河南省新乡市卫辉市2019-2020学年七年级(下)期中数学试卷 解析版
2019-2020年初一数学期中考试试题及答案解析.docx
2019-2020 年初一数学期中考试试题及答案解析注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第 I 卷(选择题)评卷人得分一、选择题(每题 3 分,共 30 分)1.多项式 3x2- 2xy 3-1y- 1 是 ().2A.三次四项式B.三次三项式C.四次四项式D.四次三项式2.- 3 的绝对值是A . 3B.- 3C.-D.3.若 |x+2|+|y-3|=0,则 x-y 的值为()A. 5B. -5C.1 或-1D.以上都不对4.1)的相反数是(3A.1B.1C. 3D.﹣3 335. 2014 年 5 月 21 日,中国石油天然气集团公司与俄罗斯天然气工业股份公司在上海签署了《中俄东线供气购销合同》,这份有效期为30 年的合同规定,从2018 年开始供气,每年的天然气供应量为380 亿立方米, 380 亿立方米用科学记数法表示为()A.3.8 ×10103B.38×1093C.380×1083D.3.8 ×10113 m m m m6.计算 (a 2) 3÷ (a 2) 2的结果是 ()A. a B . a2 C . a3 D . a47.下列因式分解中,正确的有()①4a﹣ a3b2=a( 4﹣ a2b2);②x2y﹣ 2xy+xy=xy ( x﹣ 2);③﹣ a+ab﹣ ac=﹣ a( a﹣ b﹣c );④9abc﹣ 6a 2b=3abc ( 3﹣ 2a);⑤ x 2y+ xy 2= xy ( x+y )A.0个B.1个C.2个D.5个8.下列因式分解正确的是()A. x2﹣ xy+x=x ( x﹣ y)3222B. a ﹣ 2a b+ab =a( a﹣ b)22C. x ﹣ 2x+4=( x﹣ 1) +32D. ax ﹣ 9=a(x+3)( x﹣ 3)9.实数 a、 b 在数轴上的位置如图所示,下列式子错误的是()A. a< b C.- a<- b B. |a| > |b| D. b- a> 010.﹣ 的倒数是( )A 、B 、C 、﹣D 、﹣第 II 卷(非选择题)评卷人 得分二、填空题(每题 3 分,共 24 分)12 .用代数式表示“a 的 4 倍与 5 的差”为 .13 .已知2x m 1y 3 和 1 x n y m+n 是同类项,则nm 2012 =▲。
2019-2020学年度第二学期期中考试初一年级数学试卷及答案
2019-2020学年度第二学期期中考试初一年级数学试卷考试时间100分钟 满分120分 命题:一、选择题(本大题共8小题,每小题2分,共16分.) 1.下列现象中不属于平移的是 A .滑雪运动员在平坦的雪地上滑雪 B .彩票大转盘在旋转C .高楼的电梯在上上下下D .火车在一段笔直的铁轨上行驶2.化简(–x 3)2的结果是 A .–x 5 B .–x 6 C .x 5D .x 63.如图,∠1=∠2,∠3=40°,则∠4等于A .120°B .130°C .140°D .40°4.在数(–12)–2,(–2)–2,(–12)–1,(–2)–1中,最大的数是 A .(–12)–2 B .(–2)–2 C .(–12)–1D .(–2)–15.长方形的长是31.610cm ⨯,宽是2510cm ⨯,则它的面积是 A .42810cm ⨯ B .52810cm ⨯ 62C 810cm ⨯.72D 810cm ⨯.6.下列说法正确的是( )A .三角形的三条高至少有一条在三角形内B .直角三角形只有一条高C .三角形的角平分线其实就是角的平分线D .三角形的角平分线、中线、高都在三角形的内部7.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线,则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .68.已知:a =﹣226x +2017,b =﹣226x +2018,c =﹣226x +2019,请你巧妙的求出 代数式a 2+b 2+c 2﹣ab ﹣bc ﹣ca 的值( ) A .3B .2C .1D .0二、填空题(本大题共10小题,每小题3分,共30分) 9.计算:0.25×55=__________.10.内角和与外角和相等的多边形的边数是__________.11.光的传播速度约为300000km/s ,太阳光照射到地球上大约需要500s ,则太阳到地球的距离用科学记数法表示为__________km .12.在ABC △中,::2:3:4A B C ∠∠∠=,则B ∠=__________. 13.如图,AB ∥CD ∥EF ,若∠A =35°,∠AFC =15°,则∠C =__________.14.若2x +5y –4=0,则432x y ⨯=__________.15.若(x 2+p )(x 2+7)的展开式中不含有x 2项,则p =__________.16.已知P =m 2–m ,Q =m –1(m 为任意实数),则P 、Q 的大小关系为__________.17.如上中图,边长为8cm 的正方形ABCD 先向上平移4cm ,再向右平移2cm ,得到正方形A′B′C′D′,此时阴影部分的面积为__________cm 2.18.如上右图有一张直角三角形纸片,记作△ABC ,其中∠B =90°.按如图方式剪去它的一个角(虚线部分),在剩下的四边形ADEC 中,若∠1=165°,则∠2的度数为__________°.三、解答题(本大题共11小题) 19.(本小题满分12分)计算:(1)(b2)3·(b 3)4÷(-b 5)3(2)(12)–1+(π–2018)0–(–1)2019. (3)(3﹣x )(﹣x +3)﹣x (x +1) (4)(2a +b ﹣5)(2a ﹣b ﹣5)20.(本小题满分12分)分解因式:(1)2x 2﹣18 (2)3m 2n ﹣12mn+12n (3)(a+b )2﹣6(a+b )+9 (4)(x 2+4y 2)2﹣16x 2y221.(本小题满分8分)如图,四边形ABCD 中,点E 在BC 上,∠A +∠ADE =180°,∠B =78°,∠C =60°,求∠EDC 的度数.22.(本小题满分8分)已知A =2x 2+3xy –2x –1,B =–x 2+xy –1,(1)计算3A +6B 的值。
河南省新乡市卫辉市2019-2020学年七年级(下)期中数学试卷 解析版
2019-2020学年河南省新乡市卫辉市七年级(下)期中数学试卷一.选择题(共10小题)1.若x=﹣3是方程2(x﹣m)=6的解,则m的值为()A.6B.﹣6C.12D.﹣122.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1B.1C.2D.33.若a>b,且c为任意有理数,则下列不等式正确的是()A.ac>bc B.ac<bc C.ac2>bc2D.a+c>b+c4.不等式组的解集在数轴上表示为()A.B.C.D.5.已知,则a+b等于()A.3B.C.2D.16.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元7.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.8.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.为解决这个问题,所列方程组正确的是()A.B.C.D.9.如果(a+1)x<a+1的解集是x>1,那么a的取值范围是()A.a<0B.a<﹣1C.a>﹣1D.a是任意有理数10.某种导火线的燃烧速度是0.82厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为()A.22厘米B.23厘米C.24厘米D.25厘米二.填空题(共5小题)11.已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为.12.若3x+2与﹣2x+1互为相反数,则x﹣2的值是.13.4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b=.14.若m<n,则不等式组的解集是.15.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是元.三.解答题(共7小题)16.解下列方程(组):(1);(2)=x﹣2;(3);(4)(x﹣1).17.解不等式组,并在数轴上表示出它的解集.18.已知方程组和有相同的解,求a2﹣2ab+b2的值.19.某车间有工人56名,生产一种螺栓和螺母,每人每天平均能生产螺栓24个或螺母36个,应怎样分配工人,才能使一个螺栓配2个螺母刚好配套?20.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x、y的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21平方米,且地面总面积是卫生间面积的15倍.若铺1平方米地砖的平均费用为100元,那么铺地砖的总费用为多少元?21.一项工程,甲单独完成要9天,乙单独完成要12天,丙单独完成要15天.若甲、丙先做3天后,甲因故离开,由乙接替甲的工作,问:还要多少天能完成这项工程的?22.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?参考答案与试题解析一.选择题(共10小题)1.若x=﹣3是方程2(x﹣m)=6的解,则m的值为()A.6B.﹣6C.12D.﹣12【分析】把x=﹣3,代入方程得到一个关于m的方程,即可求解.【解答】解:把x=﹣3代入方程得:2(﹣3﹣m)=6,解得:m=﹣6.故选:B.2.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1B.1C.2D.3【分析】根据二元一次方程组的解的定义,将代入原方程组,分别求得a、b的值,然后再来求a﹣b的值.【解答】解:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①﹣②,得b=3,∴a﹣b=﹣1;故选:A.3.若a>b,且c为任意有理数,则下列不等式正确的是()A.ac>bc B.ac<bc C.ac2>bc2D.a+c>b+c【分析】根据不等式的性质进行选择即可.【解答】解:∵a>b,且c为任意有理数,∴a+c>b+c,故选:D.4.不等式组的解集在数轴上表示为()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,解得:1<x≤2,表示在数轴上,如图所示:故选:C.5.已知,则a+b等于()A.3B.C.2D.1【分析】①+②得出4a+4b=12,方程的两边都除以4即可得出答案.【解答】解:,∵①+②得:4a+4b=12,∴a+b=3.故选:A.6.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.7.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.8.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.为解决这个问题,所列方程组正确的是()A.B.C.D.【分析】两个定量为:加工天数,蔬菜吨数.等量关系为:精加工天数+粗加工天数=15;6×精加工天数+16×粗加工天数=140.【解答】解:设安排x天精加工,y天粗加工,列方程组:.故选:D.9.如果(a+1)x<a+1的解集是x>1,那么a的取值范围是()A.a<0B.a<﹣1C.a>﹣1D.a是任意有理数【分析】根据不等式的性质3,可得答案.【解答】解:如果(a+1)x<a+1的解集是x>1,得a+1<0,a<﹣1,故选:B.10.某种导火线的燃烧速度是0.82厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为()A.22厘米B.23厘米C.24厘米D.25厘米【分析】设至少为x,根据题意可得跑开时间要小于或等于爆炸的时间,由此可列出代数式求解.【解答】解:设导火线的长为xcm,由题意得:>x>24cm故选:D.二.填空题(共5小题)11.已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为﹣9.【分析】将x=﹣2代入方程计算即可求出a的值.【解答】解:将x=﹣2代入方程得:﹣4﹣a﹣5=0,解得:a=﹣9.故答案为:﹣912.若3x+2与﹣2x+1互为相反数,则x﹣2的值是﹣5.【分析】根据互为相反数的两数之和为0可列方程,解答即可.【解答】解:∵3x+2与﹣2x+1互为相反数,∴3x+2+(﹣2x+1)=0,解得:x=﹣3,则x﹣2=﹣3﹣2=﹣5.故填:﹣5.13.4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b=0.【分析】根据二元一次方程的定义即可得到x、y的次数都是1,则得到关于a,b的方程组求得a,b的值,则代数式的值即可求得.【解答】解:根据题意得:,解得:.则a﹣b=0.故答案为:0.14.