2019-2020年高考数学一轮复习第四章三角函数与解三角形第七节解三角形应用举例课件理

合集下载

2023年高考数学一轮复习第四章三角函数与解三角形7正弦定理余弦定理练习含解析

2023年高考数学一轮复习第四章三角函数与解三角形7正弦定理余弦定理练习含解析

正弦定理、余弦定理考试要求 1.掌握正弦定理、余弦定理及其变形.2.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理与余弦定理定理正弦定理余弦定理内容asin A=b sin B =csin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)a sin B =b sin A ,b sin C =c sin B , a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形中常用的面积公式 (1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论: (1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边. (3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sinA +B2=cosC2;cosA +B2=sin C2. (5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( × ) (4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.( × ) 教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于( ) A.π6 B.π3 C.2π3D.5π6答案 C解析 因为在△ABC 中,设AB =c =5,AC =b =3,BC =a =7, 所以由余弦定理得cos∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角, 所以∠BAC =2π3.2.在△ABC 中,若A =60°,a =43,b =42,则B =. 答案 45°解析 由正弦定理知a sin A =bsin B ,则sin B =b sin A a =42×3243=22.又a >b ,则A >B ,所以B 为锐角,故B =45°.3.在△ABC 中,a =2,b =3,C =60°,则c =,△ABC 的面积=. 答案7 332解析 易知c =4+9-2×2×3×12=7,△ABC 的面积等于12×2×3×32=332.题型一 利用正弦定理、余弦定理解三角形例1 (12分)(2021·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD ·sin∠ABC =a sin C . (1)证明:BD =b ;[切入点:角转化为边](2)若AD =2DC ,求cos∠ABC .[关键点:∠BDA 和∠BDC 互补]高考改编在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +a sin A =b sin B +c sin C . (1)求A ;(2)设D 是线段BC 的中点,若c =2,AD =13,求a . 解 (1)根据正弦定理,由b sin C +a sin A =b sin B +c sin C , 可得bc +a 2=b 2+c 2, 即bc =b 2+c 2-a 2,由余弦定理可得,cos A =b 2+c 2-a 22bc =12,因为A 为三角形内角,所以A =π3.(2)因为D 是线段BC 的中点,c =2,AD =13, 所以∠ADB +∠ADC =π, 则cos∠ADB +cos∠ADC =0,所以AD 2+BD 2-AB 22AD ·BD +AD 2+DC 2-AC 22AD ·DC=0,即13+a 24-22213·a 2+13+a 24-b2213·a2=0,整理得a 2=2b 2-44,又a 2=b 2+c 2-2bc cos A =b 2+4-2b , 所以b 2+4-2b =2b 2-44, 解得b =6或b =-8(舍), 因此a 2=2b 2-44=28, 所以a =27.思维升华 解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.跟踪训练1 (2021·北京)已知在△ABC 中,c =2b cos B ,C =2π3.(1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使△ABC 存在且唯一确定,并求出BC 边上的中线的长度.①c =2b ;②周长为4+23;③面积为S △ABC =334.解 (1)∵c =2b cos B ,则由正弦定理可得sin C =2sin B cos B , ∴sin2B =sin2π3=32,∵C =2π3, ∴B ∈⎝ ⎛⎭⎪⎫0,π3,2B ∈⎝⎛⎭⎪⎫0,2π3, ∴2B =π3,解得B =π6.(2)若选择①:由正弦定理结合(1)可得 c b =sin C sin B =3212=3, 与c =2b 矛盾,故这样的△ABC 不存在; 若选择②:由(1)可得A =π6,设△ABC 的外接圆半径为R , 则由正弦定理可得a =b =2R sinπ6=R , c =2R sin2π3=3R , 则周长为a +b +c =2R +3R =4+23, 解得R =2,则a =2,c =23, 由余弦定理可得BC 边上的中线的长度为232+12-2×23×1×cosπ6=7; 若选择③:由(1)可得A =π6,即a =b ,则S △ABC =12ab sin C =12a 2×32=334,解得a =3,则由余弦定理可得BC 边上的中线的长度为b 2+⎝ ⎛⎭⎪⎫a 22-2×b ×a 2×cos 2π3=3+34+3×32=212. 题型二 正弦定理、余弦定理的简单应用 命题点1 三角形形状判断 例2 在△ABC 中,c -a 2c =sin 2 B 2(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案 A解析 由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B2, 即cos B =ac.方法一 由余弦定理得a 2+c 2-b 22ac =ac,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,无法判断两直角边是否相等. 方法二 由正弦定理得cos B =sin Asin C ,又sin A =sin(B +C )=sin B cos C +cos B sin C , 所以cos B sin C =sin B cos C +cos B sin C , 即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为三角形的内角,所以C =π2,所以△ABC 为直角三角形,无法判断两直角边是否相等.延伸探究将“c -a 2c =sin 2 B 2”改为“sin A sin B =a c,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解 因为sin A sin B =ac ,所以a b =a c,所以b =c . 又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3, 所以△ABC 是等边三角形.思维升华 判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论. 命题点2 三角形的面积例3 (2022·沧州模拟)在①sin A ,sin C ,sin B 成等差数列;②a ∶b ∶c =4∶3∶2;③b cos A =1这三个条件中任选一个,补充在下面问题中.若问题中的三角形存在,求该三角形面积的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且a (sin A -sin B )+b sinB =c sinC ,c =1,?注:如果选择多个条件分别解答,按第一个解答计分. 解 因为a (sin A -sin B )+b sin B =c sin C , 由正弦定理得a (a -b )+b 2=c 2, 即a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), 所以C =π3.选择①:因为sin A ,sin C ,sin B 成等差数列, 所以sin A +sin B =2sin C ,即a +b =2c =2, 由a 2+b 2-c 2=a 2+b 2-1=ab , 得(a +b )2-3ab =1,所以ab =1, 故存在满足题意的△ABC ,S △ABC =12ab sin C =12×1×sin π3=34. 选择②:因为a ∶b ∶c =4∶3∶2, 所以A >B >C =π3,这与A +B +C =π矛盾,所以△ABC 不存在. 选择③: 因为b cos A =1,所以b ·b 2+1-a 22b=1,得b 2=1+a 2=c 2+a 2, 所以B =π2,此时△ABC 存在.又C =π3,所以A =π6,所以a =1×tanπ6=33, 所以S △ABC =12ac =36.思维升华 三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 命题点3 与平面几何有关的问题例4 如图,在平面四边形ABCD 中,已知A =π2,B =2π3,AB =6.在AB 边上取点E ,使得BE=1,连接EC ,ED .若∠CED =2π3,EC =7.(1)求sin∠BCE 的值; (2)求CD 的长.解 (1)在△BEC 中,由正弦定理, 知BE sin∠BCE =CEsin B.∵B =2π3,BE =1,CE =7,∴sin∠BCE =BE ·sin B CE =327=2114. (2)∵∠CED =B =2π3,∴∠DEA =∠BCE ,∴cos∠DEA =1-sin 2∠DEA =1-sin 2∠BCE =1-328=5714. ∵A =π2,∴△AED 为直角三角形,又AE =5,∴ED =AE cos∠DEA =55714=27.在△CED 中,CD 2=CE 2+DE 2-2CE ·DE ·cos∠CED=7+28-2×7×27×⎝ ⎛⎭⎪⎫-12=49. ∴CD =7. 教师备选1.在△ABC 中,已知a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,则该三角形的形状是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .钝角三角形答案 C解析 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), ∴C =π3,由2cos A sin B =sin C ,得cos A =sin C 2sin B =c 2b =c 2+b 2-a22bc ,∴b 2=a 2,即b =a ,又C =π3,故三角形为等边三角形.2.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C -c cos(B +C )=-b3cos A +B .(1)求tan C ;(2)若c =3,sin A sin B =1627,求△ABC 的面积.解 (1)∵a cos C -c cos(B +C ) =-b3cos A +B ,∴a cos C +c cos A =b3cos C.由正弦定理得sin A cos C +sin C cos A =sin B3cos C ,∴sin(A +C )=sin B3cos C ,即sin B =sin B3cos C ,又∵sin B ≠0, ∴cos C =13,∴sin C =1-⎝ ⎛⎭⎪⎫132=223, tan C =sin Ccos C =2 2.(2)若c =3,由正弦定理asin A =bsin B =csin C,得asin A =b sin B =3223=924, 则a =924sin A ,b =924sin B ,则ab =924sin A ·924sin B =16216sin A sin B=16216×1627=6, ∴S △ABC =12ab sin C =12×6×223=2 2.思维升华 平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.跟踪训练 2 (1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cos B = (2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案 D解析 因为c -a cos B =(2a -b )cos A ,C =π-(A +B ),所以由正弦定理得sin C -sin A cos B=2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B=2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去), 所以△ABC 为等腰或直角三角形.(2)(2022·郑州模拟)如图,在△ABC 中,AB =9,cos B =23,点D 在BC 边上,AD =7,∠ADB 为锐角.①求BD ;②若∠BAD =∠DAC ,求sin C 的值及CD 的长.解 ①在△ABD 中,由余弦定理得AB 2+BD 2-2AB ·BD ·cos B =AD 2,整理得BD 2-12BD +32=0,所以BD =8或BD =4.当BD =4时,cos∠ADB =16+49-812×4×7=-27,则∠ADB >π2,不符合题意,舍去; 当BD =8时,cos∠ADB =64+49-812×8×7=27,则∠ADB <π2,符合题意,所以BD =8.②在△ABD 中,cos∠BAD =AB 2+AD 2-BD 22AB ·AD =92+72-822×9×7=1121,所以sin∠BAD =8521,又sin∠ADB =357,所以sin C =sin(∠ADB -∠CAD )=sin(∠ADB -∠BAD )=sin∠ADB cos∠BAD -cos∠ADB sin∠BAD=357×1121-27×8521=175147,在△ACD 中,由正弦定理得CD sin∠CAD =ADsin C ,即CD =ADsin C ·sin∠CAD =7175147×8521=39217.课时精练1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C 等于() A.π2 B.π3C.π4D.π6答案 C 解析 根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24, 所以sin C =a 2+b 2-c 22ab=cos C , 所以在△ABC 中,C =π4. 2.(2022·北京西城区模拟)在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于( ) A.35 B.31 C .6D .5答案 B解析 因为sin A =6sin B ,由正弦定理可得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×1×6×12, 解得c =31.3.(2022·济南质检)已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,a =4,cos2A = -725,则△ABC 外接圆半径为( ) A .5B .3C.52D.32答案 C解析 因为cos2A =-725, 所以1-2sin 2A =-725, 解得sin A =±45, 因为A ∈(0,π),所以sin A =45,又a =4,所以2R =a sin A =445=5, 所以R =52. 4.(2022·河南九师联盟联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2b ,sin 2A -3sin 2B =12sin A sin C ,则角C 等于( ) A.π6B.π3C.π2D.2π3答案 B解析 ∵sin 2A -3sin 2B =12sin A sin C , 由正弦定理可得a 2-3b 2=12ac , ∵c =2b ,∴a 2-3b 2=12a ·2b =ab , 由余弦定理可得cos C =a 2+b 2-c 22ab =a 2-3b 22ab =12, ∵0<C <π,∴C =π3. 5.(多选)(2022·山东多校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2b sin A =5a cos B ,AB =2,AC =26,D 为BC 的中点,E 为AC 上的点,且BE 为∠ABC 的平分线,下列结论正确的是( )A .cos∠BAC =-66 B .S △ABC =3 5 C .BE =2D .AD = 5答案 AD解析 由正弦定理可知2sin B sin A =5sin A cos B ,∵sin A ≠0,∴2sin B =5cos B .又sin 2B +cos 2B =1,∴sin B =53,cos B =23,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC =6.A 项,cos∠BAC =AB 2+AC 2-BC 22AB ·AC =4+24-362×2×26=-66;B 项,S △ABC =12AB ·BC sin B =12×2×6×53=25;C 项,由角平分线性质可知AEEC =AB BC =13,∴AE =62.BE 2=AB 2+AE 2-2AB ·AE cos A =4+32-2×2×62×⎝ ⎛⎭⎪⎫-66=152,∴BE =302;D 项,在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD cos B=4+9-2×2×3×23=5,∴AD = 5.6.(多选)(2022·张家口质检)下列命题中,正确的是( )A .在△ABC 中,A >B ,则sin A >sin BB .在锐角△ABC 中,不等式sin A >cos B 恒成立C .在△ABC 中,若a cos A =b cos B ,则△ABC 必是等腰直角三角形D .在△ABC 中,若B =60°,b 2=ac ,则△ABC 必是等边三角形答案 ABD解析 对于A ,由A >B ,可得a >b ,利用正弦定理可得sin A >sin B ,正确;对于B ,在锐角△ABC 中,A ,B ∈⎝ ⎛⎭⎪⎫0,π2,∵A +B >π2, ∴π2>A >π2-B >0, ∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B , ∴不等式sin A >cos B 恒成立,正确;对于C ,在△ABC 中,由a cos A =b cos B ,利用正弦定理可得sin A cos A =sin B cos B ,∴sin2A =sin2B ,∵A ,B ∈(0,π),∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2, ∴△ABC 是等腰三角形或直角三角形,∴是假命题,错误;对于D ,由于B =60°,b 2=ac ,由余弦定理可得b 2=ac =a 2+c 2-ac ,可得(a -c )2=0,解得a =c ,可得A =C =B =60°,故正确.7.(2022·潍坊质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且b =3,a -c =2,A =2π3.则△ABC 的面积为. 答案 1534解析 由余弦定理得a 2=b 2+c 2-2bc cos A ,∵b =3,a -c =2,A =2π3, ∴(c +2)2=32+c 2-2×3c ×⎝ ⎛⎭⎪⎫-12, 解得c =5,则△ABC 的面积为S =12bc sin A =12×3×5×32=1534. 8.(2021·全国乙卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,B =60°,a 2+c 2=3ac ,则b =.答案 2 2解析 由题意得S △ABC =12ac sin B =34ac =3,则ac =4,所以a 2+c 2=3ac =3×4=12,所以b 2=a 2+c 2-2ac cos B =12-2×4×12=8,则b =22(负值舍去).9.(2022·南平模拟)在①2c cos B =2a -b ,②△ABC 的面积为34(a 2+b 2-c 2),③cos 2A -cos 2C =sin 2B -sin A sin B ,这三个条件中任选一个,补充在下面的问题中,并加以解答.(如果选择多个条件作答,则按所选的第一个条件给分)已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且.(1)求角C 的大小;(2)若c =2且4sin A sin B =3,求△ABC 的面积.解 (1)若选条件①2c cos B =2a -b ,则2c ·a 2+c 2-b 22ac=2a -b , 即a 2+b 2-c 2=ab ,所以cos C =12, 又因为C ∈(0,π),所以C =π3. 若选条件②△ABC 的面积为34(a 2+b 2-c 2), 则34(a 2+b 2-c 2)=12ab sin C , 即sin C =3cos C ,所以tan C =3,又因为C ∈(0,π),所以C =π3. 若选条件③cos 2A -cos 2C =sin 2B -sin A sin B ,则(1-sin 2A )-(1-sin 2C )=sin 2B -sin A sin B ,即sin 2A +sin 2B -sin 2C =sin A sin B ,即a 2+b 2-c 2=ab ,所以cos C =12,又因为C ∈(0,π),所以C =π3. (2)因为c =2, 所以a sin A =b sin B =c sin C =2sin π3=43, 所以sin A =34a ,sin B =34b , 又因为4sin A sin B =3,所以ab =4,△ABC 的面积为12ab sin C = 3. 10.(2022·湘豫联盟联考)如图,在△ABC 中,∠B =60°,AB =8,AD =7,点D 在BC 上,且cos∠ADC =17.(1)求BD ;(2)若cos∠CAD =32,求△ABC 的面积. 解 (1)∵cos∠ADB =cos(π-∠ADC )=-cos∠ADC =-17. 在△ABD 中,由余弦定理得82=BD 2+72-2·BD ·7·cos∠ADB ,解得BD =3或BD =-5(舍).(2)由已知sin∠ADC =437,sin∠CAD =12, ∴sin C =sin(∠ADC +∠CAD )=437×32+17×12=1314. 由正弦定理得CD =AD sin∠CAD sin C =7×121314=4913, ∴BC =3+4913=8813,∴S △ABC =12×8×8813×32=176313.11.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且4S =(a+b )2-c 2,则sin ⎝ ⎛⎭⎪⎫π4+C 等于 ( ) A .1B .-22C.22D.32 答案 C解析 因为S =12ab sin C , cos C =a 2+b 2-c 22ab, 所以2S =ab sin C ,a 2+b 2-c 2=2ab cos C .又4S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,所以2ab sin C =2ab cos C +2ab .因为ab ≠0,所以sin C =cos C +1.因为sin 2C +cos 2C =1,所以(cos C +1)2+cos 2C =1,解得cos C =-1(舍去)或cos C =0,所以sin C =1,则sin ⎝ ⎛⎭⎪⎫π4+C =22(sin C +cos C )=22. 12.(2022·焦作模拟)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 依次成等差数列,△ABC 的周长为15,且(sin A +sin B )2+cos 2C =1+sin A sin B ,则cos B 等于( )A.1314B.1114C.12D .-12答案 B解析 因为(sin A +sin B )2+cos 2C=1+sin A sin B ,所以sin 2A +sin 2B +2sin A ·sin B +1-sin 2C=1+sin A ·sin B ,所以由正弦定理得a 2+b 2-c 2=-ab ,又a ,b ,c 依次成等差数列,△ABC 的周长为15,即a +c =2b ,a +b +c =15, 由⎩⎪⎨⎪⎧ a 2+b 2-c 2=-ab ,a +c =2b ,a +b +c =15,解得⎩⎪⎨⎪⎧ a =3,b =5,c =7.cos B =a 2+c 2-b 22ac =32+72-522×3×7=1114. 13.(2022·开封模拟)在平面四边形ABCD 中,BC ⊥CD ,∠B =3π4,AB =32,AD =210,若AC =35,则CD 为.答案 1或5解析 因为在△ABC 中,∠B =3π4,AB =32, AC =35,由正弦定理可得AC sin B =AB sin∠ACB, 所以sin∠ACB =AB ·sin B AC =32×2235=55, 又BC ⊥CD ,所以∠ACB 与∠ACD 互余,因此cos∠ACD =sin∠ACB =55, 在△ACD 中,AD =210,AC =35,由余弦定理可得cos∠ACD =55=AC 2+CD 2-AD 22AC ·CD =5+CD 265CD, 所以CD 2-6CD +5=0,解得CD =1或CD =5.14.(2022·大连模拟)托勒密(Ptolemy)是古希腊天文学家、地理学家、数学家,托勒密定理就是由其名字命名,该定理指出:圆的内接凸四边形两组对边乘积的和等于两条对角线的乘积.已知凸四边形ABCD 的四个顶点在同一个圆的圆周上,AC ,BD 是其两条对角线,AB =AD ,∠BAD =120°,AC =6,则四边形ABCD 的面积为.答案 9 3 解析 在△ABD 中,设AB =a ,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD =3a 2,所以BD =3a ,由托勒密定理可得a (BC +CD )=AC ·3a ,即BC +CD =3AC ,又∠ABD =∠ACD =30°,所以四边形ABCD 的面积 S =12BC ·AC sin30°+12CD ·AC sin30°=14(BC +CD )·AC =34AC 2=9 3.15.(多选)中国南宋时期杰出数学家秦九韶在《数书九章》中提出了“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即S =14⎣⎢⎡⎦⎥⎤c 2a 2-⎝ ⎛⎭⎪⎫c 2+a 2-b 222(S 为三角形的面积,a ,b ,c 为三角形的三边).现有△ABC 满足sin A ∶si n B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =63,则下列结论正确的是( )A .△ABC 的周长为10+27B .△ABC 的三个内角满足A +B =2CC .△ABC 的外接圆半径为4213D .△ABC 的中线CD 的长为3 2答案 AB解析 A 项,设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为sin A ∶sin B ∶sin C =2∶3∶7,所以由正弦定理可得a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t (t >0),因为S △ABC =63,所以63=14⎣⎢⎡⎦⎥⎤7t 2×4t 2-⎝ ⎛⎭⎪⎫7t 2+4t 2-9t 222,解得t =2,则a =4,b =6,c =27,故△ABC 的周长为10+27,A 正确;B 项,因为cos C =a 2+b 2-c 22ab =16+36-282×4×6=12, 所以C =π3,A +B =π-π3=2π3=2C , 故B 正确;C 项,因为C =π3,所以sin C =32, 由正弦定理得2R =c sin C =2732=4213, R =2213, C 错误;D 项,由余弦定理得cos B =a 2+c 2-b 22ac =16+28-362×4×27=714, 在△BCD 中,BC =4,BD =7,由余弦定理得cos B =16+7-CD 22×4×7=714, 解得CD =19,D 错误.16.(2021·新高考全国Ⅱ)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,b =a +1,c =a +2.(1)若2sin C =3sin A ,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 解 (1)因为2sin C =3sin A ,则2c =2(a +2)=3a ,则a =4,故b =5,c =6,cos C =a 2+b 2-c 22ab =18,所以C 为锐角, 则sin C =1-cos 2C =378,因此, S △ABC =12ab sin C =12×4×5×378=1574. (2)显然c >b >a ,若△ABC 为钝角三角形,则C 为钝角,由余弦定理可得cos C =a 2+b 2-c 22ab =a 2+a +12-a +222a a +1=a 2-2a -32a a +1<0,则0<a <3,由三角形三边关系可得a +a +1>a +2, 可得a >1,因为a ∈N *,故a =2.。

届数学一轮复习第四章三角函数解三角形创新引领微课把握三角函数与解三角形中的最值问题教学案含解析

届数学一轮复习第四章三角函数解三角形创新引领微课把握三角函数与解三角形中的最值问题教学案含解析

把握三角函数与解三角形中的最值问题微点聚焦突破类型一三角函数的最值角度1可化为“y=A sin(ωx+φ)+B”型的最值问题【例1-1】如图所示,在平面直角坐标系xOy中,扇形AOB的半径为2,圆心角为错误!,点M是弧AB上异于A,B的点。

(1)若点C(1,0),且CM=2,求点M的横坐标;(2)求△MAB面积的最大值.解(1)连接OM,依题意可得,在△OCM中,OC=1,CM=2,OM=2,所以cos ∠COM=错误!=错误!,所以点M的横坐标为2×错误!=错误!。

(2)设∠AOM=θ,θ∈错误!,则∠BOM=错误!-θ,S△MAB=S△OAM+S△OBM-S△OAB=错误!×2×2错误!-错误!×2×2×错误!=2错误!sin错误!-错误!,因为θ∈错误!,所以θ+错误!∈错误!,所以当θ=错误!时,△MAB的面积取得最大值,最大值为错误!。

思维升华化为y=A sin(ωx+φ)+B的形式求最值时,特别注意自变量的取值范围对最大值、最小值的影响,可通过比较区间端点的取值与最高点、最低点的取值来确定函数的最值.角度2可化为y=f(sin x)(或y=f(cos x))型的最值问题【例1-2】函数y=cos 2x+2sin x的最大值为________.解析y=cos 2x+2sin x=-2sin2x+2sin x+1。

设t=sin x,则-1≤t≤1,所以原函数可以化为y=-2t2+2t+1=-2错误!错误!+错误!,所以当t=错误!时,函数y取得最大值为错误!。

答案错误!思维升华可化为y=f(sin x)(或y=f(cos x))型三角函数的最值或值域可通过换元法转化为其他函数的最值或值域。

【训练1】(1)(角度1)函数f(x)=3sin x+4cos x,x∈[0,π]的值域为________.(2)(角度2)若函数f(x)=cos 2x+a sin x在区间错误!上的最小值大于零,则a的取值范围是________.解析(1)f(x)=3sin x+4cos x=5错误!=5sin(x+φ),其中cos φ=错误!,sin φ=错误!,错误!〈φ<错误!。

