精选-中考数学专题复习小训练专题12二次函数的图象与性质

合集下载

二次函数的图像与性质经典练习题(11套)附带详细答案

二次函数的图像与性质经典练习题(11套)附带详细答案

练习一1.二次函数的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

2.关于,,的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同 3.两条抛物线与在同一坐标系内,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .开口方向相反 D .都有最小值 4.在抛物线上,当y <0时,x 的取值范围应为( ) A .x >0 B .x <0 C .x ≠0 D .x ≥0 5.对于抛物线与下列命题中错误的是( ) A .两条抛物线关于轴对称 B .两条抛物线关于原点对称 C .两条抛物线各自关于轴对称 D .两条抛物线没有公共点6.抛物线y=-b +3的对称轴是___,顶点是___。

7.抛物线y=--4的开口向___,顶点坐标___,对称轴___,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

8.抛物线的顶点坐标是( )A .(1,3)B .(1,3)C .(1,3)D .(1,3)9.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( ) A .y=3-2 B .y=3+22y ax =213y x =2y x =23y x =2y x =2y x =-2y x =-2y x =2y x =-x y 2x 21(2)2x +22(1)3y x =+-------2(1)x -2(1)x +C .y=3-2D .y=-3-210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达式为( )A .y=a +3B .y=a -3C .y=a +3D .y=a -3 11.抛物线的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)12.对抛物线y=-3与y=-+4的说法不正确的是( ) A .抛物线的形状相同 B .抛物线的顶点相同 C .抛物线对称轴相同 D .抛物线的开口方向相反13.函数y=a +c 与y=ax +c(a ≠0)在同一坐标系内的图像是图中的( )14.化为y=为a 的形式是____,图像的开口向____,顶点是____,对称轴是____。

2021中考数学 专题训练:二次函数的图象及其性质(含答案)

2021中考数学 专题训练:二次函数的图象及其性质(含答案)

2021中考数学 专题训练:二次函数的图象及其性质一、选择题1. 已知抛物线y =ax 2(a >0)过A (-2,y 1),B (1,y 2)两点,则下列关系式一定正确的是( ) A .y 1>0>y 2 B .y 2>0>y 1 C .y 1>y 2>0D .y 2>y 1>02. 要将抛物线y =x 2+2x +3平移后得到抛物线y =x 2,下列平移方法正确的是( )A. 向左平移1个单位,再向上平移2个单位B. 向左平移1个单位,再向下平移2个单位C. 向右平移1个单位,再向上平移2个单位D. 向右平移1个单位,再向下平移2个单位3. 函数y =ax 2+2ax +m (a <0)的图象过点(2,0),则使函数值y <0成立的x 的取值范围是( ) A .x <-4或x >2 B .-4<x <2C .x <0或x >2D .0<x <24. 已知二次函数y =x 2+bx +c 与x 轴只有一个交点,且图象过A (x 1,m )、B (x 1+n ,m )两点,则m 、n 的关系为( )A. m =12nB. m =14nC. m =12n 2D. m =14n 25. (2019•南通)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB 是以B 为顶点的抛物线一部分,下列说法不正确的是A .25 min~50 min ,王阿姨步行的路程为800 mB .线段CD 的函数解析式为324002550s t t =+≤≤()C .5 min~20 min ,王阿姨步行速度由慢到快D .曲线段AB 的函数解析式为23(20)1200(520)s t t =--+≤≤6. (2019•嘉兴)小飞研究二次函数y=–(x –m)2–m+1(m 为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=–x+1上;②存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m ,则y1<y2;④当–1<x<2时,y 随x 的增大而增大,则m 的取值范围为m≥2其中错误结论的序号是 A .① B .② C .③ D .④7. 若A (2,y 1),B (-3,y 2),C (-1,y 3)三点在抛物线y =x 2-4x -m 上,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3C .y 2>y 3>y 1D .y 3>y 1>y 28. 二次函数y =ax 2+bx +c 的部分图象如图所示,顶点为D(-1,2),与x 轴的一个交点A在点(-3,0)和(-2,0)之间,有以下结论:①b 2-4ac <0;②a +b +c <0;③c -a =0;④一元二次方程ax 2+bx +c -2=0有两个相等的实数根.其中正确的结论有( )A .1个B .2个C .3个D .4个9. 2019·丹东如图,二次函数y =ax 2+bx +c 的图象过点(-2,0),对称轴为直线x =1.有以下结论:①abc >0;②8a +c >0;③若A (x 1,m ),B (x 2,m )是抛物线上的两点,当x =x 1+x 2时,y =c ;④点M ,N 是抛物线与x 轴的两个交点,若在x 轴下方的抛物线上存在一点P ,使得PM ⊥PN ,则a 的取值范围为a ≥1;⑤若方程a (x +2)(4-x )=-2的两根为x 1,x 2,且x 1<x 2,则-2≤x 1<x 2<4.其中结论正确的有( )A.2个B.3个C.4个D.5个10. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()二、填空题11. 如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是.12. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a-b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是(填写序号).13. 如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P在抛物线上,且△PCD是以CD为底的等腰三角形,则点P的坐标为________.14. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)15. 如图,抛物线y=-x 2+x+2与x 轴相交于A ,B 两点,与y 轴相交于点C ,点D 在抛物线上,且CD ∥AB.AD 与y 轴相交于点E ,过点E 的直线PQ 平行于x 轴,与拋物线相交于P ,Q 两点,则线段PQ 的长为 .三、解答题16. 如图,足球场上守门员徐杨在O 处抛出一高球,球从离地面1 m 处的点A 飞出,其飞行的最大高度是4 m ,最高处距离飞出点的水平距离是6 m ,且飞行的路线是抛物线的一部分.以点O 为坐标原点,竖直向上的方向为y 轴的正方向,球飞行的水平方向为x 轴的正方向建立坐标系,并把球看成一个点.(参考数据:4 3≈7)(1)求足球的飞行高度y (m)与飞行的水平距离x (m)之间的函数关系式;(不必写出自变量的取值范围)(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(精确到1 m) (3)若对方一名1.7 m 的队员在距落地点C 3 m 的点H 处跃起0.3 m 进行拦截,则这名队员能拦到球吗?17. 设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.18. 如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)已知D是OA的中点,点P在第一象限的抛物线上,过点P作x轴的平行线,交直线AC于点F,连接OF,DF.当OF=DF时,求点P的坐标.2021中考数学专题训练:二次函数的图象及其性质-答案一、选择题1. 【答案】C [解析] ∵y =ax 2(a >0),∴抛物线的开口向上,对称轴为y 轴,当x =0时,函数取得最小值,最小值是0.∵A(-2,y 1)在对称轴的左侧,B(1,y 2)在对称轴的右侧,点A 到对称轴的距离大于点B 到对称轴的距离,∴y 1>y 2>0.故选C.2. 【答案】D【解析】y =x 2+2x +3=(x +1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y =x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y =x 2+2x +3向右移1个单位,再向下平移2个单位得抛物线y =x 2.3. 【答案】A [解析] 抛物线的对称轴是直线x =-2a2a=-1,∴抛物线与x 轴的另一个交点坐标是(-4,0).∵a <0,∴抛物线开口向下,∴使y <0成立的x 的取值范围是x <-4或x >2.故选A.4. 【答案】D【解析】因为二次函数y =x 2+bx +c 的图象与x 轴只有一个交点,∴b 2-4c =0,即c =b 24,由题意知,点A ,B 关于抛物线的对称轴对称,∴12AB=|n|2=-b 2-x 1,b =-|n|-2x 1, ∴c =(-|n|-2x 1)24=|n|2+4|n|x 1+4x 214,∵A(x 1,m)在y =x 2+bx +c 上,∴m =x 21+bx 1+c ,∴ m =x 21+(-|n|-2x 1)· x 1+|n|2+4|n|x 1+4x 214,化简整理得m =14n 2,故选D .5. 【答案】C【解析】观察图象可知5 min~20 min ,王阿姨步行速度由快到慢,25 min~50 min ,王阿姨步行的路程为2000–1200=800 m ,故A 选项正确,C 选项错误; 设线段CD 的解析式为s=mt+n ,将点(25,1200)、(50,2000)分别代入得120025200050m n m n =+⎧⎨=+⎩,解得:32400m n =⎧⎨=⎩, 所以线段CD 的函数解析式为32400(2550)s t t =+≤≤,故B 选项正确; 由曲线段AB 是以B 为顶点的抛物线一部分,所以设抛物线的解析式为y=a(x –20)2+1200,把(5,525)代入得:525=a(5–20)2+1200, 解得:a=–3,所以曲线段AB 的函数解析式为23(20)1200(520)s t t =--+≤≤,故D选项正确,故选C.6. 【答案】C【解析】把(m,–m+1)代入y=–x+1,–m+1=–m+1,左=右,故①正确;当–(x–m)2–m+1=0时,x1=m x2=m若顶点与x轴的两个交点构成等腰直角三角形,则1–m+(1–m)2+1–m+(1–m)2=4(1–m),即m2–m=0,∴m=0或1时,∴存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;故②正确;当x1<x2,且x1、x2在对称轴右侧时,∵–1<0,∴在对称轴右侧y随x的增大而减小,即y1>y2,故③错误;∵–1<0,∴在对称轴左侧y随x的增大而增大,∴m≥2,故④正确,故选C.7. 【答案】C[解析] ∵二次函数y=x2-4x-m中a=1>0,∴其图象开口向上,对称轴为直线x=-b2a=2.∵点A(2,y1)的横坐标为2,∴y1最小.又∵B(-3,y2),C(-1,y3)都在对称轴的左侧,而在对称轴的左侧,y随x的增大而减小,故y2>y3.∴y2>y3>y1.8. 【答案】B9. 【答案】A10. 【答案】D[解析] 由一次函数y=ax+a可知,其图象与x轴交于点(-1,0),排除A,B;当a>0时,二次函数y=ax2的图象开口向上,一次函数y=ax+a的图象经过第一、二、三象限;当a<0时,二次函数y=ax2的图象开口向下,一次函数y=ax+a的图象经过第二、三、四象限.排除C.二、填空题11. 【答案】x 1=-2,x 2=1 [解析]∵抛物线y=ax 2与直线y=bx +c 的两个交点坐标分别为A (-2,4),B (1,1),∴的解为即方程ax 2=bx +c的解是x 1=-2,x 2=1.12. 【答案】①③④[解析]根据图象可得:a<0,c>0,对称轴:直线x=-=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax 2+bx +c ,得y=a -b +c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a -b +c=0,故②错误;当x=1时,y=a +b +c>0.∵b=-2a ,∴-+b +c>0,即b +2c>0,故③正确; 由图象可以直接看出④正确.故答案为:①③④.13. 【答案】(1+2,2)或(1-2,2) 【解析】抛物线y =-x 2+2x +3与y 轴交于点C ,则点C 坐标是(0,3),∵点D(0,1),点P 在抛物线上,且△PCD 是以CD 为底的等腰三角形,∴易得点P 的纵坐标是2,当y =2时,∴-x 2+2x+3=2,则x 2-2x -1=0,解得方程的两根是x =2±222=1±2,∴点P 的坐标是(1+2,2)或(1-2,2).14. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.15. 【答案】2[解析]当y=0时,-x2+x+2=0,解得x1=-2,x2=4,∴点A的坐标为(-2,0).当x=0时,y=-x2+x+2=2,∴点C的坐标为(0,2).当y=2时,-x2+x+2=2,解得x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(-2,0),D(2,2)代入y=kx+b,得解得∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,-x2+x+2=1,解得x1=1-,x2=1+,∴点P的坐标为(1-,1),点Q的坐标为(1+,1),∴PQ=1+-(1-)=2.三、解答题16. 【答案】解:(1)由题意,设y=a(x-6)2+4.∵A(0,1)在抛物线上,∴1=a(0-6)2+4,解得a=-1 12,∴y=-112(x-6)2+4.(2)令y=0,则0=-112(x-6)2+4,解得x1=4 3+6≈13,x2=-4 3+6<0(舍去),∴在没有队员干扰的情况下,球飞行的最远水平距离约是13 m.(3)当x=13-3=10时,y=83>1.7+0.3=2,∴这名队员不能拦到球.17. 【答案】解:(1)当k =0时,y =-(x -1)(x +3),所画图象如解图所示.(2分)(2)①k 取0和2时的函数图象关于点(0,2)中心对称,②函数y =(x -1)[(k -1)x +(k -3)](k 是常数)的图象都经过(1,0)和(-1,4).(5分)(3)由题意可得y 2=(x -1)[(2-1)x +(2-3)]=(x -1)2,平移后的函数y 3的表达式为y 3=(x -1+4)2-2=(x +3)2-2, 所以当x =-3时,函数y 3的最小值是-2.(8分)18. 【答案】(1)∵抛物线y =ax 2-2ax +c 经过点A (4,0),C (0,4),∴,40816⎩⎨⎧==+-c c a a 解得,421⎪⎩⎪⎨⎧=-=c a∴抛物线的解析式为y =-12x 2+x +4;(2)∵y =-12x 2+x +4=-12(x -1)2+92∴N (1,92),如解图①,作点C 关于x 轴的对称点C ′,解图①则C ′(0,-4),连接C ′N 交x 轴于点K ,则K 点即为使CK +KN 最小的K 点位置.设直线C ′N 的解析式为y =kx +b (k ≠0),将点C ′(0,-4),N (1,92)代入,得⎩⎪⎨⎪⎧b =-4k +b =92,解得⎩⎪⎨⎪⎧k =172b =-4, ∴直线C ′N 的解析式为y =172x -4,令y =0,即172x -4=0,解得x =817,∴点K 的坐标为(817,0);(3)如解图②,过F 作FM ⊥x 轴于M ,解图② ∵D 是OA 的中点,∴D (2,0),∵OF =DF ,∴OM =MD ,∴M (1,0),∴点F 的横坐标是1.设直线AC 的解析式为y =mx +n , 将点A (4,0),C (0,4)代入,∴直线AC 的解析式为y =-x +4, ∴点F 的坐标为(1,3),设P (t ,-12t 2+t +4),则-12t 2+t +4=3,解得t =1+3或t =1-3(舍去), ∴点P 的坐标为(1+3,3).。