若m<n,则不等式组的解集是m﹣1<x<n+2.【分析】先根据m<n得出m﹣1与n+2的大小,再根据求不等式解集的方法得出不等式组的解集.【解答】解:∵m<n,∴m﹣1<n+2,∴m﹣1<x<n+2.故答案为:m﹣1<x<n+2.15.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是100元.【分析】根据题意,找出相等关系为:进价×(1+20%)=200×60%,设未知数列方程求解.【解答】解:设这件服装的进价为x元,依题意得:(1+20%)x=200×60%,解得:x=100,则这件服装的进价是100元.故答案为100.三.解答题(共7小题)16.解下列方程(组):(1);(2)=x﹣2;(3);(4)(x﹣1).【分析】(1)根据二元一次方程组的解法求解即可;(2)根据一元一次方程的步骤求解即可;(3)用一元一次方程的步骤求解即可;(4)先去小括号,再去中括号,最后去大括号求解即可.【解答】解:(1);①+②×4得:x=﹣3,把x=﹣3代入①得:y=2;所以方程组的解为:;(2)=x﹣2;,①﹣②得:y=﹣14,把y=﹣14代入①得:x=﹣17;所以方程组的解为:;(3);6(0.5x+0.9)+x﹣5=100(0.01+0.02x)解得:x=0.3;(4)(x﹣1).,解得:x=2.2.17.解不等式组,并在数轴上表示出它的解集.【分析】利用去分母及去括号法则化简原不等式组的两不等式,分别求出解集,将两解集表示在数轴上,找出两解集的公共部分,即可得到原不等式组的解集.【解答】解:,由不等式①去分母得:x+5>2x,解得:x<5;由不等式②去括号得:x﹣3x+3≤5,解得:x≥﹣1,把不等式①、②的解集表示在数轴上为:则原不等式的解集为﹣1≤x<5.18.已知方程组和有相同的解,求a2﹣2ab+b2的值.【分析】由题意将两方程组中的第一个方程联立组成方程组求出x与y的值,分别代入每一个方程组中第二个方程中求出a与b的值,代入所求式子中计算即可求出值.【解答】解:由题意列得:,解得:,可得,即a=14,b=2,则a2﹣2ab+b2=(a﹣b)2=(14﹣2)2=144.19.某车间有工人56名,生产一种螺栓和螺母,每人每天平均能生产螺栓24个或螺母36个,应怎样分配工人,才能使一个螺栓配2个螺母刚好配套?【分析】设应分配x人生产螺栓,y人生产螺母,才能使一个螺栓配2个螺母刚好配套,根据每人每天平均能生产螺栓24个或螺母36个和一个螺栓配2个螺母刚好配套,列出方程组,再进行求解即可.【解答】解:设应分配x人生产螺栓,y人生产螺母,才能使一个螺栓配2个螺母刚好配套,根据题意,得,解得,答:应分配24个人生产螺栓,32个人生产螺母.20.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x、y的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21平方米,且地面总面积是卫生间面积的15倍.若铺1平方米地砖的平均费用为100元,那么铺地砖的总费用为多少元?【分析】(1)设客厅的宽是x,卫生间的宽是y,根据长方形的面积=长×宽,表示出总面积.(2)设客厅的宽是x,卫生间的宽是y,根据已知客厅面积比卫生间面积多21平方米,且地面总面积是卫生间面积的15倍.若铺1平方米地砖的平均费用为100元,列出方程组求解.【解答】解:(1)设客厅的宽是x,卫生间的宽是y,地面的总面积为:3×4+2y+2×3+6x=6x+2y+18;(2)由题意得,整理得:,①﹣②×2得:26y=39,解得:y=1.5,把y=1.5代入①解得:x=4,解得:,∴地面总面积为:S(总)=6x+2y+18=45(m2),∴铺地砖的总费用为:45×100=4500(元).答:那么铺地砖的总费用为4500元(1分)21.一项工程,甲单独完成要9天,乙单独完成要12天,丙单独完成要15天.若甲、丙先做3天后,甲因故离开,由乙接替甲的工作,问:还要多少天能完成这项工程的?【分析】设这项工程总量为1,设还需x天完成这项工程的,则甲、乙、丙的工作效率为、、,甲、丙一起做三天可做+,乙、丙x天后可做+,可根据3+x 天后完成的工总量=×工程总量为等量关系,列出方程求解即可.【解答】解:设还需x天完成这项工程的,根据题意得:,解得:x=2答:还需2天能完成这项工程的.22.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?【分析】(1)设单独租用35座客车需x辆.根据单独租用35座客车若干辆,则刚好坐满和单独租用55座客车,则可以少租一辆,且余45个空座位,分别表示出总人数,从而列方程求解;(2)设租35座客车y辆,则租55座客车(4﹣y)辆.根据不等关系:①两种车坐的总人数不小于175人;②租车资金不超过1500元.列不等式组分析求解.【解答】解:(1)设单独租用35座客车需x辆.由题意得:35x=55(x﹣1)﹣45,解得:x=5.∴35x=35×5=175(人).答:该校八年级参加社会实践活动的人数为175人.(2)设租35座客车y辆,则租55座客车(4﹣y)辆.由题意得:,解这个不等式组,得∵y取正整数,∴y=2.∴4﹣y=4﹣2=2.∴租金为:320×2+400×2=1440(元).答:本次社会实践活动所需车辆的租金为1440元.。
2019-2020学年七年级下学期期中数学试题(解析版)
2019-2020学年七年级下学期期中数学试题一.选择题1.在实数3.1415926,17, 1.010010001……,中,无理数的个数是( )个 A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.,1.010010001……是无理数,故选B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等无限不循环小数(与是否有规律无关).)A4 B. ±4 C. 2 D. ±2【答案】C【解析】【分析】4,4的算术平方根是2,2,故选C .【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.3.下列式子正确的是()A. =7 =5 ﹣3【答案】B【解析】试题分析:根据平方根的意义,可知49=±7,故A 不正确;根据立方根的意义,可知3377-=-,故B 正确;根据算术平方根的意义,可知25=5,故C 不正确;根据平方根的性质2||a a =,可知()23-=3,故不正确.故选B.点睛:此题主要考查了平方根的意义和性质,解题的关键是抓住平方根的意义,算术平方根,立方根的性质的应用,比较简单,但是容易出错,是中考常考题.4.已知:如图, AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是( )A. 相等B. 互补C. 互余D. 互为对顶角【答案】C【解析】【分析】 根据互余的定义,结合图形解答即可.【详解】∵AB CD ⊥,∴∠BOC=90°,∴∠1+∠COE=90°.∵∠2=∠COE ,∴∠1+∠2=90°,∴1∠与2∠互余.故选C.【点睛】本题考查了垂直的定义,对顶角的性质,以及余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.5.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的补角相等;④同一平面内,垂直于同一条直线的两条直线互相平行.其中真命题的个数为A. 1B. 2C. 3D. 4【答案】B【解析】分析:对4个命题一一判断即可.详解:①相等的角是对顶角;假命题.②两条直线被第三条直线所截,同位角相等;假命题.③等角的补角相等;真命题.④同一平面内,垂直于同一条直线的两条直线互相平行. 真命题.是真命题的有2个.故选B.点睛:考查命题与定理.能够判断真假的陈述句叫做命题,判断为真的命题叫做真命题.6.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【详解】∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B.7.已知在同一平面内三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A. a⊥bB. a⊥b或a∥bC. a∥bD. 无法确定【答案】C【解析】【分析】根据平行线的判定得出即可.【详解】解:∵同一平面内三条直线a、b、c,a∥c,b∥c,∴a∥b,故选C.【点睛】本题考查了平行线的性质和判定,平行公理及推理的应用,能熟记知识点(平行于同一直线的两直线平行)是解此题的关键.8. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,9.一个正数的平方根是2a-3与5-a,则这个正数的值是()A. 64B. 36C. 81D. 49【答案】D【解析】【分析】根据正数的两个平方根互为相反数列式求出a的值,进而可求出这个这个数.【详解】∵一个正数的平方根是2a-3与5-a,∴2a-3+5-a=0,∴a=-2,∴5-a=5-(-2)=7,∴这个正数的值是49.故选D.【点睛】本题考查了平方根的意义,如果个一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根,正数a 的平方根记作a ±.正数a 有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.如图,直线AB 、CD 交于点O ,OT⊥AB 于O ,CE∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 等于( )A. 30°B. 45°C. 60°D. 120°【答案】C【解析】【分析】 由//CE AB ,根据两直线平行,同位角相等,可求得BOD ∠的度数,又由OT AB ⊥求得BOT ∠的度数,然后由DOT BOT BOD ∠=∠-∠即可求得答案.【详解】∵//CE AB ,30ECO ∠=︒∴30BOD ECO ∠=∠=︒(两直线平行,同位角相等)∵OT AB ⊥∴90BOT ∠=︒∴903060DOT BOT BOD ∠=∠-∠=︒-︒=︒故选:C .【点睛】本题考查了平行线的性质、垂直等知识点,熟记并灵活运用平行线的性质是解题关键. 二.填空题11.311-__________,绝对值是_________.【答案】 (1).113, (2). 113.【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据差的绝对值是大数减小数,可得答案.【详解】解:3-11的相反数是-(3-11)= 11-3,绝对值是11-3.故答案为11-3;11-3【点睛】此题考查了实数的性质,熟练掌握相反数及绝对值的定义是解本题的关键.12.已知实数a,b满足a1-+|1-b|=0,则a2012+b2013=______【答案】2【解析】【分析】根据二次根式与绝对值的非负性即可求出a,b,故可求解.【详解】解:由题意可知:a-1=0,1-b=0,∴a=1,b=1,∴原式=2,故答案为:2.【点睛】本题考查非负数的性质,解题的关键是熟练运用非负数的性质,本题属于基础题型.13.把命题“对顶角相等”改写成“如果⋯那么⋯”的形式:_____.【答案】如果两个角是对顶角,那么它们相等.【解析】【分析】先把命题分解为题设和条件,再改写成“如果⋯那么⋯”的形式,即可.【详解】题设为:对顶角,结论为:相等,故写成“如果⋯那么⋯”的形式是:如果两个角是对顶角,那么它们相等.故答案为:如果两个角是对顶角,那么它们相等.【点睛】本题主要考查把命题改写成“如果⋯那么⋯”的形式,理解命题的题设和结论是解题的关键.14.如图所示,想在河的两岸搭建一座桥,沿线段________搭建最短,理由是___【答案】(1). PM(2). 垂线段最短【解析】【分析】连接直线外一点与直线上所有点的连线中,垂线段最短,据此进行解答即可. 【详解】∵PM⊥EN,垂足为M,∴PM为垂线段,∴想在河的两岸搭建一座桥,沿线段PM搭建最短(垂线段最短),故答案为PM,垂线段最短.【点睛】本题考查了垂线段的性质在生活中的应用,熟练掌握垂线段最短的知识是解题的关键.__________________.【答案】(1). 3(2).32【解析】【分析】,再求出立方根即可.,3,32,故答案为3,32.【点睛】此题考查了算术平方根、立方根的定义及表示方法,熟练掌握这些定义是解题的关键.16.的所有整数值是_________________【答案】±2,±1,0.【解析】【分析】的取值范围,进而可得出结论.【详解】解:∵4<8<9,∴23,∴绝对值小于8的所有整数是:±2,±1,0.故答案为±2,±1,0.【点睛】本题考查的是估算无理数的大小,先根据题意估算出8的取值范围是解答此题的关键.17.已知a,b为两个连续的整数,且a<57<b,则a+b=___________.【答案】15【解析】【分析】估算出在哪两个相邻的整数之间,即可求出a与b的值,然后代入a+b计算即可.【详解】∵72<57<82,∴7<57<8,∴a=7,b=8,∴a+b=7+8=15.故答案为15.【点睛】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.18.