整除特征
数的整除特征
数的整除特征知识概要数的整除特征具有较强的实际意义,常用的数的整除特征如下:1、能被2整除数的特征:个位数字是0、2、4、6、8的数能被2整除。
2、能被5整除的数的特征:个位数字是0和5的数能被5整除。
3、能被3(或9)整除的数的特征:各位数字和能被3(或9)整除。
这个数能被3(或9)整除。
4、能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
5、能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
6、能被7(或11或13)整除的数的特征:末三位数与末三位以前的数字所组成的数之差(大减小)能被7(或11或13)整除。
、7、能被11整除的数的特征:奇数位数字和与偶数位数字和的差(大减小)能被11整除。
例题解评例1、如果六位数12x40y 能被72整除,试求此六位数。
思路点拨:因为六位数12x40y 是72的倍数,且72=9×8 ,所以12x40y既是8的倍数又是9的倍数。
据能被8整除的数的特征,知40y是8的倍数。
(1)当y=0时,根据1+2+x+4是9的倍数,且0≤x≤9可得x=2(2)当y=8时,根据1+2+x+4+8是9的倍数,且0≤x≤9可得x=3所以所求的六位数是122400或123408。
例2 、一个四位数,减去它的各位数字之和,其差还是一个四位数603A ,试求出A。
思路点拨:设这个四位数为abcd , 则abcd=1000×a+100×b+10×c+d,它的各位数字之和为a+b+c+d。
于是有:abcd-(a+b+c+d)=1000×a+100×b+10×c×d-(a+b+c+d)=999×a+99×b+9×c=9×(111×a+11×b+c).这表明“一个自然数减去它的各位数字之和后,所得之差一定是9的倍数,”由已知这个差等于603A ,由此就可求出A来。
数的整除特征(1--11)
数的整除特征
1.能被2整除的数的特征:
个位是:0、2、4、6、8.
2.能被3整除的数的特征:
各位数字之和是3的倍数。
3.能被4整除的数的特征:
一个数的末尾2位数能被4整除。
4.能被5整除的数的特征:
个位是0或5.
5.能被6整除的数的特征:
个位数字是:0、2、4、6、8.且各位数字之和是3的倍数。
6.能被7整除的数的特征:
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
7.能被8整除的数的特征:
若一个整数的末尾三位数能被8整除,则这个数能被8整除。
8.能被9整除的数的特征:
若一个整数的数字和能被9整除,则这个整数能被9整除。
9.能被10整除的数的特征:
个位是0。
10 . 能被11整除的数的特征:
若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
整除的性质和特征
整除的性质和特征整除问题是整数内容最基本的问题;理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题,增强孩子的数感;一、整除的概念:如果整数a除以非0整数b,除得的商正好是整数而且余数是零,我们就说a能被b 整除或b能整除a,记作b/a,读作“b整除a”或“a能被b整除”;a叫做b的倍数,b叫做a 的约数或因数;整除属于除尽的一种特殊情况;二、整除的五条基本性质:1如果a与b都能被c整除,则a+b与a-b也能被c整除;2如果a能被b整除,c是任意整数,则积ac也能被b整除;3如果a能被b整除,b能被c整除,则积a也能被c整除;4如果a能同时被b、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立;5任意整数都能被1整除,即1是任意整数的约数;0能被任意非0整数整除,即0是任意非0整数的倍数;三、一些特殊数的整除特征:根据整除的基本性质,可以推导出某些特殊数的整除特征,为解决整除问题带来方便;1如果一个数是整十数、整百数、整千数、……的因数,可以通过被除数末尾几位数字确定这个数的整除特征;①若一个整数的个位数字是2的倍数0、2、4、6或8或5的倍数0、5,则这个数能被2或5整除;②若一个整数的十位和个位数字组成的两位数是4或25的倍数,则这个数能被4或25整除;③若一个整数的百位、十位和个位数字组成的三位数是8或125的倍数,则这个数能被8或125整除;推理过程:2、5都是10的因数,根据整除的基本性质2,可知所有整十数都能被10、2、5整除;任意一个整数都可以看作一个整十数和它的个位数的和,如果一个数的个位数字也能被2或5整除,根据整除的基本性质1,则这个数能被2或5整除;又因为4、25都是100的因数,8、125都是1000的因数,根据整除的基本性质2,可知任意整百数都能被4、25整除,任意整千数都能被8、125整除;同时,任意一个多位数都可以看作一个整百数和它末两位数的和或一个整千数和它的末三位数的和,根据整除的基本性质1,可以推导出上面第②条、第③条整除特征;同理可证,若一个数的末四位数能被16或625整除,则这个数能被16或625整除,依此类推;2若一个整数各位上数字和能被3或9整除,则这个数能被3或9整除;推理过程:因为10、100、1000……除以9都余1,所以几十、几百、几千……除以9就余几;因此,对于任意整数ABCDE…_______________都可以写成下面的形式n为任意整数:9n+A+B+C+D+E+……9n一定能被3或9整除,根据整除的基本性质1,只要这个数各位上的数字和A+B +C+D+E+……能被3或9整除,这个数就能被3或9整除;3用“截尾法”判断整除性;①截尾减2法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的2倍,差是7的倍数,则原数能被7整除;②截尾减1法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的1倍,差是11的倍数,则原数能被11整除;③截尾加4法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的4倍,差是13的倍数,则原数能被13整除;④截尾减5法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的5倍,差是17的倍数,则原数能被17整除;⑤截尾加2法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的2倍,差是19的倍数,则原数能被19整除;根据整除的基本性质3,以上5条整除特征中,如果差太大,可以继续前面的“截尾翻倍相加”或“截尾翻倍相减”的过程,直到能直接判断为止;推理过程:设任意一个整数的个位数字为y,这个数可以表示成10x+y的形式,其中x为任意整数;一个数截尾减2后,所得数为x-2y;因为截去这个数的个位数字后,所得数x减去个位数字y的2倍,实际上是在原数的十位数字上减去2个y,即减去了20个y,截尾一个y,总共减去了21个y,剩下了x-2y个10;如下式:10x-20y+y-y﹦x-2y×10﹦10x +y-21y;根据整除的基本性质,如果x-2y能被7整除,则x-2y×10就能被7整除,即10x+y-21y能被7整除,21y是7的倍数,可以推出原数10x+y一定能被7整除;“截尾加4”就是原数截去1个y、加上40个y,总共加了39y13的倍数,得到x+4y 个10,“截尾加4”所得x+4y如果能被13整除,原数必能被13整除;同理,“截尾减1”就是原数减去了11个y11的倍数,原数剩下x-y个10,“截尾减1”所得x-y能被11整除,原数必能被11整除;“截尾减5”就是原数减去了51个y17的倍数,原数剩下x-5y个10,“截尾减5”所得x-5y能被17整除,原数必能被17整除;“截尾加2”就是原数加了19y19的倍数,得到x+2y个10,“截尾加2” 所得x+2y如果能被19整除,原数必能被19整除;依此类推,可以用“截尾加3”判断一个数能否被29整除,用“截尾减4”判断一个数能否被41整除等等;4 “截尾法”的推广使用;①若一个数的末三位数与末三位之前的数字组成的数相减之差大数减小数能被7、11或13整除,则这个数一定能被7、11或13整除;②若一个整数的末四位与之前数字组成数的5倍相减之差能被23或29整除,则这个数能被23或29整除;比较适合对五位数进行判断推理过程:①设任意一个整数的末三位数为y,则这个数可以表示成1000x+y的形式,其中x 为任意整数;当x大于y时,这个数末三位之前的数字组成的数减去末三位数得到x-y;这里x 减y实际上是在原数的千位上减去y,即减去了1000y,加上截去末三位数y,总共减去了1001y,原数剩下x-y个1000;如下式:1000x-1000y+y-y﹦1000x-y﹦1000x+y-1001y7×11×13﹦1001,7、11和13都是1001的因数;综上所述,如果这个数末三位之前的数字组成的数减去末三位数得到x-y能被7、11或13整除,即1000x+y-1001y能被7、11或13整除,则原数必能被7、11或13整除;当y大于x时,可得1000y-x﹦1001y-1000x+y,如果y-x能被7、11或13整除,则原数必能被7、11或13整除;②设任意一个整数的末四位数为y,则这个数可以表示成10000x+y的形式,其中x 为任意整数;末四位与之前数字组成数的5倍相减之差即y-5x;10000y-5x﹦1005y-510000x+y因为1005是23和29的公倍数,如果一个数末四位与之前数字组成数的5倍相减之差即y-5x能被23或29整除,即10000y-5x能被23或29整除,则原数必能被23或29整除;依此类推,如果一个数末两位数与之前数字相减之差能被101整除,则这个数必能被101整除等等;5若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除;推理过程:一个整数偶数位上每个计数单位除以11都余1,如1、100、10000……等,除以11都余1,因此每个偶数位上数字是几,它所表示的数值除以11就余几,所有偶数位上数字之和除以11余几,所有偶数位数字所表示的数值除以11就余几;一个整数奇数位上每个计数单位除以11都“缺1”余数为10,如10、1000、100000……等,除以11都“缺1”, 因此每个奇数位上数字是几,它所表示的数值要整除11就缺几,所有奇数位上数字之和除以11缺几,所有奇数位数字所表示的数值除以11就缺几;“移多补少”,只有一个整数所有奇位数字之和与偶位数字之和相减之差能被11整除,原数才能被11整除;。
