抽样的基本概念
抽样的基本概念
中心极限定理
(图示)
中心极限定理:设从均值为,方差为 2的一个任意总
体中抽取容量为n的样本,当n充分大时,样本均值的抽 样分布近似服从正态分布。
一个任意分 布的总体
当样本容量足够 大时(n >30) , 样本均值的抽样 分布逐渐趋于正 态分布
X
抽样平均误差
1.重复抽样条件下,记算公式为: 2.不重复抽样条件下,计算公式为:
设总体中 N 个总体单位某项标志的标志值分别
为 X1, X 2 , X N ,其中具有某种属性的有 N1个 单位,不具有某种属性的有 N0个单位,则
⒈ 总体平均数(又叫总体均值): ⒉ 总体标准差: ⒊ 总体方差:
⒋ 总体比例: ⒌ 是非标志总体的标准差:
P P1 P 当P 0.5时, P有最大值
3.小于总体标准差 4.与样本容量的关系
抽样分布
更大样本 容量的抽 样分布
某个样本 容量的抽 样分布
x
n
X
P119例4-5
某班组有5个工人,他们的单位工时工资分别是4、6、8、10 、12元,总体服从于正态分布。现用重复抽样方式从5个工 人中抽出2人,计算样本的平均工时工资的抽样平均误差。
解:总体分布的平均数与方差分别是:
练习:计算样本比例的抽样平均误差
1、某县人口10万人,用简单随机不重复抽样 方法抽取1/10的人口进行调查,得知男性 人口比重为51%,求男性人口比重的抽样平 均误差。
2、对某乡进行简单随机重复抽样调查,抽出 100个农户进行调查,得知年收入在1800元 以上的占95%,求农户年收入在1800元以上 比重的抽样平均误差。
第4章 抽样估计
第一节 抽样的基本概念 第二节 抽样分布与中心极限定理 第三节 总体参数估计 第四节 抽样方案的设计与实施*
抽样调查的基本概念与理论依据(一)
抽样调查的基本概念与理论依据(一)
抽样调查是一种常见的社会调研方法,其基本概念和理论依据是有必要进行了解的。
一、抽样调查的基本概念
抽样调查是指通过抽取代表性样本,对个体或群体的某些特定情况或认识进行调查。
这种调查方法与全面调查相比,具有省时、省力、精确度高等优点。
抽样调查的过程包括样本的抽取、样本的调查和结果的分析三个步骤。
二、抽样调查的理论依据
1.概率论基础:抽样调查的理论依据是概率论的基础。
从一个总体中随机选出样本,对这些样本进行统计分析,得到的结果可以反映整个总体的情况。
抽样调查中,概率论相关的知识可用于计算样本的大小和推断总体的参数,从而提高样本调查的准确性。
2.中心极限定理:中心极限定理是抽样调查的另一个理论依据。
它表明,当样本容量较大时,样本平均数的分布会趋近于正态分布。
这一定理对于估计总体参数和确定置信区间等都有重要的应用价值。
3.抽样误差:抽样误差也是抽样调查的理论基础之一。
它指的是样本调查结果与总体实际情况之间的偏差,通常来说,样本容量越大,抽样误差越小。
了解抽样误差的概念和大小,有助于对抽样结果的解释和推理。
4.信度和效度:信度和效度也是抽样调查中重要的理论概念。
信度指
的是对同样问题的几次调查结果之间的一致性,而效度指的是调查结
果是否能够有效地反映目标问题的本质。
保证调查工具的信度和效度,对于可靠的抽样调查结果至关重要。
总之,抽样调查的基本概念和理论依据涵盖了概率论、中心极限定理
和抽样误差等内容。
这些理论基础的应用使得抽样调查在定量研究中
发挥着不可替代的作用。
抽样的基本概念1:总体、样本、抽样、抽样单位、抽样框
抽样框(Sampling Frame):又称作抽样范围,一 次直接抽样中总体中所有抽样单位的名单。
抽样框的经典例子
《文学摘要》杂志在1920年、1924年、1928年和1932 年,以邮寄明信片的方式对美国总统大选,进行了民 意测验,并准确预测出这4次选举的结果。当1936年总 统大选来临时,杂志回收了200多万份明信片。测验结 果显示57%的人支持共和党的候选人兰登,民主党候 选人、在任总统罗斯福的支持率为43%。然而,两星 期后的选举结果,罗斯福以62%的得票率当选。杂志 因此声誉扫地,不久就关门大吉了。
选民的地址与姓名大都取自于电话簿与汽车俱乐部会 员名单
THE END
谢 谢 观 看!
