抽样检验和抽样分布

合集下载

抽样与抽样分布

抽样与抽样分布

抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。

抽样的目的是通过样本来推断总体的特征和性质。

在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。

一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。

这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。

常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。

2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。

这样可能导致样本的代表性不足,从而产生较大的估计误差。

有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。

二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。

统计量可以是样本均值、样本方差等。

抽样分布的性质对于进行统计推断和假设检验非常重要。

2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。

中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。

3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。

这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。

4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。

通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。

为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。

三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。

以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。

通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。

2. 假设检验假设检验是统计学中常用的推断方法之一。

通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。

统计学-抽样分布与抽样方法

统计学-抽样分布与抽样方法
重复抽样的特点: ①在重复抽样的过程中,被抽取的总体单位总数始终
保持不变,每一次抽样中各总体单位被抽到的机会 都相同,每次抽样结果相互独立。 ②每一总体单位都有被重复抽取的可能。
5.2 抽样调查的方法
一、两种抽样方式(续):
(2)不重复抽样 ——也称不放回抽样,指被抽到的单位不再放回总
体,每次仅在余下的总体单位中抽取下一个样本的 抽样方法。 特点: ①任一总体单位都不会被重复抽到; ②每次抽样结果都受到以前各次抽取结果的影响,因 此各次抽取结果是不独立的; ③可以一次抽取所需要的样本单位数。 ❖ 在实际应用中通常采用的都是不重复抽样方法。
总体
群1
群2
…… 群k
个体1 个体2 个体3 个体4 个体5 个体6
5.2 抽样调查的方法
3.整群抽样
❖特点:
▪ 抽样时只需群的抽样框,可简化工作量 ▪ 调查的地点相对集中,节省调查费用,方便
调查的实施 ▪ 当群中的元素差异性大时,整群抽样得到的
结果比较好。在理想状态下,每一群是整个 总体小范围内的代表。如对人口普查资料进 行复查,就采用整群抽样的方式。
5.1 抽样调查的概念、特点和作用
五、全及总体和抽样总体 ❖全及总体,简称总体,是指所要认识对象的全
体,是许多同质性单位的集合。通常用大写字 母N来表示(容量)。 ❖抽样总体,简称样本,是从全及总体中随机抽 取出来,代表全及总体部分单位的集合。通常 用小写字母n来表示(容量) 。
▪ 样本容量(Sample size):样本中所含个体的数量。分为 大样本(>30)、小样本(<30)。
▪ 样本个数:又称为样本可能数目。是指从一个总体中可以 抽取的样本个数。
5.2 抽样调查的方法