2021年九年级中考数学一轮复习 12 二次函数的图象与性质(通用版)

2021年九年级中考数学一轮复习 12 二次函数的图象与性质(通用版)

二次函数的图象与性质基础巩固1.若点(-1,3),(3,3)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是( ) A.直线x=-1B.直线x=0C.直线x=1 D.直线x=22.抛物线y=x2+4x+a2+5(a是常数)的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限3.如图是二次函数y=ax2+bx+c的部分图象,使y≥-1成立的x的取值范围是( )第3题图A.x≥-1 B.x≤-1C.-1≤x≤3 D.x≤-1或x≥34.(2020·绥化)将抛物线y=2(x-3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是( )A.y=2(x-6)2B.y=2(x-6)2+4C.y=2x2D.y=2x2+45.(2020·温州)已知(-3,y1),(-2,y2),(1,y3)是抛物线y=-3x2-12x+m上的点,则( )A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y26.(2020·东营)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,其对称轴与x轴交于点C,其中A,C两点的横坐标分别为-1和1,下列说法错误的是( )第6题图A.abc<0B.4a+c=0C.16a+4b+c<0D.当x>2时,y随x的增大而减小7.(2020·嘉兴)已知二次函数y=x2,当a≤x≤b时,m≤y≤n,则下列说法正确的是( ) A.当n-m=1时,b-a有最小值B.当n-m=1时,b-a有最大值C.当b-a=1时,n-m无最小值D.当b-a=1时,n-m有最大值8.(2020·玉林)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=-a(x-1)2+4a.若(m-1)a+b+c≤0,则m的最大值是( ) A.-4B.0C.2D.69.(2020·泰安)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y =ax+b的图象可能是( C )A B C D10.(2020·泸州)已知二次函数y=x2-2bx+2b2-4c(其中x是自变量)的图象经过不同两点A(1-b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为( ) A.-1 B.2C.3 D.411.(2020·荆门)若抛物线y=ax2+bx+c(a>0)经过第四象限的点(1,-1),则关于x的方程ax2+bx+c=0的根的情况是( )A.有两个大于1的不相等实数根B.有两个小于1的不相等实数根C.有一个大于1另一个小于1的实数根D.没有实数根12.(2019·泸州)已知二次函数y=(x-a-1)(x-a+1)-3a+7(其中x是自变量)的图象与x轴没有公共点,且当x<-1时,y随x的增大而减小,则实数a的取值范围是( ) A.a<2 B.a>-1C.-1<a≤2 D.-1≤a<213.(2020·呼和浩特)已知二次函数y=(a-2)x2-(a+2)x+1,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程(a-2)x2-(a+2)x+1=0的两根之积为( )A .0B .-1C .-12D .-1414.(2020·哈尔滨)抛物线y =3(x -1)2+8的顶点坐标为______.15.把二次函数y =x 2+4x -1变形为y =a (x +h )2+k 的形式为y =_______.16.(2020·黔东南)抛物线y =ax 2+bx +c (a ≠0)的部分如图所示,其与x 轴的一个交点坐标为(-3,0),对称轴为直线x =-1,则当y <0时,x 的取值范围是________.第16题图17.(2020·青岛)抛物线y =2x 2+2(k -1)x -k (k 为常数)与x 轴交点的个数是_______. 18.二次函数y =x 2+bx 的图象如图,对称轴为直线x =1.若关于x 的一元二次方程x 2+bx -t =0(b ,t 为实数)在-1<x <4内有解,则t 的取值范围是_________第18题图19.(2020·长春)如图,在平面直角坐标系中,点A 的坐标为(0,2),点B 的坐标为(4,2).若抛物线y =-32(x -h )2+k (h ,k 为常数)与线段AB 交于C ,D 两点,且CD =12AB ,则k 的值为 ______ .第19题图20.(2020·北京)在平面直角坐标系xOy 中,M (x 1,y 2),N (x 2,y 2)为抛物线y =ax 2+bx +c (a >0)上任意两点,其中x 1<x 2.(1)若抛物线的对称轴为直线x =1,当x 1,x 2为何值时,y 1=y 2=c ;(2)设抛物线的对称轴为直线x =t ,若对于x 1+x 2>3,都有y 1<y 2,求t 的取值范围. 观察图象可知满足条件的t 的取值范围为t ≤32.21.(2020·临沂)已知抛物线y =ax 2-2ax -3+2a 2(a ≠0). (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点P (m ,y 1),Q (3,y 2)在抛物线上,若y 1<y 2,求m 的取值范围. 能力提升1.(2020·江西)在平面直角坐标系中,点O 为坐标原点,抛物线y =x 2-2x -3与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt △OAB 向右上方平移,得到Rt △O ′A ′B ′,且点O ′,A ′落在抛物线的对称轴上,点B ′落在抛物线上,则直线A ′B ′的表达式为( )A .y =xB .y =x +1C .y =x +12D .y =x +22.(2019·济宁)如图,抛物线y =ax 2+c 与直线y =mx +n 交于A (-1,p ),B (3,q )两点,则不等式ax 2+mx +c >n 的解集是________.第2题图二次函数的图象与性质(答案)基础巩固1.若点(-1,3),(3,3)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是( C ) A.直线x=-1B.直线x=0C.直线x=1 D.直线x=22.抛物线y=x2+4x+a2+5(a是常数)的顶点在( B )A.第一象限B.第二象限C.第三象限D.第四象限3.如图是二次函数y=ax2+bx+c的部分图象,使y≥-1成立的x的取值范围是( C )第3题图A.x≥-1 B.x≤-1C.-1≤x≤3 D.x≤-1或x≥34.(2020·绥化)将抛物线y=2(x-3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是( C )A.y=2(x-6)2B.y=2(x-6)2+4C.y=2x2D.y=2x2+45.(2020·温州)已知(-3,y1),(-2,y2),(1,y3)是抛物线y=-3x2-12x+m上的点,则( B )A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y26.(2020·东营)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,其对称轴与x轴交于点C,其中A,C两点的横坐标分别为-1和1,下列说法错误的是( B )第6题图A.abc<0B.4a+c=0C.16a+4b+c<0D.当x>2时,y随x的增大而减小7.(2020·嘉兴)已知二次函数y=x2,当a≤x≤b时,m≤y≤n,则下列说法正确的是( B )A.当n-m=1时,b-a有最小值B.当n-m=1时,b-a有最大值C.当b-a=1时,n-m无最小值D.当b-a=1时,n-m有最大值8.(2020·玉林)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=-a(x-1)2+4a.若(m-1)a+b+c≤0,则m的最大值是( D ) A.-4B.0C.2D.69.(2020·泰安)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y =ax+b的图象可能是( C )A B C D10.(2020·泸州)已知二次函数y=x2-2bx+2b2-4c(其中x是自变量)的图象经过不同两点A(1-b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为( C ) A.-1 B.2C.3 D.411.(2020·荆门)若抛物线y=ax2+bx+c(a>0)经过第四象限的点(1,-1),则关于x的方程ax2+bx+c=0的根的情况是( C )A.有两个大于1的不相等实数根B.有两个小于1的不相等实数根C.有一个大于1另一个小于1的实数根D.没有实数根12.(2019·泸州)已知二次函数y=(x-a-1)(x-a+1)-3a+7(其中x是自变量)的图象与x轴没有公共点,且当x<-1时,y随x的增大而减小,则实数a的取值范围是( D ) A.a<2 B.a>-1C.-1<a≤2 D.-1≤a<213.(2020·呼和浩特)已知二次函数y=(a-2)x2-(a+2)x+1,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程(a-2)x2-(a+2)x+1=0的两根之积为( D )A.0 B.-1C.-12D.-1414.(2020·哈尔滨)抛物线y=3(x-1)2+8的顶点坐标为(1,8).15.把二次函数y=x2+4x-1变形为y=a(x+h)2+k的形式为y=(x+2)2-5.16.(2020·黔东南)抛物线y=ax2+bx+c(a≠0)的部分如图所示,其与x轴的一个交点坐标为(-3,0),对称轴为直线x=-1,则当y<0时,x的取值范围是-3<x<1.第16题图17.(2020·青岛)抛物线y=2x2+2(k-1)x-k(k为常数)与x轴交点的个数是2.18.二次函数y=x2+bx的图象如图,对称轴为直线x=1.若关于x的一元二次方程x2+bx-t=0(b,t为实数)在-1<x<4内有解,则t的取值范围是-1≤t<8.第18题图19.(2020·长春)如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=-32(x-h)2+k(h,k为常数)与线段AB交于C,D两点,且CD=12AB,则k的值为.第19题图20.(2020·北京)在平面直角坐标系xOy中,M(x1,y2),N(x2,y2)为抛物线y=ax2+bx +c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为直线x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为直线x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.解:(1)由题意y1=y2=c,∴x1=0,∵对称轴为直线x =1,∴M ,N 两点关于直线x =1对称, ∴x 2=2,∴当x 1=0,x 2=2时,y 1=y 2=c .(2)抛物线的对称轴为直线x =t ,若对于x 1+x 2>3,都有y 1<y 2, 当x 1+x 2=3,且y 1=y 2时,对称轴为直线x =32,观察图象可知满足条件的t 的取值范围为t ≤32.21.(2020·临沂)已知抛物线y =ax 2-2ax -3+2a 2(a ≠0). (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点P (m ,y 1),Q (3,y 2)在抛物线上,若y 1<y 2,求m 的取值范围. 解:(1)∵抛物线y =ax 2-2ax -3+2a 2=a (x -1)2+2a 2-a -3, ∴抛物线的对称轴为直线x =1. (2)∵抛物线的顶点在x 轴上,∴2a 2-a -3=0,解得a =32或a =-1,∴抛物线的解析式为y =32x 2-3x +32或y =-x 2+2x -1.(3)∵抛物线的对称轴为直线x =1,∴Q (3,y 2)关于直线x =1的对称点的坐标为(-1,y 2),∴当a >0,-1<m <3时,y 1<y 2;当a <0,m <-1或m >3时,y 1<y 2. 能力提升1.(2020·江西)在平面直角坐标系中,点O 为坐标原点,抛物线y =x 2-2x -3与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt △OAB 向右上方平移,得到Rt △O ′A ′B ′,且点O ′,A ′落在抛物线的对称轴上,点B ′落在抛物线上,则直线A ′B ′的表达式为( B )A .y =xB .y =x +1C .y =x +12D .y =x +22.(2019·济宁)如图,抛物线y =ax 2+c 与直线y =mx +n 交于A (-1,p ),B (3,q )两点,则不等式ax 2+mx +c >n 的解集是x <-3或x >1.第2题图。