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是_____【答案】48【解析】【分析】根据平移的性质可知:AB=DE,BE=CF;由此可求出EH和CF的长.由于CH∥DF,根据成比例线段,可求出EC的长.由EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可求出阴影部分的面积.【详解】根据题意得:DE=AB=10;BE=CF=6;CH∥DF,∴EH=10﹣4=6;EH:HD=EC:CF,即6:4=EC :6,∴EC =9,∴S △EFD =12×10×(9+6)=75;S △ECH =12×9×6=27,∴S 阴影部分=75﹣27=48.故答案为48. 【点睛】本题考查了平移的性质、由平行判断成比例线段及有关图形的面积计算,有一定的综合性.三.解答题19.(1)|-(2)21(1)4x -=;(3)11-; (4)()334375x -=-.【答案】(1)12;(2)32x =,12x =;(3)0;(4)x=-1. 【解析】【分析】(1)根据数的开方计算即可;(2)根据平方根的定义解答;(3)先开平方、去绝对值、括号,然后合并.(4)先化原方程为(x-4)3=-125,然后求立方根;【详解】(1)原式= 1322--=12; (2)解: 112x -=±, 32x =或12x =;(3)解:原式=))211+-211=+=0(4)解: ()34125x -=- 45x -=-1x =-【点睛】本题考查了实数的运算和平方根、立方根的求法.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.20.根据语句画图,并回答问题,如图,∠AOB内有一点P.(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D.(2)写出图中与∠CPD互补的角.(写两个即可)(3)写出图中∠O相等的角.(写两个即可)【答案】(1)画图见解析;(2)∠ODP,∠PCO(答案不唯一);(3)∠ACP,∠BDP(答案不唯一).【解析】试题分析:(1)根据平行线的画法画图即可;(2)直接利用平行线的性质以及结合互补的定义得出答案;(3)根据平行线的性质可得∠O=∠PCA,∠BDP=∠O.试题解析:(1)如图所示:PC,PD,即为所求;(2)∵PC∥BO,∴∠CPD+∠ODP=180°,∵PD∥AO,∴∠CPD+∠PCO=180°与∠CPD互补的角有:∠ODP,∠PCO;故答案为∠ODP,∠PCO(答案不唯一).(3)∵PD∥AO,∴∠O=∠BDP,∵CP∥BO,∴∠ACP=∠O,∴∠O相等的角有:∠ACP,∠BDP.故答案为∠ACP,∠BDP(答案不唯一).21.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=12()∠ABE=12()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()【答案】∠ABC,两直线平行,同位角相等;∠ADE,∠ABC,角平分线的定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等【解析】【分析】根据平行线的性质由DE∥BC得∠ADE=∠ABC,再根据角平分线的定义得到∠ADF=12∠ADE,∠ABE=12∠ABC,则∠ADF=∠ABE,然后根据平行线的判定得到DF∥BE,最后利用平行线的性质得∠FDE=∠DEB.【详解】∵DE∥BC,∴∠ADE=∠ABC,∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=12∠ADE,∠ABE=12∠ABC,∴∠ADF=∠ABE,∴DF∥BE,∴∠FDE=∠DEB.故答案为∠ABC,两直线平行,同位角相等;∠ADE,∠ABC,角平分线的定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.22. (1)在平面直角坐标系中,描出下列3个点:A (-1,0),B (3,-1),C (4,3);(2) 顺次连接A,B,C,组成△ABC,求△ABC的面积.【答案】(1)图形见解析(2)8.5【解析】【分析】(1)建立平面直角坐标系,然后画图;(2)用三角形所在的长方形的面积减去四周的三个三角形的面积即可得.【详解】(1)如图(2)如图所示,ABC EFHC EAC AFB BHC S S S S S ∆∆∆∆=---X=20-7.5-2-2=8.5答:△ABC 的面积为8.5.23.如图,已知∠AED =60°,∠2=30°,EF 平分∠AED ,可以判断EF ∥BD 吗?为什么?【答案】EF∥BD ,理由见解析.【解析】【详解】试题分析:本题可通过证直线EF 与BD 的内错角∠1和∠2相等,来得出EF∥BD 的结论. 试题解析:EF∥BD ;理由如下:∵∠AED=60°,EF 平分∠AED ,∴∠FED=30°,又∵∠FED=∠2=30°,∴EF∥BD 考点:平行线的判定.24.已知a 、b 、c 2a 2(c a)-+|b+c|.【答案】-a .【解析】【分析】直接利用数轴得出a <0,a+b <0,c-a >0,b+c <0,进而化简得出答案.【详解】解:如图所示:a <0,a+b <0,c-a >0,b+c <0, 故2a -|a+b|+2(c a) +|b+c|=-a+a+b+c-a-b-c=-a .【点睛】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键.25.已知AB ∥DE ,∠ABC =800,∠CDE =1400.请你探索出一种(只须一种)添加辅助线求出∠BCD 度数的方法,并求出∠BCD 的度数.【答案】∠BCD =40°【解析】【分析】过点C 作FG ∥AB ,根据平行线的传递性得到FG ∥DE ,根据平行线的性质得到∠B=∠BCF ,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=80°,由等式性质得到∠DCF=40°,于是得到结论.【详解】解:过C 作CF ∥DE∵CF ∥DE (作图)AB ∥DE (已知)∴AB ∥DE ∥CF (平行于同一条直线的两条直线平行)∴∠BCF =∠B =80°(两直线平行,内错角相等)∠DCF+∠D=180°(两直线平行,同旁内角互补)又∵∠D=140°(已知)∴∠DCF=40°(等量代换)又∵∠BCD=∠BCF-∠DCF(角的和差定义)∴∠BCD=80°-40°(等量代换)即∠BCD=40°【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,。
2019-2020学年度七下数学期中考试试题(含答案解析)
2019-2020学年度七下数学期中考试试题一.选择题(3×10=30分)1.(3分)下列语句是命题的是()A.画线段ABB.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等2.(3分)在下列所给出坐标的点中,在第二象限的是()A.(2,6)B.(﹣2,5)C.(﹣5,﹣3)D.(2,﹣1)3.(3分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.4.(3分)在﹣1,14,0.101001000100001L,3,3.14159,,2,这7个数中,无理数共有()A.4个B.3个C.2个D.1个5.(3分)1.下列选项中能由左图平移得到的是()A. B. C. D.6.(3分)若点P在x轴的下方,y轴的右方,到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)7.(3+1的值在哪两个整数之间()A.5和6B.6和7C.7和8D.8和98.(3分)7. 小明同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元,设1元和2元的贺卡张数分别为x 张和y 张,则下列方程组正确的是()A.1028yxx y⎧+=⎪⎨⎪+=⎩B.822210x yx y⎧+=⎪⎨⎪+=⎩C.1028x yx y+=⎧⎨+=⎩D.8210x yx y+=⎧⎨+=⎩9.(3分)如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42B.96C.84D.4810.(3分)如图,一个质点在第一象限及x轴、y轴上运动,在第一秒时,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)•••,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是()A.(0,9)B.(9,0)C.(0,8)D.(8,0)二.填空题(3×6=18分)11.(3的平方根是.12.(3分)已知3x+2y=1,用含x的代数式表示y:.13.(3b=,则ab=.14.(3分)∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.15.(3分).已知x3x-2111y y==⎧⎧⎨⎨==⎩⎩或都是ax+by=7的解,则a=_______,b=______.16.(3分)如图,一个面积为40cm2的正方形与另一个小正方形并排放在一起,则△ABC 的面积是cm2.三.解答题(共72分)17.(8分)计算:(1)21(2)--;(2218.(10分)解方程(组):(1)9x2=16(2){2m+3n=1①7m+6n=8②.19.(8分)将△ABC向右平移4个单位长度,再向下平移5个单位长度,(1)作出平移后的△A′B′C′.(2)求出△A′B′C′的面积.20.(8分)阅读下列解题过程,然后解答后面的问题.如图①,已知AB∥CD,∠B=35°,∠D=32°,求∠BED的度数.解:过E作EF∥AB.∵AB∥CD,∴CD∥EF.∵AB∥EF,∴∠1=∠B=35°.又∵CD∥EF,∴∠2=∠D=32°,∴∠BED=∠1+∠2=35°+32°=67°.如图②、图③,是明明设计的智力拼图玩具的一部分,现在明明遇到两个问题,请你帮他解决.(1)如图②,已知∠D=30°,∠ACD=65°,为了保证AB∥DE,∠A应多大?(2)如图③,要使GP∥HQ,则∠G,∠GFH,∠H之间有什么关系?21.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF又∵∠AGB=(对顶角相等)∴∠EHF=∠DGF∴DB∥EC(____________)∴∠C=∠DBA(____________)又∵∠C=∠D∴∠DBA=∠D(___________)∴DF∥(_______________)∴∠A=∠F(_____________).22.(10分)如图,CD⊥AB于D,且CD平分∠BCA,点F是BC上任意一点,FE⊥AB 于E,且∠1=∠2,∠3=80°,CD平分∠BCA(1)证明:∠B=∠ADG;(2)求∠2的度数.23.(10分)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如注:获利24.(12分)如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒.(1)请以A点为原点建立一个平面直角坐标系,并用t表示出在处在不同线段上P点的坐标.(2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在请求出P点坐标.若不存在请说明理由.2019-2020学年度七下数学期中考试试题(答案解析)一.选择题(3×10=30分)1.(3分)下列语句是命题的是()A.画线段ABB.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等【分析】根据命题的定义即可求解.【解答】解:根据命题的定义可以判断A、B、C不是命题,故选:D.【点评】本题考查了命题的定义。
河南省新乡市卫辉市2023-2024学年七年级下学期期中数学试题(含答案)