数的整除特征
数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。
(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。
(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除.(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。
(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。
(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。
(7)个位上是0、2、4、6、8的数都能被2整除.(8)个位上是0或者5的数都能被5整除.(9)若一个整数各位数字之和能被3(或9)整除,则这个整数能被3(或9)整除。
(10)若一个整数末尾两位数能被4整除,则这个数能被4整除.(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。
(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除.(13)一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位数字以前的数字所组成的数的差(以大减小)能否被7(11或13)整除(14)末位数字为零的整数必能被10整除(15)另外,一个整数的奇数位数字和与偶数位数字和的差如果是11的倍数,那么这个整数也是11的倍数。
(一个整数的个位、百位、万位、…称为奇数位,十位、千位、百万位……称为偶数位.)(16)至于6和12的整除特性,通过以上的原则判断即可:各位数之和能被3整除的偶数能被6整除;各位数之和能被3整除且末两位数字组成的两位数能被4整除的整数能被12整除。
(17)能被7整除的数的特征:若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除.如果数字仍然太大不能直接观察出来,就重复此过程。
方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推.方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。
数的整除特征
数的整除特征一、整除特征------尾数分析法1、尾数分析法判断整除性(1)一个数的末一位能被2或者说整除,这个数就能被2或5整除。
(2)一个数的末两位数能被4或25整除,这个数就能被4或25整除。
(3)一个数的末三位数能被8或者125整除,这个数就能被8或是25整除。
2、被25或125整除的数的特点(1)被25整除的数必须是以25、75、00结尾的数(2)被125整除的数必须是以125、250、375、500、625、750、875、000结尾的数。
二、整除特征-----数位和分析法1、数位和分析法判断整除性(1)一个数各个数位上的数字和能被3整除,这个数能被3整除。
(2)一个数各个数位上的数字和能被9整除,这个数就能被9整除.2、数位和分析法原理数位和分析法同样是根据位值原理推导出来的,举例:1234=1×1000+2×100+3×10+4×1=1×(999+1)+2×(99+1)+3(9+1)+4×1=1×999+2×99+3×9+(1+2+3+4)其中999、99、9都能被3或9整除,所以只需要看1234的各位数字和1+2+3+4能否被3或9整除即可,用这种方法同样能求出1234除以3或9的余数。
3、弃9法“弃九法”也叫做弃九验算法,利用这种方法可以验算加、减、乘计算的结果是否错误,把一个数的各位数字相加,直到和是一个一位数(和是9,要减去9得0),这个数就叫做原来数的弃九数。
三、整除特征---数位差分析法1、 11的整除特征:如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。
2、 7、11、13的整除特征如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11、或者3整除,那么这个数能被7、11、或者3整除。
+、、、、。
数的整除特征特点
WORD格式
数的整除特征特点
一、尾数判断法:
(1)能被2、5整除的数的特征:个位数字能被2或5整除。
(2)能被4、25整除的数的特征:末两位能被4或25整除。
(3)能被8、125整除的数的特征:末三位能被8或125整除。
二、数字求和法
(1)能被3、9整除的数的特征:各位数字之和能被3或9整除。
三、奇偶位求差法
(1)能被11整除的数的特征:“奇位和”与“偶位和”的差能被11整除。
四、三位截断法
(1)能被7、11、13整除的数的特征:“末三位数字组成的数”与“末三位以前的数字组成的数”之差能被7或11或13整除。
整除特征:
7:个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,
则原数能被7整除。
(如果数字太大仍然不能直接观察出来,就重复此过程。
