椭圆的离心率1

合集下载

椭圆离心率取值范围解题策略

椭圆离心率取值范围解题策略

椭圆离心率取值范围解题策略离心率是高中“圆锥曲线”的一个重要几何性质,是三种圆锥曲线统一定义的桥梁和纽带,是研究圆锥曲线其他性质的基础,它是一个比值椭圆的离心率是刻画椭圆“扁圆”程度的基本量之一.在我们的教材中直接给出了离心率的定义,并没有明确解释为什么把这个比值作为椭圆的离心率.如果教师在教学中只是告诉学生这是“人为规定”,学生没有经历概念的产生和发展过程,就很难理解概念的本质,因此在运用概念解题时无从下手.本节课就是希望通过数学文化背景深入认识椭圆的离心率,从而更好地解决和椭圆离心率有关的问题.一、离心率定义的内涵在教材中焦距与长轴长的比值定义为椭圆的离心率.在教学中,许多学生会有这样的疑问:也可以刻画椭圆的扁圆程度,为什么不用它们定义椭圆的离心率?”其实作为椭圆的离心率更有优势,我们知道椭圆是平面上到两个定点F1,F2距离的和为常数2a的动点的轨迹(其中|F1F2|=2c,且2a>2c),此定义中涉及的参数是a和c,为了和椭圆的定义保持一致,所以用表示椭圆的离心率;另外,椭圆的第二定义是“到定点的距离与到定直线的距离的比值为常数的动点的轨迹”,而这个常数恰好是即椭圆的离心率.其实说椭圆的离心率是“人为规定”也未尝不可,因为在天文学中把天体运行轨道的离心率也叫作偏心率,描述的是某一天体椭圆轨道与理想圆形的偏离程度.天文学家发现太阳系中,行星是围绕着以太阳为焦点的椭圆形轨道运行的,所以行星和太阳之间的距离不是恒定的,其中离太阳最近的距离为a-c,离太阳最远的距离为a+c,也就是说偏心率就是衡量行星偏离太阳的程度,所以用表示椭圆的偏心率更符合客观实际.二、椭圆离心率取值范围的几种求法求椭圆离心率的取值范围是高考经常考查的热点问题之一,这类题涉及解析几何、平面几何、代数等多个知识点,综合性强、方法灵活,解题关键是构造关于a,c或e的不等式,下面用几个实例通过构造不等式求椭圆离心率的取值范围.1.利用椭圆的范围构造不等式例1 设椭圆的左、右焦点分别为F1,F2,若椭圆上存在点P,使得∠F1PF2=90°,求椭圆离心率e的取值范围.解:设点P的坐标为(x,y),点F1的坐标为(-c,0),点F2的坐标为(c,0),则有因为∠F1PF2=90°,得则即(x+c)(x-c)+y2=0,整理得x2+y2=c2,将其与椭圆方程联立,消去y,可得由椭圆上点的坐标的范围可知,0≤x2<a2,解得c2≥b2,即所以2.利用二次方程判别式构造不等式以上题为例.解:由椭圆的定义可知|PF1|+|PF2|=2a,所以有+2|PF1|·|PF2|=4a2,又因为∠F1PF2=90°,所以=4c2,由此可得|PF1|·|PF2|=2(a2-c2),所以|PF1|,|PF2|可以看作二次方程x2-2ax+2(a2-c2)=0的两实根.所以Δ=4a2-8(a2-c2)≥0,整理得所以3.利用焦半径的取值范围构造不等式例2 已知椭圆的左、右焦点分别为F1,F2,椭圆上存在一点P,使得线段PF1的中垂线经过焦点F2,则椭圆离心率e的取值范围是______.图1解:如图1,因为线段PF1的中垂线经过焦点F2,所以|PF2|=|F1F2|=2c,即椭圆上存在一点P,使得|PF2|=2c.所以|PF2|=2c≥a-c,所以a≤3c,所以即4.利用均值不等式构造不等式例3 设F1,F2是椭圆的两个焦点,若椭圆上任意一点M都满足∠F1MF2为锐角,则椭圆离心率的取值范围是( ).解:因为又因为∠F1MF2为锐角,所以又因为-4c2=(|MF1|+|MF2|)2-2|MF1||MF2|-4c2>0,所以|MF1||MF2|<2a2-2c2,由均值不等式得所以a2<2a2-2c2,解得所以图25.利用椭圆中重要结论构造不等式以上题为例.解:如图2,当M移动到椭圆的短轴的端点B时,∠F1MF2最大.由已知可知,∠F1BF2为锐角,即∠F1BO<45°,在Rt△F1BO中,所以6.利用题设中的已知条件构造不等式例4 已知椭圆的右焦点为F,短轴的一个端点为M,直线l:5x-12y=0交椭圆于A,B两点,若|AF|+|BF|=6,点M到直线l的距离不小于则该椭圆E的离心率的取值范围是( ).图3解:如图3所示,设F1为椭圆的左焦点,连接AF1,BF1,则四边形AFBF1为平行四边形,所以6=|AF|+|BF|=|AF1|+|AF|=2a,所以a=3.取M(0,b),因为点M到直线l的距离不小于所以解得b≥1,所以又因为0<e<1,所以椭圆E的离心率的取值范围是故选A.在新一轮课改的实施过程中,作为数学教师,需要在平时的教学中,适时地引导学生探究出问题的本源,只有这样深入才能使学生更容易掌握解决问题的方法.而椭圆离心率取值范围的解法灵活多样,综合性强,需要我们认真分析题意,探究问题本源,才能找到最佳突破口,从而准确、快速地解决问题.参考文献:[1]王侠.椭圆离心率的深入认知及基本求法[J].中小学数学,2013(4).[2]黄贻淦.如何建立不等式求离心率的范围[J].数理化解题研究,2012(2).[3]林风,林善柱.数学概念教学要重视其生成过程——“椭圆离心率及其应用”的教学思考[J].中学数学教学参考(上),2017(12).*基金项目:本文系2018年度甘肃省教育科学“十三五”规划重点课题“基于核心素养下的数学史融入高中数学教学的实践”(课题编号:GS[2018]GHB3863)的阶段性成果之一.。

4、椭圆的性质(一)---基本概念

4、椭圆的性质(一)---基本概念

a ,椭圆就越 2)e 越接近 0,b就越接近于(?) (?) 圆
椭圆方程变为圆的方程
3)特例:e =0,则 a = b,则 c=0,两个焦点重合,
• 椭圆的简单几何性质(完成学案的表格) 焦点 的位 置 图形 标准 方程 范围 顶点
x2 y2 a2+b2=1(a>b>0)
-a≤x≤a,-b≤y≤b
{1}基本量:a、b、c、e、
请考虑:基本量之间、 基本点之间、基本线 之间以及它们相互之 间的关系(位置、数 量之间的关系)
{2}基本点:顶点、焦点、中心(共七个点) {3}基本线:对称轴、准线(共四条线)
椭圆几何性质的探索
x y 1( a b 0) 2 2 a b
(1)椭圆的顶点 (0, b ) B2
A1 ( a , 0)
( c , 0)
o
y
2
2
上顶点
( c , 0)
F1
(0, b) B1
F2
(2 a , 0) A
x
(2)椭圆的长轴长,短轴长,焦距
(0, b ) B2
2 2
a=5 b=4
c=3
o
练习1. 已知椭圆方程为x2+4y2=16
它的长轴长是:
焦距是:
8
。短轴是:
.离心率等于:
4
3 2


4 3
焦点坐标是: (2 3, 0)
2) 。顶点坐是:(4, 0) (0, 。
x2 y2 其标准方程是 1 16 4
a4 b2
则c a b 2 3
椭圆的性质 (第一课时)
复习
2 2 2 c =a -b
F1
2
P

离心率学案 (1)

离心率学案 (1)