专题12二次函数图象性质与应用问题(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用

专题12二次函数图象性质与应用问题(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用

备战2023年中考数学必刷真题考点分类专练(全国通用)专题12二次函数图象性质与应用问题(共38题)一.选择题(共23小题)1.(2022•新疆)已知抛物线y=(x﹣2)2+1,下列结论错误的是()A.抛物线开口向上B.抛物线的对称轴为直线x=2C.抛物线的顶点坐标为(2,1)D.当x<2时,y随x的增大而增大2.(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y13.(2022•嘉兴)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1B.C.2D.4.(2022•宁波)点A(m﹣1,y1),B(m,y2)都在二次函数y=(x﹣1)2+n的图象上.若y1<y2,则m 的取值范围为()A.m>2B.m>C.m<1D.<m<25.(2022•泰安)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x﹣2﹣101y0466下列结论不正确的是()A.抛物线的开口向下B.抛物线的对称轴为直线x=C.抛物线与x轴的一个交点坐标为(2,0)D.函数y=ax2+bx+c的最大值为6.(2022•株洲)已知二次函数y=ax2+bx﹣c(a≠0),其中b>0、c>0,则该函数的图象可能为()A.B.C.D.7.(2022•温州)已知点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,下列选项正确的是()A.若c<0,则a<c<b B.若c<0,则a<b<cC.若c>0,则a<c<b D.若c>0,则a<b<c8.(2022•绍兴)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是()A.0,4B.1,5C.1,﹣5D.﹣1,59.(2022•舟山)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.B.2C.D.110.(2022•凉山州)已知抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),且对称轴在y轴的左侧,则下列结论错误的是()A.a>0B.a+b=3C.抛物线经过点(﹣1,0)D.关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根11.(2022•泸州)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是()A.y=﹣x2+x B.y=﹣x2﹣4C.y=﹣x2+2021x﹣2022D.y=﹣x2+x+112.(2022•成都)如图,二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B两点,对称轴是直线x =1,下列说法正确的是()A.a>0B.当x>﹣1时,y的值随x值的增大而增大C.点B的坐标为(4,0)D.4a+2b+c>013.(2022•滨州)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣2,0)、B(6,0),与y轴相交于点C,小红同学得出了以下结论:①b2﹣4ac>0;②4a+b=0;③当y>0时,﹣2<x<6;④a+b+c<0.其中正确的个数为()A.4B.3C.2D.114.(2022•随州)如图,已知开口向下的抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为直线x=1.则下列结论正确的有()①abc>0;②2a+b=0;③函数y=ax2+bx+c的最大值为﹣4a;④若关于x的方程ax2+bx+c=a+1无实数根,则﹣<a<0.A.1个B.2个C.3个D.4个15.(2022•广元)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有()A.5个B.4个C.3个D.2个16.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:①2a+b<0;②当x>1时,y随x的增大而增大;③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.317.(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y318.(2022•杭州)已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是()A.命题①B.命题②C.命题③D.命题④19.(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有()个.A.2B.3C.4D.520.(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案221.(2022•自贡)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:①c≥﹣2;②当x>0时,一定有y随x的增大而增大;③若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3;④当四边形ABCD为平行四边形时,a=.其中正确的是()A.①③B.②③C.①④D.①③④22.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2B.﹣2≤m<0C.m>2D.m<﹣223.(2022•湖州)将抛物线y=x2向上平移3个单位,所得抛物线的解析式是()A.y=x2+3B.y=x2﹣3C.y=(x+3)2D.y=(x﹣3)2二.填空题(共8小题)24.(2022•武汉)已知抛物线y=ax2+bx+c(a,b,c是常数)开口向下,过A(﹣1,0),B(m,0)两点,且1<m<2.下列四个结论:①b>0;②若m=,则3a+2c<0;③若点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,则y1>y2;④当a≤﹣1时,关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.其中正确的是(填写序号).25.(2022•新疆)如图,用一段长为16m的篱笆围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为m2.26.(2022•武威)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=s.27.(2022•连云港)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是m.28.(2022•凉山州)已知实数a、b满足a﹣b2=4,则代数式a2﹣3b2+a﹣14的最小值是.29.(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高m时,水柱落点距O 点4m.30.(2022•遂宁)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a﹣b+c,则m的取值范围是.31.(2022•成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h 的最大值与最小值的差),则当0≤t≤1时,w的取值范围是;当2≤t≤3时,w的取值范围是.三.解答题(共7小题)32.(2022•常德)如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2.(1)求此抛物线的解析式;(2)若点B是抛物线对称轴上的一点,且点B在第一象限,当△OAB的面积为15时,求B的坐标;(3)P是抛物线上的动点,当P A﹣PB的值最大时,求P的坐标以及P A﹣PB的最大值.33.(2022•湘潭)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?34.(2022•随州)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面.某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空,该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数).经过连续15天的销售统计,得到第x天(1≤x≤15,且x为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)第x天12...6...11 (15)150150+m…150+5m…150+10m…150+14m 供应量y1(个)220229...245...220 (164)需求量y2(个)(1)直接写出y1与x和y2与x的函数关系式;(不要求写出x的取值范围)(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)(3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.35.(2022•武汉)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.运动时间t/s01234运动速度v/cm/s109.598.58运动距离y/cm09.751927.7536小聪探究发现,黑球的运动速度v与运动时间t之间成一次函数关系,运动距离y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围);(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.36.(2022•孝感)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.37.(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.38.(2022•滨州)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.。

中考专题复习 二次函数的图象性质与应用

中考专题复习 二次函数的图象性质与应用

专题二次函数图象性质与应用一.选择题(共26小题)1.(2020成都中考)关于二次函数y=x2+2x-8,下列说法正确的是(D.)A.图象的对称轴在y轴的右侧B.图象与y轴的交点坐标为(0,8)C.图象与x轴的交点坐标为(-2 ,0)和(4 ,0)D.y的最小值为-92.(2020温州中考)已知(-3,y1),(-2,y2),(1,y3)是抛物线y=-3x2-12x+m上的点,则(B.) A.y3<y2<y1 B.y3<y1<y2C.y2<y3<y1D.y1<y3<y23.已知A(0,2),B(2,5)是抛物线y=ax2+bx+c(a≠0)上的两点,若抛物线与x轴有两个交点,则该抛物线的对称轴不可能是(A.)A.x=1B.x=2C.x=5D.x=-44咸宁中考]在平面直角坐标系xOy中,将横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是(B.) A.y=-x B.y=x+2D. y=x2-2xC.y=2x5.[2020杭州中考]设函数y=a(x-h)2+k(a,h,k是实数,a≠0).当x=1时,y=1;当x=8时,y=8.(C.) A.若h=4,则a<0 B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>06.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是(D.)A B C D7.已知二次函数y=ax2-2ax-3a(a≠0),关于此函数的图象及性质,下列结论不一定成立的是(D.)A.该图象的顶点坐标为(1,-4a)B.该图象与x轴的交点坐标为(-1,0),(3,0)C.若该图象经过点(-2,5),则一定经过点(4,5)D.当x>1时,y随x的增大而增大8.[2020株洲中考]二次函数y=ax2+bx+c,若ab<0,a-b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则(B.) A.y1=-y2 B.y1>y2C.y1<y2D.y1,y2的大小无法确定9.[2020襄阳中考]二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac-b2<0;④当x>-1时,y随x的增大而减小.其中正确的有(B.)A.4个B.3个C.2个D.1个10.在平面直角坐标系xOy中,抛物线C1,C2上部分点的横坐标、纵坐标的对应值如下表:x…-1 0 1 2 2.5 3 4 …y1…0 m1-8 n1-8.75 -8 -5 …y2… 5 m2-11 n2-12.5 -11 -5 …下列结论正确的是(D.)A.抛物线C1,C2均开口向下B.抛物线C1的顶点坐标为(2.5,-8.75)C.当x>4时,y1>y2D.抛物线C1,C2必经过点(0,-5)11.(2020•株洲)二次函数y=ax2+bx+c,若ab<0,a﹣b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则(B)A.y1=﹣y2B.y1>y2C.y1<y2D.y1、y2的大小无法确定12.(2020•襄阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有(B)A.4个B.3个C.2个D.1个13.(2020•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=l,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有(C)A.1个B.2个C.3个D.4个14.(2020•泸州)已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A(1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为(C)A.﹣1 B.2 C.3 D.4 15.(2020•绥化)将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是(C)A.y=2(x﹣6)2B.y=2(x﹣6)2+4C.y=2x2D.y=2x2+416.(2020•滨州)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c >0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为(A)A.3 B.4 C.5 D.6 17.(2020•德州)二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是(D)A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=﹣2有两个不相等的实数根D.当x≥0时,y随x的增大而减小18.(2020•成都)关于二次函数y=x2+2x﹣8,下列说法正确的是(D)A.图象的对称轴在y轴的右侧B.图象与y轴的交点坐标为(0,8)C.图象与x轴的交点坐标为(﹣2,0)和(4,0)D.y的最小值为﹣919.(2020•哈尔滨)将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为(D)A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3 20.(2020•南充)关于二次函数y=ax2﹣4ax﹣5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则−43<a≤﹣1或1≤a<43;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<−54或a≥1.其中正确的结论是(D)A.①②B.①③C.②③D.①②③21.抛物线y=(k-1)x2-x+1与x轴有交点,则k的取值范围是k.≤.54且.k.≠.1..22.[2020温州中考]已知抛物线y=ax2+bx+1经过点(1,-2),(-2,13).(1)求a,b的值;(2)若(5,y1),(m,y2)是抛物线上不同的两点,且y2=12-y1,求m的值.23.[2020黄石中考]若二次函数y=a2x2-bx-c的图象,过不同的六点A(-1,n),B(5,n-1),C(6,n+1),D(√2,y1),E(2,y2),F(4,y3),则y1,y2,y3的大小关系是(D.)A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y2<y1<y324.[2020临沂中考]已知抛物线y=ax2-2ax-3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.25.[2020南充中考节选]已知二次函数图象过点A(-2,0),B(4,0),C(0,4).(1)求二次函数的解析式.(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.26.[2020河北中考]如图,现要在抛物线y=x(4-x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是(C.)A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对27.(2020•临沂)已知抛物线y=ax2﹣2ax﹣3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.【解析】(1)∵抛物线y=ax2﹣2ax﹣3+2a2=a(x﹣1)2+2a2﹣a﹣3.∴抛物线的对称轴为直线x=1;(2)∵抛物线的顶点在x轴上,∴2a2﹣a﹣3=0,解得a=32或a=﹣1,∴抛物线为y=32x2﹣3x+32或y=﹣x2+2x﹣1;(3)∵抛物线的对称轴为x=1,则Q(3,y2)关于x=1对称点的坐标为(﹣1,y2),∴当a=32,﹣1<m<3时,y1<y2;当a=﹣1,m<﹣1或m>3时,y1<y2.28.(2020•衡阳)在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).(1)求这个二次函数的表达式;(2)求当﹣2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.【解析】(1)由二次函数y =x 2+px +q 的图象经过(﹣1,0)和(2,0)两点, ∴{1−p +q =04+2p +q =0,解得{p =−1q =−2, ∴此二次函数的表达式y =x 2﹣x ﹣2; (2)∵抛物线开口向上,对称轴为直线x =−1+22=12, ∴在﹣2≤x ≤1范围内,当x =﹣2,函数有最大值为:y =4+2﹣2=4;当x =12是函数有最小值:y =14−12−2=−94, ∴的最大值与最小值的差为:4﹣(−94)=254;(3)∵y =(2﹣m )x +2﹣m 与二次函数y =x 2﹣x ﹣2图象交点的横坐标为a 和b , ∴x 2﹣x ﹣2=(2﹣m )x +2﹣m ,整理得x 2+(m ﹣3)x +m ﹣4=0∵a <3<b ∴a ≠b∴△=(m ﹣3)2﹣4×(m ﹣4)=(m ﹣5)2>0 ∴m ≠5 ∵a <3<b当x =3时,(2﹣m )x +2﹣m >x 2﹣x ﹣2,把x =3代入(2﹣m )x +2﹣m >x 2﹣x ﹣2,解得m <−12 ∴m 的取值范围为m <−12.29.(2020•滨州)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【解析】(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.30.(2020•甘孜州)某商品的进价为每件40元,在销售过程中发现,每周的销售量y (件)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.(1)求k,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.【解析】(1)由题意可得:{30=50k+b 10=70k+b,∴{k =−1b =80, 答:k =﹣1,b =80;(2)∵w =(x ﹣40)y =(x ﹣40)(﹣x +80)=﹣(x ﹣60)2+400, ∴当x =60时,w 有最大值为400元,答:销售该商品每周可获得的最大利润为400元.。

