复数概念坐标及运算
复数概念及公式总结
数系的扩充和复数概念和公式总结1.虚数单位i:它的平方等于-1,即21i=-2. i与-1的关系: i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i3. i的周期性:i4n+1=i, i4n+2=-1, i4n+3=-i, i4n=14.复数的定义:形如(,)a bi ab R+∈的数叫复数,a叫复数的实部,b叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示复数通常用字母z表示,即(,)z a bi a b R=+∈5. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi ab R+∈,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;a≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0.5.复数集与其它数集之间的关系:N Z Q R C.6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 当两个复数不全是实数时不能比较大小7. 复平面、实轴、虚轴:点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R)可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 (1)实轴上的点都表示实数(2)虚轴上的点都表示纯虚数(3)原点对应的有序实数对为(0,0)设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R)是任意两个复数,8.复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .9.复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .10.复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i .11.复数z 1与z 2的除法运算律:z 1÷z 2 =(a +bi )÷(c +di )=i dc ad bc d c bd ac 2222+-+++(分母实数化) 12.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数通常记复数z 的共轭复数为z 。
(完整版)复数知识点总结
复数一、复数的概念1. 虚数单位i(1) 它的平方等于1-,即 2i 1=-;(2) 实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律.(3) i 的乘方: 4414243*i 1,i i,i 1,i i,N n n n n n +++===-=-∈,它们不超出i b 的形式.2. 复数的定义形如i(,)R a b a b +∈的数叫做复数, ,a b 分别叫做复数的实部与虚部3. 复数相等 i i a b c d +=+,即,a c b d ==,那么这两个复数相等4. 共轭复数 i z a b =+时,i z a b =-. 性质:z z =;2121z z z z ±=±;1121z z z z ⋅=⋅; );0()(22121≠=z z z z z 二、复平面及复数的坐标表示1. 复平面在直角坐标系里,点z 的横坐标是a ,纵坐标是b ,复数i z a b =+可用点(,)Z a b 来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴为实轴,y 轴出去原点的部分称为虚轴.2. 复数的坐标表示 点(,)Z a b3. 复数的向量表示 向量OZ .4. 复数的模在复平面内,复数i z a b =+对应点(,)Z a b ,点Z 到原点的距离OZ 叫做复数z 的模,记作z .由定义知,z =.三、复数的运算1. 加法 (i)(i)()()i a b c d a c b d +++=+++.几何意义: 设1i z a b =+对应向量1(,)OZ a b =,2i z c d =+对应向量2(,)OZ c d =,则12z z +对应的向量为12(,)OZ OZ a c b d +=++.因此复数的和可以在复平面上用平行四边形法则解释.2. 减法 (i)(i)()()i a b c d a c b d +-+=-+-.几何意义: 设1i z a b =+对应向量1(,)OZ a b =,2i z c d =+对应向量2(,)OZ c d =,则12z z -对应的向量为1221(,)OZ OZ Z Z a c b d -==--.12()()i z z a c b d -=-+-=1Z 、2Z 两点之间的距离,也等于向量12Z Z 的模.3. 乘法 ()()()()a bi c di a c b d i +±+=±+±.4. 乘方 m n m n z z z +⋅= ()m n mn z z = 1212()n n n z z z z ⋅=⋅5. 除法 ()()()()()()()()22a bi c di ac bd bc ad i a bi a bi c di c di c di c di c d+-++-++÷+===++-+. 6. 复数运算的常用结论 (1) 222(i)2i a b a b ab +=-+, 22(i)(i)a b a b a b +-=+(2) 2(1i)2i +=, 2(1i)2i -=-(3) 1i i 1i +=-, 1i i 1i-=-+ (4) 1212z z z z ±=±, 1212z z z z ⋅=⋅, 1122z z z z ⎛⎫=⎪⎝⎭,z z =.(5) 2z z z ⋅=, z z =(6) 121212z z z z z z -≤+≤+ (7) 1212z z z z ⋅=⋅,1212z z z z ⋅=⋅,nn z z = 四、复数的平方根与立方根1. 平方根 若2(i)i a b c d +=+,则i a b +是i c d +的一个平方根,(i)a b -+也是i c d +的平方根. (1的平方根是i ±.) 2. 立方根 如果复数1z 、2z 满足312z z =,则称1z 是2z 的立方根.(1) 1的立方根: 21,,ωω.12ω=-+,212ωω==--,31ω=. 