1整除特性

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整除

整除是指整数a除以自然数b除得的商正好是整数而余数是零.我们就说a能被b整除(或说b能整除a),记作b|a,读作“b整除a”或“a能被b整除”.它与除尽既有区别又有联系.除尽是指数a除以数b(b≠0)所得的商是整数或有限小数而余数是零时,我们就说a能被b除尽(或说b能除尽a).因此整除与除尽的区别是,整除只有当被除数、除数以及商都是整数,而余数是零.除尽并不局限于整数范围内,被除数、除数以及商可以是整数,也可以是有限小数,只要余数是零就可以了.它们之间的联系就是整除是除尽的特殊情况.

整除的一些性质为:

(1)如果a与b都能被c整除,那么a+b与a-b也能被c整除.

(2)如果a能被b整除,c是任意整数,那么积ac也能被b整除.

(3)如果a同时被b与c整除,并且b与c互质,那么a一定能被积bc整除.反过来也成立.

下面我们讨论能被2,5,3,9,4,25,8,125,11,7,13等数整除的数的特征.

1.能被2或5整除的数的特征是:如果这个数的个位数能被2或5整除,那么这个数就能被2或5整除.也就是说:

一个数的个位数字是0、2、4、6、8时,这个数一定能被2整除.

一个数的个位数字是0、5时,这个数一定能被5整除.

例如要判断18762,9685,8760这三个数能否被2或5整除,根据这三个数的个位数字的特点,很快可以判断出,2|18762,2不能整除9685,2|8760;5不能整除18762,5|9685,5|8760.

2.能被3或9整除的数的特征是:如果这个数的各个数位上的数字和能被3或9整除,这个数就能被3或9整除.

例如要判断47322能否被9整除,由于

47322=40000+7000+300+20+2

=4×(9999+1)+7×(999+1)+3×(99+1)+2×(9+1)+2

=4×9999+7×999+3×99+2×9+4+7+3+2+2

=9×(4×1111+7×111+3×11+2×1)+(4+7+3+2+2)

9一定能整除9×(4×1111+7×111+2×11+2×1),所以要判断9能否整除47322,只要看9能否整除4+7+3+2+2=18,因为9|18,所以9|47322.可以看到4+7+3+2+2恰好是这个数的各个数位上的数字和.类似的方法我们还可以判断出3|47322.

3.能被4或25整除的数的特征是:如果这个数的末两位数能被4或25整除,这个数就能被4或25整除.

例如要判断63950能否被4或25整除,由于

63950=639×100+50,100=4×25,所以100能被4或25整除,根据整除的性质,639×100能被4或25整除,要判断63950能否被4或25整除,只要看50能否被4或25整除,因为4不能整除50,25|50,所以4不能整除63950,25|63950.可以看出50恰好是63950的末两位数.

4.能被8或125整除的数的数的特征是:如果这个数的末三位数能被8或125整除,这个数就能被8或125整除.

例如要判断4986576能否被8整除,由于4986576=4986×1000+576,1000=8×125,所以8|1000,根据整除的性质,8|4986000,要判断8能否整除4986576,只要看8能否整除576,因为8|576,所以8|4986576.可以看出576恰好是4986576的末三位数.

同理可以判断这个数不能被125整除.

5.能被11整除的数的特征是:如果这个数的奇数位上的数字和与偶数位上的数字和的差(大减小)能被11整除,这个数就能被11整除.

奇数位是指从个位起的第1、3、5…位,其余数位是偶数位.

例如要判断64251能否被11整除,由于

64251=6×104+4×103+2×102+5×10+1

=6×(9999+1)+4×(1000+1-1)+2×(99+1)+5×(10+1-1)+1

=6×(11×909+1)+4×(11×91-1)+2×(11×9+1)+5×(11-1)+1

=[11×(6×909+4×91+2×9+5)]+[(6+2+1)-(4+5)]

上式第一个中括号内的数能被11整除,要判断64251能否被11整除,只要(6+2+1)-(4+5)=0能被11整除,因为11|0,所以11|64251,而(6+2+1)-(4+5)恰好是64251的奇数位上的三个数减去偶数位上的两个数字.

6.能被7、11、13整除的数的特征是:如果这个数的末三位数所组成的数与末三位以前的数所组成的数的差(大减小)能被7、11、13整除,这个数就能被7、11、13整除.

例如要判断1096823能否被7、11、13整除,由于7×11×13=1001,所以7|1001,11|1001,13|1001

1096823=1096×1000+823

=1096×(1001-1)+823

=1096×1001-(1096-823)

因为1096×1001能被7、11、13整除,要判断1096823能否被7、11、13整除,只要判断1096-823=273能否被7、11、13整除,由于7|273,13|273,11不能整除273,所以7|1096823,13|1096823,11不能整除1096823,而1096-823恰好是1096823的末三位以前的数所组成的四位数减去1096823的末三位数所组成的数.

下面举例说明整除的性质及数的整除特征的应用.

例1 在□内填上适当的数字,使

(1)34□□能同时被2、3、4、5、9整除;

(2)7□36□能被24整除;

(3)□1996□□能同时被8、9、25整除.

分析:(1)题目要求34□□能同时被2、3、4、5、9整除,因为能被4整除的数一定能被2整除,能被9整除的数一定能被3整除,所以34□□只要能被4、9、5整除,就一定能被2、3、4、5、9整除.先考虑能被5整除的条件.个位是0或5,再考虑能被4整除的条件,由于4不能整除34□5,所以个位必须是0,最后考虑能被9整除的条件,34□0的各个数位上的数字和是9的倍数,3+4+□+0=7+□,这时十位数字只能是2,问题得以解决.

相关文档
最新文档