2020届高三理数一轮讲义:4.7-解三角形应用举例(含答案)

2020届高三理数一轮讲义:4.7-解三角形应用举例(含答案)

第7节解三角形应用举例最新考纲能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题.知识梳理1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).3.方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.4.坡度:坡面与水平面所成的二面角的正切值.5.解决与平面几何有关的计算问题关键是找清各量之间的关系,从而应用正、余弦定理求解.[微点提醒]1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混.2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误.基础自测1.判断下列结论正误(在括号内打“√”或“×”) (1)东北方向就是北偏东45°的方向.( )(2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( )(3)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.( )(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )解析 (2)α=β;(3)俯角是视线与水平线所构成的角. 答案 (1)√ (2)× (3)× (4)√2.(必修5P11例1改编)如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为()A.50 2 mB.50 3 mC.25 2 mD.2522 m解析 由正弦定理得AB sin ∠ACB =ACsin ∠CBA ,又∵∠CBA =30°,∴AB =AC sin ∠ACBsin ∠CBA=50×2212=502(m).答案 A3. (必修5P15练习T3改编)如图所示,D ,C ,B 三点在地面的同一条直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.解析 由已知得∠DAC =30°,△ADC 为等腰三角形, AD =3a ,所以在Rt △ADB 中,AB =12AD =32a .答案 32a4.(2019·雅礼中学月考)如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A.北偏东10°B.北偏西10°C.南偏东80°D.南偏西80°解析 由条件及图可知,∠A =∠CBA =40°, 又∠BCD =60°,所以∠CBD =30°, 所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 答案 D5.(2017·浙江卷)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________.解析 如图,连接正六边形的对角线,将正六边形分成六个边长为1的正三角形,从而S 6=6×12×12×sin 60°=332.答案3326.(2018·福州模拟)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.解析 因为sin ∠BAC =223,且AD ⊥AC ,所以sin ⎝ ⎛⎭⎪⎫π2+∠BAD =223,所以cos ∠BAD =223,在△BAD 中,由余弦定理, 得BD =AB 2+AD 2-2AB ·AD cos ∠BAD=(32)2+32-2×32×3×223= 3. 答案3考点一 求距离、高度问题 多维探究角度1 测量高度问题【例1-1】 如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解析 由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°, 解得BC =3002(m).在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m). 答案 100 6规律方法 1.在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.3.注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.【训练1】 如图,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于( )A.5 6B.15 3C.5 2D.15 6解析 在△BCD 中,∠CBD =180°-15°-30°=135°. 由正弦定理得BC sin 30°=30sin 135°, 所以BC =15 2. 在Rt △ABC 中,AB =BC tan ∠ACB =152×3=15 6. 答案 D角度2测量距离问题【例1-2】如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登,已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250米,请问:两位登山爱好者能否在2个小时内徒步登上山峰?(即从B点出发到达C点)解在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1 km,因为∠ABD=120°,由正弦定理得ABsin ∠ADB=ADsin ∠ABD,解得AD= 3 km,在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32CD,即CD2+3CD-6=0,解得CD=33-32km(负值舍去),BC=BD+CD=33-12km,两个小时小王和小李可徒步攀登1 250×2=2 500米,即2.5千米,而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.规律方法 1.选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解. 2.确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.【训练2】海轮“和谐号”从A处以每小时21海里的速度出发,海轮“奋斗号”在A处北偏东45°的方向,且与A相距10海里的C处,沿北偏东105°的方向以每小时9海里的速度行驶,则海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为________小时.解析 设海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为x 小时,如图,则由已知得△ABC 中,AC =10,AB =21x ,BC =9x ,∠ACB =120°. 由余弦定理得:(21x )2=100+(9x )2-2×10×9x ×cos 120°, 整理,得36x 2-9x -10=0,解得x =23或x =-512(舍).所以海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为23小时. 答案 23考点二 测量角度问题【例2】 已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/时的速度向岛屿北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船? ⎝ ⎛⎭⎪⎫参考数据:sin 38°≈5314,sin 22°=3314解 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为每小时x 海里,则BC =0.5x ,AC =5,依题意, ∠BAC =180°-38°-22°=120°,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos 120°, 所以BC 2=49,所以BC =0.5x =7,解得x =14.又由正弦定理得sin ∠ABC =AC ·sin ∠BAC BC =5×327=5314,所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船. 规律方法 1.测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.2.方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.【训练3】 如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD 等于( )A.30°B.45°C.60°D.75°解析 依题意可得AD =2010 m ,AC =30 5 m , 又CD =50 m ,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =(305)2+(2010)2-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°. 答案 B考点三 正(余)弦定理在平面几何中的应用【例3】 (2019·洛阳二模)如图,已知扇形的圆心角∠AOB =2π3,半径为42,若点C 是AB ︵上的一动点(不与点A ,B 重合).(1)若弦BC =4(3-1),求BC ︵的长; (2)求四边形OACB 面积的最大值.解 (1)在△OBC 中,BC =4(3-1),OB =OC =42,所以由余弦定理得cos ∠BOC =OB 2+OC 2-BC 22OB ·OC =32,所以∠BOC =π6,于是BC ︵的长为π6×42=223π.(2)设∠AOC =θ,θ∈⎝ ⎛⎭⎪⎫0,2π3,则∠BOC =2π3-θ,S 四边形OACB =S △AOC +S △BOC =12×42×42sin θ+12×42×42·sin ⎝ ⎛⎭⎪⎫2π3-θ=24sinθ+83cos θ=163sin ⎝ ⎛⎭⎪⎫θ+π6,由于θ∈⎝ ⎛⎭⎪⎫0,2π3,所以θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,当θ=π3时,四边形OACB 的面积取得最大值16 3.规律方法 1.把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解.2.寻找各个三角形之间的联系,交叉使用公共条件,求出结果,求解时要灵活利用平面几何的性质,将几何性质与正弦、余弦定理有机结合起来.【训练4】(2019·成都诊断)如图,在平面四边形ABCD中,已知A=π2,B=2π3,AB=6.在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=2π3,EC=7.(1)求sin∠BCE的值;(2)求CD的长.解(1)在△BEC中,由正弦定理,知BEsin∠BCE=CEsin B,因为B=2π3,BE=1,CE=7,所以sin∠BCE=BE·sin BCE=327=2114.(2)因为∠CED=B=2π3,所以∠DEA=∠BCE,所以cos∠DEA=1-sin2∠DEA=1-sin2∠BCE=1-328=5714.因为A=π2,所以△AED为直角三角形,又AE=5,所以ED=AEcos∠DEA=55714=27.在△CED中,CD2=CE2+DE2-2CE·DE·cos∠CED=7+28-2×7×27×⎝⎛⎭⎪⎫-12=49.所以CD=7.[思维升华]利用解三角形解决实际问题时:(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型;(2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义. [易错防范]在三角形和三角函数的综合问题中,要注意边角关系相互制约,推理题中的隐含条件.基础巩固题组(建议用时:40分钟)一、选择题1.在相距2 km的A,B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离为()A. 6 kmB. 2 kmC. 3 kmD.2 km解析如图,在△ABC中,由已知可得∠ACB=45°,∴ACsin 60°=2sin 45°,∴AC=22×32=6(km).答案 A2.如图所示,为了测量某湖泊两侧A,B间的距离,李宁同学首先选定了与A,B 不共线的一点C(△ABC的角A,B,C所对的边分别记为a,b,c),然后给出了三种测量方案:①测量A,C,b;②测量a,b,C;③测量A,B,a.则一定能确定A,B间的距离的所有方案的序号为()A.①②B.②③C.①③D.①②③解析对于①③可以利用正弦定理确定唯一的A,B两点间的距离,对于②直接利用余弦定理即可确定A ,B 两点间的距离. 答案 D3.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( ) A.102海里 B.103海里 C.203海里D.202海里解析 如图所示,易知,在 △ABC 中,AB =20,∠CAB =30°,∠ACB =45°, 根据正弦定理得BC sin 30°=AB sin 45°,解得BC =102(海里). 答案 A4.(2019·深圳模拟)一架直升飞机在200 m 高度处进行测绘,测得一塔顶与塔底的俯角分别是30°和60°,则塔高为( ) A.4003 m B.40033 m C.20033 mD.2003 m 解析 如图所示.在Rt △ACD 中可得CD =20033=BE ,在△ABE 中,由正弦定理得AB sin 30°=BEsin 60°,则AB =2003,所以DE =BC =200-2003=4003(m). 答案 A5.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A.240(3-1)mB.180(2-1)mC.120(3-1)mD.30(3+1)m解析 如图,∠ACD =30°,∠ABD =75°,AD =60 m ,在Rt △ACD 中,CD =AD tan ∠ACD =60tan 30°=603(m),在Rt △ABD 中,BD =AD tan ∠ABD =60tan 75°=602+3=60(2-3)(m),∴BC =CD -BD =603-60(2-3)=120(3-1)(m). 答案 C 二、填空题6.如图,在△ABC 中,B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB =________.解析 在△ACD 中,由余弦定理可得 cos C =49+9-252×7×3=1114,则sin C =5314.在△ABC 中,由正弦定理可得AB sin C =ACsin B ,则AB =AC sin C sin B =7×531422=562.答案5627.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.解析 连接OC ,由题意知CD =150米,OD =100米,∠CDO =60°.在△COD 中,由余弦定理得OC 2=CD 2+OD 2-2CD ·OD ·cos 60°,即OC =507. 答案 5078.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为________.解析 在△ABC 中,AB =40,AC =20,∠BAC =120°, 由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207. 由正弦定理,得AB sin ∠ACB =BC sin ∠BAC⇒sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277. 由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°) =cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114.答案 2114 三、解答题9.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m ,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s 后看山顶的俯角为45°,则山顶的高度为多少米?(取2=1.4,3=1.7)解 如图,作CD 垂直于AB 的延长线于点D ,由题意知∠A =15°,∠DBC =45°,所以∠ACB =30°,AB =50×420=21 000(m).又在△ABC 中,BC sin A =ABsin ∠ACB,所以BC=21 00012×sin 15°=10 500(6-2).因为CD⊥AD,所以CD=BC·sin∠DBC=10 500(6-2)×22=10 500(3-1)≈7 350(m).故山顶的高度为10 000-7 350=2 650(m).10.在△ABC中,A=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.解设△ABC的内角A,B,C所对边的长分别是a,b,c,由余弦定理,得a2=b2+c2-2bc cos∠BAC=(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a=310.又由正弦定理,得sin B=b sin∠BACa=3310=1010,由题设知0<B<π4,所以cos B=1-sin2B=1-110=31010.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B.由正弦定理,得AD=AB·sin Bsin(π-2B)=6sin B2sin B cos B=3cos B=10.能力提升题组(建议用时:20分钟)11.(2018·衡水质检)某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C处(点C在水平地面下方,O为CH与水平地面ABO 的交点)进行该仪器的垂直弹射,水平地面上两个观察点A,B两地相距100米,∠BAC=60°,其中A到C的距离比B到C的距离远40米.A地测得该仪器在C 处的俯角为∠OAC=15°,A地测得最高点H的仰角为∠HAO=30°,则该仪器的垂直弹射高度CH 为( )A.210(6+2)米B.1406米C.2102米D.20(6-2)米解析 由题意,设AC =x 米,则BC =(x -40)米,在△ABC 内,由余弦定理:BC 2=BA 2+CA 2-2BA ·CA ·cos ∠BAC ,即(x -40)2=x 2+10 000-100x ,解得x =420(米).在△ACH 中,AC =420米,∠CAH =30°+15°=45°,∠CHA =90°-30°=60°, 由正弦定理:CH sin ∠CAH =AC sin ∠AHC .可得CH =AC ·sin ∠CAHsin ∠AHC =1406(米).答案 B12.校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10 6 m(如图所示),旗杆底部与第一排在一个水平面上.若国歌时长为50 s ,升旗手应以________m/s 的速度匀速升旗.解析 依题意可知∠AEC =45°,∠ACE =180°-60°-15°=105°, ∴∠EAC =180°-45°-105°=30°. 由正弦定理可知CE sin ∠EAC =AC sin ∠CEA,∴AC =CEsin ∠EAC·sin ∠CEA =20 3 m.∴在Rt △ABC 中,AB =AC ·sin ∠ACB =203×32=30 m.∵国歌时长为50 s ,∴升旗速度为3050=0.6 m/s. 答案 0.613.某人为测出所住小区的面积,进行了一些测量工作,最后将所住小区近似地画成如图所示的四边形,测得的数据如图所示,则该图所示的小区的面积是________km 2.解析 如图,连接AC ,由余弦定理可知AC =AB 2+BC 2-2AB ·BC ·cos B=3,故∠ACB =90°,∠CAB =30°,∠DAC =∠DCA =15°,∠ADC =150°, 由AC sin ∠ADC =ADsin ∠DCA,得AD =AC sin ∠DCA sin ∠ADC=32-62,故S 四边形ABCD =S △ABC +S △ADC =12×1×3+12×⎝ ⎛⎭⎪⎫32-622×12=6-34(km 2).答案6-3414.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin∠ABD的值;(2)若∠BCD=2π3,求CD的长.解(1)∵AD∶AB=2∶3,∴可设AD=2k,AB=3k(k>0).又BD=7,∠DAB=π3,∴由余弦定理,得(7)2=(3k)2+(2k)2-2×3k×2k cos π3,解得k=1,∴AD=2,AB=3,sin∠ABD=AD sin∠DABBD=2×327=217.(2)∵AB⊥BC,∴cos∠DBC=sin∠ABD=21 7,∴sin∠DBC=277,∴BDsin∠BCD=CDsin∠DBC,∴CD=7×27732=433.。

