高中数学专题10.2双曲线-3年高考2年模拟1年预测(理)(解析版)

合集下载

专题10.2双曲线-3年高考2年模拟1年预测(文)(解析版)

专题10.2双曲线-3年高考2年模拟1年预测(文)(解析版)

第十章 圆锥曲线 专题2 双曲线(文科)【三年高考】1.【2017课表1,文5】已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为 A .13B .1 2C .2 3D .3 2【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3||=PF ,又点A 的坐标是(1,3),故△APF 的面积为133(21)22⨯⨯-=,选D . 2. 【2017天津,文5】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为(A )221412x y -=(B )221124x y -=(C )2213x y -=(D )2213y x -=【答案】D【解析】由题意结合双曲线的渐近线方程可得:22202tan 60c c a b ba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==,双曲线方程为:2213y x -=,本题选择D 选项. 3 . 【2017山东,文15】在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>, 的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .【答案】y x =4.【2017江苏,8】 在平面直角坐标系xOy 中,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 ▲ .【答案】【解析】右准线方程为x ==,渐近线为y =,则P,Q,1(F,2F,则S ==. 5.【2016高考北京文数】已知双曲线22221x y a b-= (0a >,0b >)的一条渐近线为20x y +=,一个焦点为,则a =_______;b =_____________.【答案】1,2a b ==.【解析】依题意有2c b a⎧=⎪⎨=-⎪⎩,结合222c a b =+,解得1,2a b ==.6.【2016高考天津文数】已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为( )(A )1422=-y x (B )1422=-y x (C )15320322=-y x (D )12035322=-y x【答案】A【解析】由题意得2212,11241b x yc a b a ==⇒==⇒-=,选A.7.【2016高考山东文数】已知双曲线E :22x a –22y b=1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【答案】2【解析】依题意,不妨设6,4AB AD ==,作出图象如下图所示:则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a ==8.【2016高考浙江文数】设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.【答案】.【解析】由已知1,2a b c ===,则2ce a==,设(,)P x y 是双曲线上任一点,由对称性不妨设P 在右支上,则12x <<,121PF x =+,221PF x =-,12F PF ∠为锐角,则2221212PF PF F F +>,即222(21)(21)4x x ++->,解得x >,2x <<,124PF PF x +=∈.9. 【2015高考山东,文15】过双曲线C :221a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .【答案】2+10. 【2015高考新课标1,文16】已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为 .【答案】【解析】设双曲线的左焦点为1F ,由双曲线定义知,1||2||PF a PF =+,∴△APF 的周长为|PA|+|PF|+|AF|=|PA|+12||a PF ++|AF|=|PA|+1||PF +|AF|+2a ,由于2||a AF +是定值,要使△APF 的周长最小,则|PA|+1||PF 最小,即P 、A 、1F 共线,∵(A ,1F (-3,0),∴直线1AF 的方程为13x =-,即3x =-代入2218y x -=整理得2960y +-=,解得y =或y =-(舍),所以P 点的纵坐标为,∴11APF AFF PFF S S S ∆∆∆=-=116622⨯⨯-⨯⨯=11. 【2015高考重庆,文9】设双曲线221(a 0,b 0)a b-=>>的右焦点是F ,左、右顶点分别是12A ,A ,过F 做12A A 的垂线与双曲线交于B ,C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为( )(A) 12±(B) ± (C) 1± (D)【答案】C【两年模拟】1. 【2017届安徽省宣城市高三第二次调研】已知双曲线22221x y a b-=两渐近线的夹角θ满足4sin 5θ=,焦点到渐进线的距离1d =,则该双曲线的焦距为( )A.B.C. D.【答案】C2. 【2017届四川省资阳市高三一模】已知双曲线2222:1(0,0)x y E a b a b-=>>的右顶点为A ,抛物线2:8C y ax =的焦点为F .若在E 的渐近线上存在点P ,使得AP FP ⊥,则E的离心率的取值范围是 ( )A. ()1,2B. ⎛ ⎝C. ⎫+∞⎪⎪⎭D. ()2,+∞ 【答案】B【解析】由题意得, ()(),0,2,0A a F a ,设00,b P x x a ⎛⎫⎪⎝⎭,由AP FP ⊥,得2220020320c AP PF x ax a a⋅=⇒-+= ,因为在E 的渐近线上存在点P ,则0∆≥,即222222299420988c a a a c e e a -⨯⨯≥⇒≥⇒≤⇒≤E 为双曲线,则1e <≤,故选B. 3.【黑龙江省大庆2017届高三考前模拟】设F 1,F 2分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若双曲线右支上存在一点,使()220OP OF F P +⋅=,O 为坐标原点,且(124PF PF a +=+,则该双曲线的离心率为( )A.1+ B.C. D.【答案】A【解析】由()220OP OF F P +⋅=,得(2OP OF +)·(OP -2OF )=0,即|OP |2-|2OF |2=0,所以|OP |=|2OF |=c ,所以△PF 1F 2中,边F 1F 2上的中线等于|F 1F 2|的一半,则PF 1⊥PF 2.即|PF 1|2+|PF 2|2=4c 2,又|1PF ||2PF |,解得|PF 1|,|PF 2|=c ,又|PF 1|-|PF 2|c-c =2a.所以e +1.故选A.4. 【天津市十二重点中学2017届高三第二次联考】已知双曲线22221x y a b-=圆心在x 轴的正半轴上的圆M 与双曲线的渐近线相切,且圆M 的半径为2,则以圆M 的圆心为焦点的抛物线的标准方程为( )A. 2y =B. 2y =C. 2y =D. 2y =【答案】B【解析】设双曲线渐近线的方程为by x a=,圆心坐标为(),0c ,因为圆与直线相切由点到2= ,即2b = = ,可得1,2pa c p =∴=∴==,所以抛物线的方程为2y = ,故选B. 5. 【天津市河西区2017届高三二模】在平面直角坐标系xOy 中,已知双曲线1C : 2221x y -=,过1C 的左顶点引1C 的一条渐进线的平行线,则该直线与另一条渐进线及x 轴围成的三角形的面积( )A.B. C. D. 【答案】C,则直线方程为y x =-,另一条渐近线方程为y =,联立可得交点坐标为12M ⎫-⎪⎪⎭,故三角形的面积为12S =,应选答案C 。

2021高考-数学押题专练-双曲线(解析版)

2021高考-数学押题专练-双曲线(解析版)

押题15双曲线【押题方向】双曲线是高考全国卷每年必考知识点,且均以客观题的形式进行考查,若为基础题,主要考查双曲线的几何性质,考查热点是双曲线的渐近线与离心率,若为较难题,一般常涉及直线与双曲线的位置关系、范围与最值问题,2019年全国Ⅰ卷以选择题形式考查双曲线,难度中等偏易,2020年全国Ⅰ卷以填空题形式考查双曲线,难度中等偏易,预测2021年全国Ⅰ卷以选择题形式考查双曲线的可能性较大,难度依然会保持中等偏易.【模拟专练】1.(2021·山东淄博市·高三二模)已知1F ,2F 分别是双曲线()2222:10,0x y C a b a b-=>>的左右焦点,c 是双曲线C 的半焦距,点A 是圆222:O x y c +=上一点,线段2F A 交双曲线C 的右支于点B ,且有2F A a =,223AB AF = ,则双曲线C 的离心率是______.【答案】2【详解】如下图所示:因为2F A a =,223AB AF = ,所以23BA a =,213BF a =,又122F B F B a -=,所以173F B a =,又212190,2F AF F F c ∠== ,所以2222211122F A F B AB F F AF =-=-,即()22222172233a a F A c a ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,化简得2223c a =,所以62c e a ==,故答案为:2.2.(2021·山东日照市·高三一模)已知1F ,2F 分别为双曲线C :221412x y -=的左、右焦点,E 为双曲线C 的右顶点,过2F 的直线与双曲线C 的右支交于A ,B ,两点(其中点A 在第一象限),设M ,N 分别为12AF F △,12BF F △的内心,则ME NE -的取值范围是______.【答案】,33⎛⎫- ⎪ ⎪⎝⎭【详解】如图:设12AF F △的内切圆与1212,,AF AF F F 分别切于,,H D G ,所以1122||||,||||,||||AH AD HF GF DF GF ===,所以1212||||||||||||AF AF AH HF AD DF -=+--=1212||||||||2HF DF GF GF a -=-=,又12||||2GF GF c +=,所以12||,||GF a c GF c a =+=-,又12||,||EF a c EF c a =+=-,所以G 与E (,0)a 重合,所以M 的横坐标为a ,同理可得N 的横坐标也为a ,设直线AB 的倾斜角为θ.则22EF M πθ-∠=,22EF N θ∠=,()()||||tan tan 22ME NE c a c a πθθ--=---()sin()sin 222cos(cos 222c a πθθπθθ⎛⎫- ⎪=-⋅- ⎪ ⎪-⎝⎭()cos sin 22sin cos 22c a θθθθ⎛⎫ ⎪=-⋅- ⎪ ⎪⎝⎭22cos sin 22()sin cos 22c a θθθθ-=-⋅⋅()2cos sin c a θθ=-,当2πθ=时,||||0ME NE -=,当2πθ≠时,由题知,2a =.4c =.b a=因为,A B 两点在双曲线的右支上,∴233ππθ<<,且2πθ≠,所以tan θ<tan θ>,∴13tan 3θ-<<.且10tan θ≠,2433||||(42),00,tan tan 33ME NE θθ⎛⎫⎛⎫-=-⋅=∈- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,综上所述,4343||||33ME NE ⎛-∈- ⎝⎭.3.(2021·山东滨州市·高三一模)已知双曲线()2222:10,0x y C a b a b-=>>的左顶点为A ,右焦点为F ,以F 为圆心的圆与双曲线C 的一条渐近线相切于第一象限内的一点B .若直线AB 的斜率为12,则双曲线C 的离心率为______.【答案】53【详解】(c,0)F ,(,0)A a -,由题意设(,)b B x x a ,则1b x b a x c a⨯=--,解得2a x c =,即2(,a ab B c c ,所以212AB abc k a a c ==+,2b a c =+,223250c ac a --=,23250e e --=,解得53e =或1e =-(舍去).4.(2021·山东泰安市·高三一模)过抛物线()2:20C y px p =>的焦点F 的直线l ,交抛物线C 的准线于点A ,与抛物线C 的一个交点为B,且(AB k BF k =≥ .若l 与双曲线()222210,0x y a b a b -=>>的一条渐近线垂直,则该双曲线离心率的取值范围是___________.【答案】1e <≤【详解】依题意可知直线l 的斜率存在且不为0,不妨设直线l 的斜率为正数,如图:过B 作BC 与抛物线的准线垂直,垂足为C ,根据抛物线的定义可知||||BF BC =,因为(2AB k BF k =≥ ,所以||||||AB k BF k BC ==,所以1||||BC k AB =cos ABC =∠,因为2k ≥,所以12(0,2k ∈,所以2cos (0,]2ABC ∠∈,所以[,42ABC ππ∠∈,所以tan [1,)ABC ∠∈+∞,即直线l 的斜率的取值范围为[1,)+∞,又l 与双曲线()222210,0x y a b a b-=>>的一条渐近线b y x a =-垂直,所以1a b ≥,所以双曲线的离心率22221112c a b b e a a a +⎛⎫===+≤+= ⎪⎝⎭,又1e >,所以12e <≤12e <≤5.(2020·山东高三其他模拟)已知双曲线2218:8x y C -=的左焦点为F ,点M 在双曲线C 的右支上,(0,4)A ,当M AF △的周长最小时,M AF △的面积为_________.【答案】12【详解】如图,设双曲线C 的右焦点为F '.由题意可得22,4040a F F '=-(,),(,).因为点M 在右支上,所以22MF MF a '-==,所以2MF MF '=+,则M AF △的周长为8222MA MF AF MA MF AF ''++=+++即当M 在M '处时,M AF △的周长最小,此时直线AF '的方程为4y x =-+.联立224188y x x y =-+⎧⎪⎨-=⎪⎩,整理得10y -=,则1M y '=,故M AF △的面积为111'84112222M FF OA FF y ''-=⨯⨯-=().故答案为:12【押题专练】1.已知1F ,2F 为双曲线()222210,0x y a b a b-=>>的左、右焦点,以1F ,2F 为直径的圆与双曲线在第一象限的交点为M ,1210F F =,122MF MF =,则双曲线的标准方程为______.【答案】221520x y -=【详解】由双曲线定义得122MF MF a-=,又122MF MF =,解得:22MF a =,14MF a =,∵M 为以1F ,2F 为直径的圆与双曲线在第一象限的交点,∴12MF MF ⊥∴()()2222410a a +=,解得:25a =,∴22525520b c =-=-=,故双曲线标准方程为:221520x y -=.2.已知双曲线22143x y -=的左、右焦点分别为1F ,2F ,P为双曲线上一点,且12PF F S = 12F PF ∠=___________.【答案】23π【详解】依题意2,3,7a b c ===,设12,PF m PF n ==,不妨设m n >,12227F F c ==,设()120,F PF θπ=∈∠,根据双曲线的定义、余弦定理、三角形的面积公式得()2224272cos 1sin 32m n m n mn mn θθ⎧-=⎪⎪⎪=+-⎨⎪⎪=⎪⎩,()22216282cos sin 23m n m n mn mn θθ⎧-=⎪=+-⎨⎪=⎩,2222216282cos sin 23m n mn m n mn mn θθ⎧+-=⎪=+-⎨⎪=⎩,282162cos 23sin mn mn mn θθ=+-⎧⎪⎨=⎪⎩,()1221cos 23sin mn mn θθ⎧=-⎪⎨=⎪⎩,()231221cos sin θθ=⋅⋅-,3sin cos 1θθ+=,12sin 1,sin 662ππθθ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,由于70,666πππθπθ<<<+<,所以52,663πππθθ+==,所以1223F PF π∠=.3.已知椭圆2222:1(0)x y M a b a b +=>>与双曲线22:12y T x -=有相同的焦点,设M 和T 的离心率分别为1e 和2e ,且1232e e =;若斜率为2的直线l 与M 相交于A ,B 两点,则||AB 的最大值为__________.【答案】48517【详解】依题意,知双曲线T 的两焦点坐标为(3,0),离心率2331e ==;从而知椭圆M 的两焦点1,2(3,0)F ,得半焦距3c =又1232e e =,得132c e a==,即2a =,则1b ==,所以椭圆M 的方程为2214x y +=.设A ,B 两点的坐标分别为()11,x y ,()22,x y ,直线l 的方程为2y x m =+;联立方程组22442x y y x m⎧+=⎨=+⎩,消去y 得()221716410x mx m ++-=,()22256171610m m ∆=-⨯->,解得m <<,由韦达定理得121617m x x +=-,2124417m x x -=;由弦长公式得12||AB x =-==故当0m =时,max ||17AB =.4.过双曲线2222:1(0,0)x y C a b a b-=>>的焦点1F 作以焦点2F 为圆心的圆的切线,其中一个切点为M ,12F F M △的面积为2c ,其中c 为半焦距,线段1MF 恰好被双曲线C 的一条渐近线平分,则双曲线C 的离心率为________.【详解】由题意,可得图像如图:∵2//ON MF ,∴1F N ON ⊥,∴1F N b =,∴||ON a =,∴22MF a =,12MF b =,∴12212222MF F S a b ab c =⋅⋅== ,∴()22244a c a c -=,∴42e 4e 40-+=,∴2e 2=,e =5.已知双曲线()2222:10,0x y E a b a b-=>>与抛物线()2:20C y px p =>有共同的一焦点,过E 的左焦点且与曲线C 相切的直线恰与E 的一渐近线平行,则E 的离心率为___________.【详解】因为抛物线与双曲线共焦点,所以2p c =,2p c =,抛物线方程为24y cx =,双曲线的左焦点为1F (,0)c -,过1F 与一条渐近线b y x a =平行的直线方程为()b y x c a =+,由24()y cx b y x c a ⎧=⎪⎨=+⎪⎩得22440by acy bc -+=,所以222216160a c b c ∆=-=,所以a b =,从而c ==,离心率为c e a==6.已知1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,直线l 为双曲线C 的一条渐近线,1F 关于直线l 的对称点1F '在以2F 为圆心,以半焦距c 为半径的圆上,则双曲线的离心率为________.【答案】2【详解】如图,根据对称性可得12121''OF OF OF F F c ====,所以,△12'OF F 是等边三角形,由此得11''120F OF = ,进而可得渐近线的倾斜角为60,所以tan 60b a==o,从而离心率2e ==.7.已知1F ,2F 分别是双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,点P 是双曲线C 上一点,且12π2F PF ∠=,12F PF △的面积为2a ,则双曲线C 的渐近线方程为______.【答案】0x y ±=【详解】122PF PF a -= ,222124PF PF c +=,则2222221212122444PF PF PF PF PF PF c a b ⋅=+--=-=,所以,2122PF PF b ⋅=,因为122F PF π∠=,所以,12221212F PF S PF PF b a ===△,可得a b =.因此,双曲线C 的渐近线方程为b y x x a=±=±,即0x y ±=.8.已知抛物线()220y px p =>上一点()5,m 到焦点的距离为6,准线为l ,若l 与双曲线()2222:10,0x y C a b a b-=>>的两条渐近线所围成的三角形面积为C 的离心率为___________.【答案】3【详解】∵抛物线()220y px p =>上一点()5,m 到焦点的距离为6,∴由抛物线定义知12p =,即2p =,其准线方程为:1l x =,而双曲线C 的两条渐近线方程为b y x a =±,则l 与双曲线C 的两条渐近线b y x a =±围成的三角形面积为1212b b a a ⨯⨯⨯=,∴b a =,即b =,∴2228c a a -=,可得229c a=,∴双曲线C 的离心率3e =.9.已知F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,过F 作与x 轴垂直的直线交双曲线于A ,B 两点,若以AB 为直径的圆过坐标原点,则该双曲线的离心率为____________.【答案】12【详解】设(c,0)F ,把x c =代入22221x y a b -=得2222221y c b b a a =-=,2b y a =±,即点22(,),(,)b b Ac B c a a -,22||b AB a=,而以AB 为直径的圆过原点,则有2b c a=,又222b c a =-,222010c ac a e e ∴--=⇒--=,而e>1,解得512e +=.10.设双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =________.【答案】1【详解】法一:设|PF 1|=m ,|PF 2|=n ,P 为双曲线右支上一点,则1222214,2,4,2PF F S mn m n a m n c ==-=+= 从而c 2=a 2+4,又c e a==,从而a =1.法二:由题意得,1224tan 45PF F b S ︒== ,得b 2=4,又c e a==且c 2=a 2+b 2,所以a =1.11.已知椭圆22122:1x y C a b +=与双曲线22222:1(0,0)x y C m n m n-=>>有相同的焦点12,F F ,且两曲线在第一象限的交点为P ,若212PF F F ⊥,且2a b =,则双曲线2C 的离心率为_________.【答案】233【详解】由已知212PF F F ⊥可得点P x c =,代入22122:1x y C a b+=得出2P b y a =,即2(,)b P c a 将P x c =代入22222:1(0,0)x y C m n m n -=>>得出2P n y m =,即2(,n P c m.故22b n a m =.122b a b a =∴= 22n b m∴=.又椭圆22122:1x y C a b +=与双曲线22222:1(0,0)x y C m n m n -=>>有相同的焦点12,F F ,故442222222241233,n n c m n a b b c e m m m +=-==⋅===,故2242221212()c m n c m ==-.即4224122512033e e e e -+=⇒=⇒=.12.圆2210x y +-+=的圆心到双曲线221916x y -=的渐近线的距离为________.【答案】4105【详解】解:根据题意,圆2210x y +-+=的圆心为,双曲线的221916x y -=的渐近线43y x =±,即430x y ±=,则点到直线430x y -=的距离5d =,即圆心到双曲线的渐近线的距离为5;13.P 是双曲线2211681x y -=上任意一点,1F ,2F 分别是它的左、右焦点,且19PF =,则2PF =___________.【答案】17【详解】根据题意,双曲线2211681x y -=,其中a =4,c =,又由P 是双曲线上一点,则有||PF 1|﹣|PF 2||=2a =8,又由|PF 1|=9,则|PF 2|=1<c ﹣a 4-(舍去)或17,故答案为:17.14.已知双曲线()2222:10,0x y C a b a b-=>>虚轴的一个顶点为D ,直线2x a =与C 交于A ,B 两点,若ABD △的垂心在C 的一条渐近线上,则C 的离心率为___________.【详解】解:设ABD △的垂心为H ,则DH AB ⊥,不妨设(0,)D b ,则(,)H x b ,代入渐近线方程b y x a=,解得x a =,则(,)H a b ,因为直线2x a =与双曲线交于点A ,B ,则A ,B 两点的坐标分别为:(2)A a ,(2,)B a ,因为1AD BH k k ⋅=-,化简可得22a b =,所以双曲线的离心率为c e a ===,.15.已知双曲线C :()222210,0x y a b a b-=>>的右焦点为F ,右顶点为A ,O 为原点,若2OF OA =,则C 的渐近线方程为___________.【答案】y =【详解】 2OF OA =,2c a ∴=,22224a b c a +== ,则可得b a =所以C 的渐近线方程为y =.故答案为:y =.。

专题13 双曲线-2023年高考数学真题题源解密(新高考)(解析版)

专题13 双曲线-2023年高考数学真题题源解密(新高考)(解析版)