抽样分布、参数估计和假设检验

抽样分布、参数估计和假设检验

抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。

(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。

1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。

2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。

因为许多问题都使用正态曲线的方法。

这个定理适于无限总体的抽样,同样也适于有限总体的抽样。

中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。

(三)抽样分布中的几个重要概念1.随机样本。

统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。

所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。

从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。

3.标准误。

样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。

根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。

统计学 第三章抽样与抽样分布

统计学 第三章抽样与抽样分布

=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取

统计学抽样与抽样分布

统计学抽样与抽样分布
查费用
3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。

抽样分布知识点总结

抽样分布知识点总结

抽样分布知识点总结抽样分布是统计学中一个重要的概念,它描述了在进行抽样时得到的样本统计量的分布情况。

抽样分布是统计推断的基础,它可以帮助我们理解抽样误差以及估计参数的可信度。

在本文中,我们将对抽样分布的基本概念、性质和相关理论进行总结和讨论。

一、基本概念1.1 抽样与总体在统计学中,总体是指我们想要研究的所有个体的集合,而抽样则是从总体中选取一部分个体作为样本,以获得对总体特征的估计。

抽样可以是随机抽样、分层抽样、系统抽样等方法,目的是代表性地反映总体的特征。

1.2 样本统计量在抽样中,对样本数据进行统计分析得到的统计量称为样本统计量,常见的样本统计量有均值、方差、标准差、比例等。

样本统计量能够提供有关总体参数的估计和推断。

1.3 抽样分布抽样分布是描述样本统计量的分布情况的统计学概念。

当我们从总体中抽取多个样本,并计算每个样本的统计量时,得到的这些统计量的分布就是抽样分布。

抽样分布可以反映出样本统计量的可变性、偏移和分布形态等特征。

二、性质2.1 中心极限定理中心极限定理是抽样分布理论中的重要定理,它描述了在一定条件下,样本均值的抽样分布近似服从正态分布。

中心极限定理对于理解抽样分布的性质和应用具有重要意义,也为许多统计推断方法提供了理论基础。

2.2 大数定律大数定律是另一个重要的抽样分布性质,它描述了当样本容量足够大时,样本均值会收敛于总体均值,即样本均值的抽样分布会集中在总体均值附近。

大数定律为我们理解样本统计量的稳定性和准确性提供了重要参考。

2.3 置信区间置信区间是根据抽样分布推断总体参数的一种方法,通过对抽样分布的分布情况进行分析,我们可以建立对总体参数的置信区间,从而对总体特征进行推断。

置信区间对于统计推断的可信度和精度有着重要的作用。

三、理论基础3.1 样本容量样本容量是影响抽样分布的一个重要因素,在实际抽样中,样本容量的大小对于样本统计量的分布情况有着重要的影响。

通常情况下,样本容量越大,抽样分布的稳定性和准确性越高。

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断统计学是一门研究收集、分析和解释数据的学科,而抽样和抽样分布则是统计学中至关重要的概念。

本文将探讨统计学原理教案中的抽样和抽样分布,以揭示学生如何进行抽样和利用抽样分布进行推断。

首先,我们来理解抽样的概念。

在统计学中,抽样是指从总体中选择一部分个体进行观察和研究。

总体是指我们感兴趣的整体,而样本则是从总体中选取的一部分个体。

通过抽样,我们可以通过研究样本来推断总体的特征,这是由于抽样的随机性能够保证样本与总体的代表性。

接下来,让我们了解抽样的方法。

常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。

每种抽样方法都有其特点和适用范围。

简单随机抽样是一种随机选择样本的方法,每个个体被选择的概率相同。

系统抽样是按照一定的规律选择样本,例如每隔一定数量选择一个个体。

分层抽样是将总体分成若干层次,然后从每个层次中抽取样本。

整群抽样则是将总体分成若干群体,然后随机选择一些群体并全面调查其中的个体。

选择合适的抽样方法可以更好地保证样本的代表性和可靠性。

抽样之后,我们需要了解抽样分布的概念。

在统计学中,抽样分布是指根据大量抽样的结果所得到的分布。

常见的抽样分布包括正态分布、t分布和F分布等。

其中,正态分布是抽样分布的重要特例,它在许多情况下都可以作为近似的抽样分布来使用。

t分布则用于小样本情况下的推断,它相比于正态分布更为宽阔且更适用于样本数据较少的情况。

F分布常用于分析方差比较和回归模型中的显著性分析。

抽样分布的重要性在于它可以帮助我们进行推断。

根据抽样分布的性质,我们可以利用统计推断方法进行参数估计和假设检验。

参数估计是根据样本的统计量来估计总体的参数值,例如通过样本均值估计总体均值。

假设检验是用来判断总体参数是否在某个范围内或是否相等的统计方法。

通过抽样分布的理论知识,我们可以进行参数估计和假设检验,并对总体进行推断。

在统计学原理教案中,抽样和抽样分布是学生学习的重点内容。

《统计学》第9章 抽样与抽样分布

《统计学》第9章 抽样与抽样分布

二、抽样中的基本概念
⚫ 样本比例(成数)
p = n1 ,q = n0 = 1− p
n
n
⚫ 样本是非标志的标准差
(n = n0 + n1)
sp =
n p (1− p) =
n −1
n pq n −1
⚫ 样本是非标志的方差
s
2 p
=
n n −1
p(1 −
p)
=
n n −1
pq
第一节 抽样和抽样方法
三、抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 在实践中总体所包括的单位数很多,分布很广,通过一次 抽样就选出有代表性的样本是很困难的。此时可将整个抽 样过程分为几个阶段,然后逐阶段进行抽样,最终得到所 需要的有代表性的样本。
第一节 抽样和抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 阶段数不宜过多,一般采用两个、三个阶段,至多四个阶 段为宜,否则,手续繁琐,效果也不一定好。
第一节 抽样和抽样方法
二、抽样中的基本概念
⚫ 总体参数
⚫ 总体参数是根据总体各单位的标志值或特征计算的、反 映总体某一属性的综合指标。
⚫ 总体参数是唯一的、确定的常数,但一般情况下又是未 知的。
⚫ 常用的总体参数有 ⚫ 总体均值 ⚫ 总体标准差、总体方差 ⚫ 总体比例(成数)
第一节 抽样和抽样方法
⚫ 样本标准差
s =
1 n −1
n i =1
(xi