高中数学第四章_三角函数、解三角形

高中数学第四章_三角函数、解三角形

第四章⎪⎪⎪三角函数、解三角形第一节任意角和弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:3.任意角的三角函数[小题体验]1.若θ是第二象限角,且满足sin θ2<0,则θ2的终边在第________象限.答案:三2.若角α的终边过点P ⎝⎛⎭⎫sin 5π6,cos 5π6,则tan α=________. 答案:- 33.α为第一象限角,则sin α+cos α________1.(填“>”“<”“=”) 答案:>1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.4.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=yx ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α =x r ,tan α=yx.[小题纠偏]1.-1 000°是第________象限角, α=3是第________象限角,72°=________rad. 答案:一 二2π52.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是____________.答案:(cos θ,sin θ)考点一 角的集合表示及象限角的判定(基础送分型考点——自主练透)[题组练透]1. 下列命题中,真命题是( ) A .第一象限角是锐角 B .直角不是任何象限角 C .第二象限角比第一象限角大D .三角形的内角一定是第一或第二象限角解析:选B 390°是第一象限角,但不是锐角,A 错;135°是第二象限角,390°>135°,C 错;直角不是任何象限角,D 错,B 对.2.若α=k π-π4(k ∈Z ),则α在( )A .第一象限或第三象限B .第一象限或第二象限C .第二象限或第四象限D .第三象限或第四象限解析:选C 当k =2m +1(m ∈Z )时,α=2m π+3π4,所以α在第二象限;当k =2m (m ∈Z )时,α=2m π-π4,所以α在第四象限.故选C. 3.设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么M ________N .(填“=”“⊆”“⊇”)解析:法一:由于M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k4·180°+45°,k ∈Z ={…,-45°,0°,45°,90°,135°,180°,225°,…}, 显然有M ⊆N .法二:由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .答案:⊆4.终边在直线y =3x 上的角的集合为__________________.夹角是π3,终边解析:在坐标系中画出直线y =3x ,可以发现它与x 轴正半轴的在直线y =3x 上的角的集合为⎩⎨⎧α⎪⎪⎭⎬⎫α=k π+π3,k ∈Z . 答案:⎩⎨⎧α⎪⎪⎭⎬⎫α=k π+π3,k ∈Z5.(2018·嘉兴七校联考)设角α是第三象限角,且满足⎪⎪⎪⎪sin α2=-sin α2,则α2是第________象限角. 解析:因为角α是第三象限角,所以2k π+π<α<2k π+3π2(k ∈Z ),所以k π+π2<α2<k π+3π4(k ∈Z ),所以α2是第二或第四象限角.又因为⎪⎪⎪⎪sin α2=-sin α2,所以sin α2<0,所以α2是第四象限角. 答案:四[谨记通法]1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线; (2)按逆时针方向写出[0,2π)内的角;(3)再由终边相同角的表示方法写出满足条件角的集合; (4)求并集化简集合.2.确定kα,αk (k ∈N *)的终边位置3步骤 (1)用终边相同角的形式表示出角α的范围; (2)再写出kα或αk的范围;(3)然后根据k 的可能取值讨论确定kα或αk 的终边所在位置. 考点二 扇形的弧长及面积公式(基础送分型考点——自主练透)[题组练透]1.若一扇形的圆心角为72°,半径为20 cm ,则扇形的面积为( ) A .40π cm 2 B .80π cm 2 C .40 cm 2D .80 cm 2解析:选B ∵72°=2π5, ∴S 扇形=12|α|r 2=12×2π5×202=80π(cm 2).2.若扇形的圆心角是α=120°,弦长AB =12 cm ,则弧长l 等于( ) A.433π cm B. 833π cmC. 4 3 cmD .8 3 cm解析:选B 设扇形的半径为r cm ,如图. 由sin 60°=6r , 得r =4 3 cm ,∴l =|α|·r =2π3×43=833π cm.3.(2019·瑞安模拟)设扇形的周长为8,面积为4,则扇形的圆心角的弧度数为________.解析:联立⎩⎪⎨⎪⎧2r +l =8,12lr =4.解得⎩⎪⎨⎪⎧r =2,l =4,所以扇形的圆心角的弧度数为|α|=l r =42=2.答案:24.若扇形的圆心角α=60°,半径R =10 cm ,求扇形的弧长l 及扇形的弧所在的弧形的面积. 解:∵α=60°=π3,R =10 cm ,∴l =Rα=10×π3=10π3cm.设弧形的面积为S ,则S =12R 2α-12R 2sin π3=12×102×π3-12×102×32=⎝⎛⎭⎫50π3-253cm 2. [谨记通法]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量. 考点三 三角函数的定义(题点多变型考点——多角探明) [锁定考向]任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.在高考中多以选择题、填空题的形式出现. 常见的命题角度有: (1)三角函数定义的应用;(2)三角函数值的符号判定.[题点全练]角度一:三角函数定义的应用1.已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________. 解析:∵角α的终边经过点P (-x ,-6),且cos α=-513, ∴cos α=-xx 2+36=-513,即x =52或x =-52(舍去),∴P ⎝⎛⎭⎫-52,-6,∴sin α=-1213,∴tan α=sin αcos α=125, 则1sin α+1tan α=-1312+512=-23. 答案:-232.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=________. 解析:设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t5|t |.当t >0时,cos θ=55; 当t <0时,cos θ=-55. 因此cos 2θ=2cos 2θ-1=25-1=-35.答案:-35角度二:三角函数值的符号判定3.(2019·湖州六校联考)已知sin 2θ<0,且|cos θ|=-cos θ,则点P (tan θ,sin θ)在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由|cos θ|=-cos θ可知cos θ<0,由sin 2θ=2sin θcos θ<0可知sin θ>0,所以tan θ<0.所以点P (tan θ,sin θ)在第二象限.4.已知点P (sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限角.解析:因为点P (sin θcos θ,2cos θ)位于第三象限,所以sin θ·cos θ<0,2cos θ<0,即⎩⎪⎨⎪⎧sin θ>0,cos θ<0,所以θ为第二象限角.答案:二[通法在握]定义法求三角函数的3种情况(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.[演练冲关]1.已知角α的终边经过点(3,-4),则sin α+1cos α=( ) A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4), ∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315.2.如图,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α的值为( ) A.45 B .-45C.35D .-35解析:选D 因为点A 的纵坐标y A =45,且点A 在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.一抓基础,多练小题做到眼疾手快1.已知点P (tan α,sin α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D 因为点P 在第三象限,所以⎩⎪⎨⎪⎧tan α<0,sin α<0,所以α的终边在第四象限,故选D.2.(2018·舟山五校联考)若tan α<0,则( ) A .sin α<0 B .cos α>0 C .sin αcos α<0D .2cos 2α-1<0解析:选C 因为tan α<0,所以α是第二或第四象限角,所以sin α,cos α的符号不确定,故排除A 、B ;当α是第二象限角时,sin α,cos α符号相反,所以sin αcos α<0;当α是第四象限角时,sin α,cos α符号相反,所以sin αcos α<0,故选C.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为( ) A .π3B .π2C . 3D .2解析:选C 设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =αr , 所以α= 3.4.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________. 解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)5.(2019·丽水模拟)已知角α的终边经过点(2,-2),则sin α=________,sin αcos α=________.解析:因为角α的终边经过点(2,-2),所以sin α=-22,cos α=22,sin αcos α=-12. 答案:-22 -12二保高考,全练题型做到高考达标1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A .π3B .π6C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角.故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16,即为-16×2π=-π3.2.(2019·台州模拟)已知点P (sin(-30°),cos(-30°))在角θ的终边上,且θ∈[-2π,0),则角θ的大小为( )A .-π3B .2π3C .-2π3D .-4π3解析:选D 因为P (sin(-30°),cos(-30°)),所以P ⎝⎛⎭⎫-12,32,所以θ是第二象限角,又θ∈[-2π,0),所以θ=-4π3. 3.已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α等于( ) A .sin 2 B .-sin 2 C .cos 2D .-cos 2解析:选D 因为r =(2sin 2)2+(-2cos 2)2=2,由任意三角函数的定义,得sin α=yr =-cos 2. 4.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.5.点A (sin 2 018°,cos 2 018°)在直角坐标平面上位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C 由2 018°=360°×5+(180°+38°)可知, 2 018°角的终边在第三象限,所以sin 2 018°<0,cos 2 018°<0, 即点A 位于第三象限.6.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________. 解析:∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3. 答案:(-2,3]7.已知α是第二象限的角,则180°-α是第________象限的角.解析:由α是第二象限的角可得90°+k ·360°<α<180°+k ·360°(k ∈Z ),则180°-(180°+k ·360°)<180°-α<180°-(90°+k ·360°)(k ∈Z ),即-k ·360°<180°-α<90°-k ·360°(k ∈Z ),所以180°-α是第一象限的角.答案:一8.(2017·北京高考)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=________.解析:当角α的终边在第一象限时,取角α终边上一点P 1(22,1),其关于y 轴的对称点(-22,1)在角β的终边上,此时sin β=13;当角α的终边在第二象限时,取角α终边上一点P 2(-22,1),其关于y轴的对称点(22,1)在角β的终边上,此时sin β=13.综上可得sin β=13.答案:139.已知角θ的终边上有一点(a ,a ),a ∈R 且a ≠0,则sin θ的值是________. 解析:由已知得r =a 2+a 2=2|a |,sin θ=ar =a2|a |=⎩⎨⎧22,a >0,-22,a <0.所以sin θ的值是22或-22. 答案:22或-2210.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧ r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr =6.(2)法一:∵2r +l =8,∴S 扇=12lr =14l ·2r ≤14⎝⎛⎭⎫l +2r 22=14×⎝⎛⎭⎫822=4,当且仅当2r =l ,即α=lr =2时,扇形面积取得最大值4.∴圆心角α=2,弦长AB =2sin 1×2=4sin 1. 法二:∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=lr =2时,扇形面积取得最大值4. ∴弦长AB =2sin 1×2=4sin 1.11.角α终边上的点P 与A (a,2a )关于x 轴对称(a >0),角β终边上的点Q 与A 关于直线y =x 对称,求sin αcos α+sin βcos β+tan αtan β的值.解:由题意得,点P 的坐标为(a ,-2a ),点Q 的坐标为(2a ,a ). 所以sin α=-2a a 2+(-2a )2=-25, cos α=a a 2+(-2a )2=15,tan α=-2aa=-2, sin β=a (2a )2+a 2=15, cos β=2a (2a )2+a 2=25, tan β=a 2a =12, 故sin αcos α+sin βcos β+tan αtan β =-25×15+15×25+(-2)×12=-1.三上台阶,自主选做志在冲刺名校(2019·衢州模拟)已知角α的终边经过点P (x ,-2)(x ≠0),且cos α=36x . (1)求x 的值; (2)求sin α+1tan α的值.解:(1)因为角α的终边经过点P(x,-2),且cos α=36x,所以有xx2+2=36x.因为x≠0,所以x2+2=12,解得x=±10.(2)若x=10,则P(10,-2),所以sin α=-212=-66,tan α=-210=-55,所以sin α+1tan α=-66- 5.若x=-10,则P(-10,-2),所以sin α=-212=-66,tan α=210=55,所以sin α+1tan α=-66+ 5.第二节同角三角函数的基本关系与诱导公式_1.同角三角函数的基本关系式(1)平方关系:sin2α+cos2α=1;(2)商数关系:tan α=sin αcos α.2.诱导公式[小题体验]1.已知sin ⎝⎛⎭⎫π2+α=35,α∈⎝⎛⎭⎫0,π2,则sin(π+α)=______. 答案:-452.若tan θ=12,则2cos α-3sin α3cos α+4sin α的值为________.答案:1103.化简sin(-1 071°)sin 99°+sin(-171°)sin(-261°)的结果为________. 解析:原式=(-sin 1 071°)sin 99°+sin 171°sin 261°=-sin(3×360°-9°)sin(90°+9°)+sin(180°-9°)·sin(270°-9°)=sin 9°cos 9°-sin 9°cos 9°=0. 答案:01.利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.2.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 3.注意求值与化简后的结果一般要尽可能有理化、整式化. [小题纠偏]1.已知α是第二象限角,sin α=513,则cos α=________. 答案:-12132.(1)sin ⎝⎛⎭⎫-31π4=________, (2)tan ⎝⎛⎭⎫-26π3=________. 答案:(1)22(2) 3考点一 三角函数的诱导公式(基础送分型考点——自主练透)[题组练透]1.(2018·宁波模拟)sin 210°cos 120°的值为( ) A .14B .-34C .-32D .34解析:选A sin 210°cos 120°=-sin 30°(-cos 60°)=12×12=14.2.(2019·嵊州模拟)已知sin(π+α)=-12,则cos ⎝⎛⎭⎫a -3π2的值为( ) A .12B .-12C .32D .-32解析:选B 因为sin(π+α)=-12=-sin α,所以cos ⎝⎛⎭⎫α-3π2=-sin α=-12. 3.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. 解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α =tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α =-tan ⎝⎛⎭⎫π6-α=-33. 答案:-334.(易错题)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝⎛⎭⎫3π2+α-sin 2⎝⎛⎭⎫π2+α⎝⎛⎭⎫sin α≠-12,求f ⎝⎛⎭⎫-23π6的值. 解:∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α =cos α(1+2sin α)sin α(1+2sin α)=1tan α, ∴f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 5.已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan ⎝⎛⎭⎫α-7π2的值. 解:∵cos(α-7π)=cos(7π-α)=cos(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α)·tan ⎝⎛⎭⎫α-7π2 =sin(π+α)·⎣⎡⎦⎤-tan ⎝⎛⎭⎫7π2-α=sin α·tan ⎝⎛⎭⎫π2-α =sin α·sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=sin α·cos αsin α=cos α=35.[谨记通法]1.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角就好了.” 2.利用诱导公式化简三角函数的要求 (1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值. 考点二 同角三角函数的基本关系(重点保分型考点——师生共研)[典例引领]1.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值为( )A .-15B .-25C .15D .25解析:选D 依题意得:tan α+33-tan α=5,∴tan α=2.∴sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.2.已知sin θ=m -3m +5,cos θ=4-2m m +5(m ≠0),则tan(k π+θ)(k ∈Z)的值为________.解析:因为sin θ=m -3m +5,cos θ=4-2m m +5,所以sin 2θ+cos 2θ=⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1,解得m =8,所以sin θ=513,cos θ=-1213,所以tan θ=sin θcos θ=-512.所以tan(k π+θ)(k ∈Z )=tan θ=-512.答案:-5123.已知sin θ+cos θ=43,θ∈⎝⎛⎭⎫0,π4,则sin θ-cos θ的值为________. 解析:因为(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θ·cos θ=1+2sin θcos θ=169,所以2sin θcos θ=79,则(sin θ-cos θ)2=sin 2θ+cos 2θ-2sin θcos θ=1-2sin θcos θ=29.又因为θ∈⎝⎛⎭⎫0,π4,所以sin θ<cos θ,即sin θ-cos θ<0, 所以sin θ-cos θ=-23. 答案:-23[由题悟法]同角三角函数基本关系式的应用技巧1.若sin α=-513,且α为第四象限角,则tan α的值等于( )A .125B .-125C .512D .-512解析:选D 法一:因为α为第四象限的角,故cos α=1-sin 2α= 1-⎝⎛⎭⎫-5132=1213, 所以tan α=sin αcos α=-5131213=-512.法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D. 2.(2019·缙云模拟)设sin α+sin β=13,则sin α-cos 2β的最大值为( )A .-35B .-23C .-1112D .49解析:选D 因为sin α+sin β=13,所以sin α=13-sin β.因为-1≤sin α≤1,所以-23≤sin β ≤1.所以sin α-cos 2β=13-sin β-1+sin 2β=⎝⎛⎭⎫sin β-122-1112,当sin β=-23时,sin α-cos 2β有最大值49. 3.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32B .32C .-34D .34解析:选B ∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|, ∴cos α-sin α>0,又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32. 4.已知sin(π-α)-cos(π+α)=23⎝⎛⎭⎫π2<α<π,则sin α-cos α=________.解析:由sin(π-α)-cos(π+α)=23,得sin α+cos α=23,① 将①两边平方得1+2sin αcos α=29,故2sin αcos α=-79.∴(sin α-cos α)2=1-2sin αcos α=1-⎝⎛⎭⎫-79=169. 又∵π2<α<π,∴sin α>0,cos α<0.∴sin α-cos α=43.答案:43一抓基础,多练小题做到眼疾手快1.(2018·嘉兴七校联考)已知cos ⎝⎛⎭⎫π2+α=32,且|α|<π2,则tan α=( ) A .-33B .33C .- 3D . 3解析:选C 因为cos ⎝⎛⎭⎫π2+α=-sin α=32,所以sin α=-32.因为|α|<π2,所以α=-π3,所以tan α=tan ⎝⎛⎭⎫-π3=- 3. 2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C .π6D .π3解析:选D ∵sin(π+θ)=-3cos(2π-θ), ∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.3.(2019·嘉兴模拟)已知sin α,cos α是方程3x 2-2x +a =0的两个根,则实数a 的值为( ) A .56B .-56C .43D .34解析:选B 由题可得,sin α+cos α=23,sin αcos α=a 3.所以sin 2α+cos 2α=(sin α+cos α)2-2sin αcos α=49-2a 3=1,解得a =-56. 4.1-2sin (π+2)cos (π+2)=( ) A .sin 2-cos 2 B .cos 2-sin 2 C .±(sin 2-cos 2) D .sin 2+cos 2解析:选A1-2sin (π+2)cos (π+2)=1-2sin 2·cos 2=sin 22-2sin 2·cos 2+cos 22 =|sin 2-cos 2|. 又∵π2<2<π,∴sin 2>0,cos 2<0. ∴|sin 2-cos 2|=sin 2-cos 2.5.如果sin(π+A )=12,那么cos ⎝⎛⎭⎫3π2-A 的值是________. 解析:∵sin(π+A )=12,∴-sin A =12.∴cos ⎝⎛⎭⎫3π2-A =-sin A =12. 答案:12二保高考,全练题型做到高考达标1.已知tan(α-π)=34,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫α+π2=( ) A .45B .-45C .35D .-35解析:选B 因为tan(α-π)=34,所以tan α=34.又因为α∈⎝⎛⎭⎫π2,3π2,所以α为第三象限的角, sin ⎝⎛⎭⎫α+π2=cos α=-45. 2.已知f (x )=a sin(πx +α)+b cos(πx +β)+4,若f (2 018)=5,则f (2 019)的值是( ) A .2 B .3 C .4D .5解析:选B ∵f (2 018)=5,∴a sin(2 018π+α)+b cos(2 018π+β)+4=5, 即a sin α+b cos β=1.∴f (2 019)=a sin(2 019π+α)+b cos(2 019π+β)+4=-a sin α-b cos β+4=-1+4=3.3.(2018·宁波五校联考)已知倾斜角为α的直线l 与直线x +2y -3=0垂直,则cos ()1 009π-2α的值为( )A .-35B .35C .2D .-12解析:选B 由题意可得tan α=2,所以cos ()1 009π-2α=-cos 2α=-cos 2α-sin 2αsin 2α+cos 2α=-1-tan 2αtan 2α+1=35.4.当θ为第二象限角,且sin ⎝⎛⎭⎫θ2+π2=13时,1-sin θcos θ2-sin θ2的值是( )A .1B .-1C .±1D .0解析:选B ∵sin ⎝⎛⎭⎫θ2+π2=13, ∴cos θ2=13,∴θ2在第一象限,且cos θ2<sin θ2, ∴1-sin θcos θ2-sin θ2=-⎝⎛⎭⎫cos θ2-sin θ2cos θ2-sinθ2=-1. 5.若sin α是5x 2-7x -6=0的根,则 sin ⎝⎛⎭⎫-α-3π2sin ⎝⎛⎭⎫3π2-αtan 2(2π-α)cos ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2+αsin (π+α)=( )A .35B .53C .45D .54解析:选B 由5x 2-7x -6=0,得x =-35或x =2.则sin α=-35.故原式=cos α(-cos α)·tan 2αsin α·(-sin α)·(-sin α)=1-sin α=53.6.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A .1+ 5 B .1- 5 C .1±5D .-1- 5解析:选B 由题意知sin θ+cos θ=-m 2,sin θcos θ=m4.∵(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.7.已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 解析:由题意知,cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ =-cos ⎝⎛⎭⎫π6-θ=-a .sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=cos ⎝⎛⎭⎫π6-θ=a , 所以cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 答案:08.(2019·义乌模拟)已知tan(π-α)=-2,则1sin 2α-2cos 2α=________.解析:因为tan(π-α)=-tan α=-2,所以tan α=2.所以1sin 2α-2cos 2α=sin 2α+cos 2αsin 2α-2cos 2α=tan 2α+1tan 2α-2=4+14-2=52. 答案:529.(2018·嘉兴七校联考)已知cos(75°+α)=513,α是第三象限角.求sin(195°-α)+cos(α-15°)的值. 解:因为cos(75°+α)=513,且α是第三象限角,所以75°+α是第四象限角,所以sin(75°+α)=-1-cos 2(75°+α)=-1213.所以sin(195°-α)+cos(α-15°)=sin(α-15°)+cos(α-15°)=sin [(α+75°)-90°]+cos [(α+75°)-90°]=-cos(α+75°)+sin(α+75°)=-513-1213=-1713. 10.已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝⎛⎭⎫θ-3π2cos (θ-π)-sin ⎝⎛⎭⎫3π2+θ的值.解:∵sin(3π+θ)=-sin θ=13,∴sin θ=-13.∴原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝⎛⎭⎫-132=18. 三上台阶,自主选做志在冲刺名校 1.sin 21°+sin 22°+…+sin 290°=________.解析:sin 21°+sin 22°+…+sin 290°=sin 21°+sin 22°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 21°+sin 290°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 244°+cos 244°)+sin 245°+sin 290°=44+12+1=912. 答案:9122.已知f (x )=cos 2(n π+x )·sin 2(n π-x )cos 2[(2n +1)π-x ](n ∈Z).(1)化简f (x )的表达式; (2)求f ⎝⎛⎭⎫π2 018+f ⎝⎛⎭⎫504π1 009的值.解:(1)当n 为偶数,即n =2k (k ∈Z )时, f (x )=cos 2(2k π+x )·sin 2(2k π-x )cos 2[(2×2k +1)π-x ]=cos 2x ·sin 2(-x )cos 2(π-x )=cos 2x ·(-sin x )2(-cos x )2=sin 2x ; 当n 为奇数,即n =2k +1(k ∈Z )时, f (x )=cos 2[(2k +1)π+x ]·sin 2[(2k +1)π-x ]cos 2{[2×(2k +1)+1]π-x }=cos 2[2k π+(π+x )]·sin 2[2k π+(π-x )]cos 2[2×(2k +1)π+(π-x )]=cos 2(π+x )·sin 2(π-x )cos 2(π-x )=(-cos x )2sin 2x (-cos x )2=sin 2x , 综上得f (x )=sin 2x .(2)由(1)得f ⎝⎛⎭⎫π2 018+f ⎝⎛⎭⎫504π1 009=sin 2π2 018+sin 21 008π2 018=sin 2π2 018+sin 2⎝⎛⎭⎫π2-π2 018 =sin 2π2 018+cos 2π2 018=1.第三节三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0). 余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z).[小题体验]1.①y =cos 2x; ②y =sin 2x; ③y =tan 2x; ④y =|sin x | 四个函数中,最小正周期为π的奇函数是________.答案:②2.(教材习题改编)函数y =-tan ⎝⎛⎭⎫x +π6+2的定义域为________________. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π3,k ∈Z1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时的情况. 3.三角函数存在多个单调区间时易错用“∪”联结. [小题纠偏]1.函数y =4sin(-x ),x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎡⎦⎤-π2,π2上是增函数,在⎣⎡⎦⎤-π,-π2和⎣⎡⎦⎤π2,π上是减函数 C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎡⎦⎤π2,π和⎣⎡⎦⎤-π,-π2上是增函数,在⎣⎡⎦⎤-π2,π2上是减函数 答案:D2.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 解析:由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π4上的最小值为-22. 答案:-22考点一 三角函数的定义域(基础送分型考点——自主练透)[题组练透]1.函数y =log 21sin x-1的定义域为________.解析:由题可得⎩⎪⎨⎪⎧log 21sin x -1≥0,sin x >0,所以有0<sin x ≤12,解得2k π<x ≤2k π+π6或2k π+5π6≤x <2k π+π,k ∈Z ,所以所求函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫2k π<x ≤2k π+π6或2k π+5π6≤x <2k π+π,k ∈Z .答案:⎩⎨⎧x ⎪⎪⎭⎬⎫2k π<x ≤2k π+π6或2k π+5π6≤x <2k π+π,k ∈Z 2.函数y =lg(sin 2x )+9-x 2的定义域为______________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2. 答案:⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2 [谨记通法]三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数图象来求解. 考点二 三角函数的值域或最值(重点保分型考点——师生共研)[典例引领]1.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2-3 B .0 C .-1D .-1- 3解析:选A ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎡⎦⎤-32,1. ∴y ∈[-3,2],∴y max +y min =2- 3.2.(2018·浙北联考)函数f (x )=2cos 2x +5sin x -4的最小值为________,最大值为________.解析:f (x )=2cos 2x +5sin x -4=-2sin 2x +5sin x -2=-2⎝⎛⎭⎫sin x -542+98.因为-1≤sin x ≤1,所以当sin x =-1时,f (x )有最小值-9;当sin x =1时,f (x )有最大值1.答案:-9 13.函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________________. 解析:设t =sin x -cos x , 则t 2=sin 2x +cos 2x -2sin x cos x , 即sin x cos x =1-t 22,且-1≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时,y min =-1. ∴函数的值域为[-1,1].答案:[-1,1]4.(2019·平阳模拟)已知函数f (x )=2a sin ⎝⎛⎭⎫2x +π6+a +b (a <0)的定义域为⎣⎡⎦⎤0,π2,值域为[-5,1],则a +b =________.解析:因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6,所以sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1.因为a <0,所以f (x )∈[3a +b ,b ].因为函数的值域为[-5,1],所以3a +b =-5,b =1,所以a =-2,所以a +b =-1.答案:-1[由题悟法]三角函数最值或值域的3种求法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域. (3)换元法:把sin x 、cos x 、sin x cos x 或sin x ±cos x 换成t ,转化为二次函数.[即时应用]求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. 解:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,当t =-22时,y min =1-22. ∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. 考点三 三角函数的性质(题点多变型考点——多角探明)[锁定考向]三角函数的性质主要包括单调性、奇偶性、周期性、对称性,而三角函数的对称性多与奇偶性、周期性结合.常见的命题角度有:(1)三角函数的周期性;(2)三角函数的对称性;(3)三角函数的单调性.[题点全练]角度一:三角函数的周期性1.(2019·湖州期末)函数y =5sin ⎝⎛⎭⎫π6-π3x 的最小正周期为( ) A .6B .-6C .2π3 D .23解析:选A 函数的最小正周期为T =2π⎪⎪⎪⎪-π3=6. 2.(2017·天津高考)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A ∵f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0, ∴11π8-5π8=T4(2m +1),m ∈N , ∴T =3π2m +1,m ∈N ,∵f (x )的最小正周期大于2π,∴T =3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝⎛⎭⎫23x +φ. 由2sin ⎝⎛⎭⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z . 又|φ|<π,∴取k =0,得φ=π12. 角度二:三角函数的对称性3.(2018·嘉兴期末)函数f (x )=sin ⎝⎛⎭⎫2x +π3的图象的对称轴方程可以是( ) A .x =π12B .x =5π12C .x =π3D .x =π6解析:选A 由题可得,令2x +π3=k π+π2,k ∈Z ,得x =k π2+π12,k ∈Z .所以当k =0时,函数f (x )的图象的一条对称轴方程为x =π12. 4.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________. 解析:由题意,得y =cos(3x +φ)是奇函数, 故φ=k π+π2(k ∈Z ).答案:k π+π2(k ∈Z )角度三:三角函数的单调性5.(2019·浦江模拟)已知函数f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且是偶函数,则( )A .f (x )在⎝⎛⎭⎫0,π2内单调递减 B .f (x )在⎝⎛⎭⎫π4,3π4内单调递减 C .f (x )在⎝⎛⎭⎫0,π2内单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4内单调递增解析:选A 因为函数f (x )的最小正周期为π,所以ω=2.因为函数f (x )是偶函数,且|φ|<π2,所以φ=π4.所以 f (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x ,所以函数f (x )在⎝⎛⎭⎫0,π2内单调递减. [通法在握]1.函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.2.求三角函数单调区间的2种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[演练冲关]1.(2019·舟山模拟)若函数f (x )=sin(φ-x )是奇函数,则φ的值可能是( ) A .π6B .π3C .π2D .π解析:选D 因为函数f (x )是奇函数,所以φ=k π(k ∈Z ).对比选项可知,φ的值可能是π.故选D. 2.若函数f (x )=sin ⎝⎛⎭⎫ωx +π3+sin ωx (ω>0)相邻两对称轴之间的距离为2,则ω=________. 解析:f (x )=sin ⎝⎛⎭⎫ωx +π3+sin ωx =12sin ωx +32cos ωx +sin ωx =32sin ωx +32cos ωx =3sin ⎝⎛⎭⎫ωx +π6,又因为f (x )相邻两条对称轴之间的距离为2,所以T =4,所以2πω=4,即ω=π2.答案:π23.函数y =|tan x |在⎝⎛⎭⎫-π2,3π2上的单调减区间为_______.解析:如图,观察图象可知,y =|tan x |在⎝⎛⎭⎫-π2,3π2上的单调减区间为⎝⎛⎦⎤-π2,0和⎝⎛⎦⎤π2,π.答案:⎝⎛⎦⎤-π2,0和⎝⎛⎦⎤π2,π一抓基础,多练小题做到眼疾手快 1.下列函数中,周期为π的奇函数为( ) A .y =sin x cos x B .y =sin 2xC .y =tan 2xD .y =sin 2x +cos 2x解析:选A y =sin 2x 为偶函数;y =tan 2x 的周期为π2;y =sin 2x +cos 2x 为非奇非偶函数,B 、C 、D都不正确,选A.2.函数y =sin ⎝⎛⎭⎫ωx +π6在x =2处取得最大值,则正数ω的最小值为( ) A.π2 B.π3 C.π4 D.π6解析:选D 由题意得,2ω+π6=π2+2k π(k ∈Z ),解得ω=π6+k π(k ∈Z ),∵ω>0,∴当k =0时,ωmin=π6,故选D. 3.函数y = cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6(k ∈Z ) C.⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z ) D .R解析:选C ∵cos x -32≥0,得cos x ≥32, ∴2k π-π6≤x ≤2k π+π6,k ∈Z .4.(2018·浙江六校联考)函数y =3sin x +3cos x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的单调递增区间是________. 解析:化简可得y =23sin ⎝⎛⎭⎫x +π6,由2k π-π2≤x +π6≤2k π+π2(k ∈Z ),得-2π3+2k π≤x ≤π3+2k π(k ∈Z ),又x ∈⎣⎡⎦⎤0,π2,∴函数的单调递增区间是⎣⎡⎦⎤0,π3. 答案:⎣⎡⎦⎤0,π3 5.函数f (x )=sin ⎝⎛⎭⎫2x +π3在⎣⎡⎦⎤0,π2上的值域是________. 解析:∵x ∈⎣⎡⎦⎤0,π2,∴2x +π3∈⎣⎡⎦⎤π3,4π3,∴当2x +π3=π2,即x =π12时,f (x )max =1.当2x +π3=4π3,即x =π2时,f (x )min =-32,∴f (x )∈⎣⎡⎦⎤-32,1.答案:⎣⎡⎦⎤-32,1 二保高考,全练题型做到高考达标1.(2019·诸暨模拟)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=( )A .3B .2C .32D .23解析:选C 因为函数f (x )在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,所以f (x )max =f ⎝⎛⎭⎫π3=sinωπ3=1.又因为2πω≥2×π2,所以0<ω≤2,所以ωπ3=π2,解得ω=32.2.关于函数y =tan ⎝⎛⎭⎫2x -π3,下列说法正确的是( ) A .是奇函数B .在区间⎝⎛⎭⎫0,π3上单调递减 C.⎝⎛⎭⎫π6,0为其图象的一个对称中心 D .最小正周期为π解析:选C 函数y =tan ⎝⎛⎭⎫2x -π3是非奇非偶函数,A 错;函数y =tan ⎝⎛⎭⎫2x -π3在区间⎝⎛⎭⎫0,π3上单调递增,B 错;最小正周期为π2,D 错;由2x -π3=k π2,k ∈Z ,得x =k π4+π6,k ∈Z .当k =0时,x =π6,所以它的图象关于⎝⎛⎭⎫π6,0对称.3.函数f (x )=2sin(ωx +φ)(ω>0)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为( ) A .2或0 B .-2或2 C .0D .-2或0解析:选B 因为函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,所以该函数图象关于直线x=π6对称,因为在对称轴处对应的函数值为最大值或最小值,所以选B. 4.已知函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( )A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数解析:选A ∵f (x )的最小正周期为6π,∴ω=13.∵当x =π2时,f (x )有最大值,∴13×π2+φ=π2+2k π(k ∈Z ),φ=π3+2k π(k ∈Z ), ∵-π<φ≤π,∴φ=π3.∴f (x )=2sin ⎝⎛⎭⎫x 3+π3,令-π2+2k π≤x 3+π3≤π2+2k π,k ∈Z ,得-5π2+6k π≤x ≤π2+6k π,k ∈Z , 故f (x )的单调增区间为⎣⎡⎦⎤-5π2+6k π,π2+6k π,k ∈Z , 令k =0,得x ∈⎣⎡⎦⎤-5π2,π2, ∵[-2π,0]⊆⎣⎡⎦⎤-5π2,π2,故A 正确. 5.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .⎣⎡⎦⎤12,54 B .⎣⎡⎦⎤12,34 C .⎝⎛⎦⎤0,12 D .(0,2]解析:选A 由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆⎣⎡⎦⎤π2,3π2, ∴⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,∴12≤ω≤54,故选A.6.若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________. 解析:由题意知,1<πk <2,即k <π<2k .又k ∈N ,所以k =2或k =3.答案:2或37.已知函数f (x )=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,若f (x )的值域是⎣⎡⎦⎤-12,1,则实数a 的取值范围是________.解析:∵x ∈⎣⎡⎦⎤-π3,a ,∴x +π6∈⎣⎡⎦⎤-π6,a +π6, ∵当x +π6∈⎣⎡⎦⎤-π6,π2时,f (x )的值域为⎣⎡⎦⎤-12,1, ∴结合函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π.答案:⎣⎡⎦⎤π3,π 8.若函数f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎡⎦⎤0,π2,则x 0=________. 解析:由题意得T 2=π2,T =π,ω=2.又2x 0+π6=k π(k ∈Z ),x 0=k π2-π12(k ∈Z ),而x 0∈⎣⎡⎦⎤0,π2,所以x 0=5π12. 答案:5π129.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间. 解:∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2. ∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,φ=π2+k π,k ∈Z ,∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝⎛⎭⎫π6,32时,sin ⎝⎛⎭⎫2×π6+φ=32,即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,φ=π3.∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z . 10.已知函数f (x )=2sin ⎝⎛⎭⎫2x +π4. (1)求函数f (x )图象的对称轴方程; (2)求函数f (x )的单调递增区间;(3)当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值和最小值. 解:(1)令2x +π4=k π+π2,k ∈Z ,得x =k π2+π8,k ∈Z .所以函数f (x )图象的对称轴方程是x =k π2+π8,k ∈Z . (2)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .故函数f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z . (3)当x ∈⎣⎡⎦⎤π4,3π4时,3π4≤2x +π4≤7π4, 所以-1≤sin ⎝⎛⎭⎫2x +π4≤22,所以-2≤f (x )≤1, 所以当x ∈⎣⎡⎦⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2. 三上台阶,自主选做志在冲刺名校1.若存在实数a ,使函数y =sin 2x +a cos x +58a -32在闭区间⎣⎡⎦⎤0,π2上取到最大值1,则实数a 等于( ) A .1 B .52C .32D .2解析:选C y =-⎝⎛⎭⎫cos x -12a 2+a 24+58a -12. 当0≤x ≤π2时,0≤cos x ≤1,令t =cos x ,则0≤t ≤1,所以y =-⎝⎛⎭⎫t -12a 2+a 24+58a -12,0≤t ≤1. ①当0≤a 2≤1,即0≤a ≤2时,则当t =a 2,即cos x =a 2时,y max =a 24+58a -12=1,解得a =32或a =-4(舍。

