(通用版)高三数学二轮复习第一部分重点保分题专题检测(九)基本初等函数、函数与方程理

合集下载

基本初等函数、函数与方程 专项练习-2023届高三数学二轮专题复习(含解析)

基本初等函数、函数与方程 专项练习-2023届高三数学二轮专题复习(含解析)

冲刺2023年高考二轮 基本初等函数、函数与方程(原卷+答案)1.函数y =log 2(4+3x -x 2)的一个单调增区间是( ) A .⎝ ⎛⎭⎪⎫-∞,32 B .⎣⎢⎡⎭⎪⎫32,+∞ C .⎝ ⎛⎭⎪⎫-1,32 D .⎣⎢⎡⎭⎪⎫32,4 2.已知函数f (x )=⎩⎨⎧ax 2-x -14,x ≤1log a x -1,x >1,是R 上的单调函数,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫14,12B .⎣⎢⎡⎦⎥⎤14,12 C .⎝ ⎛⎦⎥⎤0,12 D .⎝ ⎛⎭⎪⎫12,1 3.若不等式x 2-log a x <0在⎝⎛⎭⎪⎫0,12 内恒成立,则a 的取值范围是( )A .116 ≤a <1B .116 <a <1 C .0<a ≤116 D .0<a <1164.若函数f (x )=x +ax -1在(0,2)上有两个不同的零点,则a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-2,14B .⎝ ⎛⎭⎪⎫-2,14C .⎣⎢⎡⎦⎥⎤0,14D .⎝ ⎛⎭⎪⎫0,145.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示,在受噪音干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN 叫作信噪比.当信噪比比较大时,公式中真数里面的1可以忽略不计.按照香农公式,增加带宽,提高信号功率和降低噪声功率都可以提升信息传递速度,若在信噪比为1 000的基础上,将带宽W 增大到原来的2倍,信号功率S 增大到原来的10倍,噪声功率N 减小到原来的15 ,则信息传递速度C 大约增加了( )(参考数据:lg 2≈0.3) A .87% B .123% C .156% D .213%6.已知函数f (x )=⎩⎪⎨⎪⎧||log 2x ,x >0,-x 2-4x +4,x <0. 若函数g (x )=f (x )-m 有四个不同的零点x 1,x 2,x 3,x 4,则x 1x 2x 3x 4的取值范围是( )A .(0,4)B .(4,8)C .(0,8)D .(0,+∞)7.已知函数f (x )是定义在R 上的奇函数,满足f (x +2)=f (-x ),且当x ∈[0,1]时,f (x )=log 2(x +1),则函数y =f (x )-x 3的零点个数是( )A .2B .3C .4D .5 8.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h )的函数关系为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12, (如图所示)实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.(1)k =________;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.9.函数f (x )=⎩⎪⎨⎪⎧x 3+2,x ≤0x -3+e x,x >0 的零点个数为________. 10.已知函数f (x )=⎩⎪⎨⎪⎧4x -1,x ≤1log 2x ,x >1 ,若1<f (a )≤2,则实数a 的取值范围为________.11.已知函数f (x )=⎩⎪⎨⎪⎧10x -2-102-x ,x ≤2||x -3-1,x >2,则不等式f (x )+f (x -1)<0的解集为________.12.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 恰有两个零点,则实数c 的取值范围是________.13.已知f (x )是定义在R 上的偶函数,f ′(x )是f (x )的导函数,当x ≥0时,f ′(x )-2x >0,且f (1)=3,则f (x )>x 2+2的解集是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-∞,-1)∪(0,1)14.定义在R 上的偶函数f (x )满足f (2-x )=f (2+x ),且当x ∈[0,2]时,f (x )=⎩⎨⎧2x-1,0≤x ≤12sin π2x -1,1<x ≤2,若关于x 的方程m ln ||x =f (x )至少有8个实数解,则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎦⎥⎤0,1ln 5B .⎣⎢⎡⎦⎥⎤-1ln 6,1ln 5 C .⎝ ⎛⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎭⎪⎫0,1ln 5 D .⎝ ⎛⎭⎪⎫-1ln 6,1ln 5参考答案1.解析:函数y =log 2(4+3x -x 2)的定义域为(-1,4). 要求函数y =log 2(4+3x -x 2)的一个单调增区间, 只需求y =4+3x -x 2的增区间,只需x <32 . 所以-1<x <32 .所以函数y =log 2(4+3x -x 2)的一个单调增区间是⎝ ⎛⎭⎪⎫-1,32 .故选C.答案:C2.解析:当函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调递减函数,所以⎩⎪⎨⎪⎧0<a <112a ≥1a -54≥-1,解得14 ≤a ≤12 ,因为a >0且a ≠1,所以当x ≤1时,f (x )不可能是增函数, 所以函数f (x )在R 上不可能是增函数, 综上:实数a 的取值范围为⎣⎢⎡⎦⎥⎤14,12 ,故选B.答案:B3.解析:当a >1时,由x ∈⎝ ⎛⎭⎪⎫0,12 ,可得log a x <0,则-log a x >0,又由x 2>0,此时不等式x 2-log a x <0不成立,不合题意; 当0<a <1时,函数y =log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递减,此时函数y =-log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递增,又由y =x 2在⎝ ⎛⎭⎪⎫0,12 上单调递增,要使得不等式x 2-log a x <0在⎝ ⎛⎭⎪⎫0,12 内恒成立,可得⎝ ⎛⎭⎪⎫12 2-log a 12 ≤0,解得116 ≤a <1.故选A.答案:A4.解析:函数f (x )=x +ax -1在(0,2)上有两个不同的零点等价于方程x +ax -1=0在(0,2)上有两个不同的解,即a =-x 2+x 在(0,2)上有两个不同的解.此问题等价于y =a 与y =-x 2+x (0<x <2)有两个不同的交点.由下图可得0<a <14 .故选D. 答案:D5.解析:提升前的信息传递速度C =W log 2S N =W log 21 000=3W log 210=3Wlg 2≈10W ,提升后的信息传递速度C ′=2W log 210S 15N =2W log 250SN =2W log 250 000=2W ·4+lg 5lg 2 =2W ·5-lg 2lg 2 ≈94W 3 ,所以信息传递速度C 大约增加了C ′-CC =943W -10W 10W ≈2.13=213%.故选D.答案:D6.解析:函数g (x )有四个不同的零点等价于函数f (x )的图象与直线y =m 有四个不同的交点.画出f (x )的大致图象,如图所示.由图可知m ∈(4,8).不妨设x 1<x 2<x 3<x 4,则-4<x 1<-2<x 2<0,且x 1+x 2=-4.所以x 2=-x 1-4,所以x 1x 2=x 1(-x 1-4)=-(x 1+2)2+4∈(0,4),则0<x 3<1<x 4,因为||log 2x 3 =||log 2x 4 ,所以-log 2x 3=log 2x 4,所以log 2x -13 =log 2x 4,所以x 3·x 4=1,所以x 1·x 2·x 3·x 4=x 1·x 2∈(0,4).故选A. 答案:A7.解析:由f (x +2)=f (-x )可得f (x )关于x =1对称, 由函数f (x )是定义在R 上的奇函数,所以f (x +2)=f (-x )=-f (x )=-[-f (x -2)]=f (x -2), 所以f (x )的周期为4,求函数y =f (x )-x 3的零点问题即y =f (x )-x 3=0的解, 即函数y =f (x )和y =x 3的图象交点问题,根据f (x )的性质可得如图所示图形,结合y =x 3的图象,由图象可得共有3个交点,故共有3个零点,故选B. 答案:B8.解析:(1)由题图可知,当t =12 时,y =1,所以2k =1,所以k =2. (2)由(1)可知,y =⎩⎪⎨⎪⎧2t ,0<t <12,12t ,t ≥12,当t ≥12 时,y =12t ,令y <0.75,得t >23 ,所以在消毒后至少经过23 小时,即40分钟人方可进入房间.答案:(1)2 (2)409.解析:当x ≤0时,令x 3+2=0,解得x =3-2 ,3-2 <0,此时有1个零点;当x >0时, f (x )=x -3+e x ,显然f (x )单调递增,又f ⎝ ⎛⎭⎪⎫12 =-52 +e 12 <0,f (1)=-2+e>0,由零点存在定理知此时有1个零点;综上共有2个零点.答案:210.解析:若a ≤1,则f (a )=4a -1,故1<4a -1≤2,解得12 <a ≤log 43,故12 <a ≤log 43;若a >1,则f (a )=log 2a ,故1<log 2a ≤2,解得2<a ≤4; 综上:12 <a ≤log 43或2<a ≤4. 答案:⎝ ⎛⎦⎥⎤12,log 43 ∪(2,4]11.解析:①当x ≤2时,x -1≤1,∵f (x )=10x -2-102-x 在(-∞,2]上单调递增,∴f (x )≤f (2)=0,又f (x -1)≤f (1)<f (2)=0, ∴f (x )+f (x -1)<0恒成立;②当2<x ≤3时,1<x -1≤2,f (x )=||x -3 -1=2-x <0, 又f (x -1)≤f (2)=0,∴f (x )+f (x -1)<0恒成立;③当3<x ≤4时,2<x -1≤3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=3-x ;∴f (x )+f (x -1)=-1<0恒成立;④当x >4时,x -1>3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=x -5,∴f (x )+f (x -1)=2x -9<0,解得x <92 ,∴4<x <92 ; 综上所述:不等式f (x )+f (x -1)<0的解集为⎝ ⎛⎭⎪⎫-∞,92 .答案:⎝ ⎛⎭⎪⎫-∞,92 12.解析:因为a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.,所以f (x )=(x 2-2)⊗(x -1)=⎩⎨⎧x 2-2,-1≤x ≤2x -1,x <-1或x >2 ,由图可知,当-2<c ≤-1或1<c ≤2时,函数f (x )与y =c 的图象有两个公共点,∴c 的取值范围是(-2,-1]∪(1,2]. 答案:(-2,-1]∪(1,2] 13.解析:令g (x )=f (x )-x 2, 因为f (x )是定义在R 上的偶函数, 所以f (-x )=f (x ),则g (-x )=f (-x )-(-x )2=g (x ), 所以函数g (x )也是偶函数, g ′(x )=f ′(x )-2x ,因为当x ≥0时,f ′(x )-2x >0,所以当x ≥0时,g ′(x )=f ′(x )-2x ≥0, 所以函数g (x )在(0,+∞)上递增, 不等式f (x )>x 2+2即为不等式g (x )>2, 由f (1)=3,得g (1)=2, 所以g (x )>g (1),所以||x >1,解得x >1或x <-1,所以f (x )>x 2+2的解集是(-∞,-1)∪(1,+∞). 故选B. 答案:B14.解析:因为f (2-x )=f (2+x ),且f (x )为偶函数, 所以f (x -2)=f (x +2),即f (x )=f (x +4), 所以函数f (x )是以4为周期的周期函数,作出y=f(x),y=m ln x在同一坐标系的图象,如图,因为方程m ln ||x=f(x)至少有8个实数解,所以y=f(x),y=m ln |x|图象至少有8个交点,根据y=f(x),y=m ln |x|的图象都为偶函数可知,图象在y轴右侧至少有4个交点,由图可知,当m>0时,只需m ln 5≤1,即0<m≤1ln 5,当m<0时,只需m ln 6≥-1,即-1ln 6≤m<0,当m=0时,由图可知显然成立,综上可知,-1ln 6≤m≤1ln 5.故选B.答案:B。