知识点1抽样的基本概念1总体样本抽样抽样单位抽样框抽样的基本概念总体样本抽样抽样单位抽样框总体50000人样本400人抽样研究结果推断抽样sampling就是从总体中按照一定方式抽取样本的过程
《社会调查与统计分析》
第四章 抽样
知识点1 抽样的基本概念1
总体、样本、抽样、抽样单位、抽样框
学习导航
抽样的基本概念 总体 样本 抽样 抽样单位 抽样框
元素:每一个大学生
元素:每一户家庭
样本(Sample):从总体中按一定方式抽取出的一部 分元素的集合。
总体用N表示,样本用n表示。
抽样的基本概念
抽样单位(Sampling Unit):素:每一个大学生 抽样单位:每一个大学生
调查1000名大学生的价值 观念(直接从200个班级中 抽取40个班级) 元素:每一个大学生 抽样单位:班级
抽样的基本概念
总体 50000人
抽样 推断
样本 400人
研究结果
抽样的基本概念
抽样检验的基本概念与抽样方案
抽样检验的基本概念与抽样方案引言在统计学中,抽样检验是一种用于判断总体参数假设的统计推断方法。
通过对样本数据进行分析,我们可以对总体参数的假设提出合理的推断,从而做出一些决策或得出结论。
在进行抽样检验时,我们需要制定一个合适的抽样方案,以确保所得到的样本数据能够准确反映总体的特征。
本文将深入介绍抽样检验的基本概念以及常用的抽样方案。
抽样检验的基本概念总体和样本在进行抽样检验之前,我们首先需要明确总体和样本的概念。
总体是我们想要进行推断的对象,它可以是一个人群、一批产品或者某种现象的全部观察值。
样本是从总体中抽取的部分观察值,用来作为总体属性的代表。
抽样分布在抽样检验中,我们通常关心的是样本统计量的分布情况,即抽样分布。
样本统计量是对总体参数的估计量,比如样本均值、样本比例等。
通过对样本统计量的抽样分布进行分析,我们可以得到关于总体参数的推断。
假设检验假设检验是抽样检验的基本方法之一。
在假设检验中,我们提出一个关于总体参数的假设(称为原假设),并根据样本数据来判断原假设是否可接受。
通常,原假设是指没有变化或者没有效应的假设,而备择假设则是指存在变化或者存在效应的假设。
通过计算样本数据的抽样统计量,并计算统计量的概率值(P值),我们可以判断原假设在给定显著水平下是否可接受。
为了确保抽样数据能够准确反映总体的特征,我们需要设计合适的抽样方案。
以下是一些常用的抽样方案:简单随机抽样简单随机抽样是最基本的抽样方案之一,它要求从总体中随机地抽取若干观察值作为样本,且每个观察值被选中的概率相等。
简单随机抽样可以保证样本的代表性和独立性,从而使得样本数据能够有效地反映总体的特征。
分层抽样分层抽样是一种将总体划分为若干个层次,并从每个层次中进行独立的随机抽样的抽样方案。
通过分层抽样,我们可以在保证总体全面性的同时,对不同层次的单位进行独立的分析和推断。
系统抽样是一种按照一定的规则从总体中选取样本的抽样方案。
它要求事先确定一个固定的抽样间隔,然后从总体中随机选择一个起始点,之后每隔固定间隔选择一个观察值作为样本。
抽样检验的培训教材易懂版
• 一般选择检验水平Ⅱ;
• 比较检验费用,费用高,水平低,费用低,水平高。
• 若单个样品的检验费用为a,判批不合格时处理一个样品的费用为 b,检 验水平选择应遵循:
a>b
选择检验水平Ⅰ
a=b
选择检验水平Ⅱ
a<b
选择检验水平Ⅲ
• 为保证AQL,使得劣于AQL的产品批尽可能少漏过去,选高检验水平;
• 产品质量不稳定,波动大时,选用高的检验水平;
缺点: ➢ 存在接受“劣质”批和“拒收”批的风险; ➢ 增加了计划工作和文件编制工作; ➢ 样组提供产品情报较之于100%检验为少。
8 第二部分:如何开展抽样
LOT的概念(N)
定义:同一种原材料、工艺、设备、时间生产出来的 产品的总和。 注意事项 ➢抽样的批必须是生产批,而非交验批 ➢批量大的批的检验要经济于批量小的批的检验 ➢批的包装应便于运输与摆放,便于抽样。
曲线。
特性:
1、O C曲线是方案的接收概率 ( Pa ) 与批质量水平 ( p )[批不合格品 率]的关系曲线。
2、O C曲线越陡,抽样检验方案越严格,O C 曲线越平,抽样检验方案越 松。
3、在座标系中,O C曲线越靠左,抽样检验方案越严格,O C曲线越靠右 ,抽样检验方案越松。
4、抽样特性曲线和抽样方案是一一对应关系,也就是说有一个抽样方案 就有对应的一条OC曲线;相反,有一条抽样特性曲线,就有与之对应 的一个抽检方案。
25第二部分:如何开展抽样
OC曲线
批 量 N 对 O C曲线的影响
Pa(p)
1.0 0.8 0.6 0.4 0.2
N=1000
n=20
AC=0 N=200
样本量N越小,抽样比例越大, 对应抽样严格
抽样调查中的基本概念
这个定理告诉我们:在大样本情况下样本成数p近似服从
正态分布,记作
p
~N
P
,P(1- n P)
。
统计学
2、总体的分类
按单位标志的性质不同:分为变量总体和属性总体两种。
如果构成总体的每个单位标志的具体表现是用标志值表示 ,这种总体就是变量总体。
如果构成总体的每个单位的具全表现是用文字表示,这种 总体就是属性总体。
通常用符号N表示总体中的单位数量。
抽样调查中的基本概念
(二)样本(也称样本总体)
它是从全及总体中随机抽取出来的,用来代表全及总 体的那一部分单位的集合体。
(一)总体参数
1、什么是总体参数?