河南省新乡市卫辉市2023-2024学年七年级下学期期中数学试题2024.04一、选择题(每小题3分,共30分)1.如果,那么下列不等式正确的是( )A .B .C .D .2.下面解方程的过程,你认为正确的是()A .方程,合并,得B .方程,去括号,得C.方程,去分母,得D .方程,系数化为1,得3.用加减法将方程组中的未知数x 消去后得到的方程是( )A .B .C .D .4.如图,足球的表面是由32块呈多边形的黑、白皮块缝合而成的,已知黑色皮块数比白色皮块数的一半多2块,则白色皮块的块数是()A .18B .20C .22D .245.某种家电的进价为2200元,为促销商场以8折优惠销售这种电器,为保证每台电器有300元的利润,定价是多少元?设定价为元,则可列方程是( )A .B .C .D .6.下列不等式组无解的是( )A .B .C .D .7.《九章算术》是我国古代经典的数学著作,书中记载了这样一个题目:今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?其大意是:甲袋中装有白银9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),两袋重量相等,两袋互换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银各重几两?设每枚黄金重x 两,每枚白银重y 两,则可列方程组x y <33x y<x y-<-11x y -+>--11x y+>+8310x x -=-5102x x =-==-2(3)5(1)3(1)x x x +--=-235533x x x +-+=-2132136x x +--=2(21)326x x +--=53x =-35x =-535541x y x y -=-⎧⎨+=-⎩4y =74y =74y -=76y -=x 80%3002200x +=220080%300x -=220030080%x +=220080%300x⨯=+12x x <⎧⎨<-⎩12x x <⎧⎨>-⎩12x x >⎧⎨<-⎩12x x >⎧⎨>-⎩为( )A .B .C .D .8.若不等式组的解集是,则( )A .B .C .D .9.喷灌是一种先进的田间浇灌技术,雾化指标P 是它的技术要素之一,当喷头的直径为喷头的工作压强为时,雾化指标.对果树喷灌时要求雾化指标,若,则工作压强的范围是( )A .B .C .D .10.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图1就是一个幻方.图2是一个未完成的幻方,则的值为()A .-1B .-2C .10D .12二、填空题(每小题3分,共15分)11.写出二元一次方程的一组整数解12.小明的爸爸今年32岁,小明今年8岁,问几年后小明爸爸的年龄是小明年龄的3倍?设x 年后,小明爸爸的年龄是小明年龄的3倍,则可列方程______.13.已知是方程的解,则______.14.已知二元一次方程组,则______.911(10)(8)13x yy x x y =⎧⎨+-+=⎩119(10)(8)13x yy x x y =⎧⎨+-+=⎩911(8)(10)13x yx y y x =⎧⎨+-+=⎩119(8)(10)13x yx y y x =⎧⎨+-+=⎩21x ax b +>⎧⎨-<⎩13x <<3,2a b ==-3,2a b ==3,2a b =-=3,2a b =-=-(mm)d (kPa)p 100P pd=3000P 4000……4mm d =p 750P 1000……3P 4……120P 160……12P 16……2A B -23x y -=__________x y =⎧⎨=⎩23x y =⎧⎨=⎩2kx y -=k =2332322x y x y +=⎧⎨+=⎩x y -=15.已知关于x 的不等式组有3个整数解,则a 的取值范围是______.三、解答题(共75分)16.(10分)(1)解方程:(2)解方程组:17.(10分)(1)解不等式,并把解集在数轴上表示出来.(2)解不等式组,并把解集在数轴上表示出来.18.(8分)在关于x 的一元一次方程中,m 是正整数.(1)当时,求方程的解;(2)若方程有正整数解,求m 的值.19.(8分)不等式的最小整数解是关于x 的方程的解,求a 的值.20.(8分)仔细观察小明同学解不等式的过程:解:…………………………………………………………………………………①……………………………………………………………………………………………②……………………………………………………………………………………………③………………………………………………………………………………………………………④……………………………………………………………………………………………………………⑤(1)第①步的依据是______;(2)第______步开始出现错误,这一步错误的原因是______;(3)直接写出该不等式的正确解集______;(4)要合不等式组的解集只包含一个非负整数解,则在括号里添加的一元一次不等式可以为______;此时不等式组的解集是______;这个不等式组的非负整数解是______.21.(10分)根据图中提供的信息,回答下列问题.30x x a-≤⎧⎨>⎩12125x x x -+-=+3220021530x y x y -+=⎧⎨+-=⎩3(2)152(2)x x +---…52213x x -≥⎧⎨->-⎩3132x m -+=4m =5(2)77x x -+<23x ax +=2132132x x -->-2(21)3(32)6x x ->--42966x x ->--49662x x ->--+510x ->-2x ∴>2132132()x x --⎧>-⎪⎨⎪⎩(1)求杯子和暖瓶的单价.(2)甲、乙两家超市同时出售这样的杯子和暖瓶,并开展促销活动.甲超市的促销方式为两种商品都打九折,乙超市的促销方式为购头一个暖瓶赠送一个杯子.某饭店需要购买10个暖瓶和50个杯子,选择哪家超市购买更合算,请说明理由.22.(10分)某市在创建省级卫生城市过程中,对城内的部分河道进行整治.现有一段长360米的河道整治任务由甲、乙两个工程队先后接力完成.甲工程队每天整治16米,乙工程队每天整治24米,共用时20天,求甲、乙两个工程队分别整治河道多少米?(1)小明、小华两位同学提出的解题思路如下:小明同学:设甲工程队整治河道x 米,乙工程队整治河道y 米。
2019-2020年七年级下学期期中考试数学试题含答案解析
2019-2020年七年级下学期期中考试数学试题含答案解析一、选择题:(每题3分,共24分)1.在下列实例中,属于平移过程的个数有.在下列实例中,属于平移过程的个数有 ( ) ①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.中传送带上的电视机的移动过程. A .1个 B .2个 C .3个 D .4个2.下列计算:(1)2nnna a a ×=,(2)6612a a a +=,(3)55c c c ×=,(4)778222+=,(5)3339(3)9xy x y = 中正确的个数为( ) A .4个B .3个C .2个D .1个3.下列各式能用平方差公式计算的( ) A .(3)(3)a b a b ---+ B .(3)()a b a b +- C .(3)(3)a b a b +--D .(3)(3)a b a b -+-4.若一个多边形每一个内角都是144º,则这个多边形的边( ) A .6 B .8 C .10 D .12 5.已知方程组2122x y x y k +=ìí+=-î的解满足2x y -=,则k 的值是( ) A .3k = B .5k = C . 1k =- D . 1k =6.已知,,a b c 是三角形的三边,那么代数式2222a ab b c -+-的值( ) A .大于零.大于零B .等于零.等于零C .小于零.小于零D .不能确定.不能确定 7.如图:将一张长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,ED′的延长线与BC 交与点G. 若∠BFC′=70°,则∠1= ( ) A .100°B .110°C .120°D .125°8.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( ) A . 6 B .7 C .8 D.9 绿化二、填空题:(每题3分,共30分)9.钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.0008平方公里,请用科学记数法表示飞濑岛的面积约为 平方公里.10.若2212x y -=,4x y +=,则x y -= .11. 若等腰三角形的两边的长分别是5cm 、10cm ,则它的周长为则它的周长为 cm . 12.若2,3==nma a , 则=-nm a2_________.13如果(2)()x x p ++的乘积不含一次项,那么p = 14.已知0222)21(,)21(,2,)2.0(-=-=-=-=--d c ba ,则比较a 、b 、c 、d 的大小结果是果是 .(按从小到大的顺序排列)15.某人要买一件25元的商品元的商品,,身上只带2元和5元两种人民币(数量足够),而商店没有零钱,那么他付款的方式有钱,那么他付款的方式有 种.16如右图,一块六边形绿化园地,六角都做有半径为R 的圆形喷水池,则这六个喷水池占去的绿化园地的面积为占去的绿化园地的面积为 .(结果保留p )17.如下图,在△ABC 中,∠B=600,∠C=400,AD ⊥BC 于D ,AE 平分∠BAC ;则∠DAE=________.18.如图,在△ABC 中,∠A=60°,BD 、CD 分别平分∠ABC 、∠ACB ,M 、N 、Q 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分∠MBC 、∠BCN ,BF 、CF 分别平分∠EBC 、∠ECQ ,则∠F= .三、解答题:(共96分)19.(本题满分8分)计算(或化简): (1)5243)()()2(a a a -¸+- ((2)2)1()4)(4(---+a a a20.(本题满分8分)将下列各式分解因式:分)将下列各式分解因式:(1)26126a a -+- (2)222(2)4(2)x x x +-+ 21.(本题满分8分)解下列方程组:分)解下列方程组:第17题图题图 第18题图题图第16题图题图(1)8312x y x y -=ìí+=î(2)ïîïíì=-+=+1323241y x x y22.(本题满分8分)先化简,再求值:2(2)(2)3(2)a b a b a b +-+-,其中1a =,2b =-.23.(本题满分10分)列方程组解决问题:为了净化空气,美化环境,某县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种玉兰树和松柏树的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?棵,问可种玉兰树和松柏树各多少棵?24.(本题满分10分)基本事实:“若0ab =,则00a b ==或”.一元二次方程220x x --=可通过因式分解化为(2)(1)0x x -+=,由基本事实得2010x x -=+=或,即方程的解为12x =;21x =-.(1)试利用上述基本事实,解方程:220x x -=:(2)若2222()(1)20x y x y ++--=,求2222x y +的值.的值.25.(本题满分10分)如图,∠1=52°,∠2=128°,∠C=∠D .探索∠A 与∠F 的数量关系,并说明理由并说明理由..26.(本题满分10分)如图,在方格纸内将△ABC 水平向右平移3个单位得到△A′B′C′. (1)利用网格点和直尺画出△A′B′C′; (2)画出AB 边上的高线CD ;(3)图中△ABC 的面积是的面积是 ; (4)△ABC 与△EBC 面积相等,在图中描出所有面积相等,在图中描出所有满足条件且异于A 点的格点E ,并记为E 1、E 2…………27.(本题满分12分)将若干个同样大小的小长方形纸片拼成如图形状的大长方形将若干个同样大小的小长方形纸片拼成如图形状的大长方形(小长方(小长方形纸片长为a ,宽为b),请你仔细观察图形,解答下列问题:A BC(1)a 与b 有怎样的关系?并简要说明理由有怎样的关系?并简要说明理由..(2)图中阴影部分的面积是大长方形面积的几分之几?并简要说明理由)图中阴影部分的面积是大长方形面积的几分之几?并简要说明理由..(3)请你仔细观察图中的一个阴影部分,请你仔细观察图中的一个阴影部分,根据它面积的不同表示方法写出含字母根据它面积的不同表示方法写出含字母a 、b 的一个等式一个等式..(等式不需要化简)(等式不需要化简)(第26题)ba28. (本题满分本题满分12分)在△ABC 中,∠ACB=90°,BD 是△ABC 的角平分线,P 是射线AC 上任意一点上任意一点(不与A 、D 、C 三点重合),过点P 作PQ ⊥AB ,垂足为Q ,交直线BD 于E . (1)如图①,当点P 在线段CD 上时,说明∠PDE=∠PED .(2)作∠CPQ 的角平分线交直线AB 于点F ,则PF 与BD 有怎样的位置关系?画出图形并说明理由.并说明理由.20142014——2015学年度第二学期期中考试七年级数学参考答案和评分标准一、选择题:(每题3分,共24分)题号题号 1 2 3 4 5 6 7 8 答案答案C C A C D C B B 二、填空题:(每题3分,共30分)题号题号 9 10 11 12 13 答案答案 4810-´3 25 922-题号题号 14 15 16 17 18 答案答案b a dc <<<3 22πR 010 015三、解答题:(共96分)19. (本题满分8分)计算:(每题4分) 解:(1)原式=39a -; (2)原式=217a -;20. (本题满分8分)将下列各式分解因式:(每题4分) (1)原式=26(1)a -- (2)原式=3(2)(2)x x +- 21. (本题满分8分)解下列方程组:(每题4分) (1)53x y =ìí=-î (2)373x y =-ìïí=-ïî22. (本题满分8分)分) 先化简,再求值:先化简,再求值:化简得2216122a ab b -+(6分)代入结果为:48(2分)分)23. (本题满分10分)分)解:设可种玉兰树x 棵,松柏树y 棵,由题意得:(1分)分)12的面积是的面积是 8 ;其余作图略,但必须按格点给分。