)13:个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
17:个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
19:个位数字去掉,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。
专业资料整理。
整数的整除特征
整数的整除特征1. 尾系的整除特征12、5:末一位能被2、5整除:个位是0、2、4、6、8的数能被2整除;个位是0和5的数能被5整除;24、25:末两位能被4、25整除:如1764、123456能被4整除;17850、能被25整除;38、125:末三位能被8、125整除:如1760、123456能被8整除;27750、能被125整除;推而广之,末n位能被2n、5n整除;2. 和系的整除特征:从末位右→首位左13、9:一位一截,各位的数字和能被3或9整除:如8649→8+6+4+9=27,能被3或9整除;还可以采用更方便的弃39法,如1,3、6、9、1+2、4+5、8+7都是3的倍数可以弃去,和是0,所以1可以被3整除;采用弃9法,弃去1+8、2+7、3+6、4+5、9,和是0,所以1可以被9整除;211、33、99:两位一截,数段和能被11、33、99整除:如260535→26+5+35=66,66÷11=6,66÷33=2,66÷99=0 ┅ 99,所以260535能被11和33整除,但不能被99整除;3. 差系的整除特征:从末位右→首位左111:奇偶位差法:一位一截,奇位数字之和与偶位数字之和的差能被11整除;如110220→奇数段0+2+1=3,偶数段2+0+1=3,3-3=0,0能被11整除,所以110220能被11整除;27、11、13:三位一截,这个的位上的与位上的数字之和的差能被7、11、13整除:如1121876→1┆121┆876,奇数段的和是876+1=877,偶数段是121,它们的差是877-121=756,用这个差除以7、11、13:756÷7=108,756÷11=68....8,756÷13=58...2,所以1121876能被7整除,1121876除以11余8,1121876除以13余2;是11的;注意:如果出现不够减的情况,则奇数位加上7、11、13或它们的倍数后再减;如654333→654┆333,差654-333=321不够减,333可以加上11的30倍再减,333+330-654=9,即余数是9;如果用奇偶位差法,奇数位的和是3+3+5=11,偶数位的和是6+4+3=13,11减13不够减,这时奇数位的和加上11再减偶数位的和:11+11-13=9,即余数是9;。
数的整除特征特点
数的整除特征特点 It was last revised on January 2, 2021
数的整除特征特点
一、尾数判断法:
(1) 能被 2、 5整除的数的特征:个位数字能被2或5整除。
(2) 能被4、25 整除的数的特征:末两位能被4或25整除。
(3) 能被8、125整除的数的特征:末三位能被8或125整除。
二、数字求和法
(1)能被3、9整除的数的特征:各位数字之和能被3或9整除。
三、奇偶位求差法
(1)能被11整除的数的特征:“奇位和”与“偶位和”的差能被11整除。
四、三位截断法
(1)能被7、11、13整除的数的特征:“末三位数字组成的数”与“末三位以前的数字组成的数”之差能被7或11或13整除。
整除特征:
7:个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
(如果数字太大仍然不能直接观察出来,就重复此过程。
)
13:个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
17:个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
19:个位数字去掉,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。
数的整除特征
数的整除特征1、一个整数的末尾一位数能被2或5整除,那么这个数就能被2或5整除。
2、一个整数的末尾两位数能被4或25整除,那么这个数就能被4或25整除。
3、一个整数的末尾三位数能被8或125整除,那么这个数就能被8或125整除。
4、能被9和3整除的数的特征,如果各位上的数字和能被9或3整除,那么这个数能被9或3整除。
5、一个整数的末尾三位数与末尾三位数以前的数字组成的数的差(大数减小数)能被 7、11、13整除,那么这个数就能被7、11、13整除。
6、一个整数的奇数位上的数字和与偶数位上的数字之和的差(大减小)能被11整除,这个数就能被11整除。
【例1】七位数 23A45AB 一一一一一一一能被15整除,A 与B 可以是哪些数字?【例2】从0, 4, 9, 5这四个数中任选三个排列成能同时被2, 5, 5 整除的三位 数。
问:这样的三位数有几个?【例3】五年级(1)班有36名同学,每人买了一本英语词典,共花了 问:每本词典多少钱?【例4】在568后面补上三个数字,组成一个六位数,使它能分别被3,4,5整除,而且使这个数尽可能小。
