函数基础知识及注意点
初中数学函数知识点汇总

初中数学函数知识点汇总(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初中数学函数知识点汇总函数作为数学基础知识点之一,学习好并且掌握函数是我们学习好数学的基础,下面是本店铺给大家带来的初中数学函数知识点汇总,希望能够帮助到大家!初中数学函数知识点汇总1、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx (k不为零) ① k不为零② x 指数为1 ③ b取零当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x 的增大y也增大;当k (1) 解析式:y=kx(k是常数,k≠0)(2) 必过点:(0,0)、(1,k)(3) 走向:k>0时,图像经过一、三象限;k (4) 增减性:k>0,y随x的增大而增大;k (5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴2、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx b (k不为零) ① k不为零②x指数为1 ③ b取任意实数一次函数y=kx b的图象是经过(0,b)和(-k/b,0)两点的一条直线,我们称它为直线y=kx b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b (1)解析式:y=kx b(k、b 是常数,k0)(2)必过点:(0,b)和(-k/b,0)(3)走向:k>0,图象经过第一、三象限;k b>0,图象经过第一、二象限;b (4)增减性:k>0,y随x的增大而增大;k (5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b 初中数学一次函数知识点汇总3、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),(-k/b,0).即横坐标或纵坐标为0的点。
高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。
高一数学函数的基本性质知识点梳理

高一数学函数的基本性质知识点梳理1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=fx,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{fx| x∈A }叫做函数的值域.注意:如果只给出解析式y=fx,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:1 分式的分母不等于零;2 偶次方根的被开方数不小于零;3 对数式的真数必须大于零;4 指数、对数式的底必须大于零且不等于 1.5 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都有意义的 x 的值组成的集合 .6指数为零底不可以等于零2.构成函数的三要素:定义域、对应关系和值域再注意:1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等或为同一函数2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致两点必须同时具备值域补充1 、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 .2 . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础 . 3 . 求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等 .3. 函数图象知识归纳1 定义:在平面直角坐标系中,以函数y=fx , x ∈A中的 x 为横坐标,函数值 y 为纵坐标的点 Px , y 的集合 C ,叫做函数 y=f x,x ∈A的图象.C 上每一点的坐标 x , y 均满足函数关系 y=fx ,反过来,以满足 y=fx 的每一组有序实数对 x 、 y 为坐标的点 x , y ,均在 C 上 . 即记为 C={ Px,y | y= fx , x ∈A }图象 C 一般的是一条光滑的连续曲线或直线 , 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .2 画法A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 x,y 为坐标在坐标系内描出相应的点 Px, y ,最后用平滑的曲线将这些点连接起来 .B、图象变换法请参考必修4三角函数常用变换方法有三种,即平移变换、伸缩变换和对称变换3 作用:1 、直观的看出函数的性质;2 、利用数形结合的方法分析解题的思路。
函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法) 4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。
(完整版)函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法) 4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。
八年级函数基础知识点总结

八年级函数基础知识点总结一、函数的概念1. 什么是函数?函数是一种特殊的数学关系,它将每个自变量(输入值)映射到唯一的因变量(输出值)。
通俗地讲,函数就是一个“机器”,它能够将一个数映射成另一个数。
2. 函数的表示方法函数可以用各种不同的表示方法来表达,比如代数式、图形、表格、文字描述等。
3. 函数的符号表示用数学符号表示函数的一般形式为:f(x) = y。
其中,f(x)表示函数名,x表示自变量,y 表示因变量。
二、函数的图象1. 函数的图象函数的图象是函数在平面直角坐标系中的几何表现,通常用曲线来表示。
横坐标表示自变量,纵坐标表示因变量。
2. 函数的性质函数的图象具有一些特定的性质,比如单调性、奇偶性、周期性等。
这些性质可以通过函数的图象来进行判断和分析。
三、函数的运算1. 函数的四则运算函数之间可以进行加、减、乘、除等四则运算,这些运算的结果仍然是一个函数。
2. 复合函数复合函数是指将一个函数的输出作为另一个函数的输入,进行组合运算得到一个新的函数。
3. 反函数如果函数f将x映射为y,那么反函数f^(-1)将y映射为x。
反函数是原函数的逆运算。
四、函数的性质1. 函数的值域和定义域函数的值域是函数所有可能的输出值的集合,定义域是函数所有可能的输入值的集合。
2. 奇偶性函数f(x)的奇偶性是指当x为某个数时,函数f(-x)与f(x)的关系。
如果f(-x) = f(x),则函数f(x)是偶函数;如果f(-x) = -f(x),则函数f(x)是奇函数。
3. 单调性如果函数在定义域上的任意两个数x1、x2,若有x1 < x2,则f(x1)与f(x2)的关系。
如果f(x1) < f(x2),则函数f(x)是增函数;如果f(x1) > f(x2),则函数f(x)是减函数。
4. 周期性函数f(x)的周期是一个正数T,如果对于任意x,f(x+T) = f(x)。
五、函数的应用1. 实际问题中的函数函数在各个行业和领域中有着广泛的应用,比如物理学中的运动学函数、经济学中的收益函数、生物学中的生长函数等。
《函数的基本性质》知识点总结