在抽样调查中,用来反映总体数量特征的总体指标,也称为总 体参数。
研究目的一经确定,总体也就唯一地确定了。所以总体指标 的数值是客观存在的、确定的、未知的,需要用样本资料去估计 推断的。分析一个总体常常可运用多个总体指标,通常所需要估 计的总体参数有总体平均数、结构相对指标、总体方差或总体标 准差等。
方差: P P(1 P)
标准差: P P(1 P)
X
1 0 合计
表7-1 属性总体平均数和方差计算表
F
F
X
F
F
(X X )2
(X X )2 F
F
P
P
(1−P)2
Q2P
Q
0
(0−P)2
P2Q
1
P
—
PQ
抽样调查中的基本概念
(二)样本统计量
1、什么是样本指标
根据样本资料计算的指标称为样本指标,又称为样本统计量
B
n N
N2
抽样调查中的基本概念
抽样知识点总结
抽样知识点总结一、抽样的基本概念1.1 总体和样本总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
总体是研究的对象,样本是研究的实际观察单位。
1.2 抽样误差抽样误差是指由于抽样方法所导致的样本与总体之间的偏差。
抽样误差分为随机误差和系统误差两种,随机误差是由抽样本身的不确定性所引起,系统误差是由于抽样方法的偏差或者样本数据的不准确性所引起。
1.3 抽样分布抽样分布是一组样本统计量的概率分布,它反映了在不同样本情况下的统计量的变动情况。
1.4 抽样方法常见的抽样方法包括简单随机抽样、分层抽样、整群抽样、系统抽样、多阶段抽样等。
不同的抽样方法适用于不同的研究问题和数据特点。
二、抽样的基本原则2.1 代表性原则样本应当具有代表性,即能够准确地反映总体的特征和变动情况。
2.2 随机性原则抽样过程应当具有一定的随机性,以消除个体之间的偏好或者主观意愿。
2.3 独立性原则各个样本之间应当是相互独立的,互不影响,以确保样本数据的独立性和可靠性。
2.4 信息量原则样本应当具有足够的信息量,即能够为研究问题提供充足的数据支持。
三、抽样的实施步骤3.1 确定研究目标首先需要确定研究问题,明确所需的样本特征和数据信息。
3.2 制定抽样方案根据研究目标和总体特征,选择合适的抽样方法,并确定抽样的规模和抽样的程序。
3.3 抽取样本按照抽样方案进行抽样,获取符合要求的样本数据。
3.4 数据分析与推断对抽样数据进行分析和推断,从而得出关于总体特征和规律的结论。
3.5 结果解释与应用根据抽样研究的结论和推断结果,进行结果的解释和应用,为决策和实践提供支持和参考。
四、抽样的应用4.1 统计调查抽样是统计调查中常用的一种数据收集方法,可以节省人力物力,减小成本,提高工作效率。
4.2 市场调查在市场营销中,抽样可以帮助企业更加准确地了解消费者的需求和偏好,指导产品开发和促销策略。
4.3 健康调查抽样在健康调查中发挥着重要作用,可以了解社会群体的健康状况和问题,为政府和企业提供决策支持。
抽样的基本步骤
方便抽样(任意抽样)
例
在入户调查中,调查员选择家中有人的住户; 没有认定被调查者身份的拦截式访问; 利用客户的名单进行调查; 将问卷登在宣传媒体上,被调查者自填后寄回。
特点
方便选样 样本的信息不适用于总体参数的推断。
参考文献
1. 麦克丹尼尔、盖兹著,范秀成等译:《当代市场 调》, 原书第4版, 第12-13章,2000,机械工业出版 社。
2. Malhotra, N. K. 1996. Marketing Research: An Applied Orientation, Chapters 11-12, pp.358-414. Upper Saddle River, NJ: Prentice Hall International, Inc.
经验法;统计法
回答率问题
趋势分析
Sampling (review)
Two major concerns
1. Cost
• Sample size • Method of data collection (phone, mail, personal • interview)
2. Information accuracy
• Sample representativeness • Respondent error • Administrative error
Basic questions
What kind of sample? How large should it be?
Sampling Problem
China Light considered offering customer consulting service in which the company would help to make homes more energy efficient. To decide how much customers would like this service, they mailed questionnaires to all of their 500,000 home customers together with February bill. About 25,000 households responded. The returned responses indicated a very high level of interest in the service. So China Light hired many service workers for heavy demand. However, actual demand turned out to be low. What happened?
抽样的基本步骤
二、非概率样本设计
非概率样本设计(nonprobability sample design)事先并不确定每个样本 单位被抽中的概率。这种样本设计往往 无法排除研究人员偏好对抽样的影响, 也无法估算样本估计值的抽样误差。
讨论:网上消费者调查的样本设计
非概率样本的应用
该方法通常用于下列情况:
样本量规模很小时; 探索性研究或研究的初始阶段; 目标总体成员很少或很难寻找; 无法采用概率样本时。
总体
总体(population)是按照内容、范围和时间三 重标准定义的全部个体的集合。
目标总体(target population)是按照内容、范围 和时间三重标准定义的全部个体的集合。 抽样总体(sampling population)从中实际抽取样 本的所有个体的集合。
讨论:广州地铁顾客满意度研究的目标总体与 抽样总体?
