九年级数学:二次函数表达式的确定练习(含解析)
二次函数练习题(含答案)
二次函数练习题(含答案)形,如图所示。
将剩余部分折成一个无盖的长方体盒子,已知折痕处的线段长度均为2cm,求这个盒子的体积。
解析:首先确定长方体的长、宽、高分别对应正三角形的边长a、b、c,如图所示。
由于筝形的对角线长度为2cm,根据勾股定理可得$a^2+b^2=4$。
由于正三角形的内角为60度,因此可以利用三角函数求得$a=\sqrt{3}c$和$b=2\sin30^{\circ}c=c$。
将$a$、$b$、$c$代入长方体的体积公式$V=abc$,得到$V=2\sqrt{3}c^3$。
将$c=2$代入即可得到盒子的体积为$V=16\sqrt{3}$。
1.将文章中的公式和图表进行排版整理,删除明显有问题的段落。
2.对于每段话进行小幅度的改写,使其更加简洁明了。
1.某人要制作一个无盖的直三棱柱纸盒,现在需要确定该纸盒的侧面积最大值。
根据图中的信息,我们可以得出最大面积为()A.cm2B.cm2C.cm2D.cm2.2.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,),下列结论中正确的有几个?①abc<;②b2﹣4ac=0;③a>2;④4a﹣2b+c>。
答案为A.1B.2C.3D.4.3.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2.现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1.下列结论中正确的有哪些?①b>;②a﹣b+c<;③阴影部分的面积为4;④若c=﹣1,则b2=4.答案为……4.二次函数y=ax2+bx+c的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C在图象上,四边形OBAC为菱形,且∠OBA=120°。
求菱形OBAC的面积。
5.某水产养殖户为了节省材料,利用水库的岸堤为一边,用总长为80m的围栏在水库中围成了如图所示的①②③三块矩形区域,且这三块矩形区域的面积相等。
设BC的长度为xm,矩形区域ABCD的面积为ym2.(1) 求y与x之间的函数关系式,并注明自变量x的取值范围;(2) 当y有最大值时,x为多少?最大值是多少?6.在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a <0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC。
中考数学专项练习二次函数的性质(含解析)
中考数学专项练习二次函数的性质(含解析)【一】单项选择题1.对于二次函数y=〔x﹣1〕2+2的图象,以下说法正确的选项是〔〕A.开口向下B.对称轴是x=﹣1 C.顶点坐标是〔1,2〕 D.与x轴有两个交点2.抛物线上部分点坐标如表所示,以下说法错误的选项是〔〕A.抛物线与y轴的交点为(0,6)B.抛物线的对称轴是在y轴的右侧;C.抛物线一定经过点(3 ,0)D.在对称轴左侧,y随x增大而减小.3.二次函数y=3x2+1和y=3〔x﹣1〕2 ,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y轴,顶点坐标都是原点〔0,0〕;③当x>0时,它们的函数值y都是随着x的增大而增大;④它们的开口的大小是一样的.其中正确的说法有〔〕A.1个B.2个C.3个D.4个4.二次函数y=〔x﹣1〕2﹣2的顶点坐标是〔〕A.〔﹣1,﹣2〕B.〔﹣1,2〕C.〔1,﹣2〕D.〔1,2〕5.如图,从1×2的矩形ABCD的较短边AD上找一点E,过这点剪下两个正方形,它们的边长分别是AE、DE,当剪下的两个正方形的面积之和最小时,点E应选在〔〕A.AD的中点B.AE:ED=〔﹣1〕:2 C.AE:ED=:1 D.AE:ED=〔﹣1〕:26.二次函数y=3x2-6x+5的图象的顶点坐标是〔〕A.〔1,2〕 B.〔1, 8〕 C.〔﹣1,2〕 D.〔1,﹣4〕7.对于二次函数y=〔x﹣1〕2+2的图象,以下说法正确的选项是〔〕A.开口向下B.对称轴是x=﹣1 C.顶点坐标是〔1,2〕 D.与x轴有两个交点8.二次函数y=x2﹣2的图象的顶点是〔〕A.〔2,﹣2〕B.〔﹣1,0〕C.〔1,9〕D.〔0,﹣2〕9.抛物线y=2x2+1的顶点坐标是〔〕A.〔2,1〕 B.〔0,1〕 C.〔1,0〕 D.〔1,2〕10.二次函数y=ax2+bx+c〔a≠0〕的图象如下图,给出以下结论:①a >0;②该函数的图象关于直线x=1对称;③当x=-1或x=3时,函数y的值都等于0.其中正确结论的个数是〔〕A.3B.2C.1D.011.对于二次函数y=2〔x+1〕〔x﹣3〕,以下说法正确的选项是〔〕A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=﹣112.如图,抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为〔0,3〕,那么点B的坐标为〔)A.〔2,3〕 B.〔3,2〕 C.〔3,3〕 D.〔4,3〕13.在二次函数y=﹣x2+2x+1的图象中,假设y随x的增大而增大,那么x的取值范围是〔〕A.x>1B.x<1C.x>﹣1D.x<﹣114.抛物线y=〔x+1〕2的顶点坐标是〔〕A.〔﹣1,0〕B.〔﹣1,1〕C.〔0,﹣1〕D.〔1,0〕【二】填空题15.点A(x1 ,y1)、B(x2 ,y2)在二次函数y=(x-1)2+1的图像上,假设x1>x2>1,那么y1________y2 .(填〝>〞〝=〞或〝<〞)16.M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为〔a,b〕,那么y=﹣abx2+〔a+b〕x的顶点坐标为________17.二次函数y=x2+〔m﹣1〕x+1,当x>1时,y随x的增大而增大,那么m的取值范围是________.18.写出一个二次函数解析式,使它的图象的顶点在y轴上:________.19.抛物线〔<0〕过A〔,0〕、O〔0,0〕、B〔,〕、C〔3,〕四点.那么________ 〔用〝<〞,〝>〞或〝=〞填空〕.20.二次函数y=﹣3x2﹣6x+5的图像的顶点坐标是________.21.二次函数y=ax2+bx+c〔a≠0〕的图象如下图,有以下5个结论:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④a m +bm+a>0〔m≠﹣1〕;⑤设A〔100,y〕,B〔﹣100,y 〕在该抛物线上,那么y>y .其中正确的结论有________ .〔写出所有正确结论的序号〕【三】解答题22.点A〔﹣2,n〕在抛物线y=x2+bx+c上.〔1〕假设b=1,c=3,求n的值;〔2〕假设此抛物线经过点B〔4,n〕,且二次函数y=x2+bx+c的最小值是﹣4,请画出点P〔x﹣1,x2+bx+c〕的纵坐标随横坐标变化的图象,并说明理由.23.二次函数y=ax2+bx+c〔a≠0〕的图象上部分点的横坐标x与纵坐标求:〔1〕这个二次函数的解析式;〔2〕这个二次函数图象的顶点坐标及上表中m的值.【四】综合题24.如图,抛物线l1经过原点与A点,其顶点是P〔﹣2,3〕,平行于y 轴的直线m与x轴交于点B〔b,0〕,与抛物线l1交于点M.〔1〕点A的坐标是________;抛物线l1的解析式是________;〔2〕当BM=3时,求b的值;〔3〕把抛物线l1绕点〔0,1〕旋转180°,得到抛物线l2 .①直接写出当两条抛物线对应的函数值y都随着x的增大而减小时,x的取值范围________;〔4〕②直线m与抛物线l2交于点N,设线段MN的长为n,求n与b 的关系式,并求出线段MN的最小值与此时b的值.25.二次函数y=mx2﹣5mx+1〔m为常数,m>0〕,设该函数的图象与y 轴交于点A,该图象上的一点B与点A关于该函数图象的对称轴对称.〔1〕求点A,B的坐标;〔2〕点O为坐标原点,点M为该函数图象的对称轴上一动点,求当M运动到何处时,△MAO的周长最小.【一】单项选择题1.对于二次函数y=〔x﹣1〕2+2的图象,以下说法正确的选项是〔〕A.开口向下B.对称轴是x=﹣1 C.顶点坐标是〔1,2〕 D.与x轴有两个交点【考点】二次函数的性质【解析】【解答】解:二次函数y=〔x﹣1〕2+2的图象开口向上,顶点坐标为〔1,2〕,对称轴为直线x=1,抛物线与x轴没有公共点.应选:C、【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为〔1,2〕,对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.2.抛物线上部分点坐标如表所示,以下说法错误的选项是〔〕A.抛物线与y轴的交点为(0,6)B.抛物线的对称轴是在y轴的右侧;C.抛物线一定经过点(3 ,0)D.在对称轴左侧,y随x增大而减小.【考点】二次函数的性质3.二次函数y=3x2+1和y=3〔x﹣1〕2 ,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y轴,顶点坐标都是原点〔0,0〕;③当x>0时,它们的函数值y都是随着x的增大而增大;④它们的开口的大小是一样的.其中正确的说法有〔〕A.1个B.2个C.3个D.4个【考点】二次函数的性质【解析】【解答】解:①因为a=3>0,它们的图象都是开口向上,此选项正确;②y=3x2+1对称轴是y轴,顶点坐标是〔0,1〕,y=3〔x﹣1〕2的对称轴是x=1,顶点坐标是〔1,0〕,此选项错误;③二次函数y=3x2+1当x>0时,y随着x的增大而增大;y=3〔x﹣1〕2当x10时,y随着x的增大而增大;④因为a=3,所以它们的开口的大小是一样的,此选项正确.综上所知,正确的有①④两个.应选:B、【分析】根据a的值可以判定开口方向和开口大小,利用顶点式直接找出对称轴和顶点坐标,利用对称轴和开口方向确定y随着x的增大而增大对应x的取值范围.4.二次函数y=〔x﹣1〕2﹣2的顶点坐标是〔〕A.〔﹣1,﹣2〕B.〔﹣1,2〕C.〔1,﹣2〕D.〔1,2〕【考点】二次函数的性质【解析】【解答】解:因为y=〔x﹣1〕2﹣2是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为〔1,﹣2〕.应选C、【分析】解析式为抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.5.如图,从1×2的矩形ABCD的较短边AD上找一点E,过这点剪下两个正方形,它们的边长分别是AE、DE,当剪下的两个正方形的面积之和最小时,点E应选在〔〕A.AD的中点B.AE:ED=〔﹣1〕:2 C.AE:ED=:1 D.AE:ED=〔﹣1〕:2【考点】二次函数的性质【解析】【解答】解:设AE=x.那么DE=1﹣x.剪下的两个正方形的面积之和为y,那么y=AE2+DE2=x2+〔1﹣x〕2=2〔x﹣〕2+.当x=时,y取最小值.即点E是AD的中点.应选A、【分析】设AE=x.那么DE=1﹣x.剪下的两个正方形的面积之和为y,所以由正方形的面积公式得到y=AE2+DE2=2〔x﹣〕2+.当x=时,y取最小值.即点E是AD的中点.、6.二次函数y=3x2-6x+5的图象的顶点坐标是〔〕A.〔1,2〕 B.〔1, 8〕 C.〔﹣1,2〕 D.〔1,﹣4〕【考点】二次函数的性质【解析】【解答】∵a=3,b=-6,c=5,∴x=-=1,y==2,即顶点坐标是〔1,2〕.应选A.【点评】此题考查用公式法求二次函数的顶点坐标.做对此题的关键是记熟公式7.对于二次函数y=〔x﹣1〕2+2的图象,以下说法正确的选项是〔〕A.开口向下B.对称轴是x=﹣1 C.顶点坐标是〔1,2〕 D.与x轴有两个交点【考点】二次函数的性质【解析】【解答】解:二次函数y=〔x﹣1〕2+2的图象开口向上,顶点坐标为〔1,2〕,对称轴为直线x=1,抛物线与x轴没有公共点.应选:C、【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为〔1,2〕,对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.8.二次函数y=x2﹣2的图象的顶点是〔〕A.〔2,﹣2〕B.〔﹣1,0〕C.〔1,9〕D.〔0,﹣2〕【考点】二次函数的性质【解析】【解答】解:二次函数y=x2﹣2的图象的顶点坐标是〔0,﹣2〕.应选D、【分析】根据顶点式解析式写出顶点坐标即可.9.抛物线y=2x2+1的顶点坐标是〔〕A.〔2,1〕 B.〔0,1〕 C.〔1,0〕 D.〔1,2〕【考点】二次函数的性质【解析】【解答】∵y=2x2+1=2〔x﹣0〕2+1,∴抛物线的顶点坐标为〔0,1〕,应选B、【分析】此题主要考查抛物线的顶点坐标,掌握顶点式方程y=a〔x﹣h〕2 +k的顶点坐标为〔h ,k〕是解题的关键.10.二次函数y=ax2+bx+c〔a≠0〕的图象如下图,给出以下结论:①a >0;②该函数的图象关于直线x=1对称;③当x=-1或x=3时,函数y的值都等于0.其中正确结论的个数是〔〕A.3B.2C.1D.0【考点】二次函数的性质【解析】【分析】根据抛物线的性质解题.【解答】①抛物线开口向下,a<0,所以①错误;②抛物线是关于对称轴对称的轴对称图形,所以②该函数的图象关于直线x =1对称,正确;③当x=-1或x=3时,函数y的值都等于0,也正确.应选B、【点评】此题考查了抛物线的开口方向,轴对称性和与x轴的交点等知识.11.对于二次函数y=2〔x+1〕〔x﹣3〕,以下说法正确的选项是〔〕A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=﹣1【考点】二次函数的性质【解析】【解答】解:二次函数y=2〔x+1〕〔x﹣3〕可化为y=2〔x﹣1〕2﹣8的形式,A、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x>1时,y随x的增大而增大,故本选项错误;C、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x<1时,y随x的增大而减小,故本选项正确;D、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误.应选C、【分析】先把二次函数化为顶点式的形式,再根据二次函数的性质进行解答.12.如图,抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为〔0,3〕,那么点B的坐标为〔)A.〔2,3〕 B.〔3,2〕 C.〔3,3〕 D.〔4,3〕【考点】二次函数的性质【解析】【分析】抛物线的对称轴为x=2,知道A的坐标为〔0,3),由函数的对称性知B点坐标.【解答】由题意可知抛物线的y=x2+bx+c的对称轴为x=2,∵点A的坐标为〔0,3),且AB与x轴平行,可知A、B两点为对称点,∴B点坐标为〔4,3)应选D、【点评】此题主要考查二次函数的对称性13.在二次函数y=﹣x2+2x+1的图象中,假设y随x的增大而增大,那么x的取值范围是〔〕A.x>1B.x<1C.x>﹣1D.x<﹣1【考点】二次函数的性质【解析】【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又∵对称轴是直线x=﹣=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大而增大.应选B、【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.14.抛物线y=〔x+1〕2的顶点坐标是〔〕A.〔﹣1,0〕B.〔﹣1,1〕C.〔0,﹣1〕D.〔1,0〕【考点】二次函数的性质【解析】【解答】解:∵二次函数的解析式为y=〔x+1〕2 ,∴其顶点坐标为:〔﹣1,0〕.应选A、【分析】直接根据二次函数的顶点坐标式进行解答即可.【二】填空题15.点A(x1 ,y1)、B(x2 ,y2)在二次函数y=(x-1)2+1的图像上,假设x1>x2>1,那么y1________y2 .(填〝>〞〝=〞或〝<〞) 【考点】二次函数的性质16.M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为〔a,b〕,那么y=﹣abx2+〔a+b〕x的顶点坐标为________【考点】二次函数的性质17.二次函数y=x2+〔m﹣1〕x+1,当x>1时,y随x的增大而增大,那么m的取值范围是________.【考点】二次函数的性质18.写出一个二次函数解析式,使它的图象的顶点在y轴上:________.【考点】二次函数的性质19.抛物线〔<0〕过A〔,0〕、O〔0,0〕、B〔,〕、C〔3,〕四点.那么________ 〔用〝<〞,〝>〞或〝=〞填空〕.【考点】二次函数的性质【解析】【解答】∵抛物线与x轴交于A〔-2,0〕、O〔0,0〕两点,∴抛物线对称轴为x= =-1,∵B〔-3,y1〕、C〔3,y2〕,点B离对称轴较近,且抛物线开口向下,∴y1>y2 .【分析】根据可知点A、O关于抛物线的对称轴对称,因此可求出抛物线的对称轴为直线x=-1,再根据二次函数的性质即可求得结论。
2022--2023学年北师大版九年级数学下册《2-3确定二次函数的表达式》同步达标测试题(附答案)
2022--2023学年北师大版九年级数学下册《2.3确定二次函数的表达式》同步达标测试题(附答案)一.选择题(共8小题,满分32分)1.将二次函数y=x2﹣4x+8转化为y=a(x﹣m)2+k的形式,其结果为()A.y=(x﹣2)2+4B.y=(x+4)2+4C.y=(x﹣4)2+8D.y=(x﹣2)2﹣4 2.一抛物线的形状、开口方向与抛物线相同,顶点为(﹣2,1),则此抛物线的解析式为()A.B.C.D.3.已知二次函数的图象经过(0,0),(3,0),(1,﹣4)三点,则该函数的解析式为()A.y=x2﹣3x B.y=2x2﹣3x C.y=2x2﹣6x D.y=x2﹣6x4.已知抛物线y=x2+bx+c的顶点坐标为(1,3),则抛物线对应的函数解析式为()A.y=x2﹣2x+4B.y=x2﹣2x﹣3C.y=﹣x2+2x+1D.y=x2﹣2x+1 5.已知抛物线的顶点坐标是(2,﹣1),且与y轴交于点(0,3),这个抛物线的表达式是()A.y=x²﹣4x+3B.y=x²+4x+3C.y=x²+4x﹣1D.y=x²﹣4x﹣1 6.如图,若抛物线y=ax2﹣2x+a2﹣1经过原点,则抛物线的解析式为()A.y=﹣x2﹣2x B.y=x2﹣2xC.y=﹣x2﹣2x+1D.y=﹣x2﹣2x或y=x2﹣2x7.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=2;当x=5时,y=6,以下判断正确的是()A.若h=2,则a<0B.若h=4,则a>0C.若h=6,则a<0D.若h=8,则a>08.已知某抛物线与二次函数y=5x2的图象的开口大小相同,开口方向相反,且顶点坐标为(﹣1,2021),则该抛物线对应的函数表达式为()A.y=﹣5(x﹣1)2+2021B.y=5(x﹣1)2+2021C.y=﹣5(x+1)2+2021D.y=5(x+1)2+2021二.填空题(共8小题,满分32分)9.小聪在画一个二次函数的图象时,列出了下面几组y与x的对应值:x…012345…y…50﹣3﹣4﹣30…该二次函数的解析式是.10.顶点为(﹣6,0),开口向下,形状与函数y=x2的图象相同的抛物线的表达式是.11.二次函数y=x2+bx+c的图象经过点(1,0)和(3,0),则其函数解析式为.12.已知某二次函数y=x2+bx+c过点A(1,0),B(﹣3,0),则此二次函数的关系式是,若在此抛物线上存在一点P,使△ABP面积为8,则点P的坐标是.13.已知抛物线的顶点在原点,对称轴为y轴,且经过点(﹣1,﹣2),则抛物线的表达式为.14.二次函数与y轴的交点到原点的距离为8,它的顶点坐标为(﹣1,2),那么它的解析式为.15.若抛物线y=ax2+bx+c(a≠0)与抛物线y=2x2﹣4x﹣1的顶点重合,且与y轴的交点的坐标为(0,1),则抛物线y=ax2+bx+c(a≠0)的表达式是.16.已知:二次函数y=ax2+bx+c中的x、y满足下表:x﹣2﹣11347y﹣5040m﹣36(1)m的值为;(2)此函数的解析式为;(3)若0<x<4时,则y的取值范围为.三.解答题(共6小题,满分56分)17.已知抛物线y=x2+bx+c的图象经过A(﹣1,12)、B(0,5).(1)求抛物线解析式;(2)试判断该二次函数的图象是否经过点(2,3).18.已知抛物线y=ax2+bx﹣3(a,b是常数,a≠0)经过A(﹣1,﹣2),B(1,﹣6).(1)求抛物线y=ax2+bx﹣3的函数解析式;(2)抛物线有两点M(2,y1)、N(m,y2),当y1<y2时,求m的取值范围.19.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+4(a≠0)经过点A(﹣2,0)和点B(4,0).(1)求这条抛物线所对应的函数解析式;(2)点P为该抛物线上一点(不与点C重合),直线CP将△ABC的面积分成2:1两部分,求点P的坐标.20.抛物线的顶点坐标为(2,﹣1),抛物线又经过点(1,0).(1)求抛物线的解析式;(2)在图中画出这条抛物线;(3)根据图象回答,当y>3时,自变量x的取值范围.21.如图,抛物线y=ax2+2ax+c经过点A(2,0),B(﹣2,4).(1)求抛物线的解析式;(2)若函数y=ax2+2ax+c在m≤x≤m+2时有最大值为4,求m的值;(3)点M在直线AB上方的抛物线上运动,当△ABM的面积最大时,求点M的坐标.22.如图,已知抛物线过点O(0,0),A(5,﹣5),且它的对称轴为直线x=2.(1)求此抛物线的表达式;(2)若点B是抛物线对称轴上的一点,且点B在第四象限.①当△OAB的面积为10时,求B的坐标;②点P是抛物线上的动点,当P A﹣PB的值最大时,求P的坐标以及P A﹣PB的最大值.参考答案一.选择题(共8小题,满分32分)1.解:y=x2﹣4x+8=x2﹣4x+4+4=(x﹣2)2+4,故选:A.2.解:∵抛物线的形状、开口方向与抛物线相同,∴a=,∵顶点为(﹣2,1),∴抛物线解析式为y=(x+2)2+1.故选:C.3.解:设这个二次函数的解析式是y=ax(x﹣3)(a≠0),把(1,﹣4)代入得﹣4=﹣2a,解得a=2;所以该函数的解析式为:y=2x(x﹣3)=2x2﹣6x.故选:C.4.解:∵抛物线y=x2+bx+c的顶点坐标为(1,3),∴抛物线解析式为y=(x﹣1)2+3,即y=x2﹣2x+4.故选:A.5.解:∵抛物线的顶点坐标为(2,﹣1)∴设抛物线的解析式为y=a(x﹣2)2﹣1(a≠0),把(0,3)代入得:4a﹣1=3,解得,a=1.所以,这条抛物线的解析式为:y=(x﹣2)2﹣1=x2﹣4x+3.故选:A.6.解:把(0,0)代入y=ax2﹣2x+a2﹣1得,0=a2﹣1,∴a=±1,∵抛物线开口向下,∴抛物线的解析式为y=﹣x2﹣2x,故选:A.7.解:当x=1时,y=2;当x=5时,y=6;代入函数式得:,∴a(5﹣h)2﹣a(1﹣h)2=4,整理得:a(6﹣2h)=1,若h=2,则a=,故A错误;若h=4,则a=﹣,故B错误;若h=6,则a=﹣,故C正确;若h=8,则a=﹣,故D错误;故选:C.8.解:∵抛物线的顶点坐标为(﹣1,2021),∴抛物线的解析式为y=a(x+1)2+2021,∵抛物线y=a(x+1)2+2021二次函数y=5x2的图象的开口大小相同,开口方向相反,∴a=﹣5,∴抛物线的解析式为y=﹣5(x+1)2+2021.故选:C.二.填空题(共8小题,满分32分)9.解:由表格数据结合二次函数图象对称性可得图象顶点为(3,﹣4),设二次函数的表达式为y=a(x﹣3)2﹣4(a≠0),将(1,0)代入得4a﹣4=0,解得a=1,∴该二次函数的表达式为y=(x﹣3)2﹣4(或y=x2﹣6x+5).10.解:设所求的抛物线的关系式为y=a(x﹣h)2+k,∵顶点为(﹣6,0),∴h=﹣6,k=0,又∵开口向下,形状与函数y=x2的图象相同,∴a=﹣,∴抛物线的关系式为:y=﹣(x+6)2,11.解:∵二次函数y=x2+bx+c的图象经过点(1,0)和(3,0),∴二次函数为y=(x﹣1)(x﹣3)=x2﹣4x+3,故答案为:y=x2﹣4x+3.12.解:将点A(1,0),B(﹣3,0)代入y=x2+bx+c中,可得,解得,∴y=x2+2x﹣3,设P(m,m2+2m﹣3),∵AB=4,∴S△ABP=×AB×y P=×4×|m2+2m﹣3|=8,∴|m2+2m﹣3|=4,∴m2+2m﹣3=4或m2+2m﹣3=﹣4,解得m=﹣1±2或m=﹣1,∴P(﹣1+2,4)或P(﹣1﹣2,4)或P(﹣1,﹣4),故答案为:y=x2+2x﹣3;(﹣1+2,4)或(﹣1﹣2,4)或(﹣1,﹣4).13.解:根据题意设抛物线解析式为y=ax2,将x=﹣1,y=﹣2代入得:﹣2=a,则抛物线解析式为y=﹣2x2.故答案为:y=﹣2x2.14.解:∵二次函数的图象顶点坐标为(﹣1,2),∴设这个二次函数的解析式y=a(x+1)2+2(a≠0),∵二次函数的图象与y轴的交点到原点的距离是8,∴交点坐标为(0,8)或(0,﹣8),把(0,8)代入y=a(x+1)2+2,得8=a+2,解得a=6,则这个二次函数的解析式y=6(x+1)2+2;把(0,﹣8)代入y=a(x+1)2+2,得﹣8=a+2,解得a=﹣10,则这个二次函数的解析式y=﹣10(x+1)2+2;故答案为:y=6(x+1)2+2或y=﹣10(x+1)2+2.15.解:∵y=2x2﹣4x﹣1=2(x﹣1)2﹣3,∴抛物线y=2x2﹣4x﹣1的顶点坐标为(1,﹣3),∵抛物线y=ax2+bx+c与抛物线y=2x2﹣4x﹣1的顶点重合,∴抛物线y=ax2+bx+c的顶点坐标为(1,﹣3),∴设此抛物线为y=a(x﹣1)2﹣3,∵与y轴的交点的坐标为(0,1),∴1=a﹣3,解得a=4,∴此抛物线为y=4(x﹣1)2﹣3=4x2﹣8x+1,故答案为:y=4x2﹣8x+1.16.解:(1)由图中表格可知,二次函数y=ax2+bx+c的图象关于直线x=1对称,且(4,m)与(﹣2,﹣5)关于直线x=1对称,∴m=﹣5;故答案为:﹣5;(2)由二次函数y=ax2+bx+c的图象过(﹣1,0),(3,0),设函数的解析式为y=a(x+1)(x﹣3),将(1,4)代入得:4=a×2×(﹣2),解得a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,故答案为:y=﹣x2+2x+3;(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=1时,y取最大值4,∵1﹣0<4﹣1,∴x=4时,y取最小值﹣(4﹣1)2+4=﹣5,∴0<x<4时,y的取值范围为是﹣5<y≤4;故答案为:﹣5<y≤4.三.解答题(共6小题,满分56分)17.解:(1)∵抛物线y=x2+bx+c的图象经过A(﹣1,12),B(0,5).∴,解得,∴二次函数解析式为y=x2﹣6x+5;(2)当x=2时,y=x2﹣6x+5=4﹣12+5=﹣3≠3,∴该二次函数的图象不经过点(2,3).18.解:(1)把A(﹣1,﹣2),B(1,﹣6)代入y=ax2+bx﹣3得,解得,∴抛物线的关系式为y=﹣x2﹣2x﹣3;(2)∵y=﹣x2﹣2x﹣3,∴抛物线开口向下,对称轴直线x=﹣=﹣1,∴由图取抛物线上点Q,使Q与N关于对称轴x=﹣1对称,∴点M(2,y1)关于对称轴x=﹣1的对称点为(﹣4,y1),又∵N(m,y2)在抛物线图象上的点,且y1<y2,∴﹣4<m<2.19.解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2),则y=a(x+2)(x﹣4)=ax2﹣2ax﹣8a,即﹣8a=4,解得a=﹣,故抛物线的表达式为y=﹣x2+x+4;(2)由点A、B的坐标知,OB=2OA,故CO将△ABC的面积分成2:1两部分,此时,点P不在抛物线上;如图1,当BH=AB=2时,CH将△ABC的面积分成2:1两部分,即点H的坐标为(2,0),则CH和抛物线的交点即为点P,由点C、H的坐标得,直线CH的表达式为y=﹣2x+4,联立,解得或,故点P的坐标为(6,﹣8).20.解:(1)设抛物线的解析式为y=a(x﹣2)2﹣1,将点(1,0)代入,得a﹣1=0.解得a=1,∴抛物线的解析式为y=(x﹣2)2﹣1,(2)∵y=(x﹣2)2﹣1=x2﹣4x+3,∴抛物线与y轴的交点为(0,3),其关于对称轴的对称点为(4,3),令y=0,则x2﹣4x+3=0,解得x=1或3,∴抛物线与x轴的交点为(1,0),(3,0),画出函数图象如下:(3)由函数图象知,当y>3时,自变量x的取值范围是x<0或x>4.21.解:(1)∵抛物线y=ax2+2ax+c经过点A(2,0),B(﹣2,4),∴,解得,∴抛物线的解析式为y=﹣x2﹣x+4;(2)∵y=﹣x2﹣x+4,∴抛物线开口向下,对称轴x=﹣=﹣1,∵m≤x≤m+2时,y有最大值4,∴当y=4时,有﹣x2﹣x+4=4,∴x=0或x=﹣2,①在x=﹣1左侧,y随x的增大而增大,∴x=m+2=﹣2时,y有最大值4,②在对称轴x=﹣1右侧,y随x最大而减小,∴x=m=0时,y有最大值4;综上所述:m=﹣4或m=0;(3)过点M作MG∥y轴交直线AB于点G,设直线AB的解析式为y=kx+b,∴,解得,∴y=﹣x+2,设M(m,﹣m2﹣m+4),则G(m,﹣m+2),∴MG=﹣m2+2,∴S△ABM=×4×(﹣m2+2)=﹣m2+4,∴当m=0时,△ABM的面积最大,此时M(0,4).22.解:(1)∵抛物线过点O(0,0),A(5,﹣5),且它的对称轴为x=2,∴抛物线与x轴的另一个交点坐标为(4,0),设抛物线解析式为y=ax(x﹣4),把A(5,﹣5)代入,得5a=﹣5,解得:a=﹣1,∴y=﹣x(x﹣4)=﹣x2+4x,故此抛物线的解析式为y=﹣x2+4x;(2)①∵点B是抛物线对称轴上的一点,且点B在第四象限,∴设B(2,m)(m<0),设直线OA的解析式为y=kx,解得:k=﹣1,∴直线OA的解析式为y=﹣x,设直线OA与抛物线对称轴交于点H,则H(2,﹣2),∴BH=﹣2﹣m,∵S△OAB=10,∴×(﹣2﹣m)×5=10,解得:m=﹣6,∴点B的坐标为(2,﹣6);②设直线AB的解析式为y=cx+d,把A(5,﹣5),B(2,﹣6)代入得:,,解得:,∴直线AB的解析式为y=x﹣,如图2,当P A﹣PB的值最大时,A、B、P在同一条直线上,∵P是抛物线上的动点,∴,解得:或,∴P(﹣,﹣).∵AB==,∴P A﹣PB的最大值为.。