210ωω++=. (2) 1-的立方根:111,22z z -=+=-. 五、复数方程1. 常见图形的复数方程(1) 圆:0z z r -=(0r >,0z 为常数),表示以0z 对应的点0Z 为圆心,r 为半径的圆(2) 线段12Z Z 的中垂线:12z z z z -=-(其中12,z z 分别对应点12,Z Z )(3) 椭圆: 122z z z z a -+-=(其中0a >且122z z a -<),表示以12,z z 对应的点F1、F2为焦点,长轴长为2a 的椭圆(4) 双曲线: 122z z z z a ---=(其中0a >且122z z a ->),表示以12,z z 对应的点F1、F2为焦点,实轴长为2a 的双曲线2. 实系数方程在复数范围内求根(1)求根公式:1,21,21,20 20 20 2b x a b x a b x a ⎧-∆>=⎪⎪⎪-∆==⎨⎪⎪-±∆<=⎪⎩一对实根一对相等的实根一对共轭虚根 (2) 韦达定理:1212b x x a cx x a ⎧+=-⎪⎪⎨⎪=⎪⎩。
复数的几种表示形式的转换及计算
u(t)
U
m
cos(t
)
u
i(t)
I m cos(t
)
i
--本书采用cosine函数。
二、正弦量的三要素
1.幅值Um/Im:
Um、Im --振幅,正弦量的极大值 当cos(ω t+)=1时,imax=Im;当cos(ω t+)=-1时,imin=-Im。 Imax-Imin=2Im --正弦量的峰-峰值
2.角频率ω :
ƒ --自然频率,单位:Hz(赫兹)
ƒ=50Hz--工频
ƒ=1/T
ω --角频率:正弦量的相位随时间变化的速度。
2f 2
T
单位:rad/s(弧度/秒)
二、正弦量的三要素
3.初相位:
ω t+ --相位,又称相角:随时间变化的角度。
单位:弧度
初相位:正弦量在t=0时刻的相位,简称初相。
⑤|12|=π
--u1和i2反相。
§8-3 相量法的基础
一、相量法的引入
正弦稳态电路频率特点: 在线性电路中,如果电路的激励都是同一频率
的正弦量,则电路全部的稳态响应都将是同频率的 正弦量。
由于正弦稳态电路频率的特点,将同频率的正 弦量的三要素之一()省去,其余两要素用复数形 式来表示正弦量的方法称为相量法。
)
u1
i2
2
Icos(t
)
i2
12 (t u1)(t i2) u1 i2
①12>0 ②12<0 ③12=0 ④|12|=π /2
--u1超前i2; --u1滞后i2; --u1和i2同相; --u1和i2正交;
数学复数运算
数学复数运算复数是由实部和虚部组成的数,通常用 a+bi 的形式表示,其中 a 是实部,b 是虚部,且 i 是虚数单位。
在数学中,复数运算是对复数进行各种算术操作的过程。
本文将介绍复数的四则运算、复数的共轭、复数的模和幅角,以及复数的乘法和除法等内容。
一、复数的四则运算复数的四则运算包括加法、减法、乘法和除法。
对于两个复数 a+bi 和 c+di,这些运算的计算规则如下:1. 加法:(a+bi)+(c+di) = (a+c) + (b+d)i2. 减法:(a+bi)-(c+di) = (a-c) + (b-d)i3. 乘法:(a+bi)(c+di) = (ac-bd) + (ad+bc)i4. 除法:(a+bi)/(c+di) = [(ac+bd)/(c^2+d^2)] + [(bc-ad)/(c^2+d^2)]i需要注意的是,虚部 i 的平方等于 -1,因此在计算过程中可以利用这一性质简化运算。
二、复数的共轭复数的共轭是指实部不变,虚部取负的操作。
对于一个复数 a+bi,它的共轭为 a-bi。
共轭复数的性质如下:1. 一个复数与它的共轭的乘积为该复数的模的平方:(a+bi)(a-bi) = a^2 + b^22. 一个复数与它的共轭的和为实数:(a+bi) + (a-bi) = 2a三、复数的模和幅角复数的模是指复数到原点的距离,用 |a+bi| 表示,它的计算公式为sqrt(a^2 + b^2)。
而复数的幅角是指复数与正实轴的夹角,用 arg(a+bi) 表示,它的计算公式为 arctan(b/a)。
根据复数的模和幅角,我们可以利用极坐标表示复数。
对于一个复数 a+bi,它可以表示为 |a+bi| * (cos(arg(a+bi)) + i*sin(arg(a+bi)))。
四、复数的乘法和除法复数的乘法和除法可以利用复数的模和幅角进行计算。
两个复数的乘法可以通过将两个复数的模相乘,幅角相加得到新的复数的模和幅角。
复数的考点知识点归纳总结
复数的考点知识点归纳总结复数的考点知识点归纳总结复数是基础数学中的重要概念,广泛应用于数学、物理、工程等领域。
掌握复数的概念、性质和运算规则对于建立数学思维、解决实际问题具有重要意义。
本文将从复数的基本概念、运算法则和实际应用等方面进行归纳总结。
一、复数的基本概念1. 复数的定义:复数是由实部和虚部组成的数,形式为a+bi,其中a为实数部分,bi为虚数部分,i为虚数单位,满足i²=-1。
2. 复数的实部和虚部:复数a+bi中,a为实部,bi为虚部。
3. 复数的共轭复数:设复数z=a+bi,其共轭复数记为z*,则z*的实部与z相同,虚部的符号相反。
4. 复数的模:复数z=a+bi的模定义为|z|=√(a²+b²)。
5. 复数的辐角:复数z=a+bi的辐角定义为复数与正实轴正半轴的夹角,记作arg(z)。
6. 三角形式:复数z=a+bi可以写成三角形式r(cosθ+isinθ),其中r为模,θ为辐角。
二、复数的运算法则1. 复数的加法和减法:复数的加法和减法运算与实数类似,实部与实部相加减,虚部与虚部相加减。
2. 复数的乘法:复数的乘法运算使用分配律和虚数单位的性质,即(a+bi)(c+di)=(ac-bd)+(ad+bc)i。
3. 复数的除法:复数的除法运算需要将分子分母同时乘以共轭复数,即(a+bi)/(c+di)=[(a+bi)(c-di)]/[(c+di)(c-di)]。
4. 复数的乘方和开方:复数的乘方和开方运算需要使用三角函数的性质和欧拉公式,即z^n=r^n[cos(nθ)+isin(nθ)],√z=±√r[cos(θ/2)+isin(θ/2)]。
三、复数的性质和应用1. 复数的性质:复数具有加法和乘法的封闭性、交换律、结合律、分配律等性质。
2. 复数平面:复数可以用平面上的点来表示,实部为横坐标,虚部为纵坐标,构成复数平面。
3. 复数与向量:复数可以看作是向量的延伸,复数的运算有时可以用向量的加法和旋转来理解。
