指数与指数函数单元试题
高三数学指数与指数函数试题

高三数学指数与指数函数试题1.若则的值为 ____ .【答案】2.【解析】因为,所以,故答案为:2.【考点】分段函数值的求法.2.已知,,则________.【答案】【解析】由得,所以,解得,故答案为.【考点】指数方程;对数方程.3.已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m的取值范围是________.【答案】(-∞,4]【解析】令t=|2x-m|,则t=|2x-m|在区间[,+∞)上单调递增,在区间(-∞,]上单调递减.而y=2t为R上的增函数,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有≤2,即m≤4,所以m的取值范围是(-∞,4].故填(-∞,4].4.已知,则下列关系中正确的是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【答案】A【解析】由已知得,,,,故a>b>c.【考点】指数函数的图象和性质.5.已知函数,若,且,则的最小值为(). A.B.C.2D.4【答案】B【解析】因为,所以,整理得,又,所以,解得,即,因此.故正确答案为B.【考点】1.指数函数;2.基本不等式.6.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算7.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算8.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】如图,在同一坐标系中分别作出与的图象,其中a表示直线在y轴上截距,由图可知,当时,直线与只有一个交点.故选B.【考点】分段函数图像数形结合9.函数y=a x-3+3恒过定点________.【答案】(3,4)【解析】当x=3时,f(3)=a3-3+3=4,∴f(x)必过定点(3,4).10.已知函数f(x)=则f(2+log23)=________.【答案】【解析】由3<2+log23<4,得3+log23>4,所以f(2+log23)=f(3+log23)=11.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]【答案】B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.12.设,,,则的大小关系是 .【答案】【解析】由题意可知:,,,,,∴,∴.【考点】1.指数函数、对数函数的性质;2.比较大小.13.已知函数,则 .【答案】.【解析】.【考点】1.分段函数;2.指数与对数运算.14.已知函数则()A.B.C.D.【答案】C【解析】.【考点】函数与指数运算.15.函数的零点个数为A.1B.2C.3D.4【答案】B.【解析】令f(x)=0得.画出两个函数. 图像即可得交点的个数为两个.所以原函数的零点有两个. 故选B.本题关键是的图像的画法是将函数在负y半轴的图像沿x轴翻折.【考点】1.函数的零点问题.2.对数函数图像,指数函数图像的画法.3.函数绝对值的图像的画法.16.设,则的大小关系为()A.B.C.D.【答案】A【解析】由分数指数幂与根式的关系知:,从而易知,故选A.【考点】1.分数指数幂与根式的互换;2.比较大小.17.函数的定义域为,若且时总有,则称为单函数.例如,函数是单函数.下列命题:①函数是单函数;②函数是单函数;③若为单函数,且,则;④函数在定义域内某个区间上具有单调性,则一定是单函数.其中的真命题是_________.(写出所有真命题的编号)【答案】③【解析】根据单函数的定义可知如果函数为单函数,则函数在其定义域上一定是单调递增或单调递减函数,即该函数为一一对应关系,据此分析可知①不是,因为该二次函数先减后增;②不是,因为该函数是先减后增;显然④的说话也不对,故真命题是③.【考点】新定义、函数的单调性,考查学生的分析、理解能力.18.设,则这四个数的大小关系是()A.B.C.D.【答案】D.【解析】是上的减函数,,又.【考点】指数函数、对数函数及幂函数单调性的应用.19.二次函数y=ax2+b x与指数函数y=()x的图象只可能是()A. B. C. D.【答案】A【解析】解:根据指数函数y=()x可知a,b同号且不相等,二次函数y=ax2+bx的对称轴-<0可排除B与D,,C,a-b>0,a<0,∴>1,则指数函数单调递增,故C 不正确,选:A【考点】指数函数图象与二次函数图象点评:本题考查了同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b的正负情况是求解的关键.20.计算:_____________【答案】4【解析】因为21. .若,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【答案】A【解析】因为,,,因此选A22. .计算(1)(2)【答案】(1)2;(2) 0【解析】本试题主要是考查了指数幂的运算性质和对数式的运算法则的运用。
高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.设函数(x)=,则满足的的取值范围是().A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)【答案】D.【解析】当时,,,解得,因此,当时,,解得,因此,综上【考点】分段函数的应用.2.设函数则使得成立的的取值范围是()A.B.C.D.【答案】C【解析】当时,由,可得,即;当时,由,可得,即,综上.故选C【考点】函数的求值.3.已知定义在R上的函数满足,当时,,且.(1)求的值;(2)当时,关于的方程有解,求的取值范围.【答案】(1),(2)【解析】(1)由可知,代入表达式可求得的值.又,可求出的值;(2)由(1)可知方程为,对x进行讨论去绝对值符号,可得,据结合指数函数,二次函数的性质可求得的取值范围.试题解析:解:(1)由已知,可得又由可知 . 5分(2)方程即为在有解.当时,,令,则在单增,当时,,令,则,,综上: . 14分【考点】本题主要考查指数函数,二次函数求值域和分类讨论的数学思想方法.4.函数的图象必经过定点___________.【答案】【解析】∵指数函数过定点,∴函数过定点.【考点】函数图象.5.已知,,且,则与的大小关系_______.【答案】【解析】由,又由,所以,所以由可得,所以,,所以即.【考点】1.分数指数幂的运算;2.对数的运算;3.指数函数的单调性.6.函数在上的最大值比最小值大,则 .【答案】【解析】因为,根据指数函数的性质可知在单调递增,所以最大值为,最小值为,依题意有即,而,所以.【考点】指数函数的图像与性质.7.设,则的大小关系是()A.B.C.D.【答案】B【解析】把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为 ,所以 .综上, ,故选B【考点】1、指数函数的性质;2、对数函数的性质.8.若,则__________.【答案】【解析】【考点】指数函数的运算法则9.已知,则的大小关系是.【答案】【解析】因为指数函数在R上单调递减,所以。
指数与指数函数练习及答案

指数与指数函数一、选择题:1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( ) A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44⎛⎛⎝⎝等于( ) A 、16aB 、8aC 、4aD 、2a3、若1,0a b ><,且b b a a -+=则b b a a --的值等于( ) A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( ) A 、1>a B 、2<a C、a < D、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( )A 、 1(1)2x + B 、14x +C 、2xD 、2x -6、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22ab >;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个 7、函数2121xx y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 8、函数121xy =-的值域是( )A 、(),1-∞B 、()(),00,-∞+∞C 、()1,-+∞D 、()(,1)0,-∞-+∞ 9、已知01,1a b <<<-,则函数x y a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限10、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]n a b -D 、(1%)n a b - 11、若103,104x y ==,则10x y -= 。
高三数学指数与指数函数试题答案及解析

