤,于是,故取即得到结论。
j k r r =)(k j k j q q m b b -=-)()(|21j k k k j a a a b b m +++=-++ 1+=k s 3. 互素性的条件当(a ,b )=d >1时,我们总是作如下考虑:令,则必有。
这种互素d b b d a a 11,==1),(11=b a 条件的增置往往对解题有很大作用。
例7. (波兰64—65)设整数a ,b 满足,试证及都是完全平方数。
b b a a +=+2232b a -122++b a 解:变形可得:,故只要能证一个,则另一个必是。
我b b a a +=+22322)122)((b b a b a =++-们在排除了字母取零或相等的情况后,可设。
这时令,d b a b a b a =≠≠),(,,0,d b b d a a 11,==,从而方程变为。
显然有。
另一方面又1),(11=b a 21112132db b a da =-+)(|11b a d -212111(223d da db b a -=-=-,有。
注意到,于是有21212121211)(223db b a d da db b +--=-=2111|)(db b a -1),(),(11111==-b a b b a 。
这样就有。
至此已十分容易获得命题的结论了。
这里,由a 1与b 1互素导出d b a |)(11-||11b a d -=a 1—b 1与b 1互素,是证明的关键。
初一数学竞赛教程含例题练习及答案⑴
初一数学竞赛讲座第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有:1.十进制表示形式:n=a n10n+a n-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2m t,其中t为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
五年级数学奥林匹克数论.doc
五年级数学奥林匹克数论(2)数字A、B和C是从1到9的三个不同的数字。
由它们组成的六个不重复数字的三位数之和是多少?这个数字有一个两位数,在它前面加上数字1可以得到一个三位数,在它后面加上数字1也可以得到一个三位数,两个三位数之间的差是666。
寻找原来的两位数。
回答:根据位值原理,在两位数之前加1等于加100。
在两位数之后加上数字1等于将两位数乘以10,然后再加上1。
让这个两位数是x(10x 1)-找到原来的两位数。
回答:根据位值原理,在两位数之前加1等于加100。
在两位数之后加上数字1等于将两位数乘以10,然后再加上1。
设这个两位数为x。
(10x 1)除数的难度:五年级数论问题难度高;完全除法的困难:中/高难度1、2、3和4(每个数字只使用一次)可以组成24个四位数,其中有多少可以被11整除?回答:可被11整除的数的特征在于:奇数位数的数字和与偶数位数的数字和之差可以除以11。
因为.1、2、数字3和4之和的差不能大于11,因此要被11整除,只有奇数位数1、2、3和4(每个数字只使用一次)可以组成24个四位数,其中有多少可以被11整除?回答:可被11整除的数的特征在于:奇数位数的数字和与偶数位数的数字和之差可以除以11。
因为.1、2、数字3和4之和的差不能大于11,因此要被11整除,只有奇数位数的数字和与偶数位数的数字和的差等于0。
因此,1和4必须同时为奇数或偶数,以满足上述要求。
当1和4都是奇数时,这四个数字是:1243、13442 7045 63 10560 84 140 ……除以7 4除以53除以3 2是:可以看出,60 63 35=158满足我们的条件,但它不是最小的自然数。
处理方法是将最小公倍数减去若干倍,使结果在最小公倍数内。
所以答案是:158:中国剩余定理难度:若干中等难度除以3、5、7和11的其余部分分别是2、3、4、5、找到满足条件的最小数量:回答:将3、5、7和11分别为4个数字、3个数字和3个数字计算公共倍数,如下表所示:3、在5和7的公共倍数中,除以11和剩余5的数字不是很容易找到,但是注意210除以11和剩余1,因此210×5=1050除以11和剩余5,因此770 693 165 1050=2678是满足条件的值,并且3、5、7和11的最小公倍数是1155,所以2678-的难度除以3、5、7和11的其余部分分别是2、3、4、5、找到满足条件的最小数量:回答:将3最小数来求解:中国剩余定理;23整除问题的整除性质;5整除相关分析(五年级奥数)五年级数论问题分析:用素数组合分解素因子的困难;平均难度是一个5位数,它的位数之和是43,并且可以被11整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数论数论素有“数学皇后”的美称。
由于其形式简单,意义明确,所用知识不多而又富于技巧性,千姿百态,灵活多样。
有人曾说:“用以发现数学天才,在初等数学中再也没有比数论更好的课程了。
”因此在理念的国内外数学竞赛中,几乎都离不开数论问题,使之成为竞赛数学的一大重要内容。
1. 基本内容竞赛数学中的数论问题主要有:(1)整除性问题;(2)数性的判断(如奇偶性、互质性、质数、合数、完全平方数等);(3)余数问题;(4)整数的分解与分拆;(5)不定方程问题;(6)与高斯函数[]x有关的问题。