简单随机抽样 系统抽样 分层抽样 整群抽样
简单随机抽样
简单随机抽样(simple random sampling) 是最基本的概率抽样方法。 该抽样方法保证每一抽样单位都有相同 的非零抽中概率,并给出总体参数的自 加权估计值。
若总体为N,样本量为n,则每一抽样单 位的抽中概率:
p = n/N
系统抽样
抽样框架
抽样框架(sampling frame)是抽样总体的可 操作性定义。在编制抽样框架时常见的问题如 下:
遗漏-遗漏部分样本单位; 聚堆-缺乏个体样本单位信息; 重复-同一样本单位重复出现; 混杂-抽样框架中包括部分非样本总体成员。
例:调查广州市所有的西饼店,用黄页的工商 业名单作抽样框
过滤问题
参考文献
1. 麦克丹尼尔、盖兹著,范秀成等译:《当代市场 调》, 原书第4版, 第12-13章,2000,机械工业出版 社。
抽样技术知识点总结
抽样技术知识点总结一、引言抽样是统计学的重要内容之一,它是指从总体中选取出一部分个体,通过对这部分个体的观察和研究来推断总体的性质和规律的一种统计方法。
抽样技术的合理性和科学性对于统计结果的准确性和可靠性具有重要的保障作用。
抽样技术的研究涉及概率论、数理统计等领域,是统计学中的一个重要分支。
二、抽样技术的基本概念1. 总体和样本总体是指研究对象的全体,样本是指从总体中抽取出来的一部分个体。
抽样研究的目的是通过对样本进行观察和研究,得出关于总体的统计推断。
2. 抽样误差抽样误差是指由于抽样方法的随机性和样本容量的有限性而导致的估计值与总体参数之间的差异。
减小抽样误差是抽样研究的一个重要目标。
3. 抽样框架抽样框架是指总体中每一个个体在抽样过程中都有明确的身份和位置的集合,这是进行抽样的前提条件之一。
4. 抽样概率抽样概率是指进行抽样的每一个个体被选中的概率。
抽样概率对于抽样结果的合理性和可靠性具有重要的影响。
三、抽样方法1. 简单随机抽样简单随机抽样是指从总体中按完全随机的原则抽取出相同容量的样本的方法。
简单随机抽样是抽样方法中最基本的一种方法,它具有抽样误差小、可比较性强的特点。
2. 分层抽样分层抽样是指将总体按照某种特征分成若干层,然后从每一层中分别抽取样本的方法。
分层抽样能够有效地减小抽样误差,提高估计的准确性。
3. 整群抽样整群抽样是指将总体按照某种特征分成若干群,然后选择其中的若干群作为样本的方法。
整群抽样能够简化抽样过程,提高抽样效率。
4. 系统抽样系统抽样是指按照一定规则从总体中选择个体的方法。
系统抽样能够简化抽样过程,减小抽样误差。
5. 整群分层抽样整群分层抽样是指将总体按照某种特征首先分成若干群,然后再从每一群中按照某种分层方法抽取样本的方法。
整群分层抽样是一种比较复杂的抽样方法,但具有较高的抽样精度。
6. 多阶段抽样多阶段抽样是指在抽样过程中采用多个抽样阶段的方法。
多阶段抽样能够逐步缩小抽样范围,提高抽样效率。
抽样调查的基本概念和基本过程
抽样调查的基本概念和基本过程抽样调查是一种统计学方法,用于从总体(即研究对象的总体)中选择出一部分样本,以便通过样本的研究来推断总体的特征。
抽样调查的基本概念是根据一些规则和程序从总体中选择样本,并根据样本的结果进行总体特征的推断。
1.确定研究目标和总体:首先需要明确研究目标是什么,需要从哪个总体中获取数据。
总体可以是人群、组织或地域。
2.制定调查计划:制定调查计划是为了确定调查的具体内容、调查方式、调查对象和调查时间等。
调查计划应该充分考虑到研究目标和总体的特点。
3.确定抽样方法:抽样方法是选择样本的关键步骤,常用的抽样方法有随机抽样、系统抽样、分层抽样等。
选择合适的抽样方法是保证样本的代表性和可靠性的前提。
4.确定样本容量:样本容量的确定要综合考虑总体大小、误差容限、置信水平等因素。
一般来说,样本容量越大,样本结果的可靠性越高。
6.数据处理和分析:收集到样本数据后,需要进行数据清洗、整理和归类等处理工作,然后利用统计学方法对数据进行分析,得出研究结论。
7.结果推断:根据样本数据的分析结果,可以推断总体的特征。
在进行结果推断时,要充分考虑误差和置信度,避免过度泛化或夸大研究结论。
8.结果报告:将最后的研究结果以报告或论文的形式呈现,向利益相关方传递研究成果。
需要注意的是,在进行抽样调查时,样本选择的随机性和代表性是关键因素。
通过合适的抽样方法和样本容量的选择,可以确保样本的代表性和统计推断的准确性。
同时,调查过程中还需要注意保护调查对象的隐私和数据安全。
抽样调查是一种常用的研究方法,广泛应用于社会科学、市场调研、医学研究等领域。
通过抽样调查,研究人员可以从总体中获取有效的数据,减少成本和时间,同时也提高了研究的可行性和可靠性。
抽样调查的一般理论
抽样调查的一般理论抽样调查是一种统计学上的调查方法,它的基本思想是从总体中抽取一部分样本进行调查,通过对样本数据的分析来推断总体的情况。
抽样调查的一般理论主要包括以下几个方面:1. 抽样的基本概念:抽样是从总体中随机选取一部分单位作为样本进行观察和研究的过程。