高考数学二轮复习函数的概念与基本初等函数多选题单元测试含答案

高考数学二轮复习函数的概念与基本初等函数多选题单元测试含答案

高考数学二轮复习函数的概念与基本初等函数多选题单元测试含答案一、函数的概念与基本初等函数多选题1.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( ) A .()f x =B .()222f x x x =-+C .()1f x x x=+D .()1f x x=【答案】ABD 【分析】根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,A :())0f x x =≥,若()()f m mf n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩,所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m mf n n n n⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩, 所以()222f x x x =-+存在“和谐区间” []1,2;C :()()10f x x x x =+≠,若()()11f m m m mf n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010m n⎧=⎪⎪⎨⎪=⎪⎩,故无解;若()()11f m m nmf n n mn⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+, 即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解; 若()0112,m n f m m <<<∴=∴= 不成立 所以()1f x x x=+不存在“和谐区间”; D :()()10f x x x =≠,函数在()()0+-0∞∞,,,单调递减,则 ()()11f m n mf n mn ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦; 综上得:存在“和谐区间”的是ABD. 故选:ABD. 【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.2.已知定义在R 上的函数()f x 满足:()()0f x f x +-=,且当0x ≥时,()x f x e x b =+-.若((2sin ))(sin )0f k b x f x ++-≤.在x ∈R 上恒成立,则k 的可能取值为( ) A .1 B .0C .1-D .2-【答案】CD 【分析】先判断函数的奇偶性和单调性,得到sinx ≥k (2+sinx ), 再根据题意,利用检验法判断即可. 【详解】因为定义在R 上的函数()f x 满足:()()0f x f x +-=, 所以()f x 为奇函数,0x ≥时,()x f x e x b =+-,显然()f x 在[0,)+∞上单调递增,所以()f x 在R 上单调递增,由((2sin ))(sin )0f k b x f x ++-≤恒成立, 可得(sin )((2sin ))f x f k x +在R 上恒成立, 即sin (2sin )x k x +, 整理得:(1)sin 2k x k -当1k =时,02≥,不恒成立,故A 错误; 当0k =时,sin 0x ≥,不恒成立,故B 错误; 当1k =-时,sin 1x ≥-,恒成立,故C 正确; 当2k =-时,4sin 3x ≥-,恒成立,故D 正确. 故选:CD 【点睛】本题主要考查了函数的奇偶性和单调性,不等式恒成立问题,属于中档题.3.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.4.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,. ()()11111+11++1xxx x xx e e e f x f x e e e------====-,该函数为奇函数,图象关于原点对称. 所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.5.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=且()12f =,则下列判断正确的有( ) A .()f x 是奇函数B .()f x 在定义域上单调递增C .当()0,x ∈+∞时,函数()1f x >D .()()()()()()()()()()()()2462016201820202020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++= 【答案】BCD 【分析】利用新定义结合函数的性质进行判断.计算出(1)f 判断A ;先利用(1)21f =>证明所有有理数p ,有()1f p >,然后用任意无理数q 都可以看作是一个有理数列的极限,由极限的性质得()1f q >,这样可判断C ,由此再根据单调性定义判断B ,根据定义计算(2)(21)f n f n -(n N ∈),然后求得D 中的和,从而判断D .【详解】令0,1a b ==,则(1)(10)(1)(0)f f f f =+=,即22(0)f =,∴(0)1f =,()f x 不可能是奇函数,A 错;对于任意x ∈R ,()0f x ≠,若存在0x R ∈,使得0()0f x =,则0000(0)(())()()0f f x x f x f x =+-=-=,与(0)1f =矛盾,故对于任意x ∈R ,()0f x ≠,∴对于任意x ∈R ,2()022222x x x x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+==>⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∵(1)21f =>,∴对任意正整数n ,11111111121nn n f n n f f f f f n n n n n n n ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪+++===> ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ⎪ ⎪⎝⎭个个,∴11f n ⎛⎫> ⎪⎝⎭, 同理()(111)(1)(1)(1)21n f n f f f f =+++==>,对任意正有理数p ,显然有m p n=(,m n是互质的正整数),则1()1mm f p f fn n ⎡⎤⎛⎫⎛⎫==> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,对任意正无理数q ,可得看作是某个有理数列123,,,p p p 的极限,而()1i f p >,i N ∈,∴()f q 与()i f p 的极限,∴()1f q >, 综上对所有正实数x ,有()1f x >,C 正确,设12x x <,则210x x ->,∴21()1f x x ->,则21211211()(())()()()f x f x x x f x f x x f x =+-=⋅->,∴()f x 是增函数,B 正确;由已知(2)(211)(21)(1)2(21)f n f n f n f f n =-+=-=-,∴(2)2(21)f n f n =-,∴()()()()()()()()()()()()10102246201620182020222210102020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++=+++=⨯=个,D 正确. 故选:BCD . 【点睛】本题考查新定义函数,考查学生分析问题,解决问题的能力,逻辑思维能力,运算求解能力,对学生要求较高,本题属于难题.6.对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k ,b 为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有()()()()00f x h x mh x g x m ⎧<-<⎪⎨<-<⎪⎩,则称直线:l y kx b =+为曲线()y f x =与()y g x =的“分渐近线”.给出定义域均为{}|1D x x =>的四组函数,其中曲线()y f x =与()y g x =存在“分渐近线”的是( ) A .()2f x x =,()g x =B .()102xf x -=+,()23x g x x-=C .()21x f x x+=,()ln 1ln x x g x x +=D .()221x f x x =+,()()21xg x x e -=--【答案】BD 【分析】根据分渐近线的定义,对四组函数逐一分析,由此确定存在“分渐近线”的函数. 【详解】解:()f x 和()g x 存在分渐近线的充要条件是x →∞时,()()0,()()f x g x f x g x -→>.对于①,()2f x x =,()g x =当1x >时,令()()()2F x f x g x x =-=,由于()20F x x '=->,所以()h x 为增函数,不符合x →∞时,()()0f x g x -→,所以不存在分渐近线; 对于②,()1022xf x -=+>,()232,(1)x g x x x-=<> ()()f x g x ∴>,2313()()10210xxx f x g x x x--⎛⎫-=+-=+ ⎪⎝⎭,因为当1x >且x →∞时,()()0f x g x -→,所以存在分渐近线;对于③,21()x f x x+=,ln 1()ln x x g x x +=,21111111()()ln ln ln x x nx f x g x x x x x x x x x++-=-=+--=-当1x >且x →∞时,1x 与1ln x 均单调递减,但1x的递减速度比1ln x 快,所以当x →∞时,()()f x g x -会越来越小,不会趋近于0,所以不存在分渐近线;对于④,22()1x f x x =+,()()21xg x x e -=--,当x →∞时,22()()220+1222+1x x x f x g x x e x x e--=-+++=→,且()()0f x g x ->,因此存在分渐近线.故存在分渐近线的是BD . 故选:BD . 【点睛】本小题主要考查新定义概念的理解和运用,考查函数的单调性,属于难题.7.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n ⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2nnx ⎡⎤∈-⎣⎦时,()()()21222n x n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.8.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围.【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.9.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .1122⎡-⎢⎣⎦是()f x 的一个“完美区间”C .()f x 的所有“完美区间”的“复区间长度”的和为3+D .()f x 的所有“完美区间”的“复区间长度”的和为3+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞0<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-, 即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=, 由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得b =b =.所以此时完美区间为⎡⎢⎣⎦,则“复区间长度”为()12212b a +-=⨯=+ ②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得1x =,2x =,所以a b ⎧=⎪⎪⎨⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误; 故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.10.下列结论正确的是( )A .函数()y f x =的定义域为[]1,3,则函数()21y f x =+的定义域为[]0,1 B .函数()f x 的值域为[]1,2,则函数()1f x +的值域为[]2,3C .若函数24y x ax =-++有两个零点,一个大于2,另一个小于-1,则a 的取值范围是()0,3D .已知函数()23,f x x x x R =+∈,若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为()()0,19,⋃+∞ 【答案】ACD 【分析】根据抽象函数定义域及代换的方法可求函数的定义域,判断A ,利用函数图象的平移可判断函数值域的变换情况,判断B ,利用数形结合及零点的分布求解判断C ,作出函数()23f x x x =+与1y a x =-的图象,数形结合即可判断D.【详解】对于A, ()y f x =的定义域为[]1,3,则由1213x ≤+≤可得()21y f x =+定义域为[]0,1,故正确;对于B ,将函数()f x 的图象向左平移一个单位可得函数()1f x +的图象,故其值域相同,故错误;对于C, 函数2()4y g x x ax ==-++有两个零点,一个大于2,另一个小于-1只需(2)0(1)0g g >⎧⎨->⎩,解得0<<3a ,故正确; 对于D, 作出函数()23f x x x =+与1y a x =-的图象,如图,由图可以看出,0a ≤时,不可能有4个交点,找到直线与抛物线相切的特殊位置1a =或9a =,观察图象可知,当01a <<有4个交点,当9a <时,两条射线分别有2个交点,综上知方程()10f x a x --=恰有4个互异的实数根时,()()0,19,a ∈+∞正确.故选:ACD 【点睛】关键点点睛:对于方程实根问题,可转化为函数图象交点问题,本题中,()23f x x x=+图象确定,而1y a x =-是过(1,0)关于1x =对称的两条射线,参数a 确定两射线张角的大小,首先结合图形找到关键位置,即1a =时左边射线与抛物线部分相切,9a =时右边射线与抛物线相切,然后观察图象即可得出结论.11.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤<.所以(1a m m =-=--,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故C 正确.对D,若()212f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b .当1a b <≤时,易得()212f x x x =-+在区间上单调递增,此时易得,a b 为方程2132x x x -+=的两根,求解得0x =或4x =-.故存在定义域[]4,0-,使得值域为[]12,0-. 故D 正确. 故选:ABCD.【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.12.已知函数()()2214sin 2x xe xf x e -=+,则下列说法正确的是( ) A .函数()y f x =是偶函数,且在(),-∞+∞上不单调 B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增 C .函数()y f x =在π,02⎛⎫-⎪⎝⎭上单调递增 D .对任意m ∈R ,都有()()f m f m =,且()0f m ≥【答案】AD 【分析】由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D. 【详解】 解:对A ,()()222114sin =2cos 2x x xx e x e f x x e e-+=+-,定义域为R ,关于原点对称,()2211=2cos()2cos()()x x x xe ef x x x f x e e--++---=-=, ()y f x ∴=是偶函数,其图像关于y 轴对称,()f x ∴在(),-∞+∞上不单调,故A 正确;对B ,1()2sin xxf x e x e '=-+, 11()2sin()=(2sin )()x xx xf x e x e x f x e e --''-=-+---+=-, ()f x '∴是奇函数,令1()2sin xx g x e x e=-+, 则1()+2cos 2+2cos 0x x g x e x x e'=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误;对C ,1()2sin x x f x e x e'=-+,且()'f x 在(),-∞+∞上单调递增, 又(0)0f '=,π,02x ⎛⎫∴∈- ⎪⎝⎭时,()0f x '<,()y f x ∴=在π,02⎛⎫- ⎪⎝⎭上单调递减,故C 错误;对D ,()y f x =是偶函数,且在(0,)+∞上单调递增,()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.故选:AD. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.13.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误. 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.14.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1 D【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||2x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.15.已知53a =,85b =,则( ) A .a b < B .112a b+> C .11a b a b+<+ D .b a a a b b +<+【答案】ABD 【分析】根据条件求得,a b 表达式,根据对数性质结合放缩法得A 正确,根据不等式性质得B 正确,通过作差法判断C 错,结合指数函数单调性与放缩法可得D 正确. 【详解】解:∵53a =,85b =, ∴35log a =,58log b =,因为3344435533535log 3log 54<⇒<⇒<=,又由3344438835858log 5log 84>⇒>⇒>=,所以a b <,选项A 正确; 35lo 01g a <=<,580log 1b <=<,则11a >,11b >,所以112a b +>,选项B 正确;因为a b <,01a b <<<,则0b a ->,11ab>,此时111()()10b a a b a b b a a b ab ab -⎛⎫⎛⎫+-+=-+=--> ⎪ ⎪⎝⎭⎝⎭, 所以11a b a b+>+,故选项C 不正确; 由1324a <<和314b <<知()x f x a =与()x g x b =均递减, 再由a ,b 的大小关系知b b a b a b a a b b a b a a b b <<⇒<⇒+<+,故选项D 正确. 故选:ABD 【点睛】本题考查了数值大小比较,关键运用了指对数运算性质,作差法和放缩法.16.下列函数求值域正确的是( )A .()1f x x =+的值域为[2)+∞,B .222()1x x g x x ++=+的值域为[2)+∞,C .()h x =(0D .()w x =的值域为[2【答案】CD 【分析】()12f x x x =++-去绝对值结合单调性和图象即可判断选项A ;2(1)11()(1)11x g x x x x ++==++++讨论10x +>和10x +<,利用基本不等式求值域可判断选项B ;()h x ==利用单调性即可判断选项C ;()w x 定义域为[31]-,,将()w x =()24w x =,由于()0w x >,可得()w x =2(1)t x =-+的范围即可求()w x 值域,可判断选项D. 【详解】对于选项A:原函数化为211 ()12312212x xf x x x xx x-+≤-⎧⎪=++-=-<≤⎨⎪->⎩,,,,其图象如图,原函数值域为[3)+∞,,故选项A不正确,对于选项B:2(1)11()(1)11xg x xx x++==++++,定义域为{}|1x x≠-,当1x<-时,10x+<,此时[][]11(1)2(1)211x xx x⎛⎫⎛⎫-++-≥-+⨯-=⎪ ⎪++⎝⎭⎝⎭,所以1(1)21xx++≤-+,当且仅当1(1)1xx-+=-+即2x=-时等号成立,当1x>-时,10x+>,此时11(1)(1)211x xx x++≥+⨯=++,当且仅当111xx+=+即0x=时等号成立,所以函数()g x值域为(2][2)-∞-⋃+∞,,,故选项B不正确;对于选项C:()h x的定义域为[1)+∞,,(11)(11)()111111x x x xh x x xx x x x++-+--=+-==++-++-,因为1y x=+1y x=-[1)+∞,上是增函数,所以11y x x=+-[1)+∞,上是增函数,又11y x x=+-[1)+∞,上恒不等于0,则11yx x=++-在[1)+∞,上是减函数,则()h x的最大值为()12h=又因为()0h x>,所以()h x的值域为(02],,故选项C正确;对于选项D:()w x的定义域为[31]-,,()2()131313213w x x x x x x x x x =-+=-++=-+++-⋅+===设2(1)t x =-+,则[40]t ∈-,,[]0,4,[]44,8∈,则()2,w x ⎡=⎣,()w x 的值域为[2,故选项D 正确, 故选:CD 【点睛】方法点睛:求函数值域常用的方法(1)观察法:一些简单的函数,值域可以通过观察法得到;(2)利用常见函数的值域:一次函数值域为R ;二次函数利用配方法,结合定义域求出值域;反比例函数的值域为{}|0y y ≠;指数函数的值域为{}|0y y >;对数函数值域为R ;正、余弦函数的值域为[]1,1-;正切函数值域为R ;(3)单调性法:先判断函数的单调性,再由函数的单调性求函数的值域; (4)分离常数法:将有理分式转化为反比例函数类的形式,便于求值域;(5)换元法:对于一些无理函数如y ax b =±±数,通过求有理函数的值域间接求原函数的值域;(6)不等式法:利用几个重要的不等式及其推论来求最值,进而求得值域,如222a b ab +≥,a b +≥,以及绝对值三角不等式等;(7)判别式法:把函数解析式化为关于x 的一元二次方程,利用判别式求值域,形如y Ax =+22ax bx c y dx ex f++=++的函数适用; (8)有界性法:充分利用三角函数或一些代数表达式的有界性,求出值域; (9)配方法:求二次函数型函数值域的基本方法,形如()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦的函数求值域,均可使用配方法;(10)数形结合法:若函数的解析式的几何意义较明显,如距离、斜率等可使用数形结合法;(11)导数法:利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域.17.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD 【分析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论. 【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD. 【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.18.已知函数()3log ,092sin ,91744x x f x x x ππ⎧<<⎪=⎨⎛⎫+≤≤ ⎪⎪⎝⎭⎩,若()()()()f a f b f c f d ===,且a b c d <<<,则( ) A .1ab = B .26c d π+=C .abcd 的取值范围是()153,165D .+++a b c d 的取值范围是31628,9⎛⎫⎪⎝⎭【答案】ACD 【分析】作出函数()f x 的图象,利用对数的运算性质可判断A 选项的正误,利用正弦型函数的对称性可判断B 选项的正误;利用二次函数的基本性质可判断C 选项的正误;利用双勾函数的单调性可判断D 选项的正误. 【详解】由3log 2x ≤可得32log 2x -≤≤,解得199x ≤≤. 作出函数()f x 的图象如下图所示:由图象可得1191115179a b c d <<<<<<<<<,由33log log a b =,可得33log log a b -=,即()333log log log 0a b ab +==,得1ab =,A 选项正确; 令()442x k k Z ππππ+=+∈,解得()41x k k Z =+∈, 当()9,17x ∈时,令94117k <+<,解得24k <<,由于k Z ∈,3k ∴=,所以,函数[]()2sin 9,1744x y x ππ⎛⎫=+∈⎪⎝⎭的图象关于直线13x =对称, 则点()(),c f c 、()(),d f d 关于直线13x =对称,可得26c d +=,B 选项错误;()()()22613169153,165abcd c c c =-=--+∈,C 选项正确; 126a b c d a a+++=++,下面证明函数1y x x =+在()0,1上为减函数,任取1x 、()20,1x ∈且12x x <,则()12121212121111y y x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()1212211212121x x x x x x x x x x x x ---=-+=, 1201x x <<<,则120x x -<,1201x x <<,所以,12y y >,所以,函数1y x x=+在()0,1上为减函数, 119a <<,则13162628,9a b c d a a ⎛⎫+++=++∈ ⎪⎝⎭,D 选项正确.故选:ACD. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.19.若实数2a ≥,则下列不等式中一定成立的是( ) A .21(1)(2)a a a a +++>+ B .1log (1)log (2)a a a a ++>+ C .1log (1)a a a a ++< D .12log (2)1a a a a +++<+ 【答案】ABD 【分析】对于选项A :原式等价于()()ln 1ln 212a a a a ++>++,对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+,对于选项D :变形为()()ln 2ln 121a a a a ++<++,构造函数()ln xf x x =,通过求导判断其在(),x e ∈+∞上的单调性即可判断;对于选项B :利用换底公式:1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+, 等价于()()2ln 1ln ln 2a a a +>⋅+,利用基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,再结合放缩法即可判断; 【详解】令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减, 对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++,即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确; 对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+, 由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a+>+,故选项C 错误;对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥, 所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦,因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确; 故选:ABD 【点睛】本题考查利用对数的换底公式、构造函数法、利用导数判断函数的单调性、结合基本不等式和放缩法比较大小;考查逻辑推理能力、知识的综合运用能力、转化与化归能力和运算求解能力;属于综合型强、难度大型试题.20.已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,下列说法正确的是( )A .(0,)x ∈+∞时,函数解析式为2()2f x x x =-B .函数在定义域R 上为增函数C .不等式(32)3f x -<的解集为(,1)-∞D .不等式2()10f x x x -+->恒成立 【答案】BC 【分析】对于A ,利用奇函数定义求(0,)x ∈+∞时,函数解析式为2()2f x x x =+;对于B ,研究当(,0)x ∈-∞时,()f x 的单调性,结合奇函数图像关于原点对称,知()f x 在R 上的单调性;对于C ,求出(1)3f =,不等式(32)3f x -<,转化为(32)(1)f x f -<,利用单调性解不等式;对于D ,分类讨论(0,)x ∈+∞与(,0)x ∈-∞两种情况是否恒成立. 【详解】对于A ,设(0,)x ∈+∞,(,0)x -∈-∞,则2()2f x x x -=--,又()f x 是奇函数,所以2()()2f x f x x x =--=+,即(0,)x ∈+∞时,函数解析式为2()2f x x x =+,故A 错;对于B ,2()2f x x x =-+,对称轴为1x =,所以当(,0)x ∈-∞时,()f x 单调递增,由奇函数图像关于原点对称,所以()f x 在R 上为增函数,故B 对;对于C ,由奇函数在R 上为增函数,则(0,)x ∈+∞时,2()23f x x x =+=,解得11x =,23x =-(舍去),即(1)3f =,所以不等式(32)3f x -<,转化为(32)(1)f x f -<, 又()f x 在R 上为增函数,得321x -<,解得1x <, 所以不等式的解集为(,1)-∞,故C 对; 对于D ,当(,0)x ∈-∞时,2()2f x x x =-+2222()121231(21)(1)0f x x x x x x x x x x x -+-=-+-+-=-+-=-+-<,当(0,)x ∈+∞时,2()2f x x x =+222()12131f x x x x x x x x -+-=+-+-=-不恒大于0,故D 错;故选:BC 【点睛】方法点睛:考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别. 考查了利用奇偶性求函数解析式,求函数解析式常用的方法: (1)已知函数类型,用待定系数法求解析式; (2)已知函数奇偶性,用奇偶性定义求解析式;(3)已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法; (4)若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解;。

高三数学第二轮专题复习系列(2)-- 函数

高三数学第二轮专题复习系列(2)-- 函数

高三数学第二轮专题复习系列(2)-- 函数一、本章知识结构:二、高考要求(1)了解映射的概念,理解函数的概念.(2)了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.(3)了解反函数的概念及互为反函数的函数图像间关系,会求一些简单函数的反函数. (4)理解分数指数的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质. (5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、热点分析函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题。

在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新。

以基本函数为背景的应用题和综合题是高考命题的新趋势。

考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象。

②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点。

③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想。

四、复习建议1. 认真落实本章的每个知识点,注意揭示概念的数学本质①函数的表示方法除解析法外还有列表法、图象法,函数的实质是客观世界中量的变化的依存关系;②中学数学中的“正、反比例函数,一次、二次函数,指数、对数函数,三角函数”称为基本初等函数,其余的函数的解析式都是由这些基本初等函数的解析式形成的. 要把基本初等函数的图象和性质联系起来,并且理解记忆;③掌握函数单调性和奇偶性的一般判定方法,并能联系其相应的函数的图象特征,加强对函数单调性和奇偶性应用的训练;④注意函数图象的变换:平移变换、伸缩变换、对称变换等;函数的三要素函数的表示法 函数的性质 反函数 函数的应用 初等函数基本初等函数: 指数函数 对数函数对数指数映射函数射⑤掌握复合函数的定义域、值域、单调性、奇偶性;⑥理解掌握反函数的概念,会求反函数,弄清互为反函数的两个函数的定义域、值域、单调性的关联及其图像间的对称关系。