《函数的基本性质》知识点总结《函数的基本性质》知识点总结「篇一」《函数的基本性质》知识点总结基础知识:1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。
如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。
注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f(-x)与f(x)的关系;③作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y轴成轴对称;②设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)。
(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。
八年级上册数学函数知识点_初中数学函数知识必看

八年级上册数学函数知识点_初中数学函数知识必看八年级上册数学函数知识点一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。
2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。
八年级上册数学函数知识考点归纳大全我们称数值变化的量为变量(variable)。
有些量的数值是始终不变的,我们称它们为常量(constant)。
在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。
基本初等函数知识点

基本初等函数知识点一、引言在数学中,初等函数是由基本初等函数经过有限次的四则运算(加、减、乘、除)以及复合运算得到的函数。
基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数以及反三角函数。
本文将详细介绍这些基本初等函数的定义、性质和图像。
二、常数函数定义:常数函数 \( f(x) = c \),其中 \( c \) 是一个实数常数。
性质:常数函数的图像是一条平行于 \( x \) 轴的直线,其所有点的函数值都等于常数 \( c \)。
图像:见附录图1。
三、幂函数定义:幂函数 \( f(x) = x^n \),其中 \( n \) 是实数。
性质:幂函数的性质取决于指数 \( n \) 的值。
当 \( n \) 为正整数时,函数图像是 \( n \) 次幂的曲线;当 \( n \) 为负整数时,函数图像是倒数的幂函数曲线。
图像:见附录图2。
四、指数函数定义:指数函数 \( f(x) = a^x \),其中 \( a > 0 \) 且 \( a\neq 1 \)。
性质:指数函数的底数 \( a \) 决定了函数图像的形状。
当 \( a > 1 \) 时,函数是增长的;当 \( 0 < a < 1 \) 时,函数是衰减的。
图像:见附录图3。
五、对数函数定义:对数函数 \( f(x) = \log_a(x) \),其中 \( a > 0 \) 且\( a \neq 1 \)。
性质:对数函数是指数函数的逆函数。
当 \( a > 1 \) 时,函数是单调增加的;当 \( 0 < a < 1 \) 时,函数是单调减少的。
图像:见附录图4。
六、三角函数1. 正弦函数 \( \sin(x) \)2. 余弦函数 \( \cos(x) \)3. 正切函数 \( \tan(x) \)定义:这些函数与单位圆上的点的坐标有关。
性质:三角函数具有周期性,它们的周期为 \( 2\pi \)。
初中函数入门基础知识