【例5】要使27A3B 一一一一一一这个五位数能被44整除,那么个位,百位各应该是几?【例6】能被11整除,首位数字是6,其余各位数字均不相同的最大与最小六位数分别是几?数的整除专项练习:1、五位数6A25B 一一一一一一一一的A ,B 各是什么数字时,这个五位数能被75整除?问:这样的五位数共有几个?2、在内填上合适的数使七位数能被72整除。
3、在1978后面补上三个数字,组成一个七位数,使它能同时被3,4,5整除,并且使这个数尽可能小。
4能被11整除,求这个六位数。
5、能被11整除,首位数字是6,其余各位数字均不相同的最大和最小六位数分别是几?6、一个六位数37A46B 一一一一一一一一是99的倍数,求这个数除以33的商。
7、在15整除?填上什么数字就能被45整除?填上什么数字就能被21整除?8、四年级有72名学生,共交5内的数字模糊不清)。
能整除数的特征
能整除数的特征
1、能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除
2、能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除
3、能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除
4、能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除
5、能被6整除的数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除
6、能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。
7、能被8整除的数,百位、十位和个位所组成的三位数能被8整除,那么这个数能被8整除
8、能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除
9、能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)
10、能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
11、能被12整除的数,若一个整数能被3和4整除,则这个数能被12整除。
奥数——数的整除特征
数的整除特征★知识要点1、如果一个数的个位数字能被2或5整除,则这个数能被2或5整除。
2、如果一个数的末两位数字能被4或25整除,则这个数就能被4或25整除。
3、如果一个数的末三位数字能被8或125整除,则这个数就能被8或125整除。
4、如果一个数的各位数字之和能被3或9整除,则这个数就能被3或9整除。
5、如果一个自然数的奇数位上数字和与偶数位上数字和的差(大数减小数)能被11整除,那么这个数就能被11整除。
6、被7、11、13整除数的特征:如果一个自然数的末三位数字所表示的数与末三位前的数字所表示的数之差(大数减小数)能被7、11或13整除,那么这个数就能被7,11或13整除。
★典型例题例1、在□内填上适当的数,使五位数5874□能被2整除,这样的五位数有多少个?例2、在□内填上适当的数,使六位数69547□能被4或25整除。
例3、在□内填上适当的数,使五位数31□26能被3或9整除。
例4、在865后面补上3个数字,组成一个六位数,使它能被3,4,5整除,且使这个数值尽可能地大。
例5、在五位数15□8□的□内填什么数字,才能使它既能被3整除,又含有因数5?例6、根据被11整除的数的特征,判别下列数中哪几个能被11整除:3434 3443 52019 68868例7、判断2146455311能否被7,11或13整除?课堂练习1、在□内填上适当的数,使四位数139□能被5整除,这样的四位数有哪几个?2、在□内填上适当的数,使七位数7132□20能被8整除。
3、判断下列哪些数能被25整除,哪些能被125整除?能被125整除的数一定能被25整除吗?反之能被25整除的数一定能被125整除吗?750 765 2775 6325 1500 10004、根据被3和9整除的数的特征,用“去三法”或“或九法”判别下列数中哪些数能被3整除,哪些能被9整除。
请仔细观察能被9整除的数一定能被3整除吗?反之能被3整除的数一定能被9整除吗?请牢记这个规律!5646 49257 25341 87203 56142365、在358后面补上3个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能地小。
整除的性质和特征
整除得性质与特征整除问题就是整数内容最基本得问题。
理解掌握整除得概念、性质及某些特殊数得整除特征,可以简单快捷地解决许多整除问题,增强孩子得数感。
一、整除得概念:如果整数a除以非0整数b,除得得商正好就是整数而且余数就是零,我们就说a能被b整除(或b能整除a),记作b/a,读作“b整除a”或“a能被b整除".a叫做b得倍数,b叫做a得约数(或因数).整除属于除尽得一种特殊情况.二、整除得五条基本性质:(1)如果a与b都能被c整除,则a+b与a-b也能被c整除;(2)如果a能被b整除,c就是任意整数,则积ac也能被b整除;(3)如果a能被b整除,b能被c整除,则积a也能被c整除;(4)如果a能同时被b、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立;(5)任意整数都能被1整除,即1就是任意整数得约数;0能被任意非0整数整除,即0就是任意非0整数得倍数。