复数的实数知识点总结
复数的实数知识点总结1. 复数的引入在实数系统中,我们遇到了不能求根号的情况,如在求解方程$x^2+1=0$时,就无法求得实数解。
为了解决这个问题,数学家引入了虚数单位$i$(或复数单位$j$)来表示不能开平方的负数,即定义$i=\sqrt{-1}$。
此时,以实数和虚数单位的线性组合构成的数就被称为复数,一般写成$a+bi$的形式,其中$a$和$b$是实数。
2. 复数的表示复数可以用多种形式进行表示,包括直角坐标形式和极坐标形式。
(1)直角坐标形式:复数$a+bi$可以用有序实数对$(a, b)$在平面直角坐标系中的点来表示。
(2)极坐标形式:复数$a+bi$可以表示为$r(\cos\theta+i\sin\theta)$,其中$r=\sqrt{a^2+b^2}$是复数的模,$\theta=\arctan(\frac{b}{a})$是复数的幅角。
3. 复数的性质复数具有许多独特且重要的性质,这些性质对于复数的运算和应用起着至关重要的作用。
(1)模的性质:复数的模满足非负性、零的模为零、实数的模等于绝对值等性质。
(2)共轭的性质:复数$a+bi$的共轭是$a-bi$,共轭具有保持实部不变而虚部变号的性质。
(3)加法的性质:复数的加法满足交换律、结合律、存在零元素和逆元素等。
(4)乘法的性质:复数的乘法满足交换律、结合律、分配律,且有模的乘积等于模的乘积的性质。
4. 复数的运算复数的运算包括加法、减法、乘法和除法等。
这些运算可以用复数的直角坐标形式和极坐标形式进行操作,其中极坐标形式的运算尤其方便。
(1)加法和减法:复数的加法和减法可以分别由实部相加、虚部相加得到,或者用直角坐标形式加减、极坐标形式加减得到。
(2)乘法:复数的乘法可以通过分配律和共轭等进行,也可以用极坐标形式进行乘法。
(3)除法:复数的除法需要用到共轭和模的乘法等性质,可以将复数除以一个复数或一个实数。
5. 复数的数学意义复数不仅可以用于解决实际问题,还可以用于解决许多数学问题,同时也在其它数学领域中发挥着重要作用。
高中数学复数知识点总结
高中数学复数知识点总结1. 复数的定义复数是由实数和虚数单位i(i²=-1)组成的数,一般形式为a+bi,其中a和b都是实数。
实数部分a称为复数的实部,虚数部分b称为复数的虚部。
2. 复数的加法复数的加法和实数的加法类似,即把实部相加,虚部相加,即(a+bi)+(c+di)=(a+c)+(b+d)i。
3. 复数的减法复数的减法也和实数的减法类似,即把实部相减,虚部相减,即(a+bi)-(c+di)=(a-c)+(b-d)i。
4. 复数的乘法复数的乘法是通过分配律展开计算的,即(a+bi)(c+di)=ac+adi+bci+bdi²=ac+(ad+bc)i+bd(-1)=ac-bd+(ad+bc)i。
5. 复数的除法复数的除法需要进行有理化处理,即分子和分母都乘以分母的共轭形式,然后进行化简,最终得到结果。
例如,(a+bi)/(c+di)的结果为[(a+bi)(c-di)]/[(c+di)(c-di)]。
6. 复数的模复数z=a+bi的模记为|z|,它表示复数到原点的距离,它的计算公式为|a+bi| = √(a²+b²)。
7. 复数的共轭复数z=a+bi的共轭记为z,它表示实部不变,虚部相反数的复数,即z=a-bi。
8. 复数的极坐标形式复数z=a+bi可以表示为z=r(cosθ+isinθ),其中r=|z|,θ=arctan(b/a)。
9. 复数的三角形式复数z=r(cosθ+isinθ)的三角形式表示为z=r∙e^(iθ),其中e^(iθ)=cosθ+isinθ,称为欧拉公式。
10. 复数的指数形式复数z=r∙e^(iθ)的指数形式表示为z=r∙exp(iθ),其中exp表示自然底数e的指数函数。
11. 复数的乘方复数的乘方可以通过三角形式或指数形式进行计算,即z^n = |z|^n∙(cos(nθ)+isin(nθ))或z^n = |z|^n∙exp(inθ)。
复数的定义与运算法则
复数的定义与运算法则复数是数学中的一种概念,用于表示包含实部和虚部的数值。
它是实数的一种扩展,能够更灵活地描述和计算复杂的数值问题。
本文将从复数的定义、复数的表示形式,以及复数的运算法则三个方面来详细介绍复数。
一、复数的定义复数定义为具有真实部分和虚拟部分的数,可表示为a + bi 的形式。
其中,a 表示实部,是一个实数,bi 表示虚部,是一个实数乘以单位虚数 i。
实部和虚部的运算是独立的,虚部的系数 b 可以为正、负或零。
二、复数的表示形式复数可以用不同的表示形式表示,常见的有直角坐标形式和极坐标形式。
1. 直角坐标形式直角坐标形式是复数较为常用的表示形式,形式为 a + bi,其中 a表示实部,bi 表示虚部。
2. 极坐标形式复数也可以用极坐标形式表示,形式为r(cosθ + isinθ)。
其中,r 表示复数的模,θ 表示幅角。
三、复数的运算法则复数可以进行加、减、乘、除等运算,下面分别介绍每一种运算法则。
1. 复数的加法复数的加法遵循下列法则:(a + bi) + (c + di) = (a + c) + (b + d)i。
即实部相加,虚部相加。
2. 复数的减法复数的减法遵循下列法则:(a + bi) - (c + di) = (a - c) + (b - d)i。
即实部相减,虚部相减。
3. 复数的乘法复数的乘法遵循下列法则:(a + bi) * (c + di) = (ac - bd) + (ad + bc)i。
即实部相乘减虚部相乘,实部与虚部相乘后再相加。
4. 复数的除法复数的除法遵循下列法则:(a + bi)/(c + di) = [(ac + bd)/(c^2 + d^2)] + [(bc - ad)/(c^2 + d^2)]i。
即实部的计算为分子分母同时乘以除数的共轭,虚部的计算为分子分母同时乘以除数的共轭后取负。
综上所述,复数的定义、表示形式和运算法则都具有其独特的特点和规律。
复数的知识点公式总结
复数的知识点公式总结一、复数的基本概念1. 复数的定义:形如a+bi的数称为复数,其中a是实部,b是虚部,i是虚数单位,满足i²=-1。
2. 复数的实部与虚部:复数z=a+bi中,a称为实部,b称为虚部,通常用Re(z)和Im(z)表示。
3. 纯虚数:实部为0的复数,称为纯虚数,如bi,则bi为纯虚数。
4. 共轭复数:设z=a+bi是一个复数,如果将z的虚部b改变符号,得到一个新的复数z’=a-bi,称z’是z的共轭复数。