2021年中考复习数学 专题训练:二次函数的图象及性质(含答案)

2021年中考复习数学 专题训练:二次函数的图象及性质(含答案)

2021中考数学专题训练:二次函数的图象及性质一、选择题1. 在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到2. 抛物线y=2(x-3)2+1的顶点坐标是()A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)3. 已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:有下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上的两点,则x1<x2.其中正确的个数是()A.2 B.3 C.4 D.54. 某人画二次函数y=ax2+bx+c的图象时,列出下表(计算没有错误):根据此表判断:一元二次方程ax2+bx+c=0的一个根x1满足下列关系式中的() A.3.2<x1<3.3 B.3.3<x1<3.4 C.3.4<x1<3.5 D.3.1<x1<3.25. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2>4ac;②abc<0;③2a +b-c>0;④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④6. (2019•嘉兴)小飞研究二次函数y=–(x–m)2–m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=–x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当–1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是A.①B.②C.③D.④7. (2020·常德)二次函数的图象如图所示,下列结论:240b ac ->①;0abc <②;40a b +=③;420a b c -+>④.其中正确结论的个数是( )A .4B .3C .2D .18. (2020·湖北孝感)将抛物线:y =-2x +3向左平移1个单位长度,得到抛物线,抛物线与抛物线关于x 轴对称,则抛物线的解析式为( ) A.y =--2 B.y =-+2 C.y =-2 D.y =+2二、填空题9. 经过A (4,0),B (-2,0),C (0,3)三点的抛物线解析式是_____________.10. 如图所示,抛物线y =ax 2-3x +a 2-1经过原点,那么a 的值是________.11. 已知函数y =ax 2+c 的图象与函数y =-3x 2-2的图象关于x 轴对称,则a =________,c =________.12. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,=-.则M、N的大小关系为M__________N.(填“>”、“=”或“<”)N a b13. 如图,抛物线y=-x2+x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.14. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题15. 已知抛物线经过点A(1,0),B(0,3),且对称轴是直线x=2,求该抛物线的解析式.16. 把抛物线y=x2先向左平移1个单位长度,再向下平移4个单位长度,得到如图5-ZT -4所示的二次函数的图象.(1)求此二次函数的解析式;(2)在平移后的抛物线上存在一点M,使△ABM的面积为20,请直接写出点M的坐标.17. 如图,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出点D的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.18. 如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移的过程中与△COD重叠部分的面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.2021中考数学专题训练:二次函数的图象及性质-答案一、选择题1. 【答案】C[解析]根据二次函数的性质进行判断,由二次函数y=(x-2)2+1,得它的顶点坐标是(2,1),对称轴为直线x=2,当x=2时,函数的最小值是1,图象开口向上,当x≥2时,y的值随x值的增大而增大,当x<2时,y的值随x值的增大而减小,可由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到,所以选项C是错误的,故选C.2. 【答案】A【解析】∵抛物线y=a(x-h)2+k的顶点坐标是(h,k),∴y=2(x -3)2+1的顶点坐标是(3,1).3. 【答案】B[解析] 先根据二次函数的部分对应值在坐标系中描点、连线,由图象可以看出抛物线开口向上,所以结论①正确.由图象(或表格)可以看出抛物线与x轴的两个交点分别为(0,0),(4,0),所以抛物线的对称轴为直线x=2且抛物线与x轴的两个交点间的距离为4,所以结论②和④正确.由图象可以看出当0<x<4时,y<0,所以结论③错误.由图象可以看出当抛物线上的点的纵坐标为2或3时,对应的点均有两个,若A(x1,2),B(x2,3)是抛物线上两点,既有可能x1<x2,也有可能x1>x2,所以结论⑤错误.4. 【答案】B[解析] 从表格中的数据看,当3.2≤x≤3.5时,y随x的增大而增大,且x=3.3时,y=-0.17<0,x=3.4时,y=0.08>0,故y=0一定在3.3<x<3.4这个范围内取得,∴方程的根也在此范围内.故选B.5. 【答案】A[解析] ①因为图象与x轴有两个不同的交点,所以b2-4ac>0,即b2>4ac,故①正确.②图象开口向下,故a<0.图象与y轴交于正半轴,故c>0.因为对称轴为直线x=-1,所以-b2a=-1,所以2a=b,故b<0,所以abc>0,故②错误.③因为a<0,b<0,c>0,所以2a +b -c<0,故③错误.④当x =1时,y =a +b +c ,由图可得,当x =-3时,y<0.因为抛物线的对称轴为直线x =-1,所以由对称性可知,当x =1时,y<0,即a +b +c<0,故④正确.综上所述,①④正确,故选A.6. 【答案】C【解析】把(m ,–m+1)代入y=–x+1,–m+1=–m+1,左=右,故①正确; 当–(x –m)2–m+1=0时,x1=1m m -x2=1m m - 若顶点与x 轴的两个交点构成等腰直角三角形, 则1–m+(1–m)2+1–m+(1–m)2=4(1–m),即m2–m=0,∴m=0或1时,∴存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;故②正确; 当x1<x2,且x1、x2在对称轴右侧时,∵–1<0,∴在对称轴右侧y 随x 的增大而减小,即y1>y2,故③错误; ∵–1<0,∴在对称轴左侧y 随x 的增大而增大, ∴m≥2,故④正确, 故选C .7. 【答案】B 【解析】本题考查了二次函数图像与系数的关系.∵抛物线与x 轴有两个交点,∴方程20ax bx c ++=有两个不相等的实数根,240b ac ∴->,故①正确,由图象知,抛物线的对称轴为直线2x =,22ba∴-=,40a b ∴+=,故③正确,由图象知,抛物线开口方向向下,0a ∴<.∵40a b +=,0b ∴>.∵抛物线与y 轴的交点在y 轴的正半轴上,0c ∴>.0abc ∴<,故②正确,由图象知,当2x =-时,0y <,420a b c ∴-+<,故④错误.综上所述,正确的结论有3个,因此本题选B .8. 【答案】A【解析】利用平移得性质“上加下减,左加右减”得抛物线得解析式:y =-2(x +1)+3,整理得y =+2,再利用关于x 轴对称的性质“横坐标不变,纵坐标互为相反数”得:y =--2.故选A. 二、填空题9. 【答案】y=-(x -4)(x +2)[解析]设抛物线解析式为y=a (x -4)(x +2),把C (0,3)代入上式得3=a (0-4)(0+2),解得a=-,故y=-(x -4)(x +2).10. 【答案】-1 [解析] 因为抛物线经过原点(0,0),所以a 2-1=0,即a =±1.因为抛物线的开口向下,所以舍去a =1.故a =-1.11. 【答案】3212. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.13. 【答案】2[解析]当y=0时,-x 2+x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-x 2+x +2=2,∴点C 的坐标为(0,2). 当y=2时,-x 2+x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0),将A (-2,0),D (2,2)代入y=kx +b ,得解得∴直线AD 的解析式为y=x +1.当x=0时,y=x +1=1,∴点E 的坐标为(0,1). 当y=1时,-x 2+x +2=1,解得x 1=1-,x 2=1+, ∴点P 的坐标为(1-,1),点Q 的坐标为(1+,1),∴PQ=1+-(1-)=2.14. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题15. 【答案】解:∵抛物线的对称轴是直线x =2且经过点A(1,0),∴由抛物线的对称性可知,抛物线还经过点(3,0).设抛物线的解析式为y =a(x -1)(x -3).把(0,3)代入解析式,得3=3a ,∴a =1,∴y =(x -1)(x -3),即该抛物线的解析式为y =x2-4x +3.16. 【答案】解:(1)此二次函数的解析式为y =(x +1)2-4,即y =x2+2x -3.(2)∵当y =0时,x2+2x -3=0,解得x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB =4. 设点M 的坐标为(m ,n).∵△ABM 的面积为20,∴12AB·|n|=20,解得n =±10. 当n =10时,m2+2m -3=10,解得m =-1+14或m =-1-14,∴点M 的坐标为(-1+14,10)或(-1-14,10);当n =-10时,m2+2m -3=-10,此方程无解.故点M 的坐标为(-1+14,10)或(-1-14,10).17. 【答案】解:(1)D(-2,3).(2)设二次函数的解析式为y=ax2+bx+c(a,b,c为常数,且a≠0),根据题意,得解得∴二次函数的解析式为y=-x2-2x+3.(3)x<-2或x>1.18. 【答案】(1)将A(1,2)、O(0,0)、C(2,1)分别代入y=ax2+bx+c,得2,0,42 1.a b cca b c++=⎧⎪=⎨⎪++=⎩解得32a=-,72b=,0c=.所以23722y x x=-+.(2)如图2,过点P、M分别作梯形ABPM的高PP′、MM′,如果梯形ABPM是等腰梯形,那么AM′=BP′,因此yA-y M′=yP′-yB.直线OC的解析式为12y x=,设点P的坐标为1(,)2x x,那么237(,)22M x x x-+.解方程23712()222x x x--+=,得123x=,22x=.x=2的几何意义是P与C重合,此时梯形不存在.所以21(,)33P.图2 图3(3)如图3,△AOB 与△COD 重叠部分的形状是四边形EFGH ,作EK ⊥OD 于K .设点A ′移动的水平距离为m ,那么OG =1+m ,GB ′=m .在Rt △OFG 中,11(1)22FG OG m ==+.所以21(1)4OFG S m ∆=+. 在Rt △A ′HG 中,A ′G =2-m ,所以111'(2)1222HG A G m m ==-=-. 所以13(1)(1)22OH OG HG m m m =-=+--=. 在Rt △OEK 中,OK =2 EK ;在Rt △EHK 中,EK =2HK ;所以OK =4HK . 因此4432332OK OH m m ==⨯=.所以12EK OK m ==. 所以211332224OEH S OH EK m m m ∆=⋅=⨯⋅=. 于是22213111(1)44224OFG OEH S S S m m m m ∆∆=-=+-=-++2113()228m =--+. 因为0<m <1,所以当12m =时,S 取得最大值,最大值为38.。