三、一些特殊数得整除特征:根据整除得基本性质,可以推导出某些特殊数得整除特征,为解决整除问题带来方便。
(1)如果一个数就是整十数、整百数、整千数、……得因数,可以通过被除数末尾几位数字确定这个数得整除特征。
①若一个整数得个位数字就是2得倍数(0、2、4、6或8)或5得倍数(0、5),则这个数能被2或5整除;②若一个整数得十位与个位数字组成得两位数就是4或25得倍数,则这个数能被4或25整除;③若一个整数得百位、十位与个位数字组成得三位数就是8或125得倍数,则这个数能被8或125整除。
【推理过程】:2、5都就是10得因数,根据整除得基本性质(2),可知所有整十数都能被10、2、5整除。
任意一个整数都可以瞧作一个整十数与它得个位数得与,如果一个数得个位数字也能被2或5整除,根据整除得基本性质(1),则这个数能被2或5整除。
又因为4、25都就是100得因数,8、125都就是1000得因数,根据整除得基本性质(2),可知任意整百数都能被4、25整除,任意整千数都能被8、125整除.同时,任意一个多位数都可以瞧作一个整百数与它末两位数得与或一个整千数与它得末三位数得与,根据整除得基本性质(1),可以推导出上面第②条、第③条整除特征.同理可证,若一个数得末四位数能被16或625整除,则这个数能被16或625整除,依此类推.(2)若一个整数各位上数字与能被3或9整除,则这个数能被3或9整除。
数的整除特征总结
数的整除特征总结数的整除特征是指一个数能够被另外一个数整除时所具有的特征和规律。
在数学中,整除是一种基本的整数关系,研究整除特征可以帮助我们深入理解数学的基本概念和性质。
本文将总结数的整除特征,以便读者更好地理解和掌握整除的规律和应用。
1.一个数除以1等于它本身,这是整除的最基本特征。
任何一个数都能被1整除。
2.如果a能够被b整除,即a/b是一个整数,那么a被b整除的余数为0。
3.如果a能够被b整除,即a/b是一个整数,那么a能够被b的因数整除。
换句话说,如果a能够被b整除,那么b的所有因数也能够整除a。
4.如果a能够被b整除,b能够被c整除,那么a能够被c整除。
整除具有传递性。
5.如果a能够被b整除,b能够被c整除,那么a能够被c的所有因数整除。
6.如果一个数能够被2整除,那么这个数一定是偶数。
偶数的特征是最后一位数字为0、2、4、6或87.如果一个数能够被3整除,那么这个数的各位数字之和也能被3整除。
8.如果一个数能够被4整除,那么这个数的末尾两位组成的数能被4整除。
9.如果一个数能够被5整除,那么这个数的最后一位数字一定是0或510.如果一个数能够被6整除,那么这个数一定能被2和3同时整除。
11.如果一个数能够被8整除,那么这个数的末尾三位组成的数能被8整除。
12.如果一个数能够被9整除,那么这个数的各位数字之和也能被9整除。
13.如果一个数能够被10整除,那么这个数的末尾一定是0。
14.如果一个数能够被11整除,那么这个数的各位数字之差也能被11整除。
15.如果一个数能够被12整除,那么这个数一定能被3和4同时整除。
这些整除特征是数学中的常见规律和性质,通过了解和应用这些特征,我们可以更快地判断一个数是否能够被另外一个数整除。
同时,这些特征也有助于我们解决问题和证明数学定理。
总结:数的整除特征是数学中的基本规律和性质,包括整除的基本定义、整除的性质、整除特征与数字的关系等。
掌握和应用整除特征可以帮助我们更好地理解数学的基本概念和性质,同时也有助于我们解决问题和证明定理。
整除特征
1.割尾法(适用7、11、13、17、19)「截尾、倍大、相减、验差」7:去尾后-2×个位=7的倍数一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
11:去尾后-1×个位=11的倍数一个整数的个位数字去掉,再从余下的数中,减去个位数的1倍,如果差是11的倍数,则原数能被11整除。
13:去尾后+4×个位=13的倍数一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
如:判断1284322能不能被13整除。
128432+2×4=12844012844+0×4=12844 1284+4×4=13001300÷13=100所以,1284322能被13整除17:去尾后-5×个位=17的倍数一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
例如:判断1675282能不能被17整除。
167528-2×5=167518,16751-8×5=16711 , 1671-1×5=1666 , 166-6×5=13619:去尾后+2×个位=19的倍数一个整数的个位数字去掉,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。
2.割减法(适用7、11、13、17、19)减去7(11、13、17、19)的10倍、20倍、30倍的差能被7(11、13、17、19)整除。
3.三位法则(适用7、11、13)三位一分,奇数位之和与偶数位之和相减为7、11、13的倍数。