二、复数的表示形式1. 代数形式:z=a+bi,即由实部a和虚部b构成的复数形式。
2. 幅角形式:z=r(cosθ+isinθ),其中r=|z|为复数的模,θ为复数的辐角。
3. 按模辐角表示:z=r·exp(iθ)。
4. 柯西-黎曼公式:当z=x+yi时,可表示为z=r(exp[i(θ+2kπ)]), k=0,±1,±2,...。
三、复数的运算规则1. 加法:(a+bi)+(c+di)=(a+c)+(b+d)i。
2. 减法:(a+bi)-(c+di)=(a+c)-(b+d)i。
3. 乘法:(a+bi)·(c+di)=(ac-bd)+(ad+bc)i。
4. 除法:(a+bi)/(c+di)=(ac+bd)/(c²+d²)+(bc-ad)i/(c²+d²)。
5. 复数的乘方:(a+bi)²=a²-b²+2abi。
6. 复数的幂运算:zⁿ=(r·exp(iθ))ⁿ=rⁿ·exp(iθn)。
7. 复数的共轭:z=a+bi的共轭为z*=a-bi。
8. 复数的倒数:z=a+bi的倒数为1/z=1/(a+bi)。
四、复数的性质1. 除法:任一非零复数z=a+bi,存在有唯一的复数1/z=1/(a+bi),满足z(1/z)=1。
2. 复数的模:|z|=√(a²+b²),其中|z|为z的模。
复数的基本运算及几何意义
复数的基本运算及几何意义复数是由实部和虚部构成的数,可以用公式表示为 z = a + bi,其中a 是实部,b 是虚部,i 是虚数单位。
一、复数的四则运算1. 复数的加法:将实部和虚部分别相加即可。
例如:(2 + 3i) + (4 + 5i) = 6 + 8i2. 复数的减法:将实部和虚部分别相减即可。
例如:(2 + 3i) - (4 + 5i) = -2 - 2i3. 复数的乘法:根据分配律展开运算,注意 i 的平方为 -1。
例如:(2 + 3i) * (4 + 5i) = 8 + 22i - 15 = -7 + 22i4. 复数的除法:将分子乘以分母共轭复数,并进行合并化简。
例如:(2 + 3i) / (4 + 5i) = (2 + 3i) * (4 - 5i) / (4^2 + 5^2) = (8 + 7i) / 41二、复数在平面几何中的意义在平面直角坐标系中,复数可以看作是复平面上的点,实部对应横轴,虚部对应纵轴。
1. 复数的模:复数 z 的模表示为 |z|,是复平面上由原点到对应点的距离。
例如:z = 3 + 4i,则|z| = √(3^2 + 4^2) = 52. 复数的辐角:复数 z 的辐角表示为 arg(z),是复平面上由正实轴到对应位置向量的角度。
例如:z = 2 + 2i,则arg(z) = π/43. 欧拉公式:欧拉公式表示为e^(iθ) = cos(θ) + isin(θ),其中 e 是自然对数的底,i 是虚数单位,θ 是角度。
该公式将三角函数与指数函数联系了起来,是复数运算中的重要工具。
4. 复数的乘法及除法的几何意义:复数的乘法相当于平移、旋转和伸缩,在复平面上实现了几何变换。
复数的除法相当于平移、旋转和收缩,在复平面上实现了逆向几何变换。
综上所述,复数的基本运算包括加法、减法、乘法和除法,可以使用公式进行计算。
在平面几何中,复数可以表示为复平面上的点,模表示距离,辐角表示角度。
复数的几何意义及其应用
复数的几何意义及其应用
复数的几何意义是什么
1、复数z=a+bi 与复平面内的点(a,b)一一对应
2、复数z=a+bi 与向量OZ一一对应,其中Z点坐标为(a,b)
1、复数的运算:复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。
两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
两个复数的和依然是复数。
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。
两个复数的积仍然是一个复数。
复数除法定义:满足的复数叫复数a+bi除以复数c+di的商。
运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。
2、我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
当z的虚部等于零时,常称z 为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数总结
复 数一:基本概念 1.复数的概念: (1)虚数单位i ;(2)复数的代数形式z=a+bi ,(a, b ∈R); (3)复数的实部、虚部、虚数与纯虚数。
2.复数集b a+bi(a,b R)a 0)a 0)⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪∈⎨⎩⎪=⎧⎪≠⎨⎪≠⎩⎩整数有理数实数 (=0)分数复数无理数(无限不循环小数)纯虚数(虚数 (b 0)非纯虚数( 复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。
应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。
3.复数的四则运算若两个复数z1=a1+b1i ,z2=a2+b2i ,a) 复数的加法、减法、乘法运算与实数的运算基本上没有区别,最主要的是在运算中将i^2=-1结合到实际运算过程中去。
(1)加法:z1+z2=(a1+a2)+(b1+b2)i ; (2)减法:z1-z2=(a1-a2)+(b1-b2)i ; (3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ; b)复数的除法:复数的除法是复数乘法的逆运算,由于两个共轭复数的积是实数,因此复数的除法可以通过将分母实化得到,即.2211(11)*(22)1*21*2(1*21*2)22(22)*(22)22a b i a b i a b i a a b b a b i b a i a b i a b i a b i a b ++-++-+==++-+(4)四则运算的交换率、结合率;分配率都适合于复数的情况。
(5)特殊复数的运算:① ni (n 为整数)的周期性运算; ② (1±i)^2=±2i ;③ 若ω=-21+23i ,则ω^3=1,1+ω+ω^2=0.4. 复数z=a+bi 的模,|a|=22a b +, 且2||z z z ⋅==a^2+b^2.5. 共轭复数定义:对于复数z=a+bi ,称复数z =a-bi 为z 的共轭复数。