专题13 双曲线目录一览2023真题展现考向一 双曲线的离心率真题考查解读近年真题对比考向一 双曲线的渐近线方程命题规律解密名校模拟探源易错易混速记/二级结论速记考向一 双曲线的离心率1.(2023•新高考Ⅰ•第16题)已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,→F 1A ⊥→F 1B ,→F 2A =−23→F 2B ,则C 的离心率为 .解:(法一)如图,设F 1(﹣c ,0),F 2(c ,0),B (0,n ),设A (x ,y ),则→F 2A =(x−c ,y),→F 2B =(−c ,n),又→F 2A =−23→F 2B ,则x −c =23c y =−23n,可得A(53c ,−23n),又→F 1A ⊥→F 1B ,且→F 1A =(83c ,−23n),→F 1B =(c ,n),则→F 1A ⋅→F 1B =83c 2−23n 2=0,化简得n 2=4c 2.又点A 在C 上,则259c 2a 2−49n 2b 2=1,整理可得25c 29a2−4n 29b 2=1,代n 2=4c 2,可得25c 2a 2−16c 2b 2=9,即25e 2−16e 2e 2−1=9,解得e 2=95或15(舍去),故e(法二)由→F 2A =−23→F 2B ,得|→F 2A ||→F 2B |=23,设|→F 2A |=2t ,|→F 2B |=3t ,由对称性可得|→F 1B |=3t ,则|→AF 1|=2t +2a ,|→AB |=5t ,设∠F 1AF 2=θ,则sin θ=3t5t =35,所以cos θ=45=t =a ,所以|→AF 1|=2t +2a =4a ,|→AF 2|=2a ,在△AF 1F 2 中,由余弦定理可得cos θ45,即5c 2=9a 2,则e【命题意图】考查双曲线的定义、标准方程、几何性质、直线与双曲线.考查运算求解能力、逻辑推导能力、分析问题与解决问题的能力、数形结合思想、化归与转化思想.【考查要点】双曲线的定义、方程、性质是高考常考内容,以小题出现,常规题,难度中等.【得分要点】一、双曲线的定义把平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.注:1、集合语言表达式2、对双曲线定义中限制条件的理解(1)当||MF 1|-|MF 2||=2a >|F 1F 2|时,M 的轨迹不存在.(2)当||MF 1|-|MF 2||=2a =|F 1F 2|时,M 的轨迹是分别以F 1,F 2为端点的两条射线.(3)当||MF 1|-|MF 2||=0,即|MF 1|=|MF 2|时,M 的轨迹是线段F 1F 2的垂直平分线.(4)若将定义中的绝对值去掉,其余条件不变,则动点的轨迹为双曲线的一支.具体是哪一支,取决于1||MF与2||MF 的大小.①若12||||MF MF >,则12||||0MF MF ->,点M 的轨迹是靠近定点2F 的那一支;②若12||||MF MF <,则21||||0MF MF ->,点M 的轨迹是靠近定点1F 的那一支.二、双曲线的方程及简单几何性质F (-c,0),F (c,0)F (0,-c ),F (0,c )双曲线上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用双曲线的定义和正弦定理、余弦定理.以双曲线)0,0(12222>>=-b a by a x 上一点P (x 0,y 0)(y 0≠0)和焦点F 1(-c,0),F 2(c,0)为顶点的△PF 1F 2中,若∠F 1PF 2=θ,则(1)双曲线的定义:aPF PF 2||||||21=-(2)余弦定理:221||F F =|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ.(3)面积公式:S △PF 1F 2=12|PF 1||PF 2|·sin θ,重要结论:S △PF 1F 2=2tan2θb 推导过程:由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ得2224||-|||-2||||(1cos 121c PF PF PF PF θ=+(|))2212442||||(1cos )c a PF PF θ=+-2122||||1cos b PF PF θ=-由三角形的面积公式可得S △PF 1F 2=121|PF ||PF |sin 2θ=222222sincos12sin 22sin 21cos 1cos 2sin tan22b b b b θθθθθθθθ⋅⋅===--四、直线与双曲线的位置关系1、把直线与双曲线的方程联立成方程组,通过消元后化为ax 2+bx +c =0的形式,在a ≠0的情况下考察方程的判别式.(1)Δ>0时,直线与双曲线有两个不同的公共点.(2)Δ=0时,直线与双曲线只有一个公共点.(3)Δ<0时,直线与双曲线没有公共点.当a =0时,此时直线与双曲线的渐近线平行,直线与双曲线有一个公共点.注:直线与双曲线的关系中:一解不一定相切,相交不一定两解,两解不一定同支.2、弦长公式直线被双曲线截得的弦长公式,设直线与椭圆交于11(,)A x y ,22(,)B x y 两点,则===(k 为直线斜率)3、通径的定义:过焦点且垂直于实轴的直线与双曲线相交于A 、B两点,则弦长ab AB 22||=.考向一 双曲线的渐近线方程2.(2021•新高考Ⅱ)已知双曲线﹣=1(a>0,b>0)的离心率e=2,则该双曲线的渐近线方程为 .【解答】解:∵双曲线的方程是,∴双曲线渐近线为y=又∵离心率为e==2,可得c=2a∴c2=4a2,即a2+b2=4a2,可得b=a由此可得双曲线渐近线为y=故答案为:y=查考近几年真题推测以小题出现,常规题,难度中等.双曲线的定义、方程、性质是高考常考内容,一.双曲线的标准方程(共5小题)1.(2023•郑州模拟)已知双曲线(a>0,b>0)的离心率为2,则该双曲线的渐近线方程为( )A.x±y=0B.C.D.2x±y=0【解答】解:∵双曲线的方程是(a>0,b>0),∴双曲线渐近线为y=±x.又∵离心率为e==2,∴c=2a,∴b==a,由此可得双曲线渐近线为y=±x=±x,即:故答案为:.故选:C.2.(2023•宝山区校级模拟)若双曲线经过点,且渐近线方程是,则这条双曲线的方程是 .【解答】解:根据题意,双曲线的渐近线方程是,则可设双曲线的标准方程为,(λ≠0);又因为双曲线经过点,代入方程可得,λ=﹣1;故这条双曲线的方程是;故答案为:.3.(2023•通州区模拟)双曲线的焦点坐标为( )A.(±1,0)B.(±,0)C.(±,0)D.(±,0)【解答】解:双曲线,可知a=,b=1,c=,所以双曲线的焦点坐标为(,0).故选:C.4.(2023•西山区校级模拟)已知双曲线的一条渐近线的倾斜角为,则双曲线的离心率为( )A.B.C.D.2【解答】解:双曲线的一条渐近线的倾斜角为,则tan=,所以该条渐近线方程为y=x;所以=,解得a=;所以c===2,所以双曲线的离心率为e===.故选:A.5.(2023•青羊区校级模拟)已知双曲线的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线C的一条渐近线交于点O及点,则双曲线C的方程为( )A.B.C.D.【解答】解:由双曲线的方程可得渐近线的方程:y=x,因为A(,)在渐近线上,故=所以a=,又A在以OF为直径的圆上,所以OA⊥AF,所以AF2+OA2=OF2,即(﹣c)2+()2+()2+()2=c2解得:c=2,a=,b=1,所以双曲线的方程为:﹣y2=1,故选:C.二.双曲线的性质(共33小题)6.(2023•天山区校级模拟)已知双曲线(a>0,b>0)的左右焦点分别为F1、F2,过F2且垂直于x轴的直线与双曲线交于A、B两点,若△F1AB为等腰直角三角形,则该双曲线的离心率为( )A.2B.C.D.【解答】解:已知双曲线的左右焦点分别为F1、F2,过F2且垂直于x轴的直线与双曲线交于A、B两点,若△F1AB为等腰直角三角形,此时|AF1|=|BF1|,且∠AF1B=90°,因为∠AF1F2=∠BF1F2=45°,而|AF2|=|F1F2|,则,即b2=2ac,①又b2=c2﹣a2,②联立①②,解得,因为e>1,所以.故选:C.7.(2023•朝阳区一模)过双曲线的右焦点F作一条渐近线的垂线,垂足为A.若∠AFO=2∠AOF(O为坐标原点),则该双曲线的离心率为( )A.B.C.2D.或2【解答】解:在Rt△AFO中,因为∠AFO=2∠AOF,所以∠AOF=30°,则,所以,故选:B.8.(2023•博白县模拟)已知F1,F2分别是双曲线C:﹣=1(a>0,b>0)的左、右焦点,P为双曲线右支上一点,若∠F 1PF2=60°,=ac,则双曲线的离心率为( )A.B.C.D.2【解答】解:设PF 1=m,PF2=n,则==ac,∴mn=4ac,由余弦定理可得:|F1F2|2=4c2=m2+n2﹣mn=(m﹣n)2+mn,由双曲线的定义可知m﹣n=2a,∴4c2=4a2+4ac,即c2﹣a2=ac,∴e2﹣e﹣1=0,解得e=或e=(舍).故选:A.9.(2023•郑州模拟)点(4,0)到双曲线Γ:的一条渐近线的距离为,则双曲线的离心率为( )A.B.C.D.5【解答】解:由题意可得双曲线的一条渐近线为:ay﹣bx=0,所以(4,0)到ay﹣bx=0的距离为,不妨设b=4m(m>0),则.故选:C.10.(2023•武鸣区校级二模)双曲线x2﹣=1的焦点坐标为( )A.(±1,0)B.(0,±)C.(±,0)D.(0,±1)【解答】解:根据题意,双曲线的方程为x2﹣=1,其中a=1,b=,其焦点在x轴上,则c==,所以双曲线的焦点坐标为(±,0);故选:C.11.(2023•河南模拟)已知双曲线的左、右焦点分别为F1,F2,P是双曲线C的一条渐近线上的点,且线段PF1的中点M在另一条渐近线上.若∠PF2F1=45°,则双曲线C 的离心率为( )A.B.C.2D.【解答】解:因为M,O分别是PF1,F1F2的中点,所以MO∥PF2,又∠PF2F1=45°,所以∠MOF1=45°,即,所以a=b,故.故选:A.12.(2023•源汇区校级模拟)已知F1、F2分别为双曲线=1(a>0,b>0)的左、右焦点,P为双曲线右支上任意一点,若的最小值为2c,c=,则该双曲线的离心率是( )A.3B.4C.D.【解答】解:由双曲线的性质可得|PF1|=2a+|PF2|,所以|PF1|2=4a2+4a|PF2|+|PF2|2,所以=|PF2|++4a≥2+4a=8a,由题意可2c=8a,即c=4a,所以双曲线的离心率为e==4.故选:B.13.(2023•四川模拟)已知双曲线C:x2﹣=1(a>b>0)的左,右顶点分别为A,B,点P在双曲线C 上,过点B作x轴的垂线BM,交PA于点M.若∠PAB=∠PBM,则双曲线C的离心率为( )A.B.C.2D.3【解答】解:设P(m,n),可得m2﹣=1,双曲线C:x2﹣=1(a>b>0)的左,右顶点分别为A,B,点P在双曲线C上,过点B作x轴的垂线BM,交PA于点M.∠PAB=∠PBM,过P作x轴的垂线,垂足为N,所以△PAN∽△BPN,可得,结合m2﹣=1,可得b=1,又a=1,所以双曲线的离心率为:e==.故选:A.14.(2023•贺兰县校级模拟)人们在进行工业设计时,巧妙地利用了圆锥曲线的光学性质.从双曲线右焦点F2发出的光线通过双曲线镜面反射出发散光线,且反射光线的反向延长线经过左焦点F1.已知双曲线的方程为x2﹣y2=1,则当入射光线F2P和反射光线PE互相垂直时(其中P为入射点),∠F1F2P的余弦值大小为( )A.B.C.D.【解答】解:设|PF1|=m,|PF2|=n,则m﹣n=2,m2+n2=,解得m=+1,n=﹣1,∴cos∠F1F2P==,故选:D.15.(2023•海淀区校级模拟)若双曲线的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为,则双曲线C的离心率为( )A.B.C.D.【解答】解:由双曲线的方程可得渐近线的方程为:y=±x,即ax±2y=0,由圆(x﹣2)2+y2=4的方程可得圆心C(2,0),半径r=2,可得d=,所以可得弦长2=2=,解得a2=,可得离心率e====,故选:B.16.(2023•广西模拟)双曲线C:(a>0,b>0)的左顶点为A,点P,Q均在C上,且关于y 轴对称.若直线AP,AQ的斜率之积为,则C的离心率为( )A.B.C.2D.【解答】解:由题意知双曲线左顶点为A(﹣a,0),设P(x0,y0),则Q(﹣x0,y0),则有,又,将代入中,得,即a2=4b2,所以,故,故选:A.17.(2023•未央区模拟)设O为坐标原点,F1,F2是双曲线C:的左、右焦点,已知双曲线C的离心率为,过F2作C的一条渐近线的垂线,垂足为P,则=( )A.B.2C.D.【解答】解:设双曲线的一条渐近线为y=,过F2作C的一条渐近线的垂线,垂足为P,则|PF2|=b,则|OP|=a,cos∠PF2O=,在△PF1F2中,cos∠PF2O==,得|PF1|2=4c2﹣3b2=4(a2+b)2﹣3b2=4a2+b2,∵e=,得=1+=3,得=2,则=====,故选:A.18.(2023•贵阳模拟)已知双曲线C:mx2﹣ny2=1(m>0,n>0)的离心率为,虚轴长为4,则C 的方程为( )A.3x2﹣4y2=1B.C.D.【解答】解:由双曲线C:mx2﹣ny2=1(m>0,n>0),得,可得a=,b=,c=,∵双曲线的离心率为,虚轴长为4,∴,解得.∴C的方程为.故选:D.19.(2023•郑州模拟)已知双曲线的左焦点为F,过原点O的直线与C交于点A,B,若|OF|=|OA|,则|AF||BF|=( )A.2B.4C.8D.16【解答】解:双曲线,则a=2,b=1,,由|OF|=|OA|可得AF⊥BF,设A为右支上一点,F2为右焦点,连接AF2、BF2,则四边形AFBF2为矩形,所以|AF2|=|BF|,设|AF|=m,|BF|=n,则m﹣n=4,m2+n2=20,所以.故选:A.20.(2023•蕉城区校级二模)已知双曲线的左、右焦点分别为F1、F2,过F2的直线l交双曲线的右支于A、B两点.点M满足,且,者,则双曲线的离心率是( )A.B.C.D.【解答】解:如下图所示,取线段BF1的中点E,连接AE,因为,则,因为E为BF1的中点,则AE⊥BF1,且∠ABF1=∠AF1B,由双曲线的定义可得2a=|AF1|﹣|AF2|=|AB|﹣|AF2|=|BF2|,所以|BF1|=|BF2|+2a=4a,则|BE|=|EF1|=2a,由余弦定理可得==,所以,因此该双曲线的离心率为.故选:C.21.(2023•凉山州模拟)已知以直线y=±2x为渐近线的双曲线,经过直线x+y﹣3=0与直线2x﹣y+6=0的交点,则双曲线的实轴长为( )A.6B.C.D.8【解答】解:由,解得,则双曲线过点(﹣1,4).若双曲线的焦点在x轴,设为,由双曲线的渐近线方程为y=±2x,得,即b=2a,将(﹣1,4)代入方程,得,有,无解,不符合题意;若双曲线的焦点在y轴,设为,由双曲线的渐近线方程为y=±2x,得,即a=2b,将(﹣1,4)代入方程,得,有,解得,所以双曲线的实轴长为.故选:C.22.(2023•滨海新区校级三模)点F是抛物线x2=8y的焦点,A为双曲线C:的左顶点,直线AF平行于双曲线C的一条渐近线,则实数b的值为( )A.2B.4C.8D.16【解答】解:抛物线x2=8y的焦点为(0,2).设A为双曲线C:的左顶点(﹣2,0),渐近线方程为y=±x,因为直线AF平行于双曲线C的一条渐近线,所以=,解得b=4,故选:B.23.(2023•恩施市校级模拟)已知F1,F2分别为双曲线C:的左右焦点,且F1到渐近线的距离为1,过F2的直线l与C的左、右两支曲线分别交于A,B两点,且l⊥AF1,则下列说法正确的为( )A.△AF1F2的面积为2B.双曲线C的离心率为C.D.【解答】解:设双曲线C的半焦距为c>0,因为双曲线C的焦点在x轴上,且a=2,则其中一条渐近线方程为,即bx﹣2y=0,且F1(﹣c,0),则F1到渐近线的距离为,可得,对于A:因为|AF2|﹣|AF1|=4且,可得,解得|AF1|⋅|AF2|=2,所以△AF1F2的面积为,故A错误;对于B:双曲线C的离心率为,故B错误;对于C:因为,可得,所以•=•=•(•+)=2+•=2=10﹣4,故C错误;对于D:设|BF 2|=m,则,因为,即,解得,所以=+=,故D正确.故选:D.24.(2023•郑州模拟)已知F1,F2分别是双曲线Γ:的左、右焦点,过F1的直线分别交双曲线左、右两支于A,B两点,点C在x轴上,,BF2平分∠F1BC,则双曲线Γ的离心率为( )A.B.C.D.【解答】解:因为,则CB∥F2A,所以△F1AF2∽△F1BC,设|F1F2|=2c,则|F2C|=8c,设|AF1|=t,则|BF1|=5t,|AB|=4t.因为BF2平分∠F1BC,由角平分线定理可知,,所以|BC|=4|BF1|=20t,所以,由双曲线定义知|AF2|﹣|AF1|=2a,即4t﹣t=2a,,①又由|BF1|﹣|BF2|=2a得|BF2|=5t﹣2a=2t,在△ABF2中,由余弦定理知,在△F1BF2中,由余弦定理知,即,化简得c2=6t2,把①代入上式得,解得.故选:A.25.(2023•沙坪坝区校级模拟)已知双曲线C:的左、右焦点分别为F1,F2,过双曲线C上一点P向y轴作垂线,垂足为Q,若|PQ|=|F1F2|且PF1与QF2垂直,则双曲线C的离心率为( )A.B.C.D.【解答】解:设双曲线焦距为2c,不妨设点P在第一象限,由题意知PQ∥F1F2,由|PQ|=|F1F2|且PF1与QF2垂直可知,四边形PQF1F2为菱形,且边长为2c,而△QF1O为直角三角形,|QF1|=2c,|F1O|=c,故∠F1QO=30°,∴∠QF1O=60°,则∠F1QP=120°则,|PF2|=2c,故,即离心率.故选:B.26.(2023•林芝市二模)已知双曲线的左、右焦点分别是F1,F2,双曲线C上有两点A,B满足,且,若四边形F1AF2B的周长l与面积S满足,则双曲线C的离心率为( )A.B.C.D.【解答】解:不妨设|AF1|=m,|AF2|=n(m>n),由双曲线的定义可知,m﹣n=2a,则m2+n2﹣2mn=4a2①,又,所以由余弦定理可得m2+n2+mn=4c2②,由①②可得,所以.又四边形F1AF2B为平行四边形,故四边形F1AF2B的周长l=2(m+n),则,面积,因为,所以,整理得2c2=3a2,故双曲线C的离心率为,故选:A.27.(2023•安徽模拟)在平面直角坐标系xOy中,已知双曲线的左、右焦点分别为F1,F2,过F1的直线与双曲线C的右支相交于点P,过点O,F2作ON⊥PF1,F2M⊥PF1,垂足分别为N,M,且M为线段PN的中点,|ON|=a,则双曲线C的离心率为( )A.2B.C.D.【解答】解:因为F1,F2为双曲线C的左、右焦点,所以|F1F2|=2c,因为ON⊥PF1,F2M⊥PF1所以ON∥F2M,又O为线段F1F2的中点,所以N为线段F1M的中点,且,又M为线段PN的中点,所以,在Rt△OF1N中,|ON|=a,|OF1|=b,所以,所以|PF1|=3b,|MP|=b,因为点P在双曲线的右支上,所以|PF1|﹣|PF2|=2a,故|PF2|=3b﹣2a,在Rt△MF2P中,|MF2|=2a,|MP|=b,|PF2|=3b﹣2a,由勾股定理可得:(2a)2+b2=(3b﹣2a)2,所以8b2=12ab,即2b=3a,所以4b2=9a2,又b2=c2﹣a2,故4c2=13a2,所以,故选:D.28.(2023•长沙模拟)已知双曲线4x2﹣=1的左、右焦点分别为F1,F2,点M是双曲线右支上一点,满足•=0,点N是线段F1F2上一点,满足=λ.