第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)

第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)

第七节解三角形应用举例一、教材概念·结论·性质重现1.仰角和俯角意义图示在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.2.方位角意义图示从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α.3.方向角意义图示相对于某一正方向的水平角(1)北偏东α,即由指北方向顺时针旋转α到达目标方向;(2)北偏西α,即由指北方向逆时针旋转α到达目标方向;(3)南偏西等其他方向角类似.4.坡角与坡度意义图示(1)坡角:坡面与水平面所成的二面角的度数(如图,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图,i为坡度).坡度又称为坡比.解三角形应用问题的步骤1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.(√) (2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.(×) (3)若点P 在点Q 的北偏东44°,则点Q 在点P 的东偏北46°. (×) (4)方位角大小的范围是[0,π),方向角大小的范围是⎣⎢⎡⎭⎪⎫0,π2.(×)2.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D 解析:由条件及图可知,∠A =∠CBA =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 3.如图,为测量一棵树OP 的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.30+303解析:在△PAB中,∠PAB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°·sin 30°=22×32-22×12=6-2 4.由正弦定理得PBsin 30°=ABsin 15°,所以PB=12×606-24=30(6+2),所以树的高度OP=PB sin 45°=30(6+2)×22=(30+303)(m).4.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________ km.64解析:因为∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,所以∠DAC=60°,所以AC=CD=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=CDsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.所以AB=64km.所以A,B两点间的距离为64km.5.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为________.40 m解析:设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,由余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=40或x=-20(舍去).故电视塔的高度为40 m.考点1解三角形的实际应用——应用性考向1测量距离问题如图,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250m,请问:两位登山爱好者能否在2个小时内徒步登上山峰.(即从B点出发到达C点)解:在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1.因为∠ABD=120°,由正弦定理ABsin∠ADB=ADsin∠ABD,解得AD=3(km).在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32×CD.即CD2+3CD-6=0,解得CD=33-32(km),BC=BD+CD=33-12(km).两个小时小王和小李可徒步攀登1 250×2=2 500(m),即2.5km , 而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.1.若将本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,求这条索道AC 的长.解:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD , 所以200sin 30°=ADsin 120°. 所以AD =200×sin 120°sin 30°=200 3 (m). 在△ABC 中,DC =300 m ,∠ADC =150°,所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(2003)2+3002-2×2003×300×cos 150°=390 000,所以AC =10039 m.故这条索道AC 长为10039 m.2.若将本例条件“∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km ”变为“∠ADC =135°,∠CAD =15°,AD =100 m ,作CO ⊥AB ,垂足为O ,延长AD 交CO 于点E ,且CE =50 m ,如图”,求角θ的余弦值.解:在△ACD 中,∠ADC =135°, ∠CAD =15°,所以∠ACD =30°. 由正弦定理可得AC =100×sin 135°sin 30°=100 2.在△ACE 中,由正弦定理可得sin ∠CEA =AC ·sin ∠CAE CE=3-1,所以cos θ=cos ⎝ ⎛⎭⎪⎫∠CEA -π2=sin ∠CEA =3-1.距离问题的解题思路这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.提醒:①基线的选取要恰当准确;②选取的三角形及正弦、余弦定理要恰当. 考向2 测量高度问题如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°.若山高AD =100 m ,汽车从B 点到C 点历时14 s ,则这辆汽车的速度约为________m/s(精确到0.1).参考数据:2≈1.414,5≈2.236.22.6 解析:因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°, 所以∠BAD =60°,∠CAD =45°. 设这辆汽车的速度为v m/s ,则BC =14v . 在Rt △ABD 中,AB =AD cos ∠BAD =100cos 60°=200. 在Rt △ACD 中,AC =AD cos ∠CAD =100cos 45°=100 2. 在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC , 所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6 m/s.解决高度问题的注意事项(1)在解决有关高度问题时,理解仰角、俯角是关键.(2)高度问题一般是把它转化成解三角形问题,要注意三角形中的边角关系的应用.若是空间的问题要注意空间图形向平面图形的转化.1.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表” )和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭” ).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即∠ABC)为26.5°,夏至正午太阳高度角(即∠ADC)为73.5°,圭面上冬至线与夏至线之间的距离(即BD的长)为a,则表高(即AC的长)为()A.a sin 53°2sin 47°B.2sin 47°a sin 53°C.a tan 26.5°tan 73.5°tan 47°D.a sin 26.5°sin 73.5°sin 47°D解析:由题意得,∠BAD=73.5°-26.5°=47°.在△ABD中,由正弦定理可得,BDsin∠BAD=ADsin∠ABD,即asin 47°=ADsin 26.5°,则AD=a sin 26.5°sin 47°.在△ACD中,ACAD=sin∠ADC=sin 73.5°,所以AC=a sin 26.5°·sin 73.5°sin 47°.故选D.2.如图是改革开放四十周年大型展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).在地面上的A ,B 两点测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =50米,则OP 为( )A .15米B .25米C .35米D .45米B 解析:如图所示:由于∠OAP =30°,∠PBO =45°,∠ABO =60°,AB =50米,OP ⊥AO ,OP ⊥OB .设OP =x ,则OA =3x ,OB =x ,在△OAB 中,由余弦定理得OA 2=OB 2+AB 2-2OB ·AB ·cos ∠ABO , 即(3x )2=502+x 2-2×50x ×12,所以x 2+25x -1 250=0,解得x =25或x =-50(舍).3.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =80米,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则A ,B 两点间的距离为________米.805 解析:如图,在△ACD 中,∠DCA =15°,∠ADC =150°,所以∠DAC =15°.由正弦定理,得AC=80sin 150°sin 15°=406-24=40(6+2)(米).在△BCD中,∠BDC=15°,∠BCD=135°,所以∠CBD=30°.由正弦定理,得CDsin∠CBD=BCsin∠BDC,所以BC=CD·sin∠BDCsin∠CBD=80×sin 15°sin 30°=40(6-2)(米).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=1 600(8+43)+1 600(8-43)+2×1 600(6+2)×(6-2)×12=1 600×16+1 600×4=1 600×20,解得AB=805(米),则A,B两点间的距离为805米.考点2正余弦定理在平面几何中的应用(2020·青岛模拟)如图,在平面四边形ABCD中,AB⊥AD,AB=1,AD =3,BC= 2.(1)若CD=1+3,求四边形ABCD的面积;(2)若sin∠BCD=325,∠ADC∈⎝⎛⎭⎪⎫0,π2,求sin∠ADC.解:(1)如图,连接BD,在Rt△ABD中,由勾股定理可得,BD2=AB2+AD2=4,所以BD=2.在△BCD 中,由余弦定理可得,cos C =BC 2+CD 2-BD 22BC ·CD =2+(1+3)2-222×2×(1+3)=22. 因为C 为三角形的内角,故C =π4, 所以S △ABD =12AB ·AD =12×1×3=32, S △BCD =12BC ·CD sin C =12×2×(1+3)×22=1+32, 故四边形ABCD 的面积S =1+232.(2)在△BCD 中,由正弦定理可得BC sin ∠BDC =BDsin ∠BCD , 所以sin ∠BDC =BC ·sin ∠BCD BD=35. 因为∠ADC ∈⎝ ⎛⎭⎪⎫0,π2,所以∠BDC ∈⎝ ⎛⎭⎪⎫0,π2, 所以cos ∠BDC =45,在Rt △ABD 中,tan ∠ADB =AB AD =33, 故∠ADB =π6,所以sin ∠ADC =sin ⎝ ⎛⎭⎪⎫∠BDC +π6=35×32+45×12=4+3310.正余弦定理解平面几何问题的注意点(1)图形中几何性质的挖掘往往是解题的切入点,或是问题求解的转折点. (2)根据条件或图形,找出已知,未知及求解中需要的三角形,用好三角恒等变换公式,运用正弦定理,余弦定理解题.(3)养成应用方程思想解题的意识.1.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km),AB =5,BC =8,CD =3,AD =5,且∠B 与∠D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 kmA 解析:在△ACD 中,由余弦定理得cos D =AD 2+CD 2-AC 22AD ·CD =34-AC 230. 在△ABC 中,由余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=89-AC 280. 因为∠B +∠D =180°,所以cos B +cos D =0,即34-AC 230+89-AC 280=0,解得AC 2=49.所以AC =7.2.(2020·山师附中高三模拟)如图,在平面四边形ABCD 中,已知AB =26,AD =3,∠ADB =2∠ABD ,∠BCD =π3.(1)求BD ;(2)求△BCD 周长的最大值.解:在△ABD 中,设BD =x ,∠ABD =α,则∠ADB =2α, 因为AB sin 2α=AD sin α, 所以cos α=63.由余弦定理得cos α=x 2+24-946x =63. 整理得x 2-8x +15=0,解得x =5或x =3. 当x =3时,得∠ADB =2α=π2, 与AD 2+BD 2≠AB 2矛盾,故舍去, 所以BD =5.(2)在△BCD 中,设∠CBD =β, 所以BD sin π3=BC sin ⎝ ⎛⎭⎪⎫2π3-β=CD sin β,所以BC =1033sin ⎝ ⎛⎭⎪⎫2π3-β,CD =1033sin β,所以BC +CD =1033·⎝ ⎛⎭⎪⎫32sin β+32cos β=10sin ⎝ ⎛⎭⎪⎫β+π6≤10. 所以△BCD 周长的最大值为15.考点3 解三角形与三角函数的综合问题(2020·合肥模拟)已知函数f (x )=cos 2x +3sin(π-x )sin ⎝ ⎛⎭⎪⎫x -π2-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)锐角△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,已知f (A )=-1,a =2,求△ABC 的面积的最大值.解:(1)f (x )=1+cos 2x 2-3sin x cos x -12=12cos 2x -32sin 2x =-sin ⎝ ⎛⎭⎪⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2, 得k π-π6≤x ≤k π+π3(k ∈Z ),所以函数f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π. (2)因为△ABC 为锐角三角形,所以0<A <π2,所以-π6<2A -π6<5π6. 又f (A )=-sin ⎝ ⎛⎭⎪⎫2A -π6=-1, 所以2A -π6=π2,即A =π3.因为a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥2bc -bc =bc ,当且仅当b =c =2时,等号成立.又a =2,所以bc ≤4, 所以S △ABC =12bc sin A ≤ 3. 即△ABC 的面积的最大值为 3.解三角形与三角函数综合问题的一般步骤已知函数f (x )=32sin 2x -cos 2x -12(x ∈R ),设△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且c =3,f (C )=0.(1)求角C ;(2)若向量m =(1,sin A )与向量n =(2,sin B )共线,求△ABC 的周长. 解:(1)f (x )=32sin 2x -cos 2x -12=32sin 2x -12cos 2x -1=sin ⎝ ⎛⎭⎪⎫2x -π6-1. 因为f (C )=sin ⎝ ⎛⎭⎪⎫2C -π6-1=0且C 为三角形内角,所以C =π3. (2)若向量m =(1,sin A )与向量n =(2,sin B )共线, 则sin B -2sin A =0. 由正弦定理得b =2a ,由余弦定理得cos π3=a2+4a2-3 2·a·2a=12,解得a=1,b=2,故△ABC的周长为3+ 3.。

高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)

高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)

第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。

全国版2022高考数学一轮复习第4章三角函数解三角形第1讲三角函数的基本概念同角三角函数的基本关系与

全国版2022高考数学一轮复习第4章三角函数解三角形第1讲三角函数的基本概念同角三角函数的基本关系与

考点2 任意角的三角函数
考点2 任意角的三角函数
4.特殊角的三角函数值
考点3 同角三角函数的基本关系式
考点4 诱导公式
考点4 诱导公式
考法1 扇形的弧长与面积公式的应用 考法2 三角函数定义的应用
考法帮·解题能力提升 考法3 同角三角函数基本关系式的应用
考法4 诱导公式的应用 考法5 同角三角函数基本关系式与诱导 公式的综合应用
第四章 三角函数、解三角形
第一讲 三角函数的基本概念、同 角三角函数的基本关系与诱导公式
考点帮·必备知识通关 考点1 任意角与弧度制 考点2 任意角的三角函数 考点3 同角三角函数的基本关系式 考点4 诱导公式
考法帮·解题能力提升
考法1 扇形的弧长与面积公式的应用 考法2 三角函数定义的应用 考法3 同角三角函数基本关系式的应用 考法4 诱导公式的应用 考法5 同角三角函数基本关系式与诱导公式的综合应用
考点2 任意点2 任意角的三角函数
3.三角函数线 设单位圆与x轴的正半轴交于点A,与角α的终边交于点P.过点P作x轴的垂线 PM,垂足为M,过点A作单位圆的切线交OP的延长线(或反向延长线)于点T,则 有向线段OM,MP,AT分别叫作角α的余弦线、正弦线、正切线.各象限内的三 角函数线如下:
考法1 扇形的弧长与面积公式的应用
考法1 扇形的弧长与面积公式的应用
方法技巧
有关弧长和扇形面积问题的解题策略
(1)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任
意两个量.
(2)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三
角形.
(3)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配
(4)终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个合:S={β|β=α+k·360°,k∈Z} 或{β|β=α+2kπ,k∈Z}.

超实用高考数学专题复习:第四章三角函数解三角形 三角函数与解三角形热点问题

超实用高考数学专题复习:第四章三角函数解三角形  三角函数与解三角形热点问题

【尝试训练】 (2020·郑州质检)在△ABC 中,内角 A,B,C 的对边分别为 a,b,c, 若向量 m=2cos2C2 ,cos A-2 B,n=58,cos A-2 B,m·n=98. (1)求 tan Atan B 的值; (2)求c2a-bsai2n-Cb2的最小值. 解 (1)由题意可得 m·n=54cos2C2+cos2A-2 B=98, 即-58cos(A+B)+12cos(A-B)=0,展开可得 cos Acos B=9sin Asin B,
所以 f(x)的最小正周期 T=22π=π.
(2)由-π2+2kπ≤2x-π3≤π2+2kπ(k∈Z),得-1π2+kπ≤x≤51π2+kπ(k∈Z). 设 A=-4π,π4,B=x-1π2+kπ≤x≤51π2+kπ,k∈Z,易知 A∩B=-1π2,π4.
所以当 x∈-π4,π4时,f(x)在区间-1π2,π4上单调递增,在区间-π4,-1π2上单调 递减.
6+ 4
2 .
两角差正弦公式的应用
12′
[高考状元满分心得]
❶写全得步骤分:对于解题过程中得分点的步骤有则给分,无则没分,所以得分点
步骤一定要写全,如第(1)问中只要写出 0°<A<180°就有分,没写就扣 1 分,第(2)
问中 0°<C<120°也是如此.
❷写明得关键分:对于解题过程中的关键点,有则给分,无则没分,所以在答题时
教你如何审题——三角函数与平面向量
【例题】 (2020·湘赣十四校联考)已知向量 m=(sin x,-1),n=( 3,cos x),且函
数 f(x)=m·n. (1)若 x∈0,2π,且 f(x)=23,求 sin x 的值;
(2)在锐角三角形 ABC 中,内角 A,B,C 的对边分别为 a,b,c.若 a= 7,△ABC

2019年高考数学文真题分项解析:专题04 三角函数与解三角形

2019年高考数学文真题分项解析:专题04 三角函数与解三角形

第四章 三角函数与三角形1.【2019高考新课标Ⅰ,文7】tan255°= A. -2-3 B. -2+3C. 2-3D. 2+3【答案】D 【解析】 【分析】本题首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解.题目较易,注重了基础知识、基本计算能力的考查. 【详解】详解:000000tan 255tan(18075)tan 75tan(4530)=+==+=00031tan 45tan 3032 3.1tan 45tan 30313++==+--【点睛】三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.2.【2019高考新课标Ⅰ,文11】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c =A. 6B. 5C. 4D. 3【答案】A 【解析】 【分析】利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 【详解】详解:由已知及正弦定理可得2224a b c -=,由余弦定理推论可得22222141313cos ,,,464224242b c a c c c b A bc bc b c +---==∴=-∴=∴=⨯=,故选A . 【点睛】本题考查正弦定理及余弦定理推论的应用.3.【2019高考新课标Ⅱ,文8】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A. 2B.32C. 1D.12【答案】A 【解析】 【分析】从极值点可得函数的周期,结合周期公式可得ω. 【详解】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,得2ω=.故选A . 【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用方程思想解题.4.【2019高考新课标Ⅱ,文11】已知a ∈(0,π2),2sin2α=cos2α+1,则sinα= A. 15B.55 C.33D.255【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+Q ,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭Q . sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,5sin 5α∴=,故选B . 【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.5.【2019高考新课标Ⅲ,文5】函数()2sin sin2f x x x =-在[]0,2π的零点个数为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】 【分析】令()0f x =,得sin 0x =或cos 1x =,再根据x 的取值范围可求得零点.【详解】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2x π∈Q ,02x ππ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.采取特殊值法,利用数形结合和方程思想解题.6.【2019高考北京卷,文6】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C 【解析】 【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数; ()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.7.【2019高考北京卷,文8】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A. 4β+4cos βB. 4β+4sin βC. 2β+2cos βD. 2β+2sin β【答案】B 【解析】 【分析】由题意首先确定面积最大时点P 的位置,然后结合扇形面积公式和三角形面积公式可得最大的面积值. 【详解】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为2222βππ⨯⨯+S △POB + S △POA =4β+1||sin()2OP OB πβ-‖1||sin()2OP OA πβ+-‖ 42sin 2sin 44sin βββββ=++=+⋅.故选:B .【点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键观察分析区域面积最大时的状态,并将面积用边角等表示.8.【2019高考天津卷,文7】已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭( ) A. 2- B. 2-C.2 D. 2【答案】C 【解析】 【分析】只需根据函数性质逐步得出,,A ωϕ值即可。

高三理数一轮复习 第四章 三角函数、解三角形4.1 任意角、弧度制及任意角的三角函数

高三理数一轮复习 第四章 三角函数、解三角形4.1 任意角、弧度制及任意角的三角函数

-23-
(2)由题意,得 sin x≥√23,作直线 y=√23交单位圆于 A,B 两点,连 接 OA,OB,则 OA 与 OB 围成的区域(图中阴影部分)即为角 x 的终
Байду номын сангаас
边的范围,故满足条件的角 x 的集合为
������
2������π
+
π 3

������
≤ 2������π +
2π 3
,������∈Z
考点1
考点2
考点3
-18-
(3)方法一(角的集合表示):
∵2kπ+π<α<2kπ+32π(k∈Z),
∴kπ+π2
<
������ 2
<kπ+34π
(k∈Z).

k=2n(n∈Z)时,2nπ+π2
<
������ 2
<2nπ+34π
,
������ 2
是第二象限角;
当 k=2n+1(n∈Z)时,2nπ+3π < ������<2nπ+7π , ������是第四象限角.
-12-
知识梳理 双基自测
12345
5.(教材例题改编P13例3)若角θ同时满足sin θ<0,且tan θ<0,则角θ
的终边一定落在第
象限.
关闭
由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y轴的非正半 轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边
.
思考角的终边在一条直线上与在一条射线上有什么不同?已知角