复数概念及公式总结(经典)
复数概念和公式总结(经典)1.虚数单位i:它的平方等于-1,即21i=-2. i与-1的关系: i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i3. i的周期性:i4n+1=i, i4n+2=-1, i4n+3=-i, i4n=14.复数的定义:形如(,)+∈的数叫复数,a叫复数的实部,b叫复数a bi ab R的虚部全体复数所成的集合叫做复数集,用字母C表示复数通常用字母z表示,即(,)=+∈z a bi a b R5. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)+∈,当且a bi ab R仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;a≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0.5.复数集与其它数集之间的关系:N Z Q R C.6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a,b,c,d∈R,那么a+bi=c+di⇔a=c,b=d 一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 当两个复数不全是实数时不能比较大小!7. 复平面、实轴、虚轴:点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 (1)实轴上的点都表示实数(2)虚轴上的点都表示纯虚数(3)原点对应的有序实数对为(0,0)设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数,8.复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .9.复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .10.复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i . 11.复数z 1与z 2的除法运算律:z 1÷z 2 =(a +bi )÷(c +di )=i dc ad bc d c bd ac 2222+-+++(分母实数化) 12.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数通常记复数z 的共轭复数为z 。
复数的坐标表示方法
复数的坐标表示方法【原创实用版2篇】目录(篇1)1.复数的基本概念2.复数的坐标表示方法3.复数的几何意义4.复数的运算及其应用正文(篇1)1.复数的基本概念复数是实数的扩展,它可以表示为 a+bi 的形式,其中 a 和 b 是实数,i 是虚数单位,满足 i^2 = -1。
复数在科学、工程和数学分析等领域具有广泛的应用。
2.复数的坐标表示方法复数可以用直角坐标系中的点来表示。
在复平面上,横坐标表示实部,纵坐标表示虚部。
例如,复数 3+4i 可以表示为平面上的点 (3, 4)。
这种表示方法使得我们可以直观地描绘复数的几何性质,从而方便分析和计算。
3.复数的几何意义复数在复平面上的位置具有特定的几何意义。
实部表示点在 x 轴上的坐标,虚部表示点在 y 轴上的坐标。
复数的模长表示点到原点的距离,幅角表示点与 x 轴正半轴的夹角。
通过研究复数在复平面上的几何性质,我们可以更好地理解复数的概念和运算规律。
4.复数的运算及其应用复数的加法、减法、乘法和除法都可以通过复平面上的几何变换来直观地表示。
例如,复数的乘法可以看作是平面上的缩放变换,复数的除法可以看作是平面上的平移变换。
复数的运算规律和几何变换在解决实际问题中具有重要意义,如在信号处理、控制系统和量子力学等领域。
总之,复数的坐标表示方法为我们提供了一种直观、形象的描绘复数的方法,同时也有助于我们更好地理解复数的几何性质和运算规律。
目录(篇2)1.复数的基本概念2.复数的坐标表示方法3.复数的几何意义4.复数的运算及其应用正文(篇2)1.复数的基本概念复数是实数的扩展,它由实部和虚部组成,通常表示为 a+bi 的形式,其中 a 是实部,b 是虚部,i 是虚数单位,满足 i^2=-1。
复数在数学、物理、工程等领域有着广泛的应用。
2.复数的坐标表示方法复数在平面直角坐标系中可以表示为一个点,其实部对应横坐标,虚部对应纵坐标。
例如,复数 3+4i 在坐标系中的表示为点 (3, 4)。
复数的概念与运算
复数的概念与运算一:知识点详析1.复数的有关概念和性质:(1)i 称为虚数单位,规定21i =-,形如a+bi 的数称为复数,其中a ,b ∈R . (2)复数的分类(下面的a ,b 均为实数)(3)复数的相等设复数1112221122,(,,,)z a b i z a b i a b a b R =+=+∈,那么12z z =的充要条件是:1122a b a b ==且.(4)复数的几何表示复数z=a+bi (a ,b ∈R )可用平面直角坐标系内点Z(a ,b)来表示.这时称此平面为复平面,x 轴称为实轴,y 轴除去原点称为虚轴.这样,全体复数集C 与复平面上全体点集是一一对应的.复数z=a+bi (),a b R ∈.在复平面内还可以用以原点O 为起点,以点Z(a ,b)向量所成的集合也是一一对应的(例外的是复数0对应点O ,看成零向量). (7)复数与实数不同处①任意两个实数可以比较大小,而任意两个复数中至少有一个不是实数时就不能比较大小.②实数对于四则运算是通行无阻的,但不是任何实数都可以开偶次方.而复数对四则运算和开方均通行无阻. 3.有关计算:⑴n i ()*n N ∈怎样计算?(先求n 被4除所得的余数,r r k i i =+4 ()*,k N r N ∈∈) ⑵i i 2321232121--=+-=ωω、是1的两个虚立方根,并且:13231==ωω221ωω=122ωω=211ωω=121ωω=21ωω=12ωω=121-=+ωω⑶ 复数集内的三角形不等式是:212121z z z z z z +≤±≤-,其中左边在复数z 1、z 2对应的向量共线且反向(同向)时取等号,右边在复数z 1、z 2对应的向量共线且同向(反向)时取等号。