九年级数学二次函数专项训练含答案-精选5篇
九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 2.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5) 3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =--- 4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+ C .28y x x =+ D .2164y x =- 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,①320a b +>,①24b a c ac >++,①a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( )A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大 9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;①当x >0时,一定有y 随x 的增大而增大;①若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;①当四边形ABCD 为平行四边形时,a =12. 其中正确的是( )A .①①B .①①C .①①D .①①① 10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =①方程()2110ax a x -++=至少有一个整数根①若11x a<<,则()211y ax a x =-++的函数值都是负数 ①不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________.16.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______.17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点.(1)若(1,0)A -,则b =______.(2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______.三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式 19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到①ACD .(1)求该抛物线的函数解析式.(2)①ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得①ACE 与①ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:①抛物线经过点()1,0A -,()5,0B ,()0,5C ,①设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,①()()21545y x x x x =-+-=-++.①该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y = ∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x=-=-⨯()3,0C-∴点()2,0D-,连接,BD交对称轴于,MMD MC∴=,此时,MB MC MB MD BD+=+=最小,此时:BD=MBC∴20.解:(1)对于y x=x=0时,y=当y=0时,03x-=,妥得,x=3①A(3,0),B(0,把A(3,0),B(0,2y bx c++得:+=0b cc⎧⎪⎨=⎪⎩解得,bc⎧=⎪⎨⎪=⎩①抛物线的解析式为:2y x x=-(2)抛物线的对称轴为直线12bxa=-==故设P(1,p),Q(m,n)①当BC为菱形对角线时,如图,①B ,C 关于对称没对称,且对称轴与x 轴垂直,①①BC 与对称轴垂直,且BC //x 轴①在菱形BQCP 中,BC ①PQ①PQ ①x 轴①点P 在x =1上,①点Q 也在x =1上,当x =1时,211y①Q (1,); ①当BC 为菱形一边时,若点Q 在点P 右侧时,如图,①BC //PQ ,且BC =PQ①BC //x 轴,①令y =2y 解得,120,2x x ==①(2,C①PQ=BC=22①PB=BC=2①迠P在x轴上,①P(1,0)①Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,①抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,①点A(﹣2,0),点B(8,0),①对称轴为直线x=3,①①ACD周长=AD+AC+CD,AC是定值,①当AD+CD取最小值时,△ACD周长能取得最小值,①点A,点B关于对称轴直线x=3对称,①连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,①0=8k ﹣8,①k =1,①直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,①点D (3,﹣5);(3)存在,①点A (﹣2,0),点C (0,﹣8),①直线AC 解析式为y =﹣4x ﹣8,如图,①①ACE 与①ACD 面积相等,①DE ①AC ,①设DE 解析式为:y =﹣4x +n ,①﹣5=﹣4×3+n ,①n =7,①DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, ①点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图象可能是( )A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y14.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=23.解:(1)∵抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点∴,解得:,∴抛物线解析式为y=﹣x2+2x+3,设直线AB的解析式为y=mx+n(m≠0),则,解得,∴直线AB的解析式为y=x+1;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),则OC=3,BC=2,BC∥x轴,∴S△ABC=×BC×OC==3.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+12.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),。
二次函数练习题及答案
三、解答题
18.已知二次函数 .
(1)求二次函数 的图象与两个坐标轴的交点坐标;
(2)在坐标平面上,横坐标与纵坐标都是整数的点 称为整点. 直接写出二次函数 的图象与 轴所围成的封闭图形内部及边界上的整点的个数.
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1)、(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得最大的年利润?
25.(12分)已知抛物线 经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.
(1)求该抛物线的解析式及点D的坐标;
(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为 , 和 ,用等式表示 , 、 之间的数量关系,并说明理由;
(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.
∵12>5>-4,
∴12+m>5+m>-4+m,
∴y1>y2>y3.
按从小到大依次排列为y3<y2<y1.
故答案为y3<y2<y1.
13.③,④
【解析】找到二次项的系数不是2的函数即可.
解:二次项的系数不是2的函数有③④.
故答案为③,④.
本题考查二次函数的变换问题.用到的知识点为:二次函数的平移,不改变二次函数的比例系数.
投入市场后当年能全部售出,且在甲、乙两地每吨的售价p甲、p乙(万元)均与x满足一次函数关系.(注:年利润=年销售额-全部费用)
人教版初中九年级数学上册第二十二章《二次函数》经典练习题(含答案解析)(3)
一、选择题1.抛物线y=ax2+bx+c(a≠0)的图象大致如图所示,下列说法:①2a+b=0;②当﹣1<x<3时,y<0;③若(x1,y1)(x2,y2)在函数图象上,当x1<x2时,y1<y2;④9a+3b+c=0,其中正确的是()A.①②④B.①④C.①②③D.③④A解析:A【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①由图示知,对称轴是直线x=3122ba-=-,则2a+b=0,故说法正确;②由图示知,当﹣1<x<3时,y<0,故说法正确;③若(x1,y1)(x2,y2)在函数图象上,当1<x1<x2时,y1<y2,故说法错误;④由图示知,当x=3时,y=0,即9a+3b+c=0,故说法正确.综上所述,正确的说法是①②④.故选:A.【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.2.如图,一条抛物线与x轴相交于M,N两点(点M在点N的左侧),其顶点P在线段AB上移动,点A,B的坐标分别为(﹣2,﹣3),(1,﹣3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1 B.﹣3 C.﹣5 D.﹣7C 解析:C【分析】当图象顶点在点B时,点N的横坐标的最大值为4,求出a=13;当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,求出x值,即可求解.【详解】当图象顶点在点B时,点N的横坐标的最大值为4,则此时抛物线的表达式为:y=a(x﹣1)2﹣3,把点N的坐标代入得:0=a(4﹣1)2﹣3,解得:a=13,当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,则x=﹣5或1,即点M的横坐标的最小值为﹣5,故选:C.【点睛】本题考查的是二次函数与x轴的交点,涉及到函数基本性质和函数的最值,其中确定坐标取得最值时,图象所处的位置是本题的关键.3.如图等边ABC的边长为4cm,点P,点Q同时从点A出发点,Q沿AC以1cm/s 的速度向点C运动,点P沿A B C--以2cm/s的速度也向点C运动,直到到达点C时停止运动,若APQ的面积为()2cmS,点Q的运动时间为()s t,则下列最能反映S与t之间大致图象是().A .B .C .D .D解析:D 【分析】当点P 在AB 边运动时,S=12AQ×APsinA ,图象为开口向上的抛物线,当点P 在BC 边运动时,如下图,S=12×AQ×PCsinC ,即可求解. 【详解】解:当点P 在AB 边运动时,21133sin 22222S AQ AP A t t t =⨯=⨯⨯⨯=, 图象为开口向上的抛物线, 当点P 在BC 边运动时,如下图,1133sin 2(6)(6)2222S AQ PC C t t t t =⨯⨯=⨯⨯-⨯=-,图象为开口向下的抛物线, 故选:D . 【点睛】本题是运动型综合题,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程. 4.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+-- D .21y x =-D解析:D 【分析】利用二次函数定义进行解答即可. 【详解】A 、21y x =+是一次函数,故A 不符合题意;B 、2y x =+1x不是二次函数,故B 不符合题意; C 、()()2222122y x x x x x x x =+--=+--=-,此函数是一次函数,故C 不符合题意;D 、21y x =-是二次函数,故D 符合题意; 故答案为:D . 【分析】本题主要考查了二次函数定义,关键是掌握形如2y ax bx c =++(a 、b 、c 是常数,a≠0)的函数,叫做二次函数.5.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称; ②函数既有最大值,也有最小值; ③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根. 其中正确的结论个数是( ) A .3 B .2C .1D .0A解析:A 【分析】根据函数解析式画出函数图象,结合函数图象进行判断.解:如图:①如图所示,函数图象关于y 轴对称,故①符合题意. ②如图所示,函数没有最大值,有最小值,故②不符合题意. ③如图所示,当x <-1时,y 随x 的增大而减小,故③符合题意.④如图所示,当-2<a <-1时,关于x 的方程x 2-2|x|-1=a 有4个实数根,故④符合题意. 综上所述,正确的结论有3个. 故选:A . 【点睛】本题为函数图象探究题,考查了根据函数图象判断函数的对称性、增减性以及从函数的角度解决方程问题.6.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .4C解析:C 【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下 ∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.7.如图,已知抛物线2(0)y ax bx c a =++≠的部分图象如图所示,则下列结论:①0abc >;②关于x 的一元二次方程20ax bx c ++=的根是-1,3;③2a b c +=;④y 最大值43c =;其中正确的有( )个.A .4B .3C .2D .1C解析:C 【分析】利用抛物线开口方向得到a <0,利用抛物线的对称轴方程得到b=-2a >0,利用抛物线与y 轴的交点在x 轴上方得到c >0,则可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-1,0),则根据抛物线与x 轴的交点问题可对②进行判断;由于x=-1时,a-b+c=0,再利用b=-2a 得到c=-3a ,则可对③④进行判断. 【详解】解:∵抛物线开口向下, ∴a <0,∵抛物线的对称轴为直线x=﹣b2a=1, ∴b=-2a >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵抛物线的对称轴为直线x=1,抛物线与x 轴的一个交点坐标为(3,0), ∴抛物线与x 轴的另一个交点坐标为(-1,0),∴关于x 的一元二次方程ax 2+bx+c=0的根是-1,3,所以②正确; ∵当x=-1时,y=0, ∴a-b+c=0, 而b=-2a ,∴a+2a+c=0,即c=-3a , ∴a+2b-c=a-4a+3a=0,即a+2b=c ,所以③正确; a+4b-2c=a-8a+6a=-a ,所以④错误; 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.8.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y >> B .213y y y >> C .231y y y >> D .312y y y >>C解析:C 【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小. 【详解】∵222(1)1y x x m x m =++=++-, ∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上, ∴231y y y >>. 故选:C . 【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 9.若关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,则函数21(3)4y x x a =--+-图象与x 轴的交点个数为( ) A .0个 B .1个C .2个D .1或2个C解析:C 【分析】根据解不等式组的一般步骤得到a 的取值范围,然后求出函数21(3)4y x x a =--+-的判别式,根据根的判别式的正负即可得到图象与x 轴的交点个数. 【详解】解:∵关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,∴3a-2>a+2, 即a >2,令y=0,21(3)4x x a --+-=0,△=(-1)2-4×(a-3)×(-14)=a-2,∵a >2, ∴a-2>0,∴函数图象与x 轴的交点个数为2. 故选:C . 【点睛】解答此题要熟知以下概念:(1)解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.(2)一元二次方程ax 2+bx+c=0(a≠0)的解与二次函数y=ax 2+bx+c 的关系.10.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<- B .2a 1-<< C .1a 0-<< D .2a 4<<C解析:C 【分析】根据二次函数2y ax bx c =++,当2x =时,该函数取最大值9,可以写出该函数的顶点式,得到0a <,再根据该函数图象与x 轴的一个交点的横坐标为1x ,15x >,可知,当5x =时,0y >,即可得到a 的取值范围,本题得以解决.【详解】 解:二次函数2y ax bx c =++,当2x =时,该函数取最大值9,0a ∴<,该函数解析式可以写成2(2)9y a x =-+,设该函数图象与x 轴的一个交点的横坐标为1x ,15x >,∴当5x =时,0y >,即2(52)90a -+>,解得,1a >-,a ∴的取值范围时10a -<<,故选:C . 【点睛】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题11.抛物线2y x x =+向下平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为____.【分析】先把配成顶点式再利用顶点式写出平移后的抛物线的解析式【详解】此抛物线的顶点坐标为()把点()向下平移个单位长度再向左平移个单位长度所得对应点的坐标为()即()所以平移后得到的抛物线的解析式为 解析:2710y x x =++【分析】先把2y x x =+配成顶点式,再利用顶点式写出平移后的抛物线的解析式. 【详解】2211()24y x x x =+=+-,此抛物线的顶点坐标为(12-,14-),把点(12-,14-)向下平移2个单位长度,再向左平移3个单位长度, 所得对应点的坐标为(132--,124--),即(72-,94-), 所以平移后得到的抛物线的解析式为279()24y x =+-,即2710y x x =++. 故答案为:2710y x x =++. 【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 12.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值时,的取值范围是______.表格给出的信息可看出对称轴为直线x =1a >0开口向上与x 轴交于(−10)(30)两点则y>0时x 的取值范围即可求出【详解】根据表格中给出的二次函数图象的信息对称轴为直线x =1a >0开口向解析:1x <-或3x > 【分析】由表格给出的信息可看出,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则y>0时,x 的取值范围即可求出. 【详解】根据表格中给出的二次函数图象的信息,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则当函数值y>0时,x 的取值范围是x<-1或x>3.故答案为:x<-1或x>3. 【点睛】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.13.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.【分析】首先求出点A 和点B 的坐标然后求出解析式分别求出直线过抛物线顶点时m 的值以及直线过原点时m 的值结合图形即可得到答案【详解】令解得:或则A (20)B (-20)∵与关于y 轴对称:顶点为(12)∴的 解析:02m <<【分析】首先求出点A 和点B 的坐标,然后求出2C 解析式,分别求出直线y m =过抛物线顶点时m的值以及直线y m =过原点时m 的值,结合图形即可得到答案. 【详解】令2240y x x =-+=, 解得:0x =或2x =, 则A (2,0),B (-2,0),∵1C 与2C 关于y 轴对称,1C :()2224212y x x x =-+=--+,顶点为(1,2), ∴2C 的解析式为()2221224y x x x =-++=--(20x -≤≤),顶点为(-1,2),当直线y m =过抛物线顶点时,它与1C ,2C 共有2个不同的交点,此时2m =;当直线y m =过原点时,它与1C ,2C 共有3个不同的交点,此时0m =; ∴当02m <<时,直线y m =与1C ,2C 共有4个不同的交点. 故答案为:02m <<. 【点睛】本题考查了抛物线与x 轴的交点、二次函数的图象与几何变换、一次函数与二次函数的关系,数形结合是解题的关键.14.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.②③【分析】根据抛物线开口方向对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断【详解】解:∵抛物线开口解析:②③【分析】根据抛物线开口方向,对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断.