微专题:圆锥曲线离心率的求值及其范围【学习目标】(1)熟练掌握三种圆锥曲线的定义、标准方程、几何性质,并灵活运用它们解决相关的问题。

(2)掌握解析几何中有关离心率及其范围等问题的求解策略。

(3)灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、分类讨论思想、等价转化的思想)解决问题。

【学习重、难点】重点:利用圆锥曲线自身性质、平面几何知识、常见结论等建立关于,,a b c 的关系式(等式或不等式)。

难点:平面几何知识在圆锥曲线中的应用。

【课前热身】1.已知椭圆的左焦点为1F ,有一小球A 从1F 处以速度v 开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到1F 时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为2.已知12,F F 为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,以12F F 为直径的圆与双曲线右支的一个交点为P , 1PF 与双曲线相交于点Q ,且12PQ QF =,则该双曲线的离心率为3.已知1F 、2F 分别为双曲线22221x y a b-=(0a >, 0b >)的左、右焦点,圆2222x y a b +=+与该双曲线相交于点P ,若21122PF F PF F ∠=∠,则该双曲线的离心率为4. 已知12,F F 为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,,以线段12F F 为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是5.已知,,P A B 是双曲线22221x y a b -=上不同的三点,且,A B 关于原点对称,若直线,PA PB 的斜率乘积34PA PB k k =,则该双曲线的离心率是 6.已知斜率为1的直线与双曲线22221(0,0)x y a b a b-=>>相交于B,D 两点,且BD 的中点为M (1,3),则双曲线的离心率为7.已知椭圆22221(0)x y a b a b+=>>的焦点分别为F 1,F 2,若该椭圆上存在一点P ,使得∠F 1PF 2=90°,则椭圆离心率的取值范围是 .8.如图,1F 和2F 分别是双曲线22221(0,0)x y a b a b-=>>的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2经验之谈:【类型专练】一、圆锥曲线离心率的值 1、代数法例1.(1)已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆交于A,B 两点,直线l的倾斜角为60°,若2AF FB =,则椭圆的离心率为(2)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,上、下顶点分别为12B B ,右顶点为A ,直线1AB 与21B F 交于点D .若1123AB B D =,则C 的离心率等于__________.(3)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F 、,过1F 且与x 轴垂直的直线交椭圆于A B 、两点,直线2AF 与椭圆的另一个交点为C ,若23ABC BCF S S ∆∆=,则椭圆的离心率为__________.2.平面几何性质应用 例 2.(1)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,两渐近线上分别有A,B 两点,AB OB ⊥,//AF x BF OA ⊥轴,,则双曲线离心率为 (曹人仁提供)(2)已知F 为双曲线C:22221(0,0)x y a b a b-=>>的右焦点,过点F 向C 的一条渐近线作垂线,垂足为A ,交另一条渐近线于点B 。

《椭圆的离心率》教学设计

《椭圆的离心率》教学设计

《椭圆的离心率》教学设计作者:胡嘉玉来源:《学校教育研究》2017年第25期一、教材分析本节是一轮复习第十章第一节椭圆的第二课时,已经把大部分知识复习完在教材上是对椭圆的进一步研究,是对椭圆的几何性质的应用,并对之后研究双曲线和抛物线的几何性质,打下基础。

所以本节是本章教学的重点和难点,是高考重点考察的内容之一,应引起教师和学生的足够重视。

二、学情分析本节是在学习了椭圆的定义和标准方程、简单的几何性质之后学习的,学生已经对简单的椭圆几何性质有所了解,而本节是针对几何性质中的离心率重点研究,既复习离心率,又要对前面知识进行综合应用,而且又在1401班授课,属于文科普通班,学生基础知识掌握较差、运算能力较差,所以要做好引导和渗透数形结合的数学思想的工作。

三、教学目标1、知识与技能:熟练掌握椭圆的离心率及其有关实际问题;2、过程与方法:由易到难,建立信心,体会数形结合思想等数学思想,掌握求椭圆离心率的一般解法;3、情感态度和价值观:通过课堂活动参与,获得成功的体验,激发学生学习数学的兴趣,培养学生勇于探索,敢于创新的科学的精神。

四、教学重点、难点重点:求椭圆的离心率;难点:运用椭圆的几何性质解决有关椭圆的离心率的取值范围问题。

五、教学方法多媒体、导学案。

六、学法根据学生情况,应用复习--练习--讨论--归纳--提升的学习方法。

七、教学过程一、基础巩固1、画出椭圆并标明a,b,c的位置关系及其大小关系。

c2=a2-b22、写出椭圆的离心率及其范围e=a(c),且e∈(0,1)3、椭圆离心率的作用?反映了焦点远离中心的程度,决定椭圆形状,反映了椭圆的扁平程度。

先分析椭圆离心率e的取值范围:∵a>c>0,∴ 0再结合图形分析离心率的大小对椭圆形状的影响:(1)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;(2)当e=0时,c=0,a=b两焦点重合,椭圆的标准方程成为,图形就是圆了。

4、4、已知F1,F2是椭圆C的两个焦点,.若P为椭圆上一点,则,。

专题讲座:椭圆离心率的常规求法(文)

专题讲座:椭圆离心率的常规求法(文)
1.知识点:求离心率的两种常规方法: (1)定义法:求a,c或a、c的关系; (2)方程法:根据题上的相等关系,构造关于
a,c的齐次式,解出e. 2.思想方法:
方程的思想,转化的思想
六.课后练习
1.若一个椭圆长轴的长度、短轴的长度和焦距长 成等差数列,求该椭圆的离心率.
2.设椭圆的两个焦点分别为F1和F2 ,过F2作椭圆 长轴的垂线交椭圆于点P,若为△F2PF1等腰直角 三角形,求椭圆的离心率.
专题讲座
椭圆离心率的常规求法
刘帅帅
一.复习巩固
二.离心率的常见题型及解法
题型一:定义法 例1.已知椭圆方程为 x2 + y2 =1,求椭圆的离心率;
16 8
y
P
a
F1(-c,0)o c F2(c,0)
x
1.直接算出a、c带公式求e 2. 几何意义:e为∠OPF2的正弦值
变式训练1:
若椭圆x2 + y2 =1的离心率为1/2,求m的值.
四.高考链接
( (a>2b0>102)新的课左标、全右国焦卷点),设P为F1直和线F2是x=椭3圆a ax上22 +一by点22 =,1
2
△ F2 P F1是底角为30°的等腰三角形, 求该椭圆
的离心率。
y P
30°
2c
F1 (-c,0)o2c
F2
(c,0)
c
x
2c=3a/2
x=3a/2
五.小结
3.已知椭圆的两个焦点为F1和F2,A为椭圆上一 点 ,且AF1⊥AF2,∠AF1F2=60°,求该椭圆的 离心率。
变式训练2:
椭圆
x a
2 2
+
y2 b2

离心率的五种求法

离心率的五种求法

离心率的五种求法离心率的五种求法一、直接求出a、c,求解e当已知圆锥曲线的标准方程或a、c易求时,可利用离心率公式e=c/a来解决。

例如,已知双曲线2-x^2/y^2=1(a>c)的一条准线与抛物线y^2=-6x的准线重合,则该双曲线的离心率为(3a^2c^2-13c^2)/(2a^2c)。

解法为:抛物线y=-6x的准线是x=2c^2/3,即双曲线的右准线x=c^2/(a-c)=2c^2/3-1/3.由此得到c=2,a=3,e=c/a=2/3.因此,选D。

变式练1:若椭圆经过原点,且焦点为F1(1,0)、F2(-1,0),则其离心率为√(2/3)。

解法为:由F1(1,0)、F2(-1,0)知2c=2,∴c=1,又∵椭圆过原点,∴a-c=1,a+c=2,解得a=3/2,e=c/a=√(2/3)。

因此,选C。

变式练2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为√13/2.解法为:由题设a=2,2c=6,则c=3,e=c/a=√13/2.因此,选C。

变式练3:点P(-3,1)在椭圆4x^2/a^2+2y^2/b^2=1(a>b)的左准线上,过点P且方向为(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为√113/5.解法为:由题意知,入射光线为y-1=-x/2,关于y=-2的反射光线(对称关系)为y+5=-2(x+3),解得a=3,c=√5,则e=c/a=√113/5.因此,选A。

二、构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,构造a、c的关系(特别是齐二次式),进而得到关于e的一元方程,从而解得离心率e。