现将△MF1F2沿MN折成直二面角F1﹣MN﹣F2,若使折叠后点F1,F2距离最小,则λ=( )A.B.C.D.【解答】解:易知双曲线中,,则,又,即,又,∴,如图,设∠NMF2=θ,F2G⊥MN,F1H⊥MN,则,∴=4sin2θ+(2cosθ﹣3sinθ)2+9cos2θ=13(sin2θ+cos2θ)﹣12sinθcosθ=13﹣6sin2θ,由三角函数知识可知,当时,F1F2取得最小值,此时MN为△MF1F2的角平分线,由角平分线性质可知,此时,则,∴.故选:C.29.(2023•濠江区校级模拟)已知双曲线的右焦点为F,过点F且斜率为k(k≠0)的直线l交双曲线于A、B两点,线段AB的中垂线交x轴于点D.若,则双曲线的离心率取值范围是( )A.B.C.D.【解答】解:设双曲线的右焦点为F(c,0),A(x1,y1),B(x2,y2),则直线l:y=k(x﹣c),联立方程,消去y得:(b2﹣a2k2)x2+2a2k2cx﹣a2(k2c2+b2)=0,则可得,则,设线段AB的中点M(x0,y0),则,即,且k≠0,线段AB的中垂线的斜率为,则线段AB的中垂线所在直线方程为,令y=0,则,解得,即,则,由题意可得:,即,整理得,则,注意到双曲线的离心率e>1,∴双曲线的离心率取值范围是.故选:A.30.(2023•洛阳模拟)已知双曲线C:的左、右焦点分别为F1(﹣c,0),F2(c,0),过点F1的直线l与双曲线C的左支交于点A,与双曲线C的一条渐近线在第一象限交于点B,且|F1F2|=2|OB|(O为坐标原点).下列四个结论正确的是( )①;②若,则双曲线C的离心率;③|BF1|﹣|BF2|>2a;④.A.①②B.①③C.①②④D.①③④【解答】解:如图,∵|F1F2|=2|OB|,O为F1F2的中点,∴|OF1|=|OF2|=|OB|,得BF1⊥BF2,则,即|BF1|=,故①正确;设∠BOF2=θ,则tanθ=,cosθ=,sinθ=,作AA1⊥x轴,垂足为A1,BB1⊥x轴,垂足为B1,则|OB1|=|OB|cosθ=c•=a,|BB1|=|OB|sinθ=c•=b,∵,∴=,得|AA1|=b,|A1F1|=(a+c),则A((a﹣2c),b),∴,得(2c﹣a)=a,则e=,故②正确;设直线l与C右支的交点为M,则|MF1|﹣|MF2|=2a,∵||MB|﹣|MF2||<|BF2|,∴|MB|﹣|MF2|>﹣|BF2|,则|MF1|﹣|MF2|=|BF1|+|MB|﹣|MF2|>|BF1|﹣|BF2|,则|BF1|﹣|BF2|<2a,故③错误;设A(x0,y0),则|AF1|====||,得|AF1|=﹣(+a),由题意可知,0<y0<|BB1|=b,则a2<=a2(1+)<2a2,则﹣a<x0<﹣a,故c﹣a<|AF1|=﹣﹣a<c﹣a,故④正确.故选:C.31.(2023•江西二模)已知双曲线E:,其左右顶点分别为A1,A2,P在双曲线右支上运动,若∠A1PA2的角平分线交x轴于D点,A2关于PD的对称点为A3,若仅存在2个P使直线A3D与E仅有一个交点,则E离心率的范围为( )A.B.C.D.(2,+∞)【解答】解:设直线PA1的倾斜角为α,直线PA2的倾斜角为β,由题设可得P不为右顶点.设P(x0,y0),则.双曲线在P(x0,y0)处的切线斜率必存在,设切线方程为y=k(x﹣x0)+y0,由可得,整理得到:,故,整理得:即,故,故切线方程为:即.因为存在2个P使直线A3D与E仅有一个交点,故由双曲线的对称性不妨设P在第一象限,此时α,β均为锐角且存在唯一的P满足题设条件.故直线PD与渐近线平行或与双曲线相切或.若直线PD与渐近线平行,则,而PD为∠A1PA2的平分线,故其倾斜角γ满足γ﹣α=β﹣γ,故,故,故,但,故,而,由基本不等式可得,当且仅当tanα=tanβ即α=β时等号成立,此时PA1∥PA2,这不可能,故直线PD与渐近线不平行.若直线PD与双曲线相切,且切点为P(x0,y0),双曲线在P的切线方程为:,故且该切线的斜率为,所以直线A3D的斜率为.此时,而,即,故a2=a2+b2,矛盾.故直线,所以,而直线A3D的倾斜角为α+β,因为直线A3D与双曲线有且只有一个交点,且D在OA2之间,故,由P在第一象限内的唯一性可得存在唯一的α,β,使得,而,故,所以即b2>3a2,所以,故选:D.32.(2023•江西模拟)双曲线的左焦点为F,过点F的直线l与双曲线C交于A,B两点,若过A,B和点的圆的圆心在y轴上,则直线l的斜率为( )A.B.C.±1D.【解答】解:由题意可知:F(﹣2,0),设A(x1,y1),B(x2,y2),AB的中点为P,过点A,B,M的圆的圆心坐标为G(0,t),则,由题意知:直线AB的斜率存在且不为0,设直线AB的方程为:x=my﹣2,联立方程组化简整理可得,(m2﹣3)y2﹣4my+1=0,则m2﹣3≠0,Δ=16m2﹣4(m2﹣3)=12m2+12>0,,故AB的中点P的纵坐标,横坐标,则,由圆的性质可知:圆心与弦中点连线的斜率垂直于弦所在的直线,所以,化简整理可得:①,则圆心G(0,t)到直线AB的距离,,,即,将①代入可得:,即,整理可得:m4﹣5m2+6=0,则(m2﹣2)(m2﹣3)=0,因为m2﹣3≠0,所以m2﹣2=0,解得,所以.故选:A.33.(多选)(2023•宜章县模拟)已知F1,F2分别为双曲线C:=1(a>0,b>0)的左、右焦点,P为双曲线C的渐近线在第一象限部分上的一点,线段PF2与双曲线交点为Q,且|F1P|=|F1F2|=2|PF2|,O为坐标原点,则下列结论正确的是( )A.|OP|=2aB.双曲线C的离心率e=C.|QF1|=aD.若△QF1F2的内心的横坐标为3,则双曲线C的方程为=1【解答】解:对于A,如图,过F2作F2H⊥PO,垂足点为H,∵F2(c,0)到直线y=x的距离d==b,∴|F2H|=b,又|OF2|=c,tan∠POF2=,∴易得|OH|=a,又|F1F2|=2|PF2|=2|OF2|,∴|PF2|=|OF2|,∴H为PO的中点,∴|OP|=2|OH|=2a,故A正确;对于B,设∠POF2=θ,则tanθ=,∴cosθ=,sinθ=,又由A知|OP|=2a,∴P(2a cosθ,2a sinθ),即P(,),又F1(﹣c,0),|F1P|=|F1F2|=2c,∴=2c,两边平方化简,可得4a4+c4+4a2c2+4a2b2=4c4,∴4a4+c4+4a2c2+4a2(c2﹣a2)=c4,∴8a2=3c2,∴e2==,∴e=,故B错误;对于C,设|QF1|=t,则QF2|=t﹣2a,又|F1P|=|F1F2|=2|PF2|=2c,∴cos∠QF2F1==,∴在△QF2F1中,由余弦定理,可得=,∴t=,又由B知c=a,∴t==,故C正确;对于D,设△QF1F2的内心为I,且内切圆I与F1F2切于点E,则根据双曲线的定义及内切圆的几何性质,可得|QF1|﹣|QF2|=|F1E|﹣|F2E|=2a,又|F1E|+|F2E|=2c,∴|F1E|=c+a,|F2E|=c﹣a,∴切点E为右顶点,又△QF1F2的内心的横坐标为3,∴a=3,又由B知e=,∴c=2,∴b2=c2﹣a2=24﹣9=15,∴双曲线C的方程为=1,故D正确,故选:ACD.34.(2023•万州区校级模拟)已知F1,F2为双曲线C:=1(a>0,b>0)的左右焦点,过点F1作一条渐近线的垂线交双曲线右支于点P,直线PF2与y轴交于点Q(P,Q在x轴同侧),连接QF1,如图,若△PQF1内切圆圆心恰好落在以F1F2为直径的圆上,则∠F1PF2= ;双曲线的离心率e = .【解答】解:设F1(﹣c,0),F2(c,0),如图可得△QF1F2为等腰三角形,则△PQF1的内切圆圆心I在y轴上,又I恰好落在以F1F2为直径的圆上,可设I(0,c),双曲线的一条渐近线方程设为bx+ay=0,则直线PF1的方程设为ax﹣by+ac=0,则I到直线PF1的距离为=|a﹣b|,由图象可得a<b,则|a﹣b|=b﹣a,设Q(0,t),且t>c,则直线QF2的方程为tx﹣cy+tc=0,由内心的性质可得I到直线QF2的距离为b﹣a,即有=b﹣a,化简可得abt2﹣tc3+abc2=0,由Δ=c6﹣4a2b2c2=c2(a2﹣b2)2,解得t=或<c(舍去),则Q(0,),直线QF2的斜率为=﹣,可得直线QF2与渐近线OM:bx+ay=0平行,可得∠F1PF2=,由F1到渐近线OM的距离为=b,|OM|==a,由OM为△PF1F2的中位线,可得|PF2|=2|OM|=2a,|PF1|=2|MF1|=2b,又|PF1|﹣|PF2|=2a,则b=2a,e===.故答案为:,.另解:设由F1向渐近线y=﹣x所作垂线的垂足为M,△PQF1的内心为I,由于|QF1|=|QF2|,所以内心I在y轴上.又内心I在以线段F1,F2为直径的圆上,所以|OF1|=|OF2|=c,连接IF1.IF2,则∠IF1O=∠IF2O=45°,设∠QF1I=∠QF2I=α,则∠IF1P=∠QF1I=α,因此∠PF1F2=45°﹣α,而∠PF2F1=∠QF2I+∠IF2O=45°+α,因此∠PF1F2+∠PF2F1=45°﹣α+45°+α=90°,故∠F1PF2=90°.又F1M⊥OM,所以OM∥PF2,所以M为PF的中点,易求得|OM|=a,于是|PF2|=2a.由双曲线定义可得|PF1|=2a+2a=4a,在Rt△PF1F2中,由勾股定理可得(4a)2+(2a)2=(2c)2,于是c2=5a2,故得双曲线的离心率e=.故答案为:,.35.(2023•淮北一模)已知双曲线C:过点,则其方程为 ,设F1,F2分别为双曲线C的左右焦点,E为右顶点,过F2的直线与双曲线C的右支交于A,B两点(其中点A在第一象限),设M,N分别为△AF1F2,△BF1F2的内心,则|ME|﹣|NE|的取值范围是 .所以双曲线C的方程为.②如图:设△AF1F2的内切圆与AF1,AF2,F1F2分别切于H,D,G,所以|AH|=|AD|,|HF1|=|GF1|,|DF2|=|GF2|,所以|AF1|﹣|AF2|=|AH|+|HF1|﹣|AD|﹣|DF2|=|HF1|﹣|DF2|=|GF1|﹣|GF2|=2a,又|GF1|+|GF2|=2c,所以|GF1|=a+c,|GF2|=c﹣a,又|EF1|=a+c,|EF2|=c﹣a,所以G与E(a,0)重合,所以M的横坐标为a,同理可得N的横坐标也为a,设直线AB的倾斜角为θ.则,,====,当时,|ME|﹣|NE|=0,当时,由题知,a=2.c=4,.因为A,B两点在双曲线的右支上,∴,且,所以或,∴.且,,综上所述,.故答案为:;.36.(多选)(2023•芜湖模拟)双曲线的光学性质:从双曲线一个焦点出发的光线,经双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.已知O为坐标原点,F1,F2分别是双曲线C:的左右焦点,过F2的直线交双曲线C的右支于M,N两点,且M(x1,y1)在第一象限,△MF1F2,△NF1F2的内心分别为I1,I2,其内切圆半径分别为r1,r2,△MF1N的内心为I.双曲线C在M处的切线方程为,则下列说法正确的有( )A.点I1、I2均在直线x=3上B.直线MI的方程为C.D.【解答】解:由双曲线得a=3,b=4,c=5,设△MF1F2的内切圆I1与MF1,MF2,F1F2分别切于点A,B,H,则|MA|=|MB|,|F1A|=|F1H|,|F2B|=|F2H|,所以|MF1|﹣|MF2|+|F1F2|=|F1A|+|MA|﹣|F2B|﹣|MB|﹣|F1H+F2H|=2a+2c=16,又|OF1|=5,所以|OH|=3,即圆I1与x轴的切点是双曲线的右顶点,即I1在直线x=3上,同理可得圆I2与x轴的切点也是双曲线的右顶点,即I2也在直线x=3上,故选项A正确;因为△MF1N的内心为I,所以MI平分∠F1MF2,根据双曲线的光学性质,双曲线C在M处的切线就平分∠F1MF2,故直线MI的方程为,故B正确;设△NF1F2的内切圆I2与MN切于点D,连接I1B,I2D,I1F2,I2F2,设∠I2I1F2=θ,∠I1I2F1=α,因为IB⊥MN,I2D⊥MN,所以I1B∥I2D,所以2θ+2α=π,即,所以tanθ•tanα=1,又|F2H|=2,所以tan,tan,即tan=1,所以r1r2=4,故C不正确;由B可得MI的方程为,①设N(x2,y2),同理可得NI的方程为,②联立①②可得x=,可设MN的方程为x=my+5,可得x1=my1+5,x2=my2+5,则x==,所以I在直线x=上,所以I到I1I2的距离为d3=3﹣=,F2到I1I2的距离为d4=5﹣3=2,所以==.故D正确.故选:ABD.37.(多选)(2023•广东模拟)双曲线的左右焦点分别为F1,F2,P为双曲线右支上异于顶点的一点,△PF1F2的内切圆记为圆I,圆I的半径为r,过F1作PI的垂线,交PI的延长线于Q,则( )A.动点I的轨迹方程为x=4(y≠0)B.r的取值范围为(0,3)C.若r=1,则tan∠F1PF2=D.动点Q的轨迹方程为x2+y2=16(x≠4且x>﹣)【解答】解:设Ⅰ(x,y),设△PF1F2的内切圆分别与边PF1,PF2,F1F2切于A,B,C三点,如图所示,对于A:由题知,a=4,b=3,c=5,F1(﹣5,0),F2(5,0),8=|PF1|﹣|PF2|=(|PA|+|F1A|)﹣(PB|+|F2B|)=|F1A|﹣|F2B|=|F1C|﹣|F2C|,所以(x+5)﹣(5﹣x)=8,x=4,显然y≠0,故A正确;对于B:根据对称性,不妨假设P点在x轴上方,根据A选项可设Ⅰ(4,r),双曲线的一条渐近线为,考虑P点在无穷远时,直线PF1的斜率趋近于,此时PF1的方程为,圆心到直线的距离为=3,所以r的取值范围为(0,3),故B正确;对于C:r=1时,|IB|=|IC|=1,|F2C|=1,此时PF2⊥F1F2,所以,,因为|F1F2|=10,PF2⊥F1F2,所以,故C错误;对于D:分别延长F1Q,PF2交于点M,因为PQ过内切圆圆心I,所以PQ为角平分线,且PQ⊥F1M,所以|PF1|=|PM|,且Q为F1M的中点,所以|PF1|﹣|PF2|=|PM|﹣|PF2|=|MF2|=8,又因为点O为F1F2的中点,Q为F1M的中点,所以,所以动点Q的轨迹方程为x2+y2=16,显然x≠4,又考虑P点在无穷远时,此时直线OP趋近于渐近线,直线F1Q为,联立方程组,解得,则,所以点Q的横坐标,动点Q的轨迹方程为,故D正确;故选:ABD.38.(2023•赤峰模拟)初中时代我们就说反比例函数的图像是双曲线,建立适当的平面直角坐标系可以求得这个双曲线的标准方程,比如,把的图象顺时针旋转可以得到双曲线.已知函数,在适当的平面直角坐标系中,其标准方程可能是( )A.B.C.D.【解答】解:对函数,其定义域为{x|x≠0},定义域关于原点对称,用﹣x,﹣y替换x,y,方程不变,故其图象关于原点对称.又当x>0,且x趋近于0时,y趋近于正无穷,当x趋近于正无穷时,趋近于0,此时的图象与y=无限靠近,故的两条渐近线为y轴与y=,为使其双曲线的方程为标准方程,故应建立的坐标轴x′,y′必须平分两条渐近线的夹角,又y=,其斜率为k=,此时其在原坐标系中其倾斜角为30°,与y轴夹角为60°,故新坐标系中,x′轴与x轴的夹角应为60°,故x′轴所在直线在原坐标系中的方程为y=x,y′轴与其垂直,在如图所示的新坐标系中,设双曲线的方程为,联立,可得x2=3,y2=9,则a2=x2+y2=12,又在新坐标系下,双曲线的渐近线x=0与x轴的夹角为30°,故=,即,故在新坐标系下双曲线方程为.故选:A.三.直线与双曲线的综合(共22小题)39.(2023•射洪市校级模拟)已知双曲线的右焦点为F,点A(0,m),若直线AF与C 只有一个交点,则m=( )A.±2B.C.D.±4【解答】解:双曲线的右焦点为F(4,0),点A(0,m),双曲线的渐近线方程:y=x,直线AF与C只有一个交点,可得,解得m=.故选:B.40.(2023•赤峰三模)2022年卡塔尔世界杯中的数字元素——会徽(如图)正视图近似伯努利双纽线.定义:在平面直角坐标系xOy中,把到定点F1(﹣a,0)F2(a,0)的距离之积等于a2(a>0)的点的轨迹称为双纽线C.已知P(x0,y0)是双纽线C上的一点,下列说法错误的是( )A.双纽线C关于原点O成中心对称B.C.双曲线C上满足|PF1|=|PF2|的点P有两个D.|OP|的最大值为【解答】解:对于A,因为定义在平面直角坐标系xOy中,把到定点F1(﹣a,0),F2(a,0),距离之积等于a2(a>0)的点的轨迹称为双纽线C,所以,用(﹣x,﹣y)替换方程中的(x,y),原方程不变,所以双纽线C关于原点O中心对称,所以A正确;对于B,根据三角形的等面积法可知=,即|y0|=sin∠F1PF2,所以,所以B正确;对于C,若双纽线C上的点P满足|PF1|=|PF2|,则点P在y轴上,即x=0,所以,得y=0,所以这样的点P只有一个,所以C错误;对于D,因为,所以||2=(﹣cos∠F1PF2+),由余弦定理得4a2=﹣cos∠F1PF2+,所以||2=a2+cos∠F1PF2=a2+a2cos∠F1PF2≤2a2,所以|PO|的最大值为,所以D正确.故选:C.41.(2023•淮北二模)已知A(﹣2,0),B(2,0),过P(0,﹣1)斜率为k的直线上存在不同的两个点M,N满足:.则k的取值范围是( )A.B.C.D.【解答】解:因为,所以M,N是以A(﹣2,0)、B(2,0)为焦点的双曲线的右支上的两点,且c=2,,所以,∴双曲线方程为,则过P(0,﹣1)斜率为k的直线方程为y=kx﹣1,由,消去y整理得(1﹣3k2)x2+6kx﹣6=0,所以,解得,即k的取值范围为.故选:C.42.(2023•河南模拟)设双曲线的左、右焦点分别为F1,F2,B为双曲线E上在第一象限内的点,线段F1B与双曲线E相交于另一点A,AB的中点为M,且F2M⊥AB,若∠AF1F2=30°,则双曲线E的离心率为( )A.B.2C.D.【解答】解:双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),∠AF1F2=30°,可得AB的方程为:y=(x+c),代入双曲线方程化简可得:(3b2﹣a2)x2﹣2a2cx﹣a2c2﹣3a2b2=0,所以x M=,y M=(+c),=,解得a2=b2,所以双曲线的离心率为:e===.故选:D.43.(2023•天津模拟)双曲线的左右焦点分别是F1,F2,离心率为e,过点F1的直线交双曲线的左支于M,N两点.若△MF2N是以M为直角顶点的等腰直角三角形,则e2等于( )A.B.C.D.【解答】解:设|MF2|=m,因为△MNF2是以M为直角顶点的等腰直角三角形,所以|MN|=m,|NF2|=m,|MF1|=,|NF1|=m﹣,由双曲线的定义知,|MF2|﹣|MF1|=2a,|NF2|﹣|NF1|=2a,又|MF1|=m﹣2a,|NF1|=m﹣2a,,解得m=2a,则,解得,双曲线的离心率为e,可得e2=5﹣2.故选:A.44.(2023•让胡路区校级模拟)已知双曲线的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点,若A为线段BF1的中点,且BF1⊥BF2,则C 的离心率为( )A.B.2C.D.3【解答】解:由题意可知,过F1的直线与C的两条渐近线分别交于A,B两点,当两个交点分别在第二和第三象限时不符合,A为线段BF1的中点,当交点在x轴上方或x轴下方时,根据对称性结果是一样的,选择一种即可,如图.根据双曲线可得,F1(﹣c,0),F2(c,0),两条渐近线方程,∵BF1⊥BF2,O为F1F2的中点,∴BO=OF1=OF2=c,又∵A为线段BF1的中点,∴OA垂直平分BF1,可设直线BF1为①,直线BF2为②,直线BO为③,由②③得,交点坐标,点B还在直线BF1上,∴,可得b2=3a2,c2=a2+b2=4a2,所以双曲线C的离心率,故选:B.。