高三数学二轮复习 基本初等函数 专题卷(全国通用)10

高三数学二轮复习       基本初等函数   专题卷(全国通用)10

基本初等函数[明考情]基本初等函数是函数性质的载体,是高考的命题热点,多以选择题形式出现,中档难度,有时出现在选择或填空的最后一题. [知考向]1.幂、指数、对数的运算与大小比较.2.基本初等函数的性质.3.分段函数.4.基本初等函数的综合应用.考点一 幂、指数、对数的运算与大小比较 方法技巧 幂、指数、对数的大小比较方法 (1)单调性法.(2)中间值法.1.已知函数f (x )=⎩⎨⎧2x,x <0,f (x -1)+1,x ≥0,则f (2 016)等于( )A.2 014B.4 0292C.2 015D.4 0352答案 D解析 f (2 016)=f (2 015)+1=…=f (0)+2 016=f (-1)+2 017=2-1+2 017=4 0352. 2.(2016·全国Ⅲ)已知a =432,b =254,c =1325,则( ) A.b <a <c B.a <b <c C.b <c <a D.c <a <b 答案 A解析 因为a =432,b =254,由函数y =2x在R 上为增函数知b <a ;又因为a =432=234,c =1325=235,由函数y =23x 在(0,+∞)上为增函数知a <c .综上得b <a <c .故选A.3.设12<⎝ ⎛⎭⎪⎫12b <⎝ ⎛⎭⎪⎫12a <1,那么( )A.a a <a b <b aB.a a <b a <a bC.a b <a a <b aD.a b <b a <a a 答案 C解析 由于指数函数y =⎝ ⎛⎭⎪⎫12x 是减函数,由已知12<⎝ ⎛⎭⎪⎫12b <⎝ ⎛⎭⎪⎫12a <1,得0<a <b <1.当0<a <1时,y =a x 为减函数,所以a b <a a ,排除A ,B ;又因为幂函数y =x a 在第一象限内为增函数,所以a a <b a ,故选C.4.(2016·浙江)已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b =________. 答案 4 2解析 设log b a =t ,则t >1,因为t +1t =52,解得t =2,所以a =b 2,① 因此a b =b a ⇒b 2b =2b b ,②解得b =2,a =4.5.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (12log 3),c =f (0.2-0.6),则a ,b ,c 的大小关系是________.答案 c <b <a解析 12log 3=-log 23=-log 49,b =f (12log 3)=f (-log 49)=f (log 49),log 47<log 49,0.2-0.6=3515-⎛⎫ ⎪⎝⎭=355=5125>532=2>log 49, 又f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,故f (x )在[0,+∞)上是减函数,所以f (0.2-0.6)<f (12log 3)<f (log 47),即c <b <a .考点二 基本初等函数的性质方法技巧 (1)指数函数的图象过定点(0,1),对数函数的图象过定点(1,0). (2)应用指数函数、对数函数的单调性,要注意底数的范围,底数不同的尽量化成相同的底数.(3)解题时要注意把握函数的图象,利用图象研究函数的性质.6.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1答案 D解析由对数函数的性质得0<a<1,因为函数y=log a(x+c)的图象在c>0时是由函数y=log a x的图象向左平移c个单位得到的,所以根据题中图象可知0<c <1.故选D.7.(2017·银川市兴庆区一模)设函数f(x)=2x1+2x-12,[x]表示不超过x的最大整数,则y=[f(x)]的值域是()A.{0,1}B.{0,-1}C.{-1,1}D.{1,1} 答案 B解析∵f(x)=12-12x+1,分析可得-12<f(x)<12,∴[f(x)]={0,-1}.8.(2017·全国Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)答案 D解析由x2-2x-8>0,得x>4或x<-2.设t=x2-2x-8,则y=ln t为增函数.要求函数f(x)的单调递增区间,即求函数t=x2-2x-8的单调递增区间. ∵函数t=x2-2x-8的单调递增区间为(4,+∞),∴函数f(x)的单调递增区间为(4,+∞).故选D.9.已知函数f (x )=x -4+9x +1,x ∈(0,4),当x =a 时,f (x )取得最小值b ,则函数g (x )=a |x +b |的图象为( )答案 A解析 当x ∈(0,4)时,f (x )=x +1+9x +1-5≥1(当且仅当x =2时取等号), ∴a =2,b =1.∴g (x )=2|x +1|的图象关于直线x =-1对称, 且在[-1,+∞)上为增函数,故选A.10.(2017·钦州一模)已知函数f (x )=|lg(x -1)|,若1<a <b 且f (a )=f (b ),则a +2b 的取值范围为( ) A.(3+22,+∞) B.[3+22,+∞) C.(6,+∞) D.[6,+∞)答案 C解析 由图象易知b >2,1<a <2,∴-lg(a -1)=lg(b -1),则a =bb -1, 则a +2b =b b -1+2b =2b 2-b b -1=2(b -1)2+3(b -1)+1b -1=2(b -1)+1b -1+3≥22+3,当且仅当b =22+1时取等号. ∵b >2, ∴a +2b =bb -1+2b >6. 考点三 分段函数方法技巧 (1)分段函数求函数值:先范围,再代入.(2)分段函数在整个定义域上的单调性:一定要注意定义域的分界点处函数值的大小关系.11.(2017·山东)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a 等于( )A.2B.4C.6D.8 答案 C解析 若0<a <1,由f (a )=f (a +1),得a =2(a +1-1), ∴a =14,∴f ⎝ ⎛⎭⎪⎫1a =f (4)=2×(4-1)=6.若a ≥1,由f (a )=f (a +1),得2(a -1)=2(a +1-1),无解. 综上,f ⎝ ⎛⎭⎪⎫1a =6.故选C.12.已知函数f (x )=⎩⎨⎧x 2+4x +3,x ≤0,3-x ,x >0,则方程f (x )+1=0的实根的个数为( )A.0B.1C.2D.3 答案 C解析 依题意得当x ≤0时,x 2+4x +3+1=0, 解得x =-2;当x >0时,3-x +1=0,得x =4. 因此原方程的实根的个数是2. 13.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫14,12B.⎣⎢⎡⎦⎥⎤14,12 C.⎝ ⎛⎦⎥⎤0,12 D.⎣⎢⎡⎭⎪⎫12,1 答案 B解析 由对数函数的定义,可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,解得14≤a ≤12.14.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2,若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A.(-1,1)B.(0,1)C.(0,1]D.(-1,0) 答案 B解析 由题意知,函数f (x )=2x 在[2,+∞)上是减函数,且0<f (x )≤1,f (x )=(x -1)3在(-∞,2)上是增函数,且f (x )<1,若关于x 的方程f (x )=k 有两个不同的实根,则0<k <1.15.(2017·全国Ⅲ)设函数f (x )=⎩⎨⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是___. 答案 ⎝ ⎛⎭⎪⎫-14,+∞解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+122x ->1,显然成立.综上可知,x 的取值范围是⎝ ⎛⎭⎪⎫-14,+∞.考点四 基本初等函数的综合应用要点重组 函数y =a x 和y =log a x (a >0,a ≠1)互为反函数,它们的图象关于直线y =x 对称.方法技巧 基本初等函数与不等式的交汇问题是高考的热点,突破此类问题在于准确把握函数的图象和性质.16.已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若存在f (a )=g (b ),则实数b 的取值范围为( ) A.[1,3]B.(1,3)C.[2-2,2+2]D.(2-2,2+2)答案 D解析 函数f (x )=e x -1的值域为(-1,+∞),g (x )=-x 2+4x -3的值域为(-∞,1],若存在f (a )=g (b ),则需g (b )>-1,即-b 2+4b -3>-1,所以b 2-4b +2<0,解得2-2<b <2+ 2.17.已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数.记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A.a <b <c B.a <c <b C.c <a <b D.c <b <a 答案 C解析 由f (x )=2|x -m |-1是偶函数,得m =0,则f (x )=2|x |-1.当x ∈[0,+∞)时,f (x )=2x -1单调递增,又a =f (log 0.53)=f (|log 0.53|)=f (log 23),c =f (0),且0<log 23<log 25,则f (0)<f (log 23)<f (log 25), 即c <a <b ,故选C.18.设a ,b ,c 分别是方程2x =12log x ,⎝ ⎛⎭⎪⎫12x =12log 2x ,⎝ ⎛⎭⎪⎫12x =log 2x 的实数根,则( ) A.c <b <a B.a <b <c C.b <a <c D.c <a <b答案 C解析 因为2a=12log a >0,所以0<a <1.因为⎝ ⎛⎭⎪⎫12b=12log 2b =-b >0,所以b <0.因为⎝ ⎛⎭⎪⎫12c =log 2c >0,所以1<c <2.所以b <0<a <1<c .19.已知f (x )=⎩⎪⎨⎪⎧1+x x ,x <0,log 21x ,x >0,则f (x )≥-2的解集是( )A.⎝ ⎛⎦⎥⎤-∞,-13∪[4,+∞) B.⎝⎛⎦⎥⎤-∞,-13∪(0,4] C.⎣⎢⎡⎭⎪⎫-13,0∪[4,+∞) D.⎣⎢⎡⎭⎪⎫-13,0∪(0,4] 答案 B解析 当x <0时,f (x )≥-2,即1+x x ≥-2,可转化为1+x ≤-2x ,得x ≤-13;当x >0时,f (x )≥-2,即12log x ≥-2,可转化为12log x ≥12log 4,解得0<x ≤4.综上可知不等式的解集为⎝ ⎛⎦⎥⎤-∞,-13∪(0,4]. 20.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 答案 (1,+∞)解析 画出函数y =f (x )与y =a -x 的图象如图所示,所以a >1.1.函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是( )A.a >0,b >0,c <0B.a <0,b >0,c >0C.a <0,b >0,c <0D.a <0,b <0,c <0 答案 C解析 由f (x )=ax +b(x +c )2及图象可知,x ≠-c ,-c >0,则c <0;当x =0时,f (0)=b c 2>0,所以b >0;当f (x )=0时,ax +b =0,所以x =-ba >0,所以a <0,故选C.2.如果函数y =a 2x +2a x -1(a >0且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为( ) A.13B.1C.3 D.13或3 答案 D解析 令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2. 当a >1时,因为x ∈[-1,1],所以t ∈⎣⎢⎡⎦⎥⎤1a ,a ,又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去); 当0<a <1时,因为x ∈[-1,1],所以t ∈⎣⎢⎡⎦⎥⎤a ,1a ,又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤a ,1a 上单调递增,则y max =⎝ ⎛⎭⎪⎫1a +12-2=14,解得a =13(负值舍去).综上知a =3或a =13.3.已知函数f (x )=log a 1-xb +x (0<a <1)为奇函数,当x ∈(-1,a ]时,函数f (x )的值域为(-∞,1],则实数a +b 的值为____________. 答案2解析 因为奇函数的定义域关于原点对称, 所以由1-xb +x >0,得-b <x <1,且b =1.所以f (x )=log a 1-x1+x(0<a <1).又g (x )=1-x x +1=-1+2x +1在(-1,a ]上单调递减,因为0<a <1,所以f (x )在(-1,a ]上单调递增. 又因为函数f (x )的值域是(-∞,1],故g (a )=a , 即a 2+a =1-a ,解得a =2-1,所以a +b = 2.4.已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是________.答案 [-2,0]解析 由y =|f (x )|的图象知,①当x >0时,只有当a ≤0时,才能满足|f (x )|≥ax . ②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x . 故由|f (x )|≥ax ,得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .因为x -2<-2,所以a ≥-2.综上可知,a ∈[-2,0]. 解题秘籍 (1)基本初等函数的图象可根据特殊点及函数的性质进行判定.(2)与指数函数、对数函数有关的复合函数的性质,可使用换元法,解题中要优先考虑函数的定义域.(3)数形结合是解决方程不等式的重要工具,指数函数、对数函数的底数要讨论.1.函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( )A.14B.12C.2D.4 答案 B解析 当a >1时,由a +log a 2+1=a ,得log a 2=-1,所以a =12,与a >1矛盾;当0<a <1时,由1+a +log a 2=a ,得log a 2=-1,所以a =12. 2.已知实数a ,b 满足12>⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫22b >14,则( ) A.b <2b -aB.b >2b -aC.a <b -aD.a >b -a答案 B解析 ∵12>⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫22b =212b ⎛⎫ ⎪⎝⎭>14=⎝ ⎛⎭⎪⎫122, ∴1<a <b 2<2, ∴b 2-4(b -a )=b 2-4b +4a >b 2-4b +4≥0,∴b 2>4(b -a ),∴b >2b -a ,故选B.3.已知函数f (x )=⎩⎨⎧ log 2x -1,x >0,f (2-x ),x ≤0,则f (0)等于( )A.-1B.0C.1D.3答案 B解析 f (0)=f (2-0)=log 22-1=1-1=0.4.(2017·揭东区校级月考)函数y =22e x x -+(0≤x <3)的值域是( )A.(0,1]B.(e -3,e]C.[e -3,1]D.[1,e]答案 B解析 ∵y =22e x x -+=2(1)1e x --+(0≤x <3),当0≤x <3时,-3<-(x -1)2+1≤1,∴e -3<2(1)1e x --+≤e 1,即e -3<y ≤e ,∴函数y 的值域是(e -3,e].5.(2017·河东区模拟)函数f (x )=|x -2|-ln x 在定义域内零点的个数为( )A.0B.1C.2D.3答案 C解析 由题意,函数f (x )的定义域为(0,+∞),由函数零点的定义,f (x )在(0,+∞)内的零点即是方程|x -2|-ln x =0的根.令y 1=|x -2|,y 2=ln x (x >0),在一个坐标系中画出两个函数的图象.由图得两个函数图象有两个交点,故方程有两个根,即对应函数有两个零点.6.已知f (x )=⎩⎪⎨⎪⎧ (x -a )2,x ≤0,x +1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为() A.[-1,2] B.[-1,0]C.[1,2]D.[0,2]答案 D解析 当x >0时,f (x )=x +1x +a 在x =1时取得最小值2+a ,由题意知当x ≤0时,f (x )=(x -a )2应该是递减的,则a ≥0,此时最小值为f (0)=a 2,因此a 2≤a +2,解得0≤a ≤2,故选D.7.已知函数f (x )=⎩⎨⎧e x +a ,x ≤0,2x -1,x >0(a ∈R),若函数f (x )在R 上有两个零点,则a 的取值范围是( )A.(-∞,-1)B.(-∞,0)C.(-1,0)D.[-1,0)答案 D解析 当x >0时,f (x )=2x -1.令f (x )=0,解得x =12;当x ≤0时,f (x )=e x +a ,此时函数f (x )=e x +a 在(-∞,0]上有且仅有一个零点,等价转化为方程e x =-a 在(-∞,0]上有且仅有一个实根,而函数y =e x 在(-∞,0]上的值域为(0,1],所以0<-a ≤1,解得-1≤a <0.故选D.8.(2017·武汉模拟)若函数f (x )=a e x -x -2a 有两个零点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,1e B.⎝ ⎛⎭⎪⎫0,1e C.(-∞,0)D.(0,+∞) 答案 D解析 函数f (x )=a e x -x -2a 的导函数f ′(x )=a e x -1,当a ≤0时,f ′(x )≤0恒成立,函数f (x )在R 上单调,不可能有两个零点;当a >0时,令f ′(x )=0,得x =ln 1a ,函数在⎝ ⎛⎭⎪⎫-∞,ln 1a 上单调递减,在⎝ ⎛⎭⎪⎫ln 1a ,+∞上单调递增, ∴f (x )的最小值为f ⎝ ⎛⎭⎪⎫ln 1a =1-ln 1a -2a =1+ln a -2a . 令g (a )=1+ln a -2a (a >0),则g ′(a )=1a -2.当a ∈⎝ ⎛⎭⎪⎫0,12时,g (a )单调递增,当a ∈⎝ ⎛⎭⎪⎫12,+∞时,g (a )单调递减, ∴g (a )max =g ⎝ ⎛⎭⎪⎫12=-ln 2<0, ∴f (x )的最小值f ⎝ ⎛⎭⎪⎫ln 1a <0,函数f (x )=a e x -x -2a 有两个零点. 综上,实数a 的取值范围是(0,+∞).9.已知幂函数f (x )=(n 2+2n -2)23n n x -(n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,那么n 的值为__________.答案 1解析 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验,只有n =1符合题意.10.已知函数f (x )=⎩⎨⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.答案 (0,1)解析 画出f (x )=⎩⎨⎧2x -1,x >0,-x 2-2x ,x ≤0的图象,如图,由于函数g (x )=f (x )-m 有3个零点,结合图象得0<m <1,即m ∈(0,1).11.已知f (x )=ax -1 980,g (x )=ln x a (a ∈R),若在x ∈N *上恒有f (x )g (x )≥0,则实数a 的取值范围是__________.答案 [44,45]解析 由x ∈N *,x a >0⇒a >0,两函数零点为1 980a ,a ,由题意得两零点之间无正整数,因为44×45=1 980,所以当0<a <44时,1 980a >45,不满足题意;当a >45时,0<1 980a <44,不满足题意;当44≤a ≤45时,44≤1 980a ≤45,满足题意.12.设函数f (x )=⎩⎨⎧2x ,x ≤0,log 2x ,x >0,则函数y =f (f (x ))-1的零点个数为________. 答案 2解析 ①当x ≤0时,y =f (f (x ))-1=f (2x )-1=log 22x -1=x -1,令x -1=0,则x =1,显然与x ≤0矛盾,所以当x ≤0时,y =f (f (x ))-1无零点.②当x >0时,分两种情况:当x >1时,log 2x >0,y =f (f (x ))-1=f (log 2x )-1=log 2(log 2x )-1,令log 2(log 2x )-1=0,得log 2x =2,解得x =4;当0<x ≤1时,log 2x ≤0,y =f (f (x ))-1=f (log 2x )-1=2log 2x -1=x -1, 令x -1=0,解得x =1.综上,函数y =f (f (x ))-1的零点个数为2.。

高考数学二轮复习专题突破—基本初等函数、函数的应用(含解析)

高考数学二轮复习专题突破—基本初等函数、函数的应用(含解析)

高考数学二轮复习专题突破—基本初等函数、函数的应用一、单项选择题1.(2021·陕西西安月考)函数f (x )=xx 2-1−12的零点个数是( ) A.1 B.2C.3D.42.(2021·福建泉州一模)已知a=32,b=√3√2,c=ln3ln2,则( ) A.a>b>c B.c>b>a C.c>a>bD.a>c>b3.(2021·浙江绍兴二模)函数f (x )=log a x+ax (a>1)的图象大致是( )4.(2021·湖北十堰期中)已知关于x 的方程9x -2a ·3x +4=0有一个大于2log 32的实数根,则实数a 的取值范围为( ) A.(0,52)B.(52,4)C.(52,+∞)D.(4,+∞)5.(2021·山东潍坊二模)关于函数f (x )={2x -a,0≤x <2,b-x,x ≥2,其中a ,b ∈R ,给出下列四个结论:甲:6是该函数的零点;乙:4是该函数的零点;丙:该函数的零点之积为0;丁:方程f (x )=52有两个根.若上述四个结论中有且只有一个结论错误,则该错误结论是( ) A.甲B.乙C.丙D.丁6.(2021·湖南师大附中期末)已知函数f(x)={lnx,x≥1,-ln(2-x),x<1,则方程(x-1)f(x)=1的所有实根之和为()A.2B.3C.4D.17.(2021·福建厦门期末)已知函数f(x)={|log3x|,0<x≤√3,1−log3x,x>√3,若关于x的方程f2(x)+mf(x)+112=0有6个解,则实数m的取值范围为()A.(-1,0)B.-1,-√33C.-1,-23D.-23,-√33二、多项选择题8.(2021·江苏扬州期末)17世纪初,约翰·纳皮尔为了简化计算发明了对数.对数的发明是数学史上的重大事件,恩格斯曾经把笛卡儿的坐标系、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为17世纪的三大数学发明.我们知道,任何一个正实数N可以表示成N=a×10n(1≤a<10,n∈Z)的形式,两边取常用对数,则有lg N=n+lg a,现给出部分常用对数值(如下表),则下列说法正确的有()A.310在区间(104,105)内B.250是15位数C.若2-50=a×10m(1≤a<10,m∈Z),则m=-16D.若m32(m∈N*)是一个35位正整数,则m=129.(2021·北京延庆模拟)同学们,你们是否注意到?自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深涧的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为f(x)=a e x+b e-x(其中a,b是非零常数,无理数e=2.718 28…),对于函数f(x),下列说法正确的是()A.如果a=b,那么函数f(x)为奇函数B.如果ab<0,那么f(x)为单调函数C.如果ab>0,那么函数f(x)没有零点D.如果ab=1,那么函数f(x)的最小值为210.(2021·海南第四次模拟)已知k>0,函数f(x)={-ln(k-x),x<0,ln(k+x),x>0,则()A.f(x)是奇函数B.f(x)的值域为RC.存在k,使得f(x)在定义域上单调递增D.当k=12时,方程f(x)=1有两个实数根三、填空题11.(2021·北京通州区一模)已知函数f(x)={x2+2x,x≤t,lnx,x>t(t>0)有两个零点,且其图象过点(e,1),则常数t的一个取值为.12.(2021·山东济宁期末)已知函数f(x)=e x+x2+ln(x+a)与函数g(x)=e x+e-x+x2(x<0)的图象上存在关于y轴对称的点,则实数a的取值范围为.答案及解析1.B 解析 令f (x )=xx 2-1−12=0,即x 2-2x-1=0,解得x=1±√2,经检验x=1±√2是方程f (x )=0的解,故f (x )有两个零点.故选B . 2.C 解析 a=32,b=√3√2=√62,则a>b ,因为a-c=32−ln3ln2=3ln2−2ln32ln2=ln8−ln92ln2<0,所以a<c ,所以b<a<c.故选C .3.A 解析 令g (x )=x+ax ,由于a>1,所以g (x )在区间(0,√a )上单调递减,在区间(√a ,+∞)上单调递增,故f (x )在区间(0,√a )上单调递减,在区间(√a ,+∞)上单调递增,对照题中选项中的图象,知A 选项正确.4.C 解析 令t=3x ,因为方程9x -2a·3x +4=0有一个大于2log 32的实数根,即x>2log 32,则t>32log 32=4,所以函数f (t )=t 2-2at+4有一个大于4的零点,所以f (4)=42-8a+4<0,解得a>52,即实数a 的取值范围是(52,+∞).故选C .5.B 解析 若甲是错误的结论,则由乙正确可得b=4,由丙正确得a=1,此时丁不正确,不符合题意;若乙是错误的结论,则由甲正确可得b=6,由丙正确得a=1,此时丁也正确,符合题意;若丙或丁是错误的结论,则甲和乙不可能同时正确,不符合题意,故选B .6.A 解析 当x>1时,2-x<1,所以f (2-x )=-ln[2-(2-x )]=-ln x=-f (x ),当x<1时,2-x>1,所以f (2-x )=ln(2-x )=-f (x ),当x=1时,f (1)=0,所以函数f (x )的图象关于点(1,0)对称.显然x=1不是方程的根,当x ≠1时,原方程可变为f (x )=1x-1,画出函数y=f (x )和y=1x-1的图象(如图所示).由图知,二者仅有两个公共点,设为点A (x 1,y 1),B (x 2,y 2),因为函数y=f (x )和y=1x-1的图象都关于点(1,0)对称,所以点A ,B 关于点(1,0)对称,所以x 1+x 22=1,即x 1+x 2=2.故选A .7.D 解析 令f (x )=t ,则原方程可化为t 2+mt+112=0,画出函数f (x )的图象(如图).由图象可知,若关于x 的方程f 2(x )+mf (x )+112=0有6个解,则关于t 的方程t 2+mt+112=0必须在区间0,12上有两个不相等的实根,由二次方程根的分布得{ 112>0,Δ=m 2-13>0,14+12m +112>0,-m 2∈(0,12),解得m ∈-23,-√33.故选D . 8.ACD 解析 对A,令x=310,则lg x=lg 310=10lg 3=4.77,所以x=104.77∈(104,105),A 正确;对B,令y=250,则lg y=lg 250=50lg 2=15.05,所以y=1015.05∈(1015,1016),则250是16位数,B 错误;对C,令z=2-50,则lg z=lg 2-50=-50lg 2=-15.05,又因为2-50=a×10m (1≤a<10,m ∈Z ),所以10-15.05=a×10m ,则10-15.05-m =a ∈[100,101),所以m=-16,C 正确;对D,令k=m 32,则lg k=lg m 32=32lg m ,因为m 32(m ∈N *)是一个35位正整数,所以34<32lg m<35,则3432<lg m<3532,即1.063<lg m<1.094,所以m=12,D 正确.故选ACD .9.BC解析对A,当a=b时,f(x)=a e-x+a e x,此时f(-x)=a e x+a e-x=f(x),故f(x)为偶函数.故A 错误.对B,当ab<0时,若a>0,b<0,则函数y=a e x在其定义域上单调递增,函数y=be x在其定义域上也单调递增,故函数f(x)=a e x+be x在其定义域上单调递增;若a<0,b>0,则函数y=a e x在其定义域上单调递减,函数y=be x 在其定义域上也单调递减,故函数f(x)=a e x+be x在其定义域上单调递减.综上,如果ab<0,那么f(x)为单调函数.故B正确.对C,当a>0,b>0时,函数f(x)=a e x+b e-x≥2√ae x·be-x=2√ab>0,当a<0,b<0时,函数f(x)=-(-a e x-b e-x)≤-2√(-ae x)·(-be-x)=-2√ab<0.综上,如果ab>0,那么函数f(x)没有零点.故C正确.对D,由ab=1,得b=1a.当a<0,b<0时,函数f(x)=--a e x-1ae-x≤-2√(-ae x)·(-1ae-x)=-2;当a>0,b>0时,函数f(x)=a e x+1a e-x≥2√ae x·1ae-x=2.故ab=1时,函数f(x)没有最小值.故D错误.10.AC解析当x>0时,f(-x)=-ln(k+x)=-f(x),当x<0时,f(-x)=ln(k-x)=-f(x),所以f(x)是奇函数,故选项A正确;当x>0时,f(x)=ln(k+x)单调递增,且f(x)>ln k,当x<0时,f(x)=-ln(k-x)单调递增,且f(x)<-ln k,f(x)的值域为(-∞,-ln k)∪(ln k,+∞),若k≥1,ln k≥0,此时f(x)的值域不包含0,且f(x)在定义域上单调递增,故选项B错误,选项C正确;对于选项D,若k=12,ln k=-ln 2,而ln 2<1,由前面的分析可知,方程f(x)=1在区间(-∞,0)上没有实数根,在区间(0,+∞)上有一个实数根,故选项D错误.11.2(答案不唯一)解析由x2+2x=0可得x=0或x=-2,由ln x=0可得x=1,因为函数f(x)={x2+2x,x≤t,lnx,x>t(t>0)有两个零点,且其图象过点(e,1),所以e>t≥1.所以t可取2.12.(-∞,e)解析由题意得,g(-x)=f(x)在区间(0,+∞)上有解,即e-x=ln(x+a)在区间(0,+∞)上有解,所以函数y=e-x与函数y=ln(x+a)的图象在区间(0,+∞)上有交点.如图,函数y=ln(x+a)的图象是由函数y=ln x的图象左右平移得到的,当y=ln x的图象向左平移至使y=ln(x+a)的图象经过点(0,1)时,函数y=e-x与函数y=ln(x+a)的图象交于点(0,1),将点(0,1)的坐标代入e-x=ln(x+a),有1=ln(0+a),得a=e,所以,若函数y=ln x的图象往左平移a个单位长度,且a≥e时,则函数y=e-x与函数y=ln(x+a)的图象在区间(0,+∞)上无交点.将函数y=ln x的图象向右平移时,函数y=e-x与y=ln(x+a)的图象在区间(0,+∞)上恒有交点.所以a<e,即a∈(-∞,e).。