1到l1的距离,又AB的长为2a,∴XXX的长为a。

设AB的中点为M,则MF1为椭圆的半长轴,由于F1在x轴右侧,∴F1的横坐标为c,且c>a。

设F1为(c,0),则根据椭圆的统一定义,可得c2x2y2a2c2。

其中c为椭圆的半焦距,由题意可得AD的长为a,即MF1的长为a,又MF1为椭圆的半长轴,∴a=c,代入上式得x2y2122c离心率为e=cacc1故选D。

椭圆的离心率问题 -2021-2022学年高二上学期数学人教A版(2019)选择性必修第一册

椭圆的离心率问题 -2021-2022学年高二上学期数学人教A版(2019)选择性必修第一册

专题6:椭圆的离心率问题一、单选题1.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆上不与左右顶点重合的任意一点,I ,G 分别为12PF F ∆的内心和重心,当IG x ⊥轴时,椭圆的离心率为A .13B .12C D 2.第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD (如图),且两切线斜率之积等于916-,则椭圆的离心率为( )A .34B .4C .916D 3.已知椭圆()222210x y a b a b+=>>的右焦点和上顶点分别为点()(),0F c b c >和点A ,直线:65280l x y --=交椭圆于,P Q 两点,若F 恰好为APQ 的重心,则椭圆的离心率为( )A .2B .3C D4.设椭圆()222210x y a b a b+=>>的焦点为1F ,2F ,P 是椭圆上一点,且123F PF π∠=,若12F PF ∆的外接圆和内切圆的半径分别为R ,r ,当4R r =时,椭圆的离心率为( )A .45B .23C .12D .155.已知1F 、2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共交点,且123F PF π∠=,则椭圆和双曲线的离心率倒数之和的最大值为A .3B .4C .2D .6.已知12(,0)(,0)F c F c -,为椭圆22221x y a b+=的两个焦点,P (不在x轴上)为椭圆上一点,且满足212PF PF c ⋅=,则椭圆离心率的取值范围是( )A .32⎢⎣⎭B .11,32⎡⎤⎢⎥⎣⎦C .3⎫⎪⎣⎭D .0,2⎛ ⎝⎭7.已知椭圆()222210x y a b a b+=>>的左右焦点分别为12F F ,,点Q 为椭圆上一点. 12QF F 的重心为G ,内心为I ,且12GI F F λ=,则该椭圆的离心率为( )A .12B .2C .13D .3二、填空题8.已知椭圆C :2222x y a b+=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 为椭圆C 上不与左右顶点重合的动点,设I ,G 分别为△PF 1F 2的内心和重心.当直线IG 的倾斜角不随着点P 的运动而变化时,椭圆C 的离心率为_____.9.如图是数学家Germinal Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球1O ,球2O 的半径分别为3和1,球心距离128OO =,截面分别与球1O ,球2O 切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于______.10.设椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,P 是椭圆上不同于A ,B 的一点,设直线AP ,BP 的斜率分别为m ,n ,则当2233(ln ||ln ||)a m n ⎛⎫-+++ ⎪取得最小值时,椭圆C 的离心率是______.11.已知椭圆C :22221x y a b+=(a >b >0)的右焦点为F ,经过坐标原点O的直线交椭圆于A . B 两点,M 、N 分别为线段AF 、BF 的中点,若存在以MN 为直径的圆恰经过坐标原点O ,则椭圆的离心率的取值范围为___.12.已知斜率为1的直线l 经过椭圆2222:1x y M a b+=的左焦点,且与椭圆M 交于A ,B 两点,若椭圆M 上存在点C ,使得ABC 的重心恰好是坐标原点,则椭圆M 的离心率e =______.13.已知中心在原点的椭圆C 的一个端点为)A ,直线:21l y x =+.若C 上存在相异的两点M ,N 关于l 对称,则椭圆C 离心率的取值范围是___________.14.已知点P 为直线40ax y +-=上一点,,PA PB 是椭圆()222:10x C y a a+=>的两条切线,若恰好存在一点P 使得PA PB ⊥,则椭圆C 的离心率为__________.15.已知点P 是椭圆22221(0)x y a b a b+=>>上一点,过点P 的一条直线与圆2222x y a b +=+相交于, A B 两点,若存在点P ,使得22||||PA PB a b ⋅=-,则椭圆的离心率取值范围为_________.16.已知椭圆()222210x y a b a b+=>>左顶点为A ,O 为坐标原点,若椭圆上存在点M 使OM MA ⊥,则椭圆的离心率e 的取值范围是______.17.已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且124F PF π∠=,则椭圆和双曲线的离心率乘积的最小值为___________.18.已知椭圆221112211:1(0)x y C a b a b +=>>与双曲线222222222:1(0,0)x y C a b a b -=>>有相同的焦点F 1、F 2,点P 是两曲线的一个公共点,12,e e 分别是两曲线的离心率,若PF 1⊥PF 2,则22124e e +的最小值为__________.参考答案1.A【分析】结合图像,利用P 点坐标以及重心性质,得到G 点坐标,再由题目条件GI x ⊥轴,得到I 点横坐标,然后两次运用角平分线的相关性质得到MNME 的比值,再结合MIN ∆与MPE ∆相似,即可求得I 点纵坐标,也就是内切圆半径,再利用等面积法建立关于,,a b c 的关系式,从而求得椭圆离心率.【解析】如图,令P 点在第一象限(由椭圆对称性,其他位置同理),连接PO ,显然G 点在PO 上,连接PI 并延长交x 轴于点M ,连接GI 并延长交x 轴于点N ,GI x ⊥轴,过点P 作PE 垂直于x 轴于点E ,设点00(,)P x y ,12(,0),(,0)F c F c -,则00,OE x PE y ==,因为G 为12PF F ∆的重心,所以00(,)33x y G , 因为IG x ⊥轴,所以I 点横坐标也为03x ,03xON =,因为PM 为12F PF ∠的角平分线,则有01212122()()23x PF PF F N NF FO ON OF ON ON -=-=+--==, 又因为12+2PF PF a =,所以可得0012,33x xPF a PF a =+=-,又由角平分线的性质可得,0110223=3x a F M PF x F M PF a +=-,而12=F M c OM F M c OM +- 所以得03cx OM a=,所以0()3a c x MN ON OM a -=-=,0(3)3a c x ME OE OM a-=-=,所以3INMN a c PEMEa c -==-,即0()3a c y IN a c-=-, 因为1212121211()22PF F S PF PF F F IN F F PE ∆=++= 即00()11(22)(2)232a c y a c c y a c -+=-,解得13c a =,所以答案为A. 【点评】本题主要考查离心率求解,关键是利用等面积法建立关于,,a b c 的关系式,同时也考查了重心坐标公式,以及内心的性质应用,属于难题.椭圆离心率求解方法主要有:(1)根据题目条件求出,a c ,利用离心率公式直接求解.(2)建立,,a b c 的齐次等式,转化为关于e 的方程求解,同时注意数形结合. 2.B【分析】分别设内外层椭圆方程为22221(0)x y a b a b+=>>、22221(1)()()x y m ma mb +=>,进而设切线AC 、BD 分别为1()y k x ma =+、2y k x mb =+,联立方程组整理并结合0∆=求1k 、2k 关于a 、b 、m 的关系式,再结合已知得到a 、b 的齐次方程求离心率即可.【解析】若内层椭圆方程为22221(0)x y a b a b +=>>,由离心率相同,可设外层椭圆方程为22221(1)()()x y m ma mb +=>,△(,0),(0,)A ma B mb -,设切线AC 为1()y k x ma =+,切线BD 为2y k x mb =+,△12222()1y k x ma x y a b=+⎧⎪⎨+=⎪⎩,整理得22223224222111()20a k b x ma k x m a k a b +++-=,由0∆=知:32222224222111(2)4()()0ma k a k b m a k a b -+-=,整理得2212211b k a m =⋅-,同理,222221y k x mb x y ab =+⎧⎪⎨+=⎪⎩,可得22222(1)b k m a =⋅-,△4221249()()16b k k a ==-,即22916b a =,故4c e a ===. 故选:B.【点评】关键点点睛:根据内外椭圆的离心率相同设椭圆方程,并写出切线方程,联立方程结合0∆=及已知条件,得到椭圆参数的齐次方程求离心率. 3.C【分析】由题设()(),0,0,F c A b ,利用F 为APQ 的重心,求出线段PQ 的中点为3,22c b B ⎛⎫- ⎪⎝⎭,将B 代入直线方程得592802b c +-=,再利用点差法可得225a bc =,结合222a b c =+,可求出,,a b c ,进而求出离心率. 【解析】由题设()()()()1122,0,0,,,,,F c A b P x y Q x y ,则线段PQ 的中点为()00,B x y ,由三角形重心的性质知2AF FB =,即()00,2,()c b x c y -=-,解得:003,22c bx y ==-即3,22c bB ⎛⎫- ⎪⎝⎭代入直线:65280l x y --=,得592802b c +-=△.又B 为线段PQ 的中点,则12123,x x c y y b +=+=-,又,P Q 为椭圆上两点,2222112222221,1x y x y a b a b∴+=+=,以上两式相减得()()()()1212121222x x x x y y y y a b +-+-+=,所以221212221212365PQy y x x b b c k x x a y y a b -+==-⋅=-⨯=-+-,化简得225a bc =△ 由△△及222a b c =+,解得:42a b c ⎧=⎪=⎨⎪=⎩,即离心率5e =. 