高考数学一轮复习 第四章 三角函数与解三角形 4

高考数学一轮复习 第四章  三角函数与解三角形 4

高考数学一轮复习 第四章 三角函数与解三角形4.5 三角函数的图象与性质考试要求 1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝⎛⎭⎫-π2,π2上的性质.知识梳理1.用“五点法”作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域 R R {x | x ≠k π ⎭⎬⎫+π2 值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性奇函数偶函数奇函数递增区间⎣⎡ 2k π-π2,⎦⎤2k π+π2[2k π-π,2k π]⎝⎛ k π-π2,⎭⎫k π+π2递减区间⎣⎡ 2k π+π2,⎦⎤2k π+3π2[2k π,2k π+π]对称中心 (k π,0) ⎝⎛⎭⎫k π+π2,0⎝⎛⎭⎫k π2,0对称轴方程 x =k π+π2x =k π常用结论1.对称性与周期性(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ).(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)正切函数y =tan x 在定义域内是增函数.( × ) (2)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (3)y =sin|x |是偶函数.( √ )(4)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( √ ) 教材改编题1.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( )A .T =π,A =1B .T =2π,A =1C .T =π,A =2D .T =2π,A =2 答案 A2.函数f (x )=-2tan ⎝⎛⎭⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠π6B.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠-π12 C.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠k π+π6k ∈Z D.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠k π2+π6k ∈Z答案 D解析 由2x +π6≠k π+π2,k ∈Z ,得x ≠k π2+π6,k ∈Z .3.函数y =3cos ⎝⎛⎭⎫2x -π3的单调递减区间是________. 答案 ⎣⎡⎦⎤k π+π6,k π+2π3,k ∈Z 解析 因为y =3cos ⎝⎛⎭⎫2x -π3, 令2k π≤2x -π3≤2k π+π,k ∈Z ,求得k π+π6≤x ≤k π+2π3,k ∈Z ,可得函数的单调递减区间为⎣⎡⎦⎤k π+π6,k π+2π3,k ∈Z .题型一 三角函数的定义域和值域例1 (1)函数y =1tan x -1的定义域为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π4+k π,且x ≠π2+k π,k ∈Z 解析 要使函数有意义, 则⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z ,即⎩⎨⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z .故函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π4+k π,且x ≠π2+k π,k ∈Z .(2)函数y =sin x -cos x +sin x cos x 的值域为________.答案 ⎣⎢⎡⎦⎥⎤-1+222,1解析 设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x ·cos x ,sin x cos x =1-t 22, 且-2≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1,t ∈[-2,2]. 当t =1时,y max =1; 当t =-2时,y min =-1+222. ∴函数的值域为⎣⎢⎡⎦⎥⎤-1+222,1.教师备选1.函数y =sin x -cos x 的定义域为________.答案 ⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ) 解析 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象, 如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . 2.函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 答案 1解析 由题意可得 f (x )=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1. ∵x ∈⎣⎡⎦⎤0,π2, ∴cos x ∈[0,1]. ∴当cos x =32,即x =π6时,f (x )取最大值为1. 思维升华 (1)三角函数定义域的求法求三角函数的定义域实际上是构造简单的三角不等式(组),常借助三角函数的图象来求解. (2)三角函数值域的不同求法①把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域. ②把sin x 或cos x 看作一个整体,转换成二次函数求值域. ③利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.跟踪训练1 (1)(2021·北京)函数f (x )=cos x -cos 2x ,试判断函数的奇偶性及最大值( ) A .奇函数,最大值为2 B .偶函数,最大值为2 C .奇函数,最大值为98D .偶函数,最大值为98答案 D 解析 由题意,f (-x )=cos (-x )-cos (-2x ) =cos x -cos 2x =f (x ), 所以该函数为偶函数,又f (x )=cos x -cos 2x =-2cos 2x +cos x +1=-2⎝⎛⎭⎫cos x -142+98, 所以当cos x =14时,f (x )取最大值98.(2)函数y =lg(sin 2x )+9-x 2的定义域为________. 答案 ⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2 解析 ∵函数y =lg(sin 2x )+9-x 2,∴应满足⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0, 解得⎩⎪⎨⎪⎧k π<x <π2+k π,-3≤x ≤3,其中k ∈Z ,∴-3≤x <-π2或0<x <π2,∴函数的定义域为⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2.题型二 三角函数的周期性、奇偶性、对称性例2 (1)(2019·全国Ⅱ)下列函数中,以π2为周期且在区间⎝⎛⎭⎫π4,π2上单调递增的是( ) A .f (x )=|cos 2x | B .f (x )=|sin 2x |答案 A解析 A 中,函数f (x )=|cos 2x |的周期为π2,当x ∈⎝⎛⎭⎫π4,π2时,2x ∈⎝⎛⎭⎫π2,π,函数f (x )单调递增,故A 正确;B 中,函数f (x )=|sin 2x |的周期为π2,当x ∈⎝⎛⎭⎫π4,π2时,2x ∈⎝⎛⎭⎫π2,π,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cos x 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.(2)函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ+1,φ∈(0,π),且f (x )为偶函数,则φ=________,f (x )图象的对称中心为________. 答案5π6 ⎝⎛⎭⎫π4+k π2,1,k ∈Z 解析 若f (x )=3sin ⎝⎛⎭⎫2x -π3+φ+1为偶函数,则-π3+φ=k π+π2,k ∈Z , 即φ=5π6+k π,k ∈Z ,又∵φ∈(0,π), ∴φ=5π6.∴f (x )=3sin ⎝⎛⎭⎫2x +π2+1=3cos 2x +1, 由2x =π2+k π,k ∈Z 得x =π4+k π2,k ∈Z ,∴f (x )图象的对称中心为⎝⎛⎭⎫π4+k π2,1,k ∈Z . 教师备选1.下列函数中,是周期函数的为( ) A .y =sin|x |B .y =cos|x |答案 B解析 ∵cos|x |=cos x ,∴y =cos|x |是周期函数.其余函数均不是周期函数. 2.函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π),若f (x )为奇函数,则φ=________. 答案 π3解析 若f (x )=3sin ⎝⎛⎭⎫2x -π3+φ为奇函数, 则-π3+φ=k π,k ∈Z ,即φ=π3+k π,k ∈Z ,又∵φ∈(0,π), ∴φ=π3.思维升华 (1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.跟踪训练2 (1)(2021·全国乙卷)函数f (x )=sin x 3+cos x3最小正周期和最大值分别是( )A .3π和 2B .3π和2C .6π和 2D .6π和2答案 C解析 因为函数f (x )=sin x 3+cos x3=2⎝⎛⎭⎫22sin x 3+22cos x 3=2⎝⎛⎭⎫sin x 3cos π4+cos x 3sin π4 =2sin ⎝⎛⎭⎫x 3+π4,所以函数f (x )的最小正周期T =2π13=6π,最大值为 2.(2)已知f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)是定义域为R 的奇函数,且当x =3时,f (x )取得最小值-3,当ω取得最小正数时,f (1)+f (2)+f (3)+…+f (2 022)的值为( ) A.32 B .-6-3 3 C .1 D .-1答案 B解析 ∵f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)是定义域为R 的奇函数, ∴φ=π2+k π,k ∈Z ,则φ=π2,则f (x )=-A sin ωx .当x =3时,f (x )取得最小值-3, 故A =3,sin 3ω=1, ∴3ω=π2+2k π,k ∈Z .∴ω的最小正数为π6,∴f (x )=-3sin π6x ,∴f (x )的周期为12,∴f (1)+f (2)+f (3)+…+f (12)=0, ∴f (1)+f (2)+f (3)+…+f (2 022) =168×0+f (1)+f (2)+…+f (6) =-6-3 3.(3)(2022·郑州模拟)设函数f (x )=2sin ⎝⎛⎭⎫2x -π3+34,则下列叙述正确的是( ) A .f (x )的最小正周期为2π B .f (x )的图象关于直线x =π12对称 C .f (x )在⎣⎡⎦⎤π2,π上的最小值为-54 D .f (x )的图象关于点⎝⎛⎭⎫2π3,0对称 答案 C解析 对于A ,f (x )的最小正周期为2π2=π,故A 错误;对于B ,∵sin ⎝⎛⎭⎫2×π12-π3=-12≠±1, 故B 错误;对于C ,当x ∈⎣⎡⎦⎤π2,π时,2x -π3∈⎣⎡⎦⎤2π3,5π3, ∴sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-1,32, ∴2sin ⎝⎛⎭⎫2x -π3+34∈⎣⎡⎦⎤-54,3+34, ∴f (x )在⎣⎡⎦⎤π2,π上的最小值为-54,故C 正确; 对于D ,∵f ⎝⎛⎭⎫2π3=2sin ⎝⎛⎭⎫2×2π3-π3+34=34, ∴f (x )的图象关于点⎝⎛⎭⎫2π3,34对称,故D 错误. 题型三 三角函数的单调性 命题点1 求三角函数的单调区间例3 函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调递减区间为________.答案 ⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) 解析 f (x )=sin ⎝⎛⎭⎫-2x +π3 =sin ⎣⎡⎦⎤-⎝⎛⎭⎫2x -π3 =-sin ⎝⎛⎭⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z . 故所求函数的单调递减区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). 延伸探究 f (x )=sin ⎝⎛⎭⎫-2x +π3在[0,π]上的单调递减区间为________. 答案 ⎣⎡⎦⎤0,5π12和⎣⎡⎦⎤11π12,π 解析 令A =⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z , B =[0,π],∴A ∩B =⎣⎡⎦⎤0,5π12∪⎣⎡⎦⎤11π12,π, ∴f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,5π12和⎣⎡⎦⎤11π12,π. 命题点2 根据单调性求参数例4 (1)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.答案 32解析 ∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2, 即0≤x ≤π2ω时,y =sin ωx 单调递增; 当π2≤ωx ≤3π2, 即π2ω≤x ≤3π2ω时,y =sin ωx 单调递减. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减,知π2ω=π3, ∴ω=32. (2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 ⎣⎡⎦⎤12,54解析 由π2<x <π,ω>0, 得ωπ2+π4<ωx +π4<ωπ+π4, 因为y =sin x 的单调递减区间为⎣⎡⎦⎤2k π+π2,2k π+3π2,k ∈Z , 所以⎩⎨⎧ ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z . 又由4k +12-⎝⎛⎭⎫2k +54≤0,k ∈Z , 且2k +54>0,k ∈Z , 解得k =0,所以ω∈⎣⎡⎦⎤12,54.教师备选(2022·定远县育才学校月考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为( ) A .11 B .9 C .7 D .1答案 B解析 因为x =-π4为f (x )的零点, x =π4为y =f (x )图象的对称轴, 所以2n +14·T =π2(n ∈N ), 即2n +14·2πω=π2(n ∈N ), 所以ω=2n +1(n ∈N ),即ω为正奇数.因为f (x )在⎝⎛⎭⎫π18,5π36上单调,则5π36-π18=π12≤T 2, 即T =2πω≥π6, 解得ω≤12.当ω=11时,-11π4+φ=k π,k ∈Z , 因为|φ|≤π2, 所以φ=-π4,此时f (x )=sin ⎝⎛⎭⎫11x -π4. 当x ∈⎝⎛⎭⎫π18,5π36时,11x -π4∈⎝⎛⎭⎫13π36,46π36, 所以f (x )在⎝⎛⎭⎫π18,5π36上不单调,不满足题意;当ω=9时,-9π4+φ=k π,k ∈Z , 因为|φ|≤π2, 所以φ=π4, 此时f (x )=sin ⎝⎛⎭⎫9x +π4. 当x ∈⎝⎛⎭⎫π18,5π36时,9x +π4∈⎝⎛⎭⎫3π4,3π2, 此时f (x )在⎝⎛⎭⎫π18,5π36上单调递减,符合题意.故ω的最大值为9.思维升华 (1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.跟踪训练3 (1)(2021·新高考全国Ⅰ)下列区间中,函数f (x )=7sin ⎝⎛⎭⎫x -π6的单调递增区间是( )A.⎝⎛⎭⎫0,π2 B.⎝⎛⎭⎫π2,π C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π答案 A解析 令-π2+2k π≤x -π6≤π2+2k π,k ∈Z ,得-π3+2k π≤x ≤2π3+2k π,k ∈Z .取k =0,则-π3≤x ≤2π3.因为⎝⎛⎭⎫0,π2⎣⎡⎦⎤-π3,2π3,所以区间⎝⎛⎭⎫0,π2是函数f (x )的单调递增区间. (2)(2022·开封模拟)已知函数y =sin ⎝⎛⎭⎫ωx +π3 (ω>0)在区间⎝⎛⎭⎫-π6,π3上单调递增,则ω的取值范围是( ) A.⎝⎛⎦⎤0,12 B.⎣⎡⎦⎤12,1 C.⎝⎛⎦⎤13,23D.⎣⎡⎦⎤23,2答案 A解析 当-π6<x <π3时, -πω6+π3<ωx +π3<πω3+π3, 当x =0时,ωx +π3=π3. 因为函数y =sin ⎝⎛⎭⎫ωx +π3(ω>0)在区间⎝⎛⎭⎫-π6,π3上单调递增, 所以⎩⎨⎧ -πω6+π3≥-π2,πω3+π3≤π2,解得ω≤12, 因为ω>0,所以ω的取值范围是⎝⎛⎦⎤0,12. 课时精练1.y =|cos x |的一个单调递增区间是( )A.⎣⎡⎦⎤-π2,π2 B .[0,π]C.⎣⎡⎦⎤π,3π2 D.⎣⎡⎦⎤3π2,2π 答案 D 解析 将y =cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.函数f (x )=2sin π2x -1的定义域为( ) A.⎣⎡⎦⎤π3+4k π,5π3+4k π(k ∈Z ) B.⎣⎡⎦⎤13+4k ,53+4k (k ∈Z ) C.⎣⎡⎦⎤π6+4k π,5π6+4k π(k ∈Z ) D.⎣⎡⎦⎤16+4k ,56+4k (k ∈Z ) 答案 B解析 由题意,得2sin π2x -1≥0, π2x ∈⎣⎡⎦⎤π6+2k π,5π6+2k π(k ∈Z ), 则x ∈⎣⎡⎦⎤13+4k ,53+4k (k ∈Z ). 3.函数f (x )=sin ⎝⎛⎭⎫x +5π12cos ⎝⎛⎭⎫x -π12是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的非奇非偶函数D .最小正周期为π的非奇非偶函数答案 D解析 由题意可得f (x )=sin ⎝⎛⎭⎫x +5π12cos ⎝⎛⎭⎫x -π12 =sin ⎝⎛⎭⎫x +5π12cos ⎝⎛⎭⎫x +5π12-π2 =sin 2⎝⎛⎭⎫x +5π12, ∴f (x )=12-12cos ⎝⎛⎭⎫2x +5π6, 故f (x )的最小正周期T =2π2=π,由函数奇偶性的定义易知,f (x )为非奇非偶函数. 4.函数f (x )=sin x +x cos x +x 2在[-π,π]的图象大致为( )答案 D解析 由f (-x )=sin -x +-x cos -x +-x2 =-sin x -x cos x +x 2=-f (x ),得f (x )是奇函数,其图象关于原点对称,排除A ; 又f ⎝⎛⎭⎫π2=1+π2⎝⎛⎭⎫π22=4+2ππ2>1, f (π)=π-1+π2>0,排除B ,C. 5.关于函数f (x )=sin 2x -cos 2x ,下列命题中为假命题的是( )A .函数y =f (x )的周期为πB .直线x =π4是y =f (x )图象的一条对称轴 C .点⎝⎛⎭⎫π8,0是y =f (x )图象的一个对称中心D .y =f (x )的最大值为 2答案 B解析 因为f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π4, 所以f (x )的最大值为2,故D 为真命题;因为ω=2,故T =2π2=π,故A 为真命题; 当x =π4时,2x -π4=π4,终边不在y 轴上,故直线x =π4不是y =f (x )图象的一条对称轴, 故B 为假命题;当x =π8时,2x -π4=0,终边落在x 轴上, 故点⎝⎛⎭⎫π8,0是y =f (x )图象的一个对称中心,故C 为真命题.6.(2022·广州市培正中学月考)关于函数f (x )=sin|x |+|sin x |,下列叙述正确的是( )A .f (x )是奇函数B .f (x )在区间⎝⎛⎭⎫π2,π上单调递增C .f (x )的最大值为2D .f (x )在[-π,π]上有4个零点答案 C解析 f (-x )=sin|-x |+|sin(-x )|=sin|x |+|sin x |=f (x ),f (x )是偶函数,A 错误;当x ∈⎝⎛⎭⎫π2,π时,f (x )=sin x +sin x =2sin x ,单调递减,B 错误;f (x )=sin|x |+|sin x |≤1+1=2,且f ⎝⎛⎭⎫π2=2,C 正确;在[-π,π]上,当-π<x <0时,f (x )=sin(-x )+(-sin x )=-2sin x >0,当0<x <π时,f (x )=sin x +sin x =2sin x >0,f (x )的零点只有π,0,-π共三个,D 错误.7.写出一个周期为π的偶函数f (x )=________.(答案不唯一) 答案 cos 2x8.(2022·上外浦东附中检测)若在⎣⎡⎦⎤0,π2内有两个不同的实数值满足等式cos 2x +3sin 2x =k +1,则实数k 的取值范围是________.答案 0≤k <1解析 函数f (x )=cos 2x +3sin 2x=2sin ⎝⎛⎭⎫2x +π6, 当x ∈⎣⎡⎦⎤0,π6时, f (x )=2sin ⎝⎛⎭⎫2x +π6单调递增; 当x ∈⎣⎡⎦⎤π6,π2时,f (x )=2sin ⎝⎛⎭⎫2x +π6单调递减, f (0)=2sin π6=1, f ⎝⎛⎭⎫π6=2sin π2=2, f ⎝⎛⎭⎫π2=2sin 7π6=-1,所以在⎣⎡⎦⎤0,π2内有两个不同的实数值满足等式cos 2x +3sin 2x =k +1, 则1≤k +1<2,所以0≤k <1.9.已知函数f (x )=4sin ωx sin ⎝⎛⎭⎫ωx +π3-1(ω>0)的最小正周期为π. (1)求ω及f (x )的单调递增区间;(2)求f (x )图象的对称中心.解 (1)f (x )=4sin ωx ⎝⎛⎭⎫12sin ωx +32cos ωx -1 =2sin 2ωx +23sin ωx cos ωx -1 =1-cos 2ωx +3sin 2ωx -1 =3sin 2ωx -cos 2ωx=2sin ⎝⎛⎭⎫2ωx -π6. ∵最小正周期为π,∴2π2ω=π, ∴ω=1,∴f (x )=2sin ⎝⎛⎭⎫2x -π6, 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z , 解得-π6+k π≤x ≤π3+k π,k ∈Z , ∴f (x )的单调递增区间为⎣⎡⎦⎤-π6+k π,π3+k π (k ∈Z ).(2)令2x -π6=k π,k ∈Z , 解得x =π12+k π2,k ∈Z ,∴f (x )图象的对称中心为⎝⎛⎭⎫π12+k π2,0,k ∈Z .10.(2021·浙江)设函数f (x )=sin x +cos x (x ∈R ).(1)求函数y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π22的最小正周期; (2)求函数y =f (x )f ⎝⎛⎭⎫x -π4在⎣⎡⎦⎤0,π2上的最大值. 解 (1)因为f (x )=sin x +cos x ,所以f ⎝⎛⎭⎫x +π2=sin ⎝⎛⎭⎫x +π2+cos ⎝⎛⎭⎫x +π2 =cos x -sin x ,所以y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π22=(cos x -sin x )2 =1-sin 2x .所以函数y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π22的最小正周期T =2π2=π. (2)f ⎝⎛⎭⎫x -π4=sin ⎝⎛⎭⎫x -π4+cos ⎝⎛⎭⎫x -π4 =2sin x ,所以y =f (x )f ⎝⎛⎭⎫x -π4 =2sin x (sin x +cos x ) =2(sin x cos x +sin 2x ) =2⎝⎛⎭⎫12sin 2x -12cos 2x +12 =sin ⎝⎛⎭⎫2x -π4+22. 当x ∈⎣⎡⎦⎤0,π2时,2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以当2x -π4=π2,即x =3π8时, 函数y =f (x )f ⎝⎛⎭⎫x -π4在⎣⎡⎦⎤0,π2上取得最大值,且y max =1+22.11.(2022·苏州模拟)已知函数f (x )=sin ⎝⎛⎭⎫2x +π3,则下列结论不正确的是( ) A .x =-π6是函数f (x )的一个零点 B .函数f (x )在区间⎣⎡⎦⎤-5π12,π12上单调递增 C .函数f (x )的图象关于直线x =π12对称 D .函数f ⎝⎛⎭⎫x -π3是偶函数 答案 D解析 对于A 选项,因为f ⎝⎛⎭⎫-π6=sin 0=0, 故x =-π6是函数f (x )的一个零点,A 对; 对于B 选项,当-5π12≤x ≤π12时, -π2≤2x +π3≤π2, 所以函数f (x )在区间⎣⎡⎦⎤-5π12,π12上单调递增,B 对; 对于C 选项,因为对称轴满足2x +π3=π2+k π,k ∈Z , 解得x =π12+k π2,k ∈Z ,当k =0时,x =π12,C 对; 对于D 选项,令g (x )=f ⎝⎛⎭⎫x -π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π3 =sin ⎝⎛⎭⎫2x -π3, 则g ⎝⎛⎭⎫π6=0,g ⎝⎛⎭⎫-π6=sin ⎝⎛⎭⎫-2π3≠0, 故函数f ⎝⎛⎭⎫x -π3不是偶函数,D 错. 12.(2022·厦门模拟)已知函数f (x )=cos 2⎝⎛⎭⎫x -π6-cos 2x ,则下列结论正确的是( ) A .f (x )的最大值为3-12B .f (x )的图象关于点⎝⎛⎭⎫7π6,0对称C .f (x )的图象的对称轴方程为x =5π12+k π2(k ∈Z ) D .f (x )在[0,2π]上有2个零点答案 C解析 f (x )=1+cos ⎝⎛⎭⎫2x -π32-cos 2x =12+12⎝⎛⎭⎫12cos 2x +32sin 2x -cos 2x =34sin 2x -34cos 2x +12=32sin ⎝⎛⎭⎫2x -π3+12, 则f (x )的最大值为1+32,A 错误; 易知f (x )图象的对称中心的纵坐标为12, B 错误;令2x -π3=π2+k π(k ∈Z ), 得x =5π12+k π2(k ∈Z ), 此即f (x )图象的对称轴方程,C 正确;由f (x )=32sin ⎝⎛⎭⎫2x -π3+12=0, 得sin ⎝⎛⎭⎫2x -π3=-33, 当x ∈[0,2π]时,2x -π3∈⎣⎡⎦⎤-π3,11π3, 作出函数y =sin x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π3,11π3的图象,如图所示.所以方程sin ⎝⎛⎭⎫2x -π3=-33在[0,2π]上有4个不同的实根, 即f (x )在[0,2π]上有4个零点,D 错误.13.(2022·绵阳中学实验学校模拟)已知sin x +cos y =14,则sin x -sin 2y 的最大值为______. 答案 916解析 ∵sin x +cos y =14,sin x ∈[-1,1], ∴sin x =14-cos y ∈[-1,1], ∴cos y ∈⎣⎡⎦⎤-34,54, 即cos y ∈⎣⎡⎦⎤-34,1, ∵sin x -sin 2y =14-cos y -(1-cos 2y ) =cos 2y -cos y -34=⎝⎛⎭⎫cos y -122-1, 又cos y ∈⎣⎡⎦⎤-34,1,利用二次函数的性质知,当cos y =-34时, (sin x -sin 2y )max =⎝⎛⎭⎫-34-122-1=916. 14.(2022·苏州八校联盟检测)已知f (x )=sin x +cos x ,若y =f (x +θ)是偶函数,则cos θ=________.答案 ±22解析 因为f (x )=2sin ⎝⎛⎭⎫x +π4, 所以f (x +θ)=2sin ⎝⎛⎭⎫x +θ+π4, 又因为y =f (x +θ)是偶函数,所以θ+π4=π2+k π,k ∈Z , 即θ=π4+k π,k ∈Z , 所以cos θ=cos ⎝⎛⎭⎫π4+k π=±22.15.(2022·江西九江一中模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0),若方程f (x )=0在[0,2π]上有且仅有6个根,则实数ω的值可能为( )A .2B .3C .4D .5答案 B解析 令f (x )=sin ⎝⎛⎭⎫ωx +π3=0, 则ωx +π3=k π,k ∈Z , 所以x =-π3ω+k πω,k ∈Z , 所以当x ≥0时,函数f (x )的第一个零点为x 1=-π3ω+πω=2π3ω,第六个零点为x 6=-π3ω+6πω=17π3ω,第七个零点为x 7=-π3ω+7πω=20π3ω, 因为方程f (x )=0在[0,2π]上有且仅有6个根等价于函数y =f (x )在[0,2π]上有且仅有6个零点,所以17π3ω≤2π<20π3ω, 所以176≤ω<103. 16.已知f (x )=sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4-12. (1)求f (x )的单调递增区间;(2)若函数y =|f (x )|-m 在区间⎣⎡⎦⎤-5π24,3π8上恰有两个零点x 1,x 2. ①求m 的取值范围;②求sin(x 1+x 2)的值.解 (1)f (x )=sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4-12=1-cos ⎝⎛⎭⎫2x +π42+22sin ⎝⎛⎭⎫2x +π2-12 =12-24cos 2x +24sin 2x +22cos 2x -12=24sin 2x +24cos 2x =12sin ⎝⎛⎭⎫2x +π4, 结合正弦函数的图象与性质, 可得当-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ), 即-3π8+k π≤x ≤π8+k π(k ∈Z )时,函数单调递增, ∴函数y =f (x )的单调递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ). (2)①令t =2x +π4,当x ∈⎣⎡⎦⎤-5π24,3π8时,t ∈⎣⎡⎦⎤-π6,π,12sin t ∈⎣⎡⎦⎤-14,12, ∴y =⎪⎪⎪⎪12sin t ∈⎣⎡⎦⎤0,12(如图).∴要使y =|f (x )|-m 在区间⎣⎡⎦⎤-5π24,3π8上恰有两个零点,m 的取值范围为14<m <12或m =0. ②设t 1,t 2是函数y =⎪⎪⎪⎪12sin t -m 的两个零点⎝⎛⎭⎫即t 1=2x 1+π4,t 2=2x 2+π4, 由正弦函数图象性质可知t 1+t 2=π,即2x 1+π4+2x 2+π4=π. ∴x 1+x 2=π4,∴sin(x 1+x 2)=22.。