高三理科数学二轮复习专题能力提升训练:函数、基本初等函数的图象和性质(含答案解析).pdf

高三理科数学二轮复习专题能力提升训练:函数、基本初等函数的图象和性质(含答案解析).pdf

训练 函数、基本初等函数的图象和性质 一、选择题(每小题5分,共25分) 1.函数f(x)=+lg(1+x)的定义域是( ). A.(-∞,1) B.(1,+∞) C.(-1,1)(1,+∞) D.(-∞,+∞) 2.如果x<y<0,那么( ). A.y<x<1 B.x<y<1 C.1<x<y D.1<y<x 3.下列四个函数中,是奇函数且在区间(-1,0)上为减函数的是( ). A.y=|x| B.y= C.y=log2|x| D.y= 4.已知函数f(x)=ex-1,g(x)=-x2+4x-3.若有f(a)=g(b),则b的取值范围为( ). A.[2-,2+] B.(2-,2+) C.[1,3] D.(1,3) 5.已知函数y=f(x)的周期为2,当x[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有( ). A.10个 B.9个 C.8个 D.1个 二、填空题(每小题5分,共15分) 6.设函数f(x)=x3cos x+1,若f(a)=11,则f(-a)=______. 7.f(x)为定义在R上的以3为周期的奇函数,若f(1)>0,f(2)=(a+1)(2a-3),则a的取值范围是________. 8.函数y=f(x)是定义在R上的奇函数,且满足f(x-2)=-f(x)对一切xR都成立,又当x[-1,1]时,f(x)=x3,则下列四个命题: 函数y=f(x)是以4为周期的周期函数; 当x[1,3]时,f(x)=(2-x)3;函数y=f(x)的图象关于x=1对称; 函数y=f(x)的图象关于点(2,0)对称. 其中正确命题的序号是________. 三、解答题(本题共3小题,共35分) 9.(11分)已知aR且a≠1,求函数f(x)=在[1,4]上的最值. 10.(12分)已知二次函数f(x)=ax2+bx+1(a>0),F(x)=若f(-1)=0,且对任意实数x均有f(x)≥0成立. (1)求F(x)的表达式; (2)当x[-2,2]时,g(x)=f(x)-kx是单调函数,求k的取值范围. 11.(12分)已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若m,n[-1,1],m+n≠0时,有>0. (1)解不等式f<f(1-x); (2)若f(x)≤t2-2at+1对所有x[-1,1],a[-1,1]恒成立,求实数t的取值范围.1.C [要使函数有意义当且仅当解得x>-1且x≠1,从而定义域为(-1,1)(1,+∞),故选C.] 2.D [因为y=logx为(0,+∞)上的减函数,所以x>y>1.] 3.D [选项A,y=|x|为偶函数,因此排除;选项B,y==-=-=-1+对称中心为(2,-1),在(2,+∞)和(-∞,2)递减,不符合题意,排除;选项C,y=log2|x|是偶函数,因此不符合题意,排除C.答案为D.] 4.B [f(a)>-1,g(b)>-1,-b2+4b-3>-1, b2-4b+2<0,2-<b<2+.选B.] 5.A [根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下 可验证当x=10时,y=|lg 10|=1;0<x<10时,|lg x|<1;x>10时,|lg x|>1.因此结合图象及数据特点y=f(x)与y=|lg x|的图象交点共有10个.] 6.解析 令g(x)=x3cos x,则f(x)=g(x)+1且g(x)为奇函数,所以g(-a)=-g(a).由f(a)=11得,g(a)+1=11,所以g (a)=10. f(-a)=g(-a)+1=-g(a)+1=-10+1=-9. 答案 -9 7.解析 f(x)是周期为3的奇函数, f(2)=f(2-3)=f(-1)=-f(1)<0.(a+1)(2a-3)<0.解得-1<a<.答案 8.解析 因为函数y=f(x)是奇函数,故有f(-x)=-f(x),由f(x-2)=-f(x)可知,函数是最小正周期为4的函数,故命题正确. f(-x)=-f(x)和f(x-2)=-f(x)结合得到 f(x-2)=f(-x),故函数关于x=-1对称, 而x[1,3],x-2[-1,1], f(x-2)=(x-2)3=-f(x), f(x)=-(x-2)3=(2-x)3,故命题正确, 由上可作图,推知命题正确. 答案 9.解 任取x1,x2[1,4],且x1<x2,则 f(x1)-f(x2)=-=. x1-x2<0,(x1+1)(x2+1)>0,又aR,且a≠1. 当a-1>0,即a>1时,f(x1)-f(x2)<0. 即f(x1)<f(x2). 函数f(x)在[1,4]上是增函数, f(x) max=f(4)=,f(x)min=f(1)=. 当a-1<0,即a<1时,f(x1)-f(x2)>0, 即f(x1)>f(x2),函数f(x)在 [1,4]上是减函数, f(x)max=f(1)=,f(x)min=f (4)=. 10.解 (1)f(-1)=0,a-b+1=0, b=a+1,f(x)=ax2+(a+1) x+1. f(x)≥0恒成立, ∴∴a=1,从而b=2,f(x)=x2+2x+1, F(x)= (2)g(x)=x2+2x+1-kx=x2+(2-k)x+1. g(x)在[-2,2]上是单调函数, ≤-2,或≥2,解得k≤-2,或k≥6. 所以k的取值范围为(-∞,-2][6,+∞)11.解 (1)任取x1、x2[-1,1],且x2>x1,则f(x2)-f(x1)=f(x2)+f(-x1)=·(x2-x1)>0, f(x2)>f(x1),f(x)是增函数. f<f(1-x) 即不等式f<f(1-x)的解集为. (2)由于f(x)为增函数,f(x)的最大值为f(1)=1, f(x)≤t2-2at+1对a[-1,1]、x[-1,1]恒成立t2-2at+1≥1对任意a[-1,1]恒成立t2-2at≥0对任意a[-1,1]恒成立.把y=t2-2at看作a的函数, 由a[-1,1]知其图象是一条线段, t2-2at≥0对任意a[-1,1]恒成立 ?t≤-2,或t=0,或t≥2.。

高三数学二轮复习 必考问题专项突破1 函数、基本初等函数的图象和性质 理 试题

高三数学二轮复习 必考问题专项突破1 函数、基本初等函数的图象和性质 理 试题

二轮专题复习·数学理(新课标)第一局部 22个必考问题专项打破创 作人:历恰面 日 期: 2020年1月1日必考问题1 函数、根本初等函数的图象和性质1.(2021·)以下函数中,与函数y =13x定义域一样的函数为( ).A .y =1sin x B .y =ln x x C .y =x e xD .y =sin x x答案:D [函数y =13x的定义域为(-∞,0)∪(0,+∞),而y =1sin x 的定义域为{x |x∈R ,x ≠k π,k ∈Z },y =ln x x 的定义域为(0,+∞),y =x e x的定义域为R ,y =sin x x的定义域为(-∞,0)∪(0,+∞).]2.(2021·)以下函数中,不满足f (2x )=2f (x )的是( ).A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x答案:C [对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0x ≥02x x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x+1=2f (x )-1.]3.(2021·)以下函数中,在区间(0,+∞)上为增函数的是( ).A .y =ln(x +2)B .y =-x +1C .y =⎝ ⎛⎭⎪⎫12xD .y =x +1x答案:A [结合初等函数的单调性逐一分析即可得到正确结论.选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.]4.(2021·)实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.假设f (1-a )=f (1+a ),那么a 的值是________.解析 首先讨论1-a,1+a 与1的关系, 当a <0时,1-a >1,1+a <1, 所以f (1-a )=-(1-a )-2a =-1-a ;f (1+a )=2(1+a )+a =3a +2.因为f (1-a )=f (1+a ),所以-1-a =3a +2, 所以a =-34.当a >0时,1-a <1,1+a >1,所以f (1-a )=2(1-a )+a =2-a ;f (1+a )=-(1+a )-2a =-3a -1.因为f (1-a )=f (1+a ),所以2-a =-3a -1,所以a =-32(舍去).综上,满足条件的a =-34.答案 -34高考对本内容的考察主要有:①利用函数的图象与性质求函数定义域、值域与最值,尤其是考察对数函数的定义域、值域与最值问题;②借助根本初等函数考察函数单调性与奇偶性的应用,尤其是考察含参函数的单调性问题或者借助单调性求参数的范围,主要以解答题的形式考察;③求二次函数的解析式、值域与最值,考察二次函数的最值、一元二次方程与不等式的综合应用;④在函数与导数的解答题中,考察指数函数、对数函数的求导、含参函数单调性的讨论、函数的极值或者最值的求解等.本局部的试题多围绕二次函数、分段函数、指数函数、对数函数等几个常见的函数来设计,考察函数的单调性、奇偶性、周期性、对称性等,所以复习时一定要回归课本,重读教材,只有把课本中的例题、习题弄明白,把根底夯扎实,才能真正掌握、灵敏应用,到达事半功倍的效果.必备知识函数及其图象(1)定义域、值域和对应关系是确定函数的三个要素,是一个整体,研究函数问题时必须要“定义域优先〞.(2)对于函数的图象要会作图、识图、用图,作函数图象有两种根本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.函数的性质(1)函数单调性的断定方法①定义法:取值,作差,变形,定号,答题.其中变形是关键,常用的方法有:通分、配方、因式分解.②导数法.③复合函数的单调性遵循“同增异减〞的原那么.(2)函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究局部(一半)区间上,是简化问题的一种途径.(3)求函数最值(值域)常用的方法①单调性法:合适于或者能判断单调性的函数; ②图象法:合适于或者易作出图象的函数;③根本不等式法:特别合适于分式构造或者两元的函数; ④导数法:合适于可求导数的函数. 函数图象的对称性(1)假设函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),那么f (x )的图象关于直线x =a 对称.(2)假设f (x )满足f (a +x )=f (b -x ),那么函数f (x )的图象关于直线x =a +b2对称.(3)假设f (x +a )为奇函数⇒f (x )的图象关于点(a,0)成中心对称;假设f (x +a )为偶函数⇒f (x )的图象关于直线x =a 对称.必备方法1.函数的图象和解析式是函数关系的主要表现形式,它们的本质是一样的,在解题时经常要互相转化.在解决函数问题时,尤其是较为繁琐的(如分类讨论,求参数的取值范围等)问题时,要注意充分发挥图象的直观作用.2.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深入理解它们之间的互相关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次〞有关的问题,高考对“三个二次〞知识的考察往往浸透在其他知识之中,并且大都出如今解答题中.函数性质及其应用的考察常考察:①给定函数解析式求定义域;②给出分段函数表达式结合奇偶性、周期性求值.纯熟转化函数的性质是解题的关键,是高考的必考内容,常以选择题、填空题的形式考察,多为根底题.【例1】► 设定义域在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,假设f (1-m )<f (m ).那么实数m 的取值范围是________.[审题视点] [听课记录][审题视点] 利用条件,可将问题转化为|1-m |>|m |. 解析 ∵f (x )是偶函数,∴f (-x )=f (x )=f (|x |). ∴不等式f (1-m )<f (m )⇔f (|1-m |)<f (|m |), 又∵当x ∈[0,2]时,f (x )是减函数, ∴⎩⎪⎨⎪⎧|1-m |>|m |,-2≤1-m ≤2,-2≤m ≤2,解得-1≤m <12.答案 ⎣⎢⎡⎭⎪⎫-1,12(1)函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性.(2)求函数最值常用的方法有单调性法、图象法、根本不等式法、导数法和换元法. 【打破训练1】 (2021·2月月考)定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1≤x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.那么以下结论正确的选项是( ).A .f (4.5)<f (7)<f (6.5)B .f (7)<f (4.5)<f (6.5)C .f (7)<f (6.5)<f (4.5)D .f (4.5)<f (6.5)<f (7)答案:A [由①知,f (x )的周期为4, 由②知,f (x )在[0,2]上单调递增. 由③知,f (x )的对称轴为x =2.∴f (4.5)=f (0.5),f (7)=f (3)=f (1).f (6.5)=f (2.5)=f (1.5).∴f (4.5)<f (7)<f (6.5).] 函数图象及其应用的考察常考察:①由函数的性质(如单调性、对称性、最值)及图象的变换选图象;②在解方程或者不等式问题时,利用图象求交点个数或者解集的范围,是高考考察的热点,常以选择题形式考察,难度中档.【例2】► 函数y =x2-2sin x 的图象大致是( ).[审题视点] [听课记录][审题视点] 利用导数的正负与函数在某一区间内的单调性的关系求解.C [由f (-x )=-f (x )知,函数f (x )为奇函数,所以排除A ;又f ′(x )=12-2cos x ,当x 在y 轴右侧,趋向0时,f ′(x )<0,所以函数f (x )在x 轴右边接近原点处为减函数,当x =2π时,f ′(2π)=12-2cos 2π=-32<0,所以x =2π应在函数的减区间上,所以选C.]函数的图象在研究函数性质中有着举足轻重的作用.(1)识图:在观察、分析图象时,要注意到图象的分布及变化趋势,具有的性质,找准解析式与图象的对应关系.(2)用图:在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.(3)掌握根本初等函数的图象(一元一次函数、一元二次函数、反比例函数、指数函数、对数函数、三角函数),它们是图象变换的根底.【打破训练2】 (2021·新课标全国)函数f (x )=1ln x +1-x,那么y =f (x )的图象大致为( ).答案:B [g (x )=ln(x +1)-x ⇒g ′(x )=-x1+x ,当g ′(x )>0时,-1<xg ′(x )<0时,x >0.故g (x )<g (0)=0,即x >0或者-1<x <0时均有f (x )<0,排除A 、C 、D.] 二次函数综合问题的考察高考很少单独考察二次函数,往往与导数结合来命题,可涉及到二次函数的许多根底知识的考察,如含参函数根的分布问题,根与系数的关系问题,要求考生纯熟应用有关的根底知识.【例3】► 设函数f (x )=a3x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两个根分别为1,4.(1)当a =3且曲线y =f (x )过原点时,求f (x )的解析式; (2)假设f (x )在(-∞,+∞)内无极值点,求a 的取值范围. [审题视点] [听课记录][审题视点] (1)借助根与系数的关系,曲线过原点等条件进展求解;(2)问题可转化为f ′(x )≥0在(-∞,+∞)内恒成立.解 由f (x )=a3x 3+bx 2+cx +d ,得f ′(x )=ax 2+2bx +c .因为f ′(x )-9x =ax 2+2bx +c -9x =0的两个根分别为1,4,所以⎩⎪⎨⎪⎧a +2b +c -9=0,16a +8b +c -36=0,(*)(1)当a =3时,由(*)式得⎩⎪⎨⎪⎧2b +c -6=0,8b +c +12=0.解得b =-3,c =12.又因为曲线y =f (x )过原点,所以d =0, 故f (x )=x 3-3x 2+12x .(2)由于a >0,所以“f (x )=a3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点〞等价于“f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立〞.由(*)式得2b =9-5a ,c =4a . 又Δ=(2b )2-4ac =9(a -1)(a -9).解⎩⎪⎨⎪⎧a >0,Δ=9a -1a -9≤0得,a ∈[1,9],即a 的取值范围是[1,9].高考对该局部的考察多与二次函数相结合综合命题,涉及函数零点问题,比拟方程根的大小问题,函数值的求解,函数图象的识别等问题,考察学生分析、解决问题的才能.【打破训练3】 函数f (x )=3ax 4-2(3a +1)x 2+4x . (1)当a =16时,求f (x )的极值;(2)假设f (x )在(-1,1)上是增函数,求a 的取值范围. 解 (1)f ′(x )=4(x -1)(3ax 2+3ax -1). 当a =16时,f ′(x )=2(x +2)(x -1)2,f (x )在(-∞,-2)内单调递减,在(-2,+∞)内单调递增,在x =-2时,f (x )有极小值. 所以f (-2)=-12是f (x )的极小值.(2)在(-1,1)上,f (x )单调递增,当且仅当f ′(x )=4(x -1)·(3ax 2+3ax -1)≥0,即3ax 2+3ax -1≤0,①(i)当a =0时,①恒成立;(ii)当a >0时,①成立,当且仅当3a ·12+3a ·1-1≤0. 解得a ≤16.∴0<a ≤16.(iii)当a <0时,①成立,即3a ⎝ ⎛⎭⎪⎫x +122-3a4-1≤0成立,当且仅当-3a 4a ≥-43.∴-43≤a <0.综上,a 的取值范围是⎣⎢⎡⎦⎥⎤-43,16.函数根底知识在综合问题中的应用函数是高考永远不变的主题,二次函数更是热点.对二次函数的考察主要以二次函数的图象为载体,利用数形结合思想,解决二次函数的单调区间、二次函数在给定区间上的最值以及与此相关的参数范围的问题.下面介绍函数根底知识在综合问题中的应用.【例如】► (高考改编题)设函数f (x )=-13x 3+x 2+(m 2-1)x (x ∈R ),其中m >0.(1)当m =1时,求曲线y =f (x )在点(1,f (1))处的切线的斜率; (2)求函数f (x )的单调区间与极值;(3)函数f (x )有三个互不一样的零点0,x 1,x 2,且x 1<x 2,假设对任意的x ∈[x 1,x 2],f (x )>f (1)恒成立,求m 的取值范围.[满分是解答] (1)当m =1时,f (x )=-13x 3+x 2,f ′(x )=-x 2+2x ,故fy =f (x )在点(1,f (1))处的切线的斜率为1.(3分)(2)f ′(x )=-x 2+2x +m 2-1.令f ′(x )=0,解得x =1-m 或者x =1+m .因为m >0,所以1+m >1-m .当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,1-m )1-m (1-m,1+m )1+m (1+m ,+∞)f ′(x ) -0 +0 - f (x )极小值极大值所以f (x )在(-∞,1-m ),(1+m ,+∞)上是减函数,在(1-m,1+m )上是增函数.函数f (x )在x =1-m 处获得极小值f (1-m ),且f (1-m )=-23m 3+m 2-13.函数f (x )在x =1+m处获得极大值f (1+m ),且f (1+m )=23m 3+m 2-13.(7分)(3)由题设,f (x )=x ⎝ ⎛⎭⎪⎫-13x 2+x +m 2-1=-13x (x -x 1)(x -x 2),所以方程-13x 2+x +m2-1=0有两个相异的实根x 1,x 2,故x 1+x 2=3,且Δ=1+43(m 2-1)>0,解得m <-12(舍去)或者m >12.因为x 1<x 2,所以2x 2>x 1+x 2=3,故x 2>32>x 1.(9分)假设x 1≤1<x 2,那么f (1)=-13(1-x 1)(1-x 2)≥0,而f (x 1)=0,不合题意.假设1<x 1<x 2,对任意的x ∈[x 1,x 2],有x >0,x -x 1≥0,x -x 2≤0,那么f (x )=-13x (x -x 1)(x -x 2f (x 1)=0,所以f (x )在[x 1,x 2x ∈[x 1,x 2],f (x )>f (1)恒成立的充要条件是f (1)=m 2-13<0,解得-33<m <33.综上,m 的取值范围是⎝ ⎛⎭⎪⎫12,33.(12分) 教师叮咛:该题综合考察了导数知识与函数的根底知识,是一道不错的试题.12问较易得分,第3问因找不到问题的打破口而得分率很低,原因是二次函数的相关根底知识掌握不结实,不会利用数形结合的思想.【试一试】 设函数f (x )=6x 3+3(a +2)x 2+2ax .(1)假设f (x )的两个极值点为x 1,x 2,且x 1x 2=1,务实数a 的值;(2)是否存在实数a ,使得f (x )是(-∞,+∞)上的单调函数?假设存在,求出a 的值;假设不存在,说明理由.解 f ′(x )=18x 2+6(a +2)x +2a .创 作人: 历恰面 日 期: 2020年1月1日创 作人: 历恰面 日 期: 2020年1月1日 (1)由有f ′(x 1)=f ′(x 2)=0,从而x 1x 2=2a 18=1,所以a =9. (2)由于Δ=36(a +2)2-4×18×2a =36(a 2+4)>0,所以不存在实数a ,使得f (x )是(-∞,+∞)上的单调函数.。

2023年高考数学二轮复习(全国版文) 第1部分 专题突破 专题1 第2讲 基本初等函数、函数与方程

2023年高考数学二轮复习(全国版文) 第1部分 专题突破 专题1 第2讲 基本初等函数、函数与方程

A.0
B.1
C.2
√D.3
当x>0时,由f(x)=0得ln x=x2-2x, 则函数f(x)的零点个数为函数y=ln x与函数y=x2-2x,x∈(0,+∞) 图象的交点个数, 作出两个函数的图象如图所示,
由图可知,当x>0时,函数f(x)的零点有2个; 当x≤0时,由f(x)=x2-2x-3=0得x=-1 或x=3(舍),即当x≤0时,函数f(x)的零点有1个. 综上,函数f(x)的零点有3个.
率,D表示衰减系数,G表示训练迭代轮数,G0表示衰减速度.已知某个
指数衰减的学习率模型的初始学习率为0.5,衰减速度为22,且当训练
迭代轮数为22时,学习率衰减为0.45,则学习率衰减到0.05以下(不含
0.05)所需的训练迭代轮数至少为(参考数据:lg 3≈0.477 1)
A.11
B.22
√ C.227
水果采摘到上市销售的时间间隔不能超过(参考数据:log23≈1.6)
A.20小时
B.25小时
√C.28小时
D.35小时
由题意可知当t<10时,失去的新鲜度小于10%,没有超过15%,
当t≥10时,则有
1 20
20t
2 30 ≤15%,即
20t
2 30
≤3,
∴203+0 t≤log23≈1.6,
∴t≤48-20=28.
专题强化练
考点一
基本初等函数的图象与性质
核心提炼
指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函 数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况, 着重关注两种函数图象的异同.