【详解】解:∵抛物线开口向下,交y 轴的正半轴,∴a <0,c >0,∵-2b a =12, ∴b =-a >0, ∴abc <0,所以①错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,即b2>4ac ,所以②正确;∵抛物线y =ax 2+bx +c 经过点(-2,0),而抛物线的对称轴为直线x=12, ∴点(-2,0)关于直线x =12的对称点(3,0)在抛物线上,∴关于x 的一元二次方程ax 2+bx +c =0的两根是x 1=-2,x 2=3,所以③正确.由图象可知当-2<x <3时,y >0,∴不等式ax 2+bx +c >0的解集是-2<x <3,所以④错误;故答案为②③.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.15.二次函数2y ax bx c =++自变量x 与函数值y 之间有下列关系:那么()b a b c a ++的值为______.=2再利用x =−3和x =1对应的函数值相等得到a +b +c =3然后利用整体代入的方法计算(a +b +c )的值【详解】解:∵抛物线 解析:6【分析】利用抛物线的对称性得到抛物线的对称轴为直线x =−1,则−2b a =−1,所以b a=2,再利用x =−3和x =1对应的函数值相等得到a +b +c =3,然后利用整体代入的方法计算b a (a +b +c )的值.【详解】解:∵抛物线经过点(−2,−1.68),(0,−1.68),∴抛物线的对称轴为直线x =−1,即−2b a =−1, ∴b a=2, ∴x =−3和x =1对应的函数值相等,∵x =−3时,y =3,∴x =1时,y =3,即a +b +c =3,∴b a(a +b +c )=2×3=6. 故答案为:6.【点睛】 本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.16.若抛物线256y x x =--与x 轴分别交于A 、B 两点,则AB 的长为_______________.7【分析】根据抛物线y=x2-5x-6与x 轴分别交于AB 两点可以令y=0求得点AB 的坐标从而可以求得AB 的长【详解】解:∵y=x2-5x-6∴y=0时x2-5x-6=0解得x1=-1x2=6∵抛物线解析:7【分析】根据抛物线y=x 2-5x-6与x 轴分别交于A 、B 两点,可以令y=0求得点A 、B 的坐标,从而可以求得AB 的长.【详解】解:∵y=x 2-5x-6,∴y=0时,x 2-5x-6=0,解得,x 1=-1,x 2=6.∵抛物线y=x 2-5x-6与x 轴分别交于A 、B 两点,∴点A 的坐标为(-1,0),点B 的坐标为(6,0),∴AB 的长为:6-(-1)=7.故答案为:7.【点睛】本题考查抛物线与x 轴的交点,以及数轴上两点间的距离,解题的关键是明确抛物线与x 轴相交时,y=0.17.已知关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,则代数式a 2﹣ab +b 2的最小值为_____.【分析】由韦达定理得出ab 与m 的关系式由一元二次方程的根与判别式的关系得出m 的取值范围再对代数式a2﹣ab+b2配方并将a+b 和ab 整体代入化简然后再配方结合m 的取值范围可得出答案【详解】∵关于x 的 解析:916【分析】由韦达定理得出a ,b 与m 的关系式、由一元二次方程的根与判别式的关系得出m 的取值范围,再对代数式a 2﹣ab +b 2配方并将a +b 和ab 整体代入化简,然后再配方,结合m 的取值范围可得出答案.【详解】∵关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,∴a +b =2m +1,ab =m 2﹣1,△≥0,∴△=[﹣(2m +1)]2﹣4×1×(m 2﹣1)=4m 2+4m +1﹣4m 2+4=4m +5≥0,∴m ≥54-. ∴a 2﹣ab +b 2 =(a +b )2﹣3ab=(2m +1)2﹣3(m 2﹣1)=4m 2+4m +1﹣3m 2+3=m 2+4m +4=(m +2)2,∴a 2﹣ab +b 2的最小值为:2592416⎛⎫-+= ⎪⎝⎭. 故答案为:916. 【点睛】本题考查了一元二次方程根与系数的关系,以及利用二次函数的性质求解代数的最值,灵活利用韦达定理及根的判别式,是解决本题的关键,熟悉用函数的思想解决最值问题也是关键点.18.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值.【详解】解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点,∴△=b 2-4a=0,若a=1,则b 可取2.故答案为1,2(答案不唯一).【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.19.已知二次函数2(0)y ax bx c a =++≠的对称轴为直线1x =-,与x 轴的一个交点B的坐标为()1,0其图象如图所示,下列结论:①0abc <;②20a b -=;③当0y >时,1x >;④320b c +>;⑤当0x <时,y 随x 的增大而减小;其中正确的有____.(只填序号)①②【分析】根据开口向上故;对称轴再y 轴的的左边根据同左异右故抛物线交y 轴的下方;对称轴为故有即抛物线与x 轴的交点有两个根据对称性可以得到交点为等信息利用这些信息进行答题【详解】解:根据开口向上故;解析:①②【分析】根据开口向上,故0a > ;对称轴再y 轴的的左边,根据“同左异右”,故0b > ,抛物线交y 轴的下方;对称轴为1x =-,故有12b a-=- 即2b a =,抛物线与x 轴的交点有两个,根据对称性可以得到交点为121,3x x ==-等信息,利用这些信息进行答题.【详解】解:根据开口向上,故0a > ;对称轴再y 轴的的左边,根据“同左异右”,故0b > ,抛物线交y 轴的下方,故0c < ,因此0abc <①正确对称轴为1x =-,故有12b a-=- 即2b a = 故②20a b -=也正确 由抛物线知道,抛物线与x 轴的交点有两个,根据对称性可以得到交点为121,3x x ==- 当当0y >时,图形上是在x 轴的上方,有1x >或者3x <- 故③错误当x=1是,由图可以知道0a b c ++= 即2220a b c ++= 由2b a =,便有320b c += 故④错误由图形可以知道当1x <-时,y 随x 的增大而减小,当1x ≥-时,y 随x 的增大而增大,故⑤错误故答案为①②【点睛】本题考查二次函数图像,从图像中获取信息是关键,20.如图,抛物线 y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①2a +b =0;②b 2-4ac <0;③当y >0时,x 的取值范围是 -1<x <3;④当 x >0时,y 随x 增大而增大;⑤若t 为任意实数,则有a+b≥at 2+bt .其中结论正确的是_________.①③⑤【分析】根据二次函数的图象及性质即可判断【详解】解:由图象可知:该抛物线的对称轴为x=1∴抛物线与x 轴的另外一个交点为:(30)∵对称轴为x=−=1从而可知:2a+b=0故①正确;∵抛物线与x解析:①③⑤【分析】根据二次函数的图象及性质即可判断.【详解】解:由图象可知:该抛物线的对称轴为x=1,∴抛物线与x 轴的另外一个交点为:(3,0)∵对称轴为x=−2b a=1, 从而可知:2a+b=0,故①正确;∵抛物线与x 轴有两个交点(-1,0),(3,0)∴△=b 2-4ac >0,而②b 2-4ac <0,故②错误;由图象可知:当y >0时,x 的取值范围是-1<x <3,故③正确;由图象可知:当x <1时,y 随x 增大而增大,故④错误;若t 为任意实数,x=1时,函数取得最大值,故a+b+c≥at 2+bt+c ,∴a+b≥at 2+bt ,故⑤正确,所以,结论正确的是①③⑤.故答案为:①③⑤.【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.三、解答题21.如图,在平面直角坐标系中,点1A ,2A ,3A ,……,n A 和1C ,2C ,3C ,……,n C 均在抛物线2y x 上,点1B ,2B ,3B ,……,n B 在y 轴的正半轴上,若四边形111OA B C ,四边形1222B A B C ,四边形2333B A B C ,……,四边形1n n n n B A B C 都是正方形.(1)分别写出点1A ,1B ,1C 的坐标;(2)分别求出正方形2333B A B C 和正方形1n n n n B A B C -的面积.解析:(1)1A (1,1),1B (0,2),1C (-1,1)(2)223⨯ ,22n ⨯.【分析】(1)直接根据图象以及二次函数的解析式求出点的坐标即可;(2)表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律即可;【详解】解:(1)∵四边形111A OC B 是正方形且关于y 轴对称,∴ ∠11AOB =45°,又∵点1A 在二次函数图象上, 设1A (x ,x),∴2x x = 且x >0,∴x=1即点1A (1,1),∴1OA 2 ,12OB = ,∴1A (1,1),1B (0,2),1C (-1,1);(2)根据正方形的性质,1OA 与y 轴的夹角为45°,故直线1OA 解析式为y x =,∵1B (0,2),求得直线11C B 的解析式为2y x =+,进而求得2A (2,4),2C (-2,4),2B (0,6),同时求得3B (0,12) ,于是12OB =,124B B =,236B B =,正方形111OA B C 面积=12222⨯⨯=,正方形1222B A B C 面积=21448=222⨯⨯=⨯, 正方形2333B A B C 面积=216618=232⨯⨯=⨯, 正方形1n n n n B A B C -的面积=212222n n n ⨯⨯=⨯; 【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律是解题的关键;22.某厂生产一种玩具,成本价是8元∕件,经过调查发现,每天的销售量y (件)与销售单价x (元)存在一次函数关系10600 y x =-+.(1)销售单价定为多少时,该厂每天获得的利润最大?最大利润是多少?(2)若物价部门规定,该产品的最高销售单价不得超过30元,那么销售单价如何定位才能获得最大利润?解析:(1)34,6760元;(2)当销售单价定为30元时,才能获得最大利润.【分析】(1)根据题意,可以写出利润与销售单价之间的函数关系式,然后根据二次函数的性质,即可得到销售单价定为多少时,该厂每天获取的利润最大,最大利润为多少;(2)根据(1)中利润与单价之间的函数关系式和物价部门规定,该产品的最高销售单价不得超过30元,可以得到当单价为30时,才能获得最大利润.【详解】解:(1)设该厂每天获得的利润为w 元,2810600106804800W x x x x210x 346760 当x 34=时,W 有最大值6760元因此,当销售单价定为34元时,该厂每天获得的利润最大,最大利润是6760元. (2)由(1)可知210346760W x∴函数图像开口向下,对称轴为34x =,∵最高销售单价不得超过30元,∴当x =30时,w 取得最大值,此时210303467606600W, 因此,当销售单价定为30元时,才能获得最大利润是6600元.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答. 23.已知二次函数y =(x ﹣1)(x ﹣m )(m 为常数)(1)求证:不论m 为何值,该函数的图象与x 轴总有公共点;(2)当m 的值变化时,该函数图象的顶点在下列哪个函数的图象上? . A .y =x ﹣1 B .y =﹣x ﹣1 C .y =﹣(x+1)2 D .y =﹣(x ﹣1)2解析:(1)见解析;(2)D【分析】(1)根据已知函数解析式得到抛物线与x 轴的两点交点横坐标:x 1=1,x 2=m ,据此证得结论;(2)根据顶点式先得到抛物线的顶点坐标为(-m ,m ),然后分别代入四个解析式中看是否满足解析式,再进行判断.【详解】(1)证明:当y =0时,(x ﹣1)(x ﹣m )=0.解得x 1=1,x 2=m .当m =1时,方程有两个相等的实数根;当m≠1时,方程有两个不相等的实数根.所以,不论m 为何值,该函数的图象与x 轴总有公共点.(2)由二次函数y =(x ﹣1)(x ﹣m )=(x ﹣12m +)2+m ﹣2(1)4m +得到该抛物线的顶点坐标是(12m +,m ﹣2(1)4m +), 而点(12m +,m ﹣2(1)4m +)满足y =﹣(x ﹣1)2,不满足y =x ﹣1,y =﹣x ﹣1,y =﹣(x+1)2,∴点(12m +,m ﹣2(1)4m +)在函数y =﹣(x ﹣1)2上. 故答案是:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,抛物线与x 轴的交点,二次函数的性质等知识点,需要掌握二次函数与一元二次方程间的关系,二次函数三种形式.24.如图,Rt △OAB 中,∠OAB=90°,O 为坐标原点,边OA 在x 轴上,OA=AB=2个单位长度,把Rt △OAB 沿x 轴正方向平移2个单位长度后得△11AA B .(1)求以A 为顶点,且经过点1B 的抛物线的解析式;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D 、 C 的坐标.解析:(1)()2122y x =-;(2)()0,2D ,(35,35C 【分析】(1)根据三角形的边长求出点A 和点1B 的坐标,设抛物线解析式为()22y a x =-,代入点1B 坐标求出解析式;(2)令0x =,求出y 的值,得到点D 的坐标,再求出直线OB 的解析式和抛物线联立求出点C 的坐标.【详解】解:∵2OA =,∴()2,0A ,∵14OA =,112A B =,∴()14,2B ,设抛物线解析式为()22y a x =-,把点()14,2B 代入,得42a =,解得12a =, ∴()2122y x =-; (2)令0x =,得1422y =⨯=, ∴()0,2D ,设直线OB 解析式为y kx =,把点()2,2B 代入,得到22k =,解得1k =,∴直线OB 解析式为y x =,联立直线和抛物线的解析式,得()2122x x -=,解得35x =±, 根据点C 的位置,取35x =-,∴()35,35C --.【点睛】本题考查二次函数,解题的关键是掌握求二次函数的解析式的方法,求抛物线和直线交点的方法.25.如图已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图,连接BC ,PB ,PC ,设PBC 的面积为S .①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.解析:(1)2y x 2x 3=-++;(2)①23922S t t =-+;②最大值928,此时P 坐标315,24⎛⎫ ⎪⎝⎭【分析】(1)由点A 、B 坐标,利用待定系数法求解抛物线的表达式即可;(2)①过点P 作PH ⊥x 轴于H ,设点P 坐标为(t ,223t t -++),由PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形即可表示出S 关于t 的函数表达式;②由于BC 为定值,所以点P 到直线BC 的距离最大时即为S 最大,根据二次函数的性质求出S 的最大值,利用勾股定理求出线段BC 的长,再利用等面积法求出点P 到直线BC 的距离的最大值,进而可求出此时的点P 坐标.【详解】解:(1)将点A (﹣1,0)、B (3,0)代入2y x bx c =-++中,得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴,抛物线的表达式为2y x 2x 3=-++;(2)①过点P 作PH ⊥x 轴于H ,如图,当x=0时,y=3,∴C (0,3),OC=3,∵点P 的坐标为(t ,223t t -++)且点P 在第一象限,∴PH=223t t -++,OH=t ,BH=3﹣t ,∴PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形=22111(233)(3)(23)33222t t t t t t ⋅-+++⋅+⋅-⋅-++-⨯⨯ =23922t t -+, ∴S 关于t 的函数关系式为S=23922t t -+(t >0);②由S=23922t t -+= 23327()228t --+,且32-<0,得: 当t= 32时,S 有最大值,最大值为278, ∵OB=3,OC=3,∴BC= 2232OB OC +=,∵当t=32时,223t t -++=23315()23224-+⨯+= ∴点P 到直线BC 的距离的最大值为272928832⨯=,此时,点P 的坐标为(32,154). 【点睛】本题考查了待定系数法求二次函数的解析式、坐标与图形的性质、二次函数的性质、割补法求三角形的面积,解答的关键是认真审题,寻找知识点的关联点,利用待定系数法、割补法和数形结合思想进行推理、探究和计算.26.在平面直角坐标系xOy 中,抛物线223=+-y mx mx 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,4AB =.(1)直接写出抛物线的对称轴为直线____,点A 的坐标为___.(2)求抛物线的解析式(化为一般式);(3)若将抛物线223=+-y mx mx 沿x 轴方向平移()0n n >个单位长度,使得平移后的抛物线与线段AC 恰有一个公共点,结合函数图象,回答下列问题:①若向左平移,则n 的取值范围是______.②若向右平移,则n 的取值范围是______.解析:(1)1x =-,()3,0-;(2)223y x x =+-;(3)①04n <≤,②02n <≤ 【分析】(1)由对称轴为直线x=-2b a,可求解; (2)将点B 坐标代入可求解; (3)设向左平移后的解析式为:y =(x +1+n )2-4,设向右平移后的解析式为:y =(x +1-n )2-4,利用特殊点代入可求解.【详解】解:(1)∵抛物线y =mx 2+2mx -3的对称轴为直线x =22m m=-1,AB=4, ∴点A (-3,0),点B (1,0),故答案为:x =-1,(-3,0);(2)∵抛物线y =mx 2+2mx -3过点B (1,0),∴0=m +2m -3,∴m =1,∴抛物线的解析式:y =x 2+2x -3,(3)如图,∵y =x 2+2x -3=(x +1)2-4,∴设向左平移后的解析式为:y =(x +1+n )2-4,把x =-3,y =0代入解析式可得:0=(-3+1+n )2-4,∴n =0(舍去),n =4,∴向左平移,则n 的取值范围是0<n ≤4;设向右平移后的解析式为:y =(x +1-n )2-4,把x =0,y =-3代入解析式可得:-3=(1-n )2-4,∴n =0(舍去),n =2,∴向右平移,则n 的取值范围是0<n ≤2,故答案为:0<n ≤4;0<n ≤2.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,平移的性质等知识,灵活运用这些性质解决问题是本题的关键.27.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货。
求二次函数解析式专项练习60题(含解析)
文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持.求二次函数解析式专项练习60题(含解析)1.已知二次函数图象的顶点坐标是(1,﹣4),且与y轴交于点(0,﹣3),求此二次函数的解析式.2.已知二次函数y=x2+bx+c的图象经过点A(﹣1,12),B(2,﹣3).(1)求这个二次函数的解析式.(2)求这个图象的顶点坐标及与x轴的交点坐标.3.在平面直角坐标系xOy中,直线y=﹣x绕点O顺时针旋转90°得到直线l,直线l与二次函数y=x2+bx+2图象的一个交点为(m,3),试求二次函数的解析式.4.已知抛物线y=ax2+bx+c与抛物线形状相同,顶点坐标为(﹣2,4),求a,b,c的值.5.已知二次函数y=ax2+bx+c,其自变量x的部分取值及对应的函数值y如下表所示:(1)求这个二次函数的解析式;x …﹣2 0 2 …y …﹣1 1 11 …6.已知抛物线y=x+(m+1)x+m,根据下列条件分别求m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为x=2.7.已知抛物线经过两点A(1,0)、B(0,3),且对称轴是直线x=2,求其解析式.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出y>0时,x的取值范围_________;(2)写出y随x的增大而减小的自变量x的取值范围_________;(3)求函数y=ax2+bx+c的表达式.9.已知二次函数y=x2+bx+c的图象经过点A(﹣2,5),B(1,﹣4).(1)求这个二次函数解析式;(2)求这个图象的顶点坐标、对称轴、与坐标轴的交点坐标;(3)画出这个函数的图象.10.已知:抛物线经过点A(﹣1,7)、B(2,1)和点C(0,1).(1)求这条抛物线的解析式;(2)求该抛物线的顶点坐标.11.若二次函数y=ax2+bx+c的图象与y轴交于点A(0,3),且经过B(1,0)、C(2,﹣1)两点,求此二次函数的解析式.12.二次函数y=x2+bx+c的图象过A(2,3)和B(﹣1,0)两点,求此二次函数的解析式.13.已知:一抛物线y=ax2+bx﹣2(a≠0)经过点(3,4)和点(﹣1,0)求该抛物线的解析式,并用配方法求它的对称轴.14.二次函数y=2x2+bx+c的图象经过点(0,﹣6)、(3,0),求这个二次函数的解析式,并用配方法求它的图象的顶点坐标.15.如图,抛物线y=﹣x2+5x+m经过点A(1,0),与y轴交于点B,(1)求m的值;(2)若抛物线与x轴的另一交点为C,求△CAB的面积;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.16.如图,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).(1)求这条抛物线对应函数的表达式;(2)若P点在该抛物线上,求当△PAB的面积为8时,点P的坐标.17.已知二次函数的图象经过点(0,﹣1)、(1,﹣3)、(﹣1,3),求这个二次函数的解析式.并用配方法求出图象的顶点坐标.18.已知:二次函数的顶点为A(﹣1,4),且过点B(2,﹣5),求该二次函数的解析式.19.已知一个二次函数y=x2+bx+c的图象经过(1,2)、(﹣1,6),求这个函数的解析式.20.已知二次函数y=x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求该二次函数图象与x轴的另一个交点.21.已知抛物线最大值为3,其对称轴为直线x=﹣1,且过点(1,﹣5),求其解析式.22.已知二次函数图象顶点坐标为(﹣2,3),且过点(1,0),求此二次函数解析式.23.已知抛物线y=﹣x2+bx+c,它与x轴的两个交点分别为(﹣1,0),(3,0),求此抛物线的解析式.24.一个二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,求这个函数的关系式.25.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(1,﹣4).(1)求这个函数的解析式;(2)求这个函数图象与x轴、y轴的交点坐标.26.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0).求二次函数的解析式.27.已知二次函数y=ax2+bx+c,当x=0时,函数值为5,当x=﹣1或﹣5时,函数值都为0,求这个二次函数的解析式.28.已知抛物线的图象经过点A(1,0),顶点P的坐标是.(l)求抛物线的解析式;(2)求此抛物线与两坐标轴的三个交点所围成的三角形的面积.29.如图为抛物线y=﹣x2+bx+c的一部分,它经过A(﹣1,0),B(0,3)两点.(1)求抛物线的解析式;(2)将此抛物线向左平移3个单位,再向下平移1个单位,求平移后的抛物线的解析式.30.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)试求二次函数的解析式;(2)求y的最大值;(3)写出当y>0时,x的取值范围.31.已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(2,1),求二次函数的解析式.32.抛物线y=﹣x2+bx+c的对称轴是x=l,它与x轴有两个交点,其中的一个为(3,0),求此抛物线的解析式.33.已知二次函数的图象经过点(0,﹣3),且顶点坐标为(﹣1,﹣4).(1)求该二次函数的解析式;(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.34.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).(1)求m的值和抛物线的解析式;(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);(3)若抛物线与y轴交于C,求△ABC的面积.35.二次函数的图象经过点(1,2)和(0,﹣1)且对称轴为x=2,求二次函数解析式.36.如图所示,二次函数y=﹣x2+bx+c的图象经过坐标原点O和A(4,0).(1)求出此二次函数的解析式;(2)若该图象的最高点为B,试求出△ABO的面积;(3)当1<x<4时,y的取值范围是_________.37.已知:一个二次函数的图象经过(﹣1,10),(1,4),(2,7)三点.(1)求出这个二次函数解析式;(2)利用配方法,把它化成y=a(x+h)2+k的形式,并写出顶点坐标和y随x变化情况.38.已知抛物线y=x2﹣2(k﹣2)x+1经过点A(﹣1,2)(1)求此抛物线的解析式;(2)求此抛物线的顶点坐标与对称轴.39.根据条件求下列抛物线的解析式:(1)二次函数的图象经过(0,1),(2,1)和(3,4);(2)抛物线的顶点坐标是(﹣2,1),且经过点(1,﹣2).40.已知二次函数的图象的顶点坐标为(3,﹣2)且与y轴交于(0,)(1)求函数的解析式;(2)当x为何值时,y随x增大而增大.41.已知二次函数的图象经过点(0,﹣2),且当x=1时函数有最小值﹣3.