x )2,或s
=
1
m
m
(xi − x )2 fi
fi −1 i=1
i =1
⚫ 样本方差
( ) ( ) s2 = 1 n n −1 i=1

8-抽样分布

8-抽样分布

样本方差的抽样分布
1. 在重复选取容量为n的样本时,由样本方差的所有 可能取值形成的相对频数分布 2. 对于来自正态总体的简单随机样本,则比值
(n 1) s 2
的抽样分布服从自由度为 (n -1) 的2分布,即

2
(n 1) s 2 ~ (n 1) 2
2
2分布(图示)
不同容量样本的抽样分布
统计量
抽样分布


抽样分布 ( sampling distribution) 抽样误差
抽样分布

一、抽样分布的概念 二、样本均值抽样分布的形式 三、样本均值抽样分布的特征
三种不同性质的分布
总体分布
样本分布
抽样分布
总体分布(population distribution)
1. 2. 3.
M为样本数目
比较及结论:1. 样本均值的均值(数学期望) 等于总 体均值。 2. 样本均值的方差等于总体方差的1/n。
总体分布
.3 P(x)
抽样分布
.3 .2 .1 0 1 2 3 4
.2 .1 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
= 2.5
σ2 =1.25
x 2.5 2 x 0.625
2.
3.
称F为服从自由度n1和n2的F分布,记为
U n1 F V n2
F ~ F (n1 , n2 )
例: (X1,X2,…,X5)为取自正态总体X~(0,σ2)的样本,
2 3( X 12 X 2 ) 求统计量 2 2( X 32 X 4 X 52 )
的分布
Xi

X i ~ N (0, 2 )

概率论抽样分布

概率论抽样分布

概率论抽样分布说明在概率论中,抽样分布是指从总体中选取样本并计算样本统计量的分布。

通过研究抽样分布,可以推断总体的性质和参数。

在这篇文档中,我们将介绍概率论抽样分布的基本概念、特性以及常用的分布类型。

抽样分布的定义抽样分布是由于从总体中抽取样本导致的统计量的分布。

在统计学中,统计量是从样本数据中计算得出的数值,如样本均值、样本方差等。

通过从总体中不断抽取样本并计算统计量的值,可以得到抽样分布。

抽样分布的特性抽样分布具有以下特性:1.中心极限定理:当样本容量足够大时,抽样平均值的抽样分布近似呈正态分布。

2.抽样分布的均值等于总体均值:样本均值的期望值等于总体均值。

3.抽样分布的方差等于总体方差除以样本容量:样本均值的方差等于总体方差除以样本容量。

常见的抽样分布类型在概率论中,常用的抽样分布类型包括:1.正态分布:也称为高斯分布,是最常用的抽样分布。

当样本容量足够大时,均值的抽样分布近似呈正态分布。

2.t分布:用于小样本(样本容量较小)情况下对总体均值的推断。

相对于正态分布,t分布有更宽的尾部。

3.卡方分布:用于推断总体方差时的抽样分布。

卡方分布的形态由自由度决定。

4.F分布:用于比较两个总体方差是否相等的抽样分布。

F分布的形态由两个样本的自由度决定。

抽样分布的应用抽样分布广泛应用于统计学和概率论中的推断与检验问题。

通过从总体中抽取样本并计算统计量的分布,可以进行以下应用:1.参数估计:通过抽样分布,我们可以估计总体参数的取值,如总体均值、总体方差等。

2.假设检验:通过比较样本统计量与抽样分布的临界值,我们可以判断总体参数是否满足某个假设。

3.置信区间估计:通过计算抽样分布的分位数,我们可以得到总体参数的置信区间,从而评估参数的精确性。

总结抽样分布是概率论中的重要概念,用于推断总体的性质和参数。

具备了中心极限定理、均值和方差的性质等特点,常见的抽样分布类型包括正态分布、t分布、卡方分布和F分布。

通过抽样分布,我们可以进行参数估计、假设检验和置信区间估计等应用。

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版(抽样检验)抽样与参数估计抽样和参数估计推断统计:利⽤样本统计量对总体某些性质或数量特征进⾏推断。