高考数学二轮复习函数的概念与基本初等函数多选题知识点-+典型题含答案

高考数学二轮复习函数的概念与基本初等函数多选题知识点-+典型题含答案

高考数学二轮复习函数的概念与基本初等函数多选题知识点-+典型题含答案一、函数的概念与基本初等函数多选题1.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.2.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( )A .()g x 为奇函数B .若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C .()g x 在区间,2ππ⎛⎫- ⎪⎝⎭的零点个数为3个D .若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫- ⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅=所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD 【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题.3.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .151522⎡-⎢⎣⎦是()f x 的一个“完美区间” C .()f x 的所有“完美区间”的“复区间长度”的和为35+ D .()f x 的所有“完美区间”的“复区间长度”的和为325+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞,而102-<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-, 即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=, 由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得b =b =.所以此时完美区间为⎡⎢⎣⎦,则“复区间长度”为()12212b a +-=⨯=+ ②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得112x =,2x =,所以a b ⎧=⎪⎪⎨⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误; 故选:AC.【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.4.对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .,[]1x x x ∃∈+RB .,,[][][]x y x y x y ∀∈++RC .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2nt t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n 的最大值是5 【答案】BCD 【分析】由取整函数的定义判断,由定义得[][]1x x x ≤<+,利用不等式性质可得结论. 【详解】[]x 是整数, 若[]1x x ≥+,[]1x +是整数,∴[][]1x x ≥+,矛盾,∴A 错误;,x y ∀∈R ,[],[]x x y y ≤≤,∴[][]x y x y +≤+,∴[][][]x y x y +≤+,B 正确;由定义[]1x x x -<≤,∴0[]1x x ≤-<,∴函数()[]f x x x =-的值域是[0,1),C 正确;若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则1t ≤<,t ≤<t ≤<t ≤<,,t ≤<=6n ≥,则不存在t 同时满足1t ≤<t <5n ≤时,存在t ∈满足题意, 故选:BCD . 【点睛】本题考查函数新定义,正确理解新定义是解题基础.由新定义把问题转化不等关系是解题关键,本题属于难题.5.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( ) A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .12x x >【答案】ABC 【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C. 【详解】函数xy e =与ln y x =互为反函数, 则x y e =与ln y x =的图象关于y x =对称, 将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y , 作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<, 122112211ln ln ln lnx x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D ,由12122x x x x +≥,解得121x x ≤, 由于12x x ≠,则121x x <,故D 错误;故选:ABC 【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.6.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点 【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D . 【详解】 根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=- 即(4)(2)()f x f x f x +=-+= 则()f x 是周期为4的周期函数,A 错误; 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<, 又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确. 对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--, [0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+, ()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---, [6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<, 存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增, 0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点, 即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--, 则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<, 又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点, 所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,, 当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD . 【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.7.已知函数1()x x f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个C .2个D .4个【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】()x x f x e'=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <, 因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0, 故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解, 故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <, 由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.8.已知定义在R 上的函数()f x 的图象连续不断,若存在常数()t t R ∈,使得()()0f x t tf x ++=对任意的实数x 成立,则称()f x 是回旋函数.给出下列四个命题中,正确的命题是( )A .常值函数()(0)f x a a =≠为回旋函数的充要条件是1t =-;B .若(01)x y a a =<<为回旋函数,则1t >;C .函数2()f x x =不是回旋函数;D .若()f x 是2t =的回旋函数,则()f x 在[0]4030,上至少有2015个零点. 【答案】ACD 【分析】A.利用回旋函数的定义即可判断;B.代入回旋函数的定义,推得矛盾,判断选项;C.利用回旋函数的定义,令0x =,则必有0t = ,令1x =,则2310t t ++=,推得矛盾;D.根据回旋函数的定义,推得()()22f x f x +=-,再根据零点存在性定理,推得零点的个数. 【详解】A.若()f x a =,则()f x t a +=,则0a ta +=,解得:1t =-,故A 正确;B.若指数函数()01xy a a =<<为回旋函数,则0x t x a ta ++=,即0t a t +=,则0t <,故B 不正确;C.若函数()2f x x =是回旋函数,则()220x t tx ++=,对任意实数都成立,令0x =,则必有0t = ,令1x =,则2310t t ++=,显然0t =不是方程的解,故假设不成立,该函数不是回旋函数,故C 正确;D. 若()f x 是2t =的回旋函数,则()()220f x f x ++=,对任意的实数x 都成立,即有()()22f x f x +=-,则()2f x +与()f x 异号,由零点存在性定理得,在区间(),2x x +上必有一个零点,可令0,2,4,...20152x =⨯,则函数()f x 在[]0,4030上至少存在2015个零点,故D 正确. 故选:ACD 【点睛】本题考查以新定义为背景,判断函数的性质,重点考查对定义的理解,应用,属于中档题型.9.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD 【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)1x ⎡∈+∞⎣,()0f x <时,(,1x ∈-∞-所以12,012,122)01,12(x xxx xxx xxg x⎧++>⎪⎪⎪-++-≤<⎨⎪⎪--<-⎩=⎪当0x>时,设1201x x,()()()()121212121212111x x x xg x g x x xx x x x---=+--=因为12120,10x x x x-<-<,所以()()12g x g x->,即()()12g x g x>设121x x<<,()()()()121212121x x x xg x g xx x---=<,即()()12g x g x<所以函数()g x在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x在区间)12,0⎡-⎣上单调递减,在区间(),12-∞-上单调递增11241)1(g++==函数()g x图象如下图所示由图可知,要使得函数y m=与函数()()g xf xx=的图象有两个不同的交点则实数m的取值范围是()()–,04,∞+∞,故D正确;故选:CD【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.10.设函数()f x是定义在区间I上的函数,若对区间I中的任意两个实数12,x x,都有1212()()(),22x x f x f x f ++≤则称()f x 为区间I 上的下凸函数.下列函数中是区间(1,3)上的下凸函数的是( ) A .()21f x x =-+ B .()2f x x =-- C .3()5f x x =+ D .21()1x f x x +=- 【答案】ACD 【分析】根据函数的解析式,求得1212()()()22x x f x f x f ++=,可判定A 正确;根据特殊值法,可判定B 不正确;根据函数的图象变换,结合函数的图象,可判定C 、D 正确. 【详解】对于A 中,任取12,(1,3)x x ∈且12x x ≠,则1212()()12x x f x x +=-++, 121212()()1(2121)()122f x f x x x x x +=-+-+=-++,可得1212()()()22x x f x f x f ++=,满足1212()()()22++≤x x f x f x f ,所以A 正确; 对于B 中,取1235,22x x ==,则1222x x +=, 可得351()()222f f ==-,所以12()()122f x f x +=-,12()(2)02x x f f +==, 此时1212()()()22x x f x f x f ++>,不符合题意,所以B 不正确; 对于C 中,函数3()5f x x =+,由幂函数3y x =的图象向上移动5个单位,得到函数3()5f x x =+的图象, 如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=, 因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;对于D 中,函数213()211x f x x x +==+-- 由函数3y x =的图象向右平移1个单位,再向上平移2个单位,得到21()1x f x x +=-的图象,如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=,因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,着重考查了数形结合法,以及推理与运算能力,属于中档试题.11.若实数2a ≥,则下列不等式中一定成立的是( ) A .21(1)(2)a a a a +++>+B .1log (1)log (2)a a a a ++>+C .1log (1)a a a a++< D .12log (2)1a a a a +++<+ 【答案】ABD 【分析】对于选项A :原式等价于()()ln 1ln 212a a a a ++>++,对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+,对于选项D :变形为()()ln 2ln 121a a a a ++<++,构造函数()ln xf x x =,通过求导判断其在(),x e ∈+∞上的单调性即可判断;对于选项B :利用换底公式:1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+, 等价于()()2ln 1ln ln 2a a a +>⋅+,利用基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,再结合放缩法即可判断; 【详解】 令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减, 对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++,即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确; 对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+, 由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a+>+,故选项C 错误;对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥, 所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦,因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确; 故选:ABD 【点睛】本题考查利用对数的换底公式、构造函数法、利用导数判断函数的单调性、结合基本不等式和放缩法比较大小;考查逻辑推理能力、知识的综合运用能力、转化与化归能力和运算求解能力;属于综合型强、难度大型试题.12.已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,下列说法正确的是( )A .(0,)x ∈+∞时,函数解析式为2()2f x x x =-B .函数在定义域R 上为增函数C .不等式(32)3f x -<的解集为(,1)-∞D .不等式2()10f x x x -+->恒成立 【答案】BC 【分析】对于A ,利用奇函数定义求(0,)x ∈+∞时,函数解析式为2()2f x x x =+;对于B ,研究当(,0)x ∈-∞时,()f x 的单调性,结合奇函数图像关于原点对称,知()f x 在R 上的单调性;对于C ,求出(1)3f =,不等式(32)3f x -<,转化为(32)(1)f x f -<,利用单调性解不等式;对于D ,分类讨论(0,)x ∈+∞与(,0)x ∈-∞两种情况是否恒成立. 【详解】对于A ,设(0,)x ∈+∞,(,0)x -∈-∞,则2()2f x x x -=--,又()f x 是奇函数,所以2()()2f x f x x x =--=+,即(0,)x ∈+∞时,函数解析式为2()2f x x x =+,故A 错;对于B ,2()2f x x x =-+,对称轴为1x =,所以当(,0)x ∈-∞时,()f x 单调递增,由奇函数图像关于原点对称,所以()f x 在R 上为增函数,故B 对;对于C ,由奇函数在R 上为增函数,则(0,)x ∈+∞时,2()23f x x x =+=,解得11x =,23x =-(舍去),即(1)3f =,所以不等式(32)3f x -<,转化为(32)(1)f x f -<,又()f x 在R 上为增函数,得321x -<,解得1x <, 所以不等式的解集为(,1)-∞,故C 对; 对于D ,当(,0)x ∈-∞时,2()2f x x x =-+2222()121231(21)(1)0f x x x x x x x x x x x -+-=-+-+-=-+-=-+-<,当(0,)x ∈+∞时,2()2f x x x =+222()12131f x x x x x x x x -+-=+-+-=-不恒大于0,故D 错;故选:BC 【点睛】方法点睛:考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别. 考查了利用奇偶性求函数解析式,求函数解析式常用的方法: (1)已知函数类型,用待定系数法求解析式; (2)已知函数奇偶性,用奇偶性定义求解析式;(3)已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法; (4)若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解;13.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误. 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.14.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有( ) A .()1.10.9f -= B .函数()f x 为奇函数 C .()()11f x f x +=+ D .函数()f x 的值域为[)0,1【答案】AD 【分析】根据高斯函数的定义逐项检验可得正确的选项. 【详解】对于A ,()[]1.11 1.120..9.111f --=-+=-=-,故A 正确. 对于B ,取 1.1x =-,则()1.10.9f -=,而()[]1.1-1.1 1.110.11.1f =-==, 故()()1.1 1.1f f -≠-,所以函数()f x 不为奇函数,故B 错误.对于C ,则()[][]()11111f x x x x x f x +=+-+=+--=,故C 错误.对于D ,由C 的判断可知,()f x 为周期函数,且周期为1, 当01x ≤≤时,则当0x =时,则()[]0000f =-=, 当01x <<时,()[]0f x x x x x =-=-=, 当1x =时,()[]11110f x =-=-=,故当01x ≤≤时,则有()01f x ≤<,故函数()f x 的值域为[)0,1,故D 正确.故选:AD . 【点睛】思路点睛:对于函数的新定义问题,注意根据定义展开讨论性质的讨论,并且注意性质讨论的次序,比如讨论函数值域,可以先讨论函数的奇偶性、周期性.15.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1 D【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.16.下列函数求值域正确的是( )A .()1f x x =+的值域为[2)+∞,B .222()1x x g x x ++=+的值域为[2)+∞,C .()h x =(0D .()w x =的值域为[2【答案】CD 【分析】()12f x x x =++-去绝对值结合单调性和图象即可判断选项A ;2(1)11()(1)11x g x x x x ++==++++讨论10x +>和10x +<,利用基本不等式求值域可判断选项B ;()h x ==利用单调性即可判断选项C ;()w x 定义域为[31]-,,将()w x =()24w x =,由于()0w x >,可得()w x =2(1)t x =-+的范围即可求()w x 值域,可判断选项D.【详解】对于选项A:原函数化为211 ()12312212x xf x x x xx x-+≤-⎧⎪=++-=-<≤⎨⎪->⎩,,,,其图象如图,原函数值域为[3)+∞,,故选项A不正确,对于选项B:2(1)11()(1)11xg x xx x++==++++,定义域为{}|1x x≠-,当1x<-时,10x+<,此时[][]11(1)2(1)211x xx x⎛⎫⎛⎫-++-≥-+⨯-=⎪ ⎪++⎝⎭⎝⎭,所以1(1)21xx++≤-+,当且仅当1(1)1xx-+=-+即2x=-时等号成立,当1x>-时,10x+>,此时11(1)(1)211x xx x++≥+⨯=++,当且仅当111xx+=+即0x=时等号成立,所以函数()g x值域为(2][2)-∞-⋃+∞,,,故选项B不正确;对于选项C:()h x的定义域为[1)+∞,,(11)(11)()111111x x x xh x x xx x x x+-+-=+-==++-++-,因为1y x=+1y x=-[1)+∞,上是增函数,所以11y x x=+-[1)+∞,上是增函数,又11y x x=+-[1)+∞,上恒不等于0,则11yx x=++-在[1)+∞,上是减函数,则()h x的最大值为()12h=又因为()0h x>,所以()h x的值域为(02],,故选项C正确;对于选项D:()w x的定义域为[31]-,,()w x ======设2(1)t x =-+,则[40]t ∈-,,[]0,4,[]44,8∈,则()2,w x ⎡=⎣,()w x 的值域为[2,故选项D 正确, 故选:CD 【点睛】方法点睛:求函数值域常用的方法(1)观察法:一些简单的函数,值域可以通过观察法得到;(2)利用常见函数的值域:一次函数值域为R ;二次函数利用配方法,结合定义域求出值域;反比例函数的值域为{}|0y y ≠;指数函数的值域为{}|0y y >;对数函数值域为R ;正、余弦函数的值域为[]1,1-;正切函数值域为R ;(3)单调性法:先判断函数的单调性,再由函数的单调性求函数的值域; (4)分离常数法:将有理分式转化为反比例函数类的形式,便于求值域;(5)换元法:对于一些无理函数如y ax b =±±数,通过求有理函数的值域间接求原函数的值域;(6)不等式法:利用几个重要的不等式及其推论来求最值,进而求得值域,如222a b ab +≥,a b +≥,以及绝对值三角不等式等;(7)判别式法:把函数解析式化为关于x 的一元二次方程,利用判别式求值域,形如y Ax =+22ax bx cy dx ex f++=++的函数适用; (8)有界性法:充分利用三角函数或一些代数表达式的有界性,求出值域; (9)配方法:求二次函数型函数值域的基本方法,形如()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦的函数求值域,均可使用配方法;(10)数形结合法:若函数的解析式的几何意义较明显,如距离、斜率等可使用数形结合法;(11)导数法:利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域.17.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫ ⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.18.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos ,sin cos 02x x x x ==--=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确.由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++, 由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-, 所以3431,1342x x -≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ ()332151141x x +≥+⋅-=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.19.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.20.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=且()12f =,则下列判断正确的有( ) A .()f x 是奇函数B .()f x 在定义域上单调递增C .当()0,x ∈+∞时,函数()1f x >D .()()()()()()()()()()()()2462016201820202020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++= 【答案】BCD 【分析】利用新定义结合函数的性质进行判断.计算出(1)f 判断A ;先利用(1)21f =>证明所有有理数p ,有()1f p >,然后用任意无理数q 都可以看作是一个有理数列的极限,由极限的性质得()1f q >,这样可判断C ,由此再根据单调性定义判断B ,根据定义计算(2)(21)f n f n -(n N ∈),然后求得D 中的和,从而判断D .【详解】令0,1a b ==,则(1)(10)(1)(0)f f f f =+=,即22(0)f =,∴(0)1f =,()f x 不可能是奇函数,A 错;对于任意x ∈R ,()0f x ≠,若存在0x R ∈,使得0()0f x =,则0000(0)(())()()0f f x x f x f x =+-=-=,与(0)1f =矛盾,故对于任意x ∈R ,()0f x ≠,∴对于任意x ∈R ,2()022222x x x x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+==>⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∵(1)21f =>,∴对任意正整数n ,11111111121nn n f n n f f f f f n n n n n n n ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪+++===> ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ⎪ ⎪⎝⎭个个,∴11f n ⎛⎫> ⎪⎝⎭, 同理()(111)(1)(1)(1)21n f n f f f f =+++==>,对任意正有理数p ,显然有m p n=(,m n是互质的正整数),则1()1mm f p f fn n ⎡⎤⎛⎫⎛⎫==> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,。