总体是指研究对象的全部单位,而样本则是从总体中抽取出来的一部分单位。
抽样调查的目的就是通过样本数据来推断总体的情况。
2. 抽样的原则和方法:抽样的原则主要包括随机性、代表性和广泛性。
随机性是指每个单位被抽取的概率相等,以保证样本的代表性;代表性是指样本能够反映总体的特征和规律,以便通过样本推断总体;广泛性则是指样本应该覆盖总体中的各个部分和层次,以避免出现偏差。
抽样的方法则包括简单随机抽样、分层抽样、整群抽样、系统抽样等。
3. 抽样的误差和样本容量:抽样误差是指由于抽样引起的样本指标与总体指标之间的偏差。
抽样误差是不可避免的,但可以通过增加样本容量和采用更科学的抽样方法来减小误差。
样本容量则是指样本中所包含的单位数,它的大小直接影响到抽样误差的大小和推断的准确性。
4. 抽样推断的原理和方法:抽样推断是通过样本数据来推断总体数据的原理和方法。
其基本原理是概率论中的大数定律和中心极限定理。
抽样推断的方法包括点估计和区间估计。
点估计是通过样本数据直接计算出一个具体的数值作为总体的估计值;区间估计则是通过样本数据计算出一个置信区间,以表示总体参数的可能取值范围。
总之,抽样调查的一般理论是统计学中的重要内容,它为抽样调查提供了科学的依据和指导。
在实际应用中,需要根据具体情况选择合适的抽样方法和样本容量,并对抽样误差进行控制和评估,以保证推断的准确性和可靠性。
抽样名词解释
抽样名词解释抽样又称取样。
从欲研究的全部样品中抽取一部分样品单位。
其基本要求是要保证所抽取的样品单位对全部样品具有充分的代表性。
抽样的目的是从被抽取样品单位的分析、研究结果来估计和推断全部样品特性,是科学实验、质量检验、社会调查普遍采用的一种经济有效的工作和研究方法。
抽样概念检验检疫机构接受报验后,须及时派员赴货物堆存地点进行现场检验、鉴定。
其内容包括货物的数量、重量、包装、外观等项目。
现场检验一般采取国际贸易中普遍使用的抽样法(个别特殊商品除外)。
抽样时,要按照规定的方法和一定的比例,在货物的不同部位抽取一定数量的、能代表全批货物质量的样品(标本)供检验之用。
还可以抽血样。
基本概念:所考察对象的某一数值指标的全体构成的集合看作总体,构成总体的每一个元素作为个体,从总体中抽取一部分的个体所组成的集合叫做样本,样本中的个体数目叫做样本数量抽样类型(1)简单随机抽样一般的,设一个总体个数为N,如果通过逐个抽取的方法抽取一个样本,且每次抽取时,每个个体被抽到的概率相等,这样的抽样方法为简单随机取样。
适用于总体个数较少的。
当总体的个数比较多的时候,首先把总体分成均衡的几部分,然后按照预先定的规则,从每一个部分中抽取一些个体,得到所需要的样本,这样的取样方法叫做系统抽样。
(3)分层抽样取样时,将总体分成互不交叉的层,然后按照一定的比例,从各层中独立抽取一定数量的个体,得到所需样本,这样的抽样方法为分层取样。
适用于总体由差异明显的几部分组成。
(4)整群抽样整群取样又称聚类抽样。
是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为取样单位抽取样本的一种抽样方式。
应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
(5)多段抽样多段随机抽样,就是把从调查总体中抽取样本的过程,分成两个或两个以上阶段进行的抽样方法。
(6)PPS抽样即“概率与元素的规模大小成比例的抽样”。
抽样理论与方法
抽样理论与方法抽样是统计学中一项重要的技术,它能够帮助我们从大规模的数据集中获取有代表性的样本,以便进行统计推断和分析。
抽样理论和方法的研究对于统计学的发展起到了重要的推动作用。
本文将探讨抽样理论与方法的基本概念、原理和应用。
一、抽样的基本概念抽样是指从总体中选择出一部分个体或观察值,以代表总体的特征。
总体是指我们研究的对象的全体,而样本则是从总体中选取的一部分。
通过对样本的研究,我们可以推断出总体的特征。
抽样的目的是为了减少调查成本和工作量,同时又能够保持调查结果的准确性和可靠性。
二、抽样的原理抽样的原理是基于概率论的。
在抽样过程中,我们通过随机抽取的方法来选择样本。
这样做的目的是为了让每个个体或观察值都有被选中的机会,并且能够保证样本具有代表性。
概率抽样是指每个个体或观察值被选中的概率是已知的,并且相互独立。
常见的概率抽样方法包括简单随机抽样、分层抽样、整群抽样等。
三、抽样方法的应用抽样方法在各个领域都有广泛的应用。
在市场调研中,抽样方法可以帮助我们从目标人群中选取样本,以了解他们的购买行为和偏好。
在医学研究中,抽样方法可以帮助我们从患者中选取样本,以便进行疾病的诊断和治疗。
在社会调查中,抽样方法可以帮助我们从受访者中选取样本,以了解他们的态度和观点。
抽样方法还被广泛应用于质量控制、环境监测、经济预测等领域。
四、抽样理论的发展抽样理论的发展经历了多个阶段。