从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。

这个调查例⼦是估计总体参数(某种意见的⽐例)的壹个过程。

估计(estimation)是统计推断的重要内容之壹。

统计推断的另壹个主要内容是本章第⼆节要介绍的假设检验(hypothesistesting)。

因此本节内容就是由样本数据对总体参数进⾏估计,即:学习⽬标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体⽐例和总体⽅差的区间估计第⼀节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进⾏调查,且根据样本数据所提供的信息来推断总体的数量特征。

总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三⼗个的样本称为⼤样本,样本单位数不到三⼗个的样本称为⼩样本。

壹、抽样⽅法及抽样分布1、抽样⽅法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。

注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,⼜可分为重复抽样和不重复抽样。

⽽且,根据抽样中是否排序,所能抽到的样本个数往往不同。

②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进⾏抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)⾮概率抽样:不是完全按随机原则选取样本①、⾮随机抽样:由调查⼈员⾃由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数⽬、满⾜特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。

数理统计第3章 随机抽样与抽样分布

数理统计第3章 随机抽样与抽样分布

E ( X i ) = E ( X ) = µ , D( X i ) = D( X ) = σ 2 , i = 1,2,L , n
1 n 1 n 所以 E ( X ) = E ( ∑ X i ) = ∑ E ( X i ) = µ , n i =1 n i =1
1 1 . D ( X ) = D( ∑ X i ) = 2 ∑ D( X i ) = n n i =1 n i =1
11
它反映了总体 二、样本数字特征 均值的信息 它反映了总体 1 n 样本均值 X = ∑Xi 方差的信息 n i=1 1 n 1 n 2 2 2 2 样本方差 S = ∑( Xi − X) = n −1 ∑Xi − nX n −1 i=1 i =1
推导: 推导:
( Xi − X)2 = ∑( Xi2 − 2Xi X + X 2 ) ∑
因此, 应视为一组随机变量, 因此,抽样值 ( x1 , x2 ,L, xn ) 应视为一组随机变量,我们把 的一个样本 子样), 样本( ),其中 称为该样本的容量 容量。 它称为总体 X 的一个样本(或子样),其中 n 称为该样本的容量。
7
二、简单随机抽样
由于抽样的目的是为了对总体的分布进行统 计推断, 计推断,为了使抽取的样本能很好地反映总体的 信息,必须考虑抽样方法 信息,必须考虑抽样方法. 最常用的一种抽样方法叫作“ 最常用的一种抽样方法叫作“简单随机抽 它要求抽取的样本满足下面两点: 样”,它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察的总体 代表性: 有相同的分布. 有相同的分布 2. 独立性: X1,X2,…,Xn是相互独立的随机变量 独立性: 是相互独立的随机变量. 由简单随机抽样得到的样本称为简单随机样本 简单随机样本, 由简单随机抽样得到的样本称为简单随机样本, 今后如不加声明,均指简单随机样本。 今后如不加声明,均指简单随机样本。