2024年高考数学总复习第四章《三角函数解三角形》任意角弧度制及任意角的三角函数

2024年高考数学总复习第四章《三角函数解三角形》任意角弧度制及任意角的三角函数

2024年高考数学总复习第四章《三角函数、解三角形》§4.1任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制,能进行弧度与角度的互化.2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=πrad,1°=π180rad ,1rad(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin αR++--cos αR+--+tan α{α|α≠k π+π2,k ∈Z }+-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律.提示一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx(x ≠0).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P 的位置无关.(√)(3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α>1.(√)题组二教材改编2.角-225°=弧度,这个角在第象限.答案-5π4二3.若角α的终边经过点-22,sin α=,cos α=.答案22-224.一条弦的长等于半径,这条弦所对的圆心角大小为弧度.答案π3题组三易错自纠5|k π+π4≤α≤k π+π2,k ∈Z(阴影部分)是()答案C解析当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.6.已知点Pθ的终边上,且θ∈[0,2π),则θ的值为()A.5π6B.2π3C.11π6D.5π3答案C解析因为点P所以根据三角函数的定义可知tan θ=-1232=-33,又θθ=11π6.7.在0到2π范围内,与角-4π3终边相同的角是.答案2π3解析与角-4π3终边相同的角是2k πk ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3.8.(2018·济宁模拟)函数y =2cos x -1的定义域为.答案2k π-π3,2k π+π3(k ∈Z )解析∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈2k π-π3,2k π+π3(k ∈Z ).题型一角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是()A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案C解析与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M |x =k2·180°+45°,k ∈ZN |x =k4·180°+45°,k ∈Z()A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅答案B解析由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.(2018·宁夏质检)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.答案-53π,-23π,π3,43π解析如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为-53,-23π,π3,43π4.若角α是第二象限角,则α2是第象限角.答案一或三解析∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角.(2)确定kα,αkk ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.题型二弧度制及其应用例1已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10cm ,求扇形的面积.解由已知得α=π3,R =10cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积.解l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2).2.若例题条件改为:“若扇形周长为20cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解由已知得,l +2R =20,则l =20-2R (0<R <10).所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5cm 时,S 取得最大值25cm 2,此时l =10cm ,α=2rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1(1)(2018·湖北七校联考)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为()A.π6B.π3C .3D.3答案D解析如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r ,∴l =3r ,由弧长公式得α=l r =3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为.答案518解析设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,由扇形面积等于圆面积的527,可得12α2r 3πr 2=527,解得α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518.题型三三角函数的概念命题点1三角函数定义的应用例2(1)(2018·青岛模拟)已知角α的终边与单位圆的交点为-12,sin α·tan α等于()A .-33B .±33C .-32D .±32答案C解析由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且|cosθ2|=-cos θ2,则θ2是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案B解析由θ是第三象限角知,θ2为第二或第四象限角,∵|cos θ2|=-cos θ2,∴cos θ2<0,综上可知,θ2为第二象限角.命题点2三角函数线例3(1)满足cos α≤-12的角的集合是.答案|2k π+23π≤α≤2k π+43π,k ∈Z 解析作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为|2k π+23π≤α≤2k π+43π,k ∈Z(2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是.答案sin α<cos α<tan α解析如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华(1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.跟踪训练2(1)(2018·济南模拟)已知角α的终边经过点(m ,-2m ),其中m ≠0,则sin α+cosα等于()A .-55B .±55C .-35D .±35答案B解析∵角α的终边经过点(m ,-2m ),其中m ≠0,∴m >0时,sin α=-2m 5m =-25cos α=m 5m =15,∴sin α+cos α=-55;m <0时,sin α=-2m -5m =25,cos α=m -5m =-15,∴sin α+cos α=55;∴sin α+cos α=±55,故选B.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是()答案C解析当x ∈π2,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当xOB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈πsin x >cosx ;当x ∈5π4,sin x ≤cos x ,故选C.1.下列说法中正确的是()A .第一象限角一定不是负角B .不相等的角,它们的终边必不相同C .钝角一定是第二象限角D .终边与始边均相同的两个角一定相等答案C解析因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误.2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是()A .1B .4C .1或4D .2或4答案C解析设扇形的半径为r ,弧长为l ,+l =6,=2,=1,4=2,2.从而α=l r =41=4或α=l r =22=1.3.(2018·石家庄调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于()A .-3B .3C.163D .±3答案B 解析sin θ=m16+m 2=35,且m >0,解得m =3.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为()-12,-32,--12,--32,答案A解析点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.故选C.6.sin 2·cos 3·tan 4的值()A .小于0B .大于0C .等于0D .不存在答案A解析∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0.7.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为()A .-12B .-32C.12D.32答案C解析由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12,又cos α=-45<0,所以-8m <0,即m >0,所以m =12.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A .1B .2C .3D .4答案A解析举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sinπ6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.答案2解析设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n =.答案2解析由已知tan α=3,∴n =3m ,又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 2π3,cos α的最小正值为.答案11π6解析由题意知,点r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.12.函数y =sin x -32的定义域为.答案2k π+π3,2k π+23π,k ∈Z 解析利用三角函数线(如图),由sin x ≥32,可知2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为.答案α|2k π+π4<α<2k π+56π,k ∈Z 解析∵在[0,2π)内,终边落在阴影部分角的集合为π4,56π∴α|2k π+π4<α<2k π+56π,k ∈Z14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点12,m,且sin α·cos β<0,则cos α·sin β=.答案±34解析由角β12,m cos β=12sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点12,m 12+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是平方米.(结果保留整数,3≈1.73)答案5解析如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×33×32+=943+98≈5(平方米).16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2rad/s 的角速度按顺时针方向在单位圆上运动.(1)求经过1s 后,∠BOA 的弧度;(2)求质点A ,B 在单位圆上第一次相遇所用的时间.解(1)经过1s 后,质点A 运动1rad ,质点B 运动2rad ,此时∠BOA 的弧度为π3+3.(2)设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9,即经过5π9s后质点A ,B 在单位圆上第一次相遇.。

2023年高考数学一轮复习第四章三角函数与解三角形2同角三角函数基本关系式及诱导公式练习含解析

2023年高考数学一轮复习第四章三角函数与解三角形2同角三角函数基本关系式及诱导公式练习含解析

同角三角函数基本关系式及诱导公式考试要求 1.理解同角三角函数的基本关系式sin 2α+cos 2α=1,sin αcos α=tan α.2.掌握诱导公式,并会简单应用.知识梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z . 2.三角函数的诱导公式公式一 二三四五 六 角2k π+α(k ∈Z )π+α -α π-απ2-απ2+α 正弦 sin α -sin α -sin α sin αcos αcos α余弦 cos α -cos α cos α-cos α sin α -sin α正切 tan αtan α-tan α -tan α口诀奇变偶不变,符号看象限常用结论同角三角函数的基本关系式的常见变形 sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin(π+α)=-sin α成立的条件是α为锐角.( × )(4)若sin ⎝ ⎛⎭⎪⎫3π2-α=13,则cos α=-13.( √ )教材改编题1.已知α是第二象限角,sin α=55,则cos α的值为. 答案 -255解析 ∵sin α=55,α是第二象限角, ∴cos α=-1-sin 2α=-255.2.已知sin α-2cos α3sin α+5cos α=-5,那么tan α的值为.答案 -2316解析 由sin α-2cos α3sin α+5cos α=-5,知cos α≠0,等式左边分子、分母同时除以cos α,可得tan α-23tan α+5=-5,解得tan α=-2316.3.化简cos ⎝ ⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫5π2+α·sin(α-π)·cos(2π-α)的结果为.答案 -sin 2α解析 原式=sin αcos α·(-sin α)·cos α=-sin 2α.题型一 同角三角函数基本关系例1 (1)已知cos α=-513,则13sin α+5tan α=.答案 0解析 ∵cos α=-513<0且cos α≠-1,∴α是第二或第三象限角. ①若α是第二象限角,则sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-5132=1213, ∴tan α=sin αcos α=1213-513=-125.此时13sin α+5tan α=13×1213+5×⎝ ⎛⎭⎪⎫-125=0. ②若α是第三象限角, 则sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-5132 =-1213,∴tan α=sin αcos α=-1213-513=125,此时,13sin α+5tan α=13×⎝ ⎛⎭⎪⎫-1213+5×125=0. 综上,13sin α+5tan α=0.(2)已知tan α=12,则sin α-3cos αsin α+cos α=;sin 2α+sin αcos α+2=.答案 -53 135解析 已知tan α=12,所以sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.sin 2α+sin αcos α+2 =sin 2α+sin αcos αsin 2α+cos 2α+2 =tan 2α+tan αtan 2α+1+2 =⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.(3)已知sin θ+cos θ=713,θ∈(0,π),则tan θ=.答案 -125解析 由sin θ+cos θ=713,得sin θcos θ=-60169,因为θ∈(0,π),所以sin θ>0,cos θ<0, 所以sin θ-cos θ=1-2sin θcos θ=1713,联立⎩⎪⎨⎪⎧sin θ+cos θ=713,sin θ-cos θ=1713,解得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513,所以tan θ=-125.教师备选1.(2022·锦州联考)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin2α等于( )A.35 B .-35C .-3D .3答案 A解析 由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α =35. 2.若α∈(0,π),sin(π-α)+cos α=23,则sin α-cos α的值为( ) A.23B .-23C.43 D .-43答案 C解析 由诱导公式得sin(π-α)+cos α=sin α+cos α=23, 所以(sin α+cos α)2=1+2sin αcos α=29,则2sin αcos α=-79<0,因为α∈(0,π),所以sin α>0, 所以cos α<0,所以sin α-cos α>0, 因为(sin α-cos α)2=1-2sin αcos α=169,所以sin α-cos α=43.思维升华 (1)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(2)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α. 跟踪训练1 (1)(2021·新高考全国Ⅰ)若tan θ=-2,则sin θ1+sin2θsin θ+cos θ等于( )A .-65B .-25C.25D.65答案 C解析 方法一 因为tan θ=-2, 所以角θ的终边在第二或第四象限, 所以⎩⎪⎨⎪⎧sin θ=25,cos θ=-15或⎩⎪⎨⎪⎧sin θ=-25,cos θ=15,所以sin θ1+sin2θsin θ+cos θ=sin θsin θ+cos θ2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θ =45-25=25. 方法二 (弦化切法)因为tan θ=-2, 所以sin θ1+sin2θsin θ+cos θ=sin θsin θ+cos θ2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θsin 2θ+cos 2θ =tan 2θ+tan θ1+tan 2θ=4-21+4=25. (2)已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为.答案 -105解析 由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1,所以cos 2α=910,易知cos α<0,所以cos α=-31010,sin α=1010,故sin α+cos α=-105. 题型二 诱导公式例2 (1)已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α的值为( )A.223B .-223C.13 D .-13答案 D解析 cos ⎝ ⎛⎭⎪⎫π4+α=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π4 =-sin ⎝⎛⎭⎪⎫α-π4=-13. 延伸探究 本例(1)改为已知θ是第二象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=45,则tan ⎝ ⎛⎭⎪⎫θ-π4=.答案 34解析 ∵θ是第二象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=45, ∴θ+π4为第二象限角,∴cos ⎝ ⎛⎭⎪⎫θ+π4=-35, ∴tan ⎝ ⎛⎭⎪⎫θ-π4=sin ⎝ ⎛⎭⎪⎫θ-π4cos ⎝ ⎛⎭⎪⎫θ-π4 =sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫θ+π4-π2cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫θ+π4-π2=-cos ⎝⎛⎭⎪⎫θ+π4sin ⎝⎛⎭⎪⎫θ+π4=-⎝ ⎛⎭⎪⎫-3545=34.(2)tan π-αcos 2π-αsin ⎝⎛⎭⎪⎫-α+3π2cos -α-πsin -π-α的值为( )A .-2B .-1C .1D .2 答案 B解析 原式=-tan α·cos α·-cos αcos π+α·[-sin π+α]=tan α·cos 2α-cos α·sin α =-sin αcos α·cos αsin α=-1.教师备选1.已知函数f (x )=ax -2+2(a >0且a ≠1)的图象过定点P ,且角α的始边与x 轴的正半轴重合,终边过点P ,则cos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α+sin2αcos ⎝ ⎛⎭⎪⎫π2+αsin -π-α等于( )A.23 B .-23C.32 D .-32答案 B解析 易知函数f (x )=a x -2+2(a >0且a ≠1)的图象过定点P (2,3),故tan α=32,则cos ⎝⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α+sin2αcos ⎝ ⎛⎭⎪⎫π2+αsin -π-α=cos ⎝ ⎛⎭⎪⎫3π2-αsin ⎝ ⎛⎭⎪⎫π2+α+sin2αcos ⎝ ⎛⎭⎪⎫π2+αsin α=-sin αcos α+2sin αcos α-sin αsin α=-cos αsin α=-1tan α=-23.2.若sin x =3sin ⎝ ⎛⎭⎪⎫x -π2,则cos x ·cos ⎝⎛⎭⎪⎫x +π2等于( )A.310 B .-310C.34 D .-34答案 A解析 易知sin x =3sin ⎝⎛⎭⎪⎫x -π2=-3cos x ,所以tan x =-3,所以cos x cos ⎝⎛⎭⎪⎫x +π2=-sin x cos x =-sin x cos x sin 2x +cos 2x=-tan x tan 2x +1=310. 思维升华 (1)诱导公式的两个应用①求值:负化正,大化小,化到锐角为终了; ②化简:统一角,统一名,同角名少为终了. (2)诱导公式的应用步骤任意负角的三角函数――――――→利用诱导公式三或一任意正角的三角函数――――――→利用诱导公式一0~2π内的角的三角函数――――――→利用诱导公式二或四或五或六锐角三角函数.跟踪训练2 (1)已知cos(75°+α)=13,求cos(105°-α)+sin(15°-α)=.答案 0解析 因为(105°-α)+(75°+α)=180°, (15°-α)+(α+75°)=90°,所以cos(105°-α)=cos[180°-(75°+α)] =-cos(75°+α)=-13,sin(15°-α)=sin[90°-(α+75°)] =cos(75°+α)=13.所以cos(105°-α)+sin(15°-α)=-13+13=0.(2)(2022·盐城南阳中学月考)设tan(5π+α)=2,则sin -3π+α+cos α-πcos ⎝ ⎛⎭⎪⎫α-112π+sin ⎝ ⎛⎭⎪⎫9π2+α=. 答案 3解析 由已知tan(5π+α)=tan α=2, sin -3π+α+cos α-πcos ⎝ ⎛⎭⎪⎫α-112π+sin ⎝ ⎛⎭⎪⎫9π2+α=sin π+α+cos π-αcos ⎝ ⎛⎭⎪⎫α+π2+sin ⎝ ⎛⎭⎪⎫π2+α=-sin α-cos α-sin α+cos α=sin α+cos αsin α-cos α=tan α+1tan α-1=3.题型三 同角三角函数基本关系式和诱导公式的综合应用例3 已知f (α)=sin α-3πcos 2π-αsin ⎝⎛⎭⎪⎫-α+3π2cos -π-αsin -π-α.(1)化简f (α);(2)若α=-31π3,求f (α)的值;(3)若cos ⎝ ⎛⎭⎪⎫-α-π2=15,α∈⎣⎢⎡⎦⎥⎤π,3π2,求f (α)的值. 解 (1)f (α)=sin α-3πcos 2π-αsin ⎝⎛⎭⎪⎫-α+3π2cos -π-αsin -π-α=-sin α×cos α×-cos α-cos α×sin α=-cos α. (2)若α=-31π3,则f (α)=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos π3=-12. (3)由cos ⎝ ⎛⎭⎪⎫-α-π2=15, 可得sin α=-15,因为α∈⎣⎢⎡⎦⎥⎤π,3π2, 所以cos α=-265,所以f (α)=-cos α=265.教师备选设f (α)=2sin π+αcos π-α-cos π+α1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0).(1)化简f (α);(2)若α=-23π6,求f (α)的值.解 (1)f (α)=-2sin α·-cos α--cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α =cos α2sin α+1sin α2sin α+1=cos αsin α=1tan α.(2)当α=-23π6时,f (α)=f ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-23π6 =1tan ⎝ ⎛⎭⎪⎫-4π+π6=1tanπ6=133= 3. 思维升华 (1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形. (2)注意角的范围对三角函数符号的影响.跟踪训练3 (1)(2022·聊城模拟)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355 B.377 C.31010 D.13答案 C解析 由已知得⎩⎪⎨⎪⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1, 化简得sin 2α=910,则sin α=31010(α为锐角).(2)已知-π<x <0,sin(π+x )-cos x =-15,则sin2x +2sin 2x1-tan x =.答案 -24175解析 由已知,得sin x +cos x =15,两边平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∴(sin x -cos x )2=1-2sin x cos x =4925,由-π<x <0知,sin x <0, 又sin x cos x =-1225<0,∴cos x >0,∴sin x -cos x <0, 故sin x -cos x =-75.∴sin2x +2sin 2x 1-tan x =2sin x cos x +sin x 1-sin xcos x=2sin x cos x cos x +sin xcos x -sin x=-2425×1575=-24175.课时精练1.cos ⎝ ⎛⎭⎪⎫-19π3等于( ) A .-32 B .-12C.12 D.32答案 C解析 cos ⎝ ⎛⎭⎪⎫-19π3=cos 19π3 =cos ⎝⎛⎭⎪⎫6π+π3=cos π3=12. 2.若cos165°=a ,则tan195°等于( ) A.1-a 2B.1-a2aC .-1-a2aD .-a1-a2答案 C解析 若cos165°=a , 则cos15°=cos(180°-165°) =-cos165°=-a , sin15°=1-a 2,所以tan195°=tan(180°+15°) =tan15°=sin15°cos15°=-1-a2a.3.若cos ⎝ ⎛⎭⎪⎫α-π5=513,则sin ⎝ ⎛⎭⎪⎫7π10-α等于( ) A .-513B .-1213C.1213D.513答案 D解析 因为7π10-α+⎝ ⎛⎭⎪⎫α-π5=π2, 所以7π10-α=π2-⎝ ⎛⎭⎪⎫α-π5,所以sin ⎝ ⎛⎭⎪⎫7π10-α=cos ⎝⎛⎭⎪⎫α-π5=513.4.(2022·天津西青区模拟)已知sin α+cos α=-2,则tan α+1tan α等于( ) A .2B.12C .-2D .-12答案 A解析 由已知得1+2sin αcos α=2, ∴sin αcos α=12,∴tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2.5.(多选)在△ABC 中,下列结论正确的是( ) A .sin(A +B )=sin C B .sinB +C2=cos A2C .tan(A +B )=-tan C ⎝⎛⎭⎪⎫C ≠π2D .cos(A +B )=cos C 答案 ABC解析 在△ABC 中,有A +B +C =π, 则sin(A +B )=sin(π-C )=sin C ,A 正确. sinB +C2=sin ⎝ ⎛⎭⎪⎫π2-A 2=cos A 2,B 正确.tan(A +B )=tan(π-C )=-tan C ⎝⎛⎭⎪⎫C ≠π2,C 正确.cos(A +B )=cos(π-C )=-cos C ,D 错误.6.(多选)已知α∈(0,π),且sin α+cos α=15,则( )A.π2<α<π B .sin αcos α=-1225C .cos α-sin α=75D .cos α-sin α=-75答案 ABD解析 ∵sin α+cos α=15,等式两边平方得(sin α+cos α)2=1+2sin αcos α=125,解得sin αcos α=-1225,故B 正确;∵α∈(0,π),sin αcos α=-1225<0,∴α∈⎝⎛⎭⎪⎫π2,π,故A 正确;cos α-sin α<0,且(cos α-sin α)2=1-2sin αcos α=1-2×⎝ ⎛⎭⎪⎫-1225=4925,解得cos α-sin α=-75,故D 正确.7.cos1°+cos2°+cos3°+…+cos177°+cos178°+cos179°=. 答案 0解析 因为cos(180°-α)=-cos α,于是得cos1°+cos2°+cos3°+…+cos89°+cos90°+cos91°+…+cos177°+cos178°+cos179°=cos1°+cos2°+cos3°+…+cos89°+cos90°-cos89°-…-cos3°-cos2°-cos1° =cos90°=0.8.设f (θ)=2cos 2θ+sin 22π-θ+sin ⎝ ⎛⎭⎪⎫π2+θ-32+2cos 2π+θ+cos -θ,则f ⎝ ⎛⎭⎪⎫17π3=. 答案 -512解析 ∵f (θ)=2cos 2θ+sin 2θ+cos θ-32+2cos 2θ+cos θ =cos 2θ+cos θ-22cos 2θ+cos θ+2, 又cos 17π3=cos ⎝ ⎛⎭⎪⎫6π-π3 =cosπ3=12, ∴f ⎝ ⎛⎭⎪⎫17π3=14+12-212+12+2=-512.9.(1)已知cos α是方程3x 2-x -2=0的根,且α是第三象限角,求sin ⎝ ⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫3π2+αtan 2π-αcos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫π2-α的值;(2)已知sin x +cos x =-713(0<x <π),求cos x -2sin x 的值.解 (1)因为方程3x 2-x -2=0的根为x 1=1,x 2=-23,又α是第三象限角,所以cos α=-23,所以sin α=-53,tan α=52. 所以原式=-cos αsin αtan 2α-sin αcos α=tan 2α=54.(2)∵sin x +cos x =-713(0<x <π),∴cos x <0,sin x >0,即sin x -cos x >0, 把sin x +cos x =-713,两边平方得1+2sin x cos x =49169, 即2sin x cos x =-120169,∴(sin x -cos x )2=1-2sin x cos x =289169,即sin x -cos x =1713,联立⎩⎪⎨⎪⎧sin x +cos x =-713,sin x -cos x =1713,解得sin x =513,cos x =-1213,∴cos x -2sin x =-2213.10.(2022·衡水模拟)已知角α的终边经过点P (3m ,-6m )(m ≠0). (1)求sin α+π+cos α-πsin ⎝ ⎛⎭⎪⎫α+π2+2cos ⎝⎛⎭⎪⎫α-π2的值;(2)若α是第二象限角,求sin 2⎝ ⎛⎭⎪⎫α+3π2+sin(π-α)cos α-cos ⎝ ⎛⎭⎪⎫π2+α的值. 解 (1)∵m ≠0,∴cos α≠0, 即sin α+π+cos α-πsin ⎝ ⎛⎭⎪⎫α+π2+2cos ⎝ ⎛⎭⎪⎫α-π2=-sin α-cos αcos α+2sin α=-tan α-11+2tan α.又∵角α的终边经过点P (3m ,-6m )(m ≠0), ∴tan α=-6m3m =-2,故sin α+π+cos α-πsin ⎝ ⎛⎭⎪⎫α+π2+2cos ⎝ ⎛⎭⎪⎫α-π2=-tan α-11+2tan α=2-11+2×-2=-13.(2)∵α是第二象限角,∴m <0, 则sin α=-6m 3m2+-6m2=-6m 35|m |=255, cos α=3m 3m 2+-6m2=3m 35|m |=-55, ∴sin 2⎝ ⎛⎭⎪⎫α+3π2+sin(π-α)cos α-cos ⎝ ⎛⎭⎪⎫π2+α =cos 2α+sin αcos α+sin α =⎝ ⎛⎭⎪⎫-552+255×⎝ ⎛⎭⎪⎫-55+255=-1+255.11.(多选)已知角α满足sin α·cos α≠0,则表达式sin α+k πsin α+cos α+k πcos α(k ∈Z )的取值可能为( ) A .-2 B .-1或1 C .2 D .-2或2或0答案 AC解析 当k 为奇数时,原式=-sin αsin α+-cos αcos α=(-1)+(-1)=-2;当k 为偶数时,原式=sin αsin α+cos αcos α=1+1=2.∴原表达式的取值可能为-2或2.12.(2022·河北六校联考)若sin α是方程5x 2-7x -6=0的根,则sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 22π-αcos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin π+α等于( )A.35B.53C.45D.54 答案 B解析 方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,则sin α=-35.原式=cos α-cos αtan 2αsin α-sin α-sin α=-1sin α=53.13.曲线y =e x +x 2-23x 在x =0处的切线的倾斜角为α,则sin ⎝ ⎛⎭⎪⎫2α+π2=.答案 45解析 由题意得y ′=f ′(x )=e x+2x -23,所以f ′(0)=e 0-23=13,所以tan α=13,所以α∈⎝⎛⎭⎪⎫0,π2,所以cos α=310,所以sin ⎝ ⎛⎭⎪⎫2α+π2 =cos2α=2cos 2α-1=2×910-1=45. 14.函数y =log a (x -3)+2(a >0且a ≠1)的图象过定点Q ,且角α的终边也过点Q ,则3sin 2α+2sin αcos α=. 答案 75解析 由题意可知点Q (4,2),所以tan α=12,所以3sin 2α+2sin αcos α =3sin 2α+2sin αcos αsin 2α+cos 2α =3tan 2α+2tan α1+tan 2α =3×14+2×121+14=75.15.(多选)已知f (α)=2sin αcos α-2sin α+cos α+1⎝ ⎛⎭⎪⎫0≤α≤π2,则下列说法正确的是( ) A .f (α)的最小值为- 2 B .f (α)的最小值为-1 C .f (α)的最大值为2-1 D .f (α)的最大值为1- 2 答案 BD解析 设t =sin α+cos α=2sin ⎝⎛⎭⎪⎫α+π4,由0≤α≤π2,得π4≤α+π4≤3π4, 则1≤t ≤2,又由(sin α+cos α)2=t 2, 得2sin αcos α=t 2-1,所以f (α)=g (t )=t 2-1-2t +1=t -1-2t +1,又因为函数y =t -1和y =-2t +1在[1,2]上单调递增, 所以g (t )=t -1-2t +1在[1,2]上单调递增, g (t )min =g (1)=-1, g (t )max =g (2)=1- 2.16.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值.解 (1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ =sin θ+cos θ. 由已知得sin θ+cos θ=3+12, 所以sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由已知得sin θcos θ=m2,因为1+2sin θcos θ=(sin θ+cos θ)2,21 所以1+m =⎝ ⎛⎭⎪⎫3+122,解得m =32.(3)联立⎩⎪⎨⎪⎧ sin θ+cos θ=3+12,sin θcos θ=34,解得⎩⎪⎨⎪⎧ sin θ=32,cos θ=12 或⎩⎪⎨⎪⎧ sin θ=12,cos θ=32.因为θ∈(0,2π),所以θ=π3或π6.。