故选:C.【点评】本题考查求椭圆的离心率,求解离心率在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:△直接求出,a c ,从而求出e ;△构造,a c 的齐次式,求出e ;△采用离心率的定义以及圆锥曲线的定义来求解;△根据圆锥曲线的统一定义求解. 4.B【分析】利用正弦定理得到R =再利用椭圆的定义,设1PF m =,2PF n =,得到2m n a +=,结合余弦定理22242cos3c m n mn π=+-,得到22230a c ac --=,即得解.【解析】椭圆的焦点为()1,0F c -,()2,0F c ,122F F c =根据正弦定理可得121222sin 3sin3F F c R F PF π===∠△R =14r R ==设1PF m =,2PF n =,则2m n a +=, 由余弦定理得22242cos 3c m n mn π=+- ()22343m n mn a mn =+-=-,△()2243a c mn -=,△)12221sin 233F PFa c S mn π∆-==, 又12F PF S ∆=()()1226a c m n c r +++⋅=,△))2236a c a c -+=即22230a c ac --=, 故2320e e +-=,解得:23e =或1e =-(舍). 故选:B .【点评】本题考查了椭圆的性质综合应用,考查了学生综合分析,转化与划归,数学运算的能力,属于中档题. 5.A【分析】设椭圆方程为22221(0)x y a b a b+=>>,双曲线方程为22221(0,0)x y m n m n+=>>,焦距为2c 由椭圆和双曲线的定义,不妨设P 在第一象限,求出1212||,||,(,PF PF F F 为焦点),在12PF F ∆中利用余弦定理,求出,,a m c 关系,进而得出椭圆与双曲线的离心率关系,利用三角换元,结合正弦函数的有界性,即可求解.【解析】设椭圆方程为22221(0)x y a b a b +=>>,双曲线方程为22221(0,0)x y m n m n-=>>,左右焦点分别为12(,0),(,0)F c F c -22222c a b m n =-=+不妨设P 在第一象限,121222PF PF aPF PF m ⎧+=⎪⎨-=⎪⎩,得12PF a m PF a m ⎧=+⎪⎨=-⎪⎩, 在12PF F ∆中,22212121212||||||2||||cos F F PF PF PF PF F PF =+-⋅⋅∠,即2222222343,4a m c a m c c=++=,设椭圆和双曲线的离心率分别为12221213,,4e e e e +=,设12112cos 1,cos 2sin sin 2e θθθθ=>>=<<< 取π0θ3,12112cos )3e e πθθθ+=+=+, 当6πθ=时,1211e e +取得最大值为3. 故选:A.【点评】本题考查椭圆与双曲线的定义和性质,利用余弦定理和三角换元是解题的关键,属于较难题. 6.A【分析】首先根据椭圆定义可知122PF PF a +=,根据余弦定理2222121212122cos 4PF PF PF PF F PF F F c +-⋅∠==,再根据21212cos PF PF F PF c ⋅∠=,根据这三个式子的变形得到21222cos 123c F PF a c∠=<-和22223a c a ∴-≤,最后求离心率. 【解析】由椭圆的定义,得122PF PF a +=,平方得222121224PF PF PF PF a ++=△.由212PF PF c ⋅=,21212cos PF PF F PF c ∴⋅∠=△,12F PF ∠是锐角,由余弦定理得2222121212122cos 4PF PF PF PF F PF F F c +-⋅∠==△, -△得()22121221cos 44PF PF F PF a c +∠=- △由△△,得21222cos 123c F PF a c ∠=<-,12F PF ∠是锐角,2220123c a c <<- , 即22230a c ->且22223c a c <-∴ 2e <. 由△△可知222126PF PF c += △由△△可得221223PF PF a c =- ,2122122PF PF PF PF a ⎛+⎫⋅≤= ⎪⎝⎭,22223a c a ∴-≤,即223a c ≤,e ∴≥.则椭圆离心率的取值范围是32⎣⎭.故选:A.【点评】本题考查求椭圆的离心率,已知考查转化与化归的思想和变形,计算能力,属于中档题型,本题的关键和难点是三个式子的变形,得到关于,a c 的不等式关系. 7.A【分析】由题意,设Q (x 0,y 0),由G 为△F 1QF 2的重心,得G 点坐标为(03x ,03y ),利用面积相等可得,12×2c•|y 0|=12(2a+2c )|03y |,从而求椭圆的离心率.【解析】椭圆()222210x y a b a b+=>>的左右焦点分别为F 1(﹣c ,0),F 2(c ,0),设Q (x 0,y 0),△G 为△F 1QF 2的重心,△G 点坐标为 G (03x ,03y ),△12GI F F λ=,则GI △12F F ,△I 的纵坐标为03y,又△|QF 1|+|QF 2|=2a ,|F 1F 2|=2c , △12F QF S=12•|F 1F 2|•|y 0|,又△I 为△F 1QF 2的内心,△|03y |即为内切圆的半径,内心I 把△F 1QF 2分为三个底分别为△F 1MF 2的三边,高为内切圆半径的小三角形,△12F QF S=12(|QF 1|+|F 1F 2|+|QF 2|)|03y |, 即12×2c•|y 0|=12(2a+2c )|03y |,△2c=a ,△椭圆C 的离心率为e=12, △该椭圆的离心率12,故选:A .【点评】本题考查了椭圆的标准方程及其性质、三角形的重心与内心的性质、三角形面积计算公式、向量共线定理,考查了推理能力与计算能力,属于难题.8.13【分析】首先找到特殊位置,即取P 在上顶点时,内心和重心都在y 轴上,由于内心和重心连线的斜率不随着点P 的运动而变化,可得:GI 始终垂直于x 轴,可得内切圆半径为3a ca c-⋅-y 0,再利用等面积法列式解方程可得:13c a=.【解析】当直线IG 的倾斜角不随着点P 的运动而变化时,取P 特殊情况在上顶点时,内切圆的圆心在y 轴上,重心也在y 轴上, 由此可得不论P 在何处,GI 始终垂直于x 轴, 设内切圆与边的切点分别为Q ,N ,A ,如图所示:设P 在第一象限,坐标为:(x 0,y 0)连接PO ,则重心G 在PO 上, 连接PI 并延长交x 轴于M 点,连接GI 并延长交x 轴于N , 则GN △x 轴,作PE 垂直于x 轴交于E ,可得重心G (03x ,03y )所以I 的横坐标也为03x ,|ON |03x =,由内切圆的性质可得,PG =P A ,F 1Q =F 1N ,NF 2=AF 2, 所以PF 1﹣PF 2=(PG +QF 1)﹣(P A +AF 2)=F 1N ﹣NF 2=(F 1O +ON )﹣(OF 2﹣ON )=2ON 023x =, 而PF 1+PF 2=2a ,所以PF 1=a 03x +,PF 2=a 03x -, 由角平分线的性质可得01102233x a PF F M c OM x PF MF c OM a ++===--,所以可得OM 03cx a=,所以可得MN =ON ﹣OM ()000333a c x x cx a a-=-=, 所以ME =OE ﹣OM =x 0()00333a c x cx a a--=, 所以3IN MN a c PE OE a c -==-,即IN 3a c a c -=⋅-PE 3a ca c -=⋅-y 0, 1212PF F S =(PF 1+F 1F 2+PF 2)⋅IN 1212F F PE =⋅,即12(2a +2c )001232a c y c y a c -⋅⋅=⋅⋅-, 所以整理为:13c a =,故答案为:13.【点评】本题考查了求椭圆的离心率,考查了内心和重心的概念,考查了转化思想和较强的计算能力,其方法为根据条件得到关于a ,b ,c 的齐次式,化简可得.本题属于难题.9【分析】利用已知条件和几何关系找出圆锥母线与轴的夹角为α ,截面与轴的夹角为β 的余弦值,即可得出椭圆离心率.【解析】如图,圆锥面与其内切球1O ,2O 分别相切与,A B ,连接12,O A O B ,则1O A AB ⊥,2O B AB ⊥,过2O 作21O D O A 垂直于D ,连接12,O E O F ,EF 交12O O 于点C设圆锥母线与轴的夹角为α ,截面与轴的夹角为β.在21Rt O DO 中,1312DO ,22282215O D11221515cos84O O O D 128O O = 128CO O C 12EO C FO C22128O CO CO EO F 解得2=2O C 222222213CFO FO C即23cos2CFO C则椭圆的离心率cos 252cos515e【点评】“双球模型”椭圆离心率等于截面与轴的交角的余弦cos β与圆锥母线与轴的夹角的余弦cos α之比,即coscose.10.2【分析】设出P 的坐标,得到mn (用a ,b 表示),求出2a a a b ln m ln n ln mn ln b b b a ++=+=+,令1a t b =>,则()3222363f t t t t lnt =-+-,利用导数求得使()f t 取最小值的t ,可得2ab=,则椭圆离心率可求 .【解析】解:(),0A a -,(),0B a ,设0(P x ,0)y ,则()2220202b a x y a -=,则00y m x a =+,00y n x a =-,2202220y b mn x a a ∴==--,∴()22333a ln m ln n b mn mn⎛⎫-+++ ⎪⎝⎭ 3222222223623633a b a a a b ln ln b b b a b b b a a a ⎛⎫⎪⎛⎫⎛⎫⎛⎫=-++=-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪--⎪⎝⎭, 令1at b=>,则()3222363f t t t t lnt =-+-.()()()2322232436t t t t t f t t t-+-+-'==, ∴当2t =时, 函数()f t 取得最小值()2f .