2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)Word版含解析

2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)Word版含解析

2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)一、单选题1.已知集合{}24xA x =<,{}1B =≤,则A B =( )A .()0,2B .[)1,2C .[]1,2D .()0,12.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为( ) A .1B .1-C .15D .15-3.()()51223x x -+的展开式中,x 的系数为( ) A .154B .162C .176D .1804.已知1tan 5α=,则2cos 2sin sin 2ααα=-( ) A .83-B .83C .38-D .385.何尊是我国西周早期的青铜礼器,其造形浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词的最早文字记载.何尊的形状可以近似地看作是圆台与圆柱的组合体,高约为40cm ,上口直径约为28cm ,下端圆柱的直径约为18cm .经测量知圆柱的高约为24cm ,则估计该何尊可以装酒(不计何尊的厚度,403π1266≈,1944π6107≈)( )A .312750cmB .312800cmC .312850cmD .312900cm6.已知()f x 是定义域为R 的奇函数,满足()()2f x f x =-,则()2022f =( ) A .2B .1C .1-D .07.在四棱锥P ABCD -中,ABCD 是边长为2的正方形,AP PD ==PAD ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为( )A .4πB .8πC .136π9D .68π38.已知抛物线C :24y x =,O 为坐标原点,A ,B 是抛物线C 上两点,记直线OA ,OB 的斜率分别为1k ,2k ,且1212k k =-,直线AB 与x 轴的交点为P ,直线OA 、OB 与抛物线C 的准线分别交于点M ,N ,则△PMN 的面积的最小值为( )A B C D二、多选题9.已知函数()()1cos 02f x x x ωωω=>的图像关于直线6x π=对称,则ω的取值可以为( ) A .2B .4C .6D .810.在菱形ABCD 中,2AB =,60DAB ∠=,点E 为线段CD 的中点,AC 和BD 交于点O ,则( ) A .0AC BD ⋅= B .2AB AD ⋅= C .14OE BA ⋅=-D .52OE AE ⋅=11.一袋中有3个红球,4个白球,这些球除颜色外,其他完全相同,现从袋中任取3个球,事件A “这3个球都是红球”,事件B “这3个球中至少有1个红球”,事件C “这3个球中至多有1个红球”,则下列判断错误的是( )A .事件A 发生的概率为15B .事件B 发生的概率为310C .事件C 发生的概率为335D .1(|)31P A B =12.对于函数()()32,f x x x cx d c d =+++∈R ,下列说法正确的是( )A .若0d =,则函数()f x 为奇函数B .函数()f x 有极值的充要条件是13c <C .若函数f (x )有两个极值点1x ,2x ,则4412281x x +>D .若2c d ==-,则过点()20,作曲线()y f x =的切线有且仅有3条三、填空题13.已知样本数据1-,1-,2,2,3,若该样本的方差为2s ,极差为t ,则2s t=______. 14.已知圆O :221x y +=与直线l :=1x -,写出一个半径为1,且与圆O 及直线都相切的圆的方程:______.15.已知椭圆()222210x y a b a b+=>>的左顶点为A ,左焦点为F ,过F 作x 轴的垂线在x轴上方交椭圆于点B ,若直线AB 的斜率为32,则该椭圆的离心率为______.16.已知f (x )是偶函数,当0x ≥时,()()2log 1f x x =+,则满足()2f x x >的实数x 的取值范围是______.四、解答题17.已知数列{}n a 是等差数列,1324,,a a a a +成等比数列,56a =. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:()221n n S n +<+.18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos sin cos c B a A b C =-. (1)判断ABC 的形状; (2)若3ab ,D 在BC 边上,2BD CD =,求cos ADB ∠的值.19.如图,在直三棱柱111ABC A B C 中,D 、E 分别是AB 、1BB 的中点,12AA AC CB ==,AB =.(1)求证:1//BC 平面1A CD ;(2)若1BC =,求四棱锥1C A DBE -的体积; (3)求直线1BC 与平面1ACE 所成角的正弦值.20.新高考模式下,数学试卷不分文理卷,学生想得高分比较困难.为了调动学生学习数学的积极性,提高学生的学习成绩,张老师对自己的教学方法进行改革,经过一学期的教学实验,张老师所教的80名学生,参加一次测试,数学学科成绩都在[]50,100内,按区间分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)求这80名学生的平均成绩(同一区间的数据用该区间中点值作代表);(2)按优秀与非优秀用分层抽样方法随机抽取10名学生座谈,再在这10名学生中,选3名学生发言,记优秀学生发言的人数为随机变量X ,求X 的分布列和期望.21.已知12,F F 分别为双曲线()222210,0x ya b a b-=>>左、右焦点,(P 在双曲线上,且124PF PF ⋅=. (1)求此双曲线的方程;(2)若双曲线的虚轴端点分别为12,B B (2B 在y 轴正半轴上),点,A B 在双曲线上,且()22B A B B μμ=∈R ,11B A B B ⊥,试求直线AB 的方程.22.已知函数()()211e 12x f x a x a x ax a =---+++,()R a ∈.(1)当1a =时,求f (x )的单调区间;(2)当310,e a ⎛⎫∈ ⎪⎝⎭时,求证:函数f (x )有3个零点.参考答案:1.B【分析】化简集合A 和B ,即可得出A B ⋂的取值范围. 【详解】解:由题意在{}24xA x =<,{}1B =≤中,{}2A x x =<,{}12B x x =≤≤ ∴{}12A B x x ⋂=≤< 故选:B. 2.D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-, 故实部与虚部的和为431555-+=-,故选:D. 3.C【分析】根据二项式定理可求得()523x +展开式通项,由此可确定12,T T ,结合多项式乘法运算进行整理即可确定x 的系数. 【详解】()523x +展开式的通项公式为:()55155C 2323C rr r r r r rr T x x --+=⋅⋅=⋅; 当1r =时,412523C 240T x x =⨯=;当0r =时,51232T ==;x ∴的系数为24023224064176-⨯=-=.故选:C. 4.A【分析】利用二倍角公式化简为正、余弦的齐次分式,分式上下同除2cos α,代入1tan 5α=可得答案.【详解】2222cos 2cos sin sin sin 2sin 2sin cos αααααααα-=--22111tan 825123tan 2tan 255ααα--===---, 故选:A. 5.C【分析】根据圆柱和圆台的体积公式计算可得结果. 【详解】下端圆柱的体积为:224π91944π⋅=6107≈3cm ,上端圆台的体积为:()22116π1414993⨯+⨯+16π4033=⨯1612663≈⨯6752=3cm , 所以该何尊的体积估计为61076752+=128593cm . 因为12850最接近12859,所以估计该何尊可以装酒128503cm . 故选:C 6.D【分析】根据函数()f x 是定义域为R 的奇函数,且()()2f x f x =-得出函数()f x 是周期为4的周期函数,进而求解.【详解】因为函数()f x 是定义域为R 的奇函数,且()()2f x f x =-, 所以(2)()()f x f x f x +=-=-,所以(4)()f x f x +=, 即函数()f x 是周期为4的周期函数,因为函数()f x 是定义域为R 的奇函数,所以(0)0f =, 因为()()2f x f x =-,所以(2)(0)0f f ==, 又因为202245052=⨯+,所以(2022)(2)0f f ==, 故选:D . 7.C【分析】将该四棱锥的外接球放在一个长方体内,画出图形,利用已知条件找出球心,建立相应的关系式,求出外接球的半径,利用球体表面积公式计算即可. 【详解】由题意将该四棱锥放在一个长方体的中, 如图∴所示:取AD 的中点H ,连接PH ,连接,AC BD 交于1O ,由AP PD =则在等腰PAD 中有:PH AD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD=AD , 则PH ⊥平面ABCD , 又112AH AD ==, 所以在Rt PAH △中,3PH ===,由底面为正方形ABCD ,所以它的外接圆的圆心为对角线的交点1O , 连接1O H ,则1PH O H ⊥,PAD 外接圆的圆心为2O ,且在PH 上,过点1O ,2O 分别作平面ABCD 与平面PAD 的垂线,则两垂线必交于点O ,点O 即为四棱锥P ABCD -外接球的球心, 且1OO ⊥平面ABCD ,又PH ⊥平面ABCD ,即2O H ⊥平面ABCD , 所以1OO ∥PH ,所以四边形12OO HO 为矩形. 如图∴连接2AO ,则22AO PO =,在2Rt AO H 中,22223O H PH PO PH AO AO =-=-=-,所以()2222222213AO AH HO AO =+=+-,解得253AO =,所以254333O H =-=,所以1243OO O H ==, 在图∴中连接OB ,由112O B BD =所以在1Rt OO B 中,OB ==即四棱锥P ABCD -外接球的半径为R OB ==, 所以四棱锥P ABCD -外接球的表面积为: 221364πR 4ππ9S ==⨯=⎝⎭,故选:C. 8.D【分析】设出A 、B 的坐标,由1212k k =-解得12y y 的值,再分别求出点M 、点N 的坐标,求得||MN 的式子,研究AB l 恒过x 轴上的定点可得点P 的坐标,进而用方法1基本不等式或方法2函数思想求得三角形面积的最小值.【详解】设211(,)4y A y ,222(,)4y B y ,则114k y =,224k y =, ∴12121612k k y y ==- ∴1232y y =-, ∴设OA l :14y x y =,令=1x -得:14y y =-,∴14(1,)M y --,同理:24(1,)N y -- ∴12121212||44||||4||8y y y y MN y y y y --=-+==, 设AB l :x my t =+,221044x my t y my t y x=+⎧⇒--=⎨=⎩ 20m t ∆=+>,124y y m +=,124y y t ,又∴1232y y =-,∴432t -=-,解得:8t =, ∴AB l :8x my =+恒过点(8,0),∴AB l 与x 轴交点P 的坐标为(8,0),即:(8,0)P , ∴点P 到准线=1x -的距离为8+1=9. 方法1:1211||1321||||888y y MN y y -==+≥⨯=1||y =.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN的面积的最小值为2. 方法2:12||||8y y MN -==∴20m ≥∴||MN ≥m =0时取得最小值.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN故选:D. 9.AD【分析】首先将函数()f x 化成一个三角函数,然后根据对称轴公式求得ω的表达式,对整数k 赋值求得结果.【详解】()()1cos sin 26f x x x x ωωωπ=+=+,因为函数()f x 的图象关于直线6x π=对称,所以662k ωπππ+=+π,k ∈Z ,解得26k ω=+,因为0ω>,所以当0k =时,2ω=;所以当1k =时,8ω=. 故选:AD. 10.ABD【分析】以O 为坐标原点可建立平面直角坐标系,利用平面向量数量积的坐标运算依次验证各个选项即可.【详解】四边形ABCD 为菱形,AC BD ∴⊥,则以O 为坐标原点,,OC OD 正方向为,x y 轴,可建立如图所示平面直角坐标系,2AB AD ==,60DAB ∠=,2BD ∴=,OA OC ===()0,0O ∴,()A ,()0,1B -,()0,1D ,12E ⎫⎪⎪⎝⎭,对于A ,ACBD ,0AC BD ∴⋅=,A 正确;对于B ,()3,1AB =-,()3,1AD =,312AB AD ∴⋅=-=,B 正确;对于C ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,()BA =-,31122OE BA ∴⋅=-+=-,C 错误; 对于D ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,3122AE ⎛⎫= ⎪ ⎪⎝⎭,915442OE AE ∴⋅=+=,D 正确. 故选:ABD. 11.ABC【分析】根据题意求出基本事件总数、满足条件的基本事件数,利用古典概型概率公式及条件概率公式求解即可.【详解】由题意7个球中任取3个球的基本事件总数为:37C 35=这3个球都是红球的基本事件数为:33C 1=,所以事件A 发生的概率为:1()35P A =,故A 错误, 这3个球中至少有1个红球的基本事件数为:1221334343C C C C +C 1812131⋅+⋅=++=,所以事件B 发生的概率为:31()35P B =,故B 错误, 这3个球中至多有1个红球的基本事件数为:123344C C C 18422⋅+=+=,事件C 发生的概率为22()35P C =,故C 错误, 因为1()()35P AB P A ==, 所以由条件概率公式得:1()135(|)31()3135P AB P A B P B ===, 故D 正确, 故选:ABC. 12.BCD【分析】对于A :利用奇偶性的定义直接判断;对于B :利用极值的计算方法直接求解;对于C :先求出13c <,表示出244122161692781c x x c +=-+,即可求出;对于D :设切点()00,x y ,由导数的几何意义得到3200025460x x x --+=.设()322546g x x x x =--+,利用导数判断出函数()g x 有三个零点,即可求解.【详解】对于A :当0d =时,()32f x x x cx =++定义域为R .因为()()()()()3232f x x x c x x x cx f x -=-+-+-=-+-≠-, 所以函数()f x 不是奇函数.故A 错误;对于B :函数()f x 有极值⇔ ()f x 在R 上不单调.由()32f x x x cx d =+++求导得:()232f x x x c =++'.()f x 在R 上不单调⇔()f x '在R 上有正有负⇔4430c ∆=-⨯>⇔13c <.故B 正确.对于C :若函数f (x )有两个极值点1x ,2x ,必满足0∆>,即13c <.此时1x ,2x 为2320x x c ++=的两根,所以1212233x x c x x ⎧+=-⎪⎪⎨⎪=⎪⎩. 所以()22212121242293c x x x x x x +=+-=-.所以()()222244222212121242216162293992781cc c x x x xx x c +=+-=--=-+ 对称轴164272329c -=-=⨯,所以当13c <时,()224412216162116116292781932738181c x x c +=-+>⨯-⨯+=. 即4412281x x +>.故C 正确;对于D :若2c d ==-时,()3222f x x x x =+--.所以()2322f x x x '=+-.设切点()00,x y ,则有:()3200002000002203222y x x x y f x x x x ⎧=+--⎪-⎨=+-=⎪-⎩', 消去0y ,整理得:3200025460x x x --+=不妨设()322546g x x x x =--+,则()26104g x x x '=--.令()0g x '>,解得:2x >或13x <-;令()0g x '<,解得: 123x -<<.所以()g x 在1,3⎛⎫-∞- ⎪⎝⎭,()2,+∞上单调递增,在1,23⎛⎫- ⎪⎝⎭上单调递减.所以()()()()()32111119254660333327g x g =-=-----+=>极大值, ()()322225242660g x g ==⨯-⨯-⨯+=-<极小值.所以作出的图像如图所示:因为函数()g x 有三个零点,所以方程3200025460x x x --+=有三个根,所以过点()20,作曲线()y f x =的切线有且仅有3条.故D 正确. 故选:BCD. 13.710##0.7 【分析】根据极差的定义可得()314t =--=,先求出平均数,再从方差,从而可求2s t.【详解】极差()314t =--=,平均数为()()1122315-+-+++=,故方差()()()()()222222114111*********s ⎡⎤=--+--+-+-+-=⎣⎦. 所以21475410s t ==.故答案为:710. 14.()2221x y +-=(答案不唯一)【分析】根据圆的圆心和半径,结合直线和圆的位置关系及两个圆的位置关系计算即可. 【详解】设圆心C 为()00,x y ,由已知圆C 与直线l :=1x -相切, 圆C 与圆O :221x y +=相切,可得0112x ⎧--=,即得0002x y =⎧⎨=⎩或0002x y =⎧⎨=-⎩或0020x y =-⎧⎨=⎩, 且已知半径为1,所以圆的方程可以为: ()2221x y +-=或()2221x y ++=或2221x y故答案为: ()2221x y +-=(答案不唯一) 15.12##0.5【分析】由题意设(),0A a -,2,b B c a ⎛⎫- ⎪⎝⎭,再由232AB b a k c a -==-+结合222a b c =+,即可得出答案.【详解】由题意可得,(),0A a -,(),0F c -,令椭圆()222210x y a b a b +=>>中x c =-,解得:2b y a=±,所以2,b B c a ⎛⎫- ⎪⎝⎭,而2032AB b a k c a -==-+,则2232a c a c a c a a -+==-+, 解得:12e =. 故答案为:12. 16.()(),01,-∞⋃+∞【分析】利用奇偶性和函数的单调性解不等式.【详解】当0x ≥时,()()2log 1f x x +,函数在[)0,∞+上单调递增,∴()(0)0f x f ≥=,又()f x 是偶函数,所以()f x 的值域为[)0,∞+.当0x ≥时,()()2log 1f x x +,不等式()2f x x >()22log 1x x +>,即()22log 10x x+->,设()22()log 1g x x x =+-,由函数y =()2log 1y x =+,2y x=-在()0,∞+上都是增函数, 得()g x 在()0,∞+上是增函数,由(1)0g =,则()0(1)g x g >=解得1x >; 当0x <时,由函数值域可知()0f x >,此时20x<,所以()2f x x >恒成立;综上可知,满足()2f x x>的实数x 的取值范围是()(),01,-∞⋃+∞.故答案为:()(),01,-∞⋃+∞ 17.(1)1n a n =+ (2)证明见解析【分析】(1)根据等比数列定义和等差数列通项公式可构造方程组求得1,a d ,进而确定n a ; (2)利用裂项相消法可求得n S ,整理即可证得结论. 【详解】(1)设等差数列{}n a 的公差为d ,1324,,a a a a +成等比数列,()23124a a a a ∴=+,即()()2111224a d a a d +=+,又5146a a d =+=,则由()()2111122446a d a a d a d ⎧+=+⎪⎨+=⎪⎩得:121a d =⎧⎨=⎩或163a d =-⎧⎨=⎩, 当16a =-,3d =时,30a =,不满足1324,,a a a a +成等比数列,舍去; 12a ∴=,1d =,()211n a n n ∴=+-=+.(2)由(1)得:()()111111212n n a a n n n n +==-++++, 1111111111233445112n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()112222n n n =-=++, ()221n n S n n ∴+=<+.18.(1)直角三角形 (2)0【分析】(1)根据正弦定理的边角互化,即可得到结果;(2)由(1)中结论即可得到cos B ∠,从而得到AD 的值,然后在ABD △中结合余弦定理即可得到结果.【详解】(1)因为cos sin cos c B a A b C =-,由正弦定理可得, 2sin cos sin cos sin C B B C A +=即()2sin sin B C A +=所以()2sin sin ,0,πsin 1A A A A =∈⇒=且()0,πA ∈,所以π2A =即ABC 是直角三角形.(2)在直角ABC 中,有22223b c a b +==,即222c b =,所以c =, 又因为2BD CD =,所以23BD BC ==且cos c B a === 在ABD △中,由余弦定理可得,22222242cos 2b b AD AB BD AD B AB BD +-+-∠===⋅解得AD =, 在ABD △中由余弦定理可得,222222242cos 02b b b AD BD AB ADB AD BD +-+-∠===⋅19.(1)证明见解析 (2)23【分析】(1)连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点,利用中位线的性质可得出1DF //BC ,再利用线面平行的判定定理可证得结论成立;(2)过点C 在平面ABC 内作CM AB ⊥,垂足为点M ,证明出CM ⊥平面11AA B B ,计算出CM 的长以及四边形1A DBE 的面积,利用锥体的体积公式可求得四棱锥1C A DBE -的体积; (3)设1BC =,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面1A CE 所成角的正弦值. 【详解】(1)证明:连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点, 因为D 、F 分别为AB 、1AC 的中点,则1DF //BC ,因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,1//BC ∴平面1A CD . (2)解:因为1BC =,则122AA AC CB ===,AB == 222AC BC AB ∴+=,即AC BC ⊥,过点C 在平面ABC 内作CM AB ⊥,垂足为点M , 因为1AA ⊥平面ABC ,CM ⊂平面ABC ,1CM AA ∴⊥,又因为CM AB ⊥,1AB AA A ⋂=,AB 、1AA ⊂平面11AA B B ,CM ∴⊥平面11AA B B ,由等面积法可得AC BC CM AB ⋅==因为1AA ⊥平面ABC ,AB ⊂平面ABC ,1AA AB ∴⊥,又因为11//AA BB 且11AA BB =,故四边形11AA B B 为矩形,所以,1111111212AA D A B E AA B B A DBE S S S S ⎫=--==⎪⎪⎝⎭△△矩形四边形11112333C A DBE A DBE V S CM -∴=⋅==四边形.(3)解:不妨设1BC =,因为AC BC ⊥,1CC ⊥平面ABC ,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,1,0B 、()0,0,0C 、()10,0,2C 、()12,0,2A 、()0,1,1E , 设平面1A CE 的法向量为(),,n x y z =,()12,0,2CA =,()0,1,1CE =, 则1220n CA x z n CE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,可得()1,1,1n =-, 因为()10,1,2BC =-,则111cos ,BC n BC n BC n⋅<>==-=⋅因此,直线1BC 与平面1A CE20.(1)73.5(2)分布列见解析;期望()910E X =【分析】(1)根据频率分布直方图估计平均数的方法直接计算即可;(2)根据频率分布直方图可确定优秀与非优秀学生对应的频率,根据分层抽样原则可确定10名学生中优秀学员的人数,由此可得X 所有可能的取值,根据超几何分布概率公式可求得X 每个取值对应的概率,由此可得分布列;由数学期望计算公式可求得期望. 【详解】(1)80名学生的平均成绩为()550.01650.03750.03850.025950.00510⨯+⨯+⨯+⨯+⨯⨯=73.5.(2)根据频率分布直方图知:优秀学员对应的频率为()0.0250.005100.3+⨯=,则非优秀学员对应的频率为10.30.7-=,∴抽取的10名学生中,有优秀学生100.33⨯=人,非优秀学生100.77⨯=人;则X 所有可能的取值为0,1,2,3,()37310C 3570C 12024P X ====;()1237310C C 63211C 12040P X ====;()2137310C C 2172C 12040P X ====;()33310C 13C 120P X ===;X ∴的分布列为:∴数学期望()721719012324404012010E X =⨯+⨯+⨯+⨯=. 21.(1)22145x y -=(2)y x =+y =【分析】(1)根据平面向量数量积坐标运算和点在双曲线上,可构造方程组求得22,a b 的值,由此可得双曲线方程;(2)由2,,A B B 三点共线可设:AB y kx =+用向量垂直的坐标表示,代入韦达定理结论可解方程求得k 的值,由此可得直线AB 方程. 【详解】(1)设()1,0F c -,()()2,00F c c >,则(1PF c =--,(2PF c =-,212854PF PF c ∴⋅=-+=,解得:3c =,229a b ∴+=;又P 在双曲线上,则22851a b-=,24a ∴=,25b =, ∴双曲线的方程为:22145x y -=.(2)由(1)得:(10,B,(2B ,()22B A B B μμ=∈R ,2,,A B B ∴三点共线,直线AB斜率显然存在,可设:AB y kx =+()11,A x y ,()22,B x y ,由22145y kx x y ⎧=⎪⎨-=⎪⎩得:()2254400k x ---=,()22540Δ801040k k ⎧-≠⎪∴⎨=->⎪⎩,即252k <且254k ≠,12x x ∴+=1224054x x k =--, 11B A B B ⊥,110B A B B ∴⋅=,又(111,B A x y =,(122,B B x y =,()1112121212125B A B B x x y y x x y y y y ∴⋅=+=+++(()1212125x x kx kx k x x =++++()()()222121222401801202005454k k kx xx x k k+=++++=-++=--,解得:k =252k <且254k ≠,∴直线AB方程为:y x =y = 【点睛】关键点点睛:本题考查直线与椭圆的综合应用问题,解题关键是能够利用平面向量垂直关系的坐标表示来构造等量关系,结合韦达定理的结论得到关于所求变量的方程的形式,从而解方程求得变量的值.22.(1)函数()f x 的单调递增区间为(,0)-∞和(1,)+∞,单调递减区间为(0,1). (2)证明过程见详解【分析】(1) 因为1a =,所以函数()()212e 22x f x x x x =--++,对函数求导,利用导函数的正负来判断函数的单调性即可求解;(2)对函数进行求导,求出导函数的零点,根据条件可得:函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,然后利用零点存在性定理即可证明.【详解】(1)因为1a =,所以函数()()212e 22x f x x x x =--++,所以()e (2)e 1(1)(e 1)x x x f x x x x '=+--+=--,当1x >或0x <时,()0f x '>,此时函数()f x 单调递增; 当01x <<时,()0f x '<,此时函数()f x 单调递减; 综上:函数()f x 的单调递增区间为(,0)-∞和(1,)+∞, 单调递减区间为(0,1).(2)因为函数()()211e 12x f x a x a x ax a =---+++,所以()e (1)e ()e ()()(e 1)x x x x f x a a x a x a a x a x a x a a '=+---+=---=--,令()0f x '=可得:x a =或ln x a =-,因为310,e a ⎛⎫∈ ⎪⎝⎭,所以ln 3a ->,当x a <或ln x a >-时,()0f x '>,此时函数()f x 单调递增; 当ln a x a <<-时,()0f x '<,此时函数()f x 单调递减;所以函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,故当x a =时,函数取极大值()()22e 10102aaf a a a f a =-+++>=->,因为当2x =-时,221(2)(3)10ef a a a -=-+--<;所以0(2,)x a ∃∈-,使得0()0f x =; 当ln x a =-时,函数取极小值,ln 2211(ln )(ln 1)e (ln )ln 1ln ln (ln )22a f a a a a a a a a a a a a --=-----++=---1ln (1ln )02a a a =-++<,(因为ln 3a ->,所以13ln 22a <-,因为3110e 2a <<<,所以312a +<,也即11ln 02a a ++<)所以0(,ln )x a a '∃∈-,使得0()0f x '=;又当x →+∞时,()f x →+∞,所以0(ln ,)x a ''∃∈-+∞,使得0()0f x ''=;故当310,e a ⎛⎫∈ ⎪⎝⎭时,函数()f x 有3个零点.【点睛】函数零点的求解与判断方法:答案第17页,共17页 (1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用导数求出函数的极值点,再利用零点存在性定理进行判断零点的个数.。