高三数学指数与指数函数试题答案及解析1.若,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B【解析】如图可知,“”“”,而“”“”,因此“”是“”的必要不充分条件.故选B.【考点】指对两种基本初等函数的图像和充要条件的概念.2.________.【答案】【解析】原式=【考点】1.指对数运算性质.3.已知函数f(x)=()x,g(x)=x,记函数h(x)=,则不等式h(x)≥的解集为________.【答案】(0,],【解析】记f(x)与g(x)的图象交点的横坐标为x=x而f()==<1=,f(1)=()1=>0=1,∴x∈(,1),得h(x)的图象如图所示,而h()=f()=,∴不等式h(x)≥的解集为(0,].4.已知,那么的大小关系是()A.B.C.D.【答案】B【解析】,因为,即,所以.故B正确.【考点】1指数函数的单调性;2对数函数的单调性.5.函数y=x2的值域是________.【答案】(0,1]【解析】∵x2≥0,∴x2≤1,即值域是(0,1].6.如图,过原点O的直线与函数y=2x的图像交于A,B两点,过点B作y轴的垂线交函数y=4x的图像于点C,若AC平行于y轴,则点A的坐标是________.【答案】(1,2)【解析】设C(a,4a),则A(a,2a),B(2a,4a).又O,A,B三点共线,所以=,故4a=2·2a,所以2a=0(舍去)或2a=2,即a=1,所以点A的坐标是(1,2).7.当x∈[-2,2]时,a x<2(a>0且a≠1),则实数a的取值范围是________.【答案】∪(1,)【解析】当x∈[-2,2]时,a x<2(a>0且a≠1),当a>1时,y=a x是一个增函数,则有a2<2,可得-<a<,故有1<a<;当0<a<1时,y=a x是一个减函数,则有a-2<2,可得a>或a<- (舍),故有<a<1.综上可得,a∈∪(1,).8.已知,,,则()A.B.C.D.【答案】D【解析】∵,,,∴.【考点】利用函数图象及性质比较大小.9. (2014·嘉兴模拟)已知a=,b=0.3-2,c=lo2,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.b>a>c【答案】D【解析】0<a=<=1,b=0.3-2>(0.3)0=1,c=lo2<0,所以b>a>c.10. (2014·郑州模拟)已知函数f(x)=e x+ax,g(x)=ax-lnx,其中a≤0.(1)求f(x)的极值.(2)若存在区间M,使f(x)和g(x)在区间M上具有相同的单调性,求a的取值范围.【答案】(1)f(x)的极小值为f(ln(-a))=-a+aln(-a);没有极大值(2)(-∞,-1)【解析】(1)f(x)的定义域为R,且f′(x)=e x+a.当a=0时,f(x)=e x,故f(x)在R上单调递增.从而f(x)没有极大值,也没有极小值.当a<0时,令f′(x)=0,得x=ln(-a).f(x)和f′(x)的情况如下:x(-∞,ln(-a))ln(-a)(ln(-a),+∞)故f(x)的单调递减区间为(-∞,ln(-a));单调递增区间为(ln(-a),+∞).从而f(x)的极小值为f(ln(-a))=-a+aln(-a);没有极大值.(2)g(x)的定义域为(0,+∞),且g′(x)=a-=.当a=0时,f(x)在R上单调递增,g(x)在(0,+∞)上单调递减,不合题意.当a<0时,g′(x)<0,g(x)在(0,+∞)上单调递减.当-1≤a<0时,ln(-a)≤0,此时f(x)在(ln(-a),+∞)上单调递增,由于g(x)在(0,+∞)上单调递减,不合题意.当a<-1时,ln(-a)>0,此时f(x)在(-∞,ln(-a))上单调递减,由于g(x)在(0,+∞)上单调递减,符合题意.综上,a的取值范围是(-∞,-1).x,y=a x,y=x+a的图象,可能正确的是() 11.在同一坐标系中画出函数y=loga【答案】D【解析】y=x+a在B,C,D三个选项中对应的a>1,只有选项D的图象正确.12.已知,,,则A.B.C.D.【答案】D【解析】由对数函数的性质知,,由幂函数的性质知,故有.【考点】对数、幂的比较大小13.设则的大小关系是()A.B.C.D.【答案】A【解析】因为,,所以,,选B.【考点】指数函数、对数函数的性质.14.已知函数,则=________.【答案】【解析】,故填.【考点】分段函数对数与指数15.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】如图,在同一坐标系中分别作出与的图象,其中a表示直线在y轴上截距,由图可知,当时,直线与只有一个交点.故选B.【考点】分段函数图像数形结合16.某驾驶员喝了mL酒后,血液中的酒精含量f(x)(mg/mL)随时间x(h)变化的规律近似满足表达式f(x)=《酒后驾车与醉酒驾车的标准及相应的处罚》规定为驾驶员血液中酒精含量不得超过0.02mg/mL,据此可知,此驾驶员至少要过________h后才能开车.(精确到1h)【答案】4【解析】当0≤x≤1时,≤5x-2≤,此时不宜开车;由≤0.02,得x≥4.17.已知+(0.5)-y< +(0.5)x,则实数x、y的关系为________.【答案】x+y<0【解析】由+(0.5)-y< +(0.5)x,得-(0.5)x< -(0.5)-y.设f(x)=-(0.5)x,则f(x)<f(-y),由于0< 0.5<1,所以函数f(x)是R上的增函数,所以x<-y,即x+y<018.设a>0,f(x)=是R上的偶函数.(1)求a的值;(2)判断并证明函数f(x)在[0,+∞)上的单调性;(3)求函数的值域.【答案】(1)a=1(2)f(x)在[0,+∞)上为增函数(3)[2,+∞)【解析】(1)因为f(x)为偶函数,故f(1)=f(-1),于是=+3a,即.因为a>0,故a=1.(2)设x2>x1≥0,f(x1)-f(x2)=(3x2-3x1)(-1).因为3x为增函数,且x2>x1,故3x2-3x1>0.因为x2>0,x1≥0,故x2+x1>0,于是<1,即-1<0,所以f(x1)-f(x2)<0,所以f(x)在[0,+∞)上为增函数.(3)因为函数为偶函数,且f(x)在[0,+∞)上为增函数,故f(0)=2为函数的最小值,于是函数的值域为[2,+∞).19.若xlog34=1,求的值.【答案】【解析】由xlog34=1,知4x=3,∴=20.设函数f(x)=x2-4x+3,g(x)=3x-2,集合M={x∈R|f(g(x))>0},N={x∈R|g(x)<2},则M∩N为() A.(1,+∞)B.(0,1)C.(-1,1)D.(-∞,1)【答案】D【解析】M:f(g(x))=(3x-2)2-4(3x-2)+3>0,令t=3x-2,则原不等式等价于t2-4t+3>0,解得t>3或t<1,∴3x-2>3或3x-2<1.∴3x>5或3x<3.∴x>log35或x<1.即M={x|x>log35或x<1}.N:3x-2<2⇒3x<4⇒x<log34,∴N={x|x<log34},∴M∩N={x|x<1},故选D.21.函数y=e|lnx|-|x-1|的图象大致是()【答案】D【解析】y=e|lnx|-|x-1|=当x≥1时,y=1,排除C,当x=时,y=,排除A,B,故选D.22.已知函数f(x)=2x+x,g(x)=x-,h(x)=log2x-的零点分别为x1,x2,x3,则x1,x 2,x3的大小关系是______________.【答案】x3>x2>x1【解析】x3>x2>x1[解析] 由f(x)=2x+x=0,g(x)=x-=0,h(x)=log2x-=0得2x=-x,x=,log2x=.在平面直角坐标系中分别作出y=2x与y=-x,y=x与y=,y=log2x与y=的图像,如图所示,由图像可知-1<x1<0,0<x2<1,x3>1,所以x3>x2>x1.23.已知函数f(x)=2x-2,则函数y=|f(x)|的图象可能是()【答案】B【解析】|f(x)|=|2x-2|=易知函数y=|f(x)|的图象的分段点是x=1,且过点(1,0),(0,1),又|f(x)|≥0,故选B.【误区警示】本题易误选A或D,出现错误的原因是误以为y=|f(x)|是偶函数.24.设函数f(x)=的最小值为2,则实数a的取值范围是.【答案】[3,+∞)【解析】当x≥1时,f(x)≥2,当x<1时,f(x)>a-1,由题意知,a-1≥2,∴a≥3.25.函数f(x)=的值域为________.【答案】(-∞,2)【解析】分段函数是一个函数,其定义域是各段函数定义域的并集,值域是各段函数值域的并集.当x≥1时,log x≤0,当x<1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).26.设的定义域为D,若满足条件:存在,使在上的值域是,则称为“倍缩函数”.若函数为“倍缩函数”,则t的范围是()A.B.C.D.【答案】D【解析】因为函数在其定义域上是增函数,且函数为“倍缩函数”,且在上的值域是,所以,即,所以方程必有两个不等的实数根。
指数与指数函数测试题

修文县华驿私立中学2012-2013学年度第一学期单元测试卷(四)(内容:指数与指数函数 满分:150 时间:120 制卷人:朱文艺) 班级: 学号: 姓名: 得分:一、选择题:(以下每小题均有A,B,C,D 四个选项,其中只有一个选项正确,请把你的正确答案填入相应的括号中,每小题5分,共60分)1. 化简[32)5(-]43的结果为 ( ) A .5 B .5 C .-5 D .-5 2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。
经过3个小时,这种细菌由1个可繁殖成 ( ) A. 511个 B. 512个 C. 1023个 D. 1024个3.函数f(x)=x21-的定义域是 ( )A. (]0,∞-B. [0,+∞)C.(-∞,0)D.(-∞,+∞) 4. 设.)32(,)32(2.15.1-==b a 那么实数a 、b 与1的大小关系正确的是 ( )A. 1<<a bB. 1<<b aC. a b <<1D. b a <<15.在同一平面直角坐标系中,函数ax x f =)(与xa x g =)(的图像可能是 ( )6.设dc b a ,,,都是不等于1的正数,xxxxd y c y by a y ====,,,在同一坐标系中的图像如图所示,则d c b a ,,,的大小顺序是) d c b a A <<<. c d b a B <<<. c d a b C <<<. d c a b D <<<.7. 函数xa x f )1()(2-=在R 上是减函数,则a 的取值范围是 ( )1.>a A2.<a B 2.<a C 21.<<a D8.函数121-=x y 的值域是 ( ) )1,.(-∞A ),0()0,.(+∞-∞ B ),1.(+∞-C ),0()1,.(+∞--∞ D9.当1>a 时,函数11-+=x x a a y 是 ( ).A 奇函数 .B 偶函数 .C 既奇又偶函数 .D 非奇非偶函数10.函数0.(12>+=-a ay x 且)1≠a 的图像必经过点 ( ))1,0.(A )1,1.(B )0,2.(C )2,2.(D11.某厂1998年的产值为a 万元,预计产值每年以n %递增,则该厂到2010年的产值(单位:万元)是 ( )n a A +1(.%13) n a B +1(.%12) n a C +1(.%11) n D -1(910.%12) 12.若函数f (x )=⎩⎪⎨⎪⎧a x,x >1(4-a2)x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8)D .[4,8)二、填空题(每题5分,共20分,把答案填在题中横线上)13.已知)(x f 是指数函数,且255)23(=-f ,则=)3(f . 14.设10<<a ,使不等式531222+-+->x xx x a a成立的x 的集合是 .15.函数x x y 28)13(0-+-=的定义域为 . 16.函数xx y -=22的单调递增区间为 .三、解答题(共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本题满分10分) 已知函数f (x )=a -12x+1,且f (x )为定义在R 上的奇函数,试求a 的值。
指数与指数函数练习题