新乡市卫辉市2019-2020学年华东师大七年级数学下期中调研试卷有及详细答案
2019-2020学年下期期中调研试卷七年级数学2018.04注意事项:1.本试卷共6页,三大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案的代号填入题后括号内.1.下列四个式子中,是一元一次方程的是( )A. B. C. D.|1-0.5x|=0.5y2.下列变形中,正确的是( )A.若5x-6=7,则5x=7 -6 B.若x=l,则x=一3C.若,则2(x-1)+3(x+1)=1 D.若-3x=5,则x=3.二元一次方程组的解是( )A. B. C. D.4.不等式的解集是A.B.C.D.5.由方程组,可得出x与y之间的关系是A. B. C.D.6.若x、y满足方程组,则x-y的值等于( )A.-1 B.1 C.2 D.37.若,则下列式子错误的是( )A.B.C.D.8.用加减法解方程组时,最简捷的方法是( )A.,消去x B.,消去xC.,消去y D.,消去y9.设口○△表示三种不同的物体,用天平比较它们质量的大小,情况如图,这三种物体按质量从大到小的顺序为( )10.甲、乙二人按2:5的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙二人分别应分得( )A.2000元、5000元B.5000元、2000元C.4000元、1 0000元D.1 0000元、4000元二、填空题(每小题3分,共15分)11.以x=l为解的一元一次方程可以是(只需填写满足条件的一个方程即可).12.甲、乙两站相距300km,一列慢车从甲站开往己站,每小时行40km,一列快车从乙站开往甲站,每小时行80km.已知慢车先行1.5h,快车再开出,则快车开出h与慢车相遇.13.已知,则=.x>a14.若关于x的不等式组的解集为,则a的取值范围是.15.学生问老师:“老师,您今年多大啦?”老师风趣地说:“我像你那么大时,你才2岁;等你到我这么大时,我就38岁了.”则老师年龄为岁.三、解答题(本大题共8个小题,满分75分)16.解方程(每小题4分,共8分)(1)(2)17.解下列二元一次方程组(每小题5分,共10分)(1)(2)18.解下列不等式组(每小题5分,共10分)(1)解不等式组,并把解集在数轴上表示出来.(2)求不等式组的所有整数解.19.(8分)小明在对方程①去分母时,错误的得到了方程:②,因而求得的解是x=,试求m的值,并求方程的正确解.20.(9分)已知方程组,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a,b计算,求原方程组的解.21.(9分)某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子:(2)按总价的87.5%付款,某单位需购买5张桌子和若干把椅子(不少于10把).如果己知要购买x把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱?22.(10分)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二、个人所得税纳税税率如下表所示:缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?23.(11分)己知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用车和2辆B型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划同型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案:(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.。
【最新】2019-2020学年河南省乡市卫辉市华东师大七年级下期中考试数学试卷(精品解析).doc
2019-2020学年河南省新乡市卫辉市七年级(下)期中数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案的代号填入题后括号内.1.下列四个式子中,是一元一次方程的是()A.1+2+3+4>8 B.2x﹣3C.x=1 D.|1﹣0.5x|=0.5y2.下列变形中,正确的是()A.若5x﹣6=7,则5x=7﹣6B.若﹣3x=5,则x=﹣C.若+=1,则2(x﹣1)+3(x+1)=1D.若﹣x=1,则x=﹣33.二元一次方程组的解是()A.B.C.D.4.不等式﹣>1的解是()A.x<﹣5 B.x>﹣10 C.x<﹣10 D.x<﹣85.由方程组可得出x与y的关系是()A.x+y=1 B.x+y=﹣1 C.x+y=7 D.x+y=﹣76.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.37.若x>y,则下列式子错误的是()A.1﹣2x>1﹣2y B.x+2>y+2 C.﹣2x<﹣2y D.8.有加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去x B.①×4+②×3,消去xC.②×2+①,消去y D.②×2﹣①,消去y9.设□△○表示三种不同的物体,用天平比较它们质量的大小,情况如图,那么这三种物体按质量从大到小的顺序为()A.□△○B.□○△C.△○□D.△□○10.甲、乙两人按2:5的投资比例开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,则甲、乙两人分别应得()A.2000元、5000元B.5000元、2000元C.4000元、10000元D.10000元、4000元二、填空题(每小题3分,共15分)11.以x=1为解的一元一次方程是(写出一个方程即可).12.甲、乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km.已知慢车先行 1.5h,快车再开出,则快车开出h与慢车相遇.13.已知,则=.14.已知关于x的不等式组的解集为x>1,则a的取值范围是.15.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才2岁;你到我这么大时,我已经38岁了.”教师今年岁.三、解答题(本大题共8个小题,满分64分)16.(8分)解方程(1)3x﹣2=l﹣2(x+l)(2)17.(10分)解下列二元一次方程组(1)(2)18.(10分)解下列不等式组(1)解不等式组,并把解集在数轴上表示出来.(2)求不等式组2≤3x﹣7<8的所有整数解.19.(8分)聪聪在对方程①去分母时,错误的得到了方程2(x+3)﹣mx﹣1=3(5﹣x)②,因而求得的解是x=,试求m的值,并求方程的正确解.20.(9分)已知方程组,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a,b计算,求原方程组的解.21.(9分)某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子;(2)按总价的87.5%付款,某单位需购买5张桌子和若干把椅子(不少于10把).如果已知要购买x把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱?22.(10分)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二.个人所得税纳税税率如下表所示:纳税级数个人每月应纳税所得额纳税税率1 不超过1500元的部分3%10%2 超过1500元至4500元的部分20%3 超过4500元至9000元的部分4 超过9000元至35000元的部25%分30%5 超过35000元至55000元的部分35%6 超过55000元至80000元的部分7 超过80000元的部分45%(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?五、标题23.(11分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案:(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.2019-2020学年河南省新乡市卫辉市七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案的代号填入题后括号内.1.下列四个式子中,是一元一次方程的是()A.1+2+3+4>8 B.2x﹣3C.x=1 D.|1﹣0.5x|=0.5y【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、不是方程,故不是一元一次方程;B、不是方程,故不是一元一次方程;C、是一元一次方程;D、含有2个未知数,故不是一元一次方程.故选:C.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.下列变形中,正确的是()A.若5x﹣6=7,则5x=7﹣6B.若﹣3x=5,则x=﹣C.若+=1,则2(x﹣1)+3(x+1)=1D.若﹣x=1,则x=﹣3【分析】分别利用等式的基本性质判断得出即可.【解答】解:A、若5x﹣6=7,则5x=7+6,故此选项错误;B、若﹣3x=5,则x=﹣,故此选项错误;C、若+=1,则2(x﹣1)+3(x+1)=6,故此选项错误;D、若﹣x=1,则x=﹣3,此选项正确.故选:D.【点评】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题关键.3.二元一次方程组的解是()A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=0,则方程组的解为,故选:B.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.不等式﹣>1的解是()A.x<﹣5 B.x>﹣10 C.x<﹣10 D.x<﹣8【分析】不等式去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去分母得:3(x﹣1)﹣(4x+1)>6,去括号得:3x﹣3﹣4x﹣1>6,移项合并得:﹣x>10,解得:x<﹣10.故选:C.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.5.由方程组可得出x与y的关系是()A.x+y=1 B.x+y=﹣1 C.x+y=7 D.x+y=﹣7【分析】先把方程组化为的形式,再把两式相加即可得到关于x、y的关系式.【解答】解:原方程可化为,①+②得,x+y=7.故选:C.【点评】本题考查的是解二元一次方程组的加减消元法,比较简单.6.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.3【分析】方程组两方程相减即可求出x﹣y的值.【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.若x>y,则下列式子错误的是()A.1﹣2x>1﹣2y B.x+2>y+2 C.﹣2x<﹣2y D.【分析】根据不等式的性质3,不等式的性质1,可判断A,根据不等式的性质1,可判断B,根据不等式的性质3,可判断C,根据不等式的性质2,可判断D.【解答】解:A、1﹣2x<1﹣2y,故A错误;B、不等式两边都加上同一个数或整式,不等号的方向不变,故B正确;C、不等式的两边都乘或都除以同一个负数,不等号的方向改变,故C正确;D、不等式两边都乘或都除以同一正数,不等号的方向不变,故D正确;故选:A.【点评】本题考查了不等式的性质,不等式的两边都乘或都除以同一个负数,不等号的方向改变.8.有加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去x B.①×4+②×3,消去xC.②×2+①,消去y D.②×2﹣①,消去y【分析】将②中y的系数化为与①中y的系数相同,相减即可.【解答】解:由于②×2可得与①相同的y的系数,且所乘数字较小,之后﹣①即可消去y,最简单.故选:D.【点评】本题考查了解二元一次方程组,构造系数相等的量是解题的关键.9.设□△○表示三种不同的物体,用天平比较它们质量的大小,情况如图,那么这三种物体按质量从大到小的顺序为()A.□△○B.□○△C.△○□D.△□○【分析】通过一图知道□>△二图知道△=2○,进而求出三种物体质量从大到小的顺序.【解答】解:通过一图知道□>△二图知道△=2○,所以□>△>○,即□△○故选:A.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂图列出不等式关系式即可求解.10.