2020年高三数学第一轮复习教案-三角函数-第七节 正弦定理和余弦定理

2020年高三数学第一轮复习教案-三角函数-第七节 正弦定理和余弦定理

2.S=12
absinC=
1 2
acsinB=
1 2
bcsinA.
1.三角形中的必备结论 (1)a>b⇔A>B(大边对大角).
【知识必备】 (2)A+B+C=π(三角形内角和定理). (3)sin(A+B)=sinC, cos(A+B)=-cosC, sinA+2 B=cosC2, cosA+2 B=sinC2. (4)射影定理:bcosC+ccosB=a, bcosA+acosB=c, acosC+ccosA=b.
第四章 三角函数、解三角形
第七节 正弦定理和余弦定理
【知识必备】
知识点一 正弦定理和余弦定理
【知识必备】
知识点二 在△ABC中,已知a、b和A时,解的情况
【知识必备】
知识点二 在△ABC中,已知a、b和A时,解的情况
【知识必备】
知识点三 三角形常用面积公式
1.S=12 a·ha(ha表示边a上的高).
2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角 的范围的限制.
【典型例题】
【典型例题】
【典型例题】

【典题演练】
B
C
【典题演练】
C
【作 业】
1、完成新数学中的【典例剖析】 2、完成课时作业(二十三)
再见

高三一轮复习-三角函数、三角恒等变换、解三角形讲义(带答案)

高三一轮复习-三角函数、三角恒等变换、解三角形讲义(带答案)

个性化辅导授课教案【重点知识梳理】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin αcos β±cos αsin β. cos(α∓β)=cos αcos β±sin αsin β. tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α. 3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β). (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝⎛⎭⎪⎫其中tan φ=b a或f (α)=a 2+b 2·cos(α-φ)⎝⎛⎭⎪⎫其中tan φ=a b . 【高频考点突破】考点一 三角函数式的化简与给角求值 【例1】 (1)已知α∈(0,π),化简: (1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°=______.【答案】(1)cos α (2) 6 【规律方法】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【变式探究】 (1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)化简:sin 2αsin 2β+cos 2αcos 2β-12cos 2αcos 2β=________.【解析】(1)原式=4sin 40°-sin 40°cos 40°=4cos 40°sin 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (120°-40°)-sin 40°cos 40°=3cos 40°+sin 40°-sin 40°cos 40°=3cos 40°cos 40°=3,故选C.法三 (从“幂”入手,利用降幂公式先降次)原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β=14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12cos 2α·cos 2β=14+14=12.【答案】(1)C (2)12考点二 三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.(2)∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,又α∈(0,π).∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.【规律方法】(1)解题中注意变角,如本题中α+β2=⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【变式探究】 已知cos α=17,cos(α-β)=1314,且0<β<α<π2,(1)求tan 2α的值; (2)求β.【解析】(1)∵cos α=17,0<α<π2,∴sin α=437,∴tan α=43,∴tan 2α=2tan α1-tan 2α=2×431-48=-8347. (2)∵0<β<α<π2,∴0<α-β<π2,∴sin(α-β)=3314,∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.考点三 三角变换的简单应用【例3】 (2014·广东卷)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫x +π4,x ∈R ,且f ⎝ ⎛⎭⎪⎫5π12=32.(1)求A 的值;(2)若f (θ)-f (-θ)=32,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫3π4-θ.【规律方法】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【变式探究】 已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝ ⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z .【随堂练习】考点一 已知三角函数值求值例1、已知角A 、B 、C 为△ABC 的三个内角,OM →=(sin B +cos B ,cos C ),ON →=(sin C ,sin B -cos B ),OM →·ON →=-15.(1)求tan2A 的值;(2)求22cos 3sin 122sin()4AA A π--+ 的值.【解析】 (1)∵OM →·ON →=(sin B +cos B )sin C +cos C (sin B -cos B )=sin(B +C )-cos(B +C )=-15.∴sin A +cos A =-15,①两边平方并整理得:2sin A cos A =-2425,∵-2425<0,∴A ∈(π2,π),∴sin A -cos A =1-2sin A cos A =75.②联立①②得:sin A =35,cos A =-45,∴tan A =-34,∴tan2A =2tan A 1-tan 2A=-321-916=-247. (2)∵tan A =-34,∴22cos 3sin 122sin()4AA A π--+=cos A -3sin A cos A +sin A =1-3tan A 1+tan A=3134314⎛⎫-⨯- ⎪⎝⎭⎛⎫+- ⎪⎝⎭=13. 【方法技巧】对于条件求值问题,即由给出的某些角的三角函数值,求另外一些角的三角函数值,关键在于“变角”即使“目标角”变换成“已知角”.若角所在象限没有确定,则应分情况讨论,应注意公式的正用、逆用、变形运用,掌握其结构特征,还要注意拆角、拼角等技巧的运用.【变式探究】已知α∈(π2,π),且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈(π2,π),求cos β的值.考点二 已知三角函数值求角例2、如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角α、β,它们的终边分别与单位圆相交于A、B两点,已知A、B两点的横坐标分别为210,255.(1)求tan(α+β)的值;(2)求α+2β的值.【方法技巧】(1)已知某些相关条件,求角的解题步骤:①求出该角的范围;②结合该角的范围求出该角的三角函数值.(2)根据角的函数值求角时,选取的函数在这个范围内应是单调的. 【变式探究】已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈(0,π2).(1)求sin θ和cos θ的值; (2)若sin(θ-φ)=1010,0<φ<π2,求φ的值.三、三角函数的图像与性质【考情解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【重点知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数 y =sin xy =cos xy =tan x图象定义域RR{x |x ∈R ,且x ≠⎭⎬⎫k π+π2,k ∈Z值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数 奇函数递增 区间 ⎣⎡⎦⎤2k π-π2,2k π+π2[2k π-π,2k π]⎝⎛⎭⎫k π-π2,k π+π2递减 区间 ⎣⎡⎦⎤2k π+π2,2k π+3π2 [2k π,2k π+π]无对称中心 (k π,0)⎝⎛⎭⎫k π+π2,0⎝⎛⎭⎫k π2,0对称轴 方程x =k π+π2x =k π无【高频考点突破】考点一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________.(2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1- 3【答案】(1){x |x ≠π4+k π且x ≠π2+k π,k ∈Z } (2)A【规律方法】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【变式探究】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =sin x -cos x +sin x cos x 的值域为________.【解析】(1)法一 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . 法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).∴定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .【答案】(1)⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z (2)⎣⎡⎦⎤-12-2,1 考点二 三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=( )A.π4B.π3 C.π2 D.3π4(2)函数y =2cos 2⎝⎛⎭⎫x -π4-1是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数【答案】(1)A (2)A 【规律方法】(1)求f (x )=A sin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可.(2)求最小正周期时可先把所给三角函数式化为y =A sin(ωx +φ)或y =A cos( ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =A sin ωx 或y =A cos ωx +b 的形式.【变式探究】 (1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2 (2)若函数f (x )=sinx +φ3(φ∈[0,2π])是偶函数,则φ=( ) A.π2 B.2π3 C.3π2 D.5π3【答案】(1)A (2)C 考点三 三角函数的单调性【例3】 (1)已知f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f (x )的单调递增区间为________. (2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D .(0,2]【答案】(1)⎣⎡⎦⎤0,π4 (2)A 【规律方法】(1)求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【变式探究】 (1)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A.23B.32C .2D .3 (2)函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______.【答案】(1)B (2)⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z )四、函数)sin(ϕ+=wx A y 的图像【考情解读】1. 了解函数y =A sin(ωx +φ)的物理意义;能画出y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【重点知识梳理】1.“五点法”作函数y =A sin(ωx +φ)(A >0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x 轴相交的三个点,作图时的一般步骤为: (1)定点:如下表所示.X-φωπ2-φωπ-φω3π2-φω2π-φωωx +φ 0 π2π 3π2 2π y =A sin(ωx +φ)A-A(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y =A sin(ωx +φ)在一个周期内的图象.(3)扩展:将所得图象,按周期向两侧扩展可得y =A sin(ωx +φ)在R 上的图象.2.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径3.函数y =A sin(ωx +φ)的物理意义当函数y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时,A 叫做振幅,T =2πω叫做周期,f=1T叫做频率,ωx +φ叫做相位,φ叫做初相.【高频考点突破】考点一 函数y =A sin(ωx +φ)的图象及变换【例1】 设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到. 【解析】(1)f (x )=sin ωx +3cos ωx =2⎝ ⎛⎭⎪⎫12sin ωx +32cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3, 又∵T =π,∴2πω=π,即ω=2.∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.∴函数f (x )=sin ωx +3cos ωx 的振幅为2,初相为π3.(3)法一 把y =sin x 的图象上所有的点向左平移π3个单位,得到y =sin ⎝ ⎛⎭⎪⎫x +π3的图象;再把y =sin ⎝ ⎛⎭⎪⎫x +π3的图象上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象;最后把y =sin ⎝ ⎛⎭⎪⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象. 法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的12倍,纵坐标不变,得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位,得到y =sin 2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标伸长到原来的2倍,得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象.【规律方法】作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【变式探究】 设函数f (x )=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【解析】(1)∵T =2πω=π,ω=2,又f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=32,∴sin φ=-32,又-π2<φ<0,∴φ=-π3.(2)由(1)得f (x )=cos ⎝⎛⎭⎪⎫2x -π3,列表: 2x -π3-π30 π2 π 32π 53π x 0 π6 512π 23π 1112π π f (x )121-112图象如图.考点二 利用三角函数图象求其解析式【例2】 (1)已知函数f (x )=A cos(ωx +φ)的图象如图所示,f ⎝ ⎛⎭⎪⎫π2=-23,则f (0)=( )A .-23B .-12 C.23 D.12(2)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.【解析】(1)由三角函数图象得T 2=11π12-7π12=π3,即T =2π3,所以ω=2πT=3.又x =7π12是函数单调增区间中的一个零点,所以3×7π12+φ=3π2+2k π,解得φ=-π4+2k π,k ∈Z ,所以f (x )=A cos ⎝ ⎛⎭⎪⎫3x -π4. 由f ⎝ ⎛⎭⎪⎫π2=-23,得A =223,所以f (x )=223cos ⎝ ⎛⎭⎪⎫3x -π4,所以f (0)=223·cos ⎝ ⎛⎭⎪⎫-π4=23.【答案】(1)C (2)f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 【规律方法】已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【训练2】 (1)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f (1)的值为( )A .-32 B .-62C. 3 D .- 3 (2)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝ ⎛⎭⎪⎫π3的值为______.(2)由三角函数图象可得A =2,34T =11π12-π6=34π,所以周期T =π=2πω,解得ω=2.又函数图象过点⎝ ⎛⎭⎪⎫π6,2所以f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6+φ=2,0<φ<π,解得φ=π6,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=1.【答案】(1)D (2)1考点三 函数y =A sin(ωx +φ)的性质应用【例3】 (2014·山东卷)已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z . 【规律方法】解决三角函数图象与性质综合问题的方法:先将y =f (x )化为y =a sin x +b cos x 的形式,然后用辅助角公式化为y =A sin(ωx +φ)+b 的形式,再借助y =A sin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【变式探究】 已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为π2.(1)求f ⎝ ⎛⎭⎪⎫π8的值; (2)求函数y =f (x )+f ⎝⎛⎭⎪⎫x +π4的最大值及对应的x 的值.五、解三角形(正弦定理和余弦定理)【考情解读】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;【重点知识梳理】1.正、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容asin A=bsin B=csin C=2Ra2=b2+c22bc cos__A;b2=c2+a22ca cos__B;c2=a2+b2-2ab cos__C常见变形(1)a=2R sin A,b=2R sin__B,c=2R sin_C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin__A∶sin__B∶sin__C;cos A=b2+c2-a22bc;cos B=c2+a2-b22ac;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .【高频考点突破】考点一 利用正、余弦定理解三角形例1、(1)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =( )A.1010 B.105C.31010D.55(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.【解析】(1)由余弦定理可得AC 2=9+2-2×3×2×22=5,所以AC = 5.再由正弦定理得AC sin B =BCsin A ,所以sin A =BC ·sin BAC =3×225=31010.【答案】 (1)C (2) 3【提分秘籍】利用正、余弦定理解三角形的关键是合理地选择正弦或余弦定理进行边角互化,解题过程中注意隐含条件的挖掘以确定解的个数.【变式探究】在△ABC 中,已知内角A ,B ,C 的对边分别为a ,b ,c ,且满足2a sin ⎝⎛⎭⎫B +π4=c . (1)求角A 的大小;(2)若△ABC 为锐角三角形,求sin B sin C 的取值范围.考点二 三角形形状的判断例2、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定【解析】依据题设条件的特点,由正弦定理,得sin B cos C +cos B sin C =sin 2A ,有sin(B +C )=sin 2A ,从而sin(B +C )=sin A =sin 2A ,解得sin A =1,∴A =π2,故选B.【答案】B 【提分秘籍】依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.注意:在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解. 【变式探究】在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc . (1)求角A 的大小;(2)若sin B ·sin C =sin 2A ,试判断△ABC 的形状.考点三 三角形的面积问题例3、在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值.【解析】(1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去).因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20.又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A=25+16-20=21,故a = 21.又由正弦定理得sin B sin C =b a sin A ·c a sin A =bc a 2sin 2A =2021×34=57.【方法技巧】三角形的面积求法最常用的是利用公式S =12ab sin C =12ac sin B =12bc sin A 去求.计算时注意整体运算及正、余弦定理的应用.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积.考点四 解三角形例4、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35. (1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影.【解析】(1)由2cos 2A -B 2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,2分即cos(A -B )cos B -sin(A -B )sin B =-35.4分则cos(A -B +B )=-35,即cos A =-35.6分【提分秘籍】正弦定理、余弦定理及其在现实生活中的应用是高考的热点,主要利用正弦定理、余弦定理解决一些简单的三角形的度量问题以及几何计算的实际问题,常与三角变换、三角函数的性质交汇命题、多以解答题形式出现. 【随堂练习】考点三 正、余弦定理的应用例3、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab .(1)求sin Csin A的值; (2)若cos B =14,b =2,求△ABC 的面积S .【解析】 (1)由正弦定理,设a sin A =b sin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin Asin B, 所以cos A -2cos C cos B =2sin C -sin A sin B.即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π, 所以sin C =2sin A . 因此sin Csin A=2.【方法技巧】(1)利用正弦定理,实施角的正弦化为边时只能是用a 替换sin A ,用b 替换sin B ,用c 替换sin C . sin A ,sin B ,sin C 的次数要相等,各项要同时替换,反之,用角的正弦替换边时也要这样,不能只替换一部分;(2)以三角形为背景的题目,要注意三角形的内角和定理的使用.像本例中B +C =60°;(3)在求角的大小一定要有两个条件才能完成:①角的范围;②角的某一三角函数值.在由三角函数值来判断角的大小时,一定要注意角的范围及三角函数的单调性.【变式探究】在锐角△ABC 中,a 、b 、c 分别为A 、B 、C 所对的边,且3a =2c sin A .(1)确定角C 的大小;(2)若c =7,且△ABC 的面积为332,求a +b 的值. 【解析】(1)由3a =2c sin A ,根据正弦定理,sin C =c sin A a =32, 又0<C <π2,则C =π3. (2)由已知条件⎩⎨⎧ 12ab sin C =332a 2+b 2-c 22ab =cos C ,即⎩⎪⎨⎪⎧ab =6a 2+b 2-7=ab , (a +b )2=a 2+b 2+2ab =3ab +7=25,∴a +b =5.。