指数与指数函数练习题1. 指数运算练习题(1) 计算 $2^4$。
(2) 计算 $(-3)^2$。
(3) 计算 $(-2)^3$。
(4) 计算 $0^5$。
(5) 计算 $1^8$。
2. 指数运算规律练习题(1) 计算 $2^3 \cdot 2^5$。
(2) 计算 $\left(3^2\right)^4$。
(3) 计算 $5^2 \cdot 5^3$。
(4) 计算 $(-2)^4 \cdot (-2)^2$。
(5) 计算 $10^3 \cdot 10^0$。
3. 指数函数绘图练习题(1) 绘制函数 $y = 2^x$ 的图像。
(2) 绘制函数 $y = \left(\frac{1}{2}\right)^x$ 的图像。
(3) 绘制函数 $y = 3^x$ 的图像。
(4) 绘制函数 $y = \left(\frac{1}{3}\right)^x$ 的图像。
(5) 绘制函数 $y = 4^x$ 的图像。
4. 指数函数性质练习题(1) 函数 $y = 2^x$ 是否有对称轴?解释原因。
(2) 函数 $y = \left(\frac{1}{3}\right)^x$ 的图像位于哪个象限?解释原因。
(3) 函数 $y = 5^x$ 是否有零点?解释原因。
(4) 函数 $y = 2^x$ 是否有最大值或最小值?解释原因。
(5) 函数 $y = \left(\frac{1}{4}\right)^x$ 是否有水平渐近线?解释原因。
5. 指数函数方程练习题(1) 解方程 $2^x = 8$。
(2) 解方程 $5^x = 1$。
(3) 解方程 $3^x = 27$。
(4) 解方程 $2^x = \frac{1}{16}$。
(5) 解方程 $\left(\frac{1}{2}\right)^x = 4$。
以上是关于指数与指数函数的练习题,通过解答这些问题,可以加深对指数运算、指数函数绘图、指数函数性质以及解指数函数方程的理解和掌握。
高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题一.选择题1.若xlog 23=1,则3x+9x的值为(B)A.3B.6C.2D.解:由题意x=,所以3x==2,所以9x=4,所以3x+9x=6故选B2.若非零实数a、b、c满足,则的值等于(B)A.1B.2C.3D.4解答:解:∵,∴设=m,a=log5m,b=log2m,c=2lgm,∴==2lgm(log m5+log m2)=2lgm•log m10=2.故选B.3.已知,则a等于()A.B.C. 2 D. 4解:因为所以解得a=4故选D4.若a>1,b>1,p=,则a p等于()A.1B.b C.l og b a D.a log b a解:由对数的换底公式可以得出p==log a(log b a),因此,a p等于log b a.故选C.5.已知lg2=a,10b=3,则log125可表示为(C)A.B.C.D.解:∵lg2=a,10b=3,∴lg3=b,∴log125===.故选C.6.若lgx﹣lgy=2a,则=(C)A.3a B.C.a D.解:∵lgx﹣lgy=2a,∴lg﹣lg=lg﹣lg=(lg﹣lg)=lg=(lgx﹣lgy)=•2a=a;故答案为C.7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b= A.﹣2 B.﹣1 C.0D.2解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0∵f(a)+f(b﹣2)=0∴a+(b﹣2)=0∴a+b=2故选D.8.=()A.1B.C.﹣2 D.解:原式=+2×lg2+lg5=+lg2+lg5=+1=,故选B.9.设,则=()A.1B.2C.3D.4解:∵,∴==()+()+()==3故选C10.,则实数a的取值区间应为(C)A.(1,2)B.(2,3)C.(3,4)D.(4,5)解:=log34+log37=log328∵3=log327<log328<log381=4∴实数a的取值区间应为(3,4)故选C.11.若lgx﹣lgy=a,则=(A)A.3a B.C.a D.解:=3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a故选A.12.设,则()A.0<P<1 B.1<P<2 C.2<P<3 D.3<P<4 解:=log112+log113+log114+log115=log11(2×3×4×5)=log11120.∴log1111=1<log11120<log11121=2.故选B.13.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足,则abc的值等于(A)A.1B.2C.3D.4解:∵a,b,c均为正数,且都不等于1,实数x,y,z满足,∴设a x=b y=c z=k(k>0),则x=log a k,y=log b k,z=log c k,∴=log k a+log k b+log k c=log k abc=0,∴abc=1.故选A.14.化简a2•••的结果是(C)A.a B.C.a2D.a3解:∵a2•••=a2•••==a2,故选C15.若x,y∈R,且2x=18y=6xy,则x+y为()A.0B.1C.1或2 D.0或2解:因为2x=18y=6xy,(1)当x=y=0时,等式成立,则x+y=0;(2)当x、y≠0时,由2x=18y=6xy得,xlg2=ylg18=xylg6,由xlg2=xylg6,得y=lg2/lg6,由ylg18=xylg6,得x=lg18/lg6,则x+y=lg18/lg6+lg2/lg6=(lg18+lg2)/lg6=lg36/lg6=2lg6/lg6=2.综上所述,x+y=0,或x+y=2.故选D.16.若32x+9=10•3x,那么x2+1的值为(D)A.1B.2C.5D.1或5解:令3x=t,(t>0),原方程转化为:t2﹣10t+9=0,所以t=1或t=9,即3x=1或3x=9所以x=0或x=2,所以x2+1=1或5故选Dx x2A.﹣2<a<2 B.C.D.解;令t=2x,则t>0若二次函数f(t)=t2﹣at+a2﹣3在(0,+∞)上有2个不同的零点,即0=t2﹣at+a2﹣3在(0,+∞)上有2个不同的根∴解可得,即故选D18.若关于x的方程=3﹣2a有解,则a的范围是(A)A.≤a<B.a≥C.<a<D.a>解:∵1﹣≤1,函数y=2x在R上是增函数,∴0<≤21=2,故0<3﹣2a≤2,解得≤a<,故选A.二.填空题19.,则m=10.解:由已知,a=log2m,b=log5m.∴+=log m2+log m5=log m10=1∴m=10故答案为:10.20.已知x+y=12,xy=9,且x<y,则=.解:由题设0<x<y∵xy=9,∴∴x+y﹣2==12﹣6=6x+y+2==12+6=18∴=,=∴=故答案为:21.化简:=(或或).解:====.故答案为:(或或).22.=1.解:===1.故答案为:1.23.函数在区间[﹣1,2]上的值域是[,8].解:令g(x)=x2﹣2x=(x﹣1)2﹣1,对称轴为x=1,∴g(x)在[﹣1,1]上单调减,在[1,8]上单调递增,又f(x)=2g(x)为符合函数,∴f(x)=2g(x)在[﹣1,1]上单调减,在[1,,2]上单调递增,∴f(x)min=f(1)==;又f(﹣1)==23=8,f(2)==1,∴数在区间[﹣1,2]上的值域是[,8].故答案为:[,8].24.函数的值域为(0,8].解:令t=x2+2|x|﹣3==结合二次函数的性质可得,t≥﹣3∴,且y>0故答案为:(0,8].25.函数(﹣3≤x≤1)的值域是[3﹣9,39],单调递增区间是(﹣2,+∞)..解:可以看做是由y=和t=﹣2x2﹣8x+1,两个函数符合而成,第一个函数是一个单调递减函数,要求原函数的值域,只要求出t=﹣2x2﹣8x+1,在[1,3]上的值域就可以,t∈[﹣9,9]此时y∈[3﹣9,39]函数的递增区间是(﹣∞,﹣2],故答案为:[3﹣9,39];(﹣2,+∞)三.解答题26.计算:(1);(2).解:(1)==(2)===2+2﹣lg3+lg2+lg3﹣lg2+2=627.(1)若,求的值;(2)化简(a>0,b>0).解:(1)∵,∴x+x﹣1=9﹣2=7,x2+x﹣2=49﹣2=47,∴==3×6=18,∴==.(2)∵a >0,b >0,∴====.28.已知函数f (x )=4x ﹣2x+1+3. (1)当f (x )=11时,求x 的值;(2)当x ∈[﹣2,1]时,求f (x )的最大值和最小值.解:(1)当f (x )=11,即4x ﹣2x+1+3=11时,(2x )2﹣2•2x ﹣8=0 ∴(2x ﹣4)(2x +2)=0 ∵2x >02x +2>2,∴2x ﹣4=0,2x =4,故x=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) (2)f (x )=(2x )2﹣2•2x +3 (﹣2≤x ≤1) 令∴f (x )=(2x ﹣1)2+2当2x =1,即x=0时,函数的最小值f min (x )=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当2x =2,即x=1时,函数的最大值f max (x )=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)29.已知函数||22)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围。
第一单元 指数与指数函数精选考题答案

第一单元 指数与指数函数1.求下列各式的值:(1(2)(3)(420)a >;(52分析:根式的运算一般都转化成分数的指数计算,当式子中含有根式与分数指数幂时,应统一为分数指数幂进行计算,当根式中式具体数字时,要考虑运用配方计算。
解:(14214171114433346244[3(3)](3)33+⨯=⨯====(2)111111111236332362323()(32)232362-+++=⨯⨯⨯⨯=⨯=⨯= (3)222131131315533342442424124(55)555555555--=-÷=÷-÷=-=-=(41252222362132aaa a a--==== (5331725255101751055555+--===2.化简下列各式: (1)11122()()x x x xx --++-;(2)222222223333x y x y xyxy--------+--+-;(3)3333441()()[(1)()]a a a a a a a a ----+-÷++-分析:在进行幂和根式的化简时,一般是先将根式化成幂的形式,并化小数指数幂为分数指数幂,尽可能的统一成分数指数幂形式,再利用幂的运算性质进行化简,还要注意平方差、立方差、立方和公式的应用。
解:(1)111133133222222()()()()x x x x x x x xx ----++-=-=-(2)2222222222222222233333333322223333()()[()()]2()x y x y x x yy x x yy xy xyxy-----------------+--=-+-++=-=-+-(3)323232324411441()()[()()][(1)()](1)()a a a a a a a a a a a a a a --------=-÷++-==+++-原式 3.(1)指出下列函数中:①4x y =;②4y x =;③4x y =-;④(4)x y =-;⑤x y π=;⑥24x y =;⑦x y x =;⑧1(21)(,1)2xy a a a =->≠且,其中是指数函数的是:__①⑤⑧___。
高一数学指数运算及指数函数试题(有答案).doc