统计学的所有方法和工具

统计学的所有方法和工具

统计学的所有方法和工具统计学是一门研究和应用数据收集、分析和解释的学科。

以下是统计学中常用的方法和工具:1. 描述统计:用于描述和总结数据的方法,包括平均数、中位数、众数、标准差、方差等。

2. 探索性数据分析(EDA):一种分析数据的方法,主要通过图表和统计指标来探索数据的特征和关系。

3. 概率:用于描述事件发生的可能性的数学方法。

概率理论是统计学的基础,包括概率分布、概率密度函数、概率质量函数等。

4. 抽样和抽样分布:用于从总体中获取样本并推断总体特征的方法。

常用的抽样方法包括随机抽样、系统抽样、分层抽样等。

5. 假设检验:用于判断统计推断的方法。

假设检验可用于比较两个群体的均值、检验某个参数是否符合设定的期望值等。

6. 回归分析:用于建立变量之间关系的方法。

线性回归、多元回归、逻辑回归等是常用的回归分析方法。

7. 方差分析:用于比较多个群体间差异的方法。

通过方差分析可以判断不同处理条件下受试者之间的差异是否显著。

8. 实验设计:用于优化实验条件和减少误差的方法。

常见的实验设计方法有完全随机设计、随机区组设计、拉丁方设计等。

9. 时间序列分析:用于分析时间序列数据的方法。

常用的时间序列分析方法包括自回归滑动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)等。

10. 数据挖掘:用于发现数据中隐藏模式和关联的方法。

常用的数据挖掘技术包括聚类分析、关联规则挖掘、分类与预测等。

11. 统计软件:用于统计分析和数据可视化的工具。

常用的统计软件包括SPSS、R、Python上的NumPy和pandas库等。

请注意,此列表并不是详尽无遗,统计学的方法和工具非常广泛和丰富,还有其他许多特定领域的方法和工具。

统计学复习(抽样分布、参数估计、假设检验)

统计学复习(抽样分布、参数估计、假设检验)

两个样本均值之差的抽样分布 (1)如: ) 抽样
X1 − N(µ1,σ12 ), X2 − N(µ2 ,σ2 ),
2
则 x1 − x2 ) ~ N(µ1 − µ2 , (
σ12 σ22
n1 + n2
)
抽样
σ12 N1 − n1 σ22 N2 − n2 (x1 − x2 ) ~ N[(µ1 − µ2 , ( )+ ( )] n1 N1 −1 n2 N2 −1
对于无限总体, 对于无限总体, 一个估计 如果对任意 量如能完 ε>ˆ 0 满足条件 全地包含 LimP(|θn −θ |≥ ε ) = 0 未知参数 n→∞ 信息, 信息,即 则称 θˆ 是 θ 为充分量 的一致估计。 的一致估计。
点估计
常用的求点估计量的方法
用样本的数字特征 1.数字特征法: 1.数字特征法:当样本容量增大时 ,用样本的数字特征 数字特征法 去估计总体的数字特征。 去估计总体的数字特征。 例如,我们可以用样本平均数(或成数 和样本方差来估 例如,我们可以用样本平均数 或成数)和样本方差来估 或成数 计总体的均值(或比率 和方差。 或比率)和方差 计总体的均值 或比率 和方差。
样本均值的抽样分布(简称均值的分布) 样本均值的抽样分布(简称均值的分布) 抽样
均值µ=∑Xi/N 均值
均值 X = Σxi
n
样本均值是样本的函数, 故样本均值是一个统计量, 样本均值是样本的函数, 故样本均值是一个统计量, 统计量 统计量是一个随机变量 随机变量, 统计量是一个随机变量, 样本均值的概率分布称为 样本均值的抽样分布。 样本均值的抽样分布。
2
n
总体均值 (µ) )
X ± tα
2
( n −1 )