初中函数入门基础知识数学函数是一个比较难的知识点,下面是整理初中函数入门基础知识点汇总1函数的有关概念(1)函数:在某一变化过程中,如果有两个变量x,y,并且对于x在某一范围内的每一个确定的值,y都有唯一确定的值与其对应,那么就说y是x的函数,x叫做自变量。
(2)函数自变量的取值范围函数自变量的取值范围应使函数解析式有意义;应用问题中,自变量的取值范围还应具有实际意义;求函数自变量的取值范围的过程,实质上是解不等式或不等式组的过程;(3)常见自变量的取值范围:分式型:分母不为0;二次根式型:被开方数大于等于0;分式、二次根式混合型:分母不为0,且被开方数大于等于0.(4)函数值:当函数自变量x取某一数值时,与之对应的唯一确定的y值,叫做这个函数当函数自变量取该值时的函数数值。
2一次函数知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
初中基本函数知识点总结

初中基本函数知识点总结一、函数的基本概念1. 函数的定义:函数是一个对应关系,它把一个数集中的每一个数映射成另一个数集中的唯一一个数。
2. 自变量和因变量:在函数中,自变量是输入的值,因变量是输出的值。
3. 函数的表示:一般来说,函数可以用表格、图像、公式或者文字描述。
4. 定义域和值域:在函数中,定义域是自变量的取值范围,值域是因变量的取值范围。
二、函数的图像和性质1. 函数的图像:函数的图像是自变量和因变量之间的关系的几何表示。
2. 函数的性质:函数的性质包括奇偶性、单调性、周期性等。
三、基本初等函数1. 常数函数:常数函数的表达式是f(x) = C (C为常数),它的图像是一条水平的直线。
2. 一次函数:一次函数的表达式是f(x) = kx + b (k和b为常数,k≠0),它的图像是一条斜线。
3. 二次函数:二次函数的表达式是f(x) = ax² + bx + c (a、b、c为常数,且a≠0),它的图像是一条开口向上或向下的抛物线。
4. 幂函数:幂函数的表达式是f(x) = xᵐ (m为常数),它的图像是经过原点的曲线。
5. 指数函数:指数函数的表达式是f(x) = aˣ (a为正实数,且a≠1),它的图像是逐渐上升或逐渐下降的曲线。
6. 对数函数:对数函数的表达式是f(x) = logₐx (a为正实数,且a≠1),它的图像是一条拐点在(1,0)处的曲线。
四、函数的运算1. 函数的和、差、积、商:函数的和、差、积、商分别对应于两个函数的和、差、积、商。
2. 复合函数:复合函数是指一个函数的自变量被另一个函数的因变量代替。
3. 反函数:若函数y=f(x)的定义域为D,值域为R,则对于D中的任意一个数x,能使f(x) = y成立的y是唯一的,那么函数y=f(x)的反函数是一个函数,其定义域为R,值域为D。
五、函数的应用1. 函数的应用:在实际生活中,函数的运用十分广泛,包括表示物体的运动规律、生活中的购物花费、投资收益等。
函数的基本知识点总结

函数的基本知识点总结1. 函数的定义在计算机编程中,函数通常包含以下几个部分:函数名:用于调用函数的名称。
函数名应具有描述性,能够清晰地表达函数的作用。
参数列表:函数可以接受零个或多个参数作为输入。
参数列表定义了函数所需的输入信息。
函数体:包含了完成特定任务的代码块。
函数体中的代码通过参数列表传递的参数来执行,并可能返回一个值。
返回值:函数可以返回一个值,该值就是函数的输出结果。
如果函数不需要返回值,可以省略返回值。
2. 函数的调用调用函数是指使用函数名及其参数列表来执行函数体中的代码。
函数的调用可以在程序的任何地方进行,只需使用函数名和正确的参数即可。
在调用函数时,要注意参数的顺序,数量和类型要与函数定义中的要求一致,否则程序可能会发生错误。
3. 函数的参数函数可以接受零个或多个参数作为输入。
参数允许函数在执行时使用外部提供的数据进行计算或处理。
函数的参数可以有默认值。
在定义函数时,可以为参数指定默认值。
如果函数被调用时没有提供对应的参数,将会使用默认值。
函数的参数可以是不同的类型,包括整数、浮点数、字符串、布尔值、列表、字典等等。
在函数内部,可以根据需要进行参数类型的判断和处理。
4. 函数的返回值函数可以返回一个值,用于将计算结果传递给调用者。
返回值可以是任何有效的数据类型,包括数字、字符串、列表、字典等。
如果函数没有返回值,可以使用关键字“None”来表示。
None是Python中的特殊值,表示空值或者没有值。
在函数执行完毕后,返回值被传递给函数的调用者。
调用者可以根据需要对返回值进行处理或者继续传递给其他函数。
5. 函数的作用域函数内部的变量通常只在函数内部有效,称为局部变量。
函数外部定义的变量一般称为全局变量,可以在整个程序中被访问和使用。
在函数内部可以使用关键字“global”来声明全局变量,使得函数内部的代码可以修改全局变量的值。
但是在实际开发中,尽量避免使用全局变量,因为全局变量容易导致代码的混乱和不可预测性。
函数基础知识及注意点