(1)求这个二次函数的解析式;(2)如果点(﹣2,y1),(1,y2)和(3,y3)都在该函数图象上,试比较y1,y2,y3的大小.42.已知二次函数y=x2+bx+c的图象经过点(0,3)、(4,3)(1)求二次函数的解析式,并在给定的坐标系中画出该函数的图象(不用列表);(2)直接写出x2+bx+c>3的解集.43.不论m取任何实数,y关于x的二次函数y=x2+2mx+m2+2m﹣1的图象的顶点都在一条直线上,求这条直线的函数解析式.44.抛物线y=ax2+bx+c过点A(﹣2,1),B(2,3),且与y轴负半轴交于点C,S△ABC=12,求其解析式.45.直线y=kx+b过x轴上的A(2,0)点,且与抛物线y=ax2相交于B、C两点,已知B点坐标为(1,1),求直线和抛物线所表示的函数解析式,并在同一坐标系中画出它们的图象.46.已知二次函数y=x2+bx+c的图象经过点P(2,7)、Q(0,﹣5).(1)试确定b、c的值;(2)若该二次函数的图象与x轴交于A、B两点(其中点A在点B的左侧),试求△PAB的面积.47.抛物线y=ax2﹣3ax+b经过A(﹣1,0),C(3,﹣2)两点.(1)求此抛物线的解析式;(2)求出这个二次函数的对称轴和顶点坐标.48.已知二次函数y=x2+bx+c的图象经过点A(0,4),且对称轴是直线x=﹣2,求这个二次函数的表达式.49.已知关于x的二次函数的图象的顶点坐标为(﹣4,3),且图象过点(l,﹣2).(1)求这个二次函数的关系式;(2)写出它的开口方向、对称轴.50.如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2=ax2+bx﹣3的图象上.(1)求m的值和二次函数的解析式.(2)二次函数交y轴于C,求△ABC的面积.51.若二次函数的图象的对称轴是直线x=1.5,并且图象过A(0,﹣4)和B(4,0)(1)求此二次函数的解析式;(2)求此二次函数图象上点A关于对称轴对称的点A′的坐标.52.若二次函数y=ax2+bx+c中,c=3,图象的顶点坐标为(2,﹣1),求该二次函数的解析式.53.过点A(﹣1,4),B(﹣3,﹣8)的二次函数y1=ax2+bx+c与二次函数的图象的形状一样,开口方向相同,只是位置不同,求这个函数的解析式及顶点坐标.54.二次函数的图象与x轴的两交点的横坐标为1和﹣7,且经过点(﹣3,8).求:(1)这个二次函数的解析式;(2)试判断点A(﹣1,2)是否在此函数的图象上.55.已知二次函数y=ax2+bx+c的图象经过点(0,﹣9)、(1,﹣8),对称轴是y轴.(1)求这个二次函数的解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.56.如图,抛物线y=ax2+bx经过点A(4,0)、B(2,2),连接OB、AB.(1)求抛物线的解析式;(2)求证:△OAB是等腰直角三角形.57.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.58.已知二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积和周长.59.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标.60.已知函数y=x2+bx+c过点A(2,2),B(5,2).(1)求b、c的值;(2)求这个函数的图象与x轴的交点C的坐标;(3)求S△ABC的值.二次函数解析式60题参考答案:1.∵顶点坐标是(1,﹣4)因此,设抛物线的解析式为:y=a(x﹣1)2﹣4,∵抛物线与y轴交于点(0,﹣3)把(0,﹣3)代入解析式:﹣3=a(0﹣1)2﹣4解之得:a=1(14分)∴抛物线的解析式为:y=x2﹣2x﹣3.2.(1)把点A(﹣1,12),B(2,﹣3)的坐标代入y=x2+bx+c 得得∴y=x2﹣6x+5.(2)y=x2﹣6x+5,y=(x﹣3)2﹣4,故顶点为(3,﹣4).令x2﹣6x+5=0解得x1=1,x2=5.与x轴的交点坐标为(1,0),(5,0).3.由题意,直线l的解析式为y=x,将(m,3)代入直线l的解析式中,解得m=3.将(3,3)代入二次函数的解析式,解得,∴二次函数的解析式为4.抛物线y=ax2+bx+c 与抛物线形状相同,则a=±.当a=时,解析式是:y=(x+2)2+4=x2+x+5.即a=,b=1,c=5;当a=﹣时,解析式是:y=﹣(x+2)2+4=﹣x2﹣x+3.即a=﹣,b=﹣1,c=3.5.(1)依题意,得,解得;∴二次函数的解析式为:y=x2+3x+1.(2)由(1)知:y=x2+3x+1=(x+)2﹣,故其顶点坐标为(﹣,﹣)6.(1)∵抛物线过原点,∴0=02+(m+1)×0+m.解得m=0;(2)∵抛物线的顶点在x轴上.∴△=(m+1)2﹣4m=0.解得:m=1;(3)∵抛物线的对称轴是x=2,∴﹣=2.解得m=﹣57.∵抛物线对称轴是直线x=2且经过点A(1,0)由抛物线的对称性可知:抛物线还经过点(3,0)设抛物线的解析式为y=a(x﹣x1)(x﹣x2)(a≠0)即:y=a(x﹣1)(x﹣3)把B(0,3)代入得:3=3a∴a=1∴抛物线的解析式为:y=x2﹣4x+3.8.(1)抛物线开口向下,与x轴交于(1,0),(3,0),当y>0时,x的取值范围是:1<x<3;(2)抛物线对称轴为直线x=2,开口向下,y随x的增大而减小的自变量x的取值范围是x>2;(3)抛物线与x轴交于(1,0),(3,0),设解析式y=a(x﹣1)(x﹣3),把顶点(2,2)代入,得2=a(2﹣1)(2﹣3),解得a=﹣2,∴y=﹣2(x﹣1)(x﹣3),即y=﹣2x2+8x﹣6.9.(1)把A(﹣2,5),B(1,﹣4)代入y=x2+bx+c,得,解得b=﹣2,c=﹣3,∴二次函数解析式为y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴﹣=1,=﹣4,∴顶点坐标(1,﹣4),对称轴为直线x=1;又当x=0时,y=﹣3,∴与y轴交点坐标为(0,﹣3);y=0时,x=3或﹣1,∴与x轴交点坐标为(3,0),(﹣1,0).(3)图象如图.10.(1)设所求抛物线解析式为y=ax2+bx+c.根据题意,得,解得.故所求抛物线的解析式为y=2x2﹣4x+1.(2)∵,∴该抛物线的顶点坐标是(1,﹣1)11.∵二次函数y=ax2+bx+c的图象与y轴交于点A(0,3),∴c=3.又∵二次函数y=ax2+bx+c的图象经过B(1,0)、C(2,﹣1)两点,∴代入y=ax2+bx+c得:a+b+c=0,①4a+2b+c=﹣1,②由①②及c=3解得∴二次函数的解析式为y=x2﹣4x+312.由题意得解得,.此二次函数的解析式为y=x2﹣1.13.把点(3,4)、(﹣1,0)代入y=ax2+bx﹣2得:解得:则抛物线的解析式是y=x2﹣x﹣2=(x ﹣)2﹣则抛物线的对称轴是:x=14.由题意得,解得.∴这个二次函数的解析式是y=2x2﹣4x﹣6.y=2(x2﹣2x)﹣6=2(x2﹣2x+1)﹣2﹣6(1分)=2(x﹣1)2﹣8.(1分)∴它的图象的顶点坐标是(1,﹣8).15.(1)根据题意,把点A的坐标代入抛物线方程得:0=﹣1+5+m,即得m=﹣4;(2)根据题意得:令y=0,即﹣x2+5x﹣4=0,解得x1=1,x2=4,∴点C坐标为(4,0);令x=0,解得y=﹣4,∴点B的坐标为(0,﹣4);∴由图象可得,△CAB的面积S=×OB×AC=×4×3=6;(3)根据题意得:①当点O为PB的中点,设点P的坐标为(0,y),(y>0)则y﹣4=0,即得y=4,∴点P的坐标为(0,4).②当AB=BP时,AB=,∴OP 的长为:﹣4,∴P(0,﹣4),∴P(0,﹣4),或(0,4)16.(1)点(1,0),(3,0)在抛物线y=﹣x2+bx+c上.则有解得:则所求表达式为y=﹣x2+4x﹣3.(2)依题意,得AB=3﹣1=2.设P点坐标为(a,b)当b>0时,×2×b=8.则b=8.故﹣x2+4x﹣3=8即x2+4x+11=0△=(﹣4)2﹣4×1×11=16﹣44=﹣28<0,方程﹣x2+4x+11=0无实数根.当b<0时,×2×(﹣b)=8,则b=﹣8故﹣x2+4x﹣3=﹣8 即﹣x2+4x﹣5=0.解得x1=﹣1,x2=5所求点P坐标为(﹣1,﹣8),(5,﹣8)17.设二次函数的解析式为y=ax2+bx+c,由题意得,解得.故二次函数的解析式为y=x2﹣3x﹣1;y=x2﹣3x﹣1=x2﹣3x+()2﹣()2﹣1=(x ﹣)2﹣,所以抛物线的顶点坐标为(,﹣).18.设此二次函数的解析式为y=a(x+1)2+4.∵其图象经过点(2,﹣5),∴a(2+1)2+4=﹣5,∴a=﹣1,∴y=﹣(x+1)2+4=﹣x2﹣2x+3.故答案为:y=﹣x2﹣2x+319.∵二次函数y=x2+bx+c的图象经过(1,2)、(﹣1,6),∴,解得,∴所求的二次函数的解析式为y=x2﹣2x+3.20.(1)把A(2,0)、B(0,﹣6)代入y=x2+bx+c得,4+2b+c=0,c=﹣6,∴b=1,c=﹣6,∴这个二次函数的解析式y=x2+x﹣6;(2)令y=0,则x2+x﹣6=0,解方程得x1=2,x2=﹣3,∴二次函数图象与x轴的另一个交点为(﹣3,0).21.∵已知抛物线最大值为3,其对称轴为直线x=﹣1,∴抛物线的顶点坐标为(﹣1,3)设抛物线的解析式为:y=a(x+1)2+3,∵(1,﹣5)在抛物线y=a(x+1)2+3上,∴解得a=﹣2,∴此抛物线的解析式y=﹣2(x+1)2+322.设二次函数式为y=k(x+2)2+3.将(1,0)代入得9k+3=0,解得k=.∴所求的函数式为 y=(x+2)2+323.根据题意得,,解得,∴抛物线的解析式为y=﹣x2+2x+3;或:由已知得,﹣1、3为方程﹣x2+bx+c=0的两个解,∴﹣1+3=b,(﹣1)×3=c,解得b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.24.设二次函数的关系式为y=ax2+bx+c(a≠0),∵二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,∴点(0,0),(﹣1,﹣1),(1,9)满足二次函数的关系式,∴,解得,所以这个函数关系式是:y=4x2+5x25.(1)由题意,将A与B 代入代入二次函数解析式得:,解得:,则二次函数解析式为y=x2﹣2x﹣3;(2)令y=0,则x2﹣2x﹣3=0,即(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴与x轴交点坐标为(﹣1,0),(3,0);令x=0,则y=﹣3,∴与y轴交点坐标为(0,﹣3)26.根据题意,得,解得,;∴该二次函数的解析式为:y=x2﹣2x﹣3.27.由题意得,二次函数y=ax2+bx+c,过(0,5)(﹣1,0)(﹣5,0)三点,∴,解得a=1,b=6,c=5,∴这个二次函数的解析式y=x2+6x+528.(1)由题意,可设抛物线解析式为y=a(x ﹣)2+,把点A(1,0)代入,得a(1﹣)2+=0,解之得a=﹣1,∴抛物线的解析式为y=﹣(x ﹣)2+,即y=﹣x2+5x﹣4;(2)令x=0,得y=﹣4,令y=0,解得x1=4,x2=1,S=×(4﹣1)×4=6.所以抛物线与两坐标轴的三个交点所围成的三角形的面积为6.29.(1)∵抛物线经过A(﹣1,0),B(0,3)两点∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)∵y=﹣x2+2x+3可化为y=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),又∵此抛物线向左平移3个单位,再向下平移1个单位,∴平移后的抛物线的顶点坐标为(﹣2,3).∴平移后的抛物线的解析式为y=﹣(x+2)2+3=﹣x2﹣4x﹣1.30.(1)∵二次函数图象与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3),∴x=﹣1,y=0代入y=﹣x2+bx+c得:﹣1﹣b+c=0①,把x=0,y=3代入y=﹣x2+bx+c得:c=3,把c=3代入①,解得b=2,则二次函数解析式为y=﹣x2+2x+3;(2)∵二次函数y=﹣x2+2x+3的二次项系数a=﹣1<0,∴抛物线的开口向下,则当x=﹣=﹣=1时,y有最大值,最大值为=4;(3)令二次函数解析式中的y=0得:﹣x2+2x+3=0,可化为:(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1,由函数图象可知:当﹣1<x<3时,y>031.∵函数的最大值是2,则此函数顶点的纵坐标是2,又顶点在y=x+1上,那么顶点的横坐标是1,设此函数的解析式是y=a(x﹣1)2+2,再把(2,1)代入函数中可得a(2﹣1)2+2=1,解得a=﹣1,故函数解析式是y=﹣x2+2x+1.32.∵﹣=﹣=1,∴b=2,又∵点(3,0)在函数上,∴﹣9+6+c=0,∴c=3,∴函数的解析式是y=﹣x2+2x+3.33.(1)设y=a(x+1)2﹣4,把点(0,﹣3)代入得:a=1,∴函数解析式y=(x+1)2﹣4或y=x2+2x﹣3;(2)∵x2+2x﹣3=0,解得x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),C(0,﹣3),∴△ABC的面积=.34.(1)解:∵直线y=x+m经过A点,∴当x=2时,y=0,∴m+2=0,∴m=﹣2,∵抛物线y=x2+bx+c过A(2,0),B(5,3),∴,解得,∴抛物线的解析式为y=x2﹣6x+8;(2)由图可知,不等式ax2+bx+c≤x+m的解集为2≤x≤5;(3)解:设直线AB与y轴交于D,∵A(2,0)B(5,3),∴直线AB的解析式为y=x﹣2,∴点D(0,﹣2),由(1)知C(0,8),∴S△BCD =×10×5=25,∵S△ACD =×10×2=10,∴S△ABC=S△BCD﹣S△ACD=25﹣10=15.35.设二次函数的解析式为y=ax2+bx+c,由题意得,二次函数的图象对称轴为x=2且图象过点(1,2),(0,﹣1),故可得:,解得:.即可得二次函数的解析式为:y=﹣x2+4x﹣136.(1)由条件得解得所以解析式为y=﹣x2+4x,(2)∵该图象的最高点为B,∴点B的坐标为(2,4),∴△ABO的面积=×4×4=8,(3)∵当x=1时,y=3,∴当1<x<4时,y的取值范围是0<y<4.故答案为:0<y<4.37.(1)这个二次函数解析式y=ax2+bx+c(a≠0),把三点(﹣1,10),(1,4),(2,7)分别代入得:,解得:,故这个二次函数解析式为:y=2x2﹣3x+5;(2)y=2x2﹣3x+5=2(x2﹣x+﹣)+5=2(x ﹣)2﹣+5=2(x ﹣)2+,则抛物线的顶点坐标是(,),因为抛物线的开口向上,所以当x >时,y随x的增大而增大,当x时,y随x的增大而减小.38.(1)将A(﹣1,2)代入y=x2﹣2(k﹣2)x+1得:2=1﹣2(k ﹣2)+1,解得:k=2,则抛物线解析式为y=x2+1;(2)对于二次函数y=x2+1,a=1,b=0,c=1,∴﹣=0,=1,则顶点坐标(0,1);对称轴为直线x=0(y轴)39.(1)设抛物线的解析式是y=ax2+bx+c,把(0,1),(2,1),(3,4)代入得:,解得:,∴y=x2﹣2x+1.(2)设抛物线的解析式是:y=a(x+2)2+1,把(1,﹣2)代入得:﹣2=a(1+2)2+1,∴a=﹣,∴y=﹣(x+2)2+1,即y=﹣x2﹣x ﹣.40.(1)设函数的解析式是:y=a(x﹣3)2﹣2根据题意得:9a﹣2=,解得:a=;∴函数解析式是:y=﹣2;(2)∵a=>0 ∴二次函数开口向上又∵二次函数的对称轴是x=3.∴当x>3时,y随x增大而增大.41.(1)由题意知:抛物线的顶点坐标为(1,﹣3)设二次函数的解析式为y=a(x﹣1)2﹣3,由于抛物线过点(0,﹣2),则有:a(0﹣1)2﹣3=﹣2,解得a=1;因此抛物线的解析式为:y=(x﹣1)2﹣3.(2)∵a=1>0,∴故抛物线的开口向上;∵抛物线的对称轴为x=1,∴(1,y2)为抛物线的顶点坐标,∴y2最小.由于(﹣2,y1)和(4,y1)关于对称轴对称,可以通过比较(4,y1)和(3,y3)来比较y1,y3的大小,由于在y轴的右侧是增函数,所以y1>y3.于是y2<y3<y1.42.(1)由于二次函数y=x2+bx+c的图象经过点(0,3)、(4,3),则,解得:,∴此抛物线的解析式为:y=x2﹣4x+3.函数图象如下:(2)由函数图象可直接写出x2+bx+c>3的解集为:x<0或x>4.43.二次函数可以变形为y=(x+m)2+2m﹣1,抛物线的顶点坐标为(﹣m,2m﹣1).由,消去m,得y=﹣2x﹣1.所以这条直线的函数解析式为y=﹣2x﹣144.设直线AB的解析式为y=kx+b,∴,解得,直线AB的解析式为y=x+2,令x=0,则y=2,∴直线AB与y轴的交点坐标(0,2),∵S△ABC=12,∴C(0,﹣4),∵抛物线y=ax2+bx+c过点A(﹣2,1),B(2,3),且与y轴负半轴交于点C,∴,解得,∴抛物线的解析式为y=x2+x﹣445.∵直线y=kx+b过点A(2,0)和点B(1,1),∴,解得,∴直线AB所表示的函数解析式为y=﹣x+2,∵抛物线y=ax2过点B(1,1),∴a×12=1,解得a=1,∴抛物线所表示的函数解析式为y=x2.它们在同一坐标系中的图象如下所示:46.(1)∵二次函数y=x2+bx+c的图象经过点P(2,7)、Q(0,﹣5),,解得b=4,c=﹣5.∴b、c的值是4,5;(2)∵二次函数的图象与x轴交于A、B两点,(其中点A在点B 的左侧),∴A(1,0),B(﹣5,0),∴AB=6,∵P点的坐标是:(2,7),∴△PAB的面积=×6×7=2147.(1)根据题意得,解得,所以抛物线的解析式为y=﹣x﹣2;(2)y=﹣x﹣2=(x ﹣)2﹣,所以抛物线的对称轴为直线x=,顶点坐标为(,﹣)48.∵二次函数的图象过A(0,4),∴c=4,∵对称轴为x=﹣1,∴x=﹣=﹣2,解得b=4;∴二次函数的表达式为y=x2+4x+4.49.(1)∵关于x的二次函数的图象的顶点坐标为(﹣4,3),∴设该二次函数的关系式为:y=a(x+4)2+3(a≠0);又∵图象过点( l,﹣2),∴﹣2=a(1+4)2+3,解得,a=﹣;∴设该二次函数的关系式为:y=﹣(x+4)2+3;(2)由(1)知,该二次函数的关系式为:y=﹣(x+4)2+3,∴a=﹣<0,∴该抛物线的方向向下;∵关于x的二次函数的图象的顶点坐标为(﹣4,3),∴对称轴方程为:x=﹣4.50.(1)把A(﹣1,0)代入y1=﹣x+m得﹣(﹣1)+m=0,解得m=1,把A(﹣1,0)、B(2,﹣3)代入y2=ax2+bx﹣3得,解得.故二次函数的解析式为y2=x2﹣﹣2x﹣3;(2)因为C点坐标为(0,﹣3),B(2,﹣3),所以BC⊥y轴,所以S△ABC =×2×3=3.51.(1)设此二次函数的解析式为y=ax2+bx+c,把A(0,﹣4)和B(4,0),即对称轴x=1.5代入解析式得:,解得:故y=x2﹣3x﹣4;(2)∵A(0,﹣4),对称轴是x=1.5,∴A′(3,﹣4)52.∵二次函数y=ax2+bx+c的顶点坐标为(﹣,),二次函数y=ax2+bx+c中,c=3,图象的顶点坐标为(2,﹣1),∴﹣=2,=﹣1,解得a=1,b=﹣4,∴二次函数的解析式y=x2﹣4x+353.∵二次函数y1=ax2+bx+c 与二次函数的图象的形状一样,开口方向相同,∴a=﹣2,将点A(﹣1,4),B(﹣3,﹣8)代入y1=﹣2x2+bx+c,得,解得,∴y1=﹣2x2﹣2x+4;∵y1=﹣2x2﹣2x+4=﹣2(x2+x)+4=﹣2(x+)2+,∴顶点坐标为(﹣,).故这个函数的解析式为y1=﹣2x2﹣2x+4,顶点坐标为(﹣,).54.(1)∵二次函数的图象与x轴的两交点的横坐标为1和﹣7,且经过点(﹣3,8),∴两交点的横坐标为:(1,0),(﹣7,0),且经过点(﹣3,8),∴代入解析式:y=a(x﹣1)(x+7),8=a(﹣3﹣1)×(﹣3+7),解得:a=﹣,∴y=﹣(x﹣1)(x+7);(2)∵将点A(﹣1,2)此函数的解析式,∴左边=2,右边=﹣(﹣1﹣1)(﹣1+7)=6;∴左边≠右边,∴点A(﹣1,2)不在此函数的图象上.55.(1)∵二次函数的对称轴为y轴,即x=0,∴b=0,即二次函数解析式为y=ax2+c,又二次函数的图象经过点(0,﹣9)、(1,﹣8),∴,解得:,则二次函数的解析式为y=x2﹣9;(2)由平移规律得:二次函数向右平移2个单位的解析式为:y=(x﹣2)2﹣9,即y=x2﹣4x﹣5,令x=0,解得:y=﹣5,∴C(0,﹣5),即OC=5,又平移后抛物线的顶点P的坐标为(2,9),即P的横坐标为2,则S△POC =OC•x P的横坐标=×5×2=5.56.1)解:由题意得,解得;∴该抛物线的解析式为:y=﹣x2+2x;(2)证明:过点B作BC⊥x轴于点C,则OC=BC=AC=2;∴∠BOC=∠OBC=∠BAC=∠ABC=45°;∴∠OBA=90°,OB=AB;∴△OAB是等腰直角三角形;57.(1)将A(﹣1,0)代入抛物线y=x2+bx﹣2得,×(﹣1)2﹣b﹣2=0,解得,b=﹣,则函数解析式为y=x2﹣x﹣2.配方得,y=(x ﹣)2﹣,可见,顶点坐标为(,﹣).(2)将上述抛物线先向下平移3个单位,再向右平移2个单位,可得,y=(x ﹣﹣2)2﹣﹣3=(x ﹣)2﹣=x2﹣x.58.(1)把(2,0)、(0,﹣6)代入二次函数解析式,可得,解得,故解析式是y=﹣x2+4x﹣6;(2)∵对称轴x=﹣=4,∴C点的坐标是(4,0),∴AC=2,OB=6,AB=2,BC=2,∴S△ABC =AC•OB=×2×6=6,△ABC的周长=AC+AB+BC=2+2+2.59.(1)A坐标是(﹣1,﹣1),B点的坐标是(3,﹣9),代入y=ax2﹣4x+c 得:解得:a=1,c=﹣6.则二次函数表达式是:y=x2﹣4x﹣6(2)y=x2﹣4x﹣6=(x﹣2)2﹣10,因此对称轴为直线x=2,顶点坐标为(2,﹣10)60.(1)把A(2,2),B(5,2)分别代入y=x2+bx+c,文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持. 可得,解得;(2)由b=﹣7,c=12,知y=x2﹣7x+12令y=0,得x2﹣7x+12=0,∴x=3或x=4,∴C(3,0)或C(4,0);(3)∵A(2,2)B(5,2)∴AB=|2﹣5|=3,且△ABC的AB边上的高h=2,∴S△ABC =AB•h=×3×2=311word版本可编辑.欢迎下载支持.。
中考数学《二次函数》专项练习(附答案解析)
中考数学《二次函数》专项练习(附答案解析)一、综合题1.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是()(填方案一,方案二,或方案三),则B点坐标是(),求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.2.如图,抛物线 y =-x2+3x +4 与x轴负半轴相交于A点,正半轴相交于B点,与 y 轴相交于C 点.(1)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线 BC 对称的点的坐标;(2)在(1)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.3.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A,B,C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.4.已知抛物线C1:y=ax2+4ax+4a+b(a≠0,b>0)的顶点为M,经过原点O且与x轴另一交点为A.(1)求点A的坐标;(2)若△AMO为等腰直角三角形,求抛物线C1的解析式;(3)现将抛物线C1绕着点P(m,0)旋转180°后得到抛物线C2,若抛物线C2的顶点为N,当b=1,且顶点N在抛物线C1上时,求m的值.5.如图,抛物线G:y=−x2+2mx−m2+m+3的顶点为P(x P,y P),抛物线G与直线l:x=3交于点Q.(1)x P=,y P=(分别用含m的式子表示);y P与x P的函数关系式为;(2)求点Q的纵坐标y Q(用含m的式子表示),并求y Q的最大值;(3)随m的变化,抛物线G会在直角坐标系中移动,求顶点P在y轴与l之间移动(含y轴与l)的路径的长.6.如图,抛物线的顶点D的坐标为(﹣1,4),抛物线与x轴相交于A.B两点(A在B的左侧),与y轴交于点C(0,3).(1)求抛物线的表达式;(2)如图1,已知点E(0,﹣3),在抛物线的对称轴上是否存在一点F,使得△CEF的周长最小,如果存在,求出点F的坐标;如果不存在,请说明理由;(3)如图2,连接AD,若点P是线段OC上的一动点,过点P作线段AD的垂线,在第二象限分别与抛物线、线段AD相交于点M、N,当MN最大时,求△POM的面积.7.已知:如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系xOy中,O为坐标原点,点A(4,0),点B(0,4),ΔABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4√5时,求点P的坐标.9.如图1所示,已知抛物线y=−x2+4x+5的顶点为D,与x轴交于A、B两点(A左B右),与y轴交于C点,E为抛物线上一点,且C、E关于抛物线的对称轴对称,作直线AE.(1)求直线AE的解析式;(2)在图2中,若将直线AE沿x轴翻折后交抛物线于点F,则点F的坐标为(直接填空);(3)点P为抛物线上一动点,过点P作直线PG与y轴平行,交直线AE于点G,设点P的横坐标为m,当S△PGE∶S△BGE=2∶3时,直接写出所有符合条件的m值,不必说明理由.10.综合与探究如图,直线y=−23x+4与x轴,y轴分别交于B,C两点,抛物线y=ax2+43x+c经过B,C两点,与x轴的另一个交点为A(点A在点B的左侧),抛物线的顶点为点D.抛物线的对称轴与x轴交于点E.(1)求抛物线的表达式及顶点D的坐标;(2)点M是线段BC上一动点,连接DM并延长交x轴交于点F,当FM:FD=1:4时,求点M的坐标;(3)点P是该抛物线上的一动点,设点P的横坐标为m,试判断是否存在这样的点P,使∠PAB+∠BCO=90°,若存在,请直接写出m的值;若不存在,请说明理由.11.如图,点A,B在函数y=14x2的图像上.已知A,B的横坐标分别为-2、4,直线AB与y轴交于点C,连接OA,OB.