有关的基本知识:关于奇数和偶数有如下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.两个数之和是奇(偶)数,则这两个数的奇偶性相反(同).若干个整数之和为奇数,则这些数中必有奇数,且奇数的个数为奇数个;若干个整数之和为偶数,则这些数中若有奇数,奇数的个数必为偶数个.奇数g奇数=奇数;奇数g偶数=偶数;偶数g偶数=偶数.若干个整数之积为奇数,则这些数必为奇数;若干个整数之积为偶数,则这些数中至少有一个偶数.若a是整数,则a与a有相同的奇偶性;若a、b是整数,则a b-奇偶性+与a b相同。
关于整数的整除性:设,,a b c是整数,则○1a a;○2若,a b b c,则a c;○3若,a b b c,则对任意整数,m n,+.有a bm cn若在等式11m ni i i i a b ===∑∑中,除某一项外,其余各项都能被c 整除,则这一项也能被c整除.若(,)1a b =,且a bc ,则a c .若(,)1a b =,且,a b b c ,则ab c .设p 是素数,若p ab ,则p a 或p b .关于同余:若0(mod )a m ≡,则m a .(mod )a b m ≡⇔,a b 分别被m 除,余数相同.同余具有反身性:(mod )a a m ≡、对称性:若(mod )a b m ≡,则(mod )b a m ≡、传递性:若,(mod )a b b c m ≡≡,则(mod )a c m ≡.2. 方法评析数论问题综合性强,以极少的知识就可生出无穷的变化。
因此数论问题的方法多样,技巧性高,富于创造性和灵活性。
在竞赛数学中,解决数论问题的常用方法有因式分解法、估值法、调整法、构造法、反证法、奇偶分析法等等。
2.1 因式(数)分解例1 证明无穷数列10001,100010001,……中没有素数。
证明:设11000100011n n a =L 1442443个,则4484(1)41011101010=101n n n a --=++++-L 当n 为偶数,设2n k =,888484101(10)1101=101101101k k n a ---=---g 所以n a 为合数。
当n 为奇数,设2+1n k =,42+1221221422101101101==101101101k k k n a ++--+--+g ()()()所以n a 为合数。
评析:对n 分奇偶,分情况讨论,问题变得清晰易证。
同时注意,若n 为奇数时,n n x y +可分解因式。
例2 证明对任意整数1n >,44n n +不是素数。
证明:当n 为偶数时,44n n +为偶数,所以44n n +为合数;当n 为奇数,设21n k =+,则4421444=44(2)n k k n n n +++=+g422422222222222=4(2)4(2)4(2)[2(2)]4(2)[2(2)22][2(2)22]k k k k k k k k k n n n n n n n n n ++-=+-=++⋅+-⋅g g所以44n n +为合数。
评析:对n 适时地进行奇偶性讨论,不失为一种证明思路。
同时应注意,44x y +可作因式分解。
例3 设正整数,,,a b c d 满足ab cd =。
证明:a b c d +++不是素数。
证明:由于ab cd =,则设a d u c b v==,其中(,)1u v =,则 ,,a pu c pv d qu b qv==== 故=()()()()a b c d pu qv pv qu p u v q u v p q u v ++++++=+++=++所以为合数。
评析:此题中采用方法可扩展如下: 若a d c b=,不妨设gcd(,),gcd(,)a c s d b t ==,则 1111,,a a s c c sb d t b b t====,且1111gcd(,)gcd(,)1a c d b ==由于 1111a s d t c s b t =,所以1111a d cb =,即1111=a bcd 所以11111,gcd(,)1a d c a c =,故11a d 。
同理可证11d a ,所以11=a d同理可得11=c b例4 证明:若正整数,a b 满足2223a a b b +=+,则a b -和221a b ++都是完全平方数。
证明: 因22222a b a b b -+-=,即2()(221)a b a b b -++=故只需证a b -和221a b ++互质。
设gc (,221)d a b a b d -++=,即证1d = 则,221d a b d a b -++ 由于22d b ,所以d b ,又d a b -,则d a 。
所以1d ,故1d =得证。
故a b -和221a b ++互质,所以a b -和221a b ++都是完全平方数。
评析:有时,适当的因式分解可以使问题简化,以证得结论。
例5 一个正整数,加上100为一个完全平方数,若加上168则为另一个完全平方数,求这个数。
解:设这个数为x ,则22100168x a x b⎧+=⎪⎨+=⎪⎩ 其中,a b N ∈ (注:限定正的可减少讨论)。