«—数学指数运算及指数函数试题一. 选择题1. 若 xlog 23=l,则 3X +9X 的值为(B )A. 3B. 6C. 2解:由题意 x=—-—=logo 2^ log 23 °所以 3x =3lGg 32=2, 所以9X =4,所以3X +9X =6 故选B2. 若非零实数a 、b 、c 满足5^2b^^,则£^^的值等于 3L b A. 1B. 2C. 3解:•’ 5a :2b :VlO c ,•••设 5;a = 2b -VlO c=m,a=log5m ,b=log2m» c=21gm ,._c z: 21 gm + 21 gm a bloggin log 2in=21gm (log m 5+log m 2) =21grn<log m 10=2.故选B.3. 已知l 0g a 8=^,则a 等于( )A. _1B. \C. 22解:因为log a s=|所以 解得a=4 故选Dlogv (log k a) 4. -------------------------------------- 若 a 〉l, b 〉l ,p=: ,贝1Ja p 等于( )A. 1B. bC. log b aD. a k )g baB )D. 4D. 4log blog, ( log E a)解:由对数的换底公式可以得出P= ---------- : ---------------- =loga ( logba )因此,a p 等于logba. 故选c.解:•••lg2=a ,10b =3,•••lg3=b ,•••logi25= 1 的lgl2_ l-lg2 21g2+lg3 1-a 2a+b 故选c.解:...lgx - lgy=2a ,(lgx - lgy)2 y 2 故答案为C.7.己知函数f (x) =ln (x+J x 2+l),若实数 a ,b 满足 f (a) +f (b - 2) =0,则 a+b=角早:f(x)+f(-x) =ln (x+V y 2+i) +ln (- x+J ( - x) 2+i=0 •••f (a) +f (b -2) =0 •••a+ (b -2) =0 •••a+b=2故选D.log b a5.已知 lg2=a ,10b =3,贝1J logi25 可表示为(C )A. 1+aB. 1+aC. 1 一 a2a+ba+2b2a+bD. 1 - a a+2bA. 3a6.若 lgx - lgy=2a , (C )2 aC. aD. a 12a=a ;( )A. - 2B. - 1C. 0D. 2xl+2lgx ' l+4lgx ' l+8lgx ' 1+ 2 —lgx l+4~lgx 1+82+2lgx + 2~lgx 2+4lgx + 4~lsx 2+8lgx + 8~lsx2+2lgx + 2"lgX 2+4lgx + 4~lgX 2+8lgx + 8~lgX=3故选CA. (1, 2)B.(2, 3)C.(3, 4)D. (4, 5)解:a:_, 1 o=log34+log37=log328log 43 log 73••• 3=log 327 < log 328< log 381 =4•••实数a 的収值区间应为(3, 4) 故选c.11.若 lgx-lgy=a ,则 lg (^) 3 - lg (^)10. 3L— 1—,则实数a 的取值区间应为(C )log 43 log ?3A. 1B. _4 1C. - 2D. _21解:原式=2lDS “2x ilg 2+1g 5: 故选B.i+49•设f (xA. 11+21+41+8B. 2 贈⑴+f 4)C. 3D. 4解:Yf (xI^+'l4-4lgx "k l +8lsx•••f (x) +f (丄)(H2lsx + l+2~lgx )+1+(7^+I^)l+4lsx ,l+4"lgx3.B. 2C.A. aA. 3aB. 3C. aD. a"2a "233解:lg (^) - 1§ (^)=3 (lgx-lg2) -3 (lgy - lg2) =3 (lgx - lgy) =3a故选A.=log 112+logn 3+logn 4+logn5 =logn (2x3x4x5) =lognl20.•••logii 11 = 1 <logi 1120<logn 121=2. 故选B.13. 已知a, b, c 均为正数,且都不等于1,若实数x, y, z 满足=x y z则abc 的值等于(A )A. 1B. 2C. 3D. 4解.• Ya ,b, c 均为正数,Il 都不等于1, 实数 x ,y ,z 满足 a x :b 》:c Z ,■=0, x y z•••设 a x =b y =c z =k ( k 〉0), 贝ij x=log a k ,y=logbk ,z=log c k ,4-^ -^=logka+logkb+logkC=logkabc=0, x y z•••abc=l. 故选A.5 514. 化简(丄)的结果是(C ) a 12.设 P:11 1,则(5A. O<P<1C. 2<P<3D. 3<P<4B. 1<F<2 解:P?11155 5解:Va2-V?- C1) 2. J a_5 5a2=a ,故选C15.若x,yER,且2x=18y=6xy,贝ij x+y 为( )A. 0B. 1C. 1 或2D. 0或2解:因为2x=18y=6xy,(1)当x=y=O时,等式成立,则x+y=O;(2)当x、y*0 时,由2x=18y=6xy得,xlg2=ylgl 8=xylg6,由xlg2=xylg6,得y=lg2/lg6,由ylg 18=xylg6,得x=lg 18/lg6,则x+y=lgl8/lg6+lg2/lg6= (Igl8+lg2) /lg6 =lg36/lg6=21g6/lg6=2.综上所述,x+y=O:或x+y=2.故选D.16.若32X+9=10.3X,那么x2+l 的值为(D )A. 1B. 2C. 5D. 1 或5解:令3x=t, (t>0),原方程转化为:t2 - 10t+9=0,所以t=l 或t=9,即3X=1 3X=9 所以x=0或x=2,所以x2+l=l或5 故选D17.已知函数f (x) =4x-a*2x+a2-3,则函数f (x)有两个相异零点的充要条件是(DA. -2<a<2B. V3<a<2C. V3<^<2D. V3<a<2解;令t=2x,则t〉()若二次函数f (t) =t2 - at+a2 - 3在(0, +oo)上有2个不同的零点,即0=t2 - at+a2 - 3在(0,+°°)上有2个不同的根A=a2 - 4 ( a2- 3)>0 人,a>0a2 - 3>0-2<a<2解可得,j a>0 即^<a<2~ V3L故选D18.若关于x的方程21—士=3-2a有解则a的范围是(AA. B. a 42 2 2解:VI - Vx<I,函数>,=2"在尺上是增函数,/.0<21_^<2'=2,故0<3 - 2a<2,解得-i<a<-?,2 2故选A.二.填空题19. 2a=5b=m,丄+丄=1,则nr= 10.a b解:rfl 己知,a=log2m, b=log5m.••• l+^=log m2+log m5=log m 10= 1a b... m=10 故答案为:1().20. 己知x+y=12, xy=9,且x<y,解:由题设0<x<y•••xy=9,«*.Vxy-3J. A 2•••x+y - 2y/~^y= (x2_y2) =12 - 6=61 A 2x+y+2Vxy= (y2 + y2) =12+6=18A J 1 1••• x 2 - y2= - V6, x 2 + y 2= 5^2x2 + y 故荇案为: SV2 3 32i.化简:為恥解:上a ~ a26a •14故答案为:J (或(V?,士)1 女诉22.-------------- -- ------- --------------- = 1解:(V7,|)—7,心,诉62(a3,bJ. 1 J,b3a 1.A 1 Ua *b 2 1故答案为:1.23. 函数f (x )二2X ‘_2x在区间l-丨,21上的值域是|+,81解:令 g (x) =x 2 - 2x= (x - 1) 2 - 1,对称轴为 x=l ,•••g (x)在[-1,1]上单调减,在[1,8]上单调递增,又f (x) =2g(x>为符合函数,•••f(x) =2§(~在[-1,1]上单调减,在[1,,2]上单调递增I 2 一 2><1=丄 2又f ( - 1) =2I 2+2><1=23=8, f (2) =22“2X2=1,•••数f (x)二2X: _2X 在区间卜丨,2j 上的值域是8J. 2故答案为:[1, 81.224. 函数尸(丄)X +2,X| 3的值域为 (0, 81 2结合二次函数的性质可得,t>-33=8,且 y 〉o故答案为:(0, 8].25.函数尸(j) —( -hxSl)的倌域是_ LV 9, 391,单调递增区间是2,+°°) •.1-2x 2-8x+l解:y= (?)可以看做是由y=(丄)土和t=-2x 2-8x+l ,两个函数符合而成, 第一个函数是一个单调递减函数,要求原函数的值域,只要求出t=-2x 2-8x+l ,在[1,3]上的值域就可以, tEf-9, 91 此时 y€[3 _9, 39]函数的递增区间是(-2],故答案为:[3-9, 39]; ( -2, +oo)minin =f (l) =2 解:令 t=x 2+2|x| - 3=<x 2+2x - 3, x 2 - 2x - 3,x^Ox<0(x+1) 2 - 4,x>0 (x-1) 2 _ 4, x<0三. 解答题26. 计算:(1)3b —2(-3a 2b 1)—2 —39a b(2) |l+lgO. 001 |+.Jig 2-|- 41g3+4+lg6-lgO. 02.3b —2(-3a 2b 1)o _ 11 _ 3 -3ab—9 一 3 9a Z b 1 "3 (2) |l+lg0.001 ll-31+Jlg2J. 41g3+4+l§6 - l§0. 02(2X3) -lg (2X0.01)2|+|lg|+2|+lg2+lg3 - (lg2+lg0.01)=2+2 - Ig3+lg2+lg3 - lg2+2 =627. (1)若 X I +X 〒二3,求2 , 2 _ o 2,-2_nX +x乙的值(2)化简'b 2Vab(a 〉0, b>0).(aVa解:⑴•••x 2+x2•••x+x -1=9 - 2=7, X 2+X'2=49 - 2=47, 3_3•••X D(x 2 + x2) (x +-11) =3x6=183 _2 .X 了+X 了_3_18_3_1 • \2^-2-2_^2'1(2) Va>0, b 〉0,3b 2^/a b 53 A 2a 2b ,[ (ab 2) 3]31 1"6,3s b — s b - a b 1046 k 3 ab 2 7 3k ^ a b_a« b28.己知函数 f (x) =4x -2x+1+3.(1) 当f (x) = 11时,求x 的值;(2) 当X E[-2: 1]时,求f (x)的最大值和最小值.解:(1)当 f (X) =11,即 4X -2X+1+3=11 时,(2X ) 2-2*2X -8=0••• (2x -4) (2x +2) =0 •••2x 〉02x +2〉2,•••2X - 4=0,2X =4,故 x=2 - - -- -- -- -- -- -- -- (4 分)(2) f (x) = (2X ) 2 - 2*2x +3 (- 2<x<l)令Af (x) = (2X - 1) 2+2当2X =1,即x=0时,函数的最小值f min (x) =2 ----------------------------------------------------- (1() 分)当 2X =2,即 x=1 时,函数的® 大值 f max (x) =3 - - -- -- -- -- -- -- (12 分) 29. 己知函数/(X) = 2x —(1)若/(又)=2,求x 的值;(2)若2y(2z) + m/(Z)2 0对于ze [l ,2]恒成立,求实数m 的取值范围(1)当%<0时,/(x) = 0;当时,f(x) = 2x2X1 J (a 4b 2aab 2,由条件可知2"--L二2,即22x-2-2A -1=0,2X解得2X=1±V2.••• 2' >0, ••• x = log2(l +V2 ).(2)当/e l1,2J时,2’(2。
高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题一.选择题x x=22.若非零实数a、b、c满足,则的值等于(B)∴设=3.已知,则a等于()解:因为4.若a>1,b>1,p=,则a p等于()p=b.6.若lgx﹣lgy=2a,则=(C)lg lg=lg﹣lg=lg﹣lglg(=7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b=x+8.=()×+1=9.设,则=()解:∵∴(()10.,则实数a的取值区间应为(C)=log11.若lgx﹣lgy=a,则=(A)解:12.设,则()13.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足,满足=log14.化简a2•••的结果是(C)••x y xy2x x2x x2解可得,18.若关于x的方程=3﹣2a有解,则a的范围是(A)≤a<≥<a<≤≤,二.填空题19.,则m=10.+=log20.已知x+y=12,xy=9,且x<y,则=.=x+y+2=12+6=18,故答案为:21.化简:=(或或)..故答案为:(或或22.=1.23.函数在区间[﹣1,2]上的值域是[,8].=;=[,[24.函数的值域为(0,8].25.函数(﹣3≤x≤1)的值域是[3﹣9,39],单调递增区间是(﹣2,+∞)..y=三.解答题26.计算:(1);(2).)27.(1)若,求的值;(2)化简(a>0,b>0).=3=..28.已知函数f (x )=4x﹣2x+1+3. (1)当f (x )=11时,求x 的值;(2)当x ∈[﹣2,1]时,求f (x )的最大值和最小值.29.已知函数||22)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围。
(1)当0<x 时,0)(=x f ;当0≥x 时,x x x f 212)(-=. 由条件可知 2212=-x x ,即 012222=-⋅-x x , 解得 212±=x . 02>x ,()21log 2+=∴x . (2)当]2,1[∈t 时,021*******≥⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-t t t t t m , 即 ()()121242--≥-t t m . 0122>-t , ∴ ()122+-≥t m . ()]5,17[21],2,1[2--∈+-∴∈t t ,故m 的取值范围是),5[∞+-.30.如果函数)1,0(122≠>-+=a a a ay x x 在区间[—1,1]上的最大值是14,求a 的值。
高一数学必修1《21-指数函数》单元检测题(含答案)