⑷ 棣莫佛定理是:[]))(sin (cos )sin (cos Z n n i n r i r n n ∈+=+θθθθ ⑸ 若非零复数)sin (cos ααi r z +=,则z 的n 次方根有n 个,即:)1210)(2sin2(cos-=+++=n k nk i nk r z nk ,,,, απαπ它们在复平面内对应的点在分布上有什么特殊关系?都位于圆心在原点,半径为n r 的圆上,并且把这个圆n 等分。
复数基础知识及其运算规律
复数基础知识及其运算规律一、复数的概念1.复数的定义:复数是由实数和虚数构成的数,一般形式为a+bi,其中a和b分别为实数,i为虚数单位,满足i^2=-1。
2.复数的分类:a)纯虚数:实部为0的复数,如i、-i等;b)实数:虚部为0的复数,如2、-3等;c)混合数:实部和虚部都不为0的复数,如1+2i、-3-4i等。
二、复数的表示方法1.代数表示法:用a+bi的形式表示复数;2.极坐标表示法:用r(cosθ+isinθ)的形式表示复数,其中r为模长,θ为辐角。
三、复数的运算规律1.加减法:a)(a+bi) + (c+di) = (a+c) + (b+d)i;b)(a+bi) - (c+di) = (a-c) + (b-d)i。
c)(a+bi)(c+di) = (ac-bd) + (ad+bc)i;d)特殊情形:两个纯虚数相乘,结果为实数;e)单位根的乘法:i^k,其中k为整数。
f)(a+bi)/(c+di) = [(ac+bd)/(c2+d2)] + [(bc-ad)/(c2+d2)]i。
g)(a+bi)^2 = (a2-b2) + 2abi;h)(a+bi)3、(a+bi)4等,可以利用乘方公式进行展开。
2.共轭复数:a)若复数为a+bi,则它的共轭复数为a-bi;b)共轭复数具有以下性质:两数相加为实数,两数相乘为实数。
四、复数的性质1.模长:表示复数在复平面上的长度,公式为|a+bi| = √(a2+b2);2.辐角:表示复数在复平面上与实轴的夹角,公式为θ = arctan(b/a),其中a≠0;3.复数的平方等于1的解:i、-1、1+i、1-i等;4.复数的平方等于-1的解:i、-i等;5.复数的平方等于k(k为非零实数)的解:±√k、±i√k等。
五、复数在实际应用中的例子1.信号处理:在通信系统中,信号往往可以表示为复数形式,如调制解调器中的正弦波信号;2.物理学:在电磁学、量子力学等领域,复数用于描述物理量,如电流、电压、波函数等;3.工程学:在电子工程、控制理论等领域,复数用于分析电路、系统稳定性等。
复数概念及公式总结
复数概念及公式总结复数是数学中一个重要的概念,用来表示两个实数的有序对。
复数可以用实数两部分,实部和虚部来表示,形式为a + bi,其中a和b都是实数,i是虚数单位,满足i^2 = -1。
复数的实部是a,表示复数在实数轴上的投影,而虚部是b,表示复数在虚数轴上的投影。
当虚部b为0时,复数就是一个实数; 当实部a为0时,复数就是一个虚数。
例如,3 + 4i是一个复数,它的实部是3,虚部是4;而5是一个实数,实部为5,虚部为0;而4i是一个虚数,实部为0,虚部为4。
对于复数的加法和减法,实部和虚部分别进行相加和相减。
例如(3 + 4i) + (2 + 5i) = (3 + 2) + (4 + 5)i = 5 + 9i; (3 + 4i) - (2 + 5i) = (3 - 2) + (4 - 5)i = 1 - i。
复数的乘法使用分配律进行计算。
例如,(3 + 4i) * (2 + 5i) = 3 * 2 + 3 * 5i + 4i * 2 + 4i * 5i = 6 + 15i + 8i + 20i^2 = 6 + 23i - 20 = -14 + 23i。
复数的除法可以通过将分子和分母的实部和虚部分别相乘,然后使用有理化的方法消去虚数i得到结果。
例如,(3 + 4i) / (2 + 5i) = (3 + 4i)(2 - 5i) / (2 + 5i)(2 - 5i) = (6 - 15i + 8i - 20i^2) / (4 + 25) = (-14 - 7i) / 29 = -14/29 - 7i/29。
复数还可以使用极坐标形式表示,其中模长表示复数到原点的距离,参数表示复数的辐角。
复数的极坐标形式为a * cosθ + a * sinθi,其中a是模长,θ是辐角。
例如,3 + 4i的极坐标形式为5 * cos(arctan(4/3)) + 5 * sin(arctan(4/3))i。
复数的乘方运算可以通过将复数转换为极坐标形式,并使用欧拉公式进行计算。
复数的极坐标与指数形式
复数的极坐标与指数形式复数(Complex number)是由实数(Real number)和虚数(Imaginary number)组成的数。
在代数中,虚数单位 i 是一个定义为i^2=-1 的数,通过虚数单位可以表示复数。
复数的极坐标与指数形式能够更加方便地表达和计算复数。
本文将详细介绍复数的极坐标与指数形式,并分析其在数学和物理中的应用。
一、复数的极坐标形式复数的极坐标形式可以通过勾股定理和三角函数来表示。
设复数z=a+bi,其中a 为实部,b 为虚部,它在复数平面上的坐标为点P(x,y)。
根据勾股定理可得:|z|²=a²+b²其中 |z| 表示复数 z 的模(Magnitude),也就是复数 z 到原点的距离。
根据三角函数的定义,令θ=arctan(b/a),则有:x=|z|cosθ=ay=|z|sinθ=b综上,复数 z 可以用模 |z| 和角度θ 表示为极坐标形式z=|z|(cosθ+isinθ)。
二、复数的指数形式复数的指数形式是基于欧拉公式(Euler's formula)e^(iθ)=cosθ+isinθ 推导而来。
根据欧拉公式和复数的极坐标形式可得:e^(iθ)=cosθ+isinθ将复数的极坐标形式z=|z|(cosθ+isinθ) 代入可得:z=|z|e^(iθ)三、复数的相乘和幂运算利用复数的极坐标形式和指数形式可以更加方便地进行复数的相乘和幂运算。
1. 复数的相乘:设复数 z₁=|z₁|(cosθ₁+isinθ₁) 和复数 z₂=|z₂|(cosθ₂+isinθ₂),它们的乘积为:z₁z₂=|z₁z₂|(cos(θ₁+θ₂)+isin(θ₁+θ₂))2. 复数的幂运算:设复数z=|z|(cosθ+isinθ),将复数 z 的模和角度进行 n 次幂运算有:z^n=|z|^n(cos(nθ)+isin(nθ))四、复数的应用复数的极坐标与指数形式在许多数学和物理领域都有广泛应用。
电工基础第二节 复数的四则运算
b.