抽样检验和抽样分布

抽样检验和抽样分布

抽样检验和抽样分布1. 引言抽样是统计学中非常重要的概念,通过对总体的一局部样本进行研究和分析,可以得出关于总体的推断和结论。

抽样检验是统计推断的一种方法,用于判断样本与总体之间是否存在显著差异。

抽样分布是抽样统计量的概率分布,是基于样本的随机变量,用于进行统计推断和估计。

2. 抽样检验抽样检验是统计推断的一种方法,用于判断样本与总体之间是否存在显著差异。

在抽样检验中,我们首先提出一个原假设和一个备择假设,然后通过计算样本统计量的概率来判断原假设是否成立。

常用的抽样检验方法包括:2.1 单样本 t 检验单样本 t 检验用于判断一个样本的均值是否与总体均值存在显著差异。

通过计算样本的 t 统计量来进行判断,如果 t 统计量的值较大,说明样本均值与总体均值之间存在显著差异。

2.2 双样本 t 检验双样本 t 检验用于判断两个样本的均值是否存在显著差异。

通过计算两个样本的 t 统计量来进行判断,如果 t 统计量的值较大,说明两个样本的均值之间存在显著差异。

2.3 卡方检验卡方检验用于判断两个或多个分类变量之间是否存在关联性。

通过计算卡方统计量来进行判断,如果卡方统计量的值较大,说明分类变量之间存在关联性。

2.4 方差分析方差分析用于判断一个因变量在不同组之间是否存在显著差异。

通过计算方差比率统计量来进行判断,如果方差比率统计量的值较大,说明不同组之间的因变量存在显著差异。

3. 抽样分布抽样分布是抽样统计量的概率分布,是基于样本的随机变量,用于进行统计推断和估计。

常用的抽样分布包括:3.1 正态分布在很多情况下,当样本容量足够大时,抽样分布可以近似地认为是正态分布。

正态分布是一种对称的连续概率分布,其概率密度函数可由均值和标准差完全描述。

3.2 学生 t 分布学生 t 分布是在样本容量较小、总体标准差未知的情况下使用的抽样分布。

学生 t 分布相比于正态分布,具有更宽的尾部,适用于小样本量的情况。

3.3 卡方分布卡方分布是基于正态分布的样本推断中经常使用的一种抽样分布。

抽样检的基础必学知识点

抽样检的基础必学知识点

抽样检的基础必学知识点
抽样检的基础知识点包括以下内容:
1. 抽样方法:在进行抽样检时,需要选择适当的抽样方法,常见的抽
样方法有简单随机抽样、系统抽样、分层抽样、整群抽样等。

2. 抽样误差:抽样误差是指抽样所引入的估计误差,其大小通常取决
于样本容量的大小和抽样方法的选择。

抽样误差越小,样本代表性越好,估计结果越可靠。

3. 样本容量:样本容量是指进行抽样检的样本数量,通常样本容量越大,估计结果越可靠。

样本容量的确定需要考虑抽样误差允许范围、
资源和时间等因素。

4. 抽样分布:抽样分布是指某一统计量在大量独立抽样情况下的分布。

常见的抽样分布有正态分布、t分布、卡方分布等。

根据不同的情况选择适当的抽样分布进行参数估计和假设检验。

5. 抽样误差的控制:为了减小抽样误差,可以采取增加样本容量、改
进抽样方法、增加抽样次数等方法进行控制。

合理选择抽样方法和样
本容量可以有效控制抽样误差。

以上是抽样检的基础必学知识点,通过学习这些知识点可以帮助我们
正确进行抽样检,得到可靠的估计结果。

抽样分布的概念及重要性

抽样分布的概念及重要性

抽样分布的概念及重要性抽样分布是统计学中一个重要的概念,它描述了从总体中抽取样本的过程中,统计量的分布情况。

在统计学中,我们通常无法对整个总体进行研究,而是通过抽取样本来推断总体的特征。

抽样分布的概念帮助我们理解样本统计量的变异性,并为统计推断提供了理论基础。

本文将介绍抽样分布的概念及其重要性。

一、抽样分布的概念抽样分布是指在相同条件下,重复从总体中抽取样本,并计算样本统计量的分布情况。

在抽样过程中,每次抽取的样本可能不同,因此样本统计量的取值也会有所不同。

抽样分布描述了样本统计量的所有可能取值及其对应的概率分布。

常见的样本统计量包括样本均值、样本方差、样本比例等。

以样本均值为例,假设总体均值为μ,样本均值为x̄,抽样分布描述了在相同样本容量的情况下,样本均值的所有可能取值及其对应的概率分布。

根据中心极限定理,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。

二、抽样分布的重要性抽样分布在统计学中具有重要的意义,它对统计推断和假设检验提供了理论基础,具体体现在以下几个方面:1. 参数估计:抽样分布可以用于估计总体参数。