指数函数单元测试题一、选择题(共12小题,60分)1.根式11a a(式中0a >)的分数指数幂形式为 ( ) A .43a- B .43a C .34a - D .34a 2.若12a <,则化简24(21)a -的结果是 ( ) A .21a - B .21a -- C .12a - D .12a --3.值域为()0,+∞的函数是 () A .21y x x =-- B .11()3x y -= C .1321x y -=+ D .24y x =-4.设123()4a -=,144()3b =,343()2c -=则,,a b c 的大小顺序是 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<5.若{}|2x M y y ==,{}|1N x y x ==-则M N = ( )A .{}|1y y >B .{}|1y y ≥C .{}|0y y >D .{}|0y y ≥6.已知2222x x -+=且1x >则22x x --= () A .2或-2 B .-2 C .6 D .27.为了得到函数13()3x y =⨯的图象,可以把函数1()3xy =的图象 () A .向左平移3个单位长度 B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度8.使不等式31220x -->成立的x 的取值范围是 () A .2,3⎛⎫+∞ ⎪⎝⎭ B .3,2⎛⎫+∞ ⎪⎝⎭ C .1,3⎛⎫+∞ ⎪⎝⎭ D .1,3⎛⎫-+∞ ⎪⎝⎭9.已知函数121,02,0()x x x x f x -->≤⎧=⎨⎩,则1(())9f f =( )A .4B .14 C .4- D .14-10.函数91()3x x f x -=的图象( ) A .关于原点对称 B .关于直线y x =对称 C .关于x 轴对称 D .关于y 轴对称 11.11-230+7-210=( ) A.6+2-2 5B.2- 6C.6- 2 D .25-6- 2 12 若关于x 的方程323()25x a a +=-有负数根,则实数a 的取值范围是( ) A .()2,5,3⎛⎫-∞-+∞ ⎪⎝⎭ B .()3,5,4⎛⎫-∞-+∞ ⎪⎝⎭ C . 2,53⎛⎫- ⎪⎝⎭ D .23,34⎛⎫- ⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上13.函数()12x f x =-的值域为__________.14.方程21124x -=的解x =__________. 15. 已知2323x =-++,x __________{}6|,a b a b Q +∈.(填∈、∉) 16.已知函数4()42xx f x =+,则(5)(4)(0)(6)f f f f -+-+++=__________. 三解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.求值:(1)6323 1.512⨯⨯;(2)433331733246339--+. (10分)18.对于函数2()()21x f x a a R =-∈+ (12分) (1)探索函数()f x 的单调性;(2)是否存在实数a ,使函数()f x 为奇函数?19 .已知f (x )=e x -e -x ,g (x )=e x +e -x (e =2.718…).(12分)(1)求[f (x )]2-[g (x )]2的值;(2)设f (x )f (y )=4,g (x )g (y )=8,求g (x +y )g (x -y )的值.20.已知()x x f x a a -=-(其中1a >,x R ∈)(12分)(1)判断并证明()f x 的奇偶性与单调性;(2)若22(23)()0f x x f m x x -++-->对任意的[]0,1x ∈均成立,求实数m 的取值范围.21.若函数()y f x =满足以下条件:(12分)①对于任意的,x R y R ∈∈,恒有()()()f x y f x f y +=⋅;②()0,x ∈+∞时,()()1,f x ∈+∞.(1)求(0)f 的值; (2)求证()()(()0)()f x f x y f y f y -=≠.22.已知函数f (x )=(13)x ,x ∈[-1,1],函数g (x )=f 2(x )-2af (x )+3的最 小值为h (a ).(1)求h (a );(2)是否存在实数m ,n ,同时满足以下条件:①m >n >3;②当h (a )的定义域为[n ,m ]时,值域为[n 2,m 2].若存在,求出m ,n 的值;若不存在,说明理由.(12分)1-----12 CCBBBDDABACD13 [)0,1 14 12- 15 ∈ 16 6 17 (1) 6. (2) 018 (1)任意实数a ,()f x 是定义域上的增函数;(2)存在实数a =1,使函数()f x 为奇函数19(1)[f (x )]2-[g (x )]2=[f (x )+g (x )]·[f (x )-g (x )]=2·e x ·(-2e -x )=-4e 0=-4.(2)f (x )f (y )=(e x -e -x )(e y -e -y )=e x +y +e -(x +y )-e x -y -e -(x -y )=g (x +y )-g (x -y )=4① 同法可得g (x )g (y )=g (x +y )+g (x -y )=8. ②解由①②组成的方程组得,g (x +y )=6,g (x -y )=2.∴g (x +y )g (x -y )=62=3. 20 (1)()f x 是奇函数且单调递增;证明略.(2)m 的取值范围()1,+∞.21 (1)(0)1f =.(2)证明略.22(1)因为x ∈[-1,1],所以(13)x ∈[13,3]. 设(13)x =t ,t ∈[13,3], 则g (x )=φ(t )=t 2-2at +3=(t -a )2+3-a 2.当a <13时,h (a )=φ(13)=289-2a 3; 当13≤a ≤3时,h (a )=φ(a )=3-a 2; 当a >3时,h (a )=φ(3)=12-6a .所以h (a )=⎩⎪⎨⎪⎧ 289-2a 3 (a <13)3-a 2 (13≤a ≤3)12-6a (a >3).(2)因为m >n >3,a ∈[n ,m ],所以h (a )=12-6a .因为h (a )的定义域为[n ,m ],值域为[n 2,m 2],且h (a )为减函数,所以⎩⎪⎨⎪⎧ 12-6m =n 212-6n =m 2,两式相减得6(m -n )=(m -n )(m +n ),因为m >n ,所以m -n ≠0,得 m +n =6,但这与“m >n >3”矛盾,故满足条件的实数m ,n 不存在.。
(完整版)指数和指数函数练习题及答案(可编辑修改word版)

2 62 指数和指数函数一、选择题 1.(3 6 a 9)4( 6 3 a 9)4 等于( )(A )a 16(B )a 8(C )a 4(D )a 22. 若 a>1,b<0,且 a b+a -b=2,则 a b -a -b 的值等于( )(A ) (B ) ± 2(C )-2(D )23. 函数 f (x )=(a 2-1)x在 R 上是减函数,则 a 的取值范围是()(A ) a > 1 (B ) a < 2 (C )a< (D )1< a < 14. 下列函数式中,满足 f(x+1)= f(x)的是() 21 1 (A)(x+1)(B)x+(C)2x(D)2-x245.下列 f(x)=(1+a x )2⋅ a-x 是( )(A )奇函数 (B )偶函数(C )非奇非偶函数(D )既奇且偶函数1 1 11 1 16.已知 a>b,ab ≠ 0 下列不等式(1)a 2>b 2,(2)2a>2b,(3) < ,(4)a 3 >b 3 ,(5)( )a <( )ba b 3 3中恒成立的有( ) (A )1 个(B )2 个 (C )3 个 (D )4 个2 x - 17. 函数 y=是( )2 x+ 1 (A )奇函数(B )偶函数(C )既奇又偶函数(D )非奇非偶函数18. 函数 y=的值域是( )2 x- 1(A )(- ∞,1)(B )(- ∞, 0) ⋃ (0,+ ∞ )(C )(-1,+ ∞ ) (D )(- ∞ ,-1) ⋃ (0,+ ∞ )9. 下列函数中,值域为 R +的是( )1(A )y=5 2-xe x - e - x1(B )y=( )1-x(C )y= 3(D )y= 10. 函数 y= 的反函数是()2(A )奇函数且在 R +上是减函数(B )偶函数且在 R +上是减函数(C )奇函数且在 R +上是增函数 (D )偶函数且在 R +上是增函数11.下列关系中正确的是( )1 2 1 2 1 11 1 12 1 2(A )( ) 3 <( ) 3 <( ) 3(B )( ) 3 <( ) 3 <( ) 32 5 21 2 1 1 1 22 2 51 2 1 2 1 1(C )( ) 3 <( ) 3 <( )3 (D )( ) 3 <( ) 3 <( ) 3 5 2 25 2 22 ( 1 ) x - 1 21 -2 xx 12. 若函数 y=3+2x-1的反函数的图像经过 P 点,则 P 点坐标是()(A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1)13. 函数 f(x)=3x +5,则 f -1(x)的定义域是( ) (A )(0,+ ∞ ) (B )(5,+ ∞ ) (C )(6,+ ∞ ) (D )(- ∞ ,+ ∞ )14. 若方程 a x-x-a=0 有两个根,则 a 的取值范围是( ) (A )(1,+ ∞ ) (B )(0,1) (C )(0,+ ∞ ) (D )15. 已知函数 f(x)=a x+k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数 f(x)的表达式是( )(A)f(x)=2x +5 (B)f(x)=5x +3 (C)f(x)=3x+4(D)f(x)=4x+316. 已知三个实数 a,b=a a,c=a aa,其中 0.9<a<1,则这三个数之间的大小关系是()(A )a<c<b (B )a<b<c (C )b<a<c (D )c<a<b17.已知 0<a<1,b<-1,则函数 y=a x+b 的图像必定不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 二、填空题31.若 a2 <a 2 ,则 a 的取值范围是 。
指数与指数函数练习题含答案