∴ 2a b =.e ∴==,【点评】关键点点睛:本题考查了椭圆的标准方程及其性质、关键利用导数研究函数的单调性极值与最值.11.2,1)【分析】设AB 方程为y kx =,联立方程组求出A ,B 坐标,进而得出M ,N 的坐标,由OM ON ⊥列方程得到关于k 的方程,令此方程有解得出a ,b ,c 的关系,从而得出离心率的范围.【解析】设直线AB 的方程为y kx =,联立方程组22221y kxx y ab =⎧⎪⎨+=⎪⎩,消元得222222()a k b x a b +=,A ∴,B,又(,0)C c ,M ,N 是AF ,BF 的中点,2c M ∴+,,2c N,以MN 为直径的圆恰经过坐标原点O ,OM ON ∴⊥,222)0222c c abk a k -∴+=+,即222222222222044()4()c a b a b k a k b a k b --=++, 222222222()0c a k b a b a b k ∴+--=,2222222224()a c a b k a b b c b ∴-=-=,即22224()a c b k b -=,存在符合条件的直线AB ,使得OM ON ⊥,∴关于k 的方程22224()a c b k b -=有解,22c b ∴>,即222c a c >-,222c a ∴>,∴2212c a>,c e a ∴=>,又1e <,∴12e <<. 故答案为:(2,1).【点评】离心率的求解在圆锥曲线的考查中是一个重点也是难点,求离心率范围应先将 e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围. 12.5【分析】设点A ,B ,C 坐标分别为(),1,2,3i i x y i =,则根据题意有12312300x x x y y y ++=⎧⎨++=⎩,分别将点A ,B ,C 的坐标代入椭圆方程得12122212x x y y a b +=-,然后联立直线l 与椭圆方程,利用韦达定理得到12x x 和12y y 的值,代入12122212x x y y a b +=-得到关于,,a b c 的齐次式,然后解出离心率.【解析】设A ,B ,C 坐标分别为(),1,2,3i i x y i =,因为ABC 的重心恰好是坐标原点,则12312300x x x y y y ++=⎧⎨++=⎩,则()()312312x x x y y y ⎧=-+⎪⎨=-+⎪⎩,代入椭圆方程可得()()221212221x x y y a b +++=, 其中22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,所以12122212x x y y a b +=-……△ 因为直线l 的斜率为1,且过左焦点,则l 的方程为:x y c =-,联立方程22221x y cx y ab =-⎧⎪⎨+=⎪⎩消去x 可得:()2222420a b y b cy b +--=,所以212222b c y y a b +=+,41222b y y a b-=+……△所以()()()4421212121222c b x x y c y c y y c y y c a b-=--=-++=+……△,将△△代入△得22225c e a ==,从而5e =.故答案为:5【点评】本题考查椭圆的离心率求解问题,难度较大.解答时,注意A ,B ,C 三点坐标之间的关系,注意韦达定理在解题中的运用.13.11⎛⎫ ⎪ ⎪⎝⎭【分析】由题意,设椭圆()22:10,33x y C λλλ+=>≠,()11,M x y ,()22,N x y ,M ,N 的中点为()00,P x y ,由()00,P x y 在C 内,可得不等式220013x y λ+<,从而得到关于λ的不等式,解不等式可得λ的取值范围,从而求得离心率的范围.【解析】由题意,设椭圆()22:10,33x y C λλλ+=>≠,()11,M x y ,()22,N x y ,M ,N 的中点为()00,P x y ,则221113x y λ+=,222213x y λ+=,两式相减得,()()()()1212121203x x x x y y y y λ+-+-+=,而1202x x x +=,1202y yy +=. 所以,MN 所在直线的斜率211202112033MN y y x x xk x x y y y λλ-+==-=--+, 由M ,N 关于l 对称,直线MN l ⊥,故00132x y λ-=-△,又()00,P x y 在l 上,所以0021y x =+△,联立△与△的方程,解得,0326x λ=-,03y λλ=-.由题意,()00,P x y 在C 内,可得220013x y λ+<,化简2428330λλ-+>,即()()232110λλ-->,解得302λ<<或112λ>. 令椭圆C 的离心率为e ,当302λ<<时,C 的焦点在x 上,233e λ-=,即233e λ=-,故230332e <-<,所以12e <<; 当112λ>时,C 的焦点在y 上,23e λλ-=,即231e λ=-,故231112e >-1e <<.<,所以C 的离心率的取值范围是11,1⎛⎫ ⎪ ⎪⎝⎭.故答案为:11⎛⎫ ⎪ ⎪⎝⎭.【点评】本题考查椭圆与直线方程、离心率等综合知识以及推理论证与运算求解能力.14 【分析】首先设(,)P m n ,过点P 切线为()y n k x m -=-,根据直线与椭圆相切,联立0∆=得到2222()210a m k mnk n -++-=,因为PA PB ⊥,得到121k k =-,即2221m n a +=+.从而得到(0,0)到直线40ax y +-=的距离为a =.【解析】设(,)P m n ,过点P 切线为()y n k x m -=-,由题知:联立222222222()(1)2()[()1]01y n k x m k a x ka n km x a n km x y a-=-⎧⎪⇒++-+--=⎨+=⎪⎩, 因为直线与椭圆相切,所以2422222=4()4(1)[()1]0k a n km a k a n km ∆--+--=, 整理得:2222()210a m k mnk n -++-=. 设切线PA ,PB 的斜率分别为1k ,2k ,因为PA PB ⊥,所以212221=1n k k a m-=--,即2221m n a+=+.所以点P 在以(0,0)即(0,0)到直线40ax y +-=.d ==a =又因为1b =,所以c=e ==.【点评】本题主要考查离心率的求法,同时考查了直线与椭圆的位置关系,属于难题.15.⎫⎪⎪⎣⎭【分析】设()00,P x y ,设出直线AB 的参数方程,利用参数的几何意义可得22||||,PA PB b a ⎡⎤∈⎣⎦,由题意得到222a b ,据此求得离心率的取值范围.【解析】设()00,P x y ,直线AB 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩,(t 为参数)代入圆2222x y a b +=+,化简得:()2222200002cos sin 0t x y t x y a b αα++++--=, ()22222222120000||||PA PB t t x y a b a b x y ∴==+--=+-+, 222200,x y b a ⎡⎤+∈⎣⎦, 22||||,PA PB b a ⎡⎤∴∈⎣⎦,存在点P ,使得22||||PA PB a b ⋅=-,222a b b ∴-,即222a b , 222a c ∴,212e ∴,12e ≤<,故答案为:2⎫⎪⎪⎣⎭【点评】本题主要考查了椭圆离心率取值范围的求解,考查直线、圆与椭圆的综合运用,考查直线参数方程的运用,属于中档题.16.,12⎛⎫⎪ ⎪⎝⎭【分析】M 的轨迹方程为:()222,024a a x y y ⎛⎫++=≠ ⎪⎝⎭,联立方程化简得到222220a b x ax b a-++=,根据对应函数的对称轴计算得到答案. 【解析】椭圆上存在点M 使OM MA ⊥,即M 的轨迹方程为:()222,024a a x y y ⎛⎫++=≠ ⎪⎝⎭.联立方程2222222124x y a b a ax y ⎧+=⎪⎪⎨⎛⎫⎪++= ⎪⎪⎝⎭⎩ ,化简得到222220a b x ax b a -++=. 易知:x a =-是方程的解,且0x =时,222220a bx ax b a-++>.方程在(),0a -上有解,只需满足:22202ax a a b a >=->-- ,解得c e a =>.故答案为:⎫⎪⎪⎝⎭.【点评】本题考查了椭圆的离心率问题,确定M 的轨迹方程是解题的关键. 17.2【分析】设椭圆的长半轴长为1a ,双曲线的半实轴长2a ,焦距2c .由椭圆及双曲线定义用1a ,2a 表示出1||PF ,2||PF ,在△12F PF 中根据余弦定理可得到1a ,2a 与c 的关系,转化为离心率,再由基本不等式得结论.【解析】解:如图,设椭圆的长半轴长为1a ,双曲线的半实轴长为2a , 则根据椭圆及双曲线的定义:121||||2PF PF a +=,122||||2PF PF a -=,112||PF a a ∴=+,212||PF a a =-,设12||2F F c =,124F PF π∠=,则:在△12PF F 中由余弦定理得,222121212124()()2()()cos4c a a a a a a a a π=++--+-,化简得:22212(2(24a a c +=,124+=,又1212122e e ,∴1212e e ,即1222e e ,即椭圆和双曲线的离心率乘积的最小值为2. .【点评】本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义求焦点三角形三边长,解决本题的关键是根据所得出的条件灵活变形,求出焦点三角形的边长,属于中档题. 18.92【解析】【分析】由题意设焦距为2c ,椭圆长轴长为2a 1,双曲线实轴为2a 2,令P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推志出a 12+a 22=2c 2,由此能求出4e 12+e 22的最小值.【解析】由题意设焦距为2c ,椭圆长轴长为12a ,双曲线实轴为22a ,令P 在双曲线的右支上, 由双曲线的定义1222PF PF a -=,△ 由椭圆定义1212PF PF a +=,△ 又△PF 1⊥PF 2, △22212||4PF PF c +=,△△2+△2,得22221212||22PF PF a a +=+,△将△代入△,得222122a a c +=,△[)90,110.故答案为:92.【点评】本题主要考查了双曲线与椭圆离心率的计算,用到了双曲线和椭圆的定义及基本不等式求最值,考查了学生的计算能力,属于中档题.。