函数一章基础知识一、映射与函数:(1)映射的概念: (2)一一映射:(3)函数的概念:如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。
函数)(x y ϕ=的图象与直线a x =交点的个数为 个。
二、函数的三要素: , , 。
相同函数的判断方法:① ;② (两点必须同时具备) (1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法: ①)()(x g x f y =,则 ; ②)()(*2N n x f y n ∈=则 ; ③0)]([x f y =,则 ; ④如:)(log )(x g y x f =,则 ; ⑤含参问题的定义域要分类讨论;如:已知函数)(x f y =的定义域是]1,0[,求)()()(a x f a x f x -++=ϕ的定义域。
⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
如:已知扇形的周长为20,半径为r ,扇形面积为S ,则==)(r f S ;定义域为 。
(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:),(,n m x dcx bax y ∈++=; ④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
八年级上函数知识点总结

八年级上函数知识点总结一、基础概念1.函数的定义:函数是一种有序关系,对于集合A中的每一个元素,都有唯一的元素与之相对应。
2.常用函数类型:(1)一次函数:形如f(x) = a*x + b(a≠0)。
其中,a称为斜率,b称为截距。
(2)二次函数:形如f(x) = a*x^2 + b*x + c(a≠0)。
(3)反比例函数:形如f(x) = k/x(k≠0)。
3.函数的符号表示:通常将函数用一个字母(f、g、h等)来表示,后面紧跟着自变量的符号和函数式。
例如:f(x)、g(t)等。
4.函数的图像:函数的图像是平面直角坐标系中,所有满足函数关系的点的集合。
二、函数的性质1.定义域、值域和解析式(1)定义域:函数能够接受的自变量的取值范围。
(2)值域:函数能够得到的因变量的取值范围。
(3)解析式:用符号表达函数的式子。
2.奇偶性(1)偶函数:对于任意x∈D,有f(-x) = f(x)。
(2)奇函数:对于任意x∈D,有f(-x) = -f(x)。
3.单调性:用来描述函数在定义域上的增减情况。
(1)增函数:若a<b,则f(a)<f(b)。
(2)减函数:若a<b,则f(a)>f(b)。
4.周期性:对于某个实数T,当且仅当任意x∈D,有f(x+T)=f(x),就称函数f(x)为周期函数,而T称为函数的周期。
三、函数的图像1.一次函数一次函数的图像是直线。
当k>0时,直线从左向右上方倾斜;当k<0时,直线从左向右下方倾斜。
图像截距b表示函数与y轴的交点;斜率k表示函数的增减趋势和倾斜程度。
2.二次函数二次函数的图像是抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
顶点坐标恰为二次函数的最小值点或最大值点。
3.反比例函数反比例函数的图像一般为双曲线。
反比例函数有一个特殊的节点o(0,0),双曲线与两个坐标轴分别相交。
四、函数的应用1.函数的复合函数的复合指的是将一个函数f(x)作为另一个函数g(x)的自变量,从而得到一个较为复杂的函数h(x) = g(f(x))。
函数的基础知识大全

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法.1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系.(3)图象法:就是用函数图象表示两个变量之间的关系.2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;(3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;(5)应用题求函数解析式常用方法有待定系数法等.求函数解析式的常用方法:1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法)4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。
高一数学函数知识点及技巧