高三数学双曲线试题答案及解析

高三数学双曲线试题答案及解析

高三数学双曲线试题答案及解析1.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点与抛物线y2=16x的焦点相同,则双曲线的方程为________.【答案】-=1【解析】由条件知双曲线的焦点为(4,0),所以,解得a=2,b=2,故双曲线方程为-=1.2.若双曲线-=1(a>b>0)的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成7∶5的两段,则此双曲线的离心率为()A.B.C.D.【答案】C【解析】y2=2bx的焦点为(,0),线段F1F2被点(,0)分成7∶5的两段,得=,可得双曲线的离心率为,故选C.3.已知抛物线y2=4x的准线与双曲线-y2=1交于A、B两点,点F是抛物线的焦点,若△FAB为直角三角形,则该双曲线的离心率为()A. B. C.2 D.【答案】D【解析】抛物线y2=4x的焦点为(1,0),准线方程为x=-1,设直线x=-1与x轴的交点为C,则|FC|=2.因为△FAB为直角三角形,所以根据对称性可知,|AC|=|FC|=2,则A点的坐标为(-1,2),代入双曲线方程得-4=1,所以a2=,c2=+1=,e2==6,所以离心率e =,选D.4.已知双曲线="1" 的两个焦点为、,P是双曲线上的一点,且满足,(1)求的值;(2)抛物线的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.【答案】(1) (2)16【解析】(1)根据题意,又,,,又|P F|•|PF|="|" F F|=, |P F|<4,得在区间(0,4)上有解,所以因此,又,所以(2)双曲线方程为=1,右顶点坐标为(2,0),即所以抛物线方程为直线方程为由(1)(2)两式联立,解得和所以弦长|AB|==165.(2013•天津)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()A.1 B. C.2 D.3【答案】C【解析】∵双曲线,∴双曲线的渐近线方程是y=±x又抛物线y2=2px(p>0)的准线方程是x=﹣,故A,B两点的纵坐标分别是y=±,双曲线的离心率为2,所以,则,A,B两点的纵坐标分别是y=±=,又,△AOB的面积为,x轴是角AOB的角平分线∴,得p=2.故选C.6.若双曲线的离心率为,则m=A.B.3C.D.2【答案】B【解析】因为,所以。

高中试卷-专题12 双曲线(含答案)

高中试卷-专题12 双曲线(含答案)

专题12 双曲线一、单选题1.(2019·浙江省高三期中)双曲线的焦点坐标为( )A .B .C .D .【答案】B 【解析】由可得,焦点在轴上,所以,因此所以焦点坐标为;故选B2.(2020·安徽省高三三模(文))已知双曲线的离心率为2,则实数的值为( )A .4B .8C .12D .16【答案】C 【解析】因为双曲线的离心率为2,解得.故选:C.3.(2019·重庆巴蜀中学高二期中(理))下列双曲线中,渐近线方程为的是( )A .B .C .D .【答案】D 【解析】C. ,渐近线为:;D. ,渐近线为:;故选:.222=2x y -(1,0)±((0,1)±(0,2222x y -=22a 2,1b ==x 222a 3c b =+=c =()2214x y m-=m 2214x y m -=2=12m =32y x =±22132x y -=22132y x -=22194x y -=22194y x -=22194x y -=23y x =±22194y x -=32y x =±D4.(2020·安徽省高三三模(理))已知双曲线离心率为3,则双曲线C 的渐近线方程为( )A .B .C .D .【答案】C 【解析】因为,所以,由双曲线的几何性质可得渐近线方程为:,故选:C5.(2019·安徽省高二期末(理))已知双曲线的焦距为线方程为,则焦点到渐近线的距离为( )A .1BC .2D.【答案】A 【解析】由题知:,.到直线的距离.故选:A6.(2020·四川省成都外国语学校高二开学考试(理))已知双曲线的左,右焦点分别为,,过的直线分别与两条渐近线交于、两点,若,,则()A.B .C .1D .【答案】C()2222:10,0x y C a b a b-=>>y x =±y =y =±y x =3c e a ===b a =y =±2222:1(0,0)x y C a b a b-=>>12y x =±2c =c =F 2F 20x y -=1d 22:13y C x -=1F 2F 1F l A B 120F B F B ×=uuu r uuur 1F A AB l =uuu r uuu rl =321234【解析】由,可知,则,因为双曲线的渐近线为,所以,,故为正三角形,且,所以为的中位线,为线段的中点,即,故.故选:C.7.(2020·天津高三一模)已知双曲线,则双曲线的离心率为( )A .BCD【答案】A 【解析】将双曲线的标准方程表示为,,因此,该双曲线的离心率为.故选:A.120F B F B ×=uuu r uuur 12F B F B ^2BO OF c ==22:13y C x -=y =2120AOF °Ð=260BOF °Ð=2BOF V 2//AO BF AO 12BF F △A 1F B 1F A AB =uuu r uuu r1l =()22104x y m m-=>0y ±=2()222210,0x y a b a b-=>>0y ±=2e ==8.(2020·江西省靖安中学高二月考(理))已知双曲线中心为原点,焦点在轴上,过点,且渐近线方程为,则该双曲线的方程为( )A .B .C .D .【答案】C 【解析】渐近线方程为,设双曲线方程为,将的坐标代入方程得,,求得则该双曲线的方程为.故选:C.9.(2019·天津高三三模(文))双曲线的离心率为2,焦点到渐近线的距离为的焦距等于( ).A .2B .C .4D .=【答案】C【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .10.(2020·安徽省高三月考(文))已知双曲线,则它的一条渐近线被圆截得的线段长为( )A .B .CD .【答案】Dx 2)2y x ±=2212y x -=2242x y -=2214y x -=2221x y -=Q 20x y ±=224x y l -=0l ¹2)P 222l -=4l =2214y x -=2222:1(0,0)x y C a b a b-=>>C 22221(0,0)x y a b a b -=>>2260x y x +-=323【解析】由题意可得e ,即c a ,即有b a ,设双曲线的一条渐近线方程为yx ,即为y =x ,圆的圆心为(3,0),半径r =3,即有圆心到渐近线的距离为d ,可得截得的弦长为.故选:D.二、多选题11.(2020·山东省胶州市第一中学高三一模)已知双曲线C :的左、右焦点分别为,,则能使双曲线C 的方程为的是( )A .离心率为B .双曲线过点C .渐近线方程为D .实轴长为4【答案】ABC 【解析】由题意,可得:焦点在轴上,且;A 选项,若离心率为,则,所以,此时双曲线的方程为:,故A 正确;B 选项,若双曲线过点,则,解得:;此时双曲线的方程为:,故B 正确;C 选项,若双曲线的渐近线方程为,可设双曲线的方程为:,ca=====ba=2260x y x +-=====22221(0,0)x y a b a b -=>>1(5,0)F -2(5,0)F 221169x y -=5495,4æöç÷èø340±=x y x 5c =544a =2229b c a =-=221169x y -=95,4æöç÷èø22222812516125a b a b c ìïï-=íï+==ïî22169a b ì=í=î221169x y -=340±=x y 22(0)169x y m m -=>所以,解得:,所以此时双曲线的方程为:,故C 正确;D 选项,若实轴长为4,则,所以,此时双曲线的方程为:,故D 错误;故选:ABC.12.(2020·湖南省衡阳市一中高二期末)已知双曲线,右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若 ,则有( )A .渐近线方程为B .C .D .渐近线方程为【答案】AC 【解析】双曲线C:1(a >0,b >0)的右顶点为A (a ,0),以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M、N 两点.若∠MAN=60°,可得A 到渐近线bx +ay =0的距离为:b cos30°,,即e.且,故渐近线方程为渐近线方程为故选:AC .13.(2020·高密市第一中学高三月考)已知点是双曲线:的右支上一点,,为双曲线的左、右焦点,的面积为20,则下列说法正确的是( )A .点的横坐标为B .的周长为216925c m m =+=1m =221169x y -=2a =22221b c a =-=224121x y -=2222:1(0,0)x y C a b a b -=>>A A b A A C M N 60MAN Ð=°y x =e =e =y =2222x y a b-===a c ==b a ==y x =P E 221169x y -=1F 2F E 12PF F D P 20312PF F D 803C .小于D .的内切圆半径为【答案】ABC 【解析】设的内心为,连接,双曲线:中的,,,不妨设,,,由的面积为20,可得,即,由,可得,故A 符合题意;由,且,,可得,,则,则,故C 符合题意;由,则的周长为,故B 符合题意;12F PF Ð3p12PF F D 3412F PF D I 22IP IF IF 、、E 221169x y -=4a =3b =5c =()P m n ,0m >0n >12PF F D 1215202F F n cn n ===4n =2161169m -=203m =2043P æöç÷èø,()150F -,()250F ,11235PF k =2125PF k =(121212360535tan 012123191535F PF -==δ+´123F PF p<Ð12371350333PF PF +=+=+=12PF F D 50801033+=设的内切圆半径为,可得,可得,解得,故D 不符合题意.故选:ABC .三、填空题14.(2018·民勤县第一中学高二期末(文))双曲线的渐近线方程为 【答案】【解析】由双曲线方程可知渐近线方程为15.(2020·天水市第一中学高二月考(文))以双曲线的焦点为顶点,顶点为焦点的椭圆方程为_____.【答案】【解析】由双曲线的相关性质可知,双曲线的焦点为,顶点为,所以椭圆的顶点为,焦点为,因为,所以椭圆的方程为,故答案为。

高考数学专题《双曲线》习题含答案解析

高考数学专题《双曲线》习题含答案解析

专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x ya ba b-=>>的一条渐近线与直线230x y-+=平行,则该双曲线的离心率是()A B C.2D【答案】D【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为by xa=±,易知by xa=与直线230x y-+=平行,所以=2bea⇒=故选:D.2.(2021·北京高考真题)若双曲线2222:1x yCa b-=离心率为2,过点,则该双曲线的程为()A.2221x y-=B.2213yx-=C.22531x y-=D.22126x y-=【答案】B【分析】分析可得b,再将点代入双曲线的方程,求出a的值,即可得出双曲线的标准方程.【详解】2cea==,则2c a=,b=,则双曲线的方程为222213x ya a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a=,故b=因此,双曲线的方程为2213yx-=.故选:B3.(2021·山东高考真题)已知1F是双曲线22221x ya b-=(0a>,0b>)的左焦点,点P在双曲线上,直线1PF与x轴垂直,且1PF a=,那么双曲线的离心率是()练基础AB C .2 D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20b y a =,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可. 【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =, 因为直线1PF 与x 轴垂直,且1PF a =, 所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e = 故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( )A B C .2 D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0) 则a =( )A B .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c =,=,解得12a = , 故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的C 的焦距等于( ).A.2B.C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.221412x y -=B.221124x y -=C.2213x y -=D.2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=.本题选择D 选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m -=>0my +=,则C 的焦距为_________. 【答案】4 【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】0my +=化简得y =,即b a ,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____. 【答案】y =.【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.10.(2020·全国高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y =x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A B C .2D【答案】B 【解析】由题可知22,PF b OF c ==PO a ∴=在2Rt PO F 中,222cos P O PF bF OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==)222224322b c bc a b cc+-∴=⇒=⋅ e ∴=故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心率为( )练提升A B .3CD .3【答案】D 【解析】由已知得M 为APQ 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==. 故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2BCD 【答案】A 【解析】因为OPQ △为等边三角形, 所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴= 所以2222223,4,4,2c a a c a e e -=∴=∴=∴=. 故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213x y -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅=,利用向量垂直的坐标表示,列方程求0x 即可. 【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+,200(2,)F P x =-,又220120403x F P F P x ⋅=-+=,∴0x = 故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,)42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1, 所以圆心()0,5到0bx ay -=的距离d 的范围为24d << 即24<<,而222+=a b c 所以524a c <<,即5542e << 故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c =(c 上纵坐标不为0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确; 由正弦定理得到2MAF 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确. 【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确; 对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,F F F P F P 分别切于点1,,A B C ,设切点1A (,0)x , 当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=, 在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=, 又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( ) A .点P 的轨迹是椭圆 B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN 的面积6PMNS =【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项. 【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =, 当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩, 所以132PMN S PM PN ==△,故C 对; 选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩, 所以162PMN S PM MN ==△,故D 对, 故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b -=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案. 【详解】因为双曲线()22122:10,0x y C a b a b -=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3 【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案. 【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-. 当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯=. 当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=. 故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1 【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案; 【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=1==c e a .11. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )A B C D 【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案. 【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =|OP |=( ) A B C D【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) ABC .2 D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,11224PFO P S OF y ∴=⋅==△,故选A . 5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,3c ,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====.。

高三数学双曲线试题答案及解析

高三数学双曲线试题答案及解析

高三数学双曲线试题答案及解析1.双曲线=1(a>0,b>0)的右焦点是抛物线y2=8x的焦点F,两曲线的一个公共点为P,且|PF| =5,则此双曲线的离心率为()A.B.C.2D.【答案】C【解析】,根据抛物线的焦半径公式知:,,代入得,代入双曲线方程,,解得:,,,故选C.【考点】双曲线与抛物线的性质2.已知双曲线的实轴长为2,则该双曲线的离心率为()A.B.C.D.【答案】D【解析】双曲线的实轴长为2,所以,此双曲线的为等轴双曲线,所以离心率为.【考点】1.双曲线的方程;2.双曲线的性质.3.是双曲线的右支上一点,、分别是圆和上的点,则的最大值等于 .【答案】9【解析】两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.【考点】双曲线的定义,距离的最值问题.4.设直线L过双曲线C的一个焦点,且与C的一条对称轴垂直,L与C交于A ,B两点,为C的实轴长的2倍,则C的离心率为A.B.C.2D.3【答案】B【解析】通径|AB|=得,选B5.在平面直角坐标系中,曲线的离心率为,且过点,则曲线的标准方程为.【答案】【解析】因为曲线的离心率为,所以曲线为等轴双曲线,其方程可以设为.因为过点,所以标准方程为.【考点】双曲线的性质6.双曲线的渐近线方程为【答案】【解析】双曲线的渐近线方程为,本题中,故渐近线方程为.【考点】双曲线的渐近线方程.7.已知双曲线的右焦点为,则该双曲线的渐近线方程为________.【答案】【解析】此题主要考查双曲线的内容,难度不大.由条件得,,从而双曲线方程为,故渐近线方程为.【考点】双曲线.8.已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,则此双曲线的离心率e的取值范围是________.【答案】 (1,]【解析】根据双曲线定义,设,则|,故3r=2a,即,即.根据双曲线的几何性质,,即,即,即e≤.又e>1,故双曲线的离心率e的取值范围是(1,] .故填(1,]9.如图,动点与两定点、构成,且,设动点的轨迹为.(1)求轨迹的方程;(2)设直线与轴相交于点,与轨迹相交于点,且,求的取值范围.【答案】(1)(2)【解析】(1)设M的坐标为(x,y),显然有x>0,.当∠MBA=90°时,点M的坐标为(2,±3)当∠MBA≠90°时,x≠2.由∠MBA=2∠MAB,有tan∠MBA=,即化简得:,而点(2,±3)在曲线上,综上可知,轨迹C的方程为.(2)由消去y,可得.(*)由题意,方程(*)有两根且均在(1,+)内,设,所以解得m>1,且m2.设Q、R的坐标分别为,由有,所以,由m>1,且m2,有所以的取值范围是.10.设、是双曲线:(,)的两个焦点,是上一点,若,且△最小内角的大小为,则双曲线的渐近线方程是()A.B.C.D.【答案】B【解析】不妨设,则由已知,得,又,因此中最小角为,由余弦定理得,解得,所以,渐近线方程为,选B.【考点】双曲线的定义,余弦定理,渐近线方程.11.已知双曲线,以右顶点为圆心,实半轴长为半径的圆被双曲线的一条渐近线分为弧长为1:2的两部分,则双曲线的离心率为()A.B.C.D.【答案】B【解析】由题意得,弦所对圆心角为所以圆心到弦即渐近线的距离为因此有【考点】点到直线距离,双曲线的渐近线12.双曲线的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( )A.B.C.D.【答案】A【解析】在直角三角形中,设则,因此离心率为【考点】双曲线定义13.双曲线的一个焦点到其渐近线的距离是,则;此双曲线的离心率为.【答案】2;.【解析】由方程可得右焦点为,一条渐近线为,由,可得,,故,双曲线的离心率为.【考点】双曲线的简单性质.14.双曲线左支上一点到直线的距离为,则()A.2B.-2C.4D.-4【答案】B【解析】利用点到直线的距离公式,得,即,因为双曲线左支上一点,故应在直线的上方区域,∴,∴.∵在双曲线上,∴,∴,∴.【考点】1.直线与双曲线的位置关系;2.点到直线的距离公式.15.在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为,求圆P的方程.【答案】(1)y2-x2=1 (2)x2+(y-1)2=3或x2+(y+1)2=3【解析】解:(1)设P(x,y),圆P的半径为r.由题设y2+2=r2,x2+3=r2,从而y2+2=x2+3.故P点的轨迹方程为y2-x2=1.(2)设P(x0,y).由已知得=.又P点在双曲线y2-x2=1上,从而得由得此时,圆P的半径r=.由得此时,圆P的半径r=.故圆P的方程为x2+(y-1)2=3或x2+(y+1)2=3.16. 点A 是抛物线C 1:y 2=2px(p>0)与双曲线C 2:-=1(a>0,b>0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p,则双曲线C 2的离心率等于( ) A . B . C .D .【答案】C【解析】设A(x 0,y 0), ∵A 在抛物线上, ∴x 0+=p, ∴x 0=, 由=2px 0得y 0=p 或y 0=-p.∴双曲线渐近线的斜率==2.∴e===.故选C.17. 点A(x 0,y 0)在双曲线-=1的右支上,若点A 到右焦点的距离等于2x 0,则x 0= .【答案】2 【解析】由-=1可知,a 2=4,b 2=32,∴c 2=36,c=6,右焦点F(6,0), 由题意可得解方程组可得x 0=或x 0=2. ∵点A 在双曲线右支上, ∴x 0≥2,∴x 0=2.18. 已知双曲线C:-=1的焦距为10,点P(2,1)在C 的渐近线上,则C 的方程为( )A .-=1B .-=1C .-=1D .-=1【答案】A 【解析】-=1的焦距为10, ∴c=5=.①又双曲线渐近线方程为y=±x,且P(2,1)在渐近线上, ∴=1,即a=2b.②由①②解得a=2,b=,故选A.19. 已知双曲线-=1的离心率为2,焦点与椭圆+=1的焦点相同,那么双曲线的焦点坐标为;渐近线方程为.【答案】(±4,0)x±y=0【解析】∵双曲线的焦点与椭圆的焦点相同,∴c=4.∵e==2,∴a=2,∴b2=12,∴b=2.∵焦点在x轴上,∴焦点坐标为(±4,0),渐近线方程为y=±x,即y=±x,化为一般式为x±y=0.20.已知△ABC外接圆半径R=,且∠ABC=120°,BC=10,边BC在x轴上且y轴垂直平分BC边,则过点A且以B,C为焦点的双曲线方程为()A.-=1B.-=1C.-=1D.-=1【答案】D【解析】由正弦定理知sin∠BAC==,∴cos∠BAC=,|AC|=2Rsin∠ABC=2××=14,sin∠ACB=sin(60°-∠BAC)=sin60°cos∠BAC-cos60°sin∠BAC=×-×=,∴|AB|=2Rsin∠ACB=2××=6,∴2a=||AC|-|AB||=14-6=8,∴a=4,又c=5,∴b2=c2-a2=25-16=9,∴所求双曲线方程为-=1.故选D.21.已知m,n为两个不相等的非零实数,则方程mx-y+n=0与nx2+my2=mn所表示的曲线可能是()【答案】C【解析】通过直线斜率等于m,在y轴上的截距为n,从直线中可判断m,n的正负,从而确定nx2+my2=mn为椭圆还是双曲线,选项C中,从直线可以看出m>0,n<0,而nx2+my2=mn可化为+ =1,即焦点在x轴上的双曲线.22.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,-).(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:·=0.(3)求△F1MF2的面积.【答案】(1) x2-y2=6 (2)见解析 (3)6【解析】(1)∵e=,∴可设双曲线方程为x2-y2=λ(λ≠0).∵过点P(4,-),∴16-10=λ,即λ=6.∴双曲线方程为x2-y2=6.(2)方法一:由(1)可知,双曲线中a=b=,∴c=2,∴F1(-2,0),F2(2,0).∴=,=,·==-.∵点M(3,m)在双曲线上,∴9-m2=6,m2=3. 故·=-1,∴MF1⊥MF2.∴·=0.方法二:∵=(-3-2,-m),=(2-3,-m),∴·=(3+2)×(3-2)+m2=-3+m2. ∵M(3,m)在双曲线上,∴9-m2=6,即m2-3=0.∴·=0.(3)△F1MF2的底|F1F2|=4,△F1MF2的边F1F2上的高h=|m|=,∴=6.23.双曲线的离心率为()A.B.C.D.【答案】B.【解析】把双曲线的方程化为标准形式:.故选B.【考点】双曲线的简单的几何性质.24.双曲线x2-=1的离心率大于的充分必要条件是()A.m>B.m≥1C.m>1D.m>2【答案】C【解析】依题意,e=,e2=>2,得1+m>2,所以m>1.25.设F1,F2是双曲线C:-=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a且△PF1F2的最小内角为30°,则双曲线C的离心率为________.【答案】【解析】不妨设F1,F2分别为双曲线的左、右焦点,点P在双曲线的右支上,由双曲线的定义得|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,求得|PF1|=4a,|PF2|=2a.又在△PF1F2中,∠PF1F2=30°,所以∠PF2F1=90°,求得|F1F2|=2a,故双曲线C的离心率e==.26.已知点F是双曲线=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是________.【答案】(1,2)【解析】由题意知,△ABE为等腰三角形.若△ABE是锐角三角形,则只需要∠AEB为锐角.根据对称性,只要∠AEF<即可.直线AB的方程为x=-c,代入双曲线方程得y2=,取点A,则|AF|=,|EF|=a+c,只要|AF|<|EF|就能使∠AEF<,即<a+c,即b2<a2+ac,即c2-ac-2a2<0,即e2-e-2<0,即-1<e<2.又e>1,故1<e<2.27.已知点F是双曲线=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是________.【答案】(1,2)【解析】由题意知,△ABE为等腰三角形.若△ABE是锐角三角形,则只需要∠AEB为锐角.根据对称性,只要∠AEF< 即可.直线AB的方程为x=-c,代入双曲线方程得y2=,取点A,则|AF|=,|EF|=a+c,只要|AF|<|EF|就能使∠AEF< ,即<a+c,即b2<a2+ac,即c2-ac-2a2<0,即e2-e-2<0,即-1<e<2.又e>1,故1<e<2.28.已知0<θ<,则双曲线C1:=1与C2:=1的().A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等【答案】D【解析】对于C1:a=cos θ,b=sin θ,c=1,e=;对于C2:a=sin θ,b=sin θtan θ,c=tan θ,e=.∴C1与C2离心率相等.29.如图,、是双曲线,的左、右焦点,过的直线与双曲线的左、右两个分支分别交于点、,若为等边三角形,则该双曲线的离心率为()A.B.C.D.【答案】D【解析】点是双曲线上的点,所以,是等边三角形,所以,,,,,所以根据余弦定理得:,将数据代入得:,整理得:即,,所以渐近线的斜率,故选D.【考点】1.双曲线的定义;2.渐近线方程;3.余弦定理.30.以双曲线=1的右焦点为圆心,且被其中一条渐近线截得的弦长为6的圆的标准方程为________.【答案】(x-2)2+y2=25【解析】双曲线=1的右焦点为(2,0),渐近线方程为:y=2x,则2+32=r2,解得r2=25,故所求圆的标准方程为(x-2)2+y2=25.31.已知分别为双曲线的左、右焦点,P为双曲线右支上一点,满足,直线与圆相切,则该双曲线的离心率为()A.B.C.D.2【答案】C【解析】因为过0作直线的垂线,垂足为A,则,过点作直线的垂线,垂足为B.由于点O为的中点. ,所以点B是线段的中点,.又因为,.所以.所以在直角三角形中可得.所以可得.故选C.【考点】1.圆锥曲线的定义.2.等腰三角形的性质.3.直线与圆相切的性质.4.方程的思想.32.已知双曲线C1:的离心率为2,若抛物线C2:的焦点到双曲线C1的渐近线的距离是2,则抛物线C2的方程是()A.B.C.D.【答案】D【解析】双曲线C1:的离心率为2.所以,即,所以;双曲线的渐近线方程为:,抛物线C2:的焦点到双曲线C1的渐近线的距离为2,所以,所以.抛物线C的方程为.2故选D.【考点】双曲线、抛物线及其几何性质.33.双曲线的虚轴长是实轴长的2倍,则m= .【答案】【解析】首先我们应该知道方程表示双曲线的条件是,因此本题中有,从而双曲线中,,条件虚轴长是实轴长的2倍即为,因此可得.【考点】双曲线的标准方程及双曲线的性质.34.已知双曲线的右焦点为F,若过点F且倾斜角为30°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.B.C.D.【答案】D【解析】由已知得,双曲线的渐近线的倾斜角应大于或等于,,选D.【考点】双曲线的渐近线与离心率.35.已知双曲线的右焦点到其渐进线的距离为,则此双曲线的离心率为_____.【答案】【解析】依题意知,.设,且均为正数.则右焦点为,其渐进线的方程为:.即.右焦点到其渐进线的距离为,即,.又由.所以.所以,即.【考点】点到直线的距离公式、双曲线的几何性质36.与圆及圆都相外切的圆的圆心在( )A.一个椭圆上B.一支双曲线上C.一条抛物线上D.一个圆上【答案】B【解析】圆的圆心是,半径;圆的圆心是,半径是.根据题意可知,所求的圆的圆心到定点与的距离之差是,由双曲线的定义可知,所求圆的圆心的轨迹是双曲线的一支,即圆心在一支双曲线上.【考点】双曲线的定义及性质37.已知是双曲线的左焦点,是双曲线的右顶点,过点且垂直于轴的直线与双曲线交于两点,若是锐角三角形,则该双曲线的离心率的取值范围为()A.B.C.D.【答案】C【解析】由于为等腰三角形,可知只需即可,即,化简得.【考点】双曲线的离心率.38.若、为双曲线: 的左、右焦点,点在双曲线上,∠=,则到轴的距离为()A.B.C.D.【答案】B【解析】双曲线:,=4,=1,所以a=2,b=1。