椭圆离心率50道题训练含详解

椭圆离心率50道题训练含详解
(1)求椭圆 的方程;
(2)设椭圆 : , 为椭圆 上一点,过点 的直线交椭圆 于A, 两点,且 为线段 的中点,过 , 两点的直线交椭圆 于 , 两点,如图.当 在椭圆 上移动时,四边形 的面积是否为定值?若是,求出该定值;若不是,请说明理由.
参考答案
1.C
【详解】
由椭圆 ,可得 ,所以 ,
所以椭圆的离心率为 .
15.已知椭圆 : 的离心率为 ,则 的值可能是()
A. B. C. D.
16.椭圆的中心在原点,离心率为 ,则该椭圆的方程可能为()
A. B.
C. D.
17.已知曲线 : ,其中 为非零常数,则下列结论中正确的是()
A.当 时,则曲线 是一个圆
B.当 时,则曲线 是一个椭圆
C.若 时,则曲线 是焦点为 的椭圆
A.椭圆的离心率是 B.线段AB长度的取值范围是
C. 面积的最大值是 D. 的周长存在最大值
22.如图,椭圆Ⅰ与Ⅱ有公共的左顶点和左焦点,且椭圆Ⅱ的右顶点为椭圆Ⅰ的中心.设椭圆Ⅰ与Ⅱ的长半轴长分别为 和 ,半焦距分别为 和 ,离心率分别为 和 ,则下列结论正确的是()
A. B.
C. D.椭圆Ⅱ比椭圆Ⅰ更扁
34.椭圆 : 的左右焦点分别为 , ,过点 的直线 交椭圆 于 , 两点,已知 , ,则椭圆 的离心率为___________.
35.已知椭圆 的左、右焦点分别为 , ,上顶点为 ,且 ,若第一象限的点 、 在 上, , , ,则直线 的斜率为__________.
36.设 , 分别是椭圆 的左、右焦点,过点 的直线交椭圆 于 两点, ,若 ,则椭圆 的离心率为___________.
四、解答题
44.已知椭圆的焦点为 和 , 是椭圆上的一点,且 是 与 的等差中项.

2023年人教版高考数学总复习第一部分考点指导第九章平面解析几何第五节 第2课时椭圆的几何性质

2023年人教版高考数学总复习第一部分考点指导第九章平面解析几何第五节 第2课时椭圆的几何性质

)
A.m>1
B.m>0
C.0<m<5 且 m≠1 D.m≥1 且 m≠5
【解析】选
D.方法一:由于直线
y=kx+1
恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则
1 0<m
≤1 且
m≠5,故 m≥1 且 m≠5.
y=kx+1, 方法二:由
消去 y 整理得(5k2+m)x2+10kx+5(1-m)=0.
【解析】(1)由题意知 e=ac =21 ,2a=4.又 a2=b2+c2,解得 a=2,b= 3 ,所以椭圆方程为x42 +y32 =1. (2)①当两条弦中一条弦所在直线的斜率为 0 时,另一条弦所在直线的斜率不存在,由题意知|AB|+|CD|=7,不满足条件.
②当两弦所在直线的斜率均存在且不为 0 时,设直线 AB 的方程为 y=k(x-1),A(x1,y1),B(x2,y2),则直线 CD 的方程为 y=
第2课时 椭圆的几何性质
第九章 平面解析几何
考点探究·悟法培优
考点探究·悟法培优
考点一 椭圆的几何性质 多维探究
高考考情:椭圆的几何性质是历年高考的重点,其中离心率的求解常出现在小题中,直线与椭圆的交点问题
几乎每年必考,难度较大.
·角度 1 求椭圆的离心率的值(范围) [典例 1](1)已知 F1,F2 是椭圆 C:ax22 +by22 =1(a>b>0)的左、右焦点,A 是 C 的左顶点,点 P 在过 A 且斜
·角度 2 与椭圆有关的范围(最值)问题 [典例 2]已知椭圆ax22 +by22 =1(a>b>0)的右焦点为 F2(3,0),离心率为 e.
(1)若 e=
3 2
,求椭圆的方程;

椭圆焦半径公式及应用面面观

椭圆焦半径公式及应用面面观

椭圆焦半径公式及应用面面观在椭圆曲线中,焦半径是一个非常重要的几何量,与其有关的问题是各类考试的热点,故值得我们深入研究。

一、椭圆焦半径公式P 是椭圆x a y b2222+=1()a b >>0上一点,E 、F 是左、右焦点,e 是椭圆的离心率,则(1)||PE a ex P =+,(2)||PF a ex P =-。

P 是椭圆y a x ba b 222210+=>>()上一点,E 、F 是上、下焦点,e 是椭圆的离心率,则(3)PE a ey PF a ey P P =-=+,()||4。