甲、乙两人按2:5的投资比例开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,则甲、乙两人分别应得()A.2000元、5000元B.5000元、2000元C.4000元、10000元D.10000元、4000元【分析】此题的等量关系是甲、乙所得利润和为14000元,解题的关键是抓住此类题目的设法,此题可设甲、乙可获得利润分别是2x元、5x元,列方程即可.【解答】解:设甲、乙可获得利润分别是2x元、5x元,2x+5x=14000,解得x=2000.即甲、乙可获得利润分别是4000元、10000元.故选:C.【点评】考查了一元一次方程的应用,此题贴近于学生生活实际,利于学生理解,但要把握好比例问题中未知数得设法,设一份为x元,则甲、乙可获得利润分别是2x元、5x元.二、填空题(每小题3分,共15分)11.以x=1为解的一元一次方程是2x﹣2=0 (写出一个方程即可).【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程;它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:∵x=1,∴一元一次方程ax+b=0中a是不等于0的常数,b是任意常数;所以,可列方程如:2x﹣2=0等.故答案为:2x﹣2=0.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.12.甲、乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km.已知慢车先行 1.5h,快车再开出,则快车开出 2 h与慢车相遇.【分析】设快车开出xh后与慢车相遇,等量关系为:慢车走的路程+快车走的路程=300km,据此列方程求解.【解答】解:设快车开出xh后与慢车相遇,由题意得,40(1.5+x)+80x=300,解得:x=2,即快车开出2h与慢车相遇.故答案为:2.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.13.已知,则=﹣3 .【分析】①﹣②得:x+3y=0,代入原式计算即可求出值.【解答】解:,①﹣②得:x+3y=0,∴x=﹣3y则原式=﹣3,故答案为:﹣ 3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.已知关于x的不等式组的解集为x>1,则a的取值范围是a≤1 .【分析】根据不等式组的解集是同大取大,可得答案.【解答】解:由关于x的不等式组的解集为x>1,得a≤1,故答案为:a≤1.【点评】本题考查了不等式组的解集,不等式组的解集是:同大取大,同小取小,大小小大中间找,大大小小无处找.15.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才2岁;你到我这么大时,我已经38岁了.”教师今年26 岁.【分析】本题中明显的等量关系有两个:学生现在的年龄﹣年龄差=2;老师现在的年龄+年龄差=38,据此可以现设学生和老师现在的年龄为x、y,再列方程组求解【解答】解;设老师现在x岁,学生现在y岁,则解得:即老师现在26岁.故答案为:26.【点评】本题考查了二元一次方程组的应用,列方程组解应用题分为以下几步:(1)仔细阅读,弄清题意和题目中的数量关系;(2)根据数量关系,列出等式;(3)解答.三、解答题(本大题共8个小题,满分64分)16.(8分)解方程(1)3x﹣2=l﹣2(x+l)(2)【分析】(1)根据去括号,移项、合并同类项,系数化为1,可得答案.(2)根据去分母、去括号,移项、合并同类项,系数化为1,可得答案.【解答】解:(1)去括号,得3x﹣2=1﹣2x﹣2,移项,得3x+2x=1﹣2+2,合并同类项,得5x=1,系数化为1,得x=;(2)去分母,得2(2x+1)﹣(5x﹣1)=6去括号,得4x+2﹣5x+1=6移项,得4x﹣5x=6﹣2﹣1合并同类项,得﹣x=3系数化为1,得x=﹣3.【点评】本题考查了解一元一次方程,去分母是解题关键,不含分母的项要乘分母的最小公倍数,分子要加括号.17.(10分)解下列二元一次方程组(1)(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(10分)解下列不等式组(1)解不等式组,并把解集在数轴上表示出来.(2)求不等式组2≤3x﹣7<8的所有整数解.【分析】(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.(2)将不等式整理成一般形式,分别求出每一个不等式的解集,根据大小小大中间找确定不等式组的解集,从而得出答案.【解答】解:(1)解不等式①,得:x≥1,解不等式②,得:x<4,则不等式组的解集为1≤x<4,将不等式组的解集表示在数轴上如下:(2),解不等式①,得:x≥3,解不等式②,得:x<5,所以不等式组的解集为3≤x<5,则不等式组的整数解有3、4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(8分)聪聪在对方程①去分母时,错误的得到了方程2(x+3)﹣mx﹣1=3(5﹣x)②,因而求得的解是x=,试求m的值,并求方程的正确解.【分析】将x=代入方程②,整理即可求出m的值,将m的值代入方程①即可求出正确的解.【解答】解:把x=代入方程②得:2(+3)﹣m﹣1=3(5﹣),解得:m=1,把m=1代入方程①得:﹣=,去分母得:2(x+3)﹣x+1=3(5﹣x),去括号得:2x+6﹣x+1=15﹣3x,移项合并得:4x=8,解得:x=2,则方程的正确解为x=2.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.20.(9分)已知方程组,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a,b计算,求原方程组的解.【分析】把甲的结果代入(2)求出b的值,把乙的结果代入(1)求出a的值,确定出方程组,求出解即可.【解答】解:把代入(2)中得:﹣12﹣b=﹣2,解得:b=﹣10,把代入(1)中得:a+20=15,解得:a=﹣5,方程组为,即,①×2+②得:7y=5,解得:y=,把y=代入①得:x=﹣,则方程组的解为.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.(9分)某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子;(2)按总价的87.5%付款,某单位需购买5张桌子和若干把椅子(不少于10把).如果已知要购买x把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱?【分析】设需要购买x(x≥10)把椅子,需要花费的总钱数为y元,分别按照两种方案表示出y,判断即可.【解答】解:设需要购买x(x≥10)把椅子,需要花费的总钱数为y元,第一种方案为y1=300×5+60(x﹣10)=1500+60x﹣600=900+60x;第二种方案为y2=(300×5+60x)×87.5%=1312.5+52.5x,两种方案花的钱数相等时,则有900+60x=1312.5+52.5x,解得:x=55,则当购买55把椅子时,两种方案花的钱数相等;当购买的椅子大于55把时,选择第二种方案;当购买的椅子大于等于10把而小于55把时,选择第一种方案.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.22.(10分)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二.个人所得税纳税税率如下表所示:纳税级数个人每月应纳税所得额纳税税率1 不超过1500元的部分3%2 超过1500元至4500元的部10%分20%3 超过4500元至9000元的部分25%4 超过9000元至35000元的部分30%5 超过35000元至55000元的部分35%6 超过55000元至80000元的部分7 超过80000元的部分45%(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?【分析】(1)根据月收入超过3500元起,超过部分在1500元内的部分,应按照3%的税率缴纳个人所得税,甲的月工资4000元,应缴税的部分是4000﹣3500=500元,再算出500元应缴纳的税款即可;超过部分在1500元至4500元的部分,应按照10%的税率缴纳个人所得税,乙的月工资6000元,应缴税的部分是6000﹣3500=2500元,再算出2500元应缴纳的税款即可;(2)根据个人所得税纳税税率表可知,丙每月的工资收入额应为超过4500元至9000元的部分,设丙每月的工资收入额应为x元,根据丙每月缴纳的个人所得税为95元列出方程即可求解.【解答】解:(1)(4000﹣3500)×3%=500×3%=15(元),1500×3%+(6000﹣3500﹣1500)×10%=45+1000×10%=45+100=145(元).答:甲每月应缴纳的个人所得税为15元;乙每月应缴纳的个人所得税145元.(2)设丙每月的工资收入额应为x元,则1500×3%+(x﹣3500﹣1500)×10%=95,解得x=5500.答:丙每月的工资收入额应为5500元.【点评】考查了一元一次方程的应用,解决本题关键是理解纳税的办法,找出应纳税的部分,然后根据基本的数量关系求解.五、标题23.(11分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案:(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.【分析】(1)根据2辆A型车和1辆B型车装满货物=10吨;1辆A型车和2辆B型车装满货物=11吨,列出方程组即可解决问题.(2)由题意得到3a+4b=26,根据a、b均为正整数,即可求出a、b的值.(3)求出每种方案下的租金数,经比较、分析,即可解决问题.【解答】解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货λ吨、μ吨,由题意得:,解得:λ=3,μ=4.故1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.(2)由题意和(1)得:3a+4b=26,∵a、b均为非负整数,∴或,∴共有2种租车方案:①租A型车6辆,B型车2辆,②租A型车2辆,B型车5辆.(3)方案①的租金为:6×100+2×120=840(元),方案②的租金为:2×100+5×120=800(元),∵840>800,∴最省钱的租车方案为方案②,租车费用为800元.【点评】该题主要考查了列二元一次方程组或二元一次方程来解决现实生活中的实际应用问题;解题的关键是深入把握题意,准确找出命题中隐含的数量关系,正确列出方程或方程组来分析、推理、解答.。
河南新乡辉县城北中学2019-2020学年七年级下学期期中考试数学卷(前四章五月期中检测)
城北中学七年级下学期期中考试数学试卷一、选择题(每小题3分,共30分)1、若a >b ,则下列不等式变形错误的是( )A .a +1>b +1B .-a 3<-b 3C .3a -1>3b -1D .1-a >1-b2.已知⎩⎨⎧==12y x 是二元一次方程3=-y kx 的一个解,那么k 的值是( )A 1B -1C 2D -23、一个一元一次不等式组的解集在数轴上表示如图所示,则此不等式组的解集是( )A x >3B x ≥3C x >1D x ≥14、下列几种形状的瓷砖中,只用一种不能够铺满地面的是( )A 正六边形B 正五边形C 正方形D 正三角形5、下列长度的各组线段能组成三角形的是( )A 、3㎝ 8㎝ 5㎝B 、12㎝ 5㎝ 6㎝C 、5㎝ 5㎝ 10㎝D 、15㎝ 10㎝ 7㎝6、已知()042322=+-+-+y x y x ,则()2016y x +的值是( )A -1B 1C -2016D 20167、已知方程组⎩⎨⎧+-=+-=+12232k y x k y x 的解满足x-y ≥5,则K 的取值为( )A -2B 0C 1D 38、如果不等式组⎩⎨⎧----13221x a x x <>的解集是x >-1,那么a 的取值范围是( ) A a >2 B a ≥2 C a <2 D a ≤29、为了搞活经济,某商场将一种商品A 按标价9折出售,仍获利润10%,若商品A 标价为33元,那么商品进货价为( )A 31元B 30.2元C 29.7元D 27元10、如图,已知点D,E,F 分别是AB,BC,CD 的中点,221cm S DEF =△,则()2cm S ABC =△ A 2 B 3 C 4 D 5二、填空题(每小题3分,共15分)11、若()0421=+--a x a 是关于x 的一元一次方程,则a=______.12、已知关于x 的不等式()14-->x k 的解集为41--k x <,则k 的取值范围是________________. 13、已知一个三角形的两边长为6㎝和8㎝,则第三边x 的取值范围是________________.若该三角形是等腰三角形,则周长为________________.14、如果一个多边形的内角和是其外角和的3倍,则这个多边形是________________.15、如果不等式组⎩⎨⎧+-00φπa x b x 的解集是32ππx ,那么关于xy 的方程组⎩⎨⎧=-=+125by x y ax 的解为_____________.