专题10.3抛物线-3年高考2年模拟1年预测(理)(解析版)

专题10.3抛物线-3年高考2年模拟1年预测(理)(解析版)

第十章 圆锥曲线 专题3 抛物线(理科)【三年高考】1. 【2017课标1,理10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14C .12D .10【答案】A2. 【2017课标II ,理16】已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N 。

若M 为FN 【答案】6【解析】如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点'F ,做MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解析式可得准线方程为2x =-,则2,'4AN FF ==,在直角梯形'ANFF 中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,线段FN 的长度:336FN FM NM =+=+=。

3. 【2017北京,理18】已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.【解析】(Ⅰ)由抛物线C :22y px =过点P (1,1),得12p =.所以抛物线C 的方程为2y x =.抛物线C 的焦点坐标为(14,0),准线方程为14x =-. (Ⅱ)由题意,设直线l 的方程为12y kx =+(0k ≠),l 与抛物线C 的交点为11(,)M x y ,22(,)N x y .由212y kx y x⎧=+⎪⎨⎪=⎩,得224(44)10k x k x +-+=.则1221k x x k -+=,12214x x k =.因为点P的坐标为(1,1),所以直线OP 的方程为y x =,点A 的坐标为11(,)x y .直线ON 的方程为22y y x x =,点B 的坐标为2112(,)y yx x .因为21122112112222y y y y y y x x y x x x +-+-=122112211()()222kx x kx x x x x +++-=122121(22)()2k x x x x x -++=22211(22)42k k k k x --⨯+=0=,所以211122y y y x x +=.故A 为线段BM 的中点.4. 【2017浙江,21】如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点)2321)(,(<<-x y x P .过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求||||PQ PA ⋅的最大值.【解析】(Ⅰ)设直线AP 的斜率为k ,则2121412-=+-=x x x k ,∵1322x -<<,∴直线AP 斜率的取值范围是)1,1(-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是)1(23422+++-=k k k x Q ,因为|P A1)2x +=)1(12++k k ,|PQ |= 1)1)(1()(1222++--=-+k k k x x k Q ,所以|P A ||PQ |=3)1)(1(+--k k令3)1)(1()(+--=k k k f ,因为2)1)(24()('+--=k k k f ,所以 f (k )在区间)21,1(-上单调递增,)1,21(上单调递减,因此当k =12时,||||PQ PA ⋅取得最大值2716. 5.【2016高考新课标1卷】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB|=DE|=则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 【答案】B【解析】如图,设抛物线方程为22y px =,,AB DE 交x 轴于,C F 点,则AC =,即A 点纵坐标为,则A 点横坐标为4p ,即4OC p=,由勾股定理知2222DF OF DO r +==,2222AC OC AO r +==,即22224()()2p p+=+,解得4p =,即C 的焦点到准线的距离为4,故选B.6. 【2016高考浙江理数】若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9【解析】1109M M x x +=⇒=7. 【2016高考天津理数】设抛物线222x pt y pt ⎧=⎨=⎩,(t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A作l 的垂线,垂足为B .设C (72p ,0),AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为p 的 值为_________.8. 【2016高考新课标3理数】已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点. (I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程. 【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(Ⅰ)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=,所以AR FQ . (Ⅱ)设l 与x 轴的交点为)0,(1x D ,则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆.由题设可得221211ba x ab -=--,所以01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E .当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x y b a .而y ba =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y .9. 【2015高考浙江,理5】如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++【答案】A. 【解析】11--===∆∆AF BF x x AC BC S S A B ACF BCF ,故选A. 10.【2015高考上海,理5】抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = . 【答案】2【解析】因为抛物线上动点到焦点的距离为动点到准线的距离,因此抛物线上动点到焦点的最短距离为顶点到准线的距离,即1, 2.2pp == 11.【2015高考新课标1,理20】在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a>0)交与M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.【解析】(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x=,C在,)a处的切线方程为y a x -=-0y a --=.故24x y =在x=-处的到数值为,C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=或0y a ++=.(Ⅱ)存在符合题意的点,证明如下: 设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a +. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.【两年模拟】1. 【2017届湖南省邵阳市高三第二次联考】已知抛物线2:2(0)C y px p =>的焦点为F ,点(00,()2pM x x >是抛物线C 上一点,圆M 与线段MF 相交于点A ,且被直线2px =2,则AF 等于( )A.32B. 1C. 2D. 3 【答案】B【解析】由题意:M (x 0,2√2)在抛物线上,则8=2px 0,则px 0=4,① 由抛物线的性质可知, 02p DM x =-, 2MA AF = ,则0222332p MA AF MF x ⎛⎫===+ ⎪⎝⎭,∵被直线2p x =截得的弦长为√3|MA|,则02p DE x ⎫=+⎪⎭,由MA ME r ==,在Rt △MDE 中, 丨DE 丨2+丨DM 丨2=丨ME 丨2,即2220001432292p p p x x x ⎛⎫⎛⎫⎛⎫++-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,代入整理得: 220420x p += ②,由①②,解得:x 0=2,p=2,∴01132p AF x ⎛⎫=+= ⎪⎝⎭,故选:B .2. 【西藏拉萨中学2017届高三月考】已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过点F 的直线与抛物线交于,M N 两点,若MR l ⊥,垂足为R ,且NRM NMR ∠=∠,则直线MN 的斜率为A. 8±B. 4±C. ±D. 2± 【答案】C【解析】过N 作NQ l ⊥,交l 于Q , NH MR ⊥,交MR 于H ,抛物线的定义可知: MF MR =丨丨丨丨, NF MQ =丨丨丨丨,由NRM NMR ∠=∠,则MNR 为等腰三角形,∴12MQ RH MH MR ===丨丨丨丨丨丨丨丨,则MN MF NF =+丨丨丨丨丨丨,∴3MN NQ =丨丨丨丨,即3MN MH =丨丨丨丨,则NH MH ==丨丨丨,则tan NH NMR MH ∠==丨丨丨丨NMR α=∠,则直线MN 的斜率tan k α=±=±,故选C.3.【江西省南昌市2017届高三三模】已知直线:l y kx k =-与抛物线C : 24y x =及其准线分别交于,M N 两点, F 为抛物线的焦点,若2FM MN =,则实数k 等于( )A. B. 1± C. D. 2± 【答案】C4. 【四川省雅安市2017届高三三诊】已知点A 是抛物线24x y =的对称轴与准线的交点,点B 为抛物线的焦点, P 在抛物线上且当PA 与抛物线相切时,点P 恰好在以A 、B 为焦点的双曲线上,则双曲线的离心率为( )A.B. C. 1 D. 1-【答案】C 【解析】设点21(,)4P a a , 1'2y x =,所以切线方程为: 211()42y a a x a -=-,因为过点A (0,1)-,所以代入得2a =±不妨取2a =,则点P (2,1),又点B (0,1)且,点P 恰好在以A 、B 为焦点的双曲线上,所以22PA PB a -=-=,所以1a =,故1ca= 5.【山西省太原市2017届高三二模】过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,且2AF BF =,则直线AB 的斜率为A. B. C. - D. 【答案】C【解析】由题意,知()1,0F ,则设直线AB 的的方程为1x my =+,代入抛物线消去x ,得2440y my --=.设()()1122,,,A x y B x y ,则124y y m += ①,124y y =- ②.因为2AF BF =,所以122y y =- ③.联立①②③解得m =AB 的斜率为±,故选C .6.【福建省莆田2017届高三一模】已知点()00,P x y 是抛物线24y x =上的一个动点, Q 是圆C : ()()22241x y ++-=上的一个动点,则0x PQ +的最小值为( )A. 1B.C. 3D. 4 【答案】C【解析】由题意可知圆C 的圆心坐标()2,4C -,半径为1;抛物线的焦点()F 1,0,虚线为抛物线的准线; PM 为点到虚线的距离且1PM x =+,由抛物线的性质可知,PF PM =.故可知01x PQ PQ PF +=+- 11PM PF ≥-+-11PM PF ≥-+- 2CF ≥- 23=-=。

【金识源】(3年高考2年模拟1年原创)最新2013版高考数学 专题10 排列组合二项式定理(解析版)

【金识源】(3年高考2年模拟1年原创)最新2013版高考数学 专题10 排列组合二项式定理(解析版)

【金识源】(3年高考2年模拟1年原创)最新2013版高考数学专题10 排列组合二项式定理(解析版)【考点定位】2014考纲解读和近几年考点分布2012考纲解读考纲原文(1)分类加法计数原理、分步乘法计数原理①理解分类加法计数原理和分步乘法计数原理;②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.(2)排列与组合①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.(3)二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.考纲解读(1)标准中只是对理科有要求,对文科不做要求;但大纲版对文理科均作要求。

(2)已删除:组合数的性质。

近几年考点分布近几年考点分布排列、组合、二项式定理是高考数学相对独立的内容,也是密切联系实际的一部分。

在高考中,注重基本概念,基础知识和基本运算的考查。

试题难度不大,多以选择、填空的形式出现。

排列组合的试题会以现实生活中的生产问题、经济问题为背景,不会仅是人或数的排列。

以排列组合应用题为载体,考查学生的抽象概括能力,分析能力,综合解决问题的能力。

将排列组合与概率统计相结合是近几年高考的一大热点,应引起重视。

二项式定理的知识在高考中经常以客观题的形式出现,多为课本例题、习题迁移的改编题,难度不大,重点考查运用二项式定理去解决问题的能力和逻辑划分、化归转化等思想方法。

为此,只要我们把握住二项式定理及其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解。

【考点pk】名师考点透析考点一、计数原理【名师点睛】1.如何选用分类加法计数原理和分步计数乘法原理。

在处理具体的应用问题时,必须先分清是“分类”还是“分步”,“分类”表现为其中任何一类均可独立完成所给事件,而“分步”必须把各步骤均完成才能完成所给事情。

2.运用分类加法计数原理,首先要根据问题的特点,确定分类标准,分类应满足:完成一件事情的任何一种方法,必须属于某一类且仅属于某一类,即类与类的确定性与并列性。

高二数学双曲线试题答案及解析

高二数学双曲线试题答案及解析

高二数学双曲线试题答案及解析1.设双曲线的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为()A.B.5C.D.【答案】C【解析】将双曲线的渐进线方程代如抛物线方程y=x2+1中化简得,由只有一公共点可知即,所以即,答案选C.【考点】1.双曲线的渐进线方程;2.直线与抛物线的位置关系2.已知P是双曲线的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是( ).A.双曲线的焦点到渐近线的距离为; B.若,则e的最大值为;C.△PF1F2的内切圆的圆心的横坐标为b ;D.若∠F1PF2的外角平分线交x轴与M, 则.【答案】D【解析】的焦点坐标为,渐近线方程为,对于选项A, 焦点到渐近线的距离,故A错;对于选项B,设,若,令所以即解得.故B错;对于选项C:如图,设切点A,由切线长定理得:,即,所以,故△PF1F2的内切圆的圆心的横坐标为a,所以选项C错.对于选项D:由外角平分线定理得:,故选D.【考点】渐近线方程;点到直线的距离公式;焦半径公式;外角平分线定理;合比定理.3.设双曲线的两条渐近线与直线分别交于A,B两点,F为该双曲线的右焦点.若, 则该双曲线的离心率的取值范围是( )A.B.C.D.【答案】B【解析】由双曲线方程可知其渐近线方程为,将代入上式可得即。

因为,由图形的对称性可知,即。

因为,所以,即。

因为,所以。

故B正确。

【考点】双曲线的简单几何性质。

4.过双曲线C:的一个焦点作圆的两条切线,切点分别为,若(是坐标原点),则双曲线C的离心率为____;【答案】【解析】,结合图形可知,为等腰直角三角形,F为焦点.可得,即.【考点】双曲线的几何性质.5.是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.(1)焦点在轴上的双曲线渐近线方程为;(2)点到双曲线上动点的距离最小值为.【答案】存在双曲线的方程满足题中的两个条件.【解析】先根据(1)的条件设出双曲线的方程,再设双曲线上的动点,然后利用两点间的距离公式得出,结合,最后化简得到,根据二次函数的图像与性质确定的最小值(含),并由计算出的值,如果有解并满足即可写出双曲线的方程;如果无解,则不存在满足要求的双曲线方程.试题解析:由(1)知,设双曲线为设在双曲线上,由双曲线焦点在轴上,,在双曲线上关于的二次函数的对称轴为即所以存在双曲线的方程满足题中的两个条件.【考点】1.双曲线的标准方程及其几何性质;2.二次函数的图像与性质.6.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若是钝角三角形,则双曲线的离心率范围是()A.B.C.D.【答案】C【解析】根据题意,△PQF1是等腰直角三角形,且被F1F2分成两个全等的等腰直角三角形.由此结合双曲线的定义,可解出a=(-1)c,即可得到该双曲线的离心率.【考点】求双曲线的离心率问题.7.已知中心在原点且焦点在x轴的双曲线C,过点P(2,)且离心率为2,则双曲线C的标准方程为____________.【答案】【解析】设此双曲线方程为,所以解得,所以此双曲线方程为。

高三数学一轮复习-双曲线 (带答案)

高三数学一轮复习-双曲线 (带答案)

解析几何—双曲线一、学习目标知识与技能:了解圆锥曲线的实际背景,感受圆锥曲线在解决实际问题时的应用。

过程与方法:掌握双曲线的定义、标准方程及简单的几何性质。

情感态度价值观:理解数形结合的思想,了解椭圆的简单应用。

二、学习重难点重点:双曲线的定义的灵活应用、利用标准方程研究几何性质,尤其是离心率求值问题。

难点:双曲线的综合问题三、考纲解读:掌握双曲线的定义、标准方程,能够根据条件利用待定系数法求双曲线方程. 四、知识链接1.共渐近线的双曲线系方程:与双曲线x 2a 2-y 2b 2=1有相同渐近线的双曲线系方程可设为x 2a 2-y 2b 2=λ(λ≠0),若λ>0,则双曲线的焦点在 轴上;若λ<0,则双曲线的焦点在 轴上.2.双曲线的形状与e 的关系:∵双曲线渐近线的斜率k =ba =c 2-a 2a=c 2a2-1=e 2-1,∴e 越大,则渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔.故双曲线的离心率越大,它的开口就越宽阔.3. 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为 ,而双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为 应注意其区别与联系.4.平行于双曲线的渐近线的直线与双曲线有且仅有 个交点. 五、基础检测A1.已知()()3,0,3,0,6M N PM PN --=,则动点P 的轨迹是( ) A .一条射线B .双曲线右支C .双曲线D .双曲线左支【答案】A 因为6PM PN MN -==,故动点P 的轨迹是一条射线:0,3y x =≥A2.若12,F F 分别是双曲线2211620x y-=的左、右焦点,P 为双曲线C 上一点,且19PF =,则2PF 的长为( )A .1B .17或1C .17D .12【答案】C 因为194610PF a c =<+=+=,所以P 必在双曲线左支上, :212248PF PF a -==⨯=,又19PF =,所以298PF -=,解得:217PF =,A3.若00(,)P x y 是双曲线22124x y -=左支上一点,则0x 的取值范围是_____【答案】(,-∞六、学习过程B1.已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为1F 、2F ,O 为坐标原点,P 是双曲线上在第一象限内的点,直线PO 、2PF 分别交双曲线C 左、右支于另一点M 、N ,122PF PF =,且260MF N ∠=,则双曲线C 的离心率为( )A B CD 【答案】B122PF PF =,122PF PF a -=,14PF a ∴=,22PF a =.连接1MF 、2MF ,根据双曲线的对称性可得12MF PF 为平行四边形,260MF N ∠=o Q ,1260F PF ∴∠=,由余弦定理可得2224164242cos60c a a a a =+-⋅⋅⋅o ,c ∴=,ce a∴== B2.已知△ABP 的顶点A 、B 分别为双曲线的左右焦点,顶点P 在双曲线C 上,则sin sin sin A BP-的值等于( )AB C .54D .45【答案】D 由题意得双曲线22:1169x y C -=得4a =, 3b =,根据双曲线的定义得:28PB PA a -==‖,又210AB c ===, 从而由正弦定理,得sin sin 4sin 5PB PA A B P AB --==‖,B4.双曲线C 与双曲线2212y x -=有共同的渐近线,且过点.(1)求双曲线C 的方程;(2)若直线:1l y kx =+与双曲线C 左支交于,A B 两点,求k 的取值范围;【答案】(1)2212y x -=;(2) (1)因为双曲线C 与双曲线2212y x -=有共同的渐近线,所以设双曲线C 的方程为222y x λ-=,把点代入C中,即(22λ-=,解得λ1=-,所以双曲线C 的方程为2212y x -=.(2)联立22112y kx y x =+⎧⎪⎨-=⎪⎩,消去y 得:()222230k x kx ---=,①因为直线与双曲线左支有两个交点,A B ,设()()1122,,,A x y B x y ,且120,0x x <<,解不等式()2221221222041220202302k k k k x x k x x k ⎧-≠⎪+->⎪⎪⎨+=<⎪-⎪-⎪=>-⎩,解得:k k k ⎧<<⎪⎪≠⎨⎪>⎪⎩k <<B5.已知双曲线两个焦点分别是())12,F F,点)P在双曲线上.(1)求双曲线的标准方程;(2)过双曲线的右焦点2F 且倾斜角为60︒的直线与双曲线交于,A B 两点,求1F AB ∆的周长.【答案】(1)221x y -=;(2)12 (1)()22,0F,)P2P F x∴⊥轴 221b PF a∴==且c =又222c a b =+,即220a a +-=,解得:1a = 21b ∴=∴双曲线的标准方程为:221x y -=(2)由(1)知,双曲线渐近线为y x =,倾斜角为45 直线AB 过2F 且倾斜角为60 ,A B ∴均在双曲线的右支上122BF BF ∴-=,122AF AF -= 112244AF BF AF BF AB ∴+=++=+设直线AB方程为:y x =代入双曲线方程得:2270x -+=4AB ∴== 1F AB ∴∆的周长为:114212AF BF AB AB ++=+=七、达标检测A1.设1k >,则关于,x y 的方程()22211k x y k -+=-所表示的曲线是( )A .长轴在y 轴上的椭圆B .长轴在x 轴上的椭圆C .实轴在y 轴上的双曲线D .实轴在x 轴上的双曲线【答案】C ∵k >1,∴1+k >0,k 2-1>0,方程()22211k x y k -+=-,即222111y x k k -=-+,表示实轴在y 轴上的双曲线,A2.已知双曲线的渐近线为2y x =±,实轴长为4,则该双曲线的方程为( ) A .22142x y -=B .22142x y -=或22148y x -=C .22148y x -=D .22142x y -=或22148y x -=【答案】D双曲线的渐近线方程为2y x =±,实轴长为4,24a ∴=,则2a =,∴当双曲线的焦点在x 轴上时,设双曲线方程为22214x y b -=,0b >,此时2b =b =∴双曲线方程为22142x y -=,当双曲线的焦点在y 轴上时,设双曲线方程为22214y x b-=,0b >,此时22b =,解得b =22148x y -=. B3.已知双曲线22:1(04)4x y C m m m-=<<-的渐近线与圆22(2)3x y -+=相切,则m =( )A .1B C .2D .3【答案】A 双曲线22:1(04)4x y C m m m-=<<-的渐近线方程为y =将y =0= 由双曲线的渐近线0±=与圆22(2)3x y -+==解得1m = C4.设分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为( ) A .B .C .D .3【答案】B 因为是双曲线上一点,所以,又所以,,所以又因为,所以有,,即解得:(舍去),或;所以,所以B5.设双曲的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A B C .12D .12【答案】D设该双曲线方程为2222100x ya ba b-=(>,>),可得它的渐近线方程为by xa=±,焦点为F(c,0),点B(0,b)是虚轴的一个端点,∴直线FB的斜率为FBb bkc c-==--,∵直线FB与直线by xa=互相垂直,1b bc a∴-⨯=-,2b ac∴=,22222b c a c a ac=-∴-=,,210e e∴--=,e∴=,。