(1)求直线AB的函数表达式;(2)求ΔAOB的面积;(3)若函数y=14x2的图像上存在点P,使得ΔPAB的面积等于ΔAOB的面积的一半,则这样的点P共有个.12.如图,已知二次函数y=ax2﹣2ax+c(a<0)的图象与x轴负半轴交于点A(﹣1,0),与y 轴正半轴交于点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.(1)求一次函数解析式;(2)求顶点P的坐标;,求点M (3)平移直线AB使其过点P,如果点M在平移后的直线上,且tan∠OAM=32坐标;(4)设抛物线的对称轴交x轴于点E,连接AP交y轴于点D,若点Q、N分别为两线段PE、PD上的动点,连接QD、QN,请直接写出QD+QN的最小值.13.如图,抛物线y=ax2+bx+4经过点A(−1,0),B(2,0)两点,与y轴交于点C,点D是拋物线在x轴上方,对称轴右侧上的一个动点,设点D的横坐标为m.连接AC,BC,DB,DC.(1)求抛物线的解析式;(2)当△BCD的面积与△AOC的面积和为7时,求m的值;2(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.(x+m)(x−3m)图象的顶点为M,图象交x轴于A、14.如图,y关于x的二次函数y=−√33mB两点,交y轴正半轴于D点.以AB为直径作圆,圆心为C.定点E的坐标为(−3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;(2)当m为何值时M点在直线ED上?判定此时直线与圆的位置关系;(3)当m变化时,用m表示△AED的面积S,并在给出的直角坐标系中画出S关于m的函数图象的示意图.15.在图1中,抛物线y=ax2+2ax﹣8(a≠0)与x轴交于点A、B(点A在B左侧),与y轴负半轴交于点C,OC=4OB,连接AC,抛物线的对称轴交x轴于点E,交AC于点F.(1)AB的长为,a的值为;(2)图2中,直线ON分别交EF、抛物线于点M、N,OM=√17,连接NC.①求直线ON的解析式;②证明:NC∥AB;③第四象限存在点P使△BFP与△AOC相似,且BF为△BFP的直角边,请直接写出点P坐标.16.如图,直线AB的解析式为y=−43x+4,抛物线y=−13x2+bx+c与y轴交于点A,与x轴交于点C(6,0),点P是抛物线上一动点,设点P的横坐标为m.(1)求抛物线的解析式;(2)如图(1),当点P在第一象限内的抛物线上时,求△ABP面积的最大值,并求此时点P的坐标;(3)过点A作直线l//x轴,过点P作PH⊥l于点H,将△APH绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在坐标轴上,请直接写出点P的坐标.参考答案与解析1.【答案】(1)解:方案一:点B的坐标为(5,0),设抛物线的解析式为:y=a(x+5)(x−5).由题意可以得到抛物线的顶点为(0,5),代入解析式可得:a=−15,∴抛物线的解析式为:y=−15(x+5)(x−5)方案2:点B的坐标为(10,0).设抛物线的解析式为:y=ax(x−10).由题意可以得到抛物线的顶点为(5,5),代入解析式可得:a=−15,∴抛物线的解析式为:y=−15x(x−10);方案3:点B的坐标为(5,−5),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:y=ax2,把点B的坐标(5,−5),代入解析式可得:a=−15,∴抛物线的解析式为:y=−15x2;(2)解:方案一:由题意:把x=3代入y=−15(x+5)(x−5),解得:y=165=3.2,∴水面上涨的高度为3.2m方案二:由题意:把x=2代入y=−15x(x−10)解得:y=165=3.2,∴水面上涨的高度为3.2m.方案三:由题意:把x=3代入y=−15x2解得:y=−95= −1.8,∴水面上涨的高度为5−1.8= 3.2m.2.【答案】(1)解: 将点D( m,m+1 )代入y=−x2+3x+4中,得:m+1=−m2+3m+4,解得:m=−1或3,∵点D在第一象限,∴m=3,∴点D的坐标为(3,4);令y=0,则−x2+3x+4=0,解得:x1=−1,x2=4,令x=0,则y=4,由题意得A(-1,0),B(4,0),C(0,4),∴OC=OB=4,BC= 4√2,CD=3,∵点C、点D的纵坐标相等,∴CD∥AB,∠OCB=∠OBC=∠DCB=45°,∴点D关于直线BC的对称点E在y轴上.根据对称的性质知:CD=CE=3 ,∴OE=OC−CE=4−3=1,∴点D关于直线BC对称的点E的坐标为(0,1);(2)解: 作PF⊥AB于F,DG⊥BC于G,由(1)知OB=OC=4,∠OBC=45°.∵∠DBP=45°,∴∠CBD=∠PBF.∵CD=3,∠DCB=45°,∴CG=DG= 3√22,∵BC= 4√2,∴BG= 4√2−3√22=5√22∴tan∠PBF=tan∠CBD=DGBG =35.设PF=3t,则BF=5t,OF=5t−4.∴P(−5t+4,3t),∵P点在抛物线上,∴3t=−(−5t+4)2+3(−5t+4)+4解得:t=2225或t=0(舍去).∴点P的坐标为( −25,6625).3.【答案】(1)解:在Rt△AOB中,OA=1,tan∠BAO= OBOA=3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为{a+b+c=09a−3b+c=0c=3,解得: {a =−1b =−2c =3.∴抛物线的解析式为y=﹣x 2﹣2x+3(2)解:①∵抛物线的解析式为y=﹣x 2﹣2x+3,∴对称轴l=﹣ b2a =﹣1,∴E 点的坐标为(﹣1,0).如图, 当∠CEF=90°时,△CEF ∽△COD .此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4);当∠CFE=90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于点M ,则△EFC ∽△EMP . ∴EMMP =EFFC =DO OC=13 ,∴MP=3EM .∵P 的横坐标为t ,∴P (t ,﹣t 2﹣2t+3).∵P 在第二象限,∴PM=﹣t 2﹣2t+3,EM=﹣1﹣t ,∴﹣t 2﹣2t+3=﹣(t ﹣1)(t+3),解得:t 1=﹣2,t 2=﹣3(因为P 与C 重合,所以舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P (﹣2,3).∴当△CEF 与△COD 相似时,P 点的坐标为:(﹣1,4)或(﹣2,3); ②设直线CD 的解析式为y=kx+b ,由题意,得{−3k +b =0b =1 ,解得: {k =13b =1,∴直线CD 的解析式为:y= 13 x+1.设PM 与CD 的交点为N ,则点N 的坐标为(t , 13 t+1),∴NM= 13 t+1.∴PN=PM ﹣NM=﹣t 2﹣2t+3﹣( 13 t+1)=﹣t 2﹣ 73t +2. ∵S △PCD =S △PCN +S △PDN ,∴S △PCD = 12 PN •CM+ 12 PN •OM= 12 PN (CM+OM )= 12 PN •OC= 12 ×3(﹣t 2﹣ 73t +2)=﹣ 32 (t+76)2+ 12124 ,∴当t=﹣ 76 时,S △PCD 的最大值为 12124 . 4.【答案】(1)解:∵抛物线C 1:y=ax 2+4ax+4a+b (a ≠0,b >0)经过原点O , ∴0=4a+b ,∴当ax 2+4ax+4a+b=0时,则ax 2+4ax=0, 解得:x=0或﹣4,∴抛物线与x 轴另一交点A 坐标是(﹣4,0)(2)解:∵抛物线C1:y=ax2+4ax+4a+b=a(x+2)2+b(a≠0,b>0),(如图1)∴顶点M坐标为(﹣2,b),∵△AMO为等腰直角三角形,∴b=2,∵抛物线C1:y=ax2+4ax+4a+b=a(x+2)2+b过原点,∴a(0+2)2+2=0,解得:a=﹣12,∴抛物线C1:y=﹣12x2﹣2x(3)解:∵b=1,抛物线C1:y=ax2+4ax+4a+b=a(x+2)2+b过原点,(如图2)∴a=﹣14,∴y=﹣14(x+2)2+1=﹣14x2﹣x,设N(n,﹣1),又因为点P(m,0),∴n﹣m=m+2,∴n=2m+2即点N的坐标是(2m+2,﹣1),∵顶点N在抛物线C1上,∴﹣1=﹣14(2m+2+2)2+1,解得:m=﹣2+ √2或﹣2﹣√2 5.【答案】(1)m;m+3;y P=x P+3(2)解:∵抛物线 G :y =−x 2+2mx −m 2+m +3 与直线 l :x =3 交于点 Q , ∴把 x =3 代入 y =−x 2+2mx −m 2+m +3 , 得 y Q =−m 2+7m −6 .∵y Q =−m 2+7m −6=−(m −72)2+254,∴当 m =72 时, y Q 的最大值为 254 .(3)解:∵点 P 在 y 轴与 l 之间沿直线 l 1:y =x +3 运动, 如图,设直线 l 1:y =x +3 与 y 轴和直线 l 分别交于点 B 和点 P 1 ,线段 BP 1 的长即为点 P 路径长.把 x B =0 , x P 1=3 代入 y =x +3 得点 B(0,3) ,点 P 1(3,6) , 过点 P 1 作 P 1M ⊥y 轴,垂足为M , 则 P 1M =3,BM =3 , 在 Rt △BMP 1 中, BP 1=√BM 2+MP 12=√32+32=3√2 ,∴点 P 路径长为 3√2 .6.【答案】(1)解:设抛物线的表达式为:y =a (x+1)2+4, 把x =0,y =3代入得:3=a (0+1)2+4,解得:a =﹣1 ∴抛物线的表达式为y =﹣(x+1)2+4=﹣x 2﹣2x+3(2)解:存在.如图1,作C 关于对称轴的对称点C ′,连接EC ′交对称轴于F ,此时CF+EF的值最小,则△CEF的周长最小.∵C(0,3),∴C′(﹣2,3),易得C′E的解析式为:y=﹣3x﹣3,当x=﹣1时,y=﹣3×(﹣1)﹣3=0,∴F(﹣1,0)(3)解:如图2,∵A(﹣3,0),D(﹣1,4),易得AD的解析式为:y=2x+6,过点D作DH⊥x轴于H,过点M作MG⊥x轴交AD于G,AH=﹣1﹣(﹣3)=2,DH=4,∴AD=√AH2+DH2=√22+42=2√5,设M(m,﹣m2﹣2m+3),则G(m,2m+6),(﹣3≤m≤﹣1),∴MG=(﹣m2﹣2m+3)﹣(2m+6)=﹣m2﹣4m﹣3,由题易知△MNG∽△AHD,∴MGMN =ADAH即MN=AH×MGAD =22√5=−√55(m+2)2+√55∵√55<0∴当m =﹣2时,MN 有最大值;此时M (﹣2,3),又∵C (0,3),连接MC ∴MC ⊥y 轴∵∠CPM =∠HAD ,∠MCP =∠DHA =90°, ∴△MCP ∽△DHA , ∴PCAH =MCDH 即 PC2=24 ∴PC =1∴OP =OC ﹣PG =3﹣1=2, ∴S △POM = 12×2×2 =2,7.【答案】(1)解:由题意,得 {0=16a −8a +c 4=c解得 {a =−12c =4∴所求抛物线的解析式为:y=﹣ 12 x 2+x+4(2)解:设点Q 的坐标为(m ,0),过点E 作EG ⊥x 轴于点G .由﹣ 12 x 2+x+4=0, 得x 1=﹣2,x 2=4∴点B 的坐标为(﹣2,0) ∴AB=6,BQ=m+2 ∵QE ∥AC ∴△BQE ∽△BAC∴EG CO =BQBA 即 EG4=m+26 ∴EG =2m+43∴S △CQE =S △CBQ ﹣S △EBQ = 12 BQ •CO ﹣ 12 BQ •EG = 12 (m+2)(4﹣2m+43)= −13m 2+23m +83 =﹣ 13 (m ﹣1)2+3 又∵﹣2≤m ≤4∴当m=1时,S △CQE 有最大值3,此时Q (1,0) (3)解:存在.在△ODF 中. (ⅰ)若DO=DF ∵A (4,0),D (2,0) ∴AD=OD=DF=2又在Rt △AOC 中,OA=OC=4 ∴∠OAC=45度 ∴∠DFA=∠OAC=45度∴∠ADF=90度.此时,点F 的坐标为(2,2) 由﹣ 12 x 2+x+4=2, 得x 1=1+ √5 ,x 2=1﹣ √5此时,点P 的坐标为:P (1+ √5 ,2)或P (1﹣ √5 ,2). (ⅱ)若FO=FD ,过点F 作FM ⊥x 轴于点M由等腰三角形的性质得:OM= 12OD=1∴AM=3∴在等腰直角△AMF中,MF=AM=3∴F(1,3)由﹣12x2+x+4=3,得x1=1+ √3,x2=1﹣√3此时,点P的坐标为:P(1+ √3,3)或P(1﹣√3,3).(ⅲ)若OD=OF∵OA=OC=4,且∠AOC=90°∴AC= 4√2∴点O到AC的距离为2√2,而OF=OD=2 <2√2,与OF≥2 √2矛盾,所以AC上不存在点使得OF=OD=2,此时,不存在这样的直线l,使得△ODF是等腰三角形综上所述,存在这样的直线l,使得△ODF是等腰三角形所求点P的坐标为:P(1+ √5,2)或P(1﹣√5,2)或P(1+ √3,3)或P(1﹣√3,3)8.【答案】(1)解:∵C为OB的中点,点B(0,4),∴点C(0,2),又∵M为AC中点,点A(4,0),0+4 2=2,2+02=1,∴点M(2,1)(2)解:∵⊙P与直线AD,则∠CAD=90°,设:∠CAO=α,则∠CAO=∠ODA=∠PEH=α,tan∠CAO=OCOA =12=tanα,则sinα=√5,cosα=√5,AC=√10,则CD=ACsin∠CDA =√10sinα=10,则点D(0,−8),设直线AD的解析式为:y=mx+n,将点A、D的坐标分别代入得:{0=4m+n−8=n,解得:{m=2n=−8,所以直线AD的表达式为:y=2x−8(3)解:设抛物线的表达式为:y=a(x−2)2+1,将点B坐标代入得:4=a(0-2)2+1,解得:a=34,故抛物线的表达式为:y=34x2−3x+4,过点P作PH⊥EF,则EH=12EF=2√5,cos∠PEH=EHPE =2√5PE=cosα=√5,解得:PE=5,设点P(x,34x2−3x+4),则点E(x,2x−8),则PE=34x2−3x+4−2x+8=5,解得x=143或2(舍去2),则点P(143,193) .9.【答案】(1)解:∵抛物线的解析式为y=−x2+4x+5,∴该抛物线的对称轴为:x=−42×(−1)=2,令y=−x2+4x+5中x=0,则y=5,∴点C的坐标为(0,5),∵C、E关于抛物线的对称轴对称,∴点E的坐标为(2×2−0,5),即(4,5),令y =−x 2+4x +5中y =0,则−x 2+4x +5=0, 解得:x 1=−1,x 2=5,∴点A 的坐标为(−1,0)、点B 的坐标为(5,0), 设直线AE 的解析式为y =kx +b ,将点A(−1,0)、E(4,5)代入y =kx +b 中, 得:{0=−k +b 5=4k +b ,解得:{k =1b =1,∴直线AE 的解析式为y =x +1; (2)(6,-7)(3)解:符合条件的m 值为0、3、3−√412和3+√412.10.【答案】(1)解:当x =0时,得y =4, ∴点C 的坐标为(0,4),当y =0时,得−23x +4=0,解得:x =6, ∴点B 的坐标为(6,0), 将B ,C 两点坐标代入,得{36a +43×6+c =0,c =4. 解,得{a =−13,c =4.∴抛物线线的表达式为y =−13x 2+43x +4.∵y =−13x 2+43x +4=−13(x 2−4x +4−4)+4=−13(x −2)2+163.∴顶点D 坐标为(2,163). (2)解:作MG ⊥x 轴于点G ,∵∠MFG =∠DFE ,∠MGF =∠DEF =90°, ∴ΔMGF ∽ΔDEF .∴FM FD =MG DE.∴14=MG163.∴MG =43当y =43时,43=−23x +4 ∴x =4.∴点M 的坐标为(4,43).(3)解:∵∠PAB +∠BCO =90°,∠CBO +∠BCO =90°, ∴∠PAB =∠CBO ,∵点B 的坐标为(6,0),点C 的坐标为(0,4), ∴tan ∠CBO =46=23, ∴tan ∠PAB =23, 过点P 作PQ ⊥AB , 当点P 在x 轴上方时,−13m 2+4m +12m +2=23解得m=4符合题意, 当点P 在x 轴下方时,13m 2−4m −12m +2=23解得m=8符合题意, ∴存在,m 的值为4或8.11.【答案】(1)解:∵A ,B 是抛物线 y =14x 2 上的两点,∴当 x =−2 时, y =14×(−2)2=1 ;当 x =4 时, y =14×42=4 ∴点A 的坐标为(-2,1),点B 的坐标为(4,4) 设直线AB 的解析式为 y =kx +b , 把A ,B 点坐标代入得 {−2k +b =14k +b =4解得, {k =12b =2所以,直线AB 的解析式为: y =12x +2 ; (2)解:对于直线AB : y =12x +2 当 x =0 时, y =2 ∴OC =2∴S ΔAOB =S ΔAOC +S ΔBOC = 12×2×2+12×2×4 =6 (3)412.【答案】(1)解:∵A (﹣1,0), ∴OA=1 ∵OB=3OA , ∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)解:∵二次函数y=ax 2﹣2ax+c (a <0)的图象与x 轴负半轴交于点A (﹣1,0),与y 轴正半轴交于点B (0,3), ∴c=3,a=﹣1,∴二次函数的解析式为:y=﹣x 2+2x+3 ∴抛物线y=﹣x 2+2x+3的顶点P (1,4) (3)解:设平移后的直线的解析式为:y=3x+m ∵直线y=3x+m 过P (1,4), ∴m=1,∴平移后的直线为y=3x+1 ∵M 在直线y=3x+1,且 设M (x ,3x+1)①当点M 在x 轴上方时,有 3x+1x+1=32 ,∴x =13 , ∴M 1(13,2)②当点M 在x 轴下方时,有 −3x+1x+1=32 ,∴x =−59 , ∴M 2(−59 , −23)(4)解:作点D 关于直线x=1的对称点D ′,过点D ′作D ′N ⊥PD 于点N , 当﹣x 2+2x+3=0时,解得,x=﹣1或x=3, ∴A (﹣1,0), P 点坐标为(1,4),则可得PD 解析式为:y=2x+2, 根据ND ′⊥PD ,设ND ′解析式为y=kx+b , 则k=﹣ 12 ,将D ′(2,2)代入即可求出b 的值, 可得函数解析式为y=﹣ 12 x+3,将两函数解析式组成方程组得: {y =−12x +3y =2x +2 ,解得 {x =25y =145 ,故N ( 25 , 145 ),由两点间的距离公式:d= √(2−25)2+(2−145)2 = 4√55, ∴所求最小值为4√5513.【答案】(1)解:把A (-1,0),B (2,0)代入抛物线解析式得: {a −b +4=04a +2b +4=0,解得: {a =−2b =2∴抛物线的解析式为: y =−2x 2+2x +4 (2)解:如图,连接OD ,由 y =−2x 2+2x +4 可得: 对称轴为 x =−22×(−2)=12 ,C (0,4)∵D(m,−2m 2+2m +4)(12<m <2) ,A (-1,0),B (2,0) ∴∴S △BCD =S △OCD +S △BCD −S △OBC=12×4m +12×2·(−2m 2+4m +2)−12×2×4=−2m 2+4m S △AOC =12×1×4=2又∵S △BCD +S △AOC =72 ∴−2m 2+4m +2=72 ,∴4m 2−8m +3=0解得: m 1=12 , m 2=32 ,当 m 1=12 时,点在对称轴上,不合题意,舍去,所以取 m 2=32 , 综上, m =32(3)解: M 1(0,0) , M 2(4,0) , M 3(√142,0) , M 4(−√142,0)14.【答案】(1)解:令y =0,则−√33m (x +m)(x −3m)=0,解得x 1=−m ,x 2=3m ;令x =0,则y =−√33m (0+m)(0−3m)=√3m .故A(−m ,0),B(3m ,0),D(0,√3m).(2)解:设直线ED 的解析式为y =kx +b ,将E(−3,0),D(0,√3m)代入得:{−3k +b =0b =√3m解得,k =√33m ,b =√3m .∴直线ED 的解析式为y =√33mx +√3m .将y =−√33m (x +m)(x −3m)化为顶点式:y =−√33m (x −m)2+4√33m . ∴顶点M 的坐标为(m ,4√33m).代入y =√33mx +√3m 得:m 2=m∵m >0,∴m =1.所以,当m =1时,M 点在直线DE 上. 连接CD ,C 为AB 中点,C 点坐标为C(m ,0). ∵OD =√3,OC =1, ∴CD =2,D 点在圆上又∵OE =3,DE 2=OD 2+OE 2=12, EC 2=16,CD 2=4, ∴CD 2+DE 2=EC 2.∴∠EDC =90°∴直线ED 与⊙C 相切.(3)解:当0<m <3时,S △AED =12AE ⋅OD =√32m(3−m)S =−√32m 2+3√32m . 当m >3时,S ΔAED =12AE ⋅OD =√32m(m −3).即S =√32m 2_3√32m . S 关于m 的函数图象的示意图如右:15.【答案】(1)6;1(2)解:①由抛物线的表达式知,抛物线的对称轴为x=﹣1,故设点M的坐标为(﹣1,m),则OM=12+m2=(√17)2,解得m=4(舍去)或﹣4,故点M的坐标为(﹣1,﹣4),由点O、M的坐标得,直线OM(即ON)的表达式为y=4x②,故答案为y=4x;②联立①②并解得{x=−2y=−8,故点N(﹣2,﹣8),∵点C、N的纵坐标相同,故NC∥x轴,即NC∥AB;③当∠BFP为直角时,由A(﹣4,0),C(0,-8)可求AC解析式为y=-2x﹣8,把x=-1,代入y=-2x﹣8得,y=-6,点F的坐标为:(-1,-6),由点F、B的坐标得,直线BF的表达式为y=2x﹣4,当x=﹣2时,y=2x﹣4=﹣8,故点N在直线BF上,连接FN,过点F作FP⊥BF交NC的延长线于点K,由直线BF 的表达式知,tan ∠BNK =2,则tan ∠FKN = 12 , 故设直线PF 的表达式为y =﹣ 12 x+t , 将点F 的坐标代入上式并解得t =﹣ 132 ,则直线PF 的表达式为y =﹣ 12 x ﹣ 132 ,故设点P 的坐标为(m ,﹣ 12 m ﹣ 132 ), 在Rt △AOC 中,tan ∠ACO = AOCO = 12 ,则tan ∠OCA =2, ∵△BFP 与△AOC 相似, 故∠FBP =∠ACO 或∠OAC ,则tan ∠FBP =tan ∠ACO 或tan ∠OAC ,即tan ∠FBP = 12 或2, 由点B 、F 的坐标得:BF = √32+62=3√5 , 则PF =BFtan ∠FBP =3√52或6 √5 ,由点P 、F 的坐标得:PF 2=(m+1)2+(﹣ 12 m ﹣ 132 +6)2=( 3√52)2或(6 √5 )2, 解得m =2或﹣4(舍去)或11或﹣13(舍去), 故点P 的坐标为(11,﹣12)或(2,﹣ 152 ); 当∠PBF 为直角时,过点B 作BP ⊥BF ,同理可求直线PF 的表达式为y =﹣ 12 x+1,故设点P 的坐标为(m ,﹣ 12 m ﹣1),同理可得,PB =BFtan ∠FBP =3√52或6 √5 ,由点P 、B 的坐标得:PB 2=(m-2)2+(﹣ 12 m+1)2=(3√52)2或(6 √5 )2,解得m=-1(舍去)或5或14或﹣10(舍去),点P的坐标为(5,﹣32)或(14,-6);综上,点P的坐标为(11,﹣12)或(2,﹣152)或(5,﹣32)或(14,-6);16.【答案】(1)解:当x=0时,y=−43x+4=4,则A(0,4),把A(0,4),C(6,0)代入y=−13x2+bx+c得{−12+6b+c=0c=4,解得{b=43c=4,∴抛物线解析式为y=−13x2+43x+4;(2)连接OP,设P(m,−13m2+43m+4),当y=0时,−43x+4=0,解得x=3,则B(3,0),S△ABP=S△AOP+S△POB−S△AOB=12⋅4⋅m+12⋅3⋅(−13m2+43m+4)−12⋅3⋅4=−12m2+4m,=−12(m−4)2+8,当m=4时,△ABP面积有最大值,最大值为8,此时P点坐标为(4,4);(3)在Rt△OAB中,AB=√32+42=5,当点P′落在x轴上,如图2,∵△APH绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在x 轴上∴P′H′=PH=4−(−13m2+43m+4)=13m2−43m,AH′=AH=m,∠P′H′A=∠PHA=90∘,∵∠P′BH′=∠ABO,∴△BP ′H ′ ∽ △BAO ,∴P ′H ′ : OA =BH ′ :OB ,即 (13m 2−43m) : 4=BH ′ :3, ∴BH ′=14m 2−m , ∵AH ′+BH ′=AB ,∴m +14m 2−m =5 ,解得 m 1=2√5 , m 2=−2√5( 舍去 ) ,此时P 点坐标为 (2√5,−8+8√53) ; 当点 P ′ 落在y 轴上,如图3,同理可得 P ′H ′=PH =13m 2−43m , AH ′=AH =m , ∠P ′H ′A =∠PHA =90∘ , ∵∠P ′AH ′=∠BAO , ∴△AH ′P ′′ ∽ △AOB ,∴P ′H ′ : OB =AH ′ :AO ,即 (13m 2−43m) : 3=m :4, 整理得 4m 2−25m =0 ,解得 m 1=254, m 2=0( 舍去 ) ,此时P 点坐标为 (254,−4348) ; 综上所述,P 点坐标为 (2√5,−8+8√53) 或 (254,−4348) ;。
九年级数学:二次函数表达式的确定 练习(含解析)
九年级数学:二次函数表达式的确定练习1.求下列函数的最大值或最小值。
(1)y=-x2-4x+2 (2)y=x2-5x+1
4
(3)y=5x2+10
(4)y=-2x2+8x
2.已知一个矩形的周长是24cm。
(1)写出矩形面积S与一边长a的函数关系式。
(2)当a 长多少时,S最大?
3.填空:
(1)二次函数y=x2+2x-5取最小值时,自变量x的值是______;
(2)已知二次函数y=x2-6x+m的最小值为1,那么m的值是______。
4.如图(1)所示,要建一个长方形的养鸡场,鸡场的一边靠墙,如果用50m长的篱笆围成中间有一道篱笆的养鸡场,没靠墙的篱笆长度为xm。
(1)要使鸡场的面积最大,鸡场的长应为多少
米?
(2)如果中间有n(n是大于1的整数)道篱笆隔
墙,要使鸡场面积最大,鸡场的长应为多少米?
(3)比较(1)、(2)的结果,你能得到什么结论?