故2()()217b a b a -+=⋅,从而b a -与b a +则等于把2217⋅拆开的因数1、2、4、17、34、68.这样就有六种情形。
又由于b a b a -<+,且b a -与b a +同奇偶性,故234b a b a -=⎧⎨+=⎩所以18,16b a ==。
则216100156x =-=。
评析:此题利用平方差公式,再考虑因数分解,便于讨论以确定某些式子的值,最终求得解。
例6 求方程44422222222224x y z x y x z y z ++=+++的全部整数解。
解:对原方程进行变形、因式分解44422222222222424x y z x y x z y z y z ++--+=+222222222222()424(2)(2)24()()()()24x y z y z x y z yz x y z yz y z x y z x y z x y z x -++-=-+++-++-=+++--+--=Q 左边四个括号内奇偶性相同,而32423=⋅为偶数,故括号内每个都为偶数,则应出现42,矛盾。
所以原方程无整数解。
评析:将所有字母项放在一起,进行因式分解,再与另一侧数字项对比讨论,推出矛盾。
例7 证明:两连续正整数之积不能是完全平方数,也不能是完全立方数。
证明:1o 若有两连续正整数之积为完全平方数,设2(1)x x t +=(1,2x t ≥≥),则(,1)(,1)1x x x +==,则x 与1x +均为完全平方数。
故存在正整数,a b 使得22,1x a x b =+=,从而22()()1b a b a b a -=+-=这与2b a +≥矛盾。
所以两连续正整数不能是完全平方数。
2o 若有两连续正整数之积为完全立方数,设3(1)x x t +=(1,2x t ≥≥),则(,1)(,1)1x x x +==,则x 与1x +均为完全立方数。
故存在正整数,a b 使得33,1x a x b =+=,从而3322()()1b a b a b ba a -=-++=这与223b ba a ++≥矛盾。
所以两连续正整数不能是完全平方数。
评析:此题运用因式分解和反证法,分析论证推出矛盾。
2.2 估值法例8 证明方程223y y x x x +=++没有0x ≠的整数解。
证明:对原方程进行变形、因式分解3()(1)y x y x x -++=设gcd(,1)d y x y x =-++,若1d ≠,设p 为d 的素因数,则,1p y x p y x -++ 又23p x ,故p x ,从而p y ,所以1p ,这与p 为素因素矛盾。
gcd(,1)1y x y x ∴-++=∴y x -与1y x ++均为完全立方数。
设33,1y x a y x b -=++=,则由3()(1)y x y x x -++=得,x ab =332221()()21b a ab b a b ba a ab ∴-=+-++=+又0ab x =≠,则 1o 当0ab >时,则210,1ab b a +>-≥2222()()321b a b ba a b ba a ab ab -++≥++>≥+这与22()()21b a b ba a ab -++=+矛盾。
故没有非零整数解。
2o 当0ab <时,则222222()()22()3221b a b ba a b ba a b ba a ab ab ab -++≥++≥-+≥>+ 这与22()()21b a b ba a ab -++=+矛盾。
故没有非零整数解。
评析:因式分解与互素性质相结合,分情况讨论,推出矛盾,题目得证。
例9 在两个相邻的完全平方数2n 与2(1)n +之间任取若干个不同的整数,证明它们中两两乘积互不相同。
证明:只需证明若22(1)n a b c d n <<<<<+则ad bc ≠若ad bc =,则设,,a pu b qu c pv d qv====(见例3),则,q p v u >>,即1,1q p v u ≥+≥+ (1)(1)1d qv p u pu p u =≥++=+++22pu a n p u n⎧=>⎪⎨+≥=>⎪⎩Q 2221(1)d n n n ∴>++=+,矛盾故在两个相邻的完全平方数2n 与2(1)n +之间任取若干个不同的整数,它们中两两乘积互不相同。
评析:与例三的思想方法大同小异,因为它们都利用ad bc =的结论。
例10 求不定方程(1)!1k n n -=-的全部正整数解。
解:当1n =时,无解;当2n =时,121k =-,有1k =;当2n >是,(1)!n -为偶数,n 必为奇数。
1o 当3n =时,231k =-,1k =2o 当5n =时,2451,2k k =-=3o 当5n >时,11(2)!(2)22n n n n ---≤-,12(2)!2n n --g故(1)(2)!n n --,则2(1)1k n n --而1111(11)1(1)(1)(1)k k k k k kk n n n C n C n ---=-+-=-+-++-L 所以21(1)(1)k k n C n ---,则()1n k -,1n k -≤故111(1)!k n n n n --≥->-,与2(1)1k n n --矛盾,则无解。