专题10.1椭圆-3年高考2年模拟1年预测(理)(解析版)

专题10.1椭圆-3年高考2年模拟1年预测(理)(解析版)

第十章 圆锥曲线 专题1 椭圆(理科)【三年高考】1. 【2017浙江,2】椭圆22194x y +=的离心率是A B C .23D .59【答案】B【解析】e ==B . 2. 【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C D .13【答案】A【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0 ,半径为r a = ,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即:d a ==,整理可得223a b =,即()222223,23a a c a c =-=,从而22223c e a == ,椭圆的离心率c e a ===A . 3. 【2017课标1,理20】已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1),P 4(1)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t,(t,.则121k k +==-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+. 而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-)4. 【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

《三年高考两年模拟》数学(理科)汇编专题:9.4双曲线(含答案解析)

《三年高考两年模拟》数学(理科)汇编专题:9.4双曲线(含答案解析)

第四节 双曲线A 组 三年高考真题(2016~2014年)1.(2016·全国Ⅰ,5)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A.(-1,3)B.(-1,3)C.(0,3)D.(0,3)2.(2016·全国Ⅱ,11)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D.23.(2015·福建,3)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A.11B.9C.5D.34.(2015·安徽,4)下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A.x 2-y 24=1 B.x 24-y 2=1 C.y 24-x 2=1 D.y 2-x 24=15.(2015·广东,7)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1B.x 216-y 29=1C.x 29-y 216=1D.x 23-y 24=16.(2015·四川,5)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB|=( )A.433B.2 3C.6D.4 37.(2015·新课标全国Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A. 5B.2C. 3D. 28.(2015·新课标全国Ⅰ,5)已知M(x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223 D.⎝⎛⎭⎫-233,233 9.(2014·天津,5)已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1C.3x 225-3y 2100=1D.3x 2100-3y 225=110.(2014·广东,4)若实数k 满足0<k<9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A.离心率相等B.实半轴长相等C.虚半轴长相等D.焦距相等11.(2014·新课标全国Ⅰ,4)已知F 为双曲线C :x 2-my 2=3m(m>0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A. 3B.3C.3mD.3m12.(2014·重庆,8)设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D.313.(2014·山东,10)已知a>b>0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A.x±2y =0 B.2x±y =0 C.x±2y =0 D.2x±y =014.(2014·大纲全国,9)已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上.若|F 1A|=2|F 2A|,则cos ∠AF 2F 1=( )A.14B.13C.24D.2315.(2016·山东,13)已知双曲线E :x 2a 2-y 2b 2=1(a>0,b>0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB|=3|BC|,则E 的离心率是________. 16.(2015·浙江,9)双曲线x 22-y 2=1的焦距是______,渐近线方程是______.17.(2015·北京,10)已知双曲线x 2a 2-y 2=1(a >0)的一条渐近线为3x +y =0,则a =________.18.(2015·湖南,13)设F 是双曲线C :x 2a 2-y 2b 2=1的一个焦点,若C 上存在点P ,使线段PF的中点恰为其虚轴的一个端点,则C 的离心率为________.19.(2015·江苏,12)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________.20.(2014·浙江,16)设直线x -3y +m =0(m≠0)与双曲线x 2a 2-y 2b 2=1(a>0,b>0)的两条渐近线分别交于点A ,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是________.21.(2014·江西,20)如图,已知双曲线C :x 2a 2-y 2=1(a>0)的右焦点为F ,点A ,B 分别在C的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA(O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点P(x 0,y 0)(y 0≠0)的直线l :x 0xa 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N.证明:当点P 在C 上移动时,|MF||NF|恒为定值,并求此定值.B 组 两年模拟精选(2016~2015年)1.(2016·山东青岛模拟)已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线平行于直线l :x +2y +5=0,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 220-y 25=1B.x 25-y 220=1C.3x 225-3y 2100=1D.x 2100-y 225=12.(2015·河南开封模拟)已知a>b>0 ,椭圆 C 1 的方程为x 2a 2+y 2b 2=1,双曲线 C 2 的方程为x 2a 2-y 2b 2=1,C 1 与 C 2 的离心率之积为32, 则C 1 、 C 2 的离心率分别为( ) A.12,3 B.22,62 C.64,2 D.14,2 33.(2015·青岛一中月考)已知椭圆C 1:x 2a 2+y 2b 2=1(a>b>0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点,若C 1恰好将线段AB 三等分,则( )A.a 2=132B.a 2=13C.b 2=12D.b 2=24.(2015·河北石家庄一模)已知抛物线y 2=2px(p >0)的焦点F 恰好是双曲线x 2a 2-y 2b2=1(a >0,b>0)的右焦点,且两曲线的交点连线过点F ,则该双曲线的离心率为( ) A. 2 B. 3 C.1+ 2 D.1+ 35.(2016·山东日照模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),其右顶点是A ,若双曲线C右支上存在两点B ,D ,使△ABD 为正三角形,则双曲线C 的离心率e 的取值范围是________.6.(2016·四川成都模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为2x +3y =0,则双曲线的离心率是________.7.(2016·豫晋冀三省调研)已知双曲线C 的中心在原点,且左、右焦点分别为F 1、F 2,以F 1F 2为底边作正三角形,若双曲线C 与该正三角形两腰的交点恰为两腰的中点,则双曲线C 的离心率为________.8.(2016·广东茂名模拟)已知抛物线y 2=4x 与双曲线x 2a 2-y 2b2=1(a >0,b >0)有相同的焦点F ,O 是坐标原点,点A 、B 是两曲线的交点,若(OA →+OB →)·AF →=0,则双曲线的实轴长为________. 9.(2016·湖南常德3月模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左顶点为M ,右焦点为F ,过F 的直线l 与双曲线交于A ,B 两点,且满足:MA →+MB →=2MF →,MA →·MB →=0,则该双曲线的离心率是________.10.(2016·重庆万州模拟)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M(3,m)在双曲线上. (1)求双曲线方程; (2)求证:MF 1→·MF 2→=0; (3)求△F 1MF 2的面积.答案精析A 组 三年高考真题(2016~2014年)1.A [∵方程x 2m 2+n -y 23m 2-n =1表示双曲线,∴(m 2+n)·(3m 2-n)>0,解得-m 2<n<3m 2,由双曲线性质,知c 2=(m 2+n)+(3m 2-n)=4m 2(其中c 是半焦距),∴焦距2c =2×2|m|=4,解得|m|=1,∴-1<n<3,故选A.]2.A [离心率e =F 1F 2MF 2-MF 1,由正弦定理得e =F 1F 2MF 2-MF 1=sin MsinF 1-sin F 2=2231-13= 2.故选A.]3.B [由双曲线定义||PF 2|-|PF 1||=2a,∵|PF 1|=3,∴P 在左支上,∵a =3,∴|PF 2|-|PF 1|=6,∴|PF 2|=9,故选B.]4.C [由双曲线性质知A 、B 项双曲线焦点在x 轴上,不合题意;C 、D 项双曲线焦点均在y 轴上,但D 项渐近线为y =±12x ,只有C 符合,故选C.]5.B [因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1,故选B.]6.D [焦点F(2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入渐近线方程得y 2=12,y =±23,∴|AB|=23-(-23)=4 3.选D.] 7.D[如图,设双曲线E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则|AB|=2a,由双曲线的对称性,可设点M(x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N(x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴|BM|=|AB|=2a ,∠MBN =60°,∴y 1=|MN|=|BM|sin ∠MBN =2asin 60°=3a ,x 1=|OB|+|BN|=a +2acos 60°=2a.将点M(x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a =a 2+b 2a 2=2,选D.] 8.A [由题意知M 在双曲线C :x 22-y 2=1上,又在x 2+y 2=3内部,由⎩⎪⎨⎪⎧x 22-y 2=1,x 2+y 2=3,得y =±33,所以-33<y 0<33.]9.A [由题意可知,双曲线的其中一条渐近线y =b a x 与直线y =2x +10平行,所以b a =2且左焦点为(-5,0),所以a 2+b 2=c 2=25,解得a 2=5,b 2=20,故双曲线方程为x 25-y 220=1.选A.]10.D [由0<k<9,易知两曲线均为双曲线且焦点都在x 轴上,由25+9-k =25-k +9,得两双曲线的焦距相等,选D.]11.A [∵双曲线的方程为x 23m -y 23=1,焦点F 到一条渐近线的距离为 3.]12.B [由双曲线的定义得||PF 1|-|PF 2||=2a,又|PF 1|+|PF 2|=3b,所以(|PF 1|+|PF 2|)2-(|PF 1|-|PF 2|)2=9b 2-4a 2,即4|PF 1|·|PF 2|=9b 2-4a 2,又4|PF 1|·|PF 2|=9ab ,因此9b 2-4a 2=9ab ,即9⎝⎛⎭⎫b a 2-9b a -4=0,则⎝⎛⎭⎫3b a +1⎝⎛⎭⎫3b a -4=0,解得b a =43⎝⎛⎭⎫b a =-13舍去,则双曲线的离心率e =1+⎝⎛⎭⎫b a 2=53.]13.A [椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a,所以a 2-b 2a ·a 2+b 2a =32,所以a 4-b 4=34a 4,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x±2y =0.]14.A [由双曲线的定义知|AF 1|-|AF 2|=2a ,又|AF 1|=2|AF 2|,∴|AF 1|=4a ,|AF 2|=2a. ∵e =ca =2,∴c =2a ,∴|F 1F 2|=4a.∴cos ∠AF 2F 1=|AF 2|2+|F 1F 2|2-|AF 1|22|AF 2|·|F 1F 2|=(2a )2+(4a )2-(4a )22×2a ×4a=14,故选A.]15.2 [由已知得|AB|=2b 2a ,|BC|=2c,∴2×2b 2a =3×2c,又∵b 2=c 2-a 2,整理得:2c 2-3ac-2a 2=0,两边同除以a 2得2⎝⎛⎭⎫c a 2-3c a-2=0,即2e 2-3e -2=0,解得e =2或e =-1(舍去).]16.23 y =±22x [由双曲线方程得a 2=2,b 2=1,∴c 2=3,∴焦距为23,渐近线方程为y =±22x.]17.33 [双曲线渐近线方程为y =±b a x ,∴b a =3,又b =1,∴a =33.]18.5 [不妨设F(c ,0),则由条件知P(-c ,±2b),代入x 2a 2-y 2b 2=1得c 2a 2=5,∴e = 5.]19.22[双曲线x 2-y 2=1的渐近线为x±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+12=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c≤22,故c 的最大值为22.] 20.52 [联立直线方程与双曲线渐近线方程y =±bax 可解得交点为 ⎝⎛⎭⎫am 3b -a ,bm 3b -a ,⎝ ⎛⎭⎪⎫-am 3b +a ,bm 3b +a ,而k AB=13,由|PA|=|PB|,可得AB 的中点与点P 连线的斜率为-3,即bm 3b -a +bm3b +a2-0am 3b -a +-am 3b +a2-m=-3,化简得4b 2=a 2,所以e =52.] 21.(1)解 设F(c ,0),因为b =1,所以c =a 2+1,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x -c),解得B ⎝⎛⎭⎫c 2,-c 2a . 又直线OA 的方程为y =1a x ,则A ⎝⎛⎭⎫c ,c a ,k AB =c a -⎝⎛⎭⎫-c 2a c -c 2=3a. 又因为AB ⊥OB ,所以3a ·⎝⎛⎭⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)证明 由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0.因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M ⎝⎛⎭⎫2,2x 0-33y 0;直线l 与直线x =32的交点为N ⎝ ⎛⎭⎪⎫32,32x 0-33y 0. 则|MF|2|NF|2=(2x 0-3)2(3y 0)214+⎝⎛⎭⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2=43·(2x 0-3)23y 20+3(x 0-2)2, 因为P(x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得|MF|2|NF|2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43, 所求定值为|MF||NF|=23=233.B 组 两年模拟精选(2016~2015年)1.A [由题意知:b a =12,c =5,所以a 2=20,b 2=5,则双曲线的方程为x 220-y 25=1,故选A.]2.B [由题意知,a 2-b 2a ·a 2+b 2a =32,所以a 2=2b 2,则C 1、C 2的离心率分别为e 1=22,e 2=62,故选B.] 3.C [由题意知,a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4=0,双曲线的一条渐近线方程为y =2x,联立方程消去y,得(5a 2-5)x 2+5a 2-a 4=0,∴直线截椭圆的弦长d =5×2a 4-5a 25a 2-5=23a ,解得a 2=112,b 2=12. 4.C [因为两曲线的交点的连线过点F ,所以两曲线的交点坐标为⎝⎛⎭⎫p2,±p ,代入双曲线方程可得⎝⎛⎭⎫p 22a 2-p 2b 2=1,因为p2=c ,所以c 4-6a 2c 2+a 4=0所以e 4-6e 2+1=0,又e >1,解得e =1+2,故选C.]5.1<e <233 [双曲线c 的渐近线方程为y =±ba x,要使△ABD 为正三角形,则只需过右顶点A,且斜率为33的直线与双曲线有两个不同的交点,即只需该直线的斜率大于渐近线y =b ax 的斜率.∴33>b a ,∴b <33a.即b 2<13a 2,则c 2<a 2+13a 2,即c <233a ,则e <233, 又e >1,所以1<e <233.]6.133 [由渐近线方程可设a =3k,b =2k,(k >0),∴c =13k ,双曲线离心率为e =c a=133.] 7.3+1 [设以F 1F 2为底边的正三角形与双曲线C 的右支交于点M ,连接MF 1,则在Rt △MF 1F 2中,有|F 1F 2|=2c ,|MF 1|=3c ,|MF 2|=c ,由双曲线的定义知|MF 1|-|MF 2|=2a ,即3c -c =2a ,所以双曲线C 的离心率e =c a =23-1=3+1.]8. 22-2 [抛物线y 2=4x 与双曲线x 2a 2-y 2b2=1有相同的焦点F(1,0),由(OA →+OB →)·AF →=0知AF ⊥x 轴,不妨设A 点在第一象限,则A 点坐标为(1,2). 设双曲线的左焦点为F′,则|FF′|=2.由勾股定理得|AF′|=2 2. 由双曲线定义知2a =|AF′|-|AF|=22-2.]9. 2 [因为MA →+MB →=2MF →,所以F 为AB 的中点,所以AB ⊥x 轴,即|AB|=2b 2a ,又MA →·MB→=0,所以MA ⊥MB,所以|MF|=b 2a ,所以a +c =b 2a ,即c 2-ac -2a 2=0,所以e 2-e -2=0.解得e=2.]10.(1)解 ∵e =2,∴可设双曲线方程为x 2-y 2=λ(λ≠0).∵双曲线过点(4,-10),∴16-10=λ,即λ=6.∴双曲线方程为x 2-y 2=6. (2)证明 由(1)可知,在双曲线中a =b =6,∴c =23, ∴F 1(-23,0),F 2(23,0).∴kMF 1=m 3+23,kMF 2=m3-23,又∵点M(3,m)在双曲线上,∴9-m 2=6,m 2=3.∴kMF 1·kMF 2=m 3+23×m 3-23=-m 23=-1.∴MF 1⊥MF 2.∴MF 1→·MF 2→=0.(3)解 由(2)知MF 1⊥MF 2,∴△MF 1F 2为直角三角形.又F 1(-23,0),F 2(23,0),m =±3,M(3,3)或(3,-3), 由两点间距离公式得|MF 1|=(-23-3)2+(0-3)2=24+123, |MF 2|=(23-3)2+(0-3)2=24-123,S △F 1MF 2=12|MF 1||MF 2|=12×24+123·24-123=12×12=6.即△F 1MF 2的面积为6.。