早期的抽样理论主要关注简单随机抽样和分层抽样,以及对样本误差的估计。
随着统计学的发展,越来越多的抽样方法被提出,如整群抽样、多阶段抽样等。
同时,抽样理论也逐渐与其他统计学方法相结合,形成了一套完整的统计推断体系。
近年来,随机抽样方法和非随机抽样方法的结合也成为了研究的热点之一。
总结抽样理论与方法是统计学中一项重要的技术,它可以帮助我们从大规模的数据集中获取有代表性的样本。
抽样的基本概念是从总体中选择出一部分个体或观察值,以代表总体的特征。
抽样的原理是基于概率论的,通过随机抽取的方法来选择样本,以保证样本具有代表性。
抽样检验的基本概念与抽样方案
故
其中AOQmax=AOQL为平均检出质量上限。
平均检出质量特性曲线
第二节 计数标准型抽样检验(GB/T 13262-91 )
计数标准型抽样检验 同时规定对生产方的质量要求和对使用方(即
当=0.05,=0.10时, IEC推荐 p1为1.5p0,2.0p0,3.0p0 有些国家取p1=(4 10)p0
(3)批的组成 原则:同一批内的产品应当是在同一制造条 件下生产的。
(4)检索抽样方案 1)根据规定的p0,p1,在表中找出对应的
行和列,查交叉栏。
2)查出相应的n和A。
(5)样本抽取 随机抽样方法 a. 简单随机抽样法 b. 系统抽样法 c. 分层抽样法 d. 整群抽样法
量水平,即一系列初次交检批的平均质量。
8. 接收质量限AQL 当一个连续系列批被提交验收抽样时,可
允许的最差过程平均质量水平。
9. 极限质量LQ 对于一个孤立批,为了抽样检验,限制在
某一低接受概率的质量水平。
三、抽样方案及批可接收性的判断 一次计数抽样检验判断过程
抽检一个容量为n的样本
统计样本中不合格(品)数d
计点检验:根据给定的技术标准,统计出 单位产品中不合格数的检验。
计量抽样检验
根据给定的技术标准,将单位产品的 质量特性用连续尺度测量出其具体数值并 与标准对比的检验。
质量特性:重量、长度、强度、浓度等
二、名词术语
1. 单位产品
为了实施抽样需要检验而划分的基本 产品单位。
2. 检验批(交检批)
不合格分类:
A类不合格 认为最被关注的一种不合格。
统计学:有关抽样的几个基本概念.docx
统计学:有关抽样的几个基本概念1.全及总体和抽样总体(1)全及总体。
全及总体是指进行抽样调查时所要调查研究的事物或现象的全体,它是由调查对象内的全部单位组成的,简称总体。
全及总体的单位数用N表示,如要研究某学校10000名学生的学习状况,则该校的10000名学生就构成了全及总体。
全及总体是样本所赖以抽取的母体。
对于某一个详细问题来说,全及总体是唯一确定的。
(2)抽样总体。
抽样总体是指在全及总体中按随机原则抽取的那部分单位所构成的整体,简称样本或子样。
例如, 从全校10000名学生中抽取100名进行体质状况调查,这100 人即构成一个抽样总体。
抽样总体的单位数称为样本容量,通常用字母n表示。
一般来说样本容量n远小于总体单位数N,也就是说nN 一般是一个很小的正数。
在抽样调查中,n >30的样本称为大样本,n<30的样本属于小样本。
样本总体不是唯一确定的,因为从总体N中抽取容量为n的样本(当nWN时)有多种组合。
2 .总体指标和样本指标(1)总体指标。
总体指标是依据全及总体各单位的标志值或标志特征计算的,反映总体某种属性的综合指标,也称全及指标。
由于全及总体是唯一确定的,依据全及总体计算的全及指标也是唯一确定的,如上列中10000名学生的平均年龄、平均体重、贫困生所占比例等,都是总体指标。
常用的总体指标有全及总体的平均数、平均数的方差和标准差、成数、成数的方差,分别用符号X (或u)、。
2、。
、P、P(1 — P)表不。
(2)样本标志。
样本标志是依据抽样总体各单位的标志值或标志特征计算的综合指标,也称样本统计量或抽样指标。
由于可以从一个全及总体中抽取很多个不同的样本,不同的样本其分布结构也会有差异,抽样指标的数值也就不同, 所以抽样指标的数值不是唯一确定的。
实际上,抽样指标是样本变量的函数,它本身也是随机变量。
例如,依据从全校10000名学生中抽取出来的100名学生的调查资料计算得到的健康指标,就是一个样本指标。
抽样的基本概念2:参数值、统计值、置信度、置信区间
抽样的基本概念
参数值和统计值的区别在于: 参数值是唯一的、不变的,但难以获得的; 统计值是多样的、可变的,且容易获得。 抽样调查的重要目的之一就是采用统计值去 推论参数值
抽样的基本概念
置信度(Confidence Level):又称为置信水平,指 的是总体参数值落在样本统计值某一区间内的概率 或把握性程度。 置信区间(Confidence Interval):在一定的置信度 下,样本统计值与总体参数值之间的误差范围。置 信区间越大,误差范围越大,抽样的精确性程度就 越低。
抽样的基本概念
调查1000名大学生家庭平均月收入水平为5000元
如何估计总体参数值?