复数相等 a jb c 特别地,a+bi=0 a=b=0
a 0 纯虚数: b 0
b 0;
a c jd b d
.
新课教学
我们知道实数有加、减、乘等运算,且有运算律: ab ba ab ba (a b) c a (b c) (ab)c a(bc) a(b c) ab ac 那么复数应怎样进行加、减、乘运算呢?你认为应 怎样定义复数的加、减、乘运算呢?运算律仍成立吗?
Z1 Z1 / Z2 Z2
n Z1 Z1 n
/n
作业
1、完成P157 4题第⑶题 2、练习册本节内容 3、预习下一节
这就是复数加法的几何意义.
吻合!
类似地,复数减法: y
Z2(c,d)
OZ1-OZ2
Z1(a,b) O
x
Z 这就是复数减法的几何意义.
二.乘法:
(1)复数乘法的法则(代数式) 复数的乘法与多项式的乘法是类似 的,但必须在所得的结果中把j2换成-1, 并且把实部合并.即:
2 (a+jb)(c+jd)=ac+jbc+jad+j bd
8 j12 j 6 j 9 25 17 6 j 25 25
2
小结
则为
设 Z1= a + jb =|Z1|/ ,Z2 = c + jd = |Z2|/ ,复数的运算规
1.加减法 2.乘法 3.除法 4.乘方
Z1 Z2 = (a c) + j(b d) Z1 · Z2 = |Z1| · |Z2|/ +
复习巩固
一、虚数单位及虚数
j 1
复数几何意义及运算知识点讲解+例题讲解(含解析)
复数几何意义及运算一、知识梳理1.复数的有关概念2.复数的几何意义复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即(1)复数z=a+b i复平面内的点Z(a,b)(a,b∈R).(2)复数z=a+b i(a,b∈R)平面向量OZ→.3.复数的运算设z1=a+b i,z2=c+d i(a,b,c,d∈R),则(1)加法:z1+z2=(a+b i)+(c+d i)=(a+c)+(b+d)i;(2)减法:z1-z2=(a+b i)-(c+d i)=(a-c)+(b-d)i;(3)乘法:z1·z2=(a+b i)·(c+d i)=(ac-bd)+(ad+bc)i;(4)除法:z1z2=a+b ic+d i=(a+b i)(c-d i)(c+d i)(c-d i)=ac +bd +(bc -ad )i c 2+d 2(c +d i ≠0).小结:1.i 的乘方具有周期性i n=⎩⎨⎧1,n =4k ,i ,n =4k +1,-1,n =4k +2,-i ,n =4k +3(k ∈Z ).2.复数的模与共轭复数的关系 z ·z -=|z |2=|z -|2. 3.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )解析 (1)虚部为b ;(2)虚数不可以比较大小. 答案 (1)× (2)× (3)√ (4)√2.若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A.1B.2C.1或2D.-1解析 依题意,有⎩⎨⎧a 2-3a +2=0,a -1≠0,解得a =2,故选B.答案 B3.复数⎝ ⎛⎭⎪⎫52-i 2的共轭复数是( )A.2-iB.2+iC.3-4iD.3+4i解析 ⎝ ⎛⎭⎪⎫52-i 2=⎣⎢⎡⎦⎥⎤5(2+i )(2-i )(2+i )2=(2+i)2=3+4i ,所以其共轭复数是3-4i. 答案 C4.(2017·全国Ⅱ卷)3+i 1+i =( )A.1+2iB.1-2iC.2+iD.2-i解析3+i 1+i =(3+i )(1-i )(1+i )(1-i )=2-i. 答案 D5.(2018·北京卷)在复平面内,复数11-i的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限解析11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.答案 D6.(2019·青岛一模)已知复数z =-1+i(i 是虚数单位),则z +2z 2+z=________. 解析 ∵z =-1+i ,则z 2=-2i ,∴z +2z 2+z =1+i -1-i =(1+i )(-1+i )(-1-i )(-1+i )=-22=-1. 答案 -1考点一 复数的相关概念【例1】 (1)(2019·上海崇明区质检)已知z =2-ii ,则复数z 的虚部为( ) A.-iB.2C.-2iD.-2(2)已知在复平面内,复数z 对应的点是Z (1,-2),则复数z 的共轭复数z -=( ) A.2-i B.2+i C.1-2iD.1+2i(3)(2019·大连一模)若复数z =1+i1+a i为纯虚数,则实数a 的值为( ) A.1B.0C.-12D.-1解析 (1)∵z =2-i i =(2-i )(-i )i·(-i )=-1-2i ,则复数z 的虚部为-2.故选D.(2)∵复数z 对应的点是Z (1,-2),∴z =1-2i ,∴复数z 的共轭复数z -=1+2i ,故选D. (3)设z =b i ,b ∈R 且b ≠0, 则1+i 1+a i=b i ,得到1+i =-ab +b i , ∴1=-ab ,且1=b , 解得a =-1,故选D. 答案 (1)D (2)D (3)D【训练1】 (1)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( ) A.15-35i B.15+35i C.13-iD.13+i(2)(2019·株洲二模)设i 为虚数单位,1-i =2+a i1+i ,则实数a =( )A.2B.1C.0D.-1解析 (1)由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i.故选B. (2)∵1-i =2+a i1+i,∴2+a i =(1-i)(1+i)=2, 解得a =0.故选C. 答案 (1)B (2)C考点二 复数的几何意义【例2】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限(2)(2019·北京新高考调研考试)在复平面内,复数z 对应的点与21-i对应的点关于实轴对称,则z =( ) A.1+i B.-1-i C.-1+iD.1-i解析 (1)由题可得,z 1z 2=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)∵复数z 对应的点与21-i =2(1+i )(1-i )(1+i )=1+i 对应的点关于实轴对称,∴z =1-i.故选D. 答案 (1)D (2)D【训练2】 (1)设i 是虚数单位,则复数11+i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限(2)如图,若向量OZ→对应的复数为z ,则z +4z表示的复数为( )A.1+3iB.-3-iC.3-iD.3+i解析 (1)11+i =1-i (1+i )(1-i )=12-12i ,则复数z 对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.(2)由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.