新高考数学大一轮复习专题二平面向量与三角函数第7讲三角恒等变换与解三角形

新高考数学大一轮复习专题二平面向量与三角函数第7讲三角恒等变换与解三角形

第7讲 三角恒等变换与解三角形[考情分析] 1.三角恒等变换的求值、化简是命题的热点,利用三角恒等变换作为工具,将三角函数与解三角形相结合求解最值、范围问题.2.单独考查可出现在选择题、填空题中,综合考查以解答题为主,中等难度. 考点一 三角恒等变换 核心提炼1.三角求值“三大类型”“给角求值”“给值求值”“给值求角”. 2.三角恒等变换“四大策略”(1)常值代换:常用到“1”的代换,1=sin 2θ+cos 2θ=tan45°等.(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等.(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化.例1 (1)(2020·全国Ⅰ)已知α∈(0,π),且3cos2α-8cos α=5,则sin α等于( ) A.53 B.23C.13D.59答案 A解析 由3cos2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0,解得cos α=-23或cos α=2(舍去).又因为α∈(0,π),所以sin α>0, 所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-232=53. (2)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β等于( ) A.5π12B.π3C.π4D.π6答案 C解析 因为α,β均为锐角,所以-π2<α-β<π2.又sin(α-β)=-1010,所以cos(α-β)=31010. 又sin α=55,所以cos α=255, 所以sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =55×31010-255×⎝ ⎛⎭⎪⎫-1010=22. 所以β=π4.易错提醒 (1)公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现“张冠李戴”的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解. 跟踪演练1 (1)已知α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,tan α=cos2β1-sin2β,则( )A .α+β=π2B .α-β=π4C .α+β=π4D .α+2β=π2答案 B解析 tan α=cos2β1-sin2β=cos 2β-sin 2βcos 2β+sin 2β-2sin βcos β =cos β+sin βcos β-sin βcos β-sin β2=cos β+sin βcos β-sin β=1+tan β1-tan β=tan ⎝ ⎛⎭⎪⎫π4+β, 因为α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,所以α=π4+β,即α-β=π4.(2)(tan10°-3)·cos10°sin50°=________.答案 -2 解析(tan10°-3)·cos10°sin50°=(tan10°-tan60°)·cos10°sin50°=⎝ ⎛⎭⎪⎫sin10°cos10°-sin60°cos60°·cos10°sin50°=sin -50°cos10°cos60°·cos10°sin50°=-1cos60°=-2.考点二 正弦定理、余弦定理 核心提炼1.正弦定理:在△ABC 中,a sin A =b sin B =csin C=2R (R 为△ABC 的外接圆半径).变形:a =2R sinA ,b =2R sinB ,c =2R sinC ,sin A =a 2R ,sin B =b 2R ,sin C =c2R,a ∶b ∶c =sin A ∶sin B ∶sin C 等.2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A .变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc.3.三角形的面积公式:S =12ab sin C =12ac sin B =12bc sin A .考向1 求解三角形中的角、边例2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin C1-cos A=3c .(1)求角A 的大小;(2)若b +c =10,△ABC 的面积S △ABC =43,求a 的值.解 (1)由正弦定理及a sin C1-cos A=3c ,得sin A sin C1-cos A=3sin C ,∵sin C ≠0,∴sin A =3(1-cos A ),∴sin A +3cos A =2sin ⎝⎛⎭⎪⎫A +π3=3,∴sin ⎝ ⎛⎭⎪⎫A +π3=32,又0<A <π,∴π3<A +π3<4π3,∴A +π3=2π3,∴A =π3.(2)∵S △ABC =12bc sin A =34bc =43,∴bc =16.由余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-2bc -bc =(b +c )2-3bc ,又b +c =10,∴a 2=102-3×16=52,∴a =213.考向2 求解三角形中的最值与范围问题例 3 (2020·新高考测评联盟联考)在:①a =3c sin A -a cos C ,②(2a -b )sin A +(2b -a )sin B =2c sin C 这两个条件中任选一个,补充在下列问题中,并解答.已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,c =3,而且________. (1)求角C ;(2)求△ABC 周长的最大值.解 (1)选①:因为a =3c sin A -a cos C , 所以sin A =3sin C sin A -sin A cos C , 因为sin A ≠0,所以3sin C -cos C =1,即sin ⎝⎛⎭⎪⎫C -π6=12,因为0<C <π,所以-π6<C -π6<5π6,所以C -π6=π6,即C =π3.选②:因为(2a -b )sin A +(2b -a )sin B =2c sin C , 所以(2a -b )a +(2b -a )b =2c 2, 即a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab =12,因为0<C <π,所以C =π3.(2)由(1)可知,C =π3,在△ABC 中,由余弦定理得a 2+b 2-2ab cos C =3,即a 2+b 2-ab =3,所以(a +b )2-3=3ab ≤3a +b24,所以a +b ≤23,当且仅当a =b 时等号成立, 所以a +b +c ≤33,即△ABC 周长的最大值为3 3.规律方法 (1)利用余弦定理求边,一般是已知三角形的两边及其夹角.利用正弦定理求边,必须知道两角及其中一边,且该边为其中一角的对边,要注意解的多样性与合理性. (2)三角形中的最值与范围问题主要有两种解决方法:一是利用基本不等式求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围确定所求式的范围.跟踪演练2 (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为S ,且a =1,4S=b 2+c 2-1,则△ABC 外接圆的面积为( ) A .4πB.2πC.πD.π2答案 D解析 由余弦定理得,b 2+c 2-a 2=2bc cos A ,a =1, 所以b 2+c 2-1=2bc cos A , 又S =12bc sin A,4S =b 2+c 2-1,所以4×12bc sin A =2bc cos A ,即sin A =cos A ,所以A =π4,由正弦定理得,1sinπ4=2R ,得R =22,所以△ABC 外接圆的面积为π2. (2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =3B ,则a b的取值范围是( ) A .(0,3) B .(1,3) C .(0,1] D .(1,2] 答案 B 解析A =3B ⇒sin A sin B =sin3B sin B =sin 2B +Bsin B=sin2B cos B +cos2B sin Bsin B=2sin B cos 2B +cos2B sin B sin B =2cos 2B +cos2B =2cos2B +1,即a b =sin A sin B=2cos2B +1,又A +B ∈(0,π),即4B ∈(0,π)⇒2B ∈⎝⎛⎭⎪⎫0,π2⇒cos2B ∈(0,1),∴a b ∈(1,3).(3)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若tan C =125,a =b =13,BC 边上的中点为D ,则sin∠BAC =________,AD =________.答案31313 352解析 因为tan C =125,所以sin C =1213,cos C =513,又a =b =13,所以c 2=a 2+b 2-2ab cos C =13+13-2×13×13×513=16,所以c =4.由asin∠BAC =c sin C ,得13sin∠BAC =41213,解得sin∠BAC =31313.因为BC 边上的中点为D ,所以CD =a2,所以在△ACD 中,AD 2=b 2+⎝ ⎛⎭⎪⎫a 22-2×b ×a 2×cos C =454,所以AD =352.专题强化练一、单项选择题1.(2020·全国Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则cos B 等于( )A.19B.13C.12D.23 答案 A解析 由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =42+32-2×4×3×23=9,所以AB =3,所以cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.2.(2020·全国Ⅲ)已知sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=1,则sin ⎝ ⎛⎭⎪⎫θ+π6等于( )A.12B.33C.23D.22 答案 B解析 因为sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3 =sin ⎝ ⎛⎭⎪⎫θ+π6-π6+sin ⎝ ⎛⎭⎪⎫θ+π6+π6=sin ⎝ ⎛⎭⎪⎫θ+π6cos π6-cos ⎝ ⎛⎭⎪⎫θ+π6sin π6+ sin ⎝ ⎛⎭⎪⎫θ+π6cos π6+cos ⎝ ⎛⎭⎪⎫θ+π6sin π6 =2sin ⎝ ⎛⎭⎪⎫θ+π6cos π6=3sin ⎝ ⎛⎭⎪⎫θ+π6=1.所以sin ⎝⎛⎭⎪⎫θ+π6=33. 3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,sin2C 1-cos2C =1,B =π6,则a 的值为( ) A.3-1 B .23+2 C .23-2 D.2+ 6答案 D解析 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,sin2C1-cos2C =1,所以2sin C cos C 2sin 2C =1,所以tan C =1,C =π4. 因为B =π6,所以A =π-B -C =7π12,所以sin A =sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+cos π4sin π3=2+64.由正弦定理可得a2+64=2sinπ6,则a =2+ 6.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a cos B +b cos A =2c cos C ,c =7,且△ABC 的面积为332,则△ABC 的周长为( )A .1+7B .2+7C .4+7D .5+7答案 D解析 在△ABC 中,a cos B +b cos A =2c cos C , 则sin A cos B +sin B cos A =2sin C cos C , 即sin(A +B )=2sin C cos C ,∵sin(A +B )=sin C ≠0,∴cos C =12,∴C =π3,由余弦定理可得,a 2+b 2-c 2=ab , 即(a +b )2-3ab =c 2=7,又S =12ab sin C =34ab =332,∴ab =6,∴(a +b )2=7+3ab =25,即a +b =5, ∴△ABC 的周长为a +b +c =5+7. 5.若α,β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525B.255C.2525或255D.55或525答案 A解析 因为α,β都是锐角,且cos α=55<12, 所以π3<α<π2,又sin(α+β)=35,而12<35<22,所以3π4<α+β<5π6,所以cos(α+β)=-1-sin2α+β=-45,又sin α=1-cos 2α=255,所以cos β=cos(α+β-α)=cos(α+β)cos α+sin(α+β)·sin α=2525.6.在△ABC 中,A ,B ,C 的对边分别是a ,b ,c .若A =120°,a =1,则2b +3c 的最大值为( ) A .3B.2213C .32D.352答案 B解析 因为A =120°,a =1,所以由正弦定理可得bsin B=csin C =a sin A =1sin120°=233, 所以b =233sin B ,c =233sin C ,故2b +3c =433sin B +23sin C=433sin ()60°-C +23sin C =433sin C +2cos C =2213sin(C +φ). 其中sin φ=217,cos φ=277, 所以2b +3c 的最大值为2213.二、多项选择题7.(2020·临沂模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =23,c =3,A +3C =π,则下列结论正确的是( ) A .cos C =33B .sin B =23C .a =3D .S △ABC = 2答案 AD解析 因为A +3C =π,A +B +C =π,所以B =2C .由正弦定理b sin B =c sin C ,得23sin2C =3sin C,即232sin C cos C =3sin C ,所以cos C =33,故A 正确;因为cos C =33,所以sin C =63,所以sin B =sin2C =2sin C cos C =2×63×33=223,故B 错误;因为cos B =cos2C =2cos 2C -1=-13,所以sin A =sin(B +C )=sin B cos C +cos B sin C =223×33+⎝ ⎛⎭⎪⎫-13×63=69,则cos A =539,所以a 2=b 2+c 2-2bc cos A =(23)2+32-2×23×3×539=1,所以a =1,故C 错误;S △ABC =12bc sin A =12×23×3×69=2,故D 正确. 8.已知0<θ<π4,若sin2θ=m ,cos2θ=n 且m ≠n ,则下列选项中与tan ⎝ ⎛⎭⎪⎫π4-θ恒相等的有( ) A.n1+m B.m 1+n C.1-n m D.1-mn答案 AD解析 ∵sin2θ=m ,cos2θ=n , ∴m 2+n 2=1,∴1-m n =n 1+m,∴tan ⎝ ⎛⎭⎪⎫π4-θ=1-tan θ1+tan θ=cos θ-sin θcos θ+sin θ=cos θ-sin θcos θ-sin θcos θ+sin θcos θ-sin θ=1-sin2θcos2θ=1-m n =n1+m.三、填空题9.(2020·保定模拟)已知tan ⎝ ⎛⎭⎪⎫π4+α=12,则sin2α-cos 2α1+cos2α=________.答案 -56解析 因为tan ⎝ ⎛⎭⎪⎫π4+α=12,所以tan π4+tan α1-tan π4tan α=12,即1+tan α1-tan α=12,解得tan α=-13,所以sin2α-cos 2α1+cos2α=2sin αcos α-cos 2α2cos 2α=tan α-12=-56. 10.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b +a sin C =2a sin B -c sin B -sin A,则A =________.答案π4解析 由正弦定理a sin A =b sin B =csin C ,得b +ac =2a sin B -cb -a, 整理得b 2-a 2=2ac sin B -c 2, 即b 2+c 2-a 2=2ac sin B =2bc sin A , 由余弦定理得,b 2+c 2-a 2=2bc cos A , ∴2bc cos A =2bc sin A ,即cos A =sin A , ∴tan A =1,∴A =π4.11.(2020·全国Ⅰ)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos∠FCB =________.答案 -14解析 在△ABD 中,∵AB ⊥AD ,AB =AD =3,∴BD =6,∴FB =BD = 6. 在△ACE 中,∵AE =AD =3,AC =1,∠CAE =30°, ∴EC =32+12-2×3×1×cos30°=1,∴CF =CE =1.又∵BC =AC 2+AB 2=12+32=2,∴在△FCB 中,由余弦定理得cos∠FCB =CF 2+BC 2-FB 22×CF ×BC =12+22-622×1×2=-14. 12.(2020·山东省师范大学附中月考)在△ABC 中,设角A ,B ,C 对应的边分别为a ,b ,c ,记△ABC 的面积为S ,且4a 2=b 2+2c 2,则Sa 2的最大值为________.答案 106解析 由题意知,4a 2=b 2+2c 2⇒b 2=4a 2-2c 2=a 2+c 2-2ac cos B , 整理,得2ac cos B =-3a 2+3c 2⇒cos B =3c 2-a 22ac ,因为⎝ ⎛⎭⎪⎫S a 22=⎝ ⎛⎭⎪⎪⎫12ac sin B a 22=⎝ ⎛⎭⎪⎫c sin B2a 2=c 21-cos 2B4a 2,代入cos B =3c 2-a 22ac ,整理得⎝ ⎛⎭⎪⎫S a 22=-116⎝ ⎛⎭⎪⎫9×c 4a 4-22×c2a 2+9,令t =c 2a 2,则⎝ ⎛⎭⎪⎫Sa 22=-116(9t 2-22t +9)=-116⎝ ⎛⎭⎪⎫3t -1132+1036,所以⎝ ⎛⎭⎪⎫S a 22≤1036,所以Sa 2≤106,故S a 2的最大值为106.四、解答题13.(2020·全国Ⅱ)△ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求△ABC 周长的最大值.解 (1)由正弦定理和已知条件得BC 2-AC 2-AB 2=AC ·AB .①由余弦定理得BC 2=AC 2+AB 2-2AC ·AB cos A .②由①②得cos A =-12.因为0<A <π,所以A =2π3.(2)由正弦定理及(1)得AC sin B =AB sin C =BCsin A =23,从而AC =23sin B ,AB =23sin(π-A -B )=3cos B -3sin B .故BC +AC +AB =3+3sin B +3cos B=3+23sin ⎝⎛⎭⎪⎫B +π3. 又0<B <π3, 所以当B =π6时,△ABC 周长取得最大值3+2 3. 14.(2020·重庆模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,2b 2=(b 2+c 2-a 2)(1-tan A ).(1)求角C ;(2)若c =210,D 为BC 的中点,在下列两个条件中任选一个,求AD 的长度.条件①:△ABC 的面积S =4且B >A ;条件②:cos B =255. 解 (1)在△ABC 中,由余弦定理知, b 2+c 2-a 2=2bc cos A ,所以2b 2=2bc cos A (1-tan A ),所以b =c (cos A -sin A ),又由正弦定理知,b c =sin B sin C, 得sin B =sin C (cos A -sin A ),所以sin(A +C )=sin C (cos A -sin A ),即sin A cos C +cos A sin C =sin C cos A -sin C sin A ,所以sin A cos C =-sin C sin A ,因为sin A ≠0,所以cos C =-sin C ,所以tan C =-1,又因为0<C <π,所以C =3π4. (2)选择条件②,cos B =255, 因为cos B =255,且0<B <π,所以sin B =55, 因为sin A =sin(B +C )=sin B cos C +sin C cos B=55×⎝ ⎛⎭⎪⎫-22+22×255=1010,由正弦定理知c sin C =asin A ,所以a =c sin A sin C =210×101022=22,在△ABD 中,由余弦定理知 AD 2=AB 2+BD 2-2AB ·BD ·cos B=(210)2+(2)2-2×210×2×255=26,所以AD =26.。

2019届高考数学一轮复习 第四章 三角函数 解三角形 4-4 三角恒等变换讲义 文

2019届高考数学一轮复习 第四章 三角函数 解三角形 4-4 三角恒等变换讲义 文

π4+α=π2-π4-α等;2.将三角变换与代数变换密切结合:三角变 换主要是灵活应用相应的三角公式,对于代数变换主要有因式分 解、通分、提取公因式、利用相应的代数公式等,例如,sin4x+ cos4x=(sin2x+cos2x)2-2sin2xcos2x=1-12sin22x.
考点突破 提能力
5 5.
因为 A 为钝角,所以
cosA=- 1-sin2A=-
1-
552=-2
5
5 .
由 sinB= 1100,且 B 为钝角,可得
cosB=- 1-sin2B=-
1-
11002=-3
10 10 .
所以 cos(A+B)=cosAcosB-sinAsinB
=-2 5 5×-3 1010-
(2)三角函数求值的方法策略
类型
要点
给角 关键是正确地选用公式,以便把非特殊角的三角
求值 函数相约或相消,从而化为特殊角的三角函数
类型
要点
给出某些角的三角函数值,求另外一些角的 给值
三角函数值,解题关键在于“变角”,使其 求值
角相同或具有某种关系
给值 实质是转化为给值求值,关键是变角,把所
求角 求角用含已知角的式子表示,由所得的函数
解法二:原式=
cos2α
2tanπ4-αcos2π4-α

cos2α
= cos2α
2sinπ4-αcosπ4-α sinπ2-2α
=ccooss22αα=1.
考点二 三角函数式的求值——常考点 角度解读:三角函数的化简求值是三角函数的基本考点之 一,各种题型都有,有时也与解三角形联合起来综合考查.
(1)本例在寻找选项中的正确命题时,从两个角度进行了证 明,一是根据角之间的关系——α+β,α-β 与 2α,2β 之间的关 系,利用所证角表示已知角,代入已知等式进行化简;二是利用 选项的共性——两个角的正切值之间的比例关系,直接作商,然 后根据已知等式进行化简.解决此类问题要抓住两个方面 :一 是角,二是三角函数值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
3.方向角 相对于某一正方向的水平角 (1)北偏东 α,即由指北方向顺时针旋转 α 到达目标方向(如图 ③); (2)北偏西 α,即由指北方向逆时针旋转 α 到达目标方向; (3)南偏西等其他方向角类似.
4.坡角与坡度 (1)坡角:坡面与水平面所成的二面角的度数(如图④,角 θ 为 坡角); (2)坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡 度又称为坡比.
求解此类问题的关键是把目标纳入到一个可解三角形中,三 角形可解,则至少要知道这个三角形的一条边长.解题过程中注 意各个角的含义,根据这些角把需要的三角形的内角表示出来, 注意不要把角的含义弄错,不要把这些角与要求解的三角形的内 角之间的关系弄错.
如图,位于 A 处的信息中心获悉:在其正东方向相距 40 海里的 B 处有一艘渔船遇险,在原地等待营救.信息中心立即 把消息告知在其南偏西 30°、相距 20 海里的 C 处的乙船,现乙 船朝北偏东 θ 的方向沿直线 CB 前往 B 处救援,求 cos θ 的值.
解析:由题意,在△ABC 中,∠BAC=30°, ∠ABC=180°-75°=105°,故∠ACB=45°. 又 AB=600 m,故由正弦定理得sin60405°=sinBC30°,解得 BC= 300 2 m. 在 Rt△BCD 中,CD=BC·tan 30°=300 2× 33=100 6(m). 答案:100 6
a
[探究 2] 在本例中,若电视塔的高度为 30 m,且在 D,C 两点的仰视角分别为 45°和 60°,且∠DBC=30°,则 C、D 两 点间的距离是多少米?
解:因为 AB=30,∠ADB=45°,∠ACB=60°, 所以 BD=30,BC=10 3. 在△DBC 中,由余弦定理,得 CD=10 3 m. 即 C、D 两点间的距离为 10 3 m.
[典题 3] 在一次海上联合作战演习中,红方一艘侦察艇发现在北 偏东 45°方向,相距 12 n mile 的水面上,有蓝方一艘小艇正以每小时 10 n mile 的速度沿南偏东 75°方向前进,若红方侦察艇以每小时 14 n mile 的速度沿北偏东 45°+α 方向拦截蓝方的小艇.若要在最短的时 间内拦截住,求红方侦察艇所需的时间和角 α 的正弦值.
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
(2)为了在一条河上建一座桥,施工前在河两岸打上两个桥位 桩 A,B(如图),要测量 A,B 两点的距离,测量人员在岸边定出 基线 BC,测得 BC=50 m,∠ABC=105°,∠BCA=45°.则 A,B 两点的距离为________ m.
[听前试做] (1)如图所示,在△ACD 中,∠ACD=120°,∠CAD =∠ADC=30°,∴AC=CD= 3(km).
高度问题一般是把它转化成三角形的问题,要注意三角形中 的边角关系的应用,若是空间的问题要注意空间图形和平面图形 的结合.
(2015·湖北高考)如图,一辆汽车在一条水平的公路上向正 西行驶,到 A 处时测得公路北侧一山顶 D 在西偏北 30°的方向 上,行驶 600 m 后到达 B 处,测得此山顶在西偏北 75°的方向 上,仰角为 30°,则此山的高度 CD=________m.
第四章 三角函数与解三角形
第七节 解三角形应用举例
考纲要求: 能够运用正弦定理、余弦定理等知识和方法解决一些与测量 和几何计算有关的实际问题.
1.仰角和俯角 在视线和水平线所成的角中,视线在水平线 上方 的角叫仰 角,在水平线 下方 的角叫俯角(如图①).
2.方位角 从指北方向顺时针转到目标方向线的水平角,如 B 点的方位角 为 α(如图②).
A.a km B. 3a km C. 2a km
D.2a km
解析:选 B 在△ABC 中,由余弦定理得 AB2=AC2+BC2 -2AC·BC·cos∠ACB=a2+a2-2a2cos 120°=3a2,故|AB|= 3a.
3.在上题的条件下,灯塔 A 在灯塔 B 的方向为( )
A.北偏西 5°
(4)若点 P 在 Q 的北偏东 44°,则 Q 在 P 的东偏北 46°.( ) (5)如果在测量中,某渠道斜坡坡比为34,设 α 为坡角,那么 cos α=34.( ) 答案:(1)× (2)√ (3)× (4)× (5)×
2.如图所示,已知两座灯塔 A 和 B 与海洋观察站 C 的距离都等 于 a km,灯塔 A 在观察站 C 的北偏东 20°,灯塔 B 在观察站 C 的 南偏东 40°,则灯塔 A 与灯塔 B 的距离ቤተ መጻሕፍቲ ባይዱ( )
解:设 CB=x,则 DB=x-40. 在△BCD 中,由余弦定理得(x-40)2=1002+x2-2×100xcos 60°,即(x-40)2=1002+x2-100x,解得 x=420. 又在 Rt△ABC 中,∠ACB=30°,∴4A2B0=tan 30°, 即 AB=420tan 30°=420× 33=140 3(m), 即电视塔的高度为 140 3 m.
B.北偏西 10°
C.北偏西 15°
D.北偏西 20°
解析:选 B 由题意可知∠A=∠B=30°,又 CB 与正南方向 线的夹角为 40°,故所求角为 40°-30°=10°,即灯塔
A 在灯塔 B 的方向为北偏西 10°.
4.如图所示,D,C,B 三点在地面的同一直线上,DC=a, 从 C,D 两点测得 A 点的仰角分别为 60°,30°,则 A 点离地面的 高度 AB 等于( )
在△BDC 中,由余弦定理,得 BD2=BC2+CD2-2BC·CD·cos 120°,即( 3x)2=x2+402-2·x·40·cos 120°,
解得 x=40,所以电视塔高为 40 m. 答案:40
[探究 1] 在本例中,若∠ACB=30°,∠BCD=60°,DC =100 m,且 CB-DB=40 m.如何求解?
[听前试做] 如图,设红方侦察艇经过 x 小时后在 C 处追上蓝 方的小艇,
则 AC=14x,BC=10x,∠ABC=120°.
根据余弦定理得(14x)2=122+(10x)2-240xcos 120°, 解得 x=2. 故 AC=28,BC=20. 根据正弦定理得sBinCα=sinA1C20°, 解得 sin α=20sin28120°=5143. 所以红方侦察艇所需要的时间为 2 小时,角 α 的正弦值为5143.
解:如题中图所示,在△ABC 中,AB=40,AC=20,∠BAC =120°,由余弦定理知,BC2=AB2+AC2-2AB·AC·cos 120°= 2 800⇒BC=20 7.
由正弦定理,得sin∠ABACB=sin∠BCBAC⇒
sin∠ACB=ABBC·sin∠BAC= 721.
由∠BAC=120°,知∠ACB
为锐角,则
cos∠ACB=2
7
7 .
由 θ=∠ACB+30°,得 cos θ=cos(∠ACB+30°)=cos∠
ACBcos
30°-sin∠ACBsin
30°=
21 14 .
[方法技巧] 1.实际问题经抽象概括后,已知量与未知量全部集中在一 个三角形中,可用正弦定理或余弦定理求解. 2.实际问题经抽象概括后,已知量与未知量涉及到两个或 两个以上的三角形,这时需作出这些三角形,先解够条件的三角 形,然后逐步求解其他三角形,有时需设出未知量,从几个三角 形中列出方程(组),解方程(组)得出所要求的解.
[典题 2] 要测量电视塔 AB 的高度,在 C 点测得塔顶 A 的仰角是 45°,在 D 点测得塔顶 A 的仰角是 30°,并测得水平面上的∠BCD= 120°,CD=40 m,则电视塔的高度为________m.
[听前试做]
设电视塔 AB 高为 x m,则在 Rt△ABC 中,由∠ACB=45°,得 BC=x.在 Rt△ADB 中,由∠ADB=30°,得 BD= 3x.
a
3a
3a
A.2
B. 2
C. 3a
D. 3
解析:选 B 因为∠D=30°,∠ACB=60°, 所以∠CAD=30°,故 CA=CD=a.
所以 AB=asin 60°=
3a 2.
[典题 1] (1)要测量对岸 A,B 两点之间的距离,选取相 距 3 km 的 C,D 两点,并测得∠ACB=75°,∠BCD=45°, ∠ ADC = 30°, ∠ ADB = 45°, 则 A , B 之 间 的 距 离 为 ________km.
[自我查验]
1.判断下列结论的正误.(正确的打“√”,错误的打“×”)
相关文档
最新文档