指数与指数函数练习题(1)1. 化简的结果是()A.−2B.−2C.−2D.−22. 下列各函数中,值域为(0, +∞)的是()A.y=2−x2 B.y=√1−2x C.y=x2+x+1 D.y=31x+13. 函数y=1sin x−x的一段大致图象是()A. B.C. D.4. 函数f(x)=(12)x的值域是()A.(0, +∞)B.(−∞, +∞)C.(0, 1)D.(1, +∞)5. 若函数f(x)=a|2x−4|(a>0, a≠1),满足f(1)=19,则f(x)的单调递减区间是()A.(−∞, 2] B.[2, +∞) C.[−2, +∞) D.(−∞, −2]6. 如图是二次函数f(x)=x 2−bx +a 的部分图象,则函数g(x)=ln x +f′(x)的零点所在的区间是( )A.(14,12) B.(1, 2)C.(12,1)D.(2, 3)7. 奇函数f(x)在(−∞, 0)上单调递减,且f(2)=0,则不等式f(x)>0的解集是( ) A.(−∞, −2)∪(0, 2) B.(−∞, 0)∪(2, +∞) C.(−2, 0)∪(0, 2)D.(−2, 0)∪(2, +∞)8. 若2x =7,2y =6,则4x−y 等于( )A. B. C. D.9. 已知a >0,则2√a⋅√a 23=( )A.a 65B.a 56C.a −56D.a 5310. 下列运算结果中,一定正确的是( ) A.a 3⋅a 4=a 7 B.(−a 2)3=a 6C.√a 88=aD.√(−π)55=−π11. 若函数(a >0,且a ≠1)是指数函数,则下列说法正确的是( )A.a =8B.f(0)=−3C.D.a =4E.f(2)=1612. 若a =log 20.5,b =20.5,c =0.52,则a ,b ,c 三个数的大小关系是( )A.a <b <cB.b <c <aC.a <c <bD.c <a <b13. 若函数f(x)=(a −1)x 是指数函数,则实数a 的取值范围是________.14. 函数f(x)=a x +3的图象一定过定点P ,则P 点的坐标是________.15. =________;=________.16. 函数y =−a x−2+1(a >0且a ≠1)的图象必经过点________;17. 已知函数f(x)=a⋅2x −12x +1的图象经过点(1,13).(1)求a 的值;(2)求函数f(x)的定义域和值域.18. 求值:(1);(2)已知2a =5b =m ,且,求实数m 的值.19. (1)计算:0.064−13−(−57)0+[(−2)3]−43+16−0.75; 19.(2)化简:•(a 23−1−12−12⋅b13√a⋅b 5620. 请根据给出的函数图象指出函数的极值点和最大(小)值点.21. 已知(a>0,且a≠1).(1)讨论函数f(x)和g(x)的单调性.(2)如果f(x)<g(x),那么x的取值范围是多少?22. 已知函数y=a()|x|+b的图象过原点,且无限接近直线y=2但又不与该直线相交.(1)求该函数的解析式,并画出图象;(2)判断该函数的奇偶性和单调性.参考答案与试题解析 指数与指数函数练习题(1)一、 选择题 (本题共计 9 小题 ,每题 5 分 ,共计45分 ) 1.【答案】 B【考点】有理数指数幂的运算性质及化简求值 【解析】 此题暂无解析 【解答】 此题暂无解答 2.【答案】 A【考点】指数函数的定义、解析式、定义域和值域 【解析】 此题暂无解析 【解答】 解:对于A ,y =2−x 2=(√22)x的值域为(0, +∞);对于B ,因为1−2x ≥0, 所以2x ≤1,x ≤0,y =√1−2x 的定义域是(−∞,0], 所以0<2x ≤1, 所以0≤1−2x <1,所以y =√1−2x 的值域是[0,1).对于C ,y =x 2+x +1=(x +12)2+34的值域是[34,+∞); 对于D , 因为1x+1∈(−∞,0)∪(0,+∞),所以y =31x+1 的值域是(0,1)∪(1,+∞). 故选A . 3.【答案】 A【考点】函数的图象与图象的变换 【解析】根据函数的奇偶性和特殊值即可判断. 【解答】f(−x)=−1sin x−x=−f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=−1π<0,4.【答案】A【考点】指数函数的定义、解析式、定义域和值域【解析】根据指数函数的图象与性质,即可得出f(x)的值域是什么.【解答】解:∵函数f(x)=(12)x是指数函数,定义域是R,∴f(x)的值域是(0, +∞).故选:A.5.【答案】B【考点】指数函数的单调性与特殊点【解析】由f(1)=19,解出a,求出g(x)=|2x−4|的单调增区间,利用复合函数的单调性,求出f(x)的单调递减区间.【解答】由f(1)=19,得a2=19,于是a=13,因此f(x)=(13)|2x−4|.因为g(x)=|2x−4|在[2, +∞)上单调递增,所以f(x)的单调递减区间是[2, +∞).故选:B.6.【答案】C【考点】二次函数的性质函数零点的判定定理【解析】由二次函数图象的对称轴确定b的范围,据g(x)的表达式计算g(12)和g(1)的值的符号,从而确定零点所在的区间.【解答】解:∵f(x)=x2−bx+a,结合函数的图象可知,二次函数的对称轴,12<x =b2<1 ∴ 1<b <2∴ f ’(x)=2x −b∴ g(x)=ln x +f′(x)=ln x +2x −b 在(0, +∞)上单调递增且连续 ∵ g(12)=ln 12+1−b <0, g(1)=ln 1+2−b =2−b >0,∴ 函数g(x)=ln x +f′(x)的零点所在的区间是(12,1).故选C . 7.【答案】 A【考点】其他不等式的解法 函数单调性的性质【解析】根据奇函数的性质求出f(−2)=0,由条件画出函数图象示意图,结合图象即可求出不等式的解集. 【解答】解:∵ f(x)为奇函数,且f(2)=0,在(−∞, 0)是减函数, ∴ f(−2)=−f(2)=0,f(x)在(0, +∞)内是减函数, ∴ 在(−∞,0)上,f(x)>0的解为(−∞,2), 在(0,+∞)上,f(x)>0的解为(0,2).∴ 不等式f(x)>0的解集为(−∞, −2)∪(0, 2). 故选A . 8. 【答案】 D【考点】有理数指数幂的运算性质及化简求值 【解析】 此题暂无解析 【解答】 此题暂无解答 9.【答案】 B【考点】有理数指数幂的运算性质及化简求值 【解析】利用有理数指数幂的运算性质求解. 【解答】2√a⋅√a23=a 2a 12⋅a 23=a 2a 76=a 56,二、 多选题 (本题共计 3 小题 ,每题 5 分 ,共计15分 ) 10.【答案】 A,D【考点】有理数指数幂的运算性质及化简求值 【解析】根据有理数指数幂的运算法则计算. 【解答】A 选项a 3⋅a 4=a 3+4=a 7,正确;B 选项(−a 2)3=−a 6,错误;C 选项当a ≥0时,√a 88=a ,当a <0时,√a 88=−a ,错误; D 选项√(−π)55=−π,正确. 11.【答案】 A,C【考点】指数函数的定义、解析式、定义域和值域 【解析】 此题暂无解析 【解答】 此题暂无解答 12.【答案】a =log 20.5<0,b =20.5>1,0<c =0.52<1,则a <c <b ,则选:C 【考点】指数函数的图象与性质 【解析】根据对数函数以及指数函数的性质求出a ,b ,c 的大小即可. 【解答】a =log 20.5<0,b =20.5>1,0<c =0.52<1, 则a <c <b , 则选:C .三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 ) 13.【答案】(1, 2)∪(2, +∞) 【考点】指数函数的定义、解析式、定义域和值域 【解析】根据指数函数的定义,底数大于0且不等于1,求出实数a 的取值范围. 【解答】解:∵ 函数f(x)=(a −1)x 是指数函数, ∴ {a −1>0a −1≠1,解得a>1且a≠2;∴实数a的取值范围是(1, 2)∪(2, +∞).故答案为:(1, 2)∪(2, +∞).14.【答案】(0, 4)【考点】指数函数的单调性与特殊点【解析】此题暂无解析【解答】解:f(x)=a x+3的图象可以看作把f(x)=a x的图象向上平移3个单位而得到,且f(x)=a x一定过点(0, 1),则f(x)=a x+3应过点(0, 4).故答案为:(0, 4).15.【答案】6,【考点】有理数指数幂的运算性质及化简求值【解析】此题暂无解析【解答】此题暂无解答16.【答案】(2, 0)【考点】指数函数的图象与性质【解析】结合指数函数过(0,1)点,结合题目条件,即可得出答案.【解答】令x−2=0,解得x=2当x=2时,y=−a2−2+1=0∴函数y=−a x−2+1(a>0且a≠1)图象过的定点为(2,0)答案:(20)四、解答题(本题共计 6 小题,每题 11 分,共计66分)17.【答案】【考点】函数的定义域及其求法函数的值域及其求法【解析】此题暂无解析【解答】 此题暂无解答 18. 【答案】原式===99;因为2a =5b =m ,所以a =log 2m ,b =log 5m ,所以,所以.【考点】有理数指数幂的运算性质及化简求值 【解析】(1)直接利用有理数指数幂及根式的运算性质求解即可;(2)先利用指数式和对数式的互化,表示出a ,b 的值,然后利用对数的运算性质求解即可. 【解答】原式===99;因为2a =5b =m ,所以a =log 2m ,b =log 5m ,所以,所以.19. 【答案】原式=0.4−1−1+2−4+2−3=52−1+116+18=2716. 原式=a−13b 12⋅a −12⋅b 13a 16⋅b 56=a−13−12−16⋅b12+13−56=a −1=1a .【考点】有理数指数幂的运算性质及化简求值【解析】(1)利用指数幂的运算性质即可得出.(2)利用指数幂的运算性质即可得出.【解答】原式=0.4−1−1+2−4+2−3=52−1+116+18=2716.原式=a −13b 12⋅a −12⋅b 13a 16⋅b 56=a −13−12−16⋅b 12+13−56=a −1=1a . 20.【答案】A .函数的极大值点为x 2,极小值点为x 1,x 3,最大值点为a ,x 2,最小值点为x 3,B .函数的极大值点为x 1,x 3极小值点为x 2,最大值点为x 1,最小值点为b ,C .函数的极大值点为x 1,极小值点为x 2,最大值点为b ,最小值点为a【考点】函数的图象与图象的变换【解析】根据函数极值,最值与图象的关系进行判断即可.【解答】A .函数的极大值点为x 2,极小值点为x 1,x 3,最大值点为a ,x 2,最小值点为x 3,B .函数的极大值点为x 1,x 3极小值点为x 2,最大值点为x 1,最小值点为b ,C .函数的极大值点为x 1,极小值点为x 2,最大值点为b ,最小值点为a 21.【答案】 当0<a <1时,>1,则f(x)=a x 在R 上单调递减,g(x)=.当a >2时,0<,则f(x)=a x 在R 上单调递增,g(x)=.因为f(x)<g(x),即a x <,即a x <a −x ,当0<a <7时,不等式即为x >−x ;当a >1时,不等式即为x <−x ,综上,当0<a <3时,+∞),当a >1时,不等式的解集为(−∞.【考点】函数单调性的性质与判断利用导数研究函数的单调性【解析】此题暂无解析【解答】此题暂无解答22.【答案】根据题意,函数y=a()|x|+b的图象过原点,则有7=a+b,则a=−b,又由f(x)的图象无限接近直线y=−2但又不与该直线相交,则b=2,又由a+b=6,则a=−2,则f(x)=−2×()|x|+2,其图象如图:根据题意,f(x)=−7×()|x|+3,其定义域为R,有f(−x)=−2×()|x|+2=f(x),则f(x)是偶函数,又由f(x)=,f(x)在(0, +∞)上为增函数,0)上为减函数.【考点】函数的图象与图象的变换函数奇偶性的性质与判断分段函数的应用【解析】此题暂无解析【解答】此题暂无解答。
高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.若点在函数的图象上,则的值为.【答案】【解析】由点在函数的图象上得,所以,故应填入.【考点】指数函数及特殊角的三角函数.3.设,则下列不等式成立的是()A.若,则B.若,则C.若,则D.若,则【答案】A【解析】对于A,B考查函数f(x)=2x+2x,g(x)=2x+3x的单调性与图象:可知函数f(x)、g(x)在R上都单调递增,若2a+2a=2b+3b,则a>b,因此A正确;对于C,D分别考查函数u(x)=2x-2x,v(x)=2x-3x单调性与图象:当时,u′(x)<0,函数u(x)单调递减;当时,u′(x)>0,函数u(x)单调递增.故在x=取得最小值.当0<x<时,v′(x)<0,函数v(x)单调递减;当x>时,v′(x)>0,函数v (x)单调递增.故在x=取得最小值,据以上可画出图象.据图象可知:当2a-2a=2b-3b,a>0,b>0时,可能a>b或a<b.因此C,D不正确.综上可知:只有A正确.故答案为A.【考点】用导数研究函数的单调性和图象;命题的真假判断与应用.4.若,则()A.B.C.D.【答案】D【解析】由得,所以.【考点】指对数式的互化,指数运算法则.5.若函数的图像与轴有公共点,则的取值范围是()A.B.C.D.【答案】B【解析】函数与轴有公共点,即设函数,,有交点,函数如图: ,即,故选B.【考点】函数图像6.三个数的大小关系为()A.B.C.D.【答案】D【解析】;;。
所以,故D正确。
【考点】指数对数函数的单调性。
7.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算8.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.9.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.10.我国大西北某地区荒漠化土地面积每年平均比上一年增长,专家预测经过年可能增长到原来的倍,则函数的图像大致为()【答案】D【解析】设初始年份的荒漠化土地面积为,则1年后荒漠化土地面积为,2年后荒漠化土地面积为,3年后荒漠化土地面积为,所以年后荒漠化土地面积为,依题意有即,,由指数函数的图像可知,选D.【考点】1.指数函数的图像与性质;2.函数模型及其应用.11.若,则下列结论正确的是()A.B.C.D.【答案】C【解析】指数函数、对数函数的底数大于1 时,函数为增函数,反之,为减函数,对于幂函数而言,当时,在上递增,当时,在上递减,而,所以,故选C.【考点】1.指数函数;2.对数函数;3.幂函数的性质.12.设函数,如果,求的取值范围.【答案】【解析】对分段函数需分情况讨论,再解指数及对数不等式时,需将实数转化为同底的指数或对数,然后根据指数、对数的单调性解不等式。
高一数学必修一2.1指数与指数函数测试题