高一数学函数知识点及技巧随着高一学习的深入,数学成为了学生们必须面对、必须攻克的科目之一。
而在数学中,函数无疑是一个重要的考点,也是学习者们最容易迷失的地方之一。
为了帮助大家更好地掌握高一数学中的函数知识点和技巧,本文将重点介绍一些相关内容。
一、函数的定义和性质函数是数学中的一种重要工具,它描述了输入和输出之间的关系。
在高一阶段,我们首先需要理解函数的定义和基本性质。
函数通常用符号“f(x)”表示,其中“x”是自变量,而“f(x)”是函数对应的因变量。
函数的定义要求每个自变量都对应唯一的因变量,这就意味着一个自变量不可以对应两个以上的因变量。
二、函数的图像和图像的性质理解函数的图像是非常重要的,因为它可以直观地展示函数的变化规律。
通过观察图像,我们可以得到很多有用的信息。
例如,函数的对称性、奇偶性和单调性等。
在绘制函数图像时,我们应该掌握一些技巧,如按比例选择坐标轴、注意函数在不同区间的特征等。
三、函数的基本类型高一阶段,我们将学习到一些常见的函数类型。
例如,线性函数、二次函数、指数函数和对数函数等。
对于每种类型的函数,我们要掌握其定义、表达式、图像和性质。
在解题过程中,我们可以根据函数的类型来选择相应的解题方法,从而更好地解决问题。
四、函数的运算在函数知识的学习中,我们还需要了解函数的运算。
这些运算包括函数的加法、减法、乘法和除法。
在进行函数的运算时,我们要注意运算规则和运算对象的约束条件。
通过熟练掌握函数的运算规则,我们可以更快地解决复杂的问题。
五、函数的应用函数在现实生活中有着广泛的应用。
例如,我们可以利用函数来描述物体的运动、人口的增长、利润的变化等等。
在高一数学中,我们需要学会将函数知识应用到实际问题中,通过建立数学模型来解决具体的问题。
这种应用能力对于我们今后的学习和工作都具有重要意义。
总结起来,高一数学中的函数知识点需要我们掌握函数的定义和性质、图像和性质、基本类型、运算以及应用等内容。
初中数学函数知识点和常见题型总结

函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。
函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。
函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。
换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。
一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。
注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。
平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。
2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。
3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。
3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。
2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。
初中数学函数知识点总结(定义、性质和图像)

函数知识点总结(掌握函数的定义、性质和图像)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+) 第二象限:(-,+) 第三象限:(-,-) 第四象限:(+,-)3、坐标轴上点的坐标特征:x 轴上的点,y 为零;y 轴上的点,x 为零;原点的坐标为(0 , 0)。
4、点的对称特征:已知点P(m,n),关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征:平行于x 轴的直线上的任意两点:纵坐标相等; 平行于y 轴的直线上的任意两点:横坐标相等。
6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。
第二、四象限角平分线上的点横、纵坐标互为相反数。
7、点P (x,y )的几何意义:点P (x,y )到x 轴的距离为 |y|,点P (x,y )到y 轴的距离为 |x|。
点P (x,y )到坐标原点的距离为22y x +8、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 212y y +) 10、点的平移特征: 在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
小学数学点知识归纳简单的函数概念及应用