通过抽取样本并计算样本统计量,我们可以对总体参数进行估计。

例如,通过计算样本均值来估计总体均值,通过计算样本比例来估计总体比例等。

抽样分布提供了样本统计量的分布情况,帮助我们确定估计值的可信度和置信区间。

2. 假设检验:抽样分布可以用于假设检验。

在假设检验中,我们通常需要比较样本统计量与假设值之间的差异,以判断差异是否显著。

抽样分布提供了样本统计量的分布情况,可以帮助我们计算出观察到的差异在抽样误差范围内的概率,从而判断差异是否显著。

3. 抽样方法选择:抽样分布可以帮助我们选择合适的抽样方法。

不同的抽样方法会对样本统计量的分布产生不同的影响。

通过了解抽样分布的特点,我们可以选择合适的抽样方法,以提高样本统计量的准确性和可靠性。

4. 统计推断:抽样分布是统计推断的基础。

统计推断是指通过样本数据对总体特征进行推断。

吉珠统计学期末考试重点第7章 抽样及抽样分布

吉珠统计学期末考试重点第7章  抽样及抽样分布

x
时, f (x) 的曲线以 x 轴为渐近线。
第七章 抽样调查
4. 标准正态分布
标准正态分布的概率密度函数为:
1 ( z) e , <z< 2
若随机变量 Z 服从标准正态分布, 则记为 Z~ (0, 1)
z2 2
1. 任何一个一般的正态分布,可通过下面的 线性变换转化为标准正态分布
总体均值的区间估计
(一) 大样本时总体均值的区间估计
第七章 抽样调查
例:某企业生产A产品的工人有1000人, 某日采用不重复抽样从中随机抽取100人调查 他们的当日产量,样本人均产量为35件,产量 的样本标准差为4.5件。请以95.45%的臵信度
估计该日人均产量的臵信区间。
解:①计算抽样平均误差
x 0
x a
第七章 抽样调查
标准差 决定密度函数曲线 f (x) 的陡缓程度.
0.5
1
2
第七章 抽样调查
3. 正态分布密度函数的特点
(1) 对称性。 (2) 非负性。
(3) f (x) 在 X x 时达到极大值 f(x ) 1 2
(4) f (x) 的曲线在 X x 处有拐点。 (5 )当
Z X

x2 2
~ N (0,1)
2. 标准正态分布的概率密度函数
1 ( x) e 2 , x
3. 标准正态分布的分布函数 t2 x x 1 -2 ( x) (t )dt e dt 2
第七章 抽样调查
标准正态分布, 具有如下性质或结论:
③计算抽样极限误差
由 1 ) 0.95 ,查t分布表得, (
t n 1 t 2.5% (9)=2.2622
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、纯随机抽样:对总体的所有容量不做任何 的分类和排队,完全按随机原则逐个抽取样 本容量。
纯随机抽样的常用抽样方法
1)抽签法:将总体容量全部加以编号, 并编成相应的号签,然后将号签充分混合后 逐个抽取,直到抽到预定需要的样本容量为 止。
缺点:总体容量很多时,编制号签的工作 量很大,且很难掺和均匀。
4、重复抽样和不重复抽样
有放回抽样:总体中的每个个体单位可以不止 一次地被选中的抽样。
无放回抽样:总体中的每个个体被选中的次数 不多于一次。
5、样本统计量的总体参数符号
名称
样本
总体
定义 从总体中抽出的部分单位数 研究对象的全部单位总数
特征
统计量
参数
样本容量:n 符号 样本平均数:x
样本比例: p
样本标准差:s
样本方差
总体容量:N 总体平均数:μ 总体比例:p 总体标准差:σ
总体方差: 2
三、随机抽样和判断抽样
❖ 随机抽样:按照随机原则抽取样本,在总体 中所有单位被抽中的机会是均等的。
❖ 判断抽样:根据个人或集体的设想或经验, 从总体中有目的地抽取样本。
三、非抽样误差和抽样误差
❖ 1、非抽样误差:在调查登记过程中发生的误 差和由于主观因素破坏了随机原则而产生的 系统性偏差。
抽样检验和抽样分布
第一节 抽样及抽样中的几个基本概念
一、抽样的概念和特点 1、抽样:从所研究的对象中随机地取出其中一
部分来观察,由此而获得有关总体的信息。
2、抽样的3个特点: 1)遵守随机原则; 2)推断被调查现象的总体特征; 3)计算推断的准确性和可靠性。
二、抽样的基本概念
1、全及总体和样本总体 全及总体是我们所要研究的对象,而样本总体则是 我们所要观察的对象,两者是有区别而又有联系的 不同范畴。 ❖ 全及总体又称母体:具有某种共同性质的许多单位 的集合体。 ❖ 样本总体:又称子样,简称样本,是从全及总体中 随机抽取出来,代表全及总体的那部分单位的集合 体。样本总体的单位数称为样本容量,通常用小写 英文字母n来表示。