高一数学必修一 2.1指数与指数函数测试题、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题 5分,共50分).1.下列各式中成立的一项()1A . (―)7 n 7m 7B . 12 ( 3)433m_________ 3_ __C . g x 3 y 3 (x y)4D . 7^9 V32111“151 -2•化简(a 3b 2)( 3a 2b 3) ( a 6b 6)的结果()3A . 6aB . aC .9a D..9a 2 3.设指数函数f(x) a x (a 0, a 1),则下列等式中不正确的是( )A . f(x+y)=f(x) • f(y)B . f (x、f(x) y )f(y)C . f (nx) [f(x)]n (nQ) D . f(xy)n[f(x)]n [•f(y)]n(n N )4.函数 y (x5)0 (x 2)12( )A . {x|x5,x2}B .{x|x 2}C . {x|x 5}D . {x|2 x 5或 x 5}5•若指数函数y a x 在[—1,1]上的最大值与最小值的差是 1,则底数a 等于()151 、51、.5. 5 1A .B .C .D .2 2 2 2(0,1]A . B.C . (0, )D . R&函数 f(x)2 xx 2,x1,x (0,1) 0 ,满足 f (x ) 1的x 的取值范围A . C . 9.函数 (1,1) {x| x 0或x2}y (2)2 (1, {x|x )1 或 X 1}1A . [ 1,-1B . (, 1]C. [2,)1D.[护x x已知f (x) e e,则下列正确的是()A .奇函数, 在 R 上为增函数B . 偶函数,在 R 上为增函数C .奇函数, 在 R 上为减函数D . 偶函数,在R 上为减函数若函数y , x a (b 1)( a 0且 a 1)的图象不经过第二象限,则有 ( )()—2X x 2得单调递增区间是 C 、0 a 1 且 b 0F(x)=(1+ -^)2x 1A 、是奇函数 C 、是偶函数 f(x)(x 0)是偶函数,且f (x )不恒等于零,则f (x )(B 、可能是奇函数,也可能是偶函数 D 、不是奇函数,也不是偶函数 填空题:请把答案填在题中横线上(每小题 5分,共20分) x 已知函数f (x )的定义域是(1,2),则函数f (2 )的定义域是 ___________________ 当a > 0且a 丰1时,函数f (x )=a x 2— 3必过定点 计算Va 4 8Vab 3a 2—2齢厂展a 4 1已知一1<a<0,则三个数3a ,a 3,a 3由小到大的顺序是 _____________________ 解答题:解答应写出文字说明、证明过程或演算步骤 (共70分). (10分)求函数y —— 的定义域. x577 1 (112分)若 a >0, b >0,且 a+b=c , 求证:(1)当 r > 1 时,a r +b r v c r ; (2)当 r v 1 时,a r +b r > c r . (12分)已知函数y2x xa 2a 1(a1)在区间[—1,1]上的最大值是14,求a 的值.(12分)(1)已知 f(x) m 是奇函数,求常数 m 的值;10. 11、 12, _ 、13. 14. 15. 16.三、 17. 18. 19.20.(2)画出函数y |3x 1 |的图象,并利用图象回答:k为何值时,方程|3X-1|= k无解?有一解?有两解?21. (14分)有一个湖泊受污染,其湖水的容量为V立方米,每天流入湖的水量等于流出湖的水量•现假设下雨和蒸发平衡,且污染物和湖水均匀混合用g(t) - [g(0) -]e v (p 0),表示某一时刻一立方米湖水中所含污染物的克r r数(我们称其湖水污染质量分数),g(0)表示湖水污染初始质量分数•(1 )当湖水污染质量分数为常数时,求湖水污染初始质量分数;(2)分析g(0)卫时,湖水的污染程度如何.22. (14分)已知函数f (x)1普 >1) 2 3.参考答案一、DCDDD AAD D A二、11. (0,1);12. (2,—2); 13.114. a3a33a15.解:要使函数有意义必须:16 .定义域为:0, xr . r解:a brc其中01,0 b 1.c当r > 1时,所以a r+b r v c r;时,1,所以a r+b r> c r.17.解:y a2x2a x1(a 1),换元为y t22t11 ( t a),对称轴为t 1. a当a解得18.解:t a,即x=1时取最大值,略1 ,a=3 (a= —5 舍去)(1)常数m=1(2)当k<0时,直线y=k与函数y | 3x 1 |的图象无交点,即方程无解;当k=0或k 1时,直线y=k与函数y 13 11的图象有唯一的交点,所以方程有一解;当0<k<1时,直线y=k与函数y | 3 11的图象有两个不同交点,所以方程有两解。
指数与指数函数-试卷(含解析)

指数与指数函数一、选择题1.函数y =a |x |(a >1)的图像是( )解析 y =a |x |=⎩⎨⎧a x x ≥0,a -xx <0.当x ≥0时,与指数函数y =a x (a >1)的图像相同;当x <0时,y =a -x 与y =a x 的图像关于y 轴对称,由此判断B 正确. 答案 B2.已知函数f (x )=⎩⎨⎧log 3x ,x >02xx ≤0,则f (9)+f (0)=( )A .0B .1C .2D .3 解析 f (9)=log 39=2,f (0)=20=1, ∴f (9)+f (0)=3. 答案 D3.不论a 为何值时,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是( ).A.⎝ ⎛⎭⎪⎫1,-12B.⎝ ⎛⎭⎪⎫1,12 C.⎝ ⎛⎭⎪⎫-1,-12 D.⎝ ⎛⎭⎪⎫-1,12 解析 y =(a -1)2x -a 2=a ⎝ ⎛⎭⎪⎫2x -12-2x ,令2x -12=0,得x =-1,则函数y =(a-1)2x-a 2恒过定点⎝ ⎛⎭⎪⎫-1,-12.答案 C4.定义运算:a *b =⎩⎨⎧a ,a ≤b ,b ,a >b ,如1*2=1,则函数f (x )=2x *2-x 的值域为 ( ).A .RB .(0,+∞)C .(0,1]D .[1,+∞)解析 f (x )=2x *2-x =⎩⎪⎨⎪⎧2x ,x ≤0,2-x ,x >0,∴f (x )在(-∞,0]上是增函数,在(0,+∞)上是减函数,∴0<f (x )≤1. 答案 C5.若a >1,b >0,且a b +a -b =22,则a b -a -b 的值为( ) A. 6 B .2或-2 C .-2D .2解析 (a b +a -b )2=8⇒a 2b +a -2b =6, ∴(a b -a -b )2=a 2b +a -2b -2=4. 又a b >a -b (a >1,b >0),∴a b -a -b =2. 答案 D6.若函数f (x )=(k -1)a x -a -x (a >0且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是下图中的( ).解析 函数f (x )=(k -1)a x -a -x 为奇函数,则f (0)=0,即(k -1)a 0-a 0=0,解得k =2,所以f (x )=a x -a -x ,又f (x )=a x -a -x 为减函数,故0<a <1,所以g (x )=log a (x +2)为减函数且过点(-1,0). 答案 A 二、填空题7.已知函数f (x )=⎩⎨⎧a x,x <0,(a -3)x +4a ,x ≥0,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________.解析 对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,说明函数y =f (x )在R 上是减函数,则0<a <1,且(a -3)×0+4a ≤a 0,解得0<a ≤14. 答案 ⎝ ⎛⎦⎥⎤0,148.若函数y =2-x +1+m 的图象不经过第一象限,则m 的取值范围是________. 解析 函数y =2-x +1+m =(12)x -1+m ,∵函数的图象不经过第一象限, ∴(12)0-1+m ≤0,即m ≤-2. 答案 (-∞,-2]9.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析 令a x -x -a =0即a x =x +a ,若0<a <1,显然y =a x 与y =x +a 的图象只有一个公共点; 若a >1,y =a x 与y =x +a 的图象如图所示.答案 (1,+∞)10.已知f (x )=x 2,g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),则实数m 的取值范围是________.解析 x 1∈[-1,3]时,f (x 1)∈[0,9],x 2∈[0,2]时,g (x 2)∈⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122-m ,⎝ ⎛⎭⎪⎫120-m ,即g (x 2)∈⎣⎢⎡⎦⎥⎤14-m ,1-m ,要使∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),只需f (x )min ≥g (x )min ,即0≥14-m ,故m ≥14. 答案 ⎣⎢⎡⎭⎪⎫14,+∞三、解答题11.已知函数f (x )=2x -12x +1.(1)判断函数f (x )的奇偶性; (2)求证f (x )在R 上为增函数.(1)解 因为函数f (x )的定义域为R ,且f (x )=2x -12x +1=1-22x +1,所以f (-x )+f (x )=⎝ ⎛⎭⎪⎫1-22-x +1+⎝ ⎛⎭⎪⎫1-22x +1=2-⎝ ⎛⎭⎪⎫22x +1+22-x +1=2-⎝ ⎛⎭⎪⎫22x +1+2·2x 2x +1=2-2(2x +1)2x +1=2-2=0,即f (-x )=-f (x ),所以f (x )是奇函数.(2)证明 设x 1,x 2∈R ,且x 1<x 2,有 f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=2(2x 1-2x 2)(2x 1+1)(2x 2+1), ∵x 1<x 2,2x 1-2x 2<0,2x 1+1>0,2x 2+1>0, ∴f (x 1)<f (x 2),∴函数f (x )在R 上是增函数.12.已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24). (1)求f (x );(2)若不等式(1a )x +(1b)x -m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围.解析 (1)把A (1,6),B (3,24)代入f (x )=b ·a x ,得 ⎩⎨⎧6=ab ,24=b ·a 3.结合a >0且a ≠1,解得⎩⎨⎧a =2,b =3.∴f (x )=3·2x .(2)要使(12)x +(13)x ≥m 在(-∞,1]上恒成立,只需保证函数y =(12)x +(13)x 在(-∞,1]上的最小值不小于m 即可.∵函数y =(12)x +(13)x在(-∞,1]上为减函数,∴当x =1时,y =(12)x +(13)x 有最小值56.∴只需m ≤56即可.∴m 的取值范围(-∞,56]13.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.解析 (1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令t =-x 2-4x +3,由于t (x )在(-∞,-2)上单调递增,在[-2,+∞)上单调递减, 而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在[-2,+∞)上单调递增, 即函数f (x )的递增区间是[-2,+∞),递减区间是(-∞,-2). (2)令h (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎨⎧a >0,12a -164a =-1,解得a =1.即当f (x )有最大值3时,a 的值等于1.14.已知定义在R 上的函数f (x )=2x -12|x |. (1)若f (x )=32,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 解 (1)当x <0时, f (x )=0,无解; 当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12, ∵2x >0,∴x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t -122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t -1)≥-(24t -1), ∵22t -1>0,∴m ≥-(22t +1),∵t ∈[1,2],∴-(22t +1)∈[-17,-5], 故m 的取值范围是[-5,+∞).季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。
指数和指数函数练习题及答案