小学数学点知识归纳简单的函数概念及应用函数是数学中一个非常基础且重要的概念,它在各个学科和实际生活中都有广泛的应用。
通过对函数的学习,可以帮助小学生们培养数学思维和解决问题的能力。
本文将从函数的定义、函数的表示形式、函数的性质和函数的应用等方面进行论述。
一、函数的定义函数是一种特殊的关系,它是两个集合之间的对应关系。
如果数集A 中的每一个元素都与数集 B 中唯一确定的元素相对应,那么我们就说集合 A 和集合 B 之间存在一个函数。
二、函数的表示形式1. 一个常见的表示函数的方法是通过一个方程式或者等式来表示。
比如,y = 2x 就是一个函数,其中 x 是自变量,y 是因变量。
2. 另一种常见的表示函数的方法是使用函数图像。
通过绘制函数的图像,我们可以直观地看出函数的性质和特点。
三、函数的性质1. 定义域和值域:函数的定义域指的是自变量的取值范围,而值域则是因变量的取值范围。
2. 单调性:函数的单调性指的是函数在其定义域上的增减性。
如果函数在定义域上递增,那么我们称其为递增函数;如果函数在定义域上递减,那么我们称其为递减函数。
3. 奇偶性:函数的奇偶性指的是函数的对称性。
如果函数满足 f(-x) = f(x),那么我们称其为偶函数;如果函数满足 f(-x) = -f(x),那么我们称其为奇函数。
4. 周期性:函数的周期性指的是函数图像在平移后与原图像完全一致的距离。
如果函数存在这样一个最小的正常数 T,使得对于任意 x,都有 f(x + T) = f(x),那么我们称其为周期函数。
四、函数的应用函数在实际生活中有着广泛的应用,下面以一些简单的例子来说明:1. 运动问题:假设小明正在走路,他以恒定的速度行走。
我们可以用函数来描述小明所走过的路程和所用的时间之间的关系。
2. 温度变化问题:我们可以用函数来描述一天中气温的变化。
通过函数的图像,我们可以直观地看出温度的高低峰。
3. 表格问题:假设小明在做一道数学题,可以建立一个函数,把表格中的每个数与其对应的运算结果联系起来。
2023人教版 函数基础知识【九大题型】(举一反三)(人教版)(原卷版)