2021年中考数学专题训练 二次函数的图象及其性质含答案

2021年中考数学专题训练 二次函数的图象及其性质含答案

2021中考数学专题训练 二次函数的图象及其性质一、选择题(本大题共12道小题)1. 抛物线y =x 2+2x +3的对称轴是( )A. 直线x =1B. 直线x =-1C. 直线x =-2D. 直线x =22. 如图,抛物线的函数解析式是()A .y =x 2-x +2B .y =x 2+x +2C .y =-x 2-x +2D .y =-x 2+x +23. 如图,抛物线y=ax 2+bx+c (a ≠0)与x 轴交于点(-3,0),其对称轴为直线x=-.结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y 随x 的增大而增大;④一元二次方程cx 2+bx+a=0的两根分别为x 1=-,x 2=;⑤<0;⑥若m ,n (m<n )为方程a (x+3)·(x -2)+3=0的两个根,则m<-3,n>2,其中正确的结论有 ( )A .3个B .4个C .5个D .6个4. (2019•雅安)在平面直角坐标系中,对于二次函数22()1y x =-+,下列说法中错误的是A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =C .当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D .它的图象可以由2y x 的图象向右平移2个单位长度,再向上平移1个单位长度得到5. 已知二次函数y =ax 2-bx -2(a ≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( ) A. 34或1 B. 14或1 C. 34或12 D. 14或346. (2019•成都)如图,二次函数2y ax bx c =++的图象经过点1,0A,()5,0B ,下列说法正确的是A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =7. 已知m>0,关于x 的一元二次方程(x+1)(x -2)-m=0的解为x 1,x 2(x 1<x 2),则下列结论正确的是 ( ) A .x 1<-1<2<x 2 B .-1<x 1<2<x 2 C .-1<x 1<x 2<2D .x 1<-1<x 2<28. 已知二次函数y =ax 2+bx +c 的图象如图所示,OA =OC ,由抛物线的特征写出如下含有a ,b ,c 三个字母的等式或不等式:①4ac -b 24a =-1;②ac +b +1=0;③abc >0;④a -b +c >0.其中正确的个数是( )A .4B .3C .2D .19. 如图是二次函数y =ax 2+bx +c 的图象,有下列说法:①ac>0;②2a +b>0;③4ac<b 2;④a +b +c<0;⑤当x>0时,y 随x 的增大而减小.其中正确的是( )A .①②③B .①②④C .②③④D .③④⑤10. 如图是二次函数y =ax 2+bx +c 的图象,其对称轴为直线x =1,有下列结论:①abc >0;②2a +b =0;③4a +2b +c <0;④若(-32,y 1),(103,y 2)是抛物线上的两点,则y 1<y 2.其中正确的结论是( )A .①②B .②③C .②④D .①③④11. 2019·资阳如图是函数y =x 2-2x -3(0≤x ≤4)的图象,直线l ∥x 轴且过点(0,m ),将该函数在直线l 上方的图象沿直线l 向下翻折,在直线l 下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m ≥1B .m ≤0C .0≤m ≤1D .m ≥1或m ≤012. 如图,二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC.有下列结论:①abc<0;②b 2-4ac 4a >0;③ac -b +1=0;④OA·OB =-ca .其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(本大题共6道小题)13. 经过A (4,0),B (-2,0),C (0,3)三点的抛物线解析式是_____________.14.抛物线y =-8x 2的开口向________,对称轴是________,顶点坐标是________;当x >0时,y 随x 的增大而________,当x <0时,y 随x 的增大而________.15. 如图,抛物线y =ax 2与直线y =bx +c 的两个交点分别为A (-2,4),B (1,1),则方程ax 2=bx +c 的解是____________.16. 若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0)、B (x 2,0)两点,则1x 1+1x 2的值为________. 17. 已知函数y =⎩⎨⎧-x 2+2x (x >0),-x (x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为________.18. 如图,已知抛物线y =ax 2+bx +c 与x 轴交于A ,B 两点,顶点C 的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y =a 1x 2+b 1x +c 1,则下列结论正确的是________.(写出所有正确结论的序号)①b >0;②a -b +c <0;③阴影部分的面积为4;④若c =-1,则b 2=4a.三、解答题(本大题共3道小题)19. (2019•云南)已知k 是常数,抛物线y=x 2+(k 2+k-6)x+3k 的对称轴是y 轴,并且与x 轴有两个交点. (1)求k 的值:(2)若点P 在抛物线y=x 2+(k 2+k-6)x+3k 上,且P 到y 轴的距离是2,求点P 的坐标.20. (2019·湖北黄冈)如图①,在平面直角坐标系xOy 中,已知A(–2,2),B(–2,0),C(0,2),D(2,0)四点,动点M 以每秒2个单位长度的速度沿B →C →D 运动(M 不与点B 、点D 重合),设运动时间为t(秒). (1)求经过A 、C 、D 三点的抛物线的解析式;(2)点P 在(1)中的抛物线上,当M 为BC 的中点时,若△PAM ≌△PBM ,求点P 的坐标;(3)当M 在CD 上运动时,如图②.过点M 作MF ⊥x 轴,垂足为F ,ME ⊥AB ,垂足为E .设矩形MEBF 与△BCD 重叠部分的面积为S ,求S 与t 的函数关系式,并求出S 的最大值;(4)点Q 为x 轴上一点,直线AQ 与直线BC 交于点H ,与y 轴交于点K .是否存在点Q ,使得△HOK 为等腰三角形?若存在,直接写出符合条件的所有Q 点的坐标;若不存在,请说明理由.21. 如图,在平面直角坐标系中,直线y =x +2与x 轴交于点A ,点B 是这条直线上第一象限内的一个点,过点B 作x 轴的垂线,垂足为D ,已知△ABD 的面积为18.(1)求点B 的坐标;(2)如果抛物线212y x bx c =-++经过点A 和点B ,求抛物线的解析式; (3)已知(2)中的抛物线与y 轴相交于点C ,该抛物线对称轴与x 轴交于点H ,P 是抛物线对称轴上的一点,过点P 作PQ //AC 交x 轴于点Q ,如果点Q 在线段AH 上,且AQ =CP ,求点P 的坐标.答案一、选择题(本大题共12道小题)1. 【答案】B 【解析】已知解析式为抛物线解析式的一般式,利用对称轴公式直接求解.抛物线y =x 2+2x +3的对称轴是直线x =-b 2a =-22×1=-1 .2. 【答案】D [解析] 先设出函数解析式,然后把(0,2),(-1,0),(2,0)分别代入函数解析式,列出方程组,求出各系数即可.3. 【答案】C[解析]①由图象可知a<0,b<0,c>0,∴abc>0,故①正确; ②由于对称轴是直线x=-, ∴a=b.∵图象与x 轴的一个交点是(-3,0),∴另一个交点是(2,0), 把(2,0)代入解析式可得4a +2b +c=0, ∴6a +c=0,∴3a +c=-3a ,∵a<0,∴-3a>0,∴3a +c>0,故②正确;③由图象可知当-<x<0时,y 随x 的增大而减小,∴当x<0时,y 随x 的增大而增大是错误的;④一元二次方程ax 2+bx +c=0的两根为x 1=-3,x 2=2,∴一元二次方程cx 2+bx +a=0的两根分别为x 1=-,x 2=,正确; ⑤由图象顶点的纵坐标大于0可知,>0,∴<0,正确;⑥若m ,n (m<n )为方程a (x +3)(x -2)+3=0的两个根,则a (x +3)(x -2)=-3,由图象可知,当y=-3时,m<-3,n>2,⑥正确,综上,正确的结论有5个, 故选C .4. 【答案】C【解析】二次函数22()1y x =-+,10a =>,∴该函数的图象开口向上,对称轴为直线2x =,顶点为(2,1),当2x =时,y 有最小值1,当2x >时,y 的值随x 值的增大而增大,当2x <时,y 的值随x 值的增大而减小;故选项A 、B 的说法正确,C 的说法错误; 根据平移的规律,2yx 的图象向右平移2个单位长度得到2(2)y x =-,再向上平移1个单位长度得到22()1y x =-+, 故选项D 的说法正确, 故选C .5. 【答案】A【解析】由二次函数过点(-1,0)可得a +b =2,把x =1代入y =ax 2-bx -2得y =a -b -2,即a -b =2+y.由a +b =2和a -b =2+y 得a =2+12y ,由题意得a >0,b >0,所以2+12y >0,解得y >-4,又由顶点在第四象限,可得y =-3或-2或-1.当y =-3时,可得a =12,b =32,则ab =34;当y =-2时,可得a =1,b =1,则ab =1;当y =-1时,可得a =32,b =12,则ab =34,综上ab 的值为34或1.6. 【答案】D【解析】由图象可知图象与y 轴交点位于y 轴正半轴,故c>0,A 选项错误; 函数图象与x 轴有两个交点,所以24b ac ->0,B 选项错误; 观察图象可知x=-1时y=a-b+c>0,所以a-b+c>0,C 选项错误; 根据图象与x 轴交点可知,对称轴是(1,0),(5,0)两点的中垂线,1532x +==, 即x=3为函数对称轴,D 选项正确, 故选D .7. 【答案】A[解析]关于x 的一元二次方程(x +1)(x -2)-m=0的解为x 1,x 2,可以看作二次函数m=(x +1)(x -2)的图象与x 轴交点的横坐标,∵二次函数m=(x +1)(x -2)的图象与x 轴交点坐标为(-1,0),(2,0),如图: 当m>0时,就是抛物线位于x 轴上方的部分,此时x<-1,或x>2. 又∵x 1<x 2, ∴x 1<-1,x 2>2, ∴x 1<-1<2<x 2,故选A.8. 【答案】A[解析] (1)∵抛物线的顶点的纵坐标是-1,∴4ac-b24a=-1.故①正确.(2)∵OA=OC=|c|,∴A(c,0),∴ac2+bc+c=0.又c≠0,∴ac+b+1=0.故②正确.(3)从图象中易知a>0,b<0,c<0,∴abc>0.故③正确.(4)当x=-1时,y=a-b+c,由图象知点(-1,a-b+c)在第二象限,∴a-b +c>0.故④正确.综上所述,4个结论均正确,故选A.9. 【答案】C[解析] ①由图象可知:a>0,c<0,∴ac<0,故①错误;②由对称轴可知:-b2a<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴Δ=b2-4ac>0,即4ac<b2,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>-b2a时,y随着x的增大而增大,故⑤错误.故选C.10. 【答案】C[解析] ∵抛物线开口向下,∴a<0.∵抛物线的对称轴为直线x=-b2a=1,∴b=-2a>0.∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,∴①错误.∵b=-2a,∴2a+b=0,∴②正确.∵抛物线与x轴的一个交点的坐标为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点的坐标为(3,0),∴当x=2时,y>0,∴4a+2b+c>0,∴③错误.∵点(-32,y1)到对称轴的距离比点(103,y2)到对称轴的距离远,∴y1<y2,∴④正确.故选C.11. 【答案】C12. 【答案】B [解析] ∵抛物线开口向下,∴a <0.∵抛物线的对称轴在y 轴的右侧,∴b >0. ∵抛物线与y 轴的交点在x 轴上方,∴c >0, ∴abc <0,故①正确.∵抛物线与x 轴有两个交点,∴Δ=b 2-4ac >0, 而a <0,∴b 2-4ac4a <0,故②错误.∵C(0,c),OA =OC ,∴A(-c ,0).把(-c ,0)代入y =ax 2+bx +c ,得ac 2-bc +c =0, ∴ac -b +1=0,故③正确. 设A(x 1,0),B(x 2,0),∵二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点, ∴x 1和x 2是方程ax 2+bx +c =0的两根, ∴x 1·x 2=ca .又∵x 1<0,∴OA·OB =-ca ,故④正确.故选B.二、填空题(本大题共6道小题)13. 【答案】y=-(x -4)(x +2)[解析]设抛物线解析式为y=a (x -4)(x +2),把C (0,3)代入上式得3=a (0-4)(0+2),解得a=-,故y=-(x -4)(x +2).14. 【答案】下y 轴 (0,0) 减小 增大15. 【答案】x 1=-2,x 2=1[解析] 方程ax 2=bx +c 的解即抛物线y =ax 2与直线y =bx +c 交点的横坐标.∵交点是A(-2,4),B(1,1),∴方程ax 2=bx +c 的解是x 1=-2,x 2=1.16. 【答案】-4【解析】由题意可知,x 1,x 2为方程2x 2-4x -1=0的两根,所以x 1+x 2=2,x 1x 2=-12,则1x 1+1x 2=x 1+x 2x 1x 2=2-12=-4.17. 【答案】⎝ ⎛⎭⎪⎫23,00<m<14 [解析] 联立y =x +m 与y =-x 2+2x ,得x +m =-x2+2x ,整理得x 2-x +m =0,当有两个交点时,b 2-4ac =(-1)2-4m>0,解得m<14.当直线y =x +m 经过原点时,与函数y =⎩⎨⎧-x 2+2x (x>0)x (x≤0)的图象有两个不同的交点,再向上平移,有三个交点,∴m>0,∴m 的取值范围为0<m<14.故答案为0<m<14.18. 【答案】③④ [解析] ∵抛物线开口向上,∴a >0.又∵对称轴为直线x =-b 2a>0,∴b <0,∴结论①不正确; ∵当x =-1时,y >0,∴a -b +c >0,∴结论②不正确;根据抛物线的对称性,可将阴影部分的面积进行转化,从而求得阴影部分的面积=2×2=4,∴结论③正确;∵4ac -b 24a=-2,c =-1,∴b 2=4a ,∴结论④正确. 综上,正确的结论是③④.三、解答题(本大题共3道小题)19. 【答案】(1)∵抛物线y=x 2+(k 2+k-6)x+3k 的对称轴是y 轴, ∴26022b k k x a +-=-=-=, 即k 2+k-6=0,解得k=-3或k=2,当k=2时,二次函数解析式为y=x 2+6,它的图象与x 轴无交点,不满足题意,舍去,当k=-3时,二次函数解析式为y=x 2-9,它的图象与x 轴有两个交点,满足题意,∴k=-3.(2)∵P 到y 轴的距离为2,∴点P 的横坐标为-2或2,当x=2时,y=-5;当x=-2时,y=-5,∴点P 的坐标为(2,-5)或(-2,-5).20. 【答案】(1)设函数解析式为y=ax2+bx+c,将点A(–2,2),C(0,2),D(2,0)代入解析式可得2422042a b cca b c=-+==++⎧⎪⎨⎪⎩,∴14122abc=-=-=⎧⎪⎪⎪⎨⎪⎪⎪⎩,∴y=–14x2–12x+2;(2)∵△PAM≌△PBM,∴PA=PB,MA=MB,∴点P为AB的垂直平分线与抛物线的交点,∵AB=2,∴点P的纵坐标是1,∴1=–14x2–12x+2,∴x=–或x=–1∴P(–11)或P(–,1);–,CM=2t–4,(BC+CM)=4–t–t,MF=2MD=4–t,∴BF=4–4+t=t,∴S=12×(GM+BF)×MF=12×(2t–4+t)×(4–t)=–32t2+8t–8=–32(t–83)2+83;当t=83时,S最大值为83;(4)设点Q(m,0),直线BC的解析式y=x+2,直线AQ的解析式y=–22m+(x+2)+2,∴K(0,22mm+),H(–44m+,244mm++),∴OK2=(22mm+)2,OH2=(44m+)2+(244mm++)2,HK2=(44m+)2+(244mm++−22mm+)2,①当OK=OH时,(22mm+)2=(44m+)2+(244mm++)2,∴3m2+12m+8=0,∴m=–2+23m=–2–23②当OH=HK 时,(44m +)2+(244m m ++)2=(44m +)2+(244m m ++−22m m +)2, ∴3m2+12m+8=0,∴m=–2+23m=–2–23不符合题意,舍弃)③当OK=HK 时,(22m m +)2=(44m +)2+(244m m ++−22m m +)2, ∴m2+4m –8=0,∴m=–或m=–2–综上所述:Q(–0)或Q(–2–,0).【名师点睛】本题考查二次函数综合;熟练应用待定系数法求函数解析式,掌握三角形全等的性质,直线交点的求法是解题的关键.21. 【答案】(1)直线y =x +2与x 轴的夹角为45°,点A 的坐标为(-2, 0).因为△ABD 是等腰直角三角形,面积为18,所以直角边长为6.因此OD =4.所以点B 的坐标为(4, 6).(2)将A (-2, 0)、B (4, 6)代入212y x bx c =-++,得220,84 6.b c b c --+=⎧⎨-++=⎩ 解得b =2,c =6. 所以抛物线的解析式为21262y x x =-++.(3)由21262y x x =-++,得抛物线的对称轴为直线x =2,点C 的坐标为(0, 6). 如果AQ =CP ,那么有两种情况:①如图2,当四边形CAQP 是平行四边形时,AQ //CP ,此时点P 的坐标为(2, 6). ②如图3,当四边形CAQP 是等腰梯形时,作AC 的垂直平分线交x 轴于点F ,那么点P 在FC 上.设点F 的坐标为(x , 0),根据F A 2=FC 2列方程,得(x +2)2=x 2+62.解得x =8.所以OF =8,HF =6. 因此39tan 642PH HF F =⋅∠=⨯=.此时点P 的坐标为9(2,)2.图2 图3考点伸展第(3)题等腰梯形CAQP 时,求点P 的坐标也可以这样思考: 过点P 作PE //x 轴交AC 于E ,那么PE =PC .直线AC 的解析式为y =3x +6,设E (m , 3m +6),那么P (2, 3m +6).根据PE 2=PC 2列方程,得(2-m )2=22+(3m )2. 解得12m =-.所以P 9(2,)2.其实第(3)题还有一个“一石二鸟”的方法:设QH =n ,那么AQ =4-n ,PH =3n ,P(2, 3n ).根据AQ 2=CP 2,列方程,得.(4-n )2=22+(3n -6)2.整理,得2n 2-7n -6=0.解得n 1=2,232n =.当n 1=2时,P (2, 6),对应平行四边形CAQP (如图2); 当232n =时,P 9(2,)2,对应等腰梯形CAQP (如图4).图4。