指数和指数函数专题 9.24一、选择题 1.(369a )4(639a )4等于( )(A )a16(B )a8(C )a4(D )a 22.若a>1,b<0,且a b+a -b=22,则a b-a -b的值等于( )(A )6 (B )±2 (C )-2 (D )23.函数f (x )=(a 2-1)x在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2<a (C )a<2 (D )1<2<a4.下列函数式中,满足f(x+1)=21f(x)的是( ) (A)21(x+1) (B)x+41 (C)2x (D)2-x5.下列f(x)=(1+a x )2xa-⋅是( )(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既奇且偶函数6.已知a>b,ab 0≠下列不等式(1)a 2>b 2,(2)2a>2b,(3)ba 11<,(4)a 31>b 31,(5)(31)a <(31)b中恒成立的有( )(A )1个 (B )2个 (C )3个 (D )4个7.函数y=1212+-x x 是( )(A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数 8.函数y=121-x的值域是( ) (A )(-1,∞) (B )(-,∞0)⋃(0,+∞) (C )(-1,+∞) (D )(-∞,-1)⋃(0,+∞) 9.下列函数中,值域为R +的是( ) (A )y=5x-21(B )y=(31)1-x (C )y=1)21(-x (D )y=x21-10.函数y=2xx e e --是( )(A )奇函数且在R +上是减函数 (B )偶函数且在R +上是减函数(C )奇函数且在R +上是增函数 (D )偶函数且在R +上是增函数 11.下列关系中正确的是( )(A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51)32(C )(51)32<(21)31<(21)32 (D )(51)32<(21)32<(21)3112.若函数y=3+2x-1的图像经过定点P 点,则P 点坐标是( )(A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1)13.某厂1998年的产值为a 万元,预计产值每年以n %递增,则该厂到2010年的产值(单位:万元)是( ) n a A +1(.%13) n a B +1(.%12) n a C +1(.%11) n D -1(910.%12) 14.若方程a x-x-a=0有两个根,则a 的取值范围是( ) (A )(1,+∞) (B )(0,1) (C )(0,+∞) (D )φ 15.已知三个实数a,b=a a,c=aaa ,其中0.9<a<1,则这三个数之间的大小关系是( )(A )a<c<b (B )a<b<c (C )b<a<c (D )c<a<b16.已知0<a<1,b<-1,则函数y=a x+b 的图像必定不经过( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 二、填空题 1.若a 23<a2,则a 的取值范围是 。
(完整版)指数与指数幂的运算习题(含答案),推荐文档

2 2 2 ⎝ ⎝ ⎭⎭指数与指数幂的运算 习题(含答案)一、单选题1.已知 x ,y 为正实数,则 A . 2lnx+lny =2lnx +2lny B . 2ln (x+y )=2lnx •2lny C . 2lnx•lny =2lnx +2lnyD . 2ln (xy )=2lnx •2lny12.化简[( ‒ 2)6]2 ‒ ( ‒ 1)0的结果为A . −9B . 7C . −10D . 93. 若 > 0,且 , 为整数,则下列各式中正确的是A . a m ÷ a n = anB . a m ⋅ a n = a mnC . () =+D . 1 ÷ a n = a 0 ‒ n4. 若 a >1,b >0,且 a b +a -b =2,则 a b -a -b 的值为( )A .B . 2 或-2C . -2D . 25.3‒ 27的值为(). A.9B. ‒ 9C.‒ 3D.3a 3x + a ‒ 3x26.若 = A . 2 ‒ 1 C . 2 + 1‒ 1,则 a x + a ‒ x 等于B . 2 ‒ 2 D . + 1log 3x , x > 0 ⎛ ⎛ 1 ⎫⎫7.已知函数 f (x )= { 2x , x ≤ 0,则 f f 9 ⎪⎪ 等于( )A . 4B . - 1 41C . -4D . 4 18.设 a = log 3,b = 20.3, c = log 2 ,则( )3A . a > b > cB . a > c > bC . c > a > b (1)9.设 y 1=40.9,y 2=80.48,y 3= 2 -1.5,则( ) A . y 3>y 1>y 2 B . y 2>y 1>y 3 C . y 1>y 2>y 3 D . y 1>y 3>y 2 10.有下列各式:D . b > a > c2 2n a n 3 x4+ y 36 (-5)2m ‒ 2n4 163 x3 x 227 - - ① = a ;②若 a ∈R ,则(a 2-a +1)0=1;4③ = x 3+ y ;④ 35 = .其中正确的个数是( ) A . 0 B . 1 C . 2D .311.化简(a 2-2+a -2)÷(a 2-a -2)的结果为( ) A . 1B . -1C .a 2 -1a 2 +1a 2 +1D .a 2 -112. 下列各式计算正确的是( )A . (-1)0=1B . 21a 2·a 2=a2 1 1 C . 43=8D . a 3÷ a - 3= a 313. 已知a m =4,a n =3,则 的值为( )2A.33B. 6 C . 2D . 2二、填空题化简 ⋅(x > 0) 的结果是.14.x ⋅ 15. 设函数 f (x ) = a x + (k -1)a -x + k 2 ( a > 0, a ≠ 1 )是定义域为 R 的奇函数.(1) 求 k 值;(2) 若 f (1) > 0 ,求使不等式 f (x 2 + x ) + f (t - 2x ) > 0 恒成立的t 的取值范围;(3)若 f (1) = 3 ,设 g (x ) = a 2x + a -2x - 2mf (x ) , g (x ) 在[1, +∞) 上的最小值为-1,2求m 的值.12⎛ 1 ⎫ - 16.计算: 83 ÷ ⎪ = .⎝ 4 ⎭ ⎛ 8 ⎫- 13 - ⎛ - 3 ⎫0+ =17. log 3 +⎝ 125 ⎪⎭ .⎝ 5 ⎪⎭2 518. (2a -3b 3 ) ⋅ (-3a -1b ) ÷ (4a -4b 3)(a > 0, b > 0) =.19.若2x + 2-x = 5 ,则8x + 8-x =.6 x23 a - 33 b- ⎛ 8 9 2 ( ‒ 8) (3) ;20. 0.064 13- - 1 ⎫0 + ⎡(-2)3 ⎤- 34 +16 ⎪ ⎣ ⎦⎝ ⎭- 34 + 0.0112 =⎛ 1 ⎫0 21. 计算: lg4 + lg25 + - ⎪ ⎝ ⎭=.22. 直线y = 2a 与函数 y = a x -1 (a > 0且a ≠ 1)的图象有且仅有两个公共点,则实数 a 的取值范围是.1 + log 12 - (0.7)0+ 0.25-1 =。
高二数学指数与指数函数试题答案及解析

高二数学指数与指数函数试题答案及解析1.已知∈R,若,则=.【答案】【解析】因为所以,即【考点】指数函数的幂运算.2.设,则的大小关系是()A.B.C.D.【答案】A【解析】,,即,,.【考点】函数的比较大小.3.已知集合,,则()A.B.(1,3)C.(1,)D.(3,)【答案】D【解析】由题知,解得,所以>2+1=3,所以(3,),故选D.考点:对数函数的定义域,指数函数图像与性质,集合交集运算4.已知函数的定义域为集合,关于的不等式的解集为,若,求实数的取值范围.【答案】.【解析】根据对数函数真数大于0可求得集合A,再根据指数函数的单调性可求得B={}因为所以可求得a的范围.试题解析:要使有意义,则,解得,即 4分由,解得,即 4分∴解得故实数的取值范围是 12分【考点】1,对数函数的性质2,指数函数的性质3,集合的关系5.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】由已知,画出函数的图像如图,根据题意函数有且只有一个零点,就是的图象与的图象有且只有一个交点,如图:显然当时,两个函数有且只有一个交点,故选:B.【考点】根的存在性和根的个数的判断,6.三个数的大小顺序是( )A.B.C.D.【答案】D【解析】,,,所以.【考点】用指数,对数函数特殊值比较大小.7.已知,函数,若实数满足,则的大小关系为 .【答案】【解析】由题意可得:函数f(x)=a x在R上是单调减函数,又f(m)>f(n),可得:m<n.解:因为∈(0,1),所以函数f(x)=a x在R上是单调减函数,因为f(m)>f(n),所以根据减函数的定义可得:m<n.故答案为:m<n.【考点】指数函数的单调性点评:解决此类问题的关键是熟练掌握指数函数的单调性与定义,以及单调函数的定义,属于基础题.8.已知函数若存在,则实数的取值范围为()A.B.C.D.【答案】D【解析】因为,若存在,则,即,解得,,故选D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数与指数函数试题 一、选择题
2.(
36
9
a
)4(
63
9
a
)4等于( )
(A )a 16 (B )a 8 (C )a 4 (D )a 2 3.若a>1,b<0,且a b
+a -b
=22
,则a b -a -b
的值等于( )
(A )
6
(B )±2 (C )-2 (D )2
4.函数f (x )=(a 2-1)x 在R 上是减函数,则a 的取值范围是( ) A |a|>1 B |a|<2 C a<
2
D 1<|a|<
2
5.下列函数式中,满足f(x+1)=2
1f(x)的是( ) (A) 2
1(x+1) (B)x+4
1 (C)2x (D)2-x
6.函数y=121
-x 的值域是( )
(A )(-1,∞) (B )(-,∞0)⋃(0,+∞) (C )(-1,+∞) (D )(-∞,-1)⋃(0,+∞) 7.下列函数中,值域为R +的是( )
(A )y=5x -21
(B )y=(3
1)1-x
(C )y=
1)2
1(-x
(D )y=
x
2
1-
8.若方程a x
-x-a=0有两个根,则a 的取值范围是( ) (A )(1,+∞) (B )(0,1) (C )(0,+∞) (D )φ 9.已知三个实数a,b=a
a ,c=a a
a
,其中0.9<a<1,则这三个数之间的大小关系是
( )
(A )a<c<b (B )a<b<c (C )b<a<c (D )c<a<b 10.已知0<a<1,b<-1,则函数y=a x +b 的图像必定不经过( )
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 11.F(x)=(1+
)0)(()1
22≠⋅-x x f x
是偶函数,且f(x)不恒等于零,则f(x)( )
(A )是奇函数 (B )可能是奇函数,也可能是偶函数 (C )是偶函数 (D )不是奇函数,也不是偶函数
12.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为( )
(A )na(1-b%) (B )a(1-nb%) (C )a[(1-(b%))n (D )a(1-b%)n
二、填空题
1.若a 23
<a
2
,则a 的取值范围是 。
2.若10x =3,10y =4,则10x-y = 。
3.化简
⨯
5
3
x
x 3
5
x
x ×
3
5
x
x = 。
4.函数y=(3
1
)
1
822
+--x x (-31≤≤
x )的值域是 。
5.直线x=a(a>0)与函数y=(3
1)x ,y=(2
1)x ,y=2x ,y=10x 的图像依次交于A 、B 、C 、D
四点,则这四点从上到下的排列次序是 。
6.函数y=3
2
32x
-的单调递减区间是 。
7.若f(215x -)=x-2,则f(125)= .
8.函数y=221x x m m +-(m>0且m ≠1),在区间[-1,1]上的最大值是14,则m 的值是 . 三、解答题 1. 设0<a<1,解关于x 的不等式a
1
322
+-x x >a
5
22
-+x x
2. 已知x ∈[-3,2],求f(x)=
12
14
1+-
x
x
的最小值与最大值。
3. 设a ∈R,f(x)=
)(1
22
2R x a a x
x
∈+-+⋅,试确定a 的值,使f(x)为奇函数。
4. 已知函数y=(31
)
5
22
++x x ,求其单调区间及值域。
x x
5.若函数y=4323
-∙+的值域为[1,7],试确定x的取值范围。