三、解答题(本大题共满分75分)16、(每小题5分,共10分)解方程:(1)解方程161242=--+y y (2)解方程组.⎩⎨⎧=--=-01083872y x y x17、解不等式或不等式组,并把解集表示在数轴上 (5分)(1)167521-≥---x x (8分)(2)()⎪⎪⎩⎪⎪⎨⎧-≤+---21342412x x x x φ18、(6分)如图△ABC 中,∠B=∠C ,FD ⊥BC,DE ⊥AB ,垂足分别为D,E ,∠AFD=158°,求(1)∠C 的度数 (2)∠EDF 的度数19、(8分)在解方程组⎩⎨⎧-=-=+24155by x y ax 时,由于粗心,甲看错了方程组中的a ,得到的解是⎩⎨⎧-=-=13y x ;乙看错了方程中的b ,得到的解是⎩⎨⎧=-=41y x若按正确的a,b 计算,求原来方程组正确的解20、(8分)已知关于x ,y 的二元一次方程组⎩⎨⎧+=++=-9315a y x a y x 的解为正数,求(1)求a 的取值范围(2)化简454--+a a21、(9分)如图,△ABC 中,AD 是∠BAC 的平分线,(1)画△ABC 的高AE(2)在(1)的作图下,如果∠B=50°,∠C=70°,求∠DAE 的度数.(3)求∠EAD ,∠B ,∠C 三者的数量关系22、(10分)潮流服装店老板到厂家选购A 、B 两种型号的服装,若购进A 种型号服装9件,B 种型号服装10件,需要1810元;若购进A 种型号服装12件,B 种型号服装8件,需要1880元(1)问A 、B 两种型号的服装每件分别为多少元?(2)若销售1件A 型服装可获利18元,销售1件B 型服装可获利30元,根据市场需求,服装店老板决定,购进A 型服装的数量要比购进B 型服装的数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案?如何进货?23(11分)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题. 探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,通过分析发现,A BOC ∠+︒=∠2190理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线, ∴ACB ABC ∠=∠∠=∠212,211 ∴.()ACB ABC ∠+∠=∠+∠2121 又∵∠ABC +∠ACB =180°-∠A , ∴,()A A ∠︒=∠︒=∠+∠21-90-1802121 ∴()A BOC ∠+︒=∠+∠︒=∠219021-180 (1)探究2:如图2中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系?请说明理由.(2)探究3:如图3中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)结论:________.(3)拓展:如图,在四边形ABCD 中,O 是∠ABC 与∠BCD 的平分线BO 和CO 的交点,则∠BOC 与∠A+∠D 有怎样的关系?(直接写出结论)。
2019-2020学年七年级(下)期中数学试卷(解析版)
2019-2020学年七年级(下)期中数学试卷(时间:120分,满分150分)一、精心选一选(本题共10个小题,每小题4分,共40分,每小题只有一个正确选项) 1.在下列实数中,属于无理数的是------------------------------------------( )A .0B .2C .3D .1/32.如图,小手盖住的点的坐标可能为---------------------------------------( )A .(﹣1,1)B .(﹣1,﹣1)C .(1,1)D .(1,﹣1)3.如图,线段AB 是线段CD 经过平移得到的,那么线段AC 与BD 的关系是----------------------------------------------------------------------------------( ) A .平行且相等 B .平行 C .相交D .相等4.如图,直线a ,b 与直线c ,d 相交,若∠1=∠2,∠3=110°,则∠4=( )A .70°B .80°C .110°D .100°5.已知直线AB ,CB ,l 在同一平面内,若AB ⊥l ,垂足为B ,CB ⊥l ,垂足也为B ,则符合题意的图形可以是------------------------------------------( )6.若m >n ,下列不等式一定成立的是-------------------------------------( )A .m ﹣2>n+2B .2m >2nC .﹣>D .m 2>n 27.如图,已知∠A=60°,下列条件能判定AB ∥CD 的是--------------( )A .∠C=60°B .∠E=60°C .∠AFD=60°D .∠AFC=60°8.已知一个表面积为12㎡的正方体,则这个正方体的棱长为-------------------------------( )A .1mB .m C .6m D .3m9.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为-------------------------------------------------------------------------( ) A .B .C .D .……………密……………封……………线……………内……………不……………准……………答……………题…………………考室N O ._____ 考号N O .______ 班级______ 姓名__________ 座号_____①考生要写清姓名、班级及座号②答题时,字迹要清楚,卷面要整 ③考生不准作弊,否则作零分处理注意事项10.如图,在△ABC 中,BC=6,将△ABC 以每秒2cm 的速度沿BC 所在直线向右平移,所得图形对应为△DEF ,设平移时间为t 秒,若要使AD=2CE 成立,则t 的值为------------------------------------------------------------( ) A .6B .1C .2D .3二、细心填一填(本题共6个小题,每小题4分,共24分。
新乡市卫辉市2019年华东师大七年级数学下期中调研试卷有及答案(已审阅)
2019-2020学年下期期中调研试卷七年级数学2018.04注意事项:1.本试卷共6页,三大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案的代号填入题后括号内.1.下列四个式子中,是一元一次方程的是 ( )A. B. C. D.|1-0.5x|=0.5y2.下列变形中,正确的是 ( )A.若5x-6=7,则5x=7 -6 B.若x=l,则x=一3C.若,则2(x-1)+3(x+1)=1 D.若-3x=5,则x=3.二元一次方程组的解是 ( )A. B. C. D.4.不等式的解集是A. B. C.D.5.由方程组,可得出x与y之间的关系是A. B. C.D.6.若x、y满足方程组 ,则x-y的值等于 ( )A.-1 B.1 C.2 D.37.若,则下列式子错误的是 ( )A. B. C. D.8.用加减法解方程组时,最简捷的方法是 ( )A.,消去x B.,消去xC.,消去y D.,消去y9.设口○△表示三种不同的物体,用天平比较它们质量的大小,情况如图,这三种物体按质量从大到小的顺序为 ( )10.甲、乙二人按2:5的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙二人分别应分得 ( )A.2000元、5000元 B.5000元、2000元C.4000元、1 0000元 D.1 0000元、4000元二、填空题(每小题3分,共15分)11.以x=l为解的一元一次方程可以是(只需填写满足条件的一个方程即可).12.甲、乙两站相距300km,一列慢车从甲站开往己站,每小时行40km,一列快车从乙站开往甲站,每小时行80km.已知慢车先行1.5h,快车再开出,则快车开出h与慢车相遇.13.已知,则=.x>a14.若关于x的不等式组的解集为,则a的取值范围是.15.学生问老师:“老师,您今年多大啦?”老师风趣地说:“我像你那么大时,你才2岁;等你到我这么大时,我就38岁了.”则老师年龄为岁.三、解答题(本大题共8个小题,满分75分)16.解方程(每小题4分,共8分)(1)(2)17.解下列二元一次方程组(每小题5分,共10分)(1)(2)18.解下列不等式组(每小题5分,共10分)(1)解不等式组,并把解集在数轴上表示出来.(2)求不等式组的所有整数解.19.(8分)小明在对方程①去分母时,错误的得到了方程:②,因而求得的解是x=,试求m的值,并求方程的正确解.20.(9分)已知方程组 ,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a,b计算,求原方程组的解.21.(9分)某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子:(2)按总价的87.5%付款,某单位需购买5张桌子和若干把椅子(不少于10把).如果己知要购买x把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱?22.(10分)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二、个人所得税纳税税率如下表所示:应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?23.(11分)己知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用车和2辆B型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划同型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案:(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.。
新乡市卫辉市2019年华东师大七年级数学下期中调研试卷有及答案(已纠错)
2019-2020学年下期期中调研试卷七年级数学2018.04注意事项:1.本试卷共6页,三大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案的代号填入题后括号内.1.下列四个式子中,是一元一次方程的是 ( )A. B. C. D.|1-0.5x|=0.5y2.下列变形中,正确的是 ( )A.若5x-6=7,则5x=7 -6 B.若x=l,则x=一3C.若,则2(x-1)+3(x+1)=1 D.若-3x=5,则x=3.二元一次方程组的解是 ( )A. B. C. D.4.不等式的解集是A. B. C.D.5.由方程组,可得出x与y之间的关系是A. B. C.D.6.若x、y满足方程组 ,则x-y的值等于 ( )A.-1 B.1 C.2 D.37.若,则下列式子错误的是 ( )A. B. C. D.8.用加减法解方程组时,最简捷的方法是 ( )A.,消去x B.,消去xC.,消去y D.,消去y9.设口○△表示三种不同的物体,用天平比较它们质量的大小,情况如图,这三种物体按质量从大到小的顺序为 ( )10.甲、乙二人按2:5的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙二人分别应分得 ( )A.2000元、5000元 B.5000元、2000元C.4000元、1 0000元 D.1 0000元、4000元二、填空题(每小题3分,共15分)11.以x=l为解的一元一次方程可以是(只需填写满足条件的一个方程即可).12.甲、乙两站相距300km,一列慢车从甲站开往己站,每小时行40km,一列快车从乙站开往甲站,每小时行80km.已知慢车先行1.5h,快车再开出,则快车开出h与慢车相遇.13.已知,则=.x>a14.若关于x的不等式组的解集为,则a的取值范围是.15.学生问老师:“老师,您今年多大啦?”老师风趣地说:“我像你那么大时,你才2岁;等你到我这么大时,我就38岁了.”则老师年龄为岁.三、解答题(本大题共8个小题,满分75分)16.解方程(每小题4分,共8分)(1)(2)17.解下列二元一次方程组(每小题5分,共10分)(1)(2)18.解下列不等式组(每小题5分,共10分)(1)解不等式组,并把解集在数轴上表示出来.(2)求不等式组的所有整数解.19.(8分)小明在对方程①去分母时,错误的得到了方程:②,因而求得的解是x=,试求m的值,并求方程的正确解.20.(9分)已知方程组 ,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a,b计算,求原方程组的解.21.