故选D.答案 (1)D (2)D考点三 复数的运算【例3】 (1)(2018·全国Ⅲ卷)(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-iD.3+i(2)(2018·全国Ⅰ卷)设z =1-i1+i+2i ,则|z |=( ) A.0B.12C.1D.2(3)设复数z =1+2i ,则z 2+3z -1=( )A.2iB.-2iC.2D.-2(4)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________. 解析 (1)(1+i)(2-i)=2-i +2i -i 2=3+i.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =1-2i -12+2i =i ,∴|z |=|i|=1.故选C.(3)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i 2i =2.故选C.(4)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2 =i 6+6+2i +3i -65=-1+i.答案 (1)D (2)C (3)C (4)-1+i【训练3】 (1)(2018·全国Ⅱ卷)i(2+3i)=( ) A.3-2i B.3+2i C.-3-2iD.-3+2i(2)已知i 为虚数单位,则1+i3-i =( )A.2-i 5B.2+i 5C.1-2i 5D.1+2i 5(3)设z =1+i(i 是虚数单位),则z 2-2z =( ) A.1+3i B.1-3i C.-1+3iD.-1-3i解析 (1)i(2+3i)=2i +3i 2=-3+2i ,故选D. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i5. (3)因为z =1+i ,所以z 2=(1+i)2=1+2i +i 2=2i ,2z =21+i =2(1-i )(1+i )(1-i )=2(1-i )1-i 2=2(1-i )2=1-i ,则z 2-2z =2i -(1-i)=-1+3i.故选C.答案 (1)D (2)D (3)C三、课后练习1.(2019·烟台检测)设a ,b ∈R ,a =3+b i3-2i(i 是虚数单位),则b =( )A.-2B.-1C.1D.2解析 因为a =3+b i 3-2i =(3+b i )(3+2i )(3-2i )(3+2i )=9-2b 13+(6+3b )i13,a ∈R ,所以6+3b13=0⇒b =-2,故选A. 答案 A2.设x ∈R ,i 是虚数单位,则“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的( )A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析 由复数z =(x 2-4)+(x +2)i 为纯虚数, 得⎩⎨⎧x 2-4=0,x +2≠0,解得x =2, 所以“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的充要条件,故选B. 答案 B3.计算⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=( )A.-2iB.0C.2iD.2解析 ∵1+i 1-i =(1+i )2(1+i )(1-i )=2i2=i ,1-i 1+i =-i ,∴⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=(i 4)504·i 3+[(-i)4]504·(-i)3=-i +i =0.答案 B4.(2019·湖南三湘名校联考)已知i 为虚数单位,复数z =3+2i2-i,则以下为真命题的是( )A.z 的共轭复数为75-4i5B.z 的虚部为85 C.|z |=3D.z 在复平面内对应的点在第一象限 解析 ∵z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5, ∴z 的共轭复数为45-7i 5,z 的虚部为75, |z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限,故选D. 答案 D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数概念,坐标及其运算
1已知复数),(,)32(2,)1(5321R y x i x y z i y x z ∈-+=++-=,若21z z =,则 =x ,=y
2已知实数m 及x 满足0)12(2=-+--i m x i x ,则=m ,=x 3复数),(,|)|(22R y x i b a b a ∈++-为纯虚数的充要条件为
4若复数R b a ∈,,则复数i b b a a )26()54(22-+-++-表示的点在 象限
5已知复数z 满足1||=-i z ,则|1|-z 的取值范围是
6设复数)0,,(,≠∈+=b R b a bi a z ,满足|10|3|152|+=+z z ,则=z 7满足条件|43|||i i z +=-的复数z 在复平面对应的点的轨迹是
8若复数z 满足2|43|=-+i z ,则||z 的最小值与最大值分别是
9若)|,(,422R b a b a ∈=+,复数i b a z )2(++=,求||z 的取值范围
10复数i z i z i z 21,2,21321--=+-=+=,它们在复平面上的对应点是一个正方形的ABCD 的三个顶点,求第四个顶点D 对应的复数。
11虚数z 满足3||=z ,且
z
a a z +是实数,则实数=a
12若虚数z 满足83=z ,则=+++2223z z z 满足n n i i )1()1(-=+的最小正整数n 是
12设虚数),(,R y x yi x z ∈+=,则满足5||=z 的z 共有 个
13计算=-+-++++200820082)11(1i
i i
i i
14(1)设C z ∈,z z b i
z z a ⋅=-=,2)(2
2,则b a -的最大可能值是
(2)已知复数21z z ≠,且2||1=z ,则
=⋅--21214z z z z
15若虚数z 满足1||=z ,则2)1(z z -是( )
(A)小于零的实数 (B)大于零的实数 (C)零 (D)纯虚数
16已知复数)0(,1>--=
a i i a z ,复数)(i z z w +=的虚部减去它的实部所得的差等于23,求复数w 的模
17设复数)0,,(,≠∈+=y R y x yi x z ,2
2y x yi x yi x u +-+
+=是实数,且21<<-u ,求||z 的值及z 的实部的取值范围
18设集合A 、B 是非空实数集,},02)4(|{2R k i k x i x x A ∈=+++-=, })2(|1||{)23(log 2x xi x x B -≤+-=
(1)求实数k 的值及集合A 、B
(2)已知B b A a ∈∈,,复数bi i a ki ++-=4)21(μ,求||μ的取值范围。