高考数学二轮复习函数的概念与基本初等函数多选题练习题含答案

高考数学二轮复习函数的概念与基本初等函数多选题练习题含答案

高考数学二轮复习函数的概念与基本初等函数多选题练习题含答案一、函数的概念与基本初等函数多选题1.若实数2a ≥,则下列不等式中一定成立的是( )A .21(1)(2)a a a a +++>+B .1log (1)log (2)a a a a ++>+C .1log (1)a a a a ++< D .12log (2)1a a a a +++<+ 【答案】ABD 【分析】对于选项A :原式等价于()()ln 1ln 212a a a a ++>++,对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+,对于选项D :变形为()()ln 2ln 121a a a a ++<++,构造函数()ln xf x x =,通过求导判断其在(),x e ∈+∞上的单调性即可判断;对于选项B :利用换底公式:1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+, 等价于()()2ln 1ln ln 2a a a +>⋅+,利用基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,再结合放缩法即可判断; 【详解】 令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减, 对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++,即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确; 对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+, 由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a+>+,故选项C 错误;对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥, 所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦,因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确; 故选:ABD 【点睛】本题考查利用对数的换底公式、构造函数法、利用导数判断函数的单调性、结合基本不等式和放缩法比较大小;考查逻辑推理能力、知识的综合运用能力、转化与化归能力和运算求解能力;属于综合型强、难度大型试题.2.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误. 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.3.函数()()1xfx x Rx=∈+,以下四个结论正确的是()A.()f x的值域是()1,1-B.对任意x∈R,都有()()1212f x f xx x->-C.若规定()()()()()11,n nf x f x f x f f x+==,则对任意的(),1nxn N f xn x*∈=+ D.对任意的[]1,1x∈-,若函数()2122f x t at≤-+恒成立,则当[]1,1a∈-时,2t≤-或2t≥【答案】ABC【分析】由函数解析式可得函数图象即可知其值域、单调性;根据C中的描述结合数学归纳法可推得结论成立;由函数不等式恒成立,利用变换主元法、一元二次不等式的解法即可求参数范围.【详解】由函数解析式可得11,01()11,01xxf xxx⎧-≥⎪⎪+=⎨⎪-<⎪-⎩,有如下函数图象:∴()f x的值域是()1,1-,且单调递增即()()1212f x f xx x->-(利用单调性定义结合奇偶性也可说明),即有AB正确;对于C,有()11xf xx=+,若()1,1(1)nxn N f xn x*-∈=+-,∴当2n≥时,11(1)||()(())1||1||1(1)||n nxxn xf x f f xx n xn x-+-===+++-,故有(),1n xn N f x n x*∈=+.正确. 对于D ,[]1,1x ∈-上max 1()(1)2f x f ==,若函数()2122f x t at ≤-+恒成立,即有211222t at -+≥,220t at -≥恒成立,令2()2h a at t =-+,即[]1,1a ∈-上()0h a ≥, ∴0t >时,2(1)20h t t =-+≥,有2t ≥或0t ≤(舍去);0t =时,()0h a 故恒成立;0t <时,2(1)20h t t -=+≥,有2t ≤-或0t ≥(舍去);综上,有2t ≥或0t =或2t ≤-;错误. 故选:ABC 【点睛】 方法点睛:1、对于简单的分式型函数式画出函数图象草图判断其值域、单调性.2、数学归纳法:当1n =结论成立,若1n -时结论也成立,证明n 时结论成立即可.3、利用函数不等式恒成立,综合变换主元法、一次函数性质、一元二次不等式解法求参数范围.4.对于函数()()13cos ,,22132,,22x x f x f x x π⎧⎡⎤∈-⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩,下面结论正确的是( )A .任取121,,2x x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()122f x f x -≤恒成立 B .对于一切1,2x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()()*22N k f x f x k k =+∈ C .函数()1ln 2y f x x ⎛⎫=--⎪⎝⎭有3个零点 D .对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭【答案】ABC 【分析】先在坐标轴中画出()y f x =的图象,根据图象可判断A 选项,结合解析式可判断B 选项,再画出1ln()2y x =-与k y x=的图象,数形结合可判断C,D 选项.【详解】在坐标轴上作出函数()f x 的图象如下图所示:由图象可知()f x 的最大值为1,最小值为1-,故选项A 正确; 由题可知()()()1312,(,)(2),(,)22221f x f x x f x f x x =-∈+∞⇒+=∈-+∞, 所以*1(2)()()()2k f x k f x k N +=∈即()2(2)k f x f x k =+,故选项B 正确;作出1ln()2y x =-的图象,因为11ln(2)ln 2232-=<,由图象可知()y f x =与1ln()2y x =-有3个交点,故选项C 正确;结合图象可知,若对任意0x >,不等式()kf x x恒成立, 即2x n =时,不等式(2)2kf n n恒成立, 又11(2)()(0)()22nnf n f ==, 所以1()22n k n ,即22n nk 在*n N ∈时恒成立, 设2()2x x g x =,则2ln 4()2xxg x -⋅'=, 故[)2,x ∈+∞时,()0g x '<,函数()g x 在[)2,+∞上单调递减, 所以[)2,x ∈+∞时,max ()(2)1g x g ==,又(1)1g =,所以max 212n n ⎛⎫= ⎪⎝⎭,即1k ,故选项D 错误.故选:ABC. 【点睛】本题主要考查分段函数的周期性及数形结合法在处理函数问题中的应用,有一定难度.5.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( )A .()g x 为奇函数B .若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C .()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D .若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫- ⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅=所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD 【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题.6.对于函数()f x 定义域中任意的()1212,x x x x ≠,有如下结论,当()lg f x x =时,上述结论中正确结论的序号是( ) A .()()()1212f x x f x f x +=⋅ B .()()()1212f x x f x f x ⋅=+ C .1212()()f x f x x x -->0D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭【答案】BC 【分析】由对数的运算性质判断A ,B ,由对数函数的单调性判断C ,由对数的运算结合基本不等式判断D . 【详解】 对于A ,()()112122lg lg lg f x x x x x x +=+≠⋅,即()()()1212f x x f x f x +≠⋅,故A 错误; 对于B ,()()()()12112122lg lg lg f x x x x x x f x f x ⋅=+=+=,故B 正确; 对于C ,()lg f x x =在定义域中单调递增,()()12120f x f x x x -∴->,故C 正确;对于D ,()1212,0x x x x >≠,利用基本不等式知111222lg 22x x x x x x f +⎛⎫> ⎪+⎛⎫⎪⎭⎝= ⎝⎭()()()221121lg lg lg 222f x f x x x x x +===+()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,故D 错误; 故选:BC 【点睛】关键点点睛:本题考查命题的真假判断,考查对数函数的性质,考查基本不等式的应用,解决本题的关键点是将对数形式化为根式,即21lg lg 2x x =+合基本不等式放缩得出答案,并验证取等条件,考查了学生逻辑思维能力和计算能力,属于中档题.7.对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k ,b 为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有()()()()00f x h x mh x g x m ⎧<-<⎪⎨<-<⎪⎩,则称直线:l y kx b =+为曲线()y f x =与()y g x =的“分渐近线”.给出定义域均为{}|1D x x =>的四组函数,其中曲线()y f x =与()y g x =存在“分渐近线”的是( )A .()2f x x =,()g x =B .()102xf x -=+,()23x g x x-=C .()21x f x x+=,()ln 1ln x x g x x +=D .()221x f x x =+,()()21xg x x e -=--【答案】BD 【分析】根据分渐近线的定义,对四组函数逐一分析,由此确定存在“分渐近线”的函数. 【详解】解:()f x 和()g x 存在分渐近线的充要条件是x →∞时,()()0,()()f x g x f x g x -→>.对于①,()2f x x =,()g x =当1x >时,令()()()2F x f x g x x =-=,由于()20F x x '=->,所以()h x 为增函数,不符合x →∞时,()()0f x g x -→,所以不存在分渐近线; 对于②,()1022xf x -=+>,()232,(1)x g x x x-=<> ()()f x g x ∴>,2313()()10210xxx f x g x x x--⎛⎫-=+-=+ ⎪⎝⎭,因为当1x >且x →∞时,()()0f x g x -→,所以存在分渐近线;对于③,21()x f x x+=,ln 1()ln x x g x x +=,21111111()()ln ln ln x x nx f x g x x x x x x x x x++-=-=+--=-当1x >且x →∞时,1x 与1ln x 均单调递减,但1x的递减速度比1ln x 快,所以当x →∞时,()()f x g x -会越来越小,不会趋近于0,所以不存在分渐近线;对于④,22()1x f x x =+,()()21xg x x e -=--,当x →∞时,22()()220+1222+1x x x f x g x x e x x e--=-+++=→,且()()0f x g x ->,因此存在分渐近线.故存在分渐近线的是BD . 故选:BD . 【点睛】本小题主要考查新定义概念的理解和运用,考查函数的单调性,属于难题.8.狄利克雷是德国著名数学家,是最早倡导严格化方法的数学家之一,狄利克雷函数()1,0,x Q f x x Q∈⎧=⎨∉⎩(Q 是有理数集)的出现表示数学家对数学的理解开始了深刻的变化,从研究“算”到研究更抽象的“概念、性质、结构”.关于()f x 的性质,下列说法正确的是( )A .函数()f x 是偶函数B .函数()f x 是周期函数C .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=D .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x ⋅= 【答案】ABC利用函数奇偶性的定义可判断A 选项的正误;验证()()1f x f x +=,可判断B 选项的正误;分1x Q ∈、1x Q ∉两种情况讨论,结合函数()f x 的定义可判断C 选项的正误;取20x =,1x Q ∉可判断D 选项的正误.【详解】对于A 选项,任取x Q ∈,则x Q -∈,()()1f x f x ==-; 任取x Q ∉,则x Q -∉,()()0f x f x ==-.所以,对任意的x ∈R ,()()f x f x -=,即函数()f x 为偶函数,A 选项正确; 对于B 选项,任取x Q ∈,则1x Q +∈,则()()11f x f x +==; 任取x Q ∉,则1x Q +∉,则()()10f x f x +==.所以,对任意的x ∈R ,()()1f x f x +=,即函数()f x 为周期函数,B 选项正确; 对于C 选项,对任意1x Q ∈,2x ∈Q ,则12x Q x +∈,()()1211f x x f x +==; 对任意的1x Q ∉,2x ∈Q ,则12x x Q +∉,()()1210f x x f x +==. 综上,对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=,C 选项正确; 对于D 选项,取20x =,若1x Q ∉,则()()()12101f x x f f x ⋅==≠,D 选项错误. 故选:ABC. 【点睛】关键点点睛:本题解题的关键在于根据已知函数的定义依次讨论各选项,分自变量为无理数和有理数两种情况讨论,对于D 选项,可取1x Q ∉,20x =验证.二、导数及其应用多选题9.函数()()320ax bx d a f x cx =+++≠有两个极值点1x 、()212x x x <,则下列结论正确的是( ) A .230b ac ->B .()f x 在区间()12,x x 上单调递减C .若()10af x <,则()f x 只有一个零点D .存在0x ,使得()()()1202f x f x f x +=【答案】ACD 【分析】利用极值点与导数的关系可判断A 选项的正误;取0a <,利用函数的单调性与导数的关系可判断B 选项的正误;分0a >、0a <两种情况讨论,分析函数()f x 的单调性,结合图象可判断C 选项的正误;计算出函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称,可判断D 选项的正误.()()320f x ax bx cx d a =+++≠,则()232f x ax bx c '=++.对于A 选项,由题意可知,关于x 的二次方程()23200ax bx c a ++=≠有两个不等的实根,则24120b ac ∆=->,可得230b ac ->,A 选项正确;对于B 选项,当0a <时,且当()12,x x x ∈时,()0f x '>,此时函数()f x 在区间()12,x x 上单调递增,B 选项错误;对于C 选项,当0a >时,由()0f x '>,可得1x x <或2x x >;由()0f x '<,可得12x x x <<.所以,函数()f x 的单调递增区间为()1,x -∞、()2,x +∞,单调递减区间为()12,x x , 由()10af x <,可得()10<f x ,此时,函数()f x 的极大值为()10<f x ,极小值为()2f x ,且()()210f x f x <<,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内; 当0a <时,由()0f x '<,可得1x x <或2x x >;由()0f x '>,可得12x x x <<. 所以,函数()f x 的单调递减区间为()1,x -∞、()2,x +∞,单调递增区间为()12,x x , 由()10af x <,可得()10f x >,此时,函数()f x 的极小值为()10f x >,极大值为()2f x ,且()()210f x f x >>,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内,C 选项正确; 对于D 选项,由题意可知,1x 、2x 是方程2320ax bx c ++=的两根, 由韦达定理可得1223bx x a +=-,123c x x a=, ()()()()()()()()3232f t x f t x a t x b t x c t x d a t x b t x c t x d ⎡⎤⎡⎤-++=-+-+-++++++++⎣⎦⎣⎦()()()()()(322322322322332332a t t x tx x b t tx x c t x d a t t x tx x b t tx x c ⎡⎤⎡=-+-+-++-+++++++++⎣⎦⎣()()322223222a t tx b t x ct d =+++++,取3bt a=-,则322223222333333b b b b b b f x f x a x b x c d a a a a a a ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+-+=-+⨯-+-++⋅-+⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦32222223333b b b b a b c d fa a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-+⋅-+⋅-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以,函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称, 1223bx x a+=-,()()1223b f x f x f a ⎛⎫∴+=- ⎪⎝⎭,D 选项正确.故选:ACD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.10.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( ) A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数D .若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 【答案】BCD 【分析】根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可. 【详解】令()sin g x x x =-,()1cos 0g x x '=-≥, 因此()g x 在R 上单调递增,而(0)0g =, 所以()g x 在R 有且仅有一个零点, 即()f x 有且仅有一个“不动点”,A 错误;0a ≠,20ax bx c x ∴++-=至多有两个实数根,所以()f x 至多有两个“不动点”,B 正确;()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,x =⇒2x a e x x =+-在[0,1]有解,令2()xm x e x x =+-,()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,∴min ()(ln 2)212ln 232ln 20n x n ==+-=->, ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,min ()(0)1m x m ==,max ()(1)m x m e ==,∴1a e ≤≤,D 正确,. 故选:BCD 【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.。

高考数学二轮复习函数的概念与基本初等函数多选题知识点-+典型题及答案

高考数学二轮复习函数的概念与基本初等函数多选题知识点-+典型题及答案

高考数学二轮复习函数的概念与基本初等函数多选题知识点-+典型题及答案一、函数的概念与基本初等函数多选题1.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.2.已知函数ln ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数(())y f f x a =+有6个不同零点,则实数a的可能取值是( ) A .0 B .12-C .1-D .13-【答案】BD 【分析】分别代入各个选项中a 的值,选解出(())0f f x a +=中的()f x ,然后再根据数形结合可得出答案. 【详解】 画出函数,0,()1,0lnx x f x x x ⎧>=⎨+⎩的图象:函数(())y f f x a =+有零点,即方程(())0f f x a +=有根的问题. 对于A :当0a =时,(())0f f x =,故()1f x =-,()1f x =,故0x =,2x =-,1=x e,x e =, 故方程(())0f f x a +=有4个不等实根; 对于B :当12a =-时,1(())2f f x =, 故1()2f x =-,()f x e =()f x e =,当1()2f x =-时,由图象可知,有1个根, 当()f x e =2个根,当()f x e=时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 对于C :当1a =-时,(())1f f x =, 故()0f x =,()f x e =,1()f x e=, 当()0f x =时,由图象可知,有2个根, 当()f x e =时,由图象可知,有2个根, 当1()f x e=时,由图象可知,有3个根, 故方程(())0f f x a +=有7个不等实根; 对于D :当13a =-时,1(())3f f x =, 故2()3f x =-,3()f x e =,3()f x e =,当2()3f x =-时,由图象可知,有1个根,当3()f x e =时,由图象可知,有2个根, 当3()f x e=时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 故选:BD . 【点睛】关键点睛:本题的关键一是将问题转化为方程问题,二是先解出()f x 的值,三是根据数形结合得到每一个新的方程的根.3.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD 【分析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论. 【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD. 【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.4.已知函数222,0()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD 【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.5.已知函数()22x f x x =+-的零点为a ,函数2()log 2g x x x =+-的零点为b ,则( ) A .2a b += B .22log 2ab +=C .223a b +>D .01ab <<【答案】ABD 【分析】在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,图像的交点即为函数的零点,反函数的性质知A ,B 关于点()1,1对称,进而可判断A ,B ,D 正确. 由函数()f x 在R 上单调递增,且102f ⎛⎫<⎪⎝⎭,(1)0f >,可得零点a 的范围,可得C 不正确. 【详解】由()0f x =,()0g x =得22x x =-,2log 2x x =-,函数2xy =与2log y x =互为反函数,在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,如图所示,则(),2aA a ,()2,log B b b .由反函数的性质知A ,B 关于点()1,1对称,则2a b +=,22log 2ab +=.因为0a >,0b >,且ab ,所以2012a b ab +⎛⎫<<= ⎪⎝⎭,故A ,B ,D 正确. 因为()22x f x x =+-在R 上单调递增,且132022f ⎛⎫=< ⎪⎝⎭,(1)10f =>,所以112a <<. 因为222221(2)2(1)212a b a a a a ⎛⎫+=+-=-+<<⎪⎝⎭,所以2252,2a b ⎛⎫+∈ ⎪⎝⎭,故C 不正确. 故选:ABD 【点睛】方法点睛:通过画函数图象把零点问题转化为函数图象的交点问题,本题考查了运算能力和逻辑推理能力,属于难题.6.设函数(){}22,,2f x min x x x =-+其中{},,min x y z 表示,,x y z 中的最小者.下列说法正确的有( ) A .函数()f x 为偶函数B .当[)1,x ∈+∞时,有()()2f x f x -≤C .当x ∈R 时,()()()ff x f x ≤D .当[]4,4x ∈-时,()()2f x f x -≥ 【答案】ABC 【分析】画出()f x 的图象然后依据图像逐个检验即可. 【详解】解:画出()f x 的图象如图所示:对A ,由图象可知:()f x 的图象关于y 轴对称,故()f x 为偶函数,故A 正确; 对B ,当12x ≤≤时,120x -≤-≤,()()()222f x f x x f x -=-≤-=; 当23x <≤时,021x <-≤,()()22f x x f x -≤-=;当34x <≤时,122x <-≤,()()()22242f x x x x f x -=--=-≤-=; 当4x ≥时,22x -≥,此时有()()2f x f x -<,故B 成立;对C ,从图象上看,当[)0,x ∈+∞时,有()f x x ≤成立,令()t f x =,则0t ≥,故()()f f x f x ⎡⎤≤⎣⎦,故C 正确;对D ,取32x =,则111224f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,3122f ⎛⎫= ⎪⎝⎭,()()2f x f x -<,故D 不正确. 故选:ABC . 【点睛】方法点睛:一般地,若()()(){}min ,f x S x T x =(其中{}min ,x y 表示,x y 中的较小者),则()f x 的图象是由()(),S x T x 这两个函数的图象的较低部分构成的.7.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( ) A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .12e x x >【答案】ABC 【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C. 【详解】函数xy e =与ln y x =互为反函数, 则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<,122112211ln ln ln lnx x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D ,由12122x x x x +≥,解得121x x ≤, 由于12x x ≠,则121x x <,故D 错误; 故选:ABC 【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.8.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( ) A .9,04⎛⎫-⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD 【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-, 将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍), 结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD.【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.二、导数及其应用多选题9.函数ln ()xf x x=,则下列说法正确的是( )A .(2)(3)f f >B .ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e <D .若25,x y x y =、均为正数,则25x y < 【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项.由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25xyk ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D . 【详解】由ln (),0x f x x x=>得:21ln ()xf x x -'=令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:故,()f x x=在(0,)e 上递增,在(,)e +∞上递减,()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln 2,(3)ln 32f f ===66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错 B.e e π<,且()fx 在(0,)e 单调递增ln f f e ππ∴<<<∴>,故:B 正确 C .()f x m =有两个不相等的零点()()1212,x x f x f x m ∴==不妨设120x e x <<< 要证:212x x e <,即要证:221222,()e e x x e e f x x x <>∴<在(0,)e 单调递增,∴只需证:()212e f x f x ⎛⎫< ⎪⎝⎭即:()222e f x f x ⎛⎫< ⎪⎝⎭只需证:()2220e f x f x ⎛⎫-< ⎪⎝⎭……① 令2()(),()e g x f x f x e x ⎛⎫=-> ⎪⎝⎭,则2211()(ln 1)g x x e x '⎛⎫=-- ⎪⎝⎭ 当x e >时,2211ln 1,()0()x g x g x e x'>>∴>∴在(,)e +∞单调递增 ()22()0x e g x g e >∴>=,即:()2220e f x f x ⎛⎫-> ⎪⎝⎭这与①矛盾,故C 错 D .设25x y k ==,且,x y 均为正数,则25ln ln log ,log ln 2ln 5k k x k y k ==== 252ln ,5ln ln 2ln 5x k y k ∴== 1152ln 2ln 5ln 2,ln 525==且1010111153222525⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ln 2ln 52502525ln 2ln 5x y ∴>>∴<∴<,故D 正确. 故选:BD .【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x 的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x ,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.10.已知:()f x 是奇函数,当0x >时,()'()1f x f x ->,(1)3f =,则( )A .(4)(3)f ef >B .2(4)(2)f e f ->-C .3(4)41f e >-D .2(4)41f e -<-- 【答案】ACD【分析】 由已知构造得'()+10x x e f ⎡⎤>⎢⎥⎣⎦,令()()+1x f x g x e =,判断出函数()g x 在0x >时单调递增,由此得()()4>3g g ,化简可判断A ;()()4>2g g ,化简并利用()f x 是奇函数,可判断B ;()()4>1g g ,化简可判断C ;由C 选项的分析得32(4)41>4+1f e e >-,可判断D.【详解】因为当0x >时,()'()1f x f x ->,所以()'()10f x f x -->,即()[]'()+10xf x f e x ->,所以'()+10x x e f ⎡⎤>⎢⎥⎣⎦, 令()()+1x f xg x e=,则当0x >时,()'>0g x ,函数()g x 单调递增, 所以()()4>3g g ,即43(4)+1(3)+1>f f e e ,化简得(4)(3)1>(3)f f e e ef >+-,故A 正确;()()4>2g g ,即42(4)+1(2)+1>f f e e,化简得222(4)(2)1>(2)f f e e e f >+-, 所以2(4)(2)e f f -<-,又()f x 是奇函数,所以2(4)(2)e f f -<-,故B 不正确; ()()4>1g g ,即4(4)+1(1)+1>f f e e ,又(1)3f =,化简得3(4)41f e >-,故C 正确; 由C 选项的分析得32(4)41>4+1f e e >-,所以2(4)41f e -<--,又()f x 是奇函数,所以2(4)41f e -<--,故D 正确,故选:ACD.【点睛】关键点点睛:解决本题中令有导函数的不等式,关键在于构造出某个函数的导函数,得出所构造的函数的单调性,从而可比较函数值的大小关系.。