专题19.1 函数基础知识【九大题型】【人教版】【题型1 常量与变量的确定】 (1)【题型2 函数的概念】 (2)【题型3 用描点法画函数的图像】 (3)【题型4 自变量取值范围的确定】 (6)【题型5 函数的解析式的确定】 (6)【题型7 函数图像的识别】 (8)【题型8 从函数的图像获取信息】 (10)【题型9 动点问题的函数图象】 (12)【知识点1 函数的概念】一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
注意:要判断一个关系式是不是函数,首先看这个变化过程中是否只有两个变量,其次看每一个x的值是否对应唯一确定的y值.【知识点2 求函数的值】(1)当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.(2)函数表达式中只有两个变量,给定一个变量的值,将其代入函数表达式即可求另一个变量的值,即给自变量的值可求函数值,给函数值可求自变量的值.【题型1 常量与变量的确定】【例1】(2022春•娄星区期末)下列说法不正确的是()A.正方形面积公式S=a2中有两个变量:S,aB.圆的面积公式S=πr2中的π是常量C.在一个关系式中,用字母表示的量可能不是变量D.如果a=b,那么a,b都是常量【变式1-1】(2022春•鄠邑区期末)大家知道,冰层越厚,所承受的压力越大,这其中自变量是,因变量是 .【变式1-2】(2022春•砚山县校级期中)某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表:数量(千克) 0.5 1 1.5 2 2.5 3 3.5 … 售价(元)1.534.567.5910.5…上表反映了 个变量之间的关系,其中,自变量是 ;因变量是 . 【变式1-3】(2022•莘县校级月考)某电信公司提供了一种移动通讯服务的收费标准,如下表:项目 月基本服务费月免费通话时间超出后每分收费标准40元150分0.6元则每月话费y (元)与每月通话时间x (分)之间有关系式y ={40(0≤x ≤150)0.6x −50(x >150),在这个关系式中,14.变量x ,y 之间的对应关系如下表所示:X ﹣3 ﹣2 ﹣1 0 1 2 3 y105212510请你判断y 是x 的函数吗?x 是y 的函数吗?说说你的理由.【题型2 函数的概念】【例2】(2022春•莆田期末)下列曲线中不能表示y 是x 的函数的是( )A .B .C .D .【变式2-1】(2022春•红谷滩区校级期末)下面每个选项中给出了某个变化过程中的两个变量x 和y ,其中y 不是x 的函数的选项是( )A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数【变式2-2】(2022•长安区期末)老师让同学们举一个y是x的函数的例子,同学们分别用表格、图象、函数表达式列举了如下4个x、y之间的关系:(其中k,b为常量)①气温x1201日期y1234②③y=kx+b④y=|x|其中y一定是x的函数的是.(填写所有正确的序号)【变式2-3】(2022春•汉阴县期末)变量x,y有如下关系:①x+y=10,②|y|=x,③y=|x﹣3|,④y2=8x.其中y是x的函数有()A.1个B.2个C.3个D.4个【知识点3 函数的图象】把一个函数的自变量x的值与对应的函数y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做这个函数的图像,用图像表示的函数关系,更为直观和形象.【题型3 用描点法画函数的图像】【例3】(2022春•镇平县月考)某班数学兴趣小组对函数y=1x−1+x+12的图象与性质进行了探究,探究过程如下,请补充完整.(1)函数y=1x−1+x+12的自变量x的取值范围是;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣1012y…−54−56−12−12−54x322345…y1345252m134…则表格中的m=;(3)如图,在平面直角坐标系中,描出了以上表格中各组对应值为坐标的点,请根据描出的点,画出该函数的图象,试写出该函数的一条性质.【变式3-1】(2022春•广饶县期末)某造纸厂每小时造纸1.5吨,2小时、3小时……各造纸多少吨?(1)把下表填写完整,在①②③处填写相应数值.造纸时间/时1234……造纸吨数/吨 1.5①②③……(2)根据表中的数据,在图中描出造纸时间和造纸吨数对应的点,再把它们连起来.(3)根据图象判断,5小时造纸多少吨?【变式3-2】(2022春•梁平区期末)小奥根据学习函数的经验,对函数y=x2+2x的图象进行了探究.下面是小奥的探究过程,请补充完整:(1)函数y=x2+2x的自变量x的取值范围是;(2)下表是y与x的几组对应值,则m的值为,n的值为;x…﹣5m﹣3﹣2﹣1−121212345…y…−2910−52−136﹣2−52−174174522n522910…(3)描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象.【变式3-3】(2022•襄州区模拟)数学活动:问题情境:有这样一个问题:探究函数y=1x +1的图象与性质.小明根据学习函数的经验,对函数y=1x+1的图象与性质进行了探究.问题解决:下面是小明的探究过程,请补充完整:(1)函数y=1x+1的自变量x的取值范围是;(2)表是y与x的几组对应值.x…﹣4﹣3﹣2﹣1﹣m m1234…y (3)423120﹣132324354…求m的值;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象.(4)结合函数的图象,写出该函数的性质(两条即可).【题型4 自变量取值范围的确定】中自变量x的取值范围是()【例4】(2022春•扶沟县期末)函数y=√1x+3A.x>﹣3B.x≥﹣3C.x<﹣3D.x≠﹣3【变式4-1】(2022春•昌平区期末)函数y=2x中,自变量x的取值范围是()x−1A.x<1B.x>1C.x≠1D.x≠0自变量的取值范围是x>0.【变式4-2】(2022•渠县一模)函数y=√xx−√−x的图象上,那么点P应在平面直角坐【变式4-3】(2022•杭州模拟)已知p(x,y)在函数y=−1x2标系中的()A.第一象限B.第二象限C.第三象限D.