以上结论由椭圆的第二定义及第一定义和椭圆的方程易得。

(一)用椭圆方程求椭圆的焦点半径公式数学题的题根不等同数学教学的根基,数学教学的根基是数学概念,如椭圆教学的根基是椭圆的定义.但是在具体数学解题时,不一定每次都是从定义出发,而是从由数学定义引出来的某些已知结论(定理或公式)出发,如解答椭圆问题时,经常从椭圆的方程出发.例1 已知点P (x ,y )是椭圆12222=+by a x 上任意一点,F 1(-c,0)和F 2(c,0)是椭圆的两个焦点.求证:|PF 1|=a+x a c ;|PF 2|=a -x ac . 【分析】 可用距离公式先将|PF 1|和|PF 2|分别表示出来.然后利用椭圆的方程“消y ”即可.【解答】 由两点间距离公式,可知|PF 1|=22)(y c x ++ (1)从椭圆方程12222=+b y a x 解出 )(22222x a a b y -=(2)代(2)于(1)并化简,得|PF 1|=x aca +(-a ≤x ≤a) 同理有 |PF 2|=x aca - (-a ≤x ≤a)【说明】 通过例1,得出了椭圆的焦半径公式r 1=a+ex r 2=a-ex (e=ac ) 从公式看到,椭圆的焦半径的长度是点P (x,y )横坐标的一次函数. r 1是x 的增函数,r 2是x 的减函数,它们都有最大值a+c,最小值a-c.从焦半径公式,还可得椭圆的对称性质(关于x,y 轴,关于原点).(二)、用椭圆的定义求椭圆的焦点半径用椭圆方程推导焦半径公式,虽然过程简便,但容易使人误解,以为焦半径公式的成立是以椭圆方程为其依赖的.为了看清焦半径公式的基础性,我们考虑从椭圆定义直接导出公式来.椭圆的焦半径公式,是椭圆“坐标化”后的产物,按椭圆定义,对焦半径直接用距离公式即可.例2. P (x,y)是平面上的一点,P 到两定点F 1(-c ,0),F 2(c ,0)的距离的和为2a (a>c>0).试用x ,y 的解析式来表示r 1=|PF 1|和r 2=|PF 2|.【分析】 问题是求r 1=f (x )和r 2=g (x ).先可视x 为参数列出关于r 1和r 2的方程组,然后从中得出r 1和r 2.【解答】 依题意,有方程组⎪⎪⎩⎪⎪⎨⎧+-=++==+③)(②)(① 22222222121 y c x r y c x r a r r ②-③得④ 42221cx r r =-代①于④并整理得r 1-r 2=x ac2 ⑤ 联立①,⑤得 ⎪⎪⎩⎪⎪⎨⎧-=+=xa c a r x ac a r 21【说明】 椭圆的焦半径公式可由椭圆的定义直接导出,对椭圆的方程有自己的独立性.由于公式中含c 而无b ,其基础性显然.二、 焦半径公式与准线的关系用椭圆的第二定义,也很容易推出椭圆的焦半径公式. 如图右,点P (x ,y )是以F 1(-c,0)为焦点,以l 1:x=-ca 2为准线的椭圆上任意一点.PD ⊥l 1于D.按椭圆 的第二定义,则有ex a ca x e PD e PF e PD PF +=+==⇒=)(||||||||2即r 1=a+ex,同理有r 2=a-ex.对中学生来讲,椭圆的这个第二定义有很大的“人为性”.准线ca x 2±=缺乏定义的“客观性”.因此,把椭圆的第二定义视作椭圆的一条性质定理更符合逻辑性.例3. P (x ,y )是以F 1(-c ,0),F 2(c ,0)为焦点,以距离之和为2a 的椭圆上任意一点.直线l 为x=-ca 2,PD 1⊥l 交l 于D 1. 求证:e PD PF =||||11. 【解答】 由椭圆的焦半径公式 |PF 1|=a+ex.对|PD 1|用距离公式 |PD 1|=x-)(2c a -=x+ca 2. 故有e ca x c a x e c a x ex a PD PF =++=++=22211)(||||. 【说明】 此性质即是:该椭圆上任意一点,到定点F 1(-c,0)(F 2(c,0))与定直线l 1:x=-c a 2(l 2:x=c a 2)的距离之比为定值e (0<e<1).三、用椭圆的焦半径公式证明椭圆的方程现行教材在椭圆部分,只完成了“从曲线到方程”的单向推导,实际上这只完成了任务的一半.而另一半,从“方程到曲线”,却留给了学生(关于这一点,被许多学生所忽略了可逆推导过程并不简单,特别是逆过程中的两次求平方根).其实,有了焦半径公式,“证明椭圆方程为所求”的过程显得很简明.例4. 设点P (x ,y )适合方程12222=+b y a x .求证:点P (x ,y )到两定点F 1(-c,0)和F 2(c ,0)的距离之和为2a (c 2=a 2-b 2).【分析】 这题目是为了完成“从方程到曲线”的这一逆向过程.利用例2导出的焦点半径公式,很快可推出结果.【解答】 P (x ,y )到F 1(-c,0)的距离设作r 1=|PF 1|.由椭圆的焦点半径公式可知r 1=a+ex ①同理还有r 2=a-ex ②①+② 得 r 1+r 2=2a即 |PF 1|+|PF 2|=2a.即P (x ,y )到两定点F 1(-c ,0)和F 2(c,0)的距离之和为2a.【说明】 椭圆方程是二元二次方程,而椭圆的焦半径公式是一元一次函数.因此,围绕着椭圆焦半径的问题,运用焦半径公式比运用椭圆方程要显得简便. 四、椭圆焦半径公式的变式P 是椭圆x a y b a b 222210+=>>()上一点,E 、F 是左、右焦点,PE 与x 轴所成的角为α,PF 与x 轴所成的角为β,c 是椭圆半焦距,则(1)||cos PE b a c =-2α;(2)||cos PF b a c =+2β。

椭圆离心率为1

椭圆离心率为1

椭圆离心率为1
椭圆是几何学中的一种图形,它是一种不规则的椭圆形,比圆更像抛物线。


是一个具有特殊设计的平面图形,以两个焦点和一条长轴来描述。

这条长轴又称为椭圆的离心率,简称e,当e=1时,椭圆就变成了一个圆形。

e=1的椭圆,又称为标准椭圆,它历史悠久,在几何方面有着很重要的作用。

把它设计在二维空间上研究,可以运用来表示许多自然界中的现象,比如火箭的运动轨迹、行星的运行轨道等等,正是因为它的这一重要特性,才导致了它在科学研究方面的重要性。

椭圆的功能之一就是令人惊叹的椭圆逼近定理,它强调了围绕两个焦点绘制的
椭圆弧线,总是能够更准确地拟合自然界中的各种运动,而这些运动又都受到重力的影响。

因此,数学家发现,重力的规律便可以用椭圆的形状来比做,它是物理和数学科学的基础,也是宇宙空间中物体的运行。

e=1的椭圆也有着它的历史意义,它最早出现于15st世纪的早期,由斯托克
斯所提出,他把它应用于太阳系行星的运动来说明,太阳系行星的运动以椭圆轨迹描述。

由此,柯勒律提出了两个月球理论,按照这两个月球理论,太阳和地球可以分别组成椭圆,椭圆的长轴一定等于离心率,即e=1。

从而,有了e=1的椭圆这个研究,对我们的生活和认识宇宙有非常重要的意义,它的出现使得空间运动和自然界变得更加可描绘,它成为数学学习中的一块重要拼图,得到了科学家的普遍认可,有重大的数学意义和发现,成为后来科学研究的基石。

知道一个点和离心率怎样求椭圆的标准方程

知道一个点和离心率怎样求椭圆的标准方程

知道一个点和离心率怎样求椭圆的标准方程
椭圆,又称长圆,是一种几何图形,被誉为四大古典几何图形之一,它由两个参数(离心率和焦距)决定。

首先,什么是离心率?离
心率是衡量椭圆形状的一个参数,用来测量椭圆的“扁度”,表示椭
圆内切圆和外接圆的比值。

它等于椭圆中心到焦点的距离除以外切圆
半径,记为e。

焦点一般取椭圆的中心,离心率e的范围一般在0到1
之间,其中0表示一个圆,1表示长短轴等长,e越大,椭圆就越扁长。

要求椭圆的标准方程,换算得到椭圆的长短轴及其是由一个点和
离心率决定的,此时可以求出椭圆的标准方程,即:
标准方程:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
其中,a是椭圆圆心到焦点的距离,b是椭圆最长轴上椭圆圆心
点和周长点的距离,而$\frac{a}{b}=e$。

因此,根据已知的点和离心
率可以计算出a和b,从而求出椭圆的标准方程。

椭圆的标准方程直观地描述了椭圆的形状和位置,在几何中常被
用于求解点的位置,也常被用于求解空间物体的形状和位置,是几何
中的重要方程之一。

知道一个点和离心率怎样求椭圆的标准方程呢?
它需要求出椭圆的长短轴,即a和b,有了a和b,可以根据关系式
e=a/b计算出a和b,然后用椭圆的标准方程来确定椭圆的形状和位置。

以上就是知道一个点和离心率怎样求椭圆的标准方程的问题的介绍,椭圆的标准方程可以让我们更加具体地了解几何图形,它也是求
解几何问题必不可少的一步。

专题:椭圆的离心率解法大全

专题:椭圆的离心率解法大全

专题:椭圆的离心率一,利用定义求椭圆的离心率(a c e = 或 221⎪⎭⎫⎝⎛-=a b e )1,已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率=e22,椭圆1422=+m y x 的离心率为21,则=m [解析]当焦点在x 轴上时,32124=⇒=-m m ; 当焦点在y 轴上时,316214=⇒=-m mm , 综上316=m 或3 3,已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是53 4,已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆122=+ny m x 的离心率为 [解析]由⇒⎪⎩⎪⎨⎧≠=+=02222mn n m n nm n ⎩⎨⎧==42n m ,椭圆122=+n y m x 的离心率为22 5,已知)0.0(121>>=+n m nm 则当mn 取得最小值时,椭圆12222=+n y m x 的的离心率为236,设椭圆2222by a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是21。