5.如图(2),已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm)。
(1)写出□ABCD的面积y(cm2)与x的函数
关系式,并求自变量x的取值范围。
(2)当x取什么值时,y的值最大?并求最大
值。
(3).求二次函数的函数关系式。
九年级数学下册知识讲义-2.3二次函数的解析式(附练习及答案)-北师大版
初中数学二次函数的解析式一、考点突破1. 掌握求二次函数解析式的方法。
2. 能够根据题目要求选择合适的求解析式的方法解决问题。
二、重难点提示重点:求二次函数解析式。
难点:根据问题选择合适的方法,求二次函数解析式。
考点精讲1.二次函数的解析式的四种形式一般式:()。
顶点式:()。
其中(,)为顶点,对称轴为。
交点式:()。
其中,为抛物线与轴交点的横坐标。
对称点式:()。
其中(,),(,)为图象上两个对称的点。
2.确定二次函数解析式的几种基本思路根据已知条件确定二次函数解析式,通常利用待定系数法。
用待定系数法求二次函数的解析式,必须根据题目的特点,选择适当的形式,才能使解题简便。
一般来说,有如下几种情况:①已知抛物线上三点的坐标,一般选用一般式;②已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;③已知抛物线与轴的两个交点的横坐标,一般选用交点式;④已知抛物线上纵坐标相同的两点,常选用对称点式。
典例精讲例题1(宝安区一模)如图,已知抛物线l1:y=(x-2)2-2与x轴分别交于O、A 两点,将抛物线l1向上平移得到l2,过点A作AB⊥x轴交抛物线l2于点B,如果由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线l2的函数解析式为()A. y=(x-2)2+4B. y=(x-2)2+3C. y=(x-2)2+2D. y=(x-2)2+1思路分析:根据题意可推知由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积就是矩形ABCO的面积;然后再根据抛物线l1的解析式,求得O、A两点的坐标,从而解得OA的长度;最后再由矩形的面积公式,求得AB的长度,即l2是由抛物线l1向上平移多少个单位得到的。
答案:解:连接BC,∵l2是由抛物线l1向上平移得到的,∴由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积就是矩形ABCO的面积;∵抛物线l1的解析式是y=(x-2)2-2,∴抛物线l1与x轴分别交于O(0,0)、A(4,0)两点,∴OA=4;∴OA•AB=16,∴AB=4;∴l2是由抛物线l1向上平移4个单位得到的,∴l2的解析式为:y=(x-2)2-2+4,即y=(x-2)2+2,选C。
2024年中考数学复习(全国版)第7讲 二次函数表达式的确定(含抛物线的变化)(考点精析)(原卷版)
第七讲二次函数表达式的确定(含抛物线的变化)→➊考点精析←→➋真题精讲←考向一待定系数法求函数的解析式考向二二次函数图像的翻折第七讲二次函数表达式的确定(含抛物线的变化)二次函数是非常重要的函数,年年都会考查,总分值为18~20分,预计2024年各地中考还会考,它经常以一个压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与几何图形结合来考查.→➊考点精析←1、用待定系数法求二次函数的解析式(1)一般式:c bx ax y 2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:k h x a y 2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:21x x x x a y 2、图象的平移:将二次函数y=ax 2(a≠0)的图象进行平移,可得到y=ax 2+c,y=a(x-h)2,y=a(x-h)2+k 的图象.⑴将y=ax 2的图象向上(c>0)或向下(c<0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c)形状、对称轴、开口方向与抛物线y=ax 2相同.⑵将y=ax 2的图象向左(h<0)或向右(h>0)平移|h|个单位,即可得到y=a(x-h)2的图象.其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax 2相同.⑶将y=ax 2的图象向左(h<0)或向右(h>0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x-h)2+k 的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax 2相同.记住规律:左加右减,上加下减→➋真题精讲←考向一待定系数法求解析式1.(2023·四川成都·统考中考真题)如图,二次函数26y ax x 的图象与x 轴交于(3,0)A ,B 两点,下列说法正确的是()A.4个3.(2023·浙江杭州函数值y和自变量x…1 0y…m1m ,求二次函数的表达式;(1)若4(2)写出一个符合条件的(3)若在m、n、p这三个实数中,只有一个是正数,求4.(2023·浙江绍兴·统考中考真题)已知二次函数2y x bx c .(1)当4,3b c 时,①求该函数图象的顶点坐标.②当13x 时,求y 的取值范围.(2)当0x 时,y 的最大值为2;当0x 时,y 的最大值为3,求二次函数的表达式.5.(2023·浙江宁波·统考中考真题)如图,已知二次函数2y x bx c 图象经过点(1,2)A 和(0,5)B .(1)求该二次函数的表达式及图象的顶点坐标.(2)当2y 时,请根据图象直接写出x 的取值范围.6.(2023·浙江·统考中考真题)已知点 ,0m 和 3,0m 在二次函数23,(y ax bx a b 是常数,0)a 的图像上.(1)当1m 时,求a 和b 的值;(2)若二次函数的图像经过点 ,3A n 且点A 不在坐标轴上,当21m 时,求n 的取值范围;(3)求证:240b a .考向二二次函数图像的平移(翻折)(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD 点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点y9.(2023·湖南岳阳·统考中考真题)已知抛物线21:Q y x bx c 与x 轴交于 3,0,A B 两点,交y 轴于点 0,3C .(1)请求出抛物线1Q 的表达式.(2)如图1,在y 轴上有一点 0,1D ,点E 在抛物线1Q 上,点F 为坐标平面内一点,是否存在点,E F 使得四边形DAEF 为正方形?若存在,请求出点,E F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线1Q 向右平移2个单位,得到抛物线2Q ,抛物线2Q 的顶点为K ,与x 轴正半轴交于点H ,抛物线1Q 上是否存在点P ,使得CPK CHK ?若存在,请求出点P 的坐标;若不存在,请说明理由.10.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x 的顶点为P .直线l 过点 0,3M m m ,且平行于x 轴,与抛物线1L 交于A B 、两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m 时,求点D 的坐标;(2)连接BC CD DB 、、,若BCD △为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD △的面积为3,E F 、两点分别在边BC CD 、上运动,且EF CD ,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.。
人教版初中九年级数学上册第二十二章《二次函数》经典习题(含答案解析)
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( ) ①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<;④当2x ≥时,y 随x 的增大而增大,则102a <≤A .①②B .②③C .①④D .③④ 2.将二次函数221y xx =+-化为2()y x h k =-+的形式时,结果正确的是( ) A .2(1)2y x =+-B .2(1)2y x =--C .2(1)2y x =-+D .2(1)3y x =++3.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .4.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D . 5.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .23C .6D .42 7.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ). A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 8.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤< 9.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .4 10.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D . 11.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .12.关于抛物线223y x x =-+-,下列说法正确的是( )A .开口方向向上B .顶点坐标为()1,2-C .与x 轴有两个交点D .对称轴是直线1x =-13.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a b x a+=-其中正确的有( )A .1个B .2个C .3个D .4个14.在平面直角坐标系中,将函数25y x =-的图象先向右平移1个单位长度,再向上平移3个单位长度,得到的解析式是( )A .25(1)3y x =-++B .25(1)3y x =--+C .25(1)3y x =-+-D .25(1)3y x =---15.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( )A .22(1)5y x =-++B .22(1)5y x =--+C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 17.抛物线y =ax 2+bx +c 经过点A (﹣3,0)、B (4,0)两点,则关于x 的一元二次方程()2220a x bx b c -+-+=的解是________________.18.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.19.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.20.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.21.已知点()12,A y -,()23,B y -在二次函数22y x x c =--+的图象上,则1y 与2y 的大小关系为1y ______2y .(填“>”“<”或“=”)22.已知关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,则代数式a 2﹣ab +b 2的最小值为_____.23.二次函数2y x bx c =++的图象如图所示,则一元二次方程28x bx c ++=-的根是____________.24.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.25.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①0ac <;②20b a -=;③0a b c -+=;④当1x >时,y 随x 的增大而减小.其中正确的结论是______.(填序号)26.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案三、解答题27.温州某大超市计划销售一种水果,已知水果的进价为每盒9元,并且水果的销售量由售价决定.经市场调查表明,当售价在10到15元之间(含10元,15元)波动时,每盒水果的销售价格每减少1元则日销售量增加80盒,当水果售价为每盒15元时,日销售量为160盒,现设每盒水果的销售价为x 元.(每盒毛利润=每盒售价-每盒进价) (1)当每盒销售价为13元时,超市的当日销售量为______盒.(2)如果规定该种水果的日均销售量不低于400盒时,设销售这种水果所获得的日毛利润为y (元),求y 关于x 的函数解析式,并求出日毛利润y 的最大值.(3)为了提高水果的知名度,超市给当天售出的每盒苹果进行精包装,包装费每盒1元,另外从该种水果的日毛利润中提取50元作为销售员当天的额外奖励,且保证提取后日毛利润不低于750元,同时又要使顾客得到实惠,则当日水果的销售量至少是______盒.(直接写出答案)28.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10AC BD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?29.已知抛物线2221y x x m =--+,直线2y x =-与x 轴交于点M ,与y 轴交于点N . (1)求证:抛物线与x 轴必有公共点;(2)若抛物线与x 轴交于A 、B 两点,且抛物线的顶点C 落在此直线上,求ABC 的面积;(3)若线段MN 与抛物线有且只有一个公共点,求m 的取值范围.30.已知二次函数的图象经过点(0,3),(3,0),(1,0)-,求此二次函数的解析式,并判断点(2,3)P -是否在这个二次函数图象上.。
(常考题)人教版初中数学九年级数学上册第二单元《二次函数》测试(答案解析)(1)
一、选择题1.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .122.若整数a 使得关于x 的分式方程12322ax xx x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .203.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D .4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个5.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+--D .21y x =-6.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程0ax bx c ++=(,a ,b ,c 为常数)一个根x 的范围是( )A .1.00 1.98x << B .1.98 1.99x << C .1.99 2.00x <<D .2.00 2.01x <<7.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D .8.点()13,P y 、Q ()24,y 是二次函数245y x x =-+的图象上两点,则1y 与2y 的大小关系为( ) A .12y y >B .12y y <C .12y y =D .无法确定9.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D .10.如图是二次函数2(,,y ax bx c a b c =++是常数,0a ≠)图象的一部分,与x 轴的交点A 在点()2,0和()3,0之间,对称轴是1x =.对于下列说法:①0abc <;②20a b +=;③30a c +>;④()(a b m am b m +≥+为实数)﹔⑤当13x时,0y >,其中正确的是( )A .①②⑤B .①②④C .②③④D .③④⑤11.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D .12.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( ) A .22(1)5y x =-++ B .22(1)5y x =--+ C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .14.将二次函数y=x 2-4x+5化成=(x-h )2+k 的形式,则y= _____.15.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).16.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)17.已知点()1,A a m y -、()2,B a n y -、()3,C a b y +都在二次函数221y x ax =-+的图象上,若0m b n <<<,则1y 、2y 、3y 的大小关系是_________. 18.已知二次函数246y x x =--,若16x -≤≤,则y 的取值范围为____. 19.已知抛物线243y x x =-+与x 轴交于A 、B 两点,P 为抛物线上一点,且1APB S ∆=,则P 的坐标为_______.20.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.三、解答题21.如图,在平面直角坐标系中,抛物线(部分)刻画了某果园年初以来累积利润y (万元)与销售时间x (月)之间的关系(即当年前x 个月的利润总和为y ,y 和x 之间的关系).根据图象提供的信息,请解答下列问题: (1)求y 与x 的函数关系式;(2)求第8个月该果园所获利润是多少万元? (3)求到哪个月末时,该果园累积利润可达到30万元?22.在“万众创业、大众创新”的新时代下,大学毕业生小张响应国家号召,开办了家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:售价每下降1元每月要多卖20件,为了获得更大的利润且让利给顾客,现将饰品售价降价x (元/件)(且x 为整数),每月饰品销量为y (件),月利润为w (元). (1)写出y 与x 之间的函数解析式;(2)如何确定销售价格才能使月利润最大?求最大月利润; (3)为了使每月利润等于6000元时,应如何确定销售价格.23.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李林从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站ABCDEx (千米) 8 9 10 11.5 13 1y (分钟)1820222528(1)求1关于的函数表达式.(2)李林骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用22121178y x x -+=来描述,请问:李林应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间. 24.如图,Rt △OAB 中,∠OAB=90°,O 为坐标原点,边OA 在x 轴上,OA=AB=2个单位长度,把Rt △OAB 沿x 轴正方向平移2个单位长度后得△11AA B . (1)求以A 为顶点,且经过点1B 的抛物线的解析式;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D 、 C 的坐标.25.小强根据学习函数的经验,对函数24(1)1y x =-+;图象与性质进行了探究,下面是小强的探究过程,请补充完整,并解决相关问题: (1)函数24(1)1y x =-+;的自变量x 的取值范围是______;(2)如表是y 与x 的几组对应值. x...2- m12- 0 121322523 4...y...25 45 1632165 4 165 2 1613 45n...(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出函数24(1)1y x =-+的大致图象;(4)结合函数图象,请写出函数24(1)1y x =-+的一条性质:______.(5)解决问题:如果方程2421(1)1a x =--+的实数根有2个,那么a 的取值范围是______.26.如图,在平面直角坐标系xOy 中,一次函数y x m =-+的图象过点()1,3A ,且与x 轴交于点B .(1)求m 的值和点B 的坐标;(2)若二次函数2y ax bx =+图象过A ,B 两点,直接写出关于x 的不等式2ax bx x m +>-+的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】先根据A 、B 两点的坐标可求出抛物线的对称轴,然后确定顶点坐标为(,0)m ,进而求得m 的值,最后代入即可. 【详解】解:∵抛物线26y x x c =++经过(3,)A m n -、(3,)B m n +,∴抛物线对称轴为直线332m m x m -++==,∵抛物线与x 轴只有一个交点,故顶点为(,0)m ,2()y x m ∴=-.当3x m =+时,239y ==.故答案为C . 【点睛】本题主要考查了二次函数的性质、运用二次函数顶点坐标与对称轴的求解等知识点,掌握二次函数的性质是解答本题的关键.2.B解析:B 【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和. 【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数, ∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤ 解得3a ≥解分式方程12322ax xx x -+=--解得:62x a =- 由x ≠2得,a ≠5, 由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1, 同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15, 故选:B . 【点睛】本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.3.D解析:D 【分析】根据选项中的二次函数图象和一次函数图象,判断a 和b 的正负,选出正确的选项. 【详解】A 选项,抛物线开口向上,0a >,一次函数过一、三、四象限,0a >,0b <,不满足0ab >,故错误;B 选项,抛物线开口向上,0a >,一次函数过一、二、四象限,0a <,0b >,不满足ab>0,故错误;C 选项,抛物线开口向下,0a <,一次函数过一、三、四象限,0a >,0b <,不满足ab>0,故错误;D 选项,抛物线开口向下,0a <,一次函数过二、三、四象限,0a <,0b <,满足ab>0,正确 故选:D . 【点睛】本题考查二次函数图象和一次函数图象与各项系数的关系,解题的关键是掌握根据函数图象判断各项系数正负的方法.4.B解析:B 【分析】由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断. 【详解】解:①∵由二次函数的图象可知:抛物线的开口向上, ∴a >0;又∵二次函数的图象与y 轴的交点在负半轴, ∴c <0;∴ac <0,即①正确; ②由图象知,对称轴x =2ba-=1,则b =﹣2a <0.故②正确; ③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确; ④由图象可知当x >1时,y 随x 的增大而增大;故④错误. 综上所述,正确的结论是:①②③. 故选:B . 【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.5.D解析:D 【分析】利用二次函数定义进行解答即可. 【详解】A 、21y x =+是一次函数,故A 不符合题意;B 、2y x =+1x不是二次函数,故B 不符合题意; C 、()()2222122y x x x x x x x =+--=+--=-,此函数是一次函数,故C 不符合题意;D 、21y x =-是二次函数,故D 符合题意; 故答案为:D . 【分析】本题主要考查了二次函数定义,关键是掌握形如2y ax bx c =++(a 、b 、c 是常数,a≠0)的函数,叫做二次函数.6.D解析:D 【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得. 【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大, 当 2.00x =时,0.030y =-<, 当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<,故选:D . 【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.7.D解析:D 【分析】先假设0c <,根据二次函数2y ax bx c =++图象与y 轴交点的位置可判断A ,C 是否成立;再假设0c >,0b <,判断一次函数y cx b =-的图象位置及增减性,再根据二次函数2y ax bx c =++的开口方向及对称轴位置确定B ,D 是否成立.【详解】解:若0c <,则一次函数y cx b =-图象y 随x 的增大而减小,此时二次函数2y ax bx c =++的图象与y 轴的交点在y 轴负半轴,故A ,C 错;若0c >,0b <,则一次函数y cx b =-图象y 随x 的增大而增大,且图象与y 的交点在y 轴正半轴上,此时二次函数2y ax bx c =++的图象与y 轴的交点也在y 轴正半轴,若0a >,则对称轴bx 02a =->,故B 错;若0a <,则对称轴02b x a=-<,则D 可能成立. 故选:D . 【点睛】本题考查一次函数图象与二次函数图象的综合判断问题,解答时可假设一次函数图象成立,分析二次函数的图象是否符合即可.8.B解析:B 【分析】本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A 、B 的横坐标的大小即可判断出y 1与y 2的大小关系. 【详解】解:∵二次函数y=x 2-4x+5的图象的对称轴是x=2, 在对称轴的右面y 随x 的增大而增大,∵点P (3,y 1)、Q (4,y 2)是二次函数y=x 2-4x+5的图象上两点, 2<3<4, ∴y 1<y 2. 故选:B . 【点睛】本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键9.B解析:B 【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案. 【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴; 当0a <时,开口向下,顶点在y 轴的负半轴, 故选:B . 【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.10.B解析:B 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断出c 的大小,然后根据对称轴判断b 的大小,然后根据特殊值求出式子的大小即可; 【详解】∵对称轴在y 轴的右侧,∴a 、b 异号,∵开口向下,∴0a <,0b >,∵函数图像与y 轴正半轴相交,∴0c >,∴0abc <,故①正确;∵对称轴12b x a=-=, ∴20a b +=,故②正确;∵20a b +=,∴2b a =-,∵当1x =-时,0y a b c =-+<,∴()23<0a a c a c --+=+,故③错误;根据图示,当1m =时,有最大值;当1m ≠时,有2am bm c a b c ++≤++,∴()(a b m am b m +≥+为实数),故④正确;根据图示,当13x 时,y 不只是大于0,故⑤错误;故正确的答案是①②④;故选:B .【点睛】本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键.11.D解析:D【分析】先根据各项中一次函数与二次函数的图象判断a 、c 的正负,二者一致的即为正确答案.【详解】解:A 、由一次函数图象可得:a >0,c <0,由二次函数图象可得a <0,c >0,矛盾,故本选项不符合题意;B 、由一次函数图象可得:a >0,c >0,由二次函数图象可得a >0,c <0,矛盾,故本选项不符合题意;C 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a >0,c >0,矛盾,故本选项不符合题意;D 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a <0,c >0,故本选项符合题意;故选:D .【点睛】本题考查了一次函数与二次函数的图象与性质,属于常考题型,熟练掌握二者的图象是解题的关键.12.B解析:B【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,抛物线y=2x 2的图象向右平移1个单位所得函数图象的关系式是:y=-2(x-1)2; 由“上加下减”的原则可知,抛物线y=-2(x-1)2的图象向上平移5个单位长度所得函数图象的关系式是:y=-2(x-1)2+5.故选:B .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二、填空题13.【分析】(1)设结合可得:由线段的和差可得:列方程解方程可得答案;(2)如图以为原点建立平面直角坐标系可得函数的解析式为:利用求解的长度再利用勾股定理求解从而可得答案【详解】解:(1)设故答案为:( 解析:2448【分析】(1)设,DE x = 结合2EF DE =,5BF DF =+,可得:2,3,35,EF x DF x BF x ===+ =55,BE x + 由线段的和差可得:45BE =, 列方程解方程可得答案;(2)如图,以B 为原点建立平面直角坐标系,可得函数的解析式为:21,64y x =-利用24DF =,求解BD 的长度,再利用勾股定理求解,CD 从而可得答案. 【详解】解:(1)设,DE x =2EF DE =,5BF DF =+, 2,3,35,EF x DF DE EF x BF x ∴==+==+35255,BE BF EF x x x ∴=+=++=+63AB cm =,10CE cm =,8AC cm =45BE AB AC CE ∴=--=,5545,x ∴+=8,x ∴=324,DF x cm ∴==故答案为:24.(2)如图,以B 为原点建立平面直角坐标系, 则函数的解析式为:21,64y x =-24DF =, ∴ 当24x =时,21249,64y =-⨯=- 9BD ∴=,108CE DE ==,, 22221086CD CE DE ∴=-=-=,636948,AC cm ∴=--=故答案为:48.【点睛】本题考查的是线段的和差,一元一次方程的应用,勾股定理的应用,二次函数的图像与性质,掌握以上知识是解题的关键.14.【分析】将二次函数的右边配方即可化成的形式【详解】解:故答案为:【点睛】本题考查了二次函数的解析式有三种形式关键是熟练掌握以下三种形式:(1)一般式:y=ax2+bx+c (a≠0abc 为常数);(2解析:2(2)1x -+【分析】将二次函数245y x x =-+的右边配方即可化成2()y x h k =-+的形式.【详解】解:245y x x =-+, 24445y x x =-+-+,2441y x x =-++,22()1y x =-+.故答案为:2(2)1x -+.【点睛】本题考查了二次函数的解析式有三种形式,关键是熟练掌握以下三种形式:(1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数);(2)顶点式:y=a (x-h )2+k ;(3)交点式(与x 轴):y=a (x-x 1)(x-x 2).15.>【分析】根据抛物线y =﹣(x+1)2+3得到开口向下对称轴为直线x =﹣1然后根据二次函数的性质判断函数值的大小【详解】解:∵抛物线y =﹣(x+1)2+3的开口向下对称轴为直线x =﹣1∴当x >﹣1时解析:>【分析】根据抛物线y =﹣(x +1)2+3得到开口向下,对称轴为直线x =﹣1,然后根据二次函数的性质判断函数值的大小.