Hale Waihona Puke 样本统计值90%的置信度
置信区间[4800,5200]
95%的置信度
置信区间[4500,5500]
99%的置信度
置信区间[4300,5700]
抽样的基本概念
置信度越高,置信区间越大;置信度越低, 置信区间越小 抽样的可靠性(置信度)越高,抽样的精确 性程度(置信区间)就越低;反之,抽样的 可靠性越低,抽样的精确程度就越高。
全国妇女平均受教育年限、全国大学生的性别比例
统计值(Statistic):也称为样本值,是关于样本中 某一变量的综合描述,或者说是样本中所有元素的 某种特征的综合数量表现。
从全国妇女中调查10000名妇女的平均受教育年限为8.6年 从全部大学生中抽取5000名进行调查发现男女性别比例为
100:108
置信区间越大误差范围越大抽样的精确性程度就调查1000名大学生家庭平均月收入水平为5000元如何估计总体参数值
《社会调查与统计分析》
第四章 抽样
知识点2 抽样的基本概念2
小学抽样知识点
小学抽样知识点抽样是统计学中非常重要的一个概念,它可以帮助我们从一个庞大的群体中获取有代表性的样本数据,从而进行统计分析和推断。
在小学数学课程中,学生通常会接触到一些简单的抽样问题。
本文将介绍小学阶段常见的抽样知识点,并以逐步思考的方式详细解释每个知识点。
1.定义抽样抽样是从一个大的群体中选取一部分个体或物品,以代表整个群体的特征。
抽样的目的是为了通过样本数据来推断总体的特征。
2.抽样方法小学阶段主要使用的抽样方法有以下几种:–随机抽样:每个个体被选中的机会相等,可以使用抽签、投骰子等方式进行。
–方便抽样:选择容易获得的个体作为样本,不具有代表性,结果可能有偏差。
–系统抽样:按照一定的规则选择个体作为样本,例如每隔一定间隔选取一个个体。
–分层抽样:将总体分成几个层次,然后在每个层次中进行随机抽样。
3.抽样调查问题抽样调查是使用抽样方法来获取信息的一种方式。
在小学中,常见的抽样调查问题包括:–调查学生的喜好:例如,调查学生最喜欢的水果是什么?–调查学生的兴趣爱好:例如,调查学生喜欢哪种运动?–调查学生的学习习惯:例如,调查学生每天花在做作业上的时间是多少?4.数据收集和整理进行抽样调查后,需要将收集到的数据进行整理。
可以使用表格、图表等方式来展示数据,以便更好地理解和分析。
5.数据分析通过对抽样数据的分析,可以得出一些结论和推断。
例如,通过分析抽样调查数据,我们可以得出学生最喜欢的水果是苹果。
但需要注意的是,这些结论只是对总体的推断,并不代表每个学生都喜欢苹果。
6.结论的可靠性在进行抽样调查时,我们需要考虑样本的大小和代表性,以确保得出的结论具有一定的可靠性。
样本越大、越具有代表性,得出的结论就越可靠。
7.抽样的应用抽样在日常生活中有很多应用。
除了用于调查和统计分析,抽样也被广泛应用于市场调研、医学研究、社会调查等领域。
例如,在市场调研中,可以通过抽样方法来了解消费者对产品的需求和喜好,从而制定相应的市场营销策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个特殊平均数,设总体单位总数目是 N,总体中有该特征的单位数是 N1 。设 X 是 0、1 变量,即:总体单位有该特征,则 X 取 1,否则取 0,则有:
p N1 X N
(4.8)
现从总体中抽出 n 个单位,如果其中有相应特征的单位数是 n1 ,则样本成数是:
P n1 n
P 也是一个随机变量,利用样本平均数分布性质的结论,有:
总体分布
.3
.2
.1 0
1
23
总体平均数:μ 2.5 总体标准差:σ 1.25
.3 P ( x )
抽样分布
.2
.1
0
4
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本平均数的平均数:E(x) 2.5
样本平均数的标准差: 1.25
x
2
n
不重复抽样分布,自学
二、大数定律
大数定律表明: 如果随机变量总体存在着有限的平均数
抽样方法 不重复抽样
又被称作不重置抽样、不放 回抽样
抽出 个体
登记 特征
继续 抽取
特点
同一总体中每个单位被抽中的机会并 不均等,在连续抽取时,每次抽取都 不是独立进行
是最为常用的抽样方法,用于无限总 体和许多有限总体样本单位的抽样。
第4章 抽样估计
第一节 抽样的基本概念 第二节 抽样分布与中心极限定理 第三节 总体参数估计 第四节 抽样方案的设计与实施*
练习
1、对某乡进行简单重复抽样调查,抽出100个 农户,户均年收入2000元,年收入标准差 100元。
(1)求抽样平均误差。 (2)若抽取的是200户,则抽样平均误差是多
少? (3)若要使抽样平均误差降低为原来(1)的
一半,则应抽多少户。
2、对某县人口用不重复抽样方法按1/10比例抽 出1万人进行调查,得知样本平均年龄40岁 ,年龄标准差20岁,求抽样平均误差。
抽样平均数和总体平均数的离差究竟有多大? 离差不超过一定范围的概率究竟有多少? 离差的分布状况怎样?