(9分)某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子:(2)按总价的87.5%付款,某单位需购买5张桌子和若干把椅子(不少于10把).如果己知要购买x把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱?22.(10分)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二、个人所得税纳税税率如下表所示:应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?23.(11分)己知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用车和2辆B型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划同型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案:(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年河南省新乡市卫辉市七年级(下)期中数学试卷一.选择题(共10小题)1.若x=﹣3是方程2(x﹣m)=6的解,则m的值为()A.6B.﹣6C.12D.﹣122.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1B.1C.2D.33.若a>b,且c为任意有理数,则下列不等式正确的是()A.ac>bc B.ac<bc C.ac2>bc2D.a+c>b+c4.不等式组的解集在数轴上表示为()A.B.C.D.5.已知,则a+b等于()A.3B.C.2D.16.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元7.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.8.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.为解决这个问题,所列方程组正确的是()A.B.C.D.9.如果(a+1)x<a+1的解集是x>1,那么a的取值范围是()A.a<0B.a<﹣1C.a>﹣1D.a是任意有理数10.某种导火线的燃烧速度是0.82厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为()A.22厘米B.23厘米C.24厘米D.25厘米二.填空题(共5小题)11.已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为.12.若3x+2与﹣2x+1互为相反数,则x﹣2的值是.13.4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b=.14.若m<n,则不等式组的解集是.15.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是元.三.解答题(共7小题)16.解下列方程(组):(1);(2)=x﹣2;(3);(4)(x﹣1).17.解不等式组,并在数轴上表示出它的解集.18.已知方程组和有相同的解,求a2﹣2ab+b2的值.19.某车间有工人56名,生产一种螺栓和螺母,每人每天平均能生产螺栓24个或螺母36个,应怎样分配工人,才能使一个螺栓配2个螺母刚好配套?20.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x、y的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21平方米,且地面总面积是卫生间面积的15倍.若铺1平方米地砖的平均费用为100元,那么铺地砖的总费用为多少元?21.一项工程,甲单独完成要9天,乙单独完成要12天,丙单独完成要15天.若甲、丙先做3天后,甲因故离开,由乙接替甲的工作,问:还要多少天能完成这项工程的?22.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?参考答案与试题解析一.选择题(共10小题)1.若x=﹣3是方程2(x﹣m)=6的解,则m的值为()A.6B.﹣6C.12D.﹣12【分析】把x=﹣3,代入方程得到一个关于m的方程,即可求解.【解答】解:把x=﹣3代入方程得:2(﹣3﹣m)=6,解得:m=﹣6.故选:B.2.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1B.1C.2D.3【分析】根据二元一次方程组的解的定义,将代入原方程组,分别求得a、b的值,然后再来求a﹣b的值.【解答】解:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①﹣②,得b=3,∴a﹣b=﹣1;故选:A.3.若a>b,且c为任意有理数,则下列不等式正确的是()A.ac>bc B.ac<bc C.ac2>bc2D.a+c>b+c【分析】根据不等式的性质进行选择即可.【解答】解:∵a>b,且c为任意有理数,∴a+c>b+c,故选:D.4.不等式组的解集在数轴上表示为()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,解得:1<x≤2,表示在数轴上,如图所示:故选:C.5.已知,则a+b等于()A.3B.C.2D.1【分析】①+②得出4a+4b=12,方程的两边都除以4即可得出答案.【解答】解:,∵①+②得:4a+4b=12,∴a+b=3.故选:A.6.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.7.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.8.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.为解决这个问题,所列方程组正确的是()A.B.C.D.【分析】两个定量为:加工天数,蔬菜吨数.等量关系为:精加工天数+粗加工天数=15;6×精加工天数+16×粗加工天数=140.【解答】解:设安排x天精加工,y天粗加工,列方程组:.故选:D.9.如果(a+1)x<a+1的解集是x>1,那么a的取值范围是()A.a<0B.a<﹣1C.a>﹣1D.a是任意有理数【分析】根据不等式的性质3,可得答案.【解答】解:如果(a+1)x<a+1的解集是x>1,得a+1<0,a<﹣1,故选:B.10.某种导火线的燃烧速度是0.82厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为()A.22厘米B.23厘米C.24厘米D.25厘米【分析】设至少为x,根据题意可得跑开时间要小于或等于爆炸的时间,由此可列出代数式求解.【解答】解:设导火线的长为xcm,由题意得:>x>24cm故选:D.二.填空题(共5小题)11.已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为﹣9.【分析】将x=﹣2代入方程计算即可求出a的值.【解答】解:将x=﹣2代入方程得:﹣4﹣a﹣5=0,解得:a=﹣9.故答案为:﹣912.若3x+2与﹣2x+1互为相反数,则x﹣2的值是﹣5.【分析】根据互为相反数的两数之和为0可列方程,解答即可.【解答】解:∵3x+2与﹣2x+1互为相反数,∴3x+2+(﹣2x+1)=0,解得:x=﹣3,则x﹣2=﹣3﹣2=﹣5.故填:﹣5.13.4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b=0.【分析】根据二元一次方程的定义即可得到x、y的次数都是1,则得到关于a,b的方程组求得a,b的值,则代数式的值即可求得.【解答】解:根据题意得:,解得:.则a﹣b=0.故答案为:0.14.若m<n,则不等式组的解集是m﹣1<x<n+2.【分析】先根据m<n得出m﹣1与n+2的大小,再根据求不等式解集的方法得出不等式组的解集.【解答】解:∵m<n,∴m﹣1<n+2,∴m﹣1<x<n+2.故答案为:m﹣1<x<n+2.15.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是100元.【分析】根据题意,找出相等关系为:进价×(1+20%)=200×60%,设未知数列方程求解.【解答】解:设这件服装的进价为x元,依题意得:(1+20%)x=200×60%,解得:x=100,则这件服装的进价是100元.故答案为100.三.解答题(共7小题)16.解下列方程(组):(1);(2)=x﹣2;(3);(4)(x﹣1).【分析】(1)根据二元一次方程组的解法求解即可;(2)根据一元一次方程的步骤求解即可;(3)用一元一次方程的步骤求解即可;(4)先去小括号,再去中括号,最后去大括号求解即可.【解答】解:(1);①+②×4得:x=﹣3,把x=﹣3代入①得:y=2;所以方程组的解为:;(2)=x﹣2;,①﹣②得:y=﹣14,把y=﹣14代入①得:x=﹣17;所以方程组的解为:;(3);6(0.5x+0.9)+x﹣5=100(0.01+0.02x)解得:x=0.3;(4)(x﹣1).,解得:x=2.2.17.解不等式组,并在数轴上表示出它的解集.【分析】利用去分母及去括号法则化简原不等式组的两不等式,分别求出解集,将两解集表示在数轴上,找出两解集的公共部分,即可得到原不等式组的解集.【解答】解:,由不等式①去分母得:x+5>2x,解得:x<5;由不等式②去括号得:x﹣3x+3≤5,解得:x≥﹣1,把不等式①、②的解集表示在数轴上为:则原不等式的解集为﹣1≤x<5.18.已知方程组和有相同的解,求a2﹣2ab+b2的值.【分析】由题意将两方程组中的第一个方程联立组成方程组求出x与y的值,分别代入每一个方程组中第二个方程中求出a与b的值,代入所求式子中计算即可求出值.【解答】解:由题意列得:,解得:,可得,即a=14,b=2,则a2﹣2ab+b2=(a﹣b)2=(14﹣2)2=144.19.某车间有工人56名,生产一种螺栓和螺母,每人每天平均能生产螺栓24个或螺母36个,应怎样分配工人,才能使一个螺栓配2个螺母刚好配套?【分析】设应分配x人生产螺栓,y人生产螺母,才能使一个螺栓配2个螺母刚好配套,根据每人每天平均能生产螺栓24个或螺母36个和一个螺栓配2个螺母刚好配套,列出方程组,再进行求解即可.【解答】解:设应分配x人生产螺栓,y人生产螺母,才能使一个螺栓配2个螺母刚好配套,根据题意,得,解得,答:应分配24个人生产螺栓,32个人生产螺母.20.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x、y的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21平方米,且地面总面积是卫生间面积的15倍.若铺1平方米地砖的平均费用为100元,那么铺地砖的总费用为多少元?【分析】(1)设客厅的宽是x,卫生间的宽是y,根据长方形的面积=长×宽,表示出总面积.(2)设客厅的宽是x,卫生间的宽是y,根据已知客厅面积比卫生间面积多21平方米,且地面总面积是卫生间面积的15倍.若铺1平方米地砖的平均费用为100元,列出方程组求解.【解答】解:(1)设客厅的宽是x,卫生间的宽是y,地面的总面积为:3×4+2y+2×3+6x=6x+2y+18;(2)由题意得,整理得:,①﹣②×2得:26y=39,解得:y=1.5,把y=1.5代入①解得:x=4,解得:,∴地面总面积为:S(总)=6x+2y+18=45(m2),∴铺地砖的总费用为:45×100=4500(元).答:那么铺地砖的总费用为4500元(1分)21.一项工程,甲单独完成要9天,乙单独完成要12天,丙单独完成要15天.若甲、丙先做3天后,甲因故离开,由乙接替甲的工作,问:还要多少天能完成这项工程的?【分析】设这项工程总量为1,设还需x天完成这项工程的,则甲、乙、丙的工作效率为、、,甲、丙一起做三天可做+,乙、丙x天后可做+,可根据3+x 天后完成的工总量=×工程总量为等量关系,列出方程求解即可.【解答】解:设还需x天完成这项工程的,根据题意得:,解得:x=2答:还需2天能完成这项工程的.22.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?【分析】(1)设单独租用35座客车需x辆.根据单独租用35座客车若干辆,则刚好坐满和单独租用55座客车,则可以少租一辆,且余45个空座位,分别表示出总人数,从而列方程求解;(2)设租35座客车y辆,则租55座客车(4﹣y)辆.根据不等关系:①两种车坐的总人数不小于175人;②租车资金不超过1500元.列不等式组分析求解.【解答】解:(1)设单独租用35座客车需x辆.由题意得:35x=55(x﹣1)﹣45,解得:x=5.∴35x=35×5=175(人).答:该校八年级参加社会实践活动的人数为175人.(2)设租35座客车y辆,则租55座客车(4﹣y)辆.由题意得:,解这个不等式组,得∵y取正整数,∴y=2.∴4﹣y=4﹣2=2.∴租金为:320×2+400×2=1440(元).答:本次社会实践活动所需车辆的租金为1440元.。