【详解】解:∵抛物线y =﹣(x +1)2+3的开口向下,对称轴为直线x =﹣1,∴当x >﹣1时,y 随x 的增大而减小,∵1<2,∴y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征,二次函数的性质是解题的关键.16.①③④⑤【分析】由抛物线的开口方向判断a 与0的关系由抛物线与y 轴的交点判断c 与0的关系然后再根据对称轴与抛物线与x 轴的交点情况进行判断即可;【详解】∵抛物线开口向下∴a <0∴对称轴∴故①正确;∵抛物 解析:①③④⑤【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后再根据对称轴与抛物线与x 轴的交点情况进行判断即可;【详解】∵抛物线开口向下,∴a <0,∴对称轴123b x a =-=-, ∴32a b =,故①正确; ∵抛物线与x 轴有两个交点,∴24b ac ->0,故②错误;∵对称轴123b x a =-=-,a <0,∴32a b =<0, ∴ab >0,故③正确;当1x =时,y >0,即,y <0,∴a b c ++<0,故④正确;当1x =-时,y >0,即,a b c -+>0,∴222a b c -+>0, ∵32a b =, ∴322b b c -+>0,∴2b c +>0,故⑤正确;故答案是①③④⑤.【点睛】本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键.17.【分析】先根据二次函数解析式找出开口方向与对称轴再根据ABC 点与对称轴的距离判断y 值得大小即可【详解】∵二次函数∴对称轴方程为且抛物线开口向上∴横坐标离对称轴x=a 越远y 越大a-m 离x=a 有m 个单位解析:231y y y >>【分析】先根据二次函数解析式找出开口方向与对称轴,再根据A 、B 、C 点与对称轴的距离判断y 值得大小即可.【详解】∵二次函数221y x ax =-+∴对称轴方程为22a x a -=-=,且抛物线开口向上, ∴横坐标离对称轴x=a 越远,y 越大,a-m 离x=a 有m 个单位长度,a-n 离x=a 有n 个单位长度,a+b 离x=a 有b 个单位长度,又∵0m b n <<<, ∴231y y y >>,故答案为:231y y y >>.【点睛】本题考查二次函数的对称性和增减性,根据二次函数解析式确定函数图像的对称轴是解答本题的关键 .18.【分析】先利用配方法求得抛物线的顶点坐标从而可得到y 的最小值然后再求得最大值即可【详解】解:y=x2-4x-6=x2-4x+4-10=(x-2)2-10∴当x=2时y 有最小值最小值为-10∵∴当x=解析:106y -≤≤【分析】先利用配方法求得抛物线的顶点坐标,从而可得到y 的最小值,然后再求得最大值即可.【详解】解:y=x 2-4x-6=x 2-4x+4-10=(x-2)2-10.∴当x=2时,y 有最小值,最小值为-10.∵16x -≤≤,∴当x=6时,y 有最大值,最大值为y=(6-2)2-10=6.∴y 的取值范围为106y -≤≤.故答案为:106y -≤≤.【点睛】本题主要考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键. 19.(2-1)或(2-1)或(2+1)【分析】当y=0时求得x 的值确定AB 的长设点P 坐标为根据三角形面积公式列方程求解即可【详解】解:当y=0时解得:∴AB=2设点P 坐标为∴∴当时解得x=2此时P 点坐标解析:(2,-1)或(1),或(,1).【分析】当y=0时,求得x 的值,确定AB 的长,设点P 坐标为2(,43)x x x -+,根据三角形面积公式列方程求解即可.【详解】解:当y=0时,243=0x x -+解得:121,3x x ==∴AB=2设点P 坐标为2(,43)x x x -+, ∴214312APB S AB x x ∆=-+= ∴2431x x -+=当2431x x -+=-时,解得x=2,此时P 点坐标为(2,-1)当2431x x -+=时,解得122x x =P 点坐标为(,1),或(,1)综上,P 的坐标为:(2,-1)或(1),或(,1)故答案为:(2,-1)或(,1),或(,1).【点睛】本题考查二次函数与图形,利用数形结合思想列方程求解是解题关键.20.【分析】先将二次函数的解析式化成顶点式再根据二次函数的增减性即可得【详解】二次函数化成顶点式为由二次函数的性质可知当时y 随x 的增大而减小点在此二次函数的图象上且故答案为:【点睛】本题考查二次函数的顶 解析:123y y y >>【分析】先将二次函数的解析式化成顶点式,再根据二次函数的增减性即可得.【详解】二次函数245y x x =-+化成顶点式为22()1y x =-+,由二次函数的性质可知,当2x ≤时,y 随x 的增大而减小,点123(4,),(1,),(1,)A y B y C y --在此二次函数的图象上,且4112-<-<<, 123y y y ∴>>,故答案为:123y y y >>.【点睛】本题考查二次函数的顶点式和增减性,熟练掌握二次函数的性质是解题关键.三、解答题21.(1)2122y x x =-;(2)第8个月该果园所获利是5.5万元;(3)截止到第10月末该果园累积利润可达30万元.【分析】 (1)通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出y 与x 之间的函数关系式;(2)分别把x =7,x =8,代入函数解析式2122y x x =-,再把总利润相减就可得出; (3)把y =30代入2122y x x =-的函数关系式里,求得月份. 【详解】解:(1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:2(2)2ya x ∵所求函数关系式的图象过(0,0), 于是得:20(02)2=--a , 解得12a =, ∴所求函数关系式为:21(2)22y x =--,即2122y x x =-. (2)把7x =代入2122y x x =-,得1492710.52y =⨯-⨯=, 把8x =代入2122y x x =-, 得16428162y =⨯-⨯=, 第8个月该果园所获利润是:16﹣10.5=5.5万元,答:第8个月该果园所获利是5.5万元.(3)把30y =代入2122y x x =-, 化简得 24600x x --=,解得12106x x ==-,(舍去).答:截止到第10月末该果园累积利润可达30万元.【点睛】此题主要考查了二次函数的性质在实际生活中的应用,读懂题目意思,确定变量,建立函数模型,尤其是注意本题图象中所给的信息是解决问题的关键.22.(1)y =300+20x ;(2)当售价为57元时,利润最大,最大利润为6120元;(3)将销售价格为55元,才能使每月利润等于6000元.【分析】(1)由售价每下降1元每月要多卖20件,可得y 与x 之间的函数解析式;(2)由月利润=单件利润×数量,可得w 与x 的函数解析式,由二次函数的性质可求解; (3)将w=6000代入解析式,解方程可求解.【详解】(1)由题意可得:30020y x =+;(2)由题意可得:()()2203002020( 2.5)6125w x x x =-+=--+, 由题意可知x 应取整数,当2x =或3元时,w 有最大值,∵让利给顾客,∴3x =,即当售价为57元时,利润最大,∴最大利润为6120元;(3)由题意,令w=6000,即25600020()61252x =--+,解得10x =(舍去),25x =,故将销售价格为55元,才能使每月利润等于6000元.【点睛】本题考查了二次函数的应用,一元二次方程的应用,二次函数的性质,找出正确的函数关系式是本题的关键.23.(1)122y x =+;(2)应在B 站出地铁,时间最短,为79min 2. 【分析】(1)根据数据表,运用待定系数法解答即可;(2)设李华从文化宫回到家所需的时间为y ,则y=12y y +列出y 与x 的二次函数解析式,最后运用二次函数求最值解答即可.【详解】解:(1)设1y kx b =+,将(8,18),(9,20)代入得: 188209k b k b =+⎧⎨=+⎩,解得22k b =⎧⎨=⎩, 所以122y x =+;(2)设李华从文化宫回到家所需的时间为y ,则22121122117898022y y x x x x x +=++-+=-+2179(9)22x =-+ 则当9x =时,12y y +取最小值792, 则应在B 站出地铁,时间最短,为79min 2. 【点睛】本题主要考查了运用待定系数法求一次函数的解析式、二次函数的应用等知识点,根据题意,确定二次函数的解析式是解答本题的关键.24.(1)()2122y x =-;(2)()0,2D ,(3C - 【分析】(1)根据三角形的边长求出点A 和点1B 的坐标,设抛物线解析式为()22y a x =-,代入点1B 坐标求出解析式;(2)令0x =,求出y 的值,得到点D 的坐标,再求出直线OB 的解析式和抛物线联立求出点C 的坐标.【详解】解:∵2OA =,∴()2,0A ,∵14OA =,112A B =,∴()14,2B ,设抛物线解析式为()22y a x =-,把点()14,2B 代入,得42a =,解得12a =, ∴()2122y x =-; (2)令0x =,得1422y =⨯=, ∴()0,2D ,设直线OB 解析式为y kx =,把点()2,2B 代入,得到22k =,解得1k =,∴直线OB 解析式为y x =,联立直线和抛物线的解析式,得()2122x x -=,解得3x =±根据点C 的位置,取3x =∴(3C .【点睛】本题考查二次函数,解题的关键是掌握求二次函数的解析式的方法,求抛物线和直线交点的方法.25.(1)全体实数;(2)1-,25;(3)答案见解析;(4)当1x =时,函数有最大值4等;(5)1522a <<. 【分析】(1)根据分式有意义的条件即可解决;(2)根据表格中的数据可知,此函数图象关于直线x =1对称,据此判定即可; (3)用平滑的曲线连接各点即可;(4)观察函数图象,即可得到函数的一条性质;(5)观察图象可得:当0<y <4时,方程有两个实数根,即可求出a 的取值范围.【详解】(1)∵(x−1)2+1≥1,∴自变量x 的取值范围是全体实数;故答案为:全体实数;(2)由表格中可以看出,函数关于x =1对称,∴m =−1,n =25; 故答案为:m =−1,n =25; (3)如图所示:(4)由函数图象可知:当x =1时,该函数由最大值,故答案为:当x =1时,该函数由最大值;(5)根据图象可得:0<y≤4.∵方程2421(1)1a x =--+的实数根有2个 即0<21a -<4,解得:1522a <<. 【点睛】 本题考查了函数的性质、分式方程的解的综合应用,解决此题的关键是能根据列表法、图象法观察图象,从而得到结论.26.(1)4m =,B 的坐标为()4,0;(2)14x <<.【分析】(1)将点A 的坐标代入解析式即可求得m 的值,然后令y=0,求得x 的值即为B 点的横坐标;(2)先根据A 、B 两点的坐标求出二次函数的解析式,再画出函数图像,最后直接写出解集即可.【详解】解:(1)∵y x m =-+的图象过点()1,3A , ∴31m =-+,∴4m =.∴4y x =-+.令0y =,得4x =,∴点B 的坐标为()4,0;(2)∵二次函数2y ax bx =+图象过A ,B 两点∴23=a+b 0=44a b ⎧⎨+⎩ ,解得:=-14a b ⎧⎨=⎩画出函数图像如图:由函数图像可得不等式2ax bx x m +>-+的解集为:14x <<.【点睛】本题考查了一次函数图像的性质、求二次函数的解析式及利用函数图像确定不等式的解集,掌握数形结合思想是解答本题的关键.。
苏科版九年级数学下册5-3 用待定系数法确定二次函数表达式 同步课时提优训练【含答案】
苏科版九年级数学下册5.3 用待定系数法确定二次函数表达式 同步课时提优训练一、单选题1.一个二次函数的图象的顶点坐标是 ,与y 轴的交点是 ,这个二次函数的解析式是( (2,−3)(0,5))A. B. C. D. y =2x 2−4x +11y =2x 2−4x +5y =2x 2−8x +5y =2x 2+8x +52.二次函数的图象如图所示, 则这个二次函数的表达式为( )A. B. C. D. y =x 2+2x −3y =x 2−2x −3y =−x 2+2x −3y =−x 2−2x +33.顶点为 ,开口向下,开口的大小与函数 的图象相同的抛物线所对应的函数是( ) (6, 0)y =13x 2A.B. C. D.y =13(x +6)2y =13(x −6)2y =−13(x +6)2y =−13(x −6)24.如图,是一条抛物线的图象,则其解析式为( )A. y=x 2﹣2x+3B. y=x 2﹣2x﹣3C. y=x 2+2x+3D. y=x 2+2x-35.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A. B. C. D. y =2(x +1)2+8y =18(x +1)2−8y =29(x −1)2+8y =2(x −1)2−86.若抛物线经过 三点,则此抛物线的表达式为( )(0,1),(−1,0),(1,0)A. B. C. D. y =−x 2+1y =−x 2−1y =x 2+1y =x 2−17.2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神.如图是某次比赛中垫球时的动作.若将垫球后排球的运动路线近似的看作抛物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( )A. y =﹣B. y =﹣ 1475x 2−815x+521475x2+815x +52C. y =D. y = 1475x 2−815x +521475x 2+815x +52二、填空题8.写出一个图象开口向上,顶点在x 轴上的二次函数的解析式________.9.抛物线 与 轴的两个交点坐标分别为 , ,其形状及开口方向与抛y =ax 2+bx +c x (−1,0)(3,0)物线 相同,则 的函数解析式为________.y =−2x 2y =ax 2+bx +c 10.如果一个二次函数图象开口向下,对称轴为 ,则该二次函数表达式可以为________.(任意写x =1出一个符合条件的即可)11.二次函数y =ax²+bx +c 图象上部分点的横坐标x ,纵坐标y 的对应值如下表: x ...﹣2﹣1012...m ...y 04664…﹣6…则这个二次函数的对称轴为直线x =________,m =________(m >0).12.如图,经过原点的抛物线是二次函数 的图象,那么a 的值是________.y =ax 2−3x +a +1AB=4D(0,8)C x 13.如图,平行四边形ABCD中,,点的坐标是,以点为顶点的抛物线经过轴上的点A,B,则此抛物线的解析式为________.三、解答题14.一个二次函数的图象经过A(0,0),B(1,9),C(-1,-1),求这个二次函数的解析式.(1,−3)P(2,0)15.已知二次函数的图象的顶点为,且过点,求这个二次函数的解析式.16.已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).求此二次函数的解析式.y=ax2+bx+c(a≠0)17.抛物线上部分点的横坐标x,纵坐标y的对应值如下表:x…-2-1012…y…04664…求这个二次函数的表达式,并利用配方法求出此抛物线的对称轴、顶点坐标四、综合题y=2x2+mx18.如图,已知经过原点的抛物线与x轴交于另一点A(2,0)。
人教版初中数学九年级二次函数(经典例题含答案)
二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。
北师大数学九年级下册第二章-确定二次函数的表达式(含解析)
第02讲_确定二次函数的表达式知识图谱二次函数解析式的求法知识精讲 一般式 ()20y ax bx c a =++≠已知任意3点坐标,可用一般式求解二次函数解析式待定系数法已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,求a b c、、的值解:把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,顶点式 ()2y a x h k =-+()0a ≠已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式顶点式求解析式 一抛物线和y =﹣2x 2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),求其解析式解:∵两条抛物线形状与开口方向相同,∴a =﹣2,又∵顶点坐标是(﹣2,1),∴y =﹣2(x +2)2+1易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+三.二次函数的两根式两根式 1.已知抛物线与x 轴的两个交点坐标,可用两根式求解析式; 2. 已知抛物线经过两点,且这两点的纵坐标相等时,可在两根式的基础上求解析式两根式求解析式 已知抛物线y =ax 2+bx +c 过点A (-1,1),B (3,1),3(2,)2C - 求解析式解:设抛物线的解析式为y =a (x +1)(x -3)+1把3(2,)2c -代入解析式,求出a 即可 易错点:(1)任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示(2)二次函数解析式的这三种形式可以互化三点剖析一.考点:二次函数解析式的求法.二.重难点:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.三.易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+.待定系数法例题1、 已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,那么a b c 、、的值分别是( )A.164a b c =-=-=,,B.164a b c ==-=-,,C.164a b c =-=-=-,,D.164a b c ==-=,,【答案】 D【解析】 把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,故答案为D 选项.例题2、 已知二次函数的图象经过(0,0)(-1,-1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.【答案】 (1)y =4x 2+5x(2)(58-,2516-). 【解析】 (1)设所求二次函数的解析式为y =ax 2+bx +c (a≠0),根据题意,得019c a b c a b c =⎧⎪-+=-⎨⎪++=⎩,解得450a b c =⎧⎪=⎨⎪=⎩,∴所求二次函数的解析式为y =4x 2+5x .(2)由22525454()816y x x x x =+=+-, ∴顶点坐标为(58-,2516-). 例题3、 已知抛物线2y x bx c =-++经过点A (3,0),B (-1,0).(1)求抛物线的解析式;(2)求抛物线的对称轴.【答案】 (1)y=-x 2+2x+3(2)x=1【解析】 暂无解析随练1、 已知二次函数的图像经过点()1,5--,()0,4-和()1,1,则这个二次函数的解析式为( ) A.2634y x x =-++ B.2234y x x =-+- C.224y x x =+- D.2234y x x =+-【答案】 D【解析】 由待定系数法可求得2234y x x =+-.随练2、 已知一个二次函数过()0,0,()1,11-,()1,9三点,求二次函数的解析式.【答案】 210y x x =-【解析】 设二次函数的解析式为2y ax bx c =++(0a ≠),因为抛物线经过点()0,0,()1,11-,()1,9,所以0119c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得1010a b c =⎧⎪=-⎨⎪=⎩,所以二次函数解析式为210y x x =-.顶点式例题1、 函数21212y x x =++写成y =a (x -h )2+k 的形式是( ) A.21(1)22y x =-+ B.211(1)22y x =-+ C.21(1)32y x =-- D.21(2)12y x =+- 【答案】 D【解析】 22211121(44)21(2)1222y x x x x x =++=++-+=+-. 例题2、 二次函数的顶点为(﹣2,1),且过点(2,7),则二次函数的解析式为_____________.【答案】 y=23(x 2)18++ 【解析】 设抛物线解析式为y=a (x+2)2+1,把(2,7)代入得a•(2+2)2+1=7,解得a=38, 所以抛物线解析式为y=38(x+2)2+1。
二次函数练习题及答案解析
二次函数练习题及答案解析二次函数练习题及答案解析(初三数学)学好数学要多做练习、上课认真听讲、不会的题要问老师、做作业要当做考试来看待、不要在心理上抵触数学、平时多抽出一些时间来练习数学,下面是我为大家整理的二次函数练习题及答案解析,希望对您有所帮助!二次函数练习题及答案解析一、选择题:1 下列关系式中,属于二次函数的是(x为自变量)( )2 函数y=x2-2x+3的图象的顶点坐标是( )A (1,-4) B(-1,2) C (1,2) D(0,3)23 抛物线y=2(x-3)的顶点在( )A 第一象限B 第二象限C x轴上D y轴上4 抛物线的对称轴是( )A x=-2 Bx=2 C x=-4 D x=45 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )A ab0,c0B ab0,c0C ab0,c0D ab0,c06 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )A 一B 二C 三D 四7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m4,那么AB 的长是( )A 4+mB mC 2m-8D 8-2m8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P 3(x3,y 3) 是直线上的点,且-1A y110 把抛物线物线的函数关系式是( ) AC 的图象向左平移2个单位,再向上平移3个单位,所得的抛 B D二、填空题:11 二次函数y=x2-2x+1的对称轴方程是______________12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________三、解答题:19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20 在直角坐标平面内,点O 为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件请你分析,销售单价多少时,可以获利最大答案与解析:一、选择题1 考点:二次函数概念选A2 考点:求二次函数的顶点坐标解析:法一,直接用二次函数顶点坐标公式求法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C3 考点:二次函数的图象特点,顶点坐标解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为解析:抛物线,直接利用公式,其对称轴所在直线为答案选B5 考点:二次函数的`图象特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,答案选C 6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D7 考点:二次函数的图象特征解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m4,所以AB=2AD=2(m-4)=2m-8,答案选C8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx 的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点答案选C9 考点:一次函数、二次函数概念图象及性质解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 210 考点:二次函数图象的变化抛物线平移2个单位得到,再向上平移3个单位得到的图象向左答案选C二、填空题11 考点:二次函数性质解析:二次函数y=x2-2x+1,所以对称轴所在直线方程答案x=112 考点:利用配方法变形二次函数解析式解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+213 考点:二次函数与一元二次方程关系解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为414 考点:求二次函数解析式解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3,答案为y=x2-2x-315 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-116 考点:二次函数的性质,求最大值解析:直接代入公式,答案:717 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:如:y=x2-4x+318 考点:二次函数的概念性质,求值三、解答题19 考点:二次函数的概念、性质、图象,求解析式解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20 考点:二次函数的概念、性质、图象,求解析式解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)21 解: (1)依题意:(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)由,得M(2,9)作ME ⊥y 轴于点E ,则可得S △MCB =1522 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了单个的商品的利润是(135-x-25)这时商品的销售量是(500+200x)总利润可设为y 元利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润解:设销售单价为降价x 元顶点坐标为(425,91125)即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元九年级数学二次函数练习题一、填空题:(每空2分,共40分)1、一般地,如果,那么y叫做x的二次函数,它的图象是一条。
求二次函数的表达式练习题(含答案)
二次函数的表达式一、选择题1.函数y =21x 2+2x +1写成y =a (x -h)2+k 的形式是A.y =21(x -1)2+2B.y =21(x -1)2+21C.y =21(x -1)2-3D.y =21(x +2)2-1 2.抛物线y =-2x 2-x +1的顶点在第_____象限A.一B.二C.三D.四 3.不论m 取任何实数,抛物线y =a (x +m )2+m (a ≠0)的顶点都A.在y =x 直线上B.在直线y =-x 上C.在x 轴上D.在y 轴上4.任给一些不同的实数n ,得到不同的抛物线y =2x 2+n ,如当n =0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是A.1个B.2个C.3个D.4个 5.二次函数y =x 2+p x +q 中,若p+q=0,则它的图象必经过下列四点中A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)图36.下列说法错误的是A.二次函数y =-2x 2中,当x =0时,y 有最大值是0B.二次函数y =4x 2中,当x >0时,y 随x 的增大而增大C.在三条抛物线y =2x 2,y =-0.5x 2,y =-x 2中,y =2x 2的图象开口最大,y =-x 2的图象开口最小D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 7.已知二次函数y =x 2+(2k +1)x +k 2-1的最小值是0,则k 的值是A.43B.-43C.45D.-458.小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为A.y 1>y 2>y 3B.y 2>y 3>y 1C.y 3>y 1>y 2D.y 3>y 2>y 1 二、填空题9.抛物线y =21(x +3)2的顶点坐标是______.10.将抛物线y =3x 2向上平移3个单位后,所得抛物线的顶点坐标是______.11.函数y =34x -2-3x 2有最_____值为_____.12.已知抛物线y =ax 2+bx +c 的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为______.13.二次函数y =mx 2+2x +m -4m 2的图象过原点,则此抛物线的顶点坐标是______. 三、解答题14.根据已知条件确定二次函数的表达式(1)图象的顶点为(2,3),且经过点(3,6);(2)图象经过点(1,0),(3,0)和(0,9);(3)图象经过点(1,0),(0,-3),且对称轴是直线x=2。
(人教版)苏州九年级数学上册第二十二章《二次函数》经典练习题(答案解析)