中考数学专题复习资料-二次函数

中考数学专题复习资料-二次函数

专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。

抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2.二次函数y=ax 2+bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=-(2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c ) (4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大; 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。

3.二次函数的解析式三种形式。

(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式 2()y a x h k =-+224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。

(3)交点式 12()()y a x x x x =--专题知识回顾已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。

4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。

(2)b ——对称轴与a 左同右异。

(3)抛物线与y 轴交点坐标(0,c ) 5.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2+bx+c=0(a ≠0)的根。

抛物线y=ax 2+bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2+bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。

二次函数的图象和性质

二次函数的图象和性质

二次函数的图象和性质专题一、选择题1.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示 对称轴为21-=x 。

下列结论中,正确的是【 】 A .0abc > B .0a b += C .20b c >+ D .42a c b +< 2. 已知二次函数y=﹣x 2﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是【 】A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 13. 如图,已知抛物线y 1=﹣2x 2+2,直线y 2=2x+2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M=y 1=y 2.例如:当x=1时,y 1=0,y 2=4,y 1<y 2,此时M=0.下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小; ③使得M 大于2的x 值不存在; ④使得M=1的x 值是或.其中正确的是【 】A .①②B .①④C .②③D .③④4. 已知二次函数()()2y=a x 2+c a 0>-,当自变量x,3,0时,对应的值分别为123y y y ,,,则123y y y ,,的大小关系正确的是【 】A. 321y y y <<B. 123y y y <<C. 213y y y <<D. 312y y y <<5. 关于x 的二次函数()()y=x+1x m -,其图象的对称轴在y 轴的右侧,则实数m 的取值范围是【 】A. m<1-B. 1<m<0-C. 0<m<1D. m>15. 已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a=0;②abc <0;③a ﹣2b+4c <0;④8a+c >0.其中正确的有【 】A .3个B .2个C .1个D .0个 6. 已知抛物线y=ax 2﹣2x+1与x 轴没有交点, 那么该抛物线的顶点所在的象限是【 】A .第四象限B .第三象限C .第二象限D .第一象限7. 抛物线2y x 12=-+()的顶点坐标是【 】 A .(-1,2) B .(-1,-2) C .(1,-2) D .(1,2) 8. 如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法: ①a >0 ②2a+b=0 ③a+b+c >0 ④当﹣1<x <3时,y >0 其中正确的个数为【 】A .1B .2C .3D .4 9. 如图,已知抛物线与x 轴的一个交点A (1,0),对称轴是x=﹣1,则该抛物线与x 轴的另一交点坐标是【 】A .(﹣3,0)B .(﹣2,0)C .x=﹣3D .x=﹣210. 二次函数y=ax 2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t 值的变化范围是【 】A .0<t <1B .0<t <2C .1<t <2D .﹣1<t <111. 若二次函数22y ax bx a 2=++-(a ,b 为常数)的图象如图,则a 的值为【 】A. 1B.2 C. 2- D. -212. 设二次函数2y x bx c =++,当x 1≤时,总有y 0≥,当1x 3≤≤时,总有y 0≤,那么c 的取值范围是【 】 A.c 3= B.c 3≥ C.1c 3≤≤ D.c 3≤ 13. 对于二次函数y 2(x 1)(x 3)=+-,下列说法正确的是【 】A. 图象的开口向下B. 当x>1时,y 随x 的增大而减小C. 当x<1时,y 随x 的增大而减小D. 图象的对称轴是直线x=-114. 如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c <0;③ac >0;④b 2﹣4ac >0.其中正确的结论是【 】A .①④B .①③C .②④D .①② 15. 抛物线234y x x =--+ 与坐标轴的交点个数 是【 】 A .3 B .2 C .1 D .016. 如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是【 】A .y 的最大值小于0B .当x=0时,y 的值大于1C .当x=-1时,y 的值大于1D .当x=-3时,y 的值小于017.二次函数y=ax 2+bx +c(a≠0)的图象如图所示,给出下列结论:① b 2-4ac>0;② 2a +b<0;③ 4a -2b +c=0;④ a ︰b ︰c= -1︰2︰3. 其中正确的是【 】(A) ①② (B) ②③ (C) ③④ (D)①④18. 二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为【 】 A .3- B .3 C .6- D .919. 设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为【 】A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>20. 已知二次函数()2y=ax +bx+c a 0≠的图象如图所示,下列结论错误的是【 】A.abc >0B.3a >2bC.m (am +b )≤a -bD.4a -2b +c <0 21. 已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有【 】 A .1个 B .2个 C .3个 D .4个22. 抛物线2y ax bx 3=+-经过点(2,4),则代数式8a 4b 1++的值为【 】A .3 B .9 C .15 D .15-23. 如图,抛物线y 1=a (x +2)2-3与y 2=12(x -3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:①无论x 取何值,y 2的值总是正数;②a=1;③当x=0时,y 2-y 1=4; ④2AB=3AC ;其中正确结论是【 】A .①②B .②③C .③④D .①④24. 二次函数2y ax bx c =++的图象如图所示,则函数值y 0<时x 的取值范围是【 】 A .x 1<- B .x >3 C .-1<x <3 D .x 1<-或x >3 25. 抛物线y =-2x 2+1的对称轴是【 】A .直线1x=2B .直线1x=2-C .y 轴D .直线x =226. 已知二次函数y =a(x +1)2-b(a≠0)有最小值,则a ,b 的大小关系为【 】 A .a >b B .a <b C .a =b D .不能确定27. 如图,二次函数y =ax 2+bx +c 的图象过点(-1,1)、(2,-1).下列关于这个二次函数的叙述正确的是【 】A .当x =0时,y 的值大于1B .当x =3时,y 的值小于0C .当x =1时,y 的值大于1D .y 的最大值小于028. 已知二次函数y=ax 2+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0 ②b 2-4ac<0 ⑤c<4b ④a +b>0,则其中正确结论的个数是【 】 A .1个 B .2个 C .3个 D .4个29. 抛物线2y ax bx c =++与x 轴的交点坐标是(-l ,0)和(3,0),则这条抛物线的对称轴是【 】.A .直线x=-1 8.直线x=0 C .直线x=1 D .直线x= 3 二、填空题1. 二次函数622+-=x x y 的最小值是 .2. 已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x -1)2+1的图象上,若x 1>x 2>1,则y 1 y 2.3. 若抛物线y=ax 2+bx+c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为 . 4. 对于二次函数2y x 2mx 3=--,有下列说法:①它的图象与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则m 1=;③如果将它的图象向左平移3个单位后过原点,则m 1=-;④如果当x 4=时的函数值与x 2008=时的函数值相等,则当x 2012=时的函数值为3-. 其中正确的说法是 .(把你认为正确说法的序号都填上)5. 二次函数y =ax 2+bx +c(a≠0)的图象的对称轴是直线x =1,其图象的一部分如图所示.下列说法正确的是 (填正确结论的序号).①abc <0;②a -b +c <0;③3a +c <0;④当-1<x <3时,y >0. 6. 二次函数n x x y +-=62的部分图像如图 所示,若关于x 的一元二次方程062=+-n x x 的 一个解为11=x ,则另一个解2x = .7. 二次函数2y x 2x 3=--的图象如图所示.当y <0时, 自变量x 的取值范围是 .8. 当x= 时,二次函数y=x 2+2x ﹣2有最小值. 9. 如图,在平面直角坐标系中,点A 是抛物线()2y=a x 3+k -与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 . 10. 若抛物线2y ax bx c =++经过点(-1,10), 则a b c -+= .11. 已知二次函数y=-x 2-2x +3的图象上有两点A(-7,1y ),B(-8,2y ),则1y 2y .(用>、<、=填空). 三、解答题1. 已知二次函数23y (t 1)x 2(t 2)x 2=++++在x 0=和x 2=时的函数值相等。

2021年中考数学专题训练:二次函数的图象及其性质(含答案)

2021年中考数学专题训练:二次函数的图象及其性质(含答案)