高考数学二轮复习函数的概念与基本初等函数多选题知识点-+典型题含答案

高考数学二轮复习函数的概念与基本初等函数多选题知识点-+典型题含答案

高考数学二轮复习函数的概念与基本初等函数多选题知识点-+典型题含答案一、函数的概念与基本初等函数多选题1.已知函数222,()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD 【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.2.设函数ln(2),2()1,2x x f x x x ->⎧=⎨+≤⎩,g (x )=x 2-(m +1)x +m 2-2,下列选项正确的有( )A .当m >3时,f [f (x )]=m 有5个不相等的实根B .当m =0时,g [g (x )]=m 有4个不相等的实根C .当0<m <1时,f [g (x )]=m 有6个不相等的实根D .当m =2时,g [f (x )]=m 有5个不相等的实根 【答案】BCD 【分析】作出函数()f x 的图象,利用函数()f x 的图象和函数()g x 的图象分析可解得结果. 【详解】作出函数()f x 的图象:令()f x t =,得[()]()f f x f t m ==;当3m >时,()f x m =有两个根:31242e t t <->+,,方程1()f x t =有1个根,方程2()f x t =有2个根,所以A 错误;②当0m =时,2 ()2g x x x =--,[()]0g g x =,令()g x t =,由()0g t =,得1221t t ==-,, 由2122t x x ==--12117117x x -+⇒=由2234151512t x x x x -+=-=--⇒==所以B 正确; ③令()g x t =,()f t m =∴,因为01m <<,所以()f t m =有3个实根根123,,t t t ,设123t t t <<,所以12311ln(2)t m t m t m --=+=-=,,, 22()(1)2g x x m x m =-++-221329()24m m m x +--=-+23294m m --≥, 221329329144m m m m t m -----=---23254m m --+=, 因为2325m m --+在(0,1)上递减,所以23253250m m --+>--+=, 所以2132504m m t --+->,所以213254m m t --+>, 即方程()f t m =的最小根1t 大于()g x 的最小值,所以1()g x t =、2()g x t =、3()g x t =都有2个不等实根,且这6个实根互不相等, 所以当0<m <1时,f [g (x )]=m 有6个不相等的实根,所以C 正确; ④令()f x t =,则()g t m =,当2m =时,方程()2g t =化为230t t -=,得1230t t ==,;当20()t f x ==,得1213x x =-=,; 当13()t f x ==,得3442x x =-=,,352e x =+符合题意,所以D 正确. 故选:BCD. 【点睛】关键点点睛:作出函数的图象,利用数形结合法求解是解题关键.3.已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .函数()f x 在区间[2,4]上是减函数B .(2020)(2021)1f f +=C .若方程()10()f x mx m R --=∈恰有5个不相等的实根,则11,46m ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x k =-在区间(,6)-∞上有8个零点()*8,i x i i N ≤∈,则8116i i x ==∑【答案】BCD 【分析】对于A ,画出函数的图象即可判断;对于B ,由函数的周期性可计算求解;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,画出图形即可判断求解;对于D ,函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,由对称性可求解. 【详解】由题可知当0x ≥时,()f x 是以2为周期的函数,则可画出()f x 的函数图象,对于A ,根据函数图象可得,()f x 在()2,3单调递增,在()3,4单调递减,故A 错误; 对于B ,()()()2020020f f f ==-=,()()()2021111f f f ==-=,则(2020)(2021)1f f +=,故B 正确;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,如图,直线1y mx =+过定点()0,1A ,观察图形可知AB AC k m k <<,其中()()4,0,6,0B C ,则11,46AB AC k k =-=-,故11,46m ⎛⎫∈-- ⎪⎝⎭,故C 正确;对于D ,若函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,如图,可知这八个零点关于2x =对称,则814416ii x==⨯=∑,故D 正确.故选:BCD. 【点睛】关键点睛:本题考查函数与方程的综合问题,解题的关键是判断出函数的周期性,画出函数的图象,即可将方程的解的个数问题、函数的零点问题转化为函数图象的交点问题,利用数形结合的思想可快捷解决问题.4.设[]x 表示不超过x 的最大整数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是( ) A .x R ∀∈,[][]22x x =B .,x y R ∀∈,若[][]x y =,则1x y ->-C .x R ∀∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦D .不等式[][]2230x x --≥的解集为{|0x x <或}2x ≥ 【答案】BCD 【分析】通过反例可得A 错误,根据取整函数的定义可证明BC 成立,求出不等式2230t t --≥的解后可得不等式[][]2230x x --≥的解集,从而可判断D 正确与否. 【详解】对于A , 1.5x =-,则[][][]()233,2224x x =-=⨯--==-,故[][]22x x ≠,故A 不成立.对于B ,[][]x y m ==,则1,1m x m m y m ≤<+≤<+, 故1m y m --<-≤-,所以1x y ->-,故B 成立. 对于C ,设x m r =+,其中[),0,1m Z r ∈∈, 则[]11222x x m r ⎡⎤⎡⎤++=++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222x m r =+, 若102r ≤<,则102r ⎡⎤+=⎢⎥⎣⎦,[]20r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦;若112r <<,则112r ⎡⎤+=⎢⎥⎣⎦,[]21r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦,故C 成立.对于D ,由不等式[][]2230x x --≥可得[]1x ≤-或[]32x ≥, 故0x <或2x ≥,故D 正确. 故选:BCD 【点睛】本题考查在新定义背景下恒等式的证明与不等式的解法,注意把等式的证明归结为整数部分和小数部分的关系,本题属于较难题.5.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.6.对于函数()()13cos ,,22132,,22x x f x f x x π⎧⎡⎤∈-⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩,下面结论正确的是( )A .任取121,,2x x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()122f x f x -≤恒成立 B .对于一切1,2x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()()*22N k f x f x k k =+∈ C .函数()1ln 2y f x x ⎛⎫=--⎪⎝⎭有3个零点 D .对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭【答案】ABC 【分析】先在坐标轴中画出()y f x =的图象,根据图象可判断A 选项,结合解析式可判断B 选项,再画出1ln()2y x =-与k y x=的图象,数形结合可判断C,D 选项.【详解】在坐标轴上作出函数()f x 的图象如下图所示:由图象可知()f x 的最大值为1,最小值为1-,故选项A 正确; 由题可知()()()1312,(,)(2),(,)22221f x f x x f x f x x =-∈+∞⇒+=∈-+∞, 所以*1(2)()()()2k f x k f x k N +=∈即()2(2)k f x f x k =+,故选项B 正确;作出1ln()2y x =-的图象,因为11ln(2)ln 2232-=<,由图象可知()y f x =与1ln()2y x =-有3个交点,故选项C 正确;结合图象可知,若对任意0x >,不等式()kf x x恒成立,即2x n =时,不等式(2)2kf n n恒成立, 又11(2)()(0)()22nnf n f ==, 所以1()22n k n ,即22n nk 在*n N ∈时恒成立, 设2()2x x g x =,则2ln 4()2xxg x -⋅'=, 故[)2,x ∈+∞时,()0g x '<,函数()g x 在[)2,+∞上单调递减, 所以[)2,x ∈+∞时,max ()(2)1g x g ==,又(1)1g =,所以max 212n n ⎛⎫= ⎪⎝⎭,即1k ,故选项D 错误.故选:ABC. 【点睛】本题主要考查分段函数的周期性及数形结合法在处理函数问题中的应用,有一定难度.7.对于函数()f x 定义域中任意的()1212,x x x x ≠,有如下结论,当()lg f x x =时,上述结论中正确结论的序号是( ) A .()()()1212f x x f x f x +=⋅ B .()()()1212f x x f x f x ⋅=+ C .1212()()f x f x x x -->0D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭【答案】BC 【分析】由对数的运算性质判断A ,B ,由对数函数的单调性判断C ,由对数的运算结合基本不等式判断D . 【详解】 对于A ,()()112122lg lg lg f x x x x x x +=+≠⋅,即()()()1212f x x f x f x +≠⋅,故A 错误; 对于B ,()()()()12112122lg lg lg f x x x x x x f x f x ⋅=+=+=,故B 正确; 对于C ,()lg f x x =在定义域中单调递增,()()12120f x f x x x -∴->,故C 正确;对于D ,()1212,0x x x x >≠,利用基本不等式知1122lg 22x x x x f +⎛⎫> ⎪+⎛⎫⎪⎭⎝= ⎝⎭()()()221121lg lg lg 222f x f x x x x x +===+()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,故D 错误; 故选:BC 【点睛】关键点点睛:本题考查命题的真假判断,考查对数函数的性质,考查基本不等式的应用,解决本题的关键点是将对数形式化为根式,即21lg lg 2x x =+合基本不等式放缩得出答案,并验证取等条件,考查了学生逻辑思维能力和计算能力,属于中档题.8.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD 【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)1x ⎡∈+∞⎣,()0f x <时,(,1x ∈-∞-所以12,012,12)01,1(x x x x x x x x x g x ⎧++>⎪⎪⎪-++<⎨⎪⎪--<-⎩=⎪当0x >时,设1201x x ,()()()()121212121212111x x x x g x g x x x x x x x ---=+--= 因为12120,10x x x x -<-<,所以()()120g x g x ->,即()()12g x g x > 设121x x <<,()()()()1212121210x x x x g x g x x x ---=<,即()()12g x g x <所以函数()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x在区间)1⎡⎣上单调递减,在区间(,1-∞上单调递增11241)1(g ++==函数()g x 图象如下图所示由图可知,要使得函数y m =与函数()()g x f x x=的图象有两个不同的交点则实数m 的取值范围是()()–,04,∞+∞,故D 正确;故选:CD 【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.二、导数及其应用多选题9.已知函数()1ln f x x x x=-+,()()1ln x x x x g --=,则下列结论正确的是( ) A .()g x 存在唯一极值点0x ,且()01,2x ∈ B .()f x 恰有3个零点C .当1k <时,函数()g x 与()h x kx =的图象有两个交点D .若120x x >且()()120f x f x +=,则121=x x 【答案】ACD 【分析】根据导数求得函数()g x '在(0,)+∞上为单调递减函数,结合零点的存在性定,可判定A 正确;利用导数求得函数 ()f x 在(,0)-∞,(0,)+∞单调递减,进而得到函数 ()f x 只有2个零点,可判定B 不正确;由()g x kx =,转化为函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象的交点个数,可判定C 正确;由()()120f x f x +=,化简得到 ()121()f x f x =,结合单调性,可判定D 正确. 【详解】由函数()()1ln x x x x g --=,可得 ()1ln ,0g x x x x '=-+>,则()2110g x x x''=--<,所以()g x '在(0,)+∞上为单调递减函数,又由 ()()110,12ln 202g g '=>=-+<, 所以函数()g x 在区间(1,2)内只有一个极值点,所以A 正确; 由函数()1ln f x x x x=-+, 当0x >时,()1ln f x x x x=-+,可得 ()221x x f x x -+-'=, 因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(0,)+∞单调递减;又由()10f =,所以函数在(0,)+∞上只有一个零点, 当0x <时,()1ln()f x x x x =--+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(,0)-∞单调递减; 又由()10f -=,所以函数在(,0)-∞上只有一个零点, 综上可得函数()1ln f x x x x=-+在定义域内只有2个零点,所以B 不正确; 令()g x kx =,即()1ln x x x kx --=,即 ()1ln (1)x x k x -=-, 设()()1ln x x x ϕ-=, ()(1)m x k x =-, 可得()1ln 1x x x ϕ'=+-,则 ()2110x x xϕ''=+>,所以函数()x ϕ'(0,)+∞单调递增, 又由()01ϕ'=,可得当(0,1)x ∈时, ()0x ϕ'<,函数()x ϕ单调递减, 当(1,)x ∈+∞时,()0x ϕ'>,函数 ()x ϕ单调递增, 当1x =时,函数()x ϕ取得最小值,最小值为()10ϕ=, 又由()(1)m x k x =-,因为1k <,则 10k ->,且过原点的直线,结合图象,即可得到函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象有两个交点,所以C 正确;由120x x >,若120,0x x >>时,因为 ()()120f x f x +=,可得()()12222222211111ln ln 1f x f x x x f x x x x x ⎛⎫⎛⎫=-=--+=+-= ⎪ ⎪⎝⎭⎝⎭,即()121()f x f x =,因为()f x 在(0,)+∞单调递减,所以 121x x =,即121=x x , 同理可知,若120,0x x <<时,可得121=x x ,所以D 正确.【点睛】函数由零点求参数的取值范围的常用方法与策略:1、分类参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;2、分类讨论法:一般命题情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各个小范围并在一起,即可为所求参数的范围.10.若直线l 与曲线C 满足下列两个条件: (i )直线l 在点()00,P x y 处与曲线C 相切;(ii )曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C . 下列命题正确的是( )A .直线:0l y =在点()0,0P 处“切过”曲线3:C y x =B .直线:1l x =-在点()1,0P -处“切过”曲线()2:1C y x =+C .直线:l y x =在点()0,0P 处“切过”曲线:sin C y x =D .直线:l y x =在点()0,0P 处“切过”曲线:tan C y x = 【答案】ACD 【分析】分别求出每个选项中命题中曲线C 对应函数的导数,求出曲线C 在点P 处的切线方程,再由曲线C 在点P 处两侧的函数值对应直线上的点的值的大小关系是否满足(ii ),由此可得出合适的选项. 【详解】对于A 选项,由3y x =,可得23y x '=,则00x y ='=,所以,曲线C 在点()0,0P 处的切线方程为0y =,当0x >时,0y >;当0x <时,0y <,满足曲线C 在点()0,0P 附近位于直线0y =两侧,对于B 选项,由()21y x =+,可得()21y x '=+,则10x y =-'=,而直线:1l x =-的斜率不存在,所以,直线l 在点()1,0P -处不与曲线C 相切,B 选项错误;对于C 选项,由sin y x =,可得cos y x '=,则01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,设()sin x x x f -=,则()1cos 0f x x '=-≥,所以,函数()f x 为R 上的增函数, 当0x <时,()()00f x f <=,即sin x x <; 当0x >时,()()00f x f >=,即sin x x >.满足曲线C 在点()0,0P 附近位于直线y x =两侧,C 选项正确; 对于D 选项,由sin tan cos xy x x ==,可得21cos y x'=,01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,当,22x ππ⎛⎫∈- ⎪⎝⎭时,设()tan g x x x =-,则()2221sin 10cos cos xg x x x=-=-≤', 所以,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减.当02x π-<<时,()()00g x g >=,即tan x x >;当02x π<<时,()()00g x g <=,即tan x x <.满足曲线C 在点()0,0P 附近位于直线y x =两侧,D 选项正确. 故选:ACD. 【点睛】关键点点睛:本题考查导数新定义,解题的关键就是理解新定义,并把新定义进行转化,一是求切线方程,二是判断在切点两侧函数值与切线对应的函数值的大小关系,从而得出结论.。

届高三数学二轮专题复习资料专题1:基本初等函数

届高三数学二轮专题复习资料专题1:基本初等函数

专题 1:根本初等函数问题归类篇类型一:分段函数一、前测回忆x +1, x ≥1,.② f(x) 在区间 [- 1, 3],①假设 f( x)≥ 2,那么 x 的取值范围为1.函数f(x)=- x 2+4, x < 1的值域为 .答案:① [ - 2,+ ∞);② [2, 4].2x-1, x ≥0,3,假设 f( f(b))= -2,求实数 b 的值 .2.设函数 f( x)=1x < 0x ,3答案: b = 或 -2.二、方法联想方法 1:分类讨论,按分段区间进行分类讨论,最后汇总(求并集 );方法 2:图象法,画出分段函数的图象,根据图象探讨不等式解集及值域问题. 三、归类稳固2x ,x ≤ 1,*1 . f(x)=,那么 f[f(- 1)]= .log 2x + 1, x >1答案: 0. (考查分段函数求值问题 )1+ log (2- x), x < 12,那么 f( -2)+ f(log 212)=*2 . 设函数 f(x)= 2x - 1 , x ≥ 1 .答案: 921-x , x ≤ 1,那么满足 f(x)≤ 2 的 x 的取值范围是 ________.**3 . 设函数 f(x)=1- log 2x , x > 1,答案: [0,+ ∞)- x 2 +2x , x ≤ 0.**4 .函数 f(x)= ln(x + 1), x > 0 ,假设 |f( x)|≥ ax ,那么 a 的取值范围是答案: [ -2, 0]|lnx|, x > 02***5 .函数 f(x) = x 2+ 4x +1, x ≤ 0,假设关于 x 的方程 f(x)- bf(x)+ c = 0(b ,c ∈ R)有 8 个不同的实数根,那么 b +c 的取值范围是 .答案: (0,3)0, 0< x ≤ 1***6 函数 f(x) = |lnx|, g(x)= |x 2 - 4|- 2, x >1,那么方程 |f(x)+ g(x)|= 1实根的个数为 ________.第 1 页 共 15 页答案: 4类型二:求函数的解析式一、前测回忆1. f[f( x)] = 9+ 4x ,且 f(x)是一次函数,那么 f(x)=.假设 f(x 2+ 1)= x 2,那么 f(x)=.答案:① 2x + 3 或- 2x - 9;②. x - 1(x ≥ 1)1=2. 函数满足2f(x)+ f( x ) =x ,那么f(2) ; f(x)=.答案: 7,2x - 16 3 3x二、方法联想方法 1:待定系数法;方法 2:换元法、拼凑法;方法 3:函数方程法.三、归类稳固*1 . f(x)= x 2+ 3x + 2,那么 f( x +1)= ________.答案: x 2+ 5x +6.*2 . f(x)是一次函数,且满足3f(x + 1)- 2f(x -1)= 2x + 17,那么 f( x)= ________.答案: 2x +7*3 . f(x)是二次函数,假设f(0)= 0,且 f(x + 1)= f(x)+ x + 1,那么 f(x)的表达式为 ______答案:1 212x+ x .22+ 1 = lgx ,那么 f(x)= _________.**4 . f x答案: lg 2 .x - 2**5 . 假设 2f(x)- f(- x)=x ,那么 f(x)=.x答案:那么 f(x)= 3 .***6 .假设 f(x - 2)= x 2+ 42- 3x +6,那么f(x)=.x x x答案: x 2+- 3x + 4 .类型三:二次函数一、前测回忆1. 假设二次不等式f(x)< 0 的解集为 (1, 2),且函数 y = f(x)的图象过点 (-1, 2),那么 f(x)=.答案:13x2- x +23;.第 2 页共 15 页2. f(x)=- x 2+2x - 2, x ∈[t , t + 1],假设 f(x)的最小值为 h(t),那么 h(t)=.函数满足 2f(x)+ f(1)=x ,那么 f(2) =;f(x)= .x- t 2+ 2t - 2, t < 1答案:21- t 2- 1,t ≥2二、方法联想二次函数的解析式一般设为三种形式:(1) 一般式: f(x)= ax 2+ bx +c(a ≠ 0);(2) 顶点式: f(x)= a(x - h)2+ k(a ≠ 0);(3) 零点式: f(x)= a(x - x 1)( x -x 2 )(a ≠ 0).二次函数在给定区间内的值域与最值问题:方法 : 结合图象,分区间讨论.步骤 : ①配方求对称轴〔也可以用公式〕 ,画出草图 (关注:对称轴,开口方向及给定区间);②结合图象,由函数的单调性,求出最值.假设对称轴在给定区间内,那么考虑顶点及端点的函数值,假设对称轴不在给定区间内,那么最值为端点的函数值.三、归类稳固*1 . 二次函数f(x)=ax 2+ bx + c 图象的顶点为 (-1, 10),且方程 ax 2+ bx +c =0的两根的平方和为 12,则 f( x)的解析式是 ____________ .答案: f(x)=- 2x 2-4x + 8.*2 . 函数 f(x)=- x 2 +4x + a , x ∈[0, 1].假设 f(x)有最小值- 2,那么 f( x)的最大值为 ________.答案: 1.**3 . 假设定义域为 R 的二次函数 f(x)的最小值为 0,且有 f(1+ x)= f(1 -x) ,直线 g(x)=4(x- 1)被 f(x)的图像截得的线段长为 4 17,那么函数 f(x)的解析式为__________ .解析: 设 f( x)= a(x - 1)2(a > 0).y =a x - 12 ,得 ax 2 -(4 +2a)x + a + 4= 0.由x - 1y =4,由韦达定理,得 x 1+x 2=4+ 2a,x 1·x 2=a + 4.aa由弦长公式,得4 17=1+ 424+ 2aa + 4.a2- 4·a∴ a = 1.∴ f(x)=( x - 1)2.答案: f(x)= (x - 1)2.**4 . 函数 f(x)=x 2+ 4x , x ≥0, 假设 f(2- a 2)> f(a),那么实数 a 的取值范围是 ________.4x - x 2, x <0.第 3 页共 15 页答案: (- 2, 1) .**5 . 方程 mx 2- (m - 1) x + 1=0 在区间 (0,1) 内有两个不同的实数根,那么m 的取值范围为 __________ .解析: 令 f( x)= mx 2- (m -1)x + 1,m > 0,= m -1 2- 4m > 0,那么 f(x)的图像恒 过定点 (0, 1),由题意可得解得 m >3+ 2 2.m - 1< 1,0< 2mf(1) =2> 0.答案: m >3+ 2 2.***6 .函数 f(x)=2x 2-2ax + 3在区间 [-1, 1]上的最小值记为 g(a) ,求 g(a)的函数表达式为 ___________.2a + 5,a <- 2a 2答案: g(a)=3- 2 ,- 2≤ a ≤ 2.5- 2a ,a > 2类型四:指数函数与对数函数一、前测回忆x 2+x 1x -23)x 2 +2x .1. 2≤ ( ),那么函数 y = (的值域为4答案: [ 3, 81] .32.设 log a 1< 2,那么实数 a 的取值范围为.3答案: (0,33 )∪ (1,+ ∞).3.函数 y = log( x 2- 2x + 2),那么它的值域为.答案: (- ∞, 0].二、方法联想〔 1〕指 (对 )数方程与不等式问题:方法 1:转化为同底的指 (对 )数,利用指 (对 )数函数的单调性化简方程或不等式,与对数有关问题要注意定义域及转化过程中的等价性.方法 2:利用换元法,转化为代数方程或不等式.变式:解不等式lg 2x - lgx 2- 3≥0.1(答案: 0< x ≤10或 x ≥ 1000,考查利用换元法解指 (对 )不等式 ).〔 2〕与指 (对 )数函数有关的值域问题,方法 1:复合函数法,转化为利用指(对 )数函数的单调性;第 4 页共 15 页方法 2:换元法,转化为根本初等函数的复合函数来求.〔 3〕指数首先要注意值域,对数首先要注意定义域,其次这两个函数都要考虑单调性.三、归类稳固*1 .假设点 (a,9)在函数 y=3x的图像上,那么aπtan 的值为 _______ .6答案: 3.*2 . a=5-1,函数 f(x)= a x,假设实数 m,n 满足 f(m)> f(n),那么 m, n 的大小关系为 __________.2答案: m< n.**3 .函数 y= a x-2- 1(a> 0, a≠1)的图像恒过定点 __________ .答案: (2, 0) .**4 .解不等式 lg2x- lgx2- 3≥ 0 的解集是 _________.答案: 0<x≤1或 x≥1000.10**5 .函数 f(x)= a x+log a x(a> 0,且 a≠ 1)在 [1,2] 上的最大值与最小值之和为log a2+ 6,那么 a 的值为__________.解析:由题可知函数 f(x)= a x+ log af(1)+ f(2)x 在 [1,2]上是单调函数,所以其最大值与最小值之和为= a+ log a1+ a2+ log a2= log a2+ 6,整理可得 a2+ a- 6= 0,解得 a=2 或 a=- 3(舍去 ),故 a= 2.答案: a= 2.***6 .函数 f(x)= log2 (a-2x)+ x- 2,假设 f(x)= 0 有解,那么实数 a 的取值范围是 ____________.解析:方法一: f(x)= log2(a-2x)+ x- 2= 0,得 a-2x= 22-x,即 a- 2x=4x,令 t=2x(t >0) ,那么 t2-at2a+ 4= 0 在 t∈ (0,+∞)上有解,令 g( t)= t2- at+4, g(0)= 4> 0,故满足2> 0,得 a≥ 4.= a2- 16≥0,方法二: f(x)= log 2(a- 2x)+x-2= 0,得 a- 2x= 22-x, a= 2x+4x≥ 4.2答案: a≥ 4.类型五:函数的零点问题一、前测回忆1.函数 f(x)= lgx- sinx 零点的个数为.答案: 3 .2.函数 f(x)= 2x+ x- 4 零点所在区间为(k, k+ 1 ),k∈ N ,那么 k=.答案: 1.二、方法联想第 5 页共 15 页零点存在定理:函数 y= f(x)在区 (a,b)上有 f( a)f(b)< 0, f(x)在 (a,b)上至少存在一个零点.反之不一定成立.零点存在:①能解出 x= x0;② x0∈ A〔定域〕;方法 2:别离参数,化求域〔要分清是参数,是自量〕;方法3:数形合法.零点个数:方法1:数型合;方法2:①解出 x= x i(= 1,2,⋯,n),②根据中零点有k 个,k 个 x∈ A〔定域〕,n- k 个 x∈∕A.三、稳固*1 .假设一次函数f(x)= ax+ b 有一个零点2,那么函数g(x)= bx2- ax 的零点是.答案: 0 和-12.*2 .函数函数 f( x)=log2(x+ 2)-x 有____________ 个零点.答案: 2.0, x≤0,m 的取范是**3 .函数 f(x)=使函数 g(x)= f(x)+ x- m 有零点的数.2x, x> 0答案: m≤ 0 或 m> 1.**4 .三个函数 f( x)= 2x+ x,g (x)= x-2, h(x)= log2x+ x 的零点依次 a, b, c, a,b, c 的大小关系是__________ .解析:由于 f(- 1)=1- 1=-1< 0, f(0) = 1> 0,2 2故f(x)=2x+ x 的零点 a∈ (-1, 0).因 g(2)= 0,故 g(x)的零点 b= 2;1=- 1+1=-1< 0, h(1)= 1> 0,h 2221故 h(x)的零点 c∈2, 1 ,因此 a< c< b.答案: a<c< b.**5 .假设函数 x2- m x+ 4(x> 0)存在零点,数的取范是__________.答案: [2,+∞).kx+ 2, x≤ 0***6.函数 f(x)=lnx,x>0(k∈ R),假设函数y= |f( x)|+ k 有三个零点,数k 的取范是.答案: k≤- 2.第 6 页共 15 页综合应用篇一、例题分析例 1 函数 f(x)= log a (8- 2x )( a > 0,且 a ≠ 1).〔 1〕当 a = 2 时,求满足不等式f(x) ≤2的实数 x 的取值范围;〔 2〕当 a > 1 时,求函数 y = f( x)+ f(- x)的最大值.答案:〔 1〕实数 x 的取值范围为 [2, 3).( 2〕函数 y = f(x)+ f(- x)的最大值为 log a 49. 〖教学建议〗( 1〕主要问题归类与方法: 1.解指 (对 ) 数不等式问题:方法:①利用指 (对 )数函数的单调性,将不等式转化为代数不等式来解.②换元法:转化为整式不等式,指〔对〕数必须先注意值〔定义〕域.2.与指 (对 ) 数有关的函数值域:方法:①考察对应函数(复合函数 )的单调性,利用单调性处理.②用换元法,转化为几个根本函数的值域问题.〔 2〕方法选择与优化建议:对于问题 1,学生一般会选择方法①,因为此题既含对数,也含有指数,用换元不能一次转化为代数不等式,所以选择方法①.对于问题 2,学生一般会选择方法②, 因为用换元法转化为几个根本函数的值域, 处理比拟方便,所以选择方法①.指数函数、 对数函数的单调性受底数 a 的影响, 解决与指、 对数函数特别是单调性有关的问题时,首先要看底数的范围.此题的易错点有两个, 一是第一问中的 “8- 2x > 0〞的定义域局部; 二是第二问中函数 y = f(x)+ f(-x)的定义域.例 2 函数 f(x)= a - |x|1.〔 1 〕求证:函数 y = f(x)在 (0,+ ∞)上是增函数;〔 2〕假设 f(x)< 2x 在(1,+ ∞)上恒成立,求实数 a 的取值范围;( 3〕假设函数 y = f(x)在 [m ,n]上的值域是 [m , n](m ≠n),求实数 a 的取值范围.解:〔 1〕 f(x)在 (0,+ ∞)上为增函数.( 2〕 a 的取值范围为 ( -∞, 3].( 3〕 a 的取值范围为 {0} ∪ (2,+ ∞).〖教学建议〗第 7 页 共 15 页(1) 主要问题归类与方法:1.讨论函数的单调性问题:方法 :①利用函数的图象;②复合函数的单调性;③利用函数单调性的定义.④利用导函数来求函数的单调区间.2.不等式恒成立问题:3.函数的值域,求参数的取值: (2) 方法选择与优化建议:对于问题 1,学生一般会选择方法③或④,因为此题是证明函数的单调性,方法①②不能用作证明,所以选择方法③或④.对于问题 2,学生一般会选择方法①,因为此题别离变量较容易,而且对应函数的值域比拟容易求,所以选择方法①.例 3 函数 f(x)= a ·2x + b ·3x ,其中常数 a , b 满足 ab ≠0. ( 1〕假设 ab > 0,判断函数 f(x)的单调性,并证明;( 2〕假设 ab < 0,求 f(x +1)> f(x)时 x 的取值范围.解:〔 1〕当 a >0, b > 0 时,函数 f(x)在 R 上是增函数 .当 a <0, b < 0 时, 函数 f(x)在 R 上是减函数 .( 2〕当 a < 0,b > 0 时, x 的取值范围为 (log 1. 5 - 2b a,+ ∞);a当 a > 0, b < 0 时, x 的取值范围为 (- ∞, log 1.5 - 2b ).解析:〔1〕当 a > 0, b >0 时,任意 x 1, x 2∈ R , x 1 <x 2,那么 f(x 1)- f(x 2)= a 〔 2x1- 2x2〕+ b 〔 3x1- 3x2〕∵ 2x1< 2x2, a > 0 a 〔 2x1- 2x2〕< 0,同理 b 〔 3x1- 3x2〕< 0∴ f(x 1 )- f(x 2)<0∴函数 f(x)在 R 上是增函数同理,当 a < 0,b < 0 时, 函数 f(x) 在 R 上是减函数 .( 2〕 f(x + 1)- f(x)=a ·2x + 2b ·3x > 0当 a <0, b > 0 时,〔3 x a1.5a,+ ∞);2〕 >- 2b ,那么 x 的取值范围为(log-2b当 a >0, b < 0 时,〔 3〕 x<- a,x 的取值范围为 (- ∞, log . - a2 2b1 52b).〖教学建议〗(1) 主要问题归类与方法:第 8 页 共 15 页1.讨论函数的单调性问题:方法 :①利用函数的图象;②复合函数的单调性;③利用函数单调性的定义;④利用导函数.2.与指 (对 ) 数有关的解不等式问题:方法:①利用函数的单调性,转化为代数不等式;②用换元法,依次解几个代数不等式.(2)方法选择与优化建议:对于问题1,学生一般会选择方法③或④,因为此题不仅要求判断还需要证明结论,方法①②不能用作证明,所以选择方法③或④.对于问题2,学生一般会选择方法①,因为此题函数的单调性比拟明确,便于转化,所以选择方法①.此题的易错点是第二问中无视字母 a 的符号对不等号的方向的影响.此题中的分类讨论是由数学运算的要求而引起的,“ab> 0〞和“ab<0〞的含义是字母a、b 同号或异号,因此需要具体到a、 b 各自的符号.例 4 a, b 是实数, 1 和- 1 是函数 f(x)= x3+ ax2+ bx 的两个极值点.(1〕求 a 和 b 的值;(2〕设 h(x)= f(f(x))- c,其中 c∈ [- 2, 2],求函数 y= h( x)的零点个数.解:〔 1〕 a= 0, b=- 3;(2〕有 9 个零点.〖教学建议〗(1〕主要问题归类与方法:1.求函数的解析式问题 :方法:待定系数法,换元法,函数方程法2.讨论函数的零点个数问题:方法:解方程,图象法,零点的存在定理与单调性(2〕方法选择与优化建议:对于第 1 小题,是常规问题,方法也非常清楚——待定系数法。