高考数学(理)一轮复习对点训练:10-2-2双曲线的几何性质答案解析

高考数学(理)一轮复习对点训练:10-2-2双曲线的几何性质答案解析

1.已知 A , B 为双曲线E 的左,右极点,点M 在 E 上,△ABM为等腰三角形,且顶角为 120°,则E 的离心率为 ()A. 5B .2C. 3D. 2答案 D22分析设双曲线方程为 a x 2-b y2=1(a>0, b>0),不如设点 M 在双曲线的右支上,如图,AB =BM = 2a ,∠ MBA = 120 °,作 MH ⊥ x 轴于 H ,则∠ MBH =60°, BH = a , MH = 3a ,所x 2 y 2以 M(2a , 3a).将点 M 的坐标代入双曲线方程a 2-b 2= 1,得 a = b ,所以 e = 2.应选 D.222.若双曲线 E :x- y= 1 的左、右焦点分别为F 1,F 2,点 P 在双曲线 E 上,且 |PF 1|= 3,916则 |PF 2|等于 ()A . 11B .9C . 5D . 3答案 B分析解法一:依题意知,点 P 在双曲线的左支上,依据双曲线的定义,得|PF 2|- |PF 1|= 2×3= 6,所以 |PF 2|= 6+ 3= 9,应选 B.解法二:依据双曲线的定义,得||PF 2|- |PF 1||= 2×3= 6,所以 ||PF 2|- 3|= 6,所以 |PF 2|= 9 或 |PF 2|=- 3(舍去 ),应选 B.3.将离心率为 e 1 的双曲线 C 1 的实半轴长a 和虚半轴长 b(a ≠b)同时增添 m(m>0)个单位长度,获得离心率为 e 2 的双曲线C 2,则 ()A .对随意的 a , b ,e 1>e 2B .当 a>b 时, e 1>e 2;当 a<b 时, e 1<e 2C .对随意的 a , b ,e 1 <e 2D .当 a>b 时, e 1<e 2;当 a<b 时, e 1>e 2答案Da 2 +b 2b 2a +m2+ b + m2解 析 依 题 意 , e 1 =a=1+ a, e 2 =a + m=1+b + m 2 .因为 b - b +m = ab + bm - ab - am m b - a,因为 m>0,a>0 ,b>0,且 a ≠b ,a + m a a + m a a +m =a a + m所以当 a>b 时,0< b <1,0< b + m b b + m b 2 b + m 2b b + m a <1,< , a < a + m ,所以 e 1<e 2;当 a<b 时, >1,>1,a + m a a + m aa + m而 b b + mb 2b + m 2;当 a<b 时, e,应选,所以a>a + m ,所以 e.所以当 a>b 时, e 1<e 2a >a + m1>e 21 >e 2D.22y4.过双曲线 x - = 1 的右焦点且与 x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则 |AB|= ()A. 4 3 B .2 33 C . 6 D . 43答案 D分析由双曲线的标准方程x 2- y 2 = 1 得,右焦点 F(2,0),两条渐近线方程为y = ± 3x ,3直线 AB : x = 2,所以不如取 A(2, 2 3), B(2,- 2 3),则 |AB|= 4 3,选 D.5.已知 F 为双曲线 C :x 2- my 2= 3m(m>0) 的一个焦点, 则点 F 到 C 的一条渐近线的距离为 ( )A. 3 B .3 C. 3m D . 3m答案A22分析由题意,可得双曲线C 为 x - y= 1,则双曲线的半焦距c = 3m + 3.不如取右3m 3焦点 (3m + 3,0),其渐近线方程为 y =±1x ,即 x ± my = 0.所以由点到直线的距离公式m得 d = 3m +3= 3.应选 A.1+ mx 2 - y 2 =1 与曲线x 2 - y 2=1 的()6.若实数 k 知足 0< k<9,则曲线 259- k25-k9A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等答案 Ax 2y 2 x 2 y 2分析 因为 0<k<9 ,所以方程 25- 9- k=1 与 25- k -9 = 1 均表示焦点在 x 轴上的双曲22xy线.双曲线 25-9- k = 1中,其实轴长为 10,虚轴长为 2 9- k ,焦距为 2 25+ 9- k =2 22 34- k ;双曲线 x -y= 1 中,其实轴长为 2 25- k ,虚轴长为 6,焦距为 2 25- k + 925- k 9= 2 34- k.所以两曲线的焦距相等,应选A.7.已知 a>b>0,椭圆 C 1 的方程为x 2 y 2 =1,双曲线 C 2的方程为x 2 y 2 =1, C 1 与 C 22 + 2 2- 2abab的离心率之积为3,则 C 2 的渐近线方程为 ()2A . x ± 2y = 0 B. 2x ±y = 0 C . x ±2y = 0 D . 2x ±y =0答案 A分析由题意,知椭圆 C 1 的离心率 e 1=a 2-b 2a,2 2双曲线 C 2 的离心率为 e 2=a +b.a32 2 2 23因为 e 1·e 2= ,所以 a - ba +b =22,a2即 a 2 - b 2 4 a 2+ b 2= 3,a 4整理可得 a = 2b.又双曲线 C 2 的渐近线方程为 bx ±ay = 0,所以 bx ± 2by = 0,即 x ± 2y = 0.2 28.设 , F 分别为双曲线x2y 2= 1(a>0, b>0) 的左、右焦点,双曲线上存在一点 P 使F 12a -b 9得 |PF 1|+ |PF 2|= 3b , |PF 1 | |PF · 2|= ab ,则该双曲线的离心率为 ()445 A. 3 B.39C.4D . 3答案 B分析依据双曲线的定义 ||PF 1|- |PF 2 ||=2a ,可得 |PF 1 |2- 2|PF 1||PF 2|+ |PF 2 |2= 4a 2.而由已知可得 |PF 1|2+2|PF 1||PF 2|+ |PF 2|2=9b 2,两式作差可得- 4|PF 1||PF 2 |= 4a 2- 9b 2.又 |PF 1 ||PF 2|= 94 ab ,所以有4a 2+9ab - 9b 2= 0,即 (4a - 3b)(a + 3b)=0,得 4a = 3b ,平方得 16a 2= 9b 2,即22222c 2 25516a = 9(c - a ) ,即 25a = 9c ,a 2= 9 ,所以 e = 3,应选 B.229.点 P 在双曲线 x a 2- yb 2= 1(a>0,b>0) 上,F 1,F 2 分别是双曲线的左、右焦点, ∠ F 1 PF 2= 90°,且△ F 1PF 2 的三条边长之比为 3∶ 4∶ 5.则双曲线的渐近线方程是 ()A . y = ±2 3xB .y = ±4xC . y = ±2 5xD . y = ±2 6x答案 D分析设△ F 1PF 2 的三条边长为 |PF 1|= 3m , |PF 2|= 4m ,|F 1F 2|= 5m ,m>0,则 2a = |PF 2|- |PF 1|= m,2c = |F 1 F 2 |= 5m ,所以 b =6m ,所以 b =6m= 2 6 ,所以双曲线的渐近线方程a12m是 y = ±2 6x.10.设实轴长为 2 的等轴双曲线的焦点为F 1,F 2,以 F 1F 2 为直径的圆交双曲线于 A 、B 、C 、D 四点,则 |F 1A|+ |F 1B|+ |F 1C|+ |F 1D|= ()A . 4 3B .2 33C. 3D. 2答案 A分析依题意,设题中的双曲线方程是x 2- y 2= 1,不如设点 A 、B 、 C 、 D 挨次位于第一、二、三、四象限,则有|AF 1|- |AF 2|= 2,由此解得 |AF 1|= 3+ 1, |AF 2 |= 3- 1,同理 |DF 1|= |AF 1||AF 1|2+ |AF 2|2= |F 1F 2|2= 8= 3+ 1, |CF 1|= |BF 1|= |AF 2 |= 3- 1, |AF 1|+ |BF 1|+ |CF 1|+ |DF 1|= 4 3,选 A.x 2 y 2 2 分别是双曲线的左、11.已知点 P 是双曲线 2- 2 = 1(a>0, b>0) 右支上一点, F 1, Fab右焦点, I 为△ PF 1F 2 的心里,若 S △ IPF 1= S △ IPF 2 1+ S △ IF 1F 2 建立,则双曲线的离心率为2 ()5A . 4B.25 C . 2 D.3答案 C分析设 c = a 2+ b 2,△ PF 1F 2 的内切圆的半径为 r ,则 |PF 1|- |PF 2|=2a , |F 1F 2|= 2c ,S △ IPF 1=1|PF 1| r ·,21 1 S △ IPF 2= |PF 2| r ·, S △IF 1 F 2= |F 1F 2| r ·.221∴由 S △ IPF 1= S △ IPF 2+ 2S △ IF 1F 2,1 1 1 得 (|PF 1 |- |PF 2|)r = × |F 1F 2| ·r ,∴ c = 2a.∴双曲线的离心率为22 2x2y 212.设 F 是双曲线C : a 2- b 2= 1 的一个焦点.若 C 上存在点c e = a = 2.P ,使线段 PF 的中点恰为其虚轴的一个端点,则C 的离心率为 ________.答案 5分析由已知不如设 F(- c,0),虚轴的一个端点为 B(0, b), B 恰为线段 PF 的中点,2b 2 2故 P(c,2b),代入双曲线方程,由c-=c 2 ,故 e = 5.2b 21 得2 = 5,即 e = 5,又 e>1aa13.已知双曲线x 2 23x +y = 0,则 a = ________.2- y = 1(a>0) 的一条渐近线为a答案33分析因为双曲线x 22= 1(a>0) 的一条渐近线为1 1= 3, 2- yy =- 3x ,即 y = ± x ,所以aaa3故 a = 3 .x 2y 214.设直线 x -3y + m = 0(m ≠ 0)与双曲线 a 2- b 2= 1(a>0,b>0) 的两条渐近线分别交于点 A ,B.若点 P(m,0)知足 |PA|=|PB |,则该双曲线的离心率是________.答案52x -3y + m = 0,am , bm 分析由b 得 A , y =ax 3b - a 3b - ax -3y + m = 0,得 B -am, bm由b,y =- a x3b + a 3b +a则线段 AB 的中点为Ma 2m2, 3b 2m2 .2- a29b 9b - a由题意得 PM ⊥AB ,∴ k PM =- 3,得 a 2= 4b 2= 4c 2- 4a 2,故 e 2= 5,∴ e = 5.4 2 15.设 F 1, F 2 是双曲线 x 2 y 2C : 2- 2= 1(a>0, b>0) 的两个焦点, P 是 C 上一点.若 |PF 1|a b+ |PF 2|= 6a ,且△ PF 1F 2 的最小内角为 30°,则 C 的离心率为 ________.答案3分析不如设点 P 在双曲线 C 的右支上,由双曲线定义知|PF 1|- |PF 2|= 2a,又因为 |PF 1|+ |PF2|= 6a,所以 |PF 1|= 4a,|PF 2|= 2a,因为 |PF 1|>|PF2 |,所以∠ PF 1F 2为最小内角,所以∠PF1F2= 30°,在△ PF1F2中,由余弦222222- 82定理可知, |PF 2| = |PF 1| +|F1F 2| - 2|PF 1| |F·1F 2| cos30·°,即 4a = 16a+ 4c3ac,所以 c - 2 3ac+ 3a2= 0,两边同除以 a2,得 e2- 23e+ 3= 0,解得 e= 3.x2y2F1, F2,点 P 在双曲线的右16.已知双曲线2- 2=1(a>0,b>0)的左、右焦点分别为a b支上,且 |PF 1|= 4|PF2 |,则双曲线的离心率 e 的最大值为 ________.答案5 3分析设∠ F1PF 2=θ,8 |PF 1|- |PF2 |=2a,|PF 1|=3a,由得2 |PF 1|= 4|PF 2||PF 2|=3a,由余弦定理得 cosθ=17a2- 9c2=179228- e .8a817925∵ θ∈ (0,π],∴ cosθ∈[ - 1,1),- 1≤ - e <1,又 e>1,∴ 1<e≤ .883。

高考复习数学理(三年模拟一年创新)第9章第4节双曲线

高考复习数学理(三年模拟一年创新)第9章第4节双曲线

第四节 双曲线A 组 专项基础测试 三年模拟精选一、选择题1.(2015·山东青岛模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :x +2y +5=0,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 220-y 25=1 B.x 25-y 220=1 C.3x 225-3y 2100=1D.x 2100-y 225=1解析 由题意知:b a =12,c =5,所以a 2=20,b 2=5,则双曲线的方程为x 220-y 25=1,故选A. 答案 A2.(2015·河南开封模拟)已知a >b >0 ,椭圆 C 1 的方程为x 2a 2+y 2b 2=1,双曲线 C 2 的方程为x 2a 2-y 2b 2=1,C 1 与 C 2 的离心率之积为32, 则C 1 、 C 2 的离心率分别为( ) A.12,3B.22,62C.64,2D.14,2 3解析 由题意知,a 2-b 2a ·a 2+b 2a =32,所以a 2=2b 2,则C 1、C 2的离心率分别为e 1=22,e 2=62,故选B. 答案 B3.(2014·洛阳模拟)设点P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)与圆x 2+y 2=a 2+b 2在第一象限的交点,F 1,F 2分别是双曲线的左、右焦点,且|PF 1|=3|PF 2|,则双曲线的离心率为( ) A. 5 B.52C.10D.102解析 令c =a 2+b 2,则c 为双曲线的半焦距长.据题意,F 1F 2是圆的直径,∴|F 1F 2|2=|PF 1|2+|PF 2|2.∴(2c )2=(3|PF 2|)2+|PF 2|2,即2c =10|PF 2|. 根据双曲线的定义有|PF 1|-|PF 2|=2a , ∴|PF 1|-|PF 2|=3|PF 2|-|PF 2|=2|PF 2|=2a . ∴e =2c 2a =102, ∴双曲线的离心率为102. 答案 D 二、填空题4.(2014·青岛一模)已知双曲线x 2-ky 2=1的一个焦点是(5,0),则其离心率为________.解析 由已知,得a =1,c =5,∴e =ca = 5. 答案55.(2014·广州一模)已知双曲线x 29-y 2a =1的右焦点为(13,0),则该双曲线的渐近线方程为______________.解析 由题意得c =13,所以9+a =c 2=13,所以a =4.即双曲线方程为x 29-y24=1,所以双曲线的渐近线为2x ±3y =0. 答案 2x ±3y =0一年创新演练6.双曲线x 2a 2-y 2b 2=1(a >0,b >0)一条渐近线的倾斜角为π3,离心率为e ,则a 2+e b 的最小值为________.解析 由题意可得,k =ba =tan π3=3, ∴b =3a ,则a 2=b 23,∴e =1+b 2a 2=2.∴a 2+e b =b 23+2b =b 3+2b≥2b 3×2b =263. 当且仅当b 3=2b ,即b =6时取等号. 答案 2637.已知双曲线C 的中心在原点,且左、右焦点分别为F 1、F 2,以F 1F 2为底边作正三角形,若双曲线C 与该正三角形两腰的交点恰为两腰的中点,则双曲线C 的离心率为________.解析 设以F 1F 2为底边的正三角形与双曲线C 的右支交于点M ,连接MF 1,则在Rt △MF 1F 2中,有|F 1F 2|=2c ,|MF 1|=3c ,|MF 2|=c ,由双曲线的定义知|MF 1|-|MF 2|=2a ,即3c -c =2a ,所以双曲线C 的离心率e =ca =23-1=3+1.答案3+1B 组 专项提升测试 三年模拟精选一、选择题8.(2015·青岛一中月考)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点,若C 1恰好将线段AB 三等分,则( ) A .a 2=132 B .a 2=13 C .b 2=12D .b 2=2解析 由题意知,a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4=0,双曲线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4=0,∴直线截椭圆的弦长d =5×2a 4-5a 25a 2-5=23a ,解得a 2=112,b 2=12.答案 C 二、填空题9.(2014·武汉诊断)已知双曲线x 2m -y 23m =1的一个焦点是(0,2),椭圆y 2n -x 2m =1的焦距等于4,则n =________.解析 因为双曲线的焦点(0,2),所以焦点在y 轴,所以双曲线的方程为y 2-3m -x 2-m =1,即a 2=-3m ,b 2=-m ,所以c 2=-3m -m =-4m =4,解得m =-1,所以椭圆方程为y 2n +x 2=1,且n >0,椭圆的焦距为4,所以c 2=n -1=4或1-n =4,解得n =5或-3(舍去). 答案 510.(2014·南京调研)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为2,离心率为2,则双曲线C 的焦点坐标是________. 解析 ∵2a =2,∴a =1. 又ca =2,∴c =2,∴双曲线C 的焦点坐标是(±2,0). 答案 (±2,0)11.(2014·平顶山模拟)已知双曲线的中心在原点,一个顶点的坐标是(-3,0),且焦距与实轴长之比为5∶3,则双曲线的标准方程是________. 解析 可求得a =3,c =5. 焦点的位置在x 轴上, 所得的方程为x 29-y 216=1. 答案 x 29-y 216=112.(2014·衡水模拟)设点F 1、F 2是双曲线x 2-y 23=1的两个焦点,点P 是双曲线上一点,若3|PF 1|=4|PF 2|,则△PF 1F 2的面积为________. 解析 据题意,|PF 1|=43|PF 2|,且|PF 1|-|PF 2|=2, 解得|PF 1|=8,|PF 2|=6.又|F 1F 2|=4,在△PF 1F 2中,由余弦定理得, cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=78. 所以sin ∠F 1PF 2=1-cos 2∠F 1PF 2=158,所以S △PF 1F 2=12×6×8×158=315. 答案 315一年创新演练13.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =2,右焦点F 到其渐近线的距离为32,抛物线y 2=2px 的焦点与双曲线的右焦点F 重合.过该抛物线的焦点的一条直线交抛物线于A 、B 两点,正三角形ABC 的顶点C 在直线x =-1上,则△ABC 的边长是( ) A .8B .10C .12D .14解析 依题知双曲线的右焦点也即抛物线的焦点为F (1,0),所以抛物线的方程为y 2=4x ,设AB 的中点为M ,过A 、B 、M 分别作AA 1、BB 1、MN 垂直于直线x =-1于A 1、B 1、N ,设∠AFx=θ,由抛物线定义知:|MN |=12(|AA 1|+|BB 1|) =12|AB |, ∵|MC |=32|AB |,∴|MN |=13|MC |,∵∠CMN =90-θ,∴cos ∠CMN =cos(90°-θ)=|MN ||MC |=13,即sin θ=13,又由抛物线定义知|AF |=21-cos θ,|BF |=21+cos θ,∴|AB |=4sin 2θ=12.答案 C14.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M (3,m )在双曲线上. (1)求双曲线方程; (2)求证:MF 1→·MF 2→=0;(3)求△F 1MF 2的面积. (1)解 ∵e =2,∴可设双曲线方程为x 2-y 2=λ(λ≠0). ∵双曲线过点(4,-10), ∴16-10=λ,即λ=6. ∴双曲线方程为x 2-y 2=6.(2)证明 由(1)可知,在双曲线中a =b =6,∴c =23, ∴F 1(-23,0),F 2(23,0). ∴k MF 1=m 3+23,k MF 2=m 3-23,又∵点M (3,m )在双曲线上, ∴9-m 2=6,m 2=3.∴k MF 1·kMF 2=m 3+23×m3-23=-m 23=-1.∴MF 1⊥MF 2.∴MF 1→·MF 2→=0.(3)解 由(2)知MF 1⊥MF 2, ∴△MF 1F 2为直角三角形.又F 1(-23,0),F 2(23,0),m =±3, M (3,3)或(3,-3), 由两点间距离公式得|MF 1|=(-23-3)2+(0-3)2=24+123, |MF 2|=(23-3)2+(0-3)2=24-123, S △F 1MF 2=12|MF 1||MF 2|=12×24+123·24-12 3 =12×12=6.即△F 1MF 2的面积为6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 圆锥曲线 专题2 双曲线(理科)【三年高考】1. 【2017天津,理5】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=【答案】B【解析】由题意得224,14,188x y a b c a b c ==-⇒===⇒-=- ,选B.2. 【2017课标1,理】已知双曲线C :22221x y a b -=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【解析】如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by x a=上的点,且(,0)A a ,AM AN b ==,而AP MN ⊥,所以30PAN ∠=,点(,0)A a 到直线by x a=的距离AP =在Rt PAN ∆中,cos PAPAN NA=,代入计算得223a b =,即a =,由222c a b =+得2c b =,所以c e a ===3. 【2017课标3,理5】已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B4. 【2017山东,理14】在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b -=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】y x = 【解析】||||=4222A B A B p p pAF BF y y y y p ++++=⨯⇒+= ,因为22222222221202x y a y pb y a b a b x py⎧-=⎪⇒-+=⇒⎨⎪=⎩,所以222A B pb y y p a a +==⇒=⇒渐近线方程为y x =±. 5.【2016高考新课标1卷】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B)(- (C )()0,3 (D)( 【答案】A【解析】222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<,由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m =,∴13n -<<,故选A .6.【2016高考新课标2理数】已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( ) (A(B )32(C(D )2【答案】A【解析】因为1MF 垂直于x 轴,所以2212,2b b MF MF a a a==+,因为211sin 3MF F ∠=,即2122132b MF ab MF a a==+,化简得b a =,故双曲线离心率e ==.选A.7.【2016高考天津理数】已知双曲线2224=1x y b-(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y -【答案】D【解析】根据对称性,不妨设A 在第一象限,(,)A x y ,∴22422x x y bb y x y ⎧=⎧+=⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩,∴221612422b b xy b b =⋅=⇒=+,故双曲线的方程为221412x y -=,故选D. 8.【2016年高考北京理数】双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________.【答案】2【解析】∵OABC 是正方形,∴45AOB ∠=︒,即直线OA 方程为y x =,此为双曲线的渐近线,因此a b =,又由题意OB =,∴222a a +=,2a =.故填:2.9.【2015高考新课标1,理5】已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF ∙<,则0y 的取值范围是( ) (A )() (B )((C )() (D )() 【答案】A10.【2015高考湖北,理8】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >【答案】D【解析】依题意,2221)(1ab a b a e +=+=,2222)(1)()(m a m b m a m b m a e +++=++++=, 因为)()()(m a a a b m m a a am ab bm ab m a m b a b +-=+--+=++-,由于0>m ,0>a ,0>b ,所以当b a >时,10<<a b ,10<++<m a m b ,m a m b a b ++<,22)()(ma mb a b ++<,所以12e e <;当b a <时,1>a b ,1>++m a m b ,而m a m b a b ++>,所以22)()(ma mb a b ++>,所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.11.【2015高考重庆,理10】设双曲线22221x y a b-=(a >0,b >0)的右焦点为1,过F 作AF的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线交于点D .若D 到直线BC 的距离小于a +,则该双曲线的渐近线斜率的取值范围是 ( ) A 、(1,0)(0,1)- B 、(,1)(1,)-∞-+∞ C、((0,2) D、(,(2,)-∞+∞【答案】A【解析】由题意22(,0),(,),(,)b b A a B c C c a a-,由双曲线的对称性知D 在x 轴上,设(,0)D x ,由BD AC ⊥得221b b a a c x a c-⋅=---,解得42()b c x a c a -=-,所以42()b c x a a c a c a -=<+=+-,所以42222b c a b a <-=221b a ⇒<01b a⇒<<,因此渐近线的斜率取值范围是(1,0)(0,1)-,选A .【两年模拟】1. 【2017届安徽省宣城市高三第二次调研】已知双曲线22221x y a b-=两渐近线的夹角θ满足4sin 5θ=,焦点到渐进线的距离1d =,则该双曲线的焦距为( )A.B.C. D.【答案】C2. 【2017届四川省资阳市高三一模】已知双曲线2222:1(0,0)x y E a b a b-=>>的右顶点为A ,抛物线2:8C y ax =的焦点为F .若在E 的渐近线上存在点P ,使得AP FP ⊥,则E的离心率的取值范围是 ( )A. ()1,2B. ⎛ ⎝C. ⎫+∞⎪⎪⎭D. ()2,+∞ 【答案】B【解析】由题意得, ()(),0,2,0A a F a ,设00,b P x x a ⎛⎫⎪⎝⎭,由AP FP ⊥,得2220020320c AP PF x ax a a⋅=⇒-+= ,因为在E 的渐近线上存在点P ,则0∆≥,即222222299420988c a a a c e e a -⨯⨯≥⇒≥⇒≤⇒≤E 为双曲线,则1e <≤,故选B. 3.【黑龙江省大庆2017届高三考前模拟】设F 1,F 2分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若双曲线右支上存在一点,使()220OP OF F P +⋅=,O 为坐标原点,且(124PF PF a +=+,则该双曲线的离心率为( )A.1+ B.C. D.【答案】A【解析】由()220OP OF F P +⋅=,得(2OP OF +)·(OP -2OF )=0,即|OP |2-|2OF |2=0,所以|OP |=|2OF |=c ,所以△PF 1F 2中,边F 1F 2上的中线等于|F 1F 2|的一半,则PF 1⊥PF 2.即|PF 1|2+|PF 2|2=4c 2,又|1PF ||2PF |,解得|PF 1|,|PF 2|=c ,又|PF 1|-|PF 2|c-c =2a.所以e +1.故选A.4. 【天津市十二重点中学2017届高三第二次联考】已知双曲线22221x y a b-=圆心在x 轴的正半轴上的圆M 与双曲线的渐近线相切,且圆M 的半径为2,则以圆M 的圆心为焦点的抛物线的标准方程为( )A. 2y =B. 2y =C. 2y =D. 2y = 【答案】B【解析】设双曲线渐近线的方程为by x a=,圆心坐标为(),0c ,因为圆与直线相切由点到2= ,即2b = = ,可得1,2pa c p =∴=∴==,所以抛物线的方程为2y = ,故选B. 5. 【天津市河西区2017届高三二模】在平面直角坐标系xOy 中,已知双曲线1C : 2221x y -=,过1C 的左顶点引1C 的一条渐进线的平行线,则该直线与另一条渐进线及x 轴围成的三角形的面积( )A.B. C. D. 【答案】C,则直线方程为y x =-,另一条渐近线方程为y =,联立可得交点坐标为12M ⎫-⎪⎪⎭,故三角形的面积为12S =,应选答案C 。

相关文档
最新文档