二,运用几何图形中线段的几何意义结合椭圆的定义求离心率e1,在∆Rt ABC 中,90=∠A ,1==AC AB ,如果一个椭圆过A 、B 两点,它的一个焦点为C ,另一个焦点在AB 上,求这个椭圆的离心率 ()36-=e2, 如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且901=∠BDB ,则椭圆的离心率为( ) [解析]=⇒=-⇒-=-⋅e ac c a cba b 221)(215-3,以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率是13-变式(1):以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两点,如果∣MF∣=∣MO∣,则椭圆的离心率是13-4,椭圆x 2 a 2 +y 2b 2=1(a>b >0)的两焦点为F 1 、F 2 ,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ?解:∵|F 1F 2|=2c |BF 1|=c |BF 2|=3c c+3c=2a ∴e= ca= 3-1变式(1):椭圆x 2 a 2 +y 2b 2=1(a>b >0)的两焦点为F 1 、F 2 ,点P 在椭圆上,使△OPF 1 为正三角形,求椭圆离心率?解:连接PF 2 ,则|OF 2|=|OF 1|=|OP |,∠F 1PF 2 =90°图形如上图,e=3-1变式(2) 椭圆x 2 a 2 +y 2b 2=1(a>b >0)的两焦点为F 1 、F 2 ,AB 为椭圆的顶点,P 是椭圆上一点,且PF 1 ⊥X 轴,PF 2 ∥AB,求椭圆离心率?解:∵|PF 1|= b 2 a |F 2 F 1|=2c |OB |=b |OA |=a PF 2 ∥AB ∴|PF 1| |F 2 F 1|= b a 又 ∵b= a 2-c 2∴a 2=5c 2e=55变式(3):将上题中的条件“PF 2 ∥AB ”变换为“PO ∥AB (O 为坐标原点)”相似题:椭圆x 2 a 2 +y 2 b 2 =1(a>b >0),A 是左顶点,F 是右焦点,B 是短轴的一个顶点,∠ABF=90°,求e?解:|AO |=a |OF |=c |BF |=a |AB |=a 2+b 2a 2+b 2+a 2 =(a+c)2 =a 2+2ac+c 2 a 2-c 2-ac=0 两边同除以a 2 e 2+e-1=0 e=-1+ 5 2 e=-1-52(舍去)变式(1):椭圆x 2a 2 +y 2b 2 =1(a>b >0),e=-1+ 52, A 是左顶点,F 是右焦点,B 是短轴的一个顶点,求∠ABF ?点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。

椭圆的焦点和离心率(1)

椭圆的焦点和离心率(1)
离心率与轨道稳定性
离心率是描述椭圆轨道形状的一个重要参数。离心率越小,轨道越接近 圆形,运动越稳定;离心率越大,轨道越扁平,运动越不稳定。因此, 离心率可以用于评估天体运动轨道的稳定性。
弹性碰撞中能量损失与离心率关系
弹性碰撞中的能量损 失
在弹性碰撞中,两个物体之间的相互 作用力会导致能量损失。这种能量损 失可以通过离心率来量化。离心率越 大,能量损失越多;离心率越小,能 量损失越少。
焦点距离增加,离心率增大
椭圆的焦点位于长轴上,当两个焦点之间的距离增加时,椭圆形状变得更加扁平,离心率随之增大。
焦点位置对称,离心率不变
当椭圆的两个焦点关于原点对称时,其离心率保持不变。这是因为对称的焦点位置不会改变椭圆的整 体形状。
实例分析不同情况下离心率大小
实例一
对于长轴长度为10、短轴长度为6的椭圆,其离心率较小,形状相 对较为接近圆形。
实例分析物理现象背后数学原理
天体运动实例分析
以地球绕太阳运动的椭圆轨道为例,通 过测量地球在轨道上不同位置的速度和 加速度,可以计算出椭圆的焦点和离心 率。这些数据不仅有助于描述地球的运 动轨迹,还可以用于预测未来地球的位 置和运动状态。
VS
弹性碰撞实例分析
以两个相同质量的物体进行弹性碰撞为例 ,通过测量碰撞前后的速度和能量变化, 可以计算出离心率并评估能量损失的程度 。这种分析方法有助于深入理解弹性碰撞 过程中的能量转移和损失机制。
离心率与形状的综合应用
在工程设计或艺术设计中,可以利用离心率的变化 来控制椭圆形状的变化,以达到特定的设计效果。
焦点、离心率与综合问题 的应用
在处理复杂的几何问题时,可能需要同时考 虑焦点、离心率等多个因素,通过综合分析 来解决实际问题。

高中数学_谈椭圆扁平的判定

高中数学_谈椭圆扁平的判定

谈椭圆扁平的判定广东省中山一中高中部许少华我们知道,椭圆的离心率满足,当越接近于1时,就越接近于,从而就越小,此时,椭圆就越扁;当越接近于0时,就越接近,从而就越近于,此时,椭圆就越接近于圆;下面我们来探究三个问题:探究一:能否借助与来刻画椭圆的扁平程度?首先,我们来看能否用来刻画椭圆的扁平程度,由于越接近,椭圆就越“圆”,相差越大,椭圆就越“扁”,因此,可以用来刻画椭圆的扁平程度。

当越接近于1时,椭圆就越“圆”,当越小时,椭圆就越“扁”。

再看能否用来刻画椭圆的扁平程度,结合可以看出:越接近,就越接近,也越接近,此时,椭圆就越“圆”;越接近,就越接近,无限大,此时,椭圆就越“扁”。

显然,既可以用来刻画椭圆的扁平程度,也可以用来刻画椭圆的扁平程度。

探究二:为什么选用来刻画椭圆的扁平程度?第一,椭圆的“圆”的程度用容易刻画,即越接近时,椭圆就越“圆”;但在表示“扁”时,用很不明确,“无限大,此时,椭圆就越“扁””,大的程度无法把握。

第二,对于椭圆,的范围是,的范围也是;且两者都可以较好的刻画椭圆的扁平程度,表面上看它们具有等同的位置。

将这两个量再放入圆锥曲线之中,就可以发现选用是应该的。

因为,在以后将要学习的双曲线、抛物线中,正好填补了与的两种情况。

考虑到整体内容,选用了。

探究三:将会有哪些变化?例1、设椭圆的两个焦点分别为,过作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率为()(A)(B)(C)(D)解析:设椭圆方程为,由即,选D;评析:本题重在产生关于的关系式,将关系式转化为关于离心率的方程通过方程产生结论。

例2、椭圆和圆有四个交点,其中为椭圆的半焦距,则椭圆离心率的范围为()(A)(B)(C)(D)解析:此题的本质是椭圆的两个顶点与一个在圆外、一个在圆内即:评析:建立在条件的基础上,产生关于的不等关系式,再将其转化为关于离心率的不等式是关键。

例3、已知c是椭圆 (a>b>0)的半焦距,则的取值范围是()(A)(1,+∞) (B)(,+∞) (C)(1,) (D)(1,]解析:由,又于是得答案(D);评析:如何求的取值范围,结合离心率及关系式,将待求式子转化为关于的函数关系,借助函数的定义域(即的范围)产生函数的值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 椭圆的简单性质10.29----离心率
c e a
= e =1椭圆22
13625
x y +=的离心率是 2.椭圆的两个焦点是12F F 、,短轴的一个端点为A ,且三角形21F AF 是顶角为120°的等腰三角形 则该椭圆的离心率是
3. 过椭圆C :22
221x y a b
+=(0a b >>)的一个顶点D 作圆222x y b +=的两条切线,切点分别为A 、B ,若90AOB ? ,(O 是坐标原点),则椭圆的离心率是
4.若一个椭圆长轴长的长度、短轴长的长度和焦距成等差数列,则该椭圆的离心率是
5.设12F F 、是椭圆E ::22221x y a b +=(0a b >>)的左右焦点,P 为直线32
a x =上一点, ⊿21F PF 是底角为30°的等腰三角形,则椭圆E 的离心率是
6.已知长方形ABCD ,AB=4,BC=3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率是 椭圆的一个顶点与两焦点组成等边三角形,则它的离心率是
7.已知P 是以12F F 、为焦点的椭圆22
221x y a b
+=(0a b >>)上一点,若12PF PF × =0 12tan 2PF F ?,则该椭圆的离心率是
8. 已知椭圆22
221x y a b +=(0a b >>)的左焦点是F ,右顶点是A ,点B 在椭圆上,且BF x ^轴,直线AB 交y 轴于点P ,若2AP PB = ,则该椭圆的离心率是
9. 已知椭圆22
221x y a b
+=(0a b >>)的左焦点是1F ,A 、B 分别是椭圆的右顶点和上顶点,P 为椭圆上一点,当11
PF FO ^,PO 平行于AB 时,求椭圆的离心率。

相关文档
最新文档