2021中考数学专题训练:二次函数的图象及其性质一、选择题1. 若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为()A. 0,5B. 0,1C. -4,5D. -4,12. 已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为()A.-2B.-4C.2D.43. 如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A. y=(x-1)2+2B. y=(x+1)2+2C. y=x2+1D. y=x2+34. 2019·雅安在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法中错误的是()A.y的最小值为1B.图象的顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到5. 二次函数y=ax2+bx+c的部分图象如图所示,顶点为D(-1,2),与x轴的一个交点A 在点(-3,0)和(-2,0)之间,有以下结论:①b2-4ac<0;②a+b+c<0;③c-a=0;④一元二次方程ax2+bx+c-2=0有两个相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个6. 已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点.现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a -b +c ≥0;④a +b +cb -a的最小值为3.其中,正确结论的个数为( ) A. 1个 B. 2个 C. 3个 D. 4个7. (2020·株洲)二次函数2y ax bx c =++,若0ab <,20a b ->,点()11,A x y ,()22,B x y 在该二次函数的图象上,其中12x x <,120x x +=,则( )A. 12y y =-B. 12y y >C. 12y y <D. 1y 、2y 的大小无法确定8. 如图,边长为2的等边△ABC 和边长为1的等边△A ′B ′C ′,它们的边B ′C ′,BC位于同一条直线l 上,开始时,点C ′与B 重合,△ABC 固定不动,然后把△A ′B ′C ′自左向右沿直线l 平移,移出△ABC 外(点B ′与C 重合)停止,设△A ′B ′C ′平移的距离为x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是( )二、填空题9. 已知二次函数y=x 2-4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是 .10.抛物线y =-8x 2的开口向________,对称轴是________,顶点坐标是________;当x >0时,y 随x 的增大而________,当x <0时,y 随x 的增大而________.11. 若方程(x -m )(x -n )=3(m ,n为常数,且m <n )的两实数根分别为a 、b (a <b ),则m 、n 、a 、b 的大小关系为______________.12. 二次函数y =-2x 2-4x +5的最大值是________.13. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42Ma b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)14. 已知函数y =⎩⎨⎧-x 2+2x (x >0),-x (x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为________.三、解答题15. 如图①,已知抛物线y =ax 2+bx +c 经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的解析式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x 轴上,直接写出两条抛物线、对称轴和y 轴围成的图形的面积S(图②中阴影部分).16. 已知抛物线l :y =(x -h )2-4(h 为常数).(1)如图22-B -2(a),当抛物线l 恰好经过点P (1,-4)时,l 与x 轴从左到右的交点为A ,B ,与y 轴交于点C .①求l 的解析式,并写出l 的对称轴及顶点坐标.②在l 上是否存在点D (与点C 不重合),使S △ABD =S △ABC ?若存在,请求出点D 的坐标;若不存在,请说明理由.③M 是l 上任意一点,过点M 作ME ⊥y 轴于点E ,交直线BC 于点D ,过点D 作x 轴的垂线,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点M 的坐标.(2)设l 与直线y =35x -245有个交点的横坐标为x 0,且满足3≤x 0≤5,通过l 位置随h 变化的过程,直接写出h 的取值范围.17. 如图,已知抛物线y =-x 2+bx +c 经过A (0, 1)、B (4, 3)两点.(1)求抛物线的解析式; (2)求tan ∠ABO 的值;(3)过点B 作BC ⊥x 轴,垂足为C ,在对称轴的左侧且平行于y 轴的直线交线段AB 于点N ,交抛物线于点M ,若四边形MNCB 为平行四边形,求点M 的坐标.18. 如图,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x ,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上. (1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时.①求t关于x的函数解析式和自变量x的取值范围;②当梯形CMQP的两底的长度之比为1∶2时,求t的值.2021中考数学专题训练:二次函数的图象及其性质-答案一、选择题1. 【答案】D【解析】由y=(x-2)2+k知此二次函数的顶点坐标为(2,k),对称轴为x=2,由y=x2+bx+5知其对称轴为x=-b2,得-b2=2,所以b=-4;于是可以得到函数的解析式是y=x2-4x+5,把(2,k)代入其中即得k=1.2. 【答案】B[解析]由抛物线过(-2,n)和(4,n),说明这两个点关于对称轴对称,即对称轴为直线x=1,所以-=1,又因为a=-1,所以可得b=2,即抛物线的解析式为y=-x2+2x+4,把x=-2代入解得n=-4.3. 【答案】C【解析】根据图象平移变换口诀“左加右减,上加下减”进行解答.把抛物线y=x2+2向下平移1个单位得y=x2+2-1=x2+1.4. 【答案】C5. 【答案】B序号逐项分析正误①∵b>a>0,∴对称轴-b2a<0,即对称轴在y轴左侧√②∵抛物线y=ax2+bx+c与x轴最多有一个交点,且抛物线开口向上,∴y=ax2+bx+c≥0,∴方程ax2+bx+c+2=0即ax2+bx+c=-2无实数根√③由②得y=ax2+bx+c≥0,∴当x=-1时,a-b+c≥0√④∵当x=-2时,y=4a-2b+c≥0,∴a+b+c≥3b-3a,a+b+c≥3(b-a),∵b>a,∴a+b+cb-a≥3√7. 【答案】B【解析】首先分析出a,b,x1的取值范围,然后用含有代数式表示y1,y2,再作差法比较y1,y2的大小.∵20a b->,b2≥0,∴a>0.又∵0ab <, ∴b <0.∵12x x <,120x x +=, ∴21x x =-,x 1<0.∵点()11,A x y ,()22,B x y 在该二次函数2y ax bx c =++的图象上∴2111y ax bx c =++,2222211y ax bx c ax bx c =++=-+.∴y 1-y 2=2bx 1>0. ∴y 1>y 2.故选:B.8. 【答案】B【解析】由题意知:在△A ′B ′C ′移动的过程中,阴影部分总为等边三角形.当0<x ≤1时,边长为x ,此时y =12x ×32x =34x 2;当1<x ≤2时,重合部分为边长为1的等边三角形,此时y =12×1×32=34;当2<x ≤3时,边长为3-x ,此时y =12(3-x )×32(3-x ).综上,这个分段函数的图象左边为开口向上的抛物线的一部分,中间为直线的一部分,右边为开口向上抛物线的一部分,且最高点为34.故选B.二、填空题9. 【答案】k<4 [解析]∵二次函数y=x 2-4x +k 的图象的顶点在x 轴下方, ∴二次函数y=x 2-4x +k 的图象与x 轴有两个公共点. ∴b 2-4ac>0,即(-4)2-4×1×k>0.解得 k<4.10. 【答案】下y 轴 (0,0) 减小 增大11. 【答案】a <m <n <b【解析】如解图,解方程(x -m)(x -n)=3可以看作是求y =(x -m)(x -n)与y =3这两个函数图象的交点,由解图易得a <m <n <b.12. 【答案】713. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.14. 【答案】⎝⎛⎭⎪⎫23,00<m<14 [解析] 联立y =x +m 与y =-x 2+2x ,得x +m =-x2+2x ,整理得x 2-x +m =0,当有两个交点时,b 2-4ac =(-1)2-4m>0,解得m<14.当直线y =x +m 经过原点时,与函数y =⎩⎨⎧-x 2+2x (x>0)x (x≤0)的图象有两个不同的交点,再向上平移,有三个交点,∴m>0, ∴m 的取值范围为0<m<14.故答案为0<m<14.三、解答题15. 【答案】解:(1)把(0,3),(3,0),(4,3)代入y =ax2+bx +c ,得 ⎩⎪⎨⎪⎧c =3,9a +3b +c =0,16a +4b +c =3,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3. 所以抛物线的解析式为y =x2-4x +3. (2)因为y =x2-4x +3=(x -2)2-1,所以抛物线的顶点坐标为(2,-1),对称轴是直线x =2. (3)阴影部分的面积为2.16. 【答案】解:(1)①将P (1,-4)代入y =(x -h )2-4,得(1-h )2-4=-4,解得h =1, ∴抛物线l 的解析式为y =(x -1)2-4,∴抛物线l 的对称轴为直线x =1,顶点坐标为(1,-4). ②存在.将x=0代入y=(x-1)2-4,得y=-3,∴点C的坐标为(0,-3),∴OC=3.∵S△ABD=S△ABC,∴点D的纵坐标为3或-3.当y=-3时,(x-1)2-4=-3,解得x1=2,x2=0(舍去),∴点D的坐标为(2,-3).当y=3时,(x-1)2-4=3,解得x1=1+7,x2=1-7,∴点D的坐标为(1+7,3)或(1-7,3).综上所述,在抛物线l上存在点D(与点C不重合),使S△ABD=S△ABC,点D的坐标为(2,-3)或(1+7,3)或(1-7,3).③如图(a)所示:∵∠EOF=∠OED=∠OFD=90°,∴四边形OEDF为矩形,∴OD=EF.依据垂线段的性质可知:当OD⊥BC时,OD有最小值,即EF有最小值.把y=0代入抛物线的解析式,得(x-1)2-4=0,解得x1=-1,x2=3,∴B(3,0),∴OB=OC.又∵OD⊥BC,∴CD=BD.∴点D的坐标为(32,-32).将y=-32代入y=(x-1)2-4,得(x-1)2-4=-32,解得x 1=-102+1,x 2=102+1,∴点M 的坐标为(-102+1,-32)或(102+1,-32). (2)∵y =(x -h )2-4,∴抛物线的顶点在直线y =-4上. 对于直线y =35x -245, 当3≤x 0≤5时,-3≤y 0≤-95,即抛物线l 与直线y =35x -245在G (3,-3),H (5,-95)之间的一段有一个交点. 当抛物线经过点G 时,(3-h )2-4=-3,解得h =2或h =4.当抛物线经过点H 时,(5-h )2-4=-95,解得h =5+555或h =5-555. 随h 的逐渐增加,l 的位置随之向右平移,如图(b)所示.由函数图象可知:当2≤h ≤5-555或4≤h ≤5+555时,抛物线l 与直线在3≤x 0≤5段有一个交点.17. 【答案】(1)将A (0, 1)、B (4, 3)分别代入y =-x 2+bx +c ,得1,164 3.c b c =⎧⎨-++=⎩ 解得92b =,c =1. 所以抛物线的解析式是2912y x x =-++.(2)在Rt △BOC 中,OC =4,BC =3,所以OB =5. 如图2,过点A 作AH ⊥OB ,垂足为H .在Rt △AOH 中,OA =1,4sin sin 5AOH OBC ∠=∠=, 所以4sin 5AH OA AOH =⋅∠=. 图2所以35OH =,225BH OB OH =-=. 在Rt △ABH 中,4222tan 5511AH ABO BH ∠==÷=. (3)直线AB 的解析式为112y x =+. 设点M 的坐标为29(,1)2x x x -++,点N 的坐标为1(,1)2x x +, 那么2291(1)(1)422MN x x x x x =-++-+=-+. 当四边形MNCB 是平行四边形时,MN =BC =3.解方程-x 2+4x =3,得x =1或x =3.因为x =3在对称轴的右侧(如图4),所以符合题意的点M 的坐标为9(1,)2(如图3).图3 图4 考点伸展第(3)题如果改为:点M 是抛物线上的一个点,直线MN 平行于y 轴交直线AB 于N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点M 的坐标. 那么求点M 的坐标要考虑两种情况:MN =y M -y N 或MN =y N -y M .由y N -y M =4x -x 2,解方程x 2-4x =3,得27x =±(如图5).所以符合题意的点M 有4个:9(1,)2,11(3,)2,57(27,)--,57(27,)++.图518. 【答案】 (1)因为AB =OC = 4,A 、B 关于y 轴对称,所以点A 的横坐标为2.将x =2代入y =2114x +,得y =2.所以点M 的坐标为(0,2).(2) ① 如图2,过点Q 作QH ⊥ x 轴,设垂足为H ,则HQ =y 2114x =+,HP =x – t . 因为CM //PQ ,所以∠QPH =∠MCO .因此tan ∠QPH =tan ∠MCO ,即12HQ OM HP OC ==.所以2111()42x x t +=-.整理,得2122t x x =-+-. 如图3,当P 与C 重合时,4t =-,解方程21422x x -=-+-,得15x =±. 如图4,当Q 与B 或A 重合时,四边形为平行四边形,此时,x =± 2. 因此自变量x 的取值范围是15x ≠±,且x ≠± 2的所有实数.图2 图3 图4②因为sin ∠QPH =sin ∠MCO ,所以HQ OM PQ CM =,即PQ HQ CM OM=. 当12PQ HQ CM OM ==时,112HQ OM ==.解方程21114x +=,得0x =(如图5).此时2t =-.当2PQ HQ CM OM ==时,24HQ OM ==.解方程21144x +=,得23x =±. 如图6,当23x =时,823t =-+;如图6,当23x =-时,823t =--.图5 图6 图7考点伸展本题情境下,以Q 为圆心、QM 为半径的动圆与x 轴有怎样的位置关系呢?设点Q 的坐标为21,14x x ⎛⎫+ ⎪⎝⎭,那么222222111144QM x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭. 而点Q 到x 轴的距离为2114x +. 因此圆Q 的半径QM 等于圆心Q 到x 轴的距离,圆Q 与x 轴相切.。