样本代表性问题:随着样本容量的增大,样本 对总体的代表性越来越高,并且当样本单位 数足够多时,样本平均数愈接近总体平均数 。
2.全及指标和抽样指标
❖ 全及指标:根据全及总体各个单位的标志值 或标志属性计算的,反映总体某种属性或特 征的综合指示称为全及指标。常用的全及指 标有总体平均数(或总体成数)、总体标准 差(或总体方差 )。
3、样本容量和样本个数
❖ 样本容量:指一个样本所包含的单位数。通常将样 本单位数不少于30个的样本称为大样本,不及3 0个的称为小样本。社会经济统计的抽样调查多属 于大样本调查。样本个数又称样本可能数目。指从 一个总体中可能抽取的样本个数。一个总体有多少 样本,则样本统计量就有多少种取值,从而形成该 统计量的分布,此分布是抽样推断的基础。
等距抽样的一个例子
某企业有职工5000名,现要随机抽取100人进行 家庭收入水平调查。
抽取方法:按与研究目的无直接关系的姓 名笔划对总体进行排列,把总体划分为 K=5000/100=50个相等的间隔,在第1至 第50人中随机抽取一名,如抽到第10名 ,后面间隔依次抽取第60,110,160, 210,…直到4960为止,总共抽取50同 名职工组成一个抽样总体。
❖ 抽样指标:由样本总体各单位标志值计算出 来反映样本特征,用来估计全及指标的综合 指标称为统计量(抽样指标)。统计量是样 本变量的函数,用来估计总体参数,因此与 总体参数相对应,统计量有样本平均数(或 抽样成数)、样本标准差(或样本方差 )。
❖ 注意: 对于一个问题全及总体是唯一确定的,所
以全及指标也是唯一确定的,全及指标也称为参数 ,它是待估计的数。而统计量则是随机变量,它的 取值随样本的不同而发生变化。
等距抽样的优点:(1)能保证被抽取到的样
本单位在全及总体中均匀分布;(2)简化抽 样过程。
等距抽样应注意:要避免抽样间隔或样本距
离和现象本身的节奏性或循环周期相重合。
三、类型抽样
类型抽样:将全及总体中的所有单位按某一
主要标志分组,然后在各组中采用纯随机抽 样或等距抽样方式,抽取一定数目的调查单 位构成所需的样本。
2、抽样误差:是指由于随机抽样的偶然因素 使样本各单位的结构不足以代表总体各单位 的结构,而引起抽样指标和全及指标之间的 绝对离差。不包含登记性误差和不遵守随机 原则造成的偏差。
❖ 影响抽样误差的因素有:总体各单位标志值 的差异程度;样本的单位数;抽样的方法;抽 样调查的组织形式。
第二节 随机抽样设计
适用范围:主要适用于总体情况比较复杂,
各类型或层次之间的差异较大,而总体单位 又较多的情形,分层使层内各单位之间的差 异减小,层间差异扩大。
(一)类型比例抽样
按照总体单位数在各组之间的比例,分
配各组的抽样单位数。即:各类型中抽
取的样本单位数ni占该类型所有单位数Ni 的比例是相等的,等同于样本单位总数n
K
ni
i1
(二)类型适宜抽样
在抽取样本单位数时,要考虑各类型组
包含的单位数不同和标志单位数,变动程度(
)小的
i
组要少多抽样本数,使得各类型组的变
动程度( i )在所有类型组变动程度之
2)随机数字法:用字母顺序或身份证号等任 何方便的方法对总体容量编者按号,利用随 机数表从1到总体容量N中随机抽取n(样本 容量数)个数,遇到那些不在编号里的数字 需跳过。
二、等距抽样:先将总体各单位按某一有关
标志(或无关标志)排队,然后相等距离或 相等间隔抽取样本单位K 。根据需要抽取的样 本单位数(n)和全及总体单位数(N),可 以计算出抽取各个样本单位之间的距离和间 隔,即:K=N/n,然后按此间隔依次抽取必 要的样本单位。
占总体单位数N的比例,即:
n n n n 1 2 3 K n
N1 N2 N3
NN K
各类型组应抽取的样本单位数为:
N n i n n N i N i N
样本比率抽样样本容量:按前面指定的比例
(n/N)从每组的Ni单位中抽取ni个单位即构成 一个抽样总体,其样本容量为:
n= n1+ n2+ n3+…+ nk=
相关文档
最新文档