常见数的整除特征
数的整除特征●被2整除一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。
●被3整除一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。
●被4或25整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除。
例如:123475末尾两位是75能被25整除,则123475也能被25整除。
被4整除的同理。
●被5整除一个数的个位数字如果是0或5,那么这个数就能被5整除。
●被7整除末位法:一个数舍去末位数字,剩下的数减去舍去数字的2倍【用差重复此步骤】,如果结果是7的倍数【包括0】,那么,这个数就能被7整除。
例如:判断13139是否7的倍数的过程如下:1313-9×2=1295,在结果1295中重复舍去末位,129-5×2=119,所以13139是7的倍数。
首位法:在首位或前几位,减去7的倍数。
例如,判断13139能不能被7整除,13139-7000=6139,只要6139能被7整除即可。
对6139可在首位继续减去7的倍数,6139-5600=539,539-490=49,49当然被7整除,所以13139能被7整除。
●被8整除如果一个数的末三位数能被8或125整除,那么,这个数就一定能被8或125整除.例如:888能被8整除,则129888就能被8整除。
875能被125整除,100011875就一定能被125整除。
●被9整除一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。
●被11整除把一个数由右向左数,如果奇数位【个、百、万位。
】上的数字和与偶数【十、千、十万位。
】位上的数字和的差是11的倍数【包括0】,则这个数能被11整除。
●被13整除把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
可重复此过程。
例如:1284335。
128433+5*4=12845,1284+4*5=1304,130+4*4=146,14+4*6=39。
整除的性质和特征
整除的性质和特征之欧侯瑞魂创作整除问题是整数内容最基本的问题。
理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题,增强孩子的数感。
一、整除的概念:如果整数a除以非0整数b,除得的商正好是整数而且余数是零,我们就说a能被b整除(或b能整除a),记作b/a,读作“b整除a”或“a能被b整除”。
a叫做b的倍数,b叫做a的约数(或因数)。
整除属于除尽的一种特殊情况。
二、整除的五条基赋性质:(1)如果a与b都能被c整除,则a+b与a-b也能被c整除;(2)如果a能被b整除,c是任意整数,则积ac也能被b整除;(3)如果a能被b整除,b能被c整除,则积a也能被c整除;(4)如果a能同时被b、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立;(5)任意整数都能被1整除,即1是任意整数的约数;0能被任意非0整数整除,即0是任意非0整数的倍数。
三、一些特殊数的整除特征:根据整除的基赋性质,可以推导出某些特殊数的整除特征,为解决整除问题带来方便。
(1)如果一个数是整十数、整百数、整千数、……的因数,可以通过被除数末尾几位数字确定这个数的整除特征。
①若一个整数的个位数字是2的倍数(0、2、4、6或8)或5的倍数(0、5),则这个数能被2或5整除;②若一个整数的十位和个位数字组成的两位数是4或25的倍数,则这个数能被4或25整除;③若一个整数的百位、十位和个位数字组成的三位数是8或125的倍数,则这个数能被8或125整除。
【推理过程】:2、5都是10的因数,根据整除的基赋性质(2),可知所有整十数都能被10、2、5整除。
任意一个整数都可以看作一个整十数和它的个位数的和,如果一个数的个位数字也能被2或5整除,根据整除的基赋性质(1),则这个数能被2或5整除。
又因为4、25都是100的因数,8、125都是1000的因数,根据整除的基赋性质(2),可知任意整百数都能被4、25整除,任意整千数都能被8、125整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲整除特征初步模块一尾数分析
模块二数字和分析
模块三整除中的最值问题
1.从323中至少减去()才能被3整除。
①减去3②减去2③减去1
2.在100以内,能同时被3和5整除的最大奇数是()。
①95②90③75
3.下面的数中,哪些能被2整除?哪些能被5整除?哪些能被4整除?哪些能被8整除?
2347897756886537288064
4.⑴修改54679中的一个数字,使这个五位数能被5整除,修改后的五位数是多少?
⑵修改3255中的一个数字,使这个四位数能被8整除,修改后的四位数是多少?
5.有如下9个三位数:452、387、228、975、525、882、715、775、837,这些数中,哪些
能被3整除?哪些能被9整除?
AA能被9整除,求A。
6.五位数422
7.若四位数98a a能被3和5同时整除,则a代表的数字是。
8.等差数列求和:1+4+7+…+46。