二次函数的图像和性质(中考复习)【精编】

二次函数的图像和性质(中考复习)【精编】

增减性 增大而增大
的增大而增大

当 x<-2ba时,y 随 x 的 当__x_>_-__2_ba___时,y 随 x
增大而减小
的增大而减小
有最____小____值,即 最值 __y_m_in_=__4_a_c4_-a__b_2_
有最大值,即 ymax= 4ac-b2
4a
二次函数的图像和性质(中考复习)
﹣1;由抛物线开口方向得a>0,再由抛物线的对称轴在y轴
的右侧得a、b异号,即b<0;由于抛物线过点(﹣2,0)、
(4,0),根据抛物线的对称性得到抛物线对称轴为直线x=1,
则2a+b=0;由于当x=﹣3时,y<0,所以9a﹣3b+c>0,即
9a+c>3b.
二次函数的图像和性质(中考复习)
知识点4.二次函数图像的平移
① a,b同号 对称轴在y轴左侧;
b 2a

② b=0
对称轴是y轴;
③ a,b异号 对称轴在y轴右侧。
二次函数的图像和性质(中考复习)
例1:判断下列抛物线中a,b,c的符号
y
y
y
0x 0 x
0x
二次函数的图像和性质(中考复习)
例 2 已知抛物线 y=ax2+bx+c(a≠0)在平面直角坐标系中的位 置如图 13-6 所示,则下列结论中正确的是( D )
y=ax2 和 y=a(x-h)2+k 的图象关系 左 上
y=a(x-h)2+k 的图象.
二次函数的图像和性质(中考复习)
1.(2014·海南)将抛物线y=x2平移得到抛物线y= (x+2)2-6,则这个平移过程正确的是(C )
A.向左平移2个单位下平移6个单位 B.向右平移2个单位上平移6个单位 C.向左平移2个单位下平移6个单位 D.向左平移2个单位上平移6个单位

二次函数的图像和性质练习(含答案)

二次函数的图像和性质练习(含答案)

二次函数的图像和性质一、选择题(每题3分)1.下列四个函数中,一定是二次函数的是( )A .21y x x=+ B .y=ax 2+bx+c C .y=x 2﹣(x+7)2 D .y=(x+1)(2x ﹣1)【答案】D【解析】试题分析:因为形如y=ax 2+bx+c (0a ≠)的函数叫二次函数,所以选项A 、B 、C 错误,D 正确,故选:D .考点:二次函数的概念.2.若函数y=-2(x-1)2+(a-1)x 2为二次函数,则a 的取值范围为( ) A.a≠0 B.a≠1 C.a≠2 D.a≠3【答案】D .【解析】试题分析:根据二次函数的定义化成一般式为()2342y a x x =-+-, 则30a -≠3a ≠故选D .考点:二次函数的定义.3.下列函数中,不是二次函数的是( )A .y =1-x 2B .y =2(x -1)2+4C .y =(x -1)(x +4)D .y =(x -2)2-x 2【答案】D .【解析】试题分析:选项A ,y=1-x 2=-x 2+1,是二次函数,选项A 正确;选项B ,y=2(x-1)2+4=2x 2-4x+6,是二次函数,选项B 正确;选项C ,y=(x-1)(x+4)=x 2+x-2,是二次函数,选项C 正确;选项 D ,y=(x-2)2-x 2=-4x+4,是一次函数,选项D 错误.故答案选D .考点:二次函数的定义.二、填空题(每题3分)4.若函数y =(m -3)是二次函数,则m =______. 【答案】5.【解析】试题分析:已知函数y =(m -3)是二次函数,可得且m -3≠0,解得m=-5. 考点:二次函数的定义.5..一个圆柱的高等于底面半径,写出它的表面积S 与底面半径r 的函数关系式为_________.【答案】S=4π2r【解析】试题分析:根据题意可得h=2r ,则S=2πrh=4π2r .考点:二次函数的实际应用(时间:15分钟,满分25分)班级:___________姓名:___________得分:___________一、选择题(每题3分)1.下列函数中,不属于二次函数的是( )A .y=(x ﹣2)2B .y=﹣2(x+1)(x ﹣1)C .y=1﹣x ﹣x 2D .y=211x 【答案】D【解析】试题分析:整理一般形式后根据二次函数的定义判定即可:A 、整理为y=x 2﹣4x+4,是二次函数,不合题意;B 、整理为y=﹣2x 2+2,是二次函数,不合题意;C 、整理为y=﹣x 2﹣x+1,是二次函数,不合题意;D 、不是整式方程,符合题意.故选:D .考点:二次函数的定义2.下列函数中属于二次函数的是( )A .12-=x yB .12-=ax yC .222)1(2x x y --=D .)2)(1(π+-=x x y【答案】D .【解析】试题分析:A .12-=x y 是一次函数,故本选项错误;B .当0a =时,12-=ax y 不是二次函数,故本选项错误;C .222)1(2x x y --==42x -+是一次函数,故本选项错误;D )2)(1(π+-=x x y 是二次函数,故本选项正确.故选D .考点:二次函数的定义.3.若函数222(1)(1)y x a x =--+-为二次函数,则a 的取值范围为( )A .0a ≠B .1a ≠C .2a ≠D .3a ≠【答案】D .【解析】试题分析:由原函数解析式得到:222(1)(1)y x a x =--+-=2(3)42a x x -+-.∵函数 222(1)(1)y x a x =--+-为二次函数,∴30a -≠,解得3a ≠.故选D .考点:二次函数的定义.二、填空题(每题3分)4.在边长为16cm 的正方形铁皮上剪去一个圆,则剩下的铁皮的面积S (cm 2)与圆的半径r (cm )之间的函数表达式为 (不要求写自变量的取值范围).【答案】2256r S π-=【解析】试题分析:剩下的面积为:正方形的面积-圆的面积=162-πr 2=256-πr 2故答案为:2256r S π-=考点:函数的表达式.5..用长为8米的铝合金制成如图所示的窗框,若设窗框的宽为x 米,窗户的透光面积为S 平方米, 则S 关于x 的函数关系式 .【答案】S=x x 4232+-【解析】试题分析:设窗框的宽为x 米,则长为238x -米 ∴S=x x x x 4232382+-=⨯- 考点:实际问题抽象二次函数三、计算题(每题10分)6.已知,若函数2(1)3m y m x =-+是关于x 的一次函数.(1)求m 的值,并写出解析式;(2)若函数是关于x 的二次函数,求m 的值,.【答案】(1)1m =-;(2)m =.【解析】试题分析:(1)先根据一次函数的定义求出m 的值;(2)由22m =可得出m =试题解析:(1)∵函数2(1)3m y m x =-+是一次函数,∴21m =,解得1m =或1m =-,又∵10m -≠,∴1m ≠,∴1m =-,∴函数为:23y x =-+;m=可得出m=(2)由22考点:1.一次函数的定义;2.二次函数的定义.。

二次函数图像和性质练习题

二次函数图像和性质练习题

二次函数图像和性质练习题二次函数是高中数学中的重要内容,它在解决实际问题中具有广泛的应用。

本文将通过一些练习题,来深入探讨二次函数的图像和性质。

练习题一:已知二次函数y=ax^2+bx+c的图像经过点(1, 4),并且在x轴上的截距为2,求函数的解析式。

解析:根据已知条件,可以得到两个方程:(1)4=a+b+c;(2)c=2a;将第二个方程代入第一个方程中,得到4=a+b+2a,化简得到3a+b=4。

由于这是一个一元一次方程,可以解得a=1,b=1。

代入c=2a,得到c=2。

所以,函数的解析式为y=x^2+x+2。

练习题二:已知二次函数y=ax^2+bx+c的图像经过点(2, 3),并且在x轴上的截距为4,求函数的解析式。

解析:同样地,根据已知条件可以得到两个方程:(1)3=4a+2b+c;(2)c=4a;将第二个方程代入第一个方程中,得到3=4a+2b+4a,化简得到8a+2b=3。

由于这是一个一元一次方程,可以解得a=1/4,b=-5/2。

代入c=4a,得到c=1。

所以,函数的解析式为y=1/4x^2-5/2x+1。

练习题三:已知二次函数y=ax^2+bx+c的图像经过点(1, 2),并且在x轴上的截距为3,求函数的解析式。

解析:同样地,根据已知条件可以得到两个方程:(1)2=a+b+c;(2)c=3a;将第二个方程代入第一个方程中,得到2=a+b+3a,化简得到4a+b=2。

由于这是一个一元一次方程,可以解得a=1/2,b=-5/2。

代入c=3a,得到c=3/2。

所以,函数的解析式为y=1/2x^2-5/2x+3/2。

通过以上三道练习题,我们可以看到二次函数图像和性质的一些规律。

首先,二次函数的图像是一个开口向上或向下的抛物线。

其次,二次函数的图像经过的点和截距可以用来确定函数的解析式。

最后,通过解方程可以得到函数的系数。

除了以上的练习题,我们还可以通过其他方式来深入理解二次函数的图像和性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题12 二次函数的图象与性质
1.2017·金华对于二次函数y =-(x -1)2
+2的图象与性质,下列说法正确的是() A .对称轴是直线x =1,最小值是2 B .对称轴是直线x =1,最大值是2 C .对称轴是直线x =-1,最小值是2 D .对称轴是直线x =-1,最大值是2
2.2017·连云港已知抛物线y =ax 2
(a >0)过A (-2,y 1),B (1,y 2)两点,则下列关系式一定正确的是()
A .y 1>0>y 2
B .y 2>0>y 1
C .y 1>y 2>0
D .y 2>y 1>0
3.2017·滨州将抛物线y =2x 2
向右平移3个单位长度,再向下平移5个单位长度,得到的抛物线的表达式为()
A .y =2(x -3)2-5
B .y =2(x +3)2
+5
C .y =2(x -3)2+5
D .y =2(x +3)2
-5
4.2018·菏泽已知二次函数y =ax 2
+bx +c 的图象如图Z12-1所示,则一次函数y =
bx +a 与反比例函数y =a +b +c
x
在同一平面直角坐标系中的图象大致是()
图Z12-1
图Z12-2
5.2018·黄冈当a ≤x ≤a +1时,函数y =x 2
-2x +1的最小值为1,则a 的值为() A .-1 B .2
C .0或2
D .-1或2
6.2018·鄂州如图Z12-3,抛物线y =ax 2
+bx +c (a ≠0)与x 轴交于点A (1,0)和B ,与y 轴的正半轴交于点C .下列结论:①abc >0;②4a -2b +c >0;③2a -b >0;④3a +c =0.其中正确结论的个数为()
图Z12-3
A .1
B .2
C .3
D .4
7.2017·百色经过A (4,0),B (-2,0),C (0,3)三点的抛物线的表达式是______________.
8.2017·咸宁如图Z12-4,直线y =mx +n 与抛物线y =ax 2
+bx +c 交于A (-1,p ),B (4,q )两点,则关于x 的不等式mx +n >ax 2+bx +c 的解集是____________.
图Z12-4
9.2017·北京在平面直角坐标系xOy 中,抛物线y =x 2
-4x +3与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C .
(1)求直线BC 的表达式;
(2)垂直于y 轴的直线l 与抛物线交于点P (x 1,y 1),Q (x 2,y 2),与直线BC 交于点N (x 3,y 3),若x 1<x 2<x 3,结合函数的图象,求x 1+x 2+x 3的取值范围.
详解详析
1.B 2.C 3.A 4.B 5.D 6.C
7.y =-38x 2+3
4
x +38.x <-1或x >4
9.解:(1)令x =0,得y =3,所以C(0,3).
令y =0,得x 2
-4x +3=0,解得x 1=1,x 2=3, 所以A(1,0),B(3,0).
设直线BC 的表达式为y =kx +b ,
则⎩⎪⎨⎪⎧b =3,3k +b =0,解得⎩
⎪⎨⎪⎧k =-1,b =3, 所以直线BC 的表达式为y =-x +3.
(2)由y =x 2-4x +3,得y =(x -2)2
-1,
所以抛物线y =x 2
-4x +3的对称轴是直线x =2,顶点坐标是(2,-1). 因为y 1=y 2,所以x 1+x 2=4.
在y =-x +3中,令y =-1,得x =4. 因为x 1<x 2<x 3,所以3<x 3<4, 所以7<x 1+x 2+x 3<8.。

相关文档
最新文档