高三数学二轮复习第一部分检测重点保分题题型专题(九)基本初等函数、函数与方程教师用书

高三数学二轮复习第一部分检测重点保分题题型专题(九)基本初等函数、函数与方程教师用书

题型专题(九)基本初等函数、函数与方程[师说考点]1.指数与对数式的8个运算公式(1)a m·a n=a m+n,(2)(a m)n=a mn,(3)(ab)m=a m b m。

其中,a〉0,b>0。

(4)log a(MN)=log a M+log a N,(5)log a错误!=log a M-log a N,(6)log a M n=n log a M,(7)a log a N=N,(8)log a N=错误!。

其中,a〉0且a≠1,b〉0且b≠1,M>0,N>0. 2.指数函数与对数函数的图象和性质指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)的图象和性质,分0〈a〈1,a>1两种情况:当a>1时,两函数在定义域内都为增函数,当0〈a<1时,两函数在定义域内都为减函数.[典例] (1)(2016·全国丙卷)已知a=2错误!,b=4错误!,c=25错误!,则()A.b〈a〈c B.a〈b<c C.b<c〈a D.c<a〈b[解析]选A 因为a=2错误!,b=4错误!=2错误!,由函数y=2x在R上为增函数知,b〈a;又因为a=2错误!=4错误!,c=25错误!=5错误!,由函数y=x错误!在(0,+∞)上为增函数知,a〈c.综上得b<a〈c。

故选A。

(2)在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x的图象可能是( )[解析] 选D 当a〉1时,函数f(x)=x a(x≥0)单调递增,函数g(x)=log a x单调递增,且过点(1,0),由幂函数的图象性质可知C错;当0〈a〈1时,函数f(x)=x a(x≥0)单调递增,函数g(x)=log a x 单调递减,且过点(1,0),排除A,又由幂函数的图象性质可知B 错,因此选D。

错误!3招破解指数、对数、幂函数值的大小比较问题(1)底数相同,指数不同的幂用指数函数的单调性进行比较.(2)底数相同,真数不同的对数值用对数函数的单调性比较.(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.[演练冲关]1.(2016·贵州模拟)函数y=a x+2-1(a>0且a≠1)的图象恒过的点是( )A.(0,0)B.(0,-1)C.(-2,0)D.(-2,-1)解析:选C 令x+2=0,x=-2,得f(-2)=a0-1=0,所以y =a x+2-1(a>0,a≠1)的图象恒过点(-2,0),选项C正确.2.(2016·广州模拟)设a=log37,b=21.1,c=0.83。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题检测(九) 基本初等函数、函数与方程(三级提能练)A 级——常考点落实练1.函数y =1log0.5(4x -3)的定义域为( )A.⎝ ⎛⎭⎪⎫34,1 B.⎝ ⎛⎭⎪⎫34,+∞C .(1,+∞) D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞)2.(2016·广西质检)若x log 52≥-1,则函数f (x )=4x -2x +1-3的最小值为( )A .-4B .-3C .-1D .03.函数f (x )=e x+x -2(e 为自然对数的底数)的零点个数为( ) A .0 B .1 C .2 D .34.(2016·唐山模拟)若函数f (x )=lg(mx +x2+1)为奇函数,则m =( ) A .-1 B .1 C .-1或1 D .0 5.函数f (x )=x 2lgx -2x +2的图象( ) A .关于x 轴对称 B .关于原点对称 C .关于直线y =x 对称 D .关于y 轴对称6.(2016·沈阳模拟)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数与其图象相符的是( )A B C D7.若函数f (x )=m +log 2x (x ≥1)存在零点,则实数m 的取值范围是( ) A .(-∞,0] B .[0,+∞) C .(-∞,0) D .(0,+∞)8.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( )A .560万元B .420万元C .350万元D .320万元9.(2016·全国乙卷)若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c bB 级——易错点清零练1.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x2.(2016·广州五校联考)设a =log 123,b =⎝ ⎛⎭⎪⎫130.2,c =213,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c3.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 2(2x ),则“同根函数”是( )A .f 2(x )与f 4(x )B .f 1(x )与f 3(x )C .f 1(x )与f 4(x )D .f 3(x )与f 4(x ) 4.已知函数f (x )=2|2x -m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________.C 级——“12+4”高考练一、选择题1.(2016·贵州模拟)幂函数y =f (x )的图象经过点(3,3),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是减函数 D .非奇非偶函数,且在(0,+∞)上是增函数 2.(2016·湖南东部六校联考)函数y =lg|x |( ) A .是偶函数,在区间(-∞,0)上单调递增 B .是偶函数,在区间(-∞,0)上单调递减 C .是奇函数,在区间(0,+∞)上单调递增 D .是奇函数,在区间(0,+∞)上单调递减3.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t 内的路程为s =12t 2米,那么,此人( )A .可在7秒内追上汽车B .可在9秒内追上汽车C .不能追上汽车,但期间最近距离为14米D .不能追上汽车,但期间最近距离为7米4.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)5.(2016·河南焦作一模)若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是( )6.(2016·河北五校联考)函数f (x )=⎩⎪⎨⎪⎧2ex -1,x<2,log3(x2-1),x≥2,则不等式f (x )>2的解集为( )A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)7.(2016·北京模拟)已知函数f (x )=a x,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( )A .1B .aC .2D .a 28.(2016·石家庄一模)已知函数y =f (x )的图象关于直线x =0对称,当x ∈(0,+∞)时,f (x )=log 2x ,若a =f (-3),b =f ⎝ ⎛⎭⎪⎫14,c =f (2),则a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .c >a >b D .a >c >b9.(2016·山西四校联考)已知函数f (x )满足:①定义域为R ;②∀x ∈R ,都有f (x +2)=f (x );③当x ∈[-1,1]时,f (x )=-|x |+1.则方程f (x )=12log 2|x |在区间[-3,5]内解的个数是( )A .5B .6C .7D .810.(2016·兰州模拟)已知命题:①函数y =2x(-1≤x ≤1)的值域是⎣⎢⎡⎦⎥⎤12,2;②为了得到函数y =sin ⎝⎛⎭⎪⎫2x -π3的图象,只需把函数y =sin 2x 图象上的所有点向右平移π3个单位长度;③当n =0或n =1时,幂函数y =x n的图象都是一条直线;④已知函数f (x )=|log 2x |,若a ≠b ,且f (a )=f (b ),则ab =1. 其中正确的命题是( ) A .①③ B .①④ C .①③④ D .①②③④11.(2016·海口调研)若关于x 的方程|x 4-x 3|=ax 在R 上存在4个不同的实根,则实数a 的取值范围为( )A.⎝⎛⎭⎪⎫0,427 B.⎝⎛⎦⎥⎤0,427 C.⎝⎛⎭⎪⎫427,23 D.⎝ ⎛⎦⎥⎤427,23 12.(2016·江西两市联考)对于函数f (x )和g (x ),设α∈{x |f (x )=0},β∈{x |g (x )=0},若存在α,β,使得|α-β|≤1,则称f (x )与g (x )互为“零点相邻函数”.若函数f (x )=ex -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则实数a 的取值范围是( )A .[2,4] B.⎣⎢⎡⎦⎥⎤2,73C.⎣⎢⎡⎦⎥⎤73,3 D .[2,3]二、填空题13.lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.14.已知函数f (x )=mx 2+(2-m )x +n (m >0),当-1≤x ≤1时,|f (x )|≤1恒成立,则f ⎝ ⎛⎭⎪⎫23=________.15.(2015·四川高考)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =ekx +b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是________小时.16.已知函数f (x )=⎩⎪⎨⎪⎧-x x +1,-1<x≤0,x ,0<x≤1与g (x )=a (x +1)的图象在(-1,1]上有2个交点,若方程x -1x=5a 的解为正整数,则满足条件的实数a 的个数为________.答 案 A 级——常考点落实练1. 解析:选A 要使函数有意义需满足⎩⎪⎨⎪⎧4x -3>0,log0.5(4x -3)>0,解得34<x <1.2. 解析:选A ∵x log 52≥-1,∴2x≥15.则f (x )=4x -2x +1-3=(2x )2-2×2x -3=(2x-1)2-4,当2x=1时,f (x )取得最小值-4.3. 解析:选B ∵函数f (x )=e x+x -2在R 上是增函数,且f (0)=-1<0,f (1)=e -1>0,∴f (0)f (1)<0,可得函数f (x )=e x+x -2在(0,1)上有唯一零点,故选B.4. 解析:选C 因为函数f (x )为奇函数,所以lg(mx +x2+1)=-lg(-mx +x2+1),即mx +x2+1=1-mx +x2+1,整理得x 2=m 2x 2,所以m 2=1,所以m =±1,故选C.5. 解析:选B 因为f (x )=x 2lgx -2x +2,所以其定义域为(-∞,-2)∪(2,+∞),所以f (-x )=x 2lg x +2x -2=-x 2lg x -2x +2=-f (x ),所以函数为奇函数,所以函数的图象关于原点对称,故选B.6. 解析:选B 由函数y =log a x (a >0,且a ≠1)的图象可知,a =3,所以y =3-x,y =(-x )3=-x 3及y =log 3(-x )均为减函数,只有y =x 3是增函数,选B.7. 解析:选A m =-log 2x (x ≥1)存在零点,则m 的范围即为函数y =-log 2x (x ≥1)的值域,∴m ≤0.8. 解析:选D 设该公司的年收入为x 万元(x >280),则有280×p%+(x -280)(p +2)%x=(p +0.25)%,解得x =320.故该公司的年收入为320万元.9. 解析:选B 法一:因为0<c <1,所以y =log c x 在(0,+∞)上单调递减,又0<b <a ,所以log c a <log cb ,故选B.法二:取a =4,b =2,c =12,则log 412=-12>log 212,排除A ;412=2>212,排除C ;⎝ ⎛⎭⎪⎫124<⎝ ⎛⎭⎪⎫122,排除D.故选B.B 级——易错点清零练1. 解析:选D 函数y =10lg x的定义域与值域均为(0,+∞).函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).故选D.2. 解析:选A ∵a =log 123<log 122=-1,0<b =⎝ ⎛⎭⎪⎫130.2<⎝ ⎛⎭⎪⎫130=1,c =213>20=1,∴a <b <c . 3. 解析:选A f 4(x )=log 2(2x )=1+log 2x ,f 2(x )=log 2(x +2),将f 2(x )的图象沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )的图象,根据“同根函数”的定义可知选A.4. 解析:令t =|2x -m |,则t =|2x -m |在区间⎣⎢⎡⎭⎪⎫m 2,+∞上单调递增,在区间⎝ ⎛⎦⎥⎤-∞,m 2上单调递减.而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].答案:(-∞,4]C 级——“12+4”高考练1. 解析:选D 设幂函数f (x )=x a,则f (3)=3a=3,解得a =12,则f (x )=x 12=x ,是非奇非偶函数,且在(0,+∞)上是增函数.2. 解析:选B 因为lg|-x |=lg|x |,所以函数y =lg|x |为偶函数,又函数y =lg|x |在区间(0,+∞)上单调递增,由其图象关于y 轴对称可得,y =lg|x |在区间(-∞,0)上单调递减,故选B.3. 解析:选D 车与人的间距d =(s +25)-6t =12t 2-6t +25=12(t -6)2+7.当t =6时,d 取得最小值7.故选D.4. 解析:选C 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4). 5. 解析:选A 若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则0<a <1,由此可知y =log a |x |的图象大致是A.6. 解析:选C 令2e x -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >10,故选C.7. 解析:选A ∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,∴x 1+x 2=0,又∵f (x )=a x ,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,故选A.8. 解析:选D 由函数y =f (x )的图象关于x =0对称,得y =f (x )是偶函数.当x ∈(0,+∞)时,f (x )=log 2x 单调递增,又a =f (-3)=f (3),所以a >c >b ,选项D 正确.9. 解析:选A 画出y 1=f (x ),y 2=12log 2|x |的图象如图所示,由图象可得所求解的个数为5.10. 解析:选B ①:由f (x )=2x在R 上单调递增可知①正确;②:应向右平移π6个单位长度,故②错误;③:当n =0时,y =x n 的图象应为直线y =1去掉点(0,1),故③错误;④:∵a ≠b ,∴log 2a =-log 2b ,log 2a +log 2b =0,log 2(ab )=0,ab =1,故④正确.∴正确的命题为①④,故选B.11. 解析:选A 依题意,注意到x =0是方程|x 4-x 3|=ax 的一个根.当x >0时,a =|x 3-x 2|,记f (x )=x 3-x 2,则有f ′(x )=3x 2-2x ,易知f (x )=x 3-x 2在区间⎝⎛⎭⎪⎫0,23上单调递减,在区间(-∞,0),⎝ ⎛⎭⎪⎫23,+∞上单调递增.又f (1)=0,因此g (x )=|x4-x3|x=⎩⎪⎨⎪⎧|f (x )|,x>0,-|f (x )|,x<0的图象如图所示,由题意得直线y =a 与函数y =g (x )的图象有3个不同的交点时,a ∈⎝⎛⎭⎪⎫0,427,选A.12. 解析:选D 函数f (x )=e x -1+x -2的零点为x =1,设g (x )=x 2-ax -a +3的零点为b ,若函数f (x )=ex -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则|1-b |≤1,∴0≤b ≤2.由于g (x )=x 2-ax -a +3必经过点(-1,4),∴要使其零点在区间[0,2]上,则⎩⎪⎨⎪⎧g (0)≥0,g ⎝ ⎛⎭⎪⎫a 2≤0,即⎩⎨⎧-a +3≥0,⎝ ⎛⎭⎪⎫a 22-a ·a2-a +3≤0,解得2≤a ≤3. 13. 解析:lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1.答案:-114. 解析:由题意得:|f (0)|≤1⇒|n |≤1⇒-1≤n ≤1;|f (1)|≤1⇒|2+n |≤1⇒-3≤n ≤-1,因此n =-1,∴f (0)=-1,f (1)=1.由f (x )的图象可知:要满足题意,则图象的对称轴为直线x =0,∴2-m =0,m =2,∴f (x )=2x 2-1,∴f ⎝ ⎛⎭⎪⎫23=-19.答案:-1915. 解析:由已知条件,得192=e b,∴b =ln 192. 又∵48=e22k +b=e22k +ln 192=192e 22k=192(e 11k )2,∴e 11k=⎝ ⎛⎭⎪⎫4819212=⎝ ⎛⎭⎪⎫1412=12.设该食品在33 ℃的保鲜时间是t 小时,则t =e33k +ln 192=192e 33k=192(e 11k )3=192×⎝ ⎛⎭⎪⎫123=24. 答案:2416. 解析:在同一坐标系中作出函数f (x )与g (x )的图象,如图,结合图象可知,实数a 的取值范围是⎝⎛⎦⎥⎤0,12.由x -1x=5a ,可得x 2-5ax -1=0,设h (x )=x 2-5ax -1,当x =1时,由h (1)=1-5a -1=0可得a =0,不满足题意;当x =2时,由h (2)=4-10a -1=0可得a =310≤12,满足题意;当x =3时,由h (3)=9-15a -1=0可得a=815>12,不满足题意.又函数y=x-1x在(0,+∞)上单调递增,故满足条件的实数a的个数为1.答案:1。

相关文档
最新文档