• 大数定律和正态分布没有给出任何这方面 的信息。
中心极限定理的重要意义
中心极限定理研究的是变量和的分布和 变量平均数的分布。
它论证了以下几点:
第一,如果总体很大,而且服从正态分布,则样 本平均数的分布也服从正态分布; 第二,如果总体很大,但不服从正态分布,只要
计 算 样 本 统 计 量
推 断 总 体 参 数
第六章 抽样与参数估计
第一节 第二节 第三节 第四节
抽样调查的含义 抽样调查的基本概念 抽样调查的数理基础 抽样推断的方法
第二节 抽样调查的基本概念
★• 一、全及总体和样本总体 • 二、全及指标和样本指标 • 三、抽样方法和样本可能数目
全及总体
研究对象的全体,即第一章中学 过的总体。
400个 样本
支持人数: 160
推断
支持该候选人 的选民占全部
选民的比例
抽样调查的基本特点:
非全面调查
目的是推断总体的数量特征,抽样 推断结果具有一定的可靠程度
抽样调查中的抽样误差是不可避免 的,但在事先是可以计算并加以控制 的
节省调查费 调查速度快 调查结果准确可靠 应用范围广
抽样调查的作用,书P112-113
样本足够大( n≥30 ),样本平均数的分布也趋
近于正态分布。 第三,样本平均数分布的平均数,等于总体的平 均数。
中心极限定理的重要意义
• 第四,样本分布的标准差为: • 这是在有限总体场合下使用的公式,其中:
N n
N 1 ,称为修正因子。 • 当N趋向于无穷大时,其值趋近于1,在允许重
复抽样的条件下,总体在任何时候都成为无限总 体,这时:
设总体中 N 个总体单位某项标志的标志值分别
为 X1, X 2 , X N ,其中具有某种属性的有 N1个 单位,不具有某种属性的有 N0个单位,则
⒈ 总体平均数(又叫总体均值): ⒉ 总体标准差: ⒊ 总体方差:
⒋ 总体比例: ⒌ 是非标志总体的标准差:
P P1 P 当P 0.5时, P有最大值
⒍ 是非标志总体的方差:
P2 P1 P
指根据样本单位的标志值计算的用
样本指标 以估计和推断相应总体指标的综合
指标,又被称为估计量或统计量。
设样本中 n 个样本单位某项标志的标志值
分别为 x1, x2 , xn ,其中具有和不具有某
种属性的样本单位数目分别为 n1和 n0 个,则
n
⒈ 样本平均数(又叫样本均值): xi x i 1 n
3.小于总体标准差 4.与样本容量的关系
抽样分布
更大样本 容量的抽 样分布
某个样本 容量的抽 样分布
x
n
X
P119例4-5
某班组有5个工人,他们的单位工时工资分别是4、6、8、10 、12元,总体服从于正态分布。现用重复抽样方式从5个工 人中抽出2人,计算样本的平均工时工资的抽样平均误差。
解:总体分布的平均数与方差分别是:
10.7 9.9
2
1.7
值:51.18 4
3.3
1
.8
10.7 9.9 1.7 3.3 .8
82.6 92.6 94.2 97.5 98.3
67
2
1.7
1.7
100.0
Total
121
100.0
100.0
抽样方法
重复抽样 又被称作重置抽样、有放回抽样
抽出 个体
登记 特征
放回 总体
继续 抽取
特点 同一总体单位有可能被重复抽中, 而且每次抽取都是独立进行
1
.8
.8
4.1
20人组成样本并计算平 43
3
2.5
2.5
45
5
4.1
4.1
6.6 10.7
46 47
均体重: 1
.8
2
1.7
ห้องสมุดไป่ตู้
.8 1.7
11.6 13.2
48
1
.8
.8
14.0
49
3
2.5
2.5
16.5
50
16
13.2
13.2
29.8
51
3
2.5
2.5
32.2
样本一:52.35 52
3
2.5
53
5
练习:计算样本比例的抽样平均误差
1、某县人口10万人,用简单随机不重复抽样 方法抽取1/10的人口进行调查,得知男性 人口比重为51%,求男性人口比重的抽样平 均误差。
2、对某乡进行简单随机重复抽样调查,抽出 100个农户进行调查,得知年收入在1800元 以上的占95%,求农户年收入在1800元以上 比重的抽样平均误差。
• 一般所讲的抽样调查,大多数是指这种 随机调查,即狭义的抽样调查。
按照随机抽样原则 抽取总体中的部分
单位进行调查,用部分单位的指标数值 作为代表,对总体的指标数值作出具有 一定可靠程度的估计与推断,从而认识 总体的一种统计方法。
指样本单位的抽取不受主 观因素及其他系统性因素 的影响,每个总体单位都
x 4 6 8 10 12 8(元)
N
5
2
x 2 (4 8)2 (6 8)2 (8 8)2 (10 8)2 (12 8)2
N
5
8元
抽样平均误差为:
X
n
8 2元
2
样本成数分布
总体成数 P 是指具有某种特征的单位在总体中的比重。在前面我们已经知道,成数是
1.25
现从总体中抽取n=2的简单随机样本,在重复 抽样条件下,共有42=16个样本。所有样本的结果 如下表:
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察值
1
2
3
4
1
1,1
1,2
1,3
1,4
2
2,1
2,2
2,3
2,4
3
3,1
3,2
3,3
3,4
4
4,1
4,2
4,3
4,4
计算出各样本的均值,如下表。并给出样本 均值的抽样分布
16个样本的均值
第一个
第二个观察值
观察值 1
2
3
4
1 1.0 1.5 2.0 2.5
2 1.5 2.0 2.5 3.0
3 2.0 2.5 3.0 3.5
4 2.5 3.0 3.5 4.0
.3 P ( x ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
样本均值的分布与总体分布的比较 (图示)
E(P) p
(4.9) (4.10)
(P)
p(1 p)
p(1 p)
n
n
(4.11)
P120例4-6
已知一批产品的合格率为90%,现采用重复抽样方式从 中取出400件,求样本合格率的抽样平均误差。
解: E(P) p 90%
(P) p(1 p) 0.9 0.1 1.5%
n
400
由于样本容量大,样本成数的平均误差就大大减小。
4.1
2.5 4.1
34.7 38.8
54
5
4.1
4.1
43.0
样本二:50.26 55
10
8.3
56
1
.8
8.3 .8
51.2 52.1
样本三:53.19 57
2
1.7
58
2
1.7
1.7 1.7
53.7 55.4
59
1
.8
.8