一、选择题1.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个B解析:B【分析】根据△=24b ac -与零的关系即可判断出二次函数的图象与x 轴的交点问题;【详解】∵ ()()22356y x x x x =--=-+, ∴ △=24b ac -=25-24=1>0∴二次函数()()23y x x =--与x 轴有两个交点;故选:B .【点睛】本题考查了二次函数与x 轴的交点问题,熟练掌握判别式△=24b ac -是解题的关键; 2.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D .D 解析:D【分析】先根据运动速度和AB 、BC 的长可得t 的取值范围,再根据运动速度可得,2AP tcm BQ tcm ==,然后利用直角三角形的面积公式可得S 与t 之间的函数关系式,最后根据二次函数的图象特点即可得.【详解】设运动时间为ts ,点P 到达点B 所需时间为31AB s =,点Q 到达点C 所需时间为32BC s =, ∴点P 、Q 同时停止运动,且t 的取值范围为03t ≤≤,由题意,,2AP tcm BQ tcm ==,3AB cm =,()3BP AB AP t cm ∴=-=-, ()21132322S BP BQ t t t t ∴=⋅=-⋅=-+, 则S 与t 之间的函数图象是抛物线在03t ≤≤的部分,且开口向下,观察四个选项可知,只有选项D 符合,故选:D .【点睛】本题考查了二次函数的图象,正确求出S 与t 之间的函数关系式是解题关键.3.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限C解析:C【分析】 根据图像判断二次函数的系数a 、b 、c 的正负性,即可求得.【详解】∵二次函数图像开口向下∴a <0又∵二次函数图形与y 轴交点在y 正半轴上∴c >0∵对称轴在y 轴左侧∴02b a-< ∴b <0 ∴ac <0,bc <0∴点(,)A ac bc 在第三象限故选C【点睛】本题考查二次函数的图像与性质,掌握二次函数图像与系数的关系是解题关键. 4.点()13,P y 、Q ()24,y 是二次函数245y x x =-+的图象上两点,则1y 与2y 的大小关系为( )A .12y y >B .12y y <C .12y y =D .无法确定B解析:B【分析】本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A 、B 的横坐标的大小即可判断出y 1与y 2的大小关系.【详解】解:∵二次函数y=x 2-4x+5的图象的对称轴是x=2,在对称轴的右面y 随x 的增大而增大,∵点P (3,y 1)、Q (4,y 2)是二次函数y=x 2-4x+5的图象上两点,2<3<4,∴y 1<y 2.故选:B .【点睛】本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键5.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++A 解析:A【分析】 根据题意结合函数的图象,得出图中A 、B 、C 的坐标,再利用待定系数法求出函数关系式即可.【详解】 解:50.26 2.24 2.52+==(米) 根据题意和所建立的坐标系可知,A (-5,12),B (0,52),C (52,0), 设排球运动路线的函数关系式为y=ax 2+bx+c ,将A 、B 、C 的坐标代入得:125252255042a b c c a b c ⎧-+=⎪⎪⎪=⎨⎪⎪++=⎪⎩, 解得,1485,,75152a b c =-=-=, ∴排球运动路线的函数关系式为2148575152y x x =--+, 故选:A .【点睛】 本题考查待定系数法求二次函数的关系式,根据题意得出图象所过点的坐标是正确解答的关键.6.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( ) A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n A 解析:A【分析】根据二次函数图象性质和一元二次方程的知识结合已知条件,可以得到结论:m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间,从而解答本题.【详解】解:∵二次函数的解析式是()()2y x p x q =---∴1a =∴该二次函数的抛物线开口向上∵m 、n 是关于x 的方程()()20x p x q ---=的两个根∴当x m =或x n =时,0y =∵当x p =或x q =时,2y =-∴m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间.故选:A【点睛】本题考查了抛物线与x 轴的交点情况和一元二次方程根的关系、二次函数图象性质,解题的关键是明确题意,利用二次函数的图象性质解答.7.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >>C解析:C【分析】 根据函数解析式的特点为顶点式,其对称轴为x=-3,图象开口向下;根据二次函数图象的对称性,利用在对称轴的左侧,y 随x 的增大而增大,可判断y 2>y 1>y 3.【详解】由二次函数y =a (x +3)2+k 可知对称轴为x =−3,根据二次函数图象的对称性可知, ()22,B y -与2(4,)D y -对称,∵点()15,A y -,()36.5,C y -, 2(4,)D y -)在对称轴的左侧,y 随x 的增大而增大, ∵-4>-5>-6.5,∴y 2>y 1>y 3,故选C.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.8.抛物线()2512y x =--+的顶点坐标为( )A .()1,2-B .()1,2C .()1,2-D .()2,1B 解析:B【分析】由于给的是二次函数顶点式的表达式,可直接写出顶点坐标.【详解】解:∵y=-5(x-1)2+2,∴此函数的顶点坐标是(1,2).故选:B .【点睛】本题考查了二次函数的性质,解题的关键是掌握二次函数顶点式的表示方法. 9.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x 7- 6- 5- 4- 3- 2-y 27- 13-3- 3 5 3 则当1x =时,y 的值为( ) A .5B .3-C .13-D .27-D 解析:D【分析】首先观察表格可得二次函数2y ax bx c =++过点(4,3)-与(2,3)-,则可求得此抛物线的对称轴,然后由对称性求得答案.【详解】解:二次函数2y ax bx c =++过点(4,3)-与(2,3)-,∴此抛物线的对称轴为:直线4(2)32x -+-==-, ∴横坐标为1x =的点的对称点的横坐标为7x =-,∴当1x =时,27y =-.故选:D .【点睛】此题考查了二次函数的对称性,根据表格中的数据找到对称轴是解题的关键.10.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D .D 解析:D【分析】先根据各项中一次函数与二次函数的图象判断a 、c 的正负,二者一致的即为正确答案.【详解】解:A 、由一次函数图象可得:a >0,c <0,由二次函数图象可得a <0,c >0,矛盾,故本选项不符合题意;B 、由一次函数图象可得:a >0,c >0,由二次函数图象可得a >0,c <0,矛盾,故本选项不符合题意;C 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a >0,c >0,矛盾,故本选项不符合题意;D 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a <0,c >0,故本选项符合题意;故选:D .【点睛】本题考查了一次函数与二次函数的图象与性质,属于常考题型,熟练掌握二者的图象是解题的关键.二、填空题11.将抛物线2y x 向上平移1个单位,再向左平移2个单位后,得到的抛物线的顶点坐标是__________.【分析】根据二次函数图象左加右减上加下减的平移规律进行求解【详解】解:将抛物线y=x2向上平移1个单位再向左平移2个单位后得到的抛物线y=(x+2)2+1此时抛物线顶点坐标是(-21)故答案为:(- 解析:()2,1-【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:将抛物线y=x 2向上平移1个单位,再向左平移2个单位后,得到的抛物线y=(x+2)2+1.此时抛物线顶点坐标是(-2,1).故答案为:(-2,1).【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.12.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标再根据二次函数与一元二次方程的联系即可得【详解】抛物线的对称轴为此抛物线与x 轴的一个交点为它与x 轴的另一个交点为即则关于x 的一元二次方程解析:121,5x x ==【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标,再根据二次函数与一元二次方程的联系即可得.【详解】抛物线2(3)y a x m =-+的对称轴为3x =,此抛物线与x 轴的一个交点为(1,0), ∴它与x 轴的另一个交点为(231,0)⨯-,即(5,0),则关于x 的一元二次方程2(3)0a x m -+=的根为121,5x x ==,故答案为:121,5x x ==.【点睛】本题考查了二次函数与x 轴的交点问题、二次函数与一元二次方程的联系,熟练掌握二次函数的图象和性质是解题关键.13.某商店销售一批头盔,售价为每顶60元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶40元,则该商店每月获得最大利润时,每顶头盔的售价为__________元.55【分析】根据题意可以得到利润和售价之间的函数关系然后化为顶点式即可得到当售价为多少元时利润达到最大值【详解】解:设每顶头盔的售价为x 元获得的利润为w 元w =(x−40)200+(60−x )×20=解析:55【分析】根据题意,可以得到利润和售价之间的函数关系,然后化为顶点式,即可得到当售价为多少元时,利润达到最大值.【详解】解:设每顶头盔的售价为x 元,获得的利润为w 元,w =(x−40)[200+(60−x )×20]=−20(x−55)2+4500,∴当x =55时,w 取得最大值,此时w =4500.故答案为:55.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答. 14.如果抛物线y =x 2﹣6x +c 的顶点到x 轴的距离是3,那么c 的值等于____.c=6或12【分析】根据题意得顶点的纵坐标是3或-3列出方程求出解则可【详解】解:根据题意得:±3解得:c=6或12故答案为:c=6或12【点睛】本题考查了二次函数的性质熟记顶点的纵坐标公式是解题的解析:c =6或12【分析】根据题意得顶点的纵坐标是3或-3,列出方程求出解则可.【详解】解:根据题意得:24(6)4c --=±3, 解得:c =6或12.故答案为:c =6或12.【点睛】本题考查了二次函数的性质,熟记顶点的纵坐标公式是解题的关键.15.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm . 【分析】(1)设结合可得:由线段的和差可得:列方程解方程可得答案;(2)如图以为原点建立平面直角坐标系可得函数的解析式为:利用求解的长度再利用勾股定理求解从而可得答案【详解】解:(1)设故答案为:(解析:2448【分析】(1)设,DE x = 结合2EF DE =,5BF DF =+,可得:2,3,35,EF x DF x BF x ===+ =55,BE x + 由线段的和差可得:45BE =, 列方程解方程可得答案;(2)如图,以B 为原点建立平面直角坐标系,可得函数的解析式为:21,64y x =-利用24DF =,求解BD 的长度,再利用勾股定理求解,CD 从而可得答案. 【详解】解:(1)设,DE x =2EF DE =,5BF DF =+,2,3,35,EF x DF DE EF x BF x ∴==+==+35255,BE BF EF x x x ∴=+=++=+63AB cm =,10CE cm =,8AC cm =45BE AB AC CE ∴=--=,5545,x ∴+=8,x ∴=324,DF x cm ∴==故答案为:24.(2)如图,以B 为原点建立平面直角坐标系, 则函数的解析式为:21,64y x =-24DF =, ∴ 当24x =时,21249,64y =-⨯=- 9BD ∴=,108CE DE ==,, 22221086CD CE DE ∴=-=-=,636948,AC cm ∴=--=故答案为:48.【点睛】本题考查的是线段的和差,一元一次方程的应用,勾股定理的应用,二次函数的图像与性质,掌握以上知识是解题的关键.16.高尔夫球运动是一项具有特殊魅力的运动,运动员会利用不同的高尔夫球杆将高尔夫球打进球洞,从而使其在优美的自然环境中锻炼身体,并陶冶情操. 如图,某运动员将一只高尔夫球沿某方向击出时,小球的飞行路线是一条抛物线. 如果不考虑空气阻力等因素,小球的飞行高度 h (单位:米)与飞行时间 t (单位:秒)之间满足函数关系2205h t t =- .则小球从飞出到落地瞬间所需的时间为________秒.4【分析】根据函数关系式当h=0时0=20t-5t2解方程即可解答【详解】由题意得:20t-5t2=0解之:t1=0(不符合题意)t2=4∴小球从飞出到落地瞬间所需的时间为4秒故答案为:4【点睛】本解析:4 【分析】根据函数关系式,当h=0时,0=20t-5t 2,解方程即可解答. 【详解】由题意得:20t-5t 2=0,解之:t 1=0(不符合题意),t 2=4.∴小球从飞出到落地瞬间所需的时间为4秒. 故答案为:4. 【点睛】本题主要考查了二次函数与一元二次方程的关系,根据题意建立方程是解决问题的关键.17.已知二次函数()20y ax bx c a =++≠的图象如图所示,给出以下结论:①24b ac >;②abc>0;③20a b -=;④80a c +<;⑤930a b c ++>,其中结论正确的是__________.(填正确结论的序号)①②【分析】由抛物线的开口方向判断a 与0的关系由抛物线与y 轴的交点判断c 与0的关系然后根据对称轴及抛物线与x 轴交点情况进行推理进而对所得结论进行判断即可【详解】解:①由图知:抛物线与x 轴有两个不同的解析:①②. 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断即可. 【详解】解:①由图知:抛物线与x 轴有两个不同的交点,则△=b 2−4ac >0,∴b 2>4ac ,故①正确;②抛物线开口向上,得:a >0;抛物线的对称轴为x =2ba-=1,b =−2a ,故b <0;抛物线交y 轴于负半轴,得:c <0;所以abc >0;故②正确;③∵抛物线的对称轴为x =2ba-=1,b =−2a ,∴2a +b =0,故③错误; ④根据②可将抛物线的解析式化为:y =ax 2−2ax +c (a≠0);由函数的图象知:当x =−2时,y >0;即4a−(−4a )+c =8a +c >0,故④错误; ⑤根据抛物线的对称轴方程可知:(−1,0)关于对称轴的对称点是(3,0); 当x =−1时,y <0,所以当x =3时,也有y <0,即9a +3b +c <0;故⑤错误;所以正确的结论有:①②. 故答案为:①②. 【点睛】本题主要考查了图象与二次函数系数之间的关系,,掌握二次函数()20y ax bx c a =++≠系数符号与抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数的关系是解题的关键.18.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可 解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值. 【详解】解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点, ∴△=b 2-4a=0, 若a=1,则b 可取2.故答案为1,2(答案不唯一). 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.19.已知自变量为x 的二次函数4()()y ax b x b=++经过(,4),(2,4)m m +两点,若方程4()()0ax b x b++=的一个根为3x =,则其另一个根为__________.x=﹣1或﹣5【分析】根据题意该函数一定过点(04)可得两点的坐标进而求得对称轴根据解析式与方程的关系即可求得方程另一个根【详解】解:∵当x=0时=4∴m=0或m=﹣2∴二次函数经过或∴对称轴为直线解析:x=﹣1或﹣5 【分析】根据题意该函数一定过点(0,4),可得(,4),(2,4)m m +两点的坐标,进而求得对称轴,根据解析式与方程的关系即可求得方程另一个根. 【详解】解:∵当x=0时,4()()y ax b x b=++=4, ∴m=0或m=﹣2,∴二次函数4()()y ax b x b=++经过(0,4),(2,4)或(2,4),(0,4)-, ∴对称轴为直线x=1或x=﹣1,∵方程4()()0ax b x b++=的一个根为3x =, ∴方程的另一个根为x=﹣1或﹣5, 故答案为:x=﹣1或﹣5. 【点睛】本题考查二次函数图象上的点的坐标特征、二次函数与一元二次方程的关系,熟练掌握二次函数的图象与性质,根据二次函数的对称性求解是解答的关键.20.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在1-<x <4的范围内有解,则t 的取值范围是________.-4≤t<5【分析】先由对称轴求b 的值则二次函数关于的一元二次方程(为实数)在<<的范围内有解△=16+4t≥0在<<在x=-1时y=5当x=4时y=0用y=t 与有交点t 的范围即可求出【详解】∵二次解析:-4≤t<5. 【分析】先由对称轴求b 的值,则二次函数2-4y x x =,关于x 的一元二次方程240x x t --=(t为实数)在1-<x <4的范围内有解,△=16+4t≥0,在1-<x <4()22-424y x x x ==--在x=-1时,y=5,当x=4时,y=0,用y=t 与()22-424y x x x ==--有交点,t 的范围即可求出. 【详解】∵二次函数2y x bx =+的对称轴为直线2x =, ∴222b bx a =-=-=, ∴b =-4,∴二次函数2-4y x x =,∵关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解, ∴△=16+4t≥0, ∴t≥-4,∵()22-424y x x x ==--,在x=-1时,y=5,当x=4时,y=0,∴y=t 与()22-424y x x x ==--有交点,t 满足条件为-4≤t<5,则t 的取值范围是-4≤t<5. 故答案为:-4≤t<5. 【点睛】本题考查二次函数与一元二次方程的关系,掌握二次函数的性质,与一元二次方程的解的条件,利用对称轴会求b 的值,关于x 的一元二次方程240x x t --=(t 为实数)有解,会用△=16+4t≥0,会用y=t 与()22-424y x x x ==--有交点,求t 满足条件是解决问题的关键.三、解答题21.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式.解析:223y x x =--+【分析】 将点3,0,2,5代入抛物线23y ax bx =++解方程组求出b 、c 的值即可得答案.【详解】由题意得,93304235a b a b -+=⎧⎨++=-⎩解得,12a b =-⎧⎨=-⎩,则二次函数的解析式为223y x x =--+. 【点睛】本题考查待定系数法求二次函数解析式,把抛物线上的点的坐标代入解析式确定字母的值是解题关键.22.已知二次函数2y x bx c =-++的图象过点()()0,3,2,3(1)此二次函数的表达式,并用配方法将其化为()2y a x h k =-+的形式 (2)画出此函数的图象;(3)借助图象,判断若03x <<,则y 的取值范围是解析:(1)()214y x =--+;(2)见解析;(3)04y <≤ 【分析】(1)把已知两点()()0,3,2,3代入二次函数的解析式求出b 和c 的值,再配方成顶点式; (2)根据(1)所求解析式用五点法画图即可;(3)根据图像找出03x <<时,图像的最高点最低点便可求得y 的范围. 【详解】(1)把()()0,3,2,3代入2y x bx c =-++,得3423c b c =⎧⎨-++=⎩,解得:32c b =⎧⎨=⎩,∴二次函数的表达式为:2y x 2x 3=-++, 配方得:2(1)4y x =--+(2)∵2(1)4y x =--+,∴顶点坐标为(1,4),对称轴方程为x=1, 当y=0时,2230x x -++=,2230x x --= (1)(3)0x x +-=1213x x =-=,,∴图像与x 轴的交点坐标为(-1,0)(3,0), 又∵图像过点(0,3),(2,3) 可得下图:(3)由图可得当03x <<时,则y 的取值范围是04y <≤, 故答案为:04y <≤. 【点睛】本题考查了利用待定系数法求二次函数的解析式和画出二次函数的图象,知道用五点法画二次函数图象的方法:五点是指:顶点、与x 轴的两个交点、与y 轴交点及其对称点(也可取任意两个对称点),②计算出五点的坐标,③再列表、描点,连线即可23.已知二次函数y=﹣x2+4x.(1)下表是y与x的部分对应值,请补充完整;x…01234…y…00…(2)根据上表的数据,在如图所示的平面直角坐标系中描点,并画出该函数图象;(3)根据图象,写出当y<0时,x的取值范围.解析:(1)3,4,3;(2)见解析;(3)x<0或x>4.【分析】(1)把x=1,x=2,x=3分别代入函数解析式,求出y的值即可;(2)在坐标系内描出各点,再顺次连接即可;(3)根据函数图象即可得出结论.【详解】解:(1)∵当x=1时,y=﹣1+4×1=3;当x=2时,y=﹣4+4×2=4;当x=3时,y=﹣9+4×3=3.故答案为:3,4,3;(2)如图所示;(3)如图所示,当y<0时,x的取值范围是x<0或x>4.【点睛】本题考查了二次函数的图象,函数与方程、不等式的关系,熟知画二次函数图象的一般步骤列表、描点、连线,理解函数与方程、不等式的关系是解题关键.24.如图,已知抛物线y =ax 2+bx +c (a ≠0)经过A (﹣1,0),B (3,0),C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得△ACM 的周长最短?若存在,求点M 的坐标;若不存在,请说明理由.解析:(1)223y x x =--;(2)存在,M (1,﹣2) 【分析】(1)把A (﹣1,0),B (3,0),C (0,﹣3)代入y =ax 2+bx +c 可求出a 、b 、c 的值,即可确定二次函数关系式;(2)由对称可知,直线BC 与直线x =1的交点就是要求的点M ,求出直线BC 的关系式即可. 【详解】解:(1)把A (﹣1,0),B (3,0),C (0,﹣3)代入y =ax 2+bx +c 得,09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得,123a b c =⎧⎪=-⎨⎪=-⎩,∴抛物线的关系式为223y x x =--;(2)抛物线223y x x =--的对称轴为212x -=-=, ∵点M 在对称轴x =1上,且△ACM 的周长最短, ∴MC +MA 最小,∵点A 、点B 关于直线x =1对称,∴连接BC 交直线x =1于点M ,此时MC +MA 最小, 设直BC 的关系式为y =kx +b , ∵B (3,0),C (0,﹣3), ∴303k b b +=⎧⎨=-⎩,解得,13k b =⎧⎨=-⎩,∴直线BC 的关系式为3y x =-, 当x =1时,132y =-=-,∴点M (1,﹣2),∴在抛物线的对称轴上存在一点M ,使得△ACM 的周长最短,此时M (1,﹣2).【点睛】本题考查二次函数综合,解题的关键是掌握抛物线解析式的方法和利用轴对称的性质解决线段和最短问题.25.某公司销售一种进价为20元/个的计算器,其销售量y (万个)与销售价格x (元/个)的变化满足1810y x =-+;同时,销售过程中的其他开支(不含进价)总计40万元.(1)求出该公司销售这种计算器的净得利润z (万元)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(2)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?解析:(1)211020010z x x =-+-,当销售价格50元/个时,最大利润为50万元;(2)4060x ≤≤,40. 【分析】(1)总净利润=单件利润×销售量-40,首先求出单件利润(x-20),然后乘以销售量y ,将解析式化为顶点式即可求解;(2)令(1)中解析式的值为40,然后作出函数图像示意图,根据示意图即可求解x 的取值范围,然后结合销售量和销售价的关系即可判断x 的值. 【详解】(1)根据题意得:()2040z x y =-- =()12084010x x ⎛⎫--+- ⎪⎝⎭=211020010x x -+- 将其化为顶点式:211020010x x -+- =()2110020010x x ---=()2150250020010x ⎡⎤----⎣⎦ =()21505010x --+ ∴销售价格定为50元/个时净得利润最大,最大值是50万元. (2)当公司要求净得利润为40万元时,即()21x 50504010--+= 解得:x 1=40,x 2=60如图,通过观察函数y =()21505010x --+的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60而y 与x 的函数关系式为:1810y x =-+,y 随x 的增大而减少, 因此,若还需考虑销售量尽可能大,销售价格应定为40元/个. 【点睛】本题考查了二次函数的实际应用,在本类题型中,将二次函数的一般式化为顶点式是解题的关键.26.如图已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图,连接BC ,PB ,PC ,设PBC 的面积为S . ①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标. 解析:(1)2y x 2x 3=-++;(2)①23922S t t =-+;②最大值928,此时P 坐标315,24⎛⎫⎪⎝⎭【分析】(1)由点A 、B 坐标,利用待定系数法求解抛物线的表达式即可; (2)①过点P 作PH ⊥x 轴于H ,设点P 坐标为(t ,223t t -++),由PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形即可表示出S 关于t 的函数表达式;②由于BC 为定值,所以点P 到直线BC 的距离最大时即为S 最大,根据二次函数的性质求出S 的最大值,利用勾股定理求出线段BC 的长,再利用等面积法求出点P 到直线BC 的距离的最大值,进而可求出此时的点P 坐标. 【详解】解:(1)将点A (﹣1,0)、B (3,0)代入2y x bx c =-++中,得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩,∴,抛物线的表达式为2y x 2x 3=-++; (2)①过点P 作PH ⊥x 轴于H ,如图,当x=0时,y=3,∴C (0,3),OC=3,∵点P 的坐标为(t ,223t t -++)且点P 在第一象限, ∴PH=223t t -++,OH=t ,BH=3﹣t , ∴PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形=22111(233)(3)(23)33222t t t t t t ⋅-+++⋅+⋅-⋅-++-⨯⨯ =23922t t -+, ∴S 关于t 的函数关系式为S=23922t t -+(t >0);②由S=23922t t -+= 23327()228t --+,且32-<0,得: 当t=32时,S 有最大值,最大值为278, ∵OB=3,OC=3,∴2232OB OC += ∵当t=32时,223t t -++=23315()23224-+⨯+=∴点P 到直线BC2728⨯=,此时,点P 的坐标为(32,154).【点睛】本题考查了待定系数法求二次函数的解析式、坐标与图形的性质、二次函数的性质、割补法求三角形的面积,解答的关键是认真审题,寻找知识点的关联点,利用待定系数法、割补法和数形结合思想进行推理、探究和计算.27.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量y (件)与每件的售价x (元)满足一次函数关系202600y x =+.(1)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(2)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?解析:(1)这种衬衫定价为70元;(2)售价定为65元可获得最大利润,最大利润是19500元 【分析】(1)根据“总利润=每件商品的利润×销售量”列出方程并求解,最后根据尽量给客户实惠,对方程的解进行取舍即可;(2)求出w 的函数解析式,将其化为顶点式,然后求出定价的取值,即可得到售价为多少万元时获得最大利润,最大利润是多少. 【详解】解:(1)()()5020260024000x x --+=, 解得,170x =,2110x =, ∵尽量给客户优惠, ∴这种衬衫定价为70元; (2)由题意可得,()()()250202600209032000w x x x =--+=--+,∵该衬衫的每件利润不允许高于进货价的30%,每件售价不低于进货价, ∴50x ≤,()505030%x -÷≤, 解得,5065x ≤≤,∴当65x =时,w 取得最大值,此时19500w =,答:售价定为65元可获得最大利润,最大利润是19500元, 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.28.某滑雪场在滑道上设置了几个固定的计时点.一名滑雪者从山坡滑下,测得了滑行距离s (单位:m )与滑行时间t (单位:s )的若干数据,如下表所示:位置1 位置2 位置3 位置4 位置5 位置6 位置7 滑行时间/s t 0 1.07 1.40 2.08 2.46 2.79 3.36 滑行距离/m s51015202535为观察s 与t 之间的关系,建立坐标系,以t 为横坐标,s 为纵坐标,描出表中数据对应的点(如图).可以看出,其中绝大部分的点都近似位于某条抛物线上.于是,我们可以用二次函数()20s at bt c t =++≥来近似地表示s 与t 的关系.(1)有一个计时点的计时装置出现了故障,这个计时点的位置编号可能是_________; (2)当0t =时,0s =,所以c =________;(3)当此滑雪者滑行距离为30m 时,用时约为________s (结果保留一位小数). 解析:(1)3;(2)0;(3)3.1 【分析】(1)由图像及表格可直接进行解答; (2)把t=0代入求解即可;(3)从表格选两个点代入函数解析式求解即可. 【详解】解:(1)由表格及图像可得:出现故障的位置编号可能是位置3; 故答案为3;(2)把t=0,s=0代入()20s at bt c t =++≥得:c=0;故答案为0;(3)由(2)可得:把t=1.07,s=5和t=2.08,s=15代入()20s at bt t =+≥得:221.07 1.0752.08 2.0815a b a b ⎧+=⎨+=⎩,解得: 2.511.98a b ≈⎧⎨≈⎩, ∴二次函数的解析式为:()22.51 1.980s t t t =+≥,把s=30代入解析式得:()230 2.51 1.980t t t =+≥,解得:123.1, 3.9t t ≈≈-(不符合题意,舍去), ∴当此滑雪者滑行距离为30m 时,用时约为3.1s ;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学:二次函数表达式的确定练习(含解析)
1.函数y =21
x 2+2x +1写成y =a (x -h)2+k 的形式是
A.y =21
(x -1)2+2
B.y =21(x -1)2+21
C.y =21
(x -1)2-3
D.y =21
(x +2)2-1
2.抛物线y =-2x 2-x +1的顶点在第_____象限
A.一
B.二
C.三
D.四
3.不论m 取任何实数,抛物线y =a (x +m )2+m (a ≠0)的顶点都
A.在y =x 直线上
B.在直线y =-x 上
C.在x 轴上
D.在y 轴上
4.任给一些不同的实数n ,得到不同的抛物线y =2x 2+n ,如当n =0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是
A.1个
B.2个
C.3个
D.4个
5.二次函数y =x 2+p x +q 中,若p+q=0,则它的图象必经过下列四点中
A.(-1,1)
B.(1,-1)
C.(-1,-1)
D.(1,1)
图3
6.下列说法错误的是
A.二次函数y =-2x 2中,当x =0时,y 有最大值是0
B.二次函数y =4x 2中,当x >0时,y 随x 的增大而增大
C.在三条抛物线y =2x 2
,y =-0.5x 2
,y =-x 2
中,y =2x 2
的图象开口最大,y =-x 2
的图象开口最小
D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 7.已知二次函数y =x 2+(2k +1)x +k 2-1的最小值是0,则k 的值是
A.43
B.-43
C.45
D.-45
8.小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21
,y 2), (-321
,y 3),则你认为y 1,y 2,y 3的大小关系应为
A.y 1>y 2>y 3
B.y 2>y 3>y 1
C.y 3>y 1>y 2
D.y 3>y 2>y 1 二、填空题
9.抛物线y =21
(x +3)2的顶点坐标是______.
10.将抛物线y =3x 2向上平移3个单位后,所得抛物线的顶点坐标是______.
11.函数y =34
x -2-3x 2有最_____值为_____.
12.已知抛物线y =ax 2+bx +c 的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为______. 13.二次函数y =mx 2+2x +m -4m 2的图象过原点,则此抛物线的顶点坐标是______. 三、解答题
14.根据已知条件确定二次函数的表达式
(1)图象的顶点为(2,3),且经过点(3,6);
(2)图象经过点(1,0),(3,0)和(0,9);
(3)图象经过点(1,0),(0,-3),且对称轴是直线x=2。
15.(8分)请写出一个二次函数,此二次函数具备顶点在x 轴上,且过点(0,1)两个条件,并说明你的理由.
16.(10分)把抛物线y =-3(x -1)2向上平移k 个单位,所得的抛物线与x 轴交于点A (x 1,0),B (x 2,
0),若x 12+x 22=926
,请你求出k 的值.
17.(10分)如图6是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.
图6
18.(12分)有这样一道题:“已知二次函数y =ax 2+bx +c 图象过P (1,-4),且有c =-3a ,……求证这个二次函数的图象必过定点A (-1,0).”题中“……”部分是一段被墨水污染了无法辨认的文字.
(1)你能根据题中信息求这个二次函数表达式吗?若能,请求出;若不能,请说明理由. (2)请你根据已有信息,在原题“……”处添上一个适当的条件,把原题补充完整.。