第四象限【题型5 函数的解析式的确定】【例5】(2022•金牛区校级期中)一根长度为30cm的弹簧,一端固定.如果另一端挂上物体,在正常的弹性限度内,所挂物体质量每增加1kg时,弹簧长度增加2cm,完成下列问题:①当挂物体重3kg时,弹簧总长度为cm;②在正常的弹性限度内,如果用x表示所挂物体质量(单位kg),那么弹簧的总长度是多少厘米?③在正常的弹性限度内,若弹簧的总长度为40cm,那么它挂的物体质量是多少千克?【变式5-1】(2022春•文山州期末)某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:(1)在这个变化过程中,自变量和因变量分别是什么?(2)洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?(3)已知洗衣机的排水速度为每分钟18升,求排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系式.【变式5-2】(2022•莘县校级月考)为了加强公民节水意识,合理利用水资源,某市自来水公司对每户用水量进行了分段计费,每户每月用水量在规定立方米及以下的部分和超出部分标准不同.下表反映的是小亮家1﹣4月份用水量与应交水费情况:月份1234用水量(m3)681012费用(元)9121824小亮家12月份用水xm3(12月份用水量超过规定用水量),应交水费y元,则y关于x的函数关系式是.【变式5-3】(2022•郫都区模拟)如图,在矩形中截取两个相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,则因变量y与自变量x的函数关系式为y=.【题型6 求自变量的值或函数值】【例6】(2022春•南岸区期末)地表以下岩层的温度y (℃)随着所处深度x (km )的变化而变化,在某个地点y 与x 之间的关系可以近似地用关系式y =35x +20来表示,也可用表格表示,其中表格的部分数据如下表所示,则其中的m ,n 分别是( )x /℃ 1 2 4 m 9 10 y /km 55n160230335370A .m =7,n =70B .m =6,n =70C .m =7,n =90D .m =6,n =90【变式6-1】(2022春•双阳区月考)已知函数y =2x−1x+2中,当x =a 时的函数值为1,试求a 的值为 .【变式6-2】(2022春•微山县期末)已知函数y ={2x +1(x ≥0)4x(x <0),当x =﹣2时,函数值y 为 .【变式6-3】(2022•江汉区校级月考)设f (x )表示关于x 的函数,若f (m +n )=f (m )+f (n )+mn 9,且f (6)=3,那么f (5)= . 【题型7 函数图像的识别】【例7】(2022春•芝罘区期末)如图,将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后对准玻璃杯口匀速注水,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h 与注水时间t 之间的变化情况的是( )A .B .C .D .【变式7-1】(2022•雅安)一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况( )A.B.C.D.【变式7-2】(2022•广陵区一模)如图,物理课上,老师将挂在弹簧测力计下端的铁块完全浸没在水中,然后缓慢匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.【变式7-3】(2022春•章丘区期末)如图,在边长为2的正方形ABCD中,点E、G分别是边CD和BC 的中点,点F为正方形中心,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【题型8 从函数的图像获取信息】【例8】(2022春•呼和浩特期末)已知张强家、体育场、文具店在同一直线上.如图的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.则下列说法正确的是()km/ℎA.张强从家到体育场的速度是503B.体育场离文具店4千米C.张强在文具店逗留了15分D.张强从文具店回家的平均速度是3千米/分70【变式8-1】(2022•开州区模拟)如图是自动测温仪记录的图象,它反映了某市的春季某天气温T如何随时间t的变化而变化.下列从图象中得到的信息错误的是()A.4点时气温达最低B.14点到24点之间气温持续下降C.0点到14点之间气温持续上升D.14点时气温达最高是8℃【变式8-2】(2022•石家庄二模)如图(1)是两圆柱形联通容器(联通外体积忽略不计).向甲容器匀速注水,甲容器的水面高度h(cm)随时间t(分)之间的函数关系如图(2)所示,根据提供的图象信息,若甲的底面半径为1cm,则乙容器底面半径为()A.5cm B.4cm C.3cm D.2cm【变式8-3】(2022•綦江区期末)小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h(米)与小强出发后的时间t(分钟)的函数关系如图所示,下列结论正确的是()A.爷爷比小强先出发20分钟B.小强爬山的速度是爷爷的2倍C.l1表示的是爷爷爬山的情况,l2表示的是小强爬山的情况D.山的高度是480米【题型9 动点问题的函数图象】【例9】(2022春•洪江市期末)如图1,矩形ABCD中,动点E从点C出发,速度为2cm/s,沿C→D→A →B方向运动至点B处停止.设点E运动的时间为xs,△BCE的面积为y,如果y关于x的函数图象如图2所示,则四边形ABCD的面积为()A.48cm2B.24cm2C.21cm2D.12cm2【变式9-1】(2022•武威模拟)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,图中阴影部分△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形PQMN的面积为()A.16B.20C.36D.45【变式9-2】(2022春•海淀区校级期中)已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是()A.B.C.D.【变式9-3】(2022•大同模拟)如图1,在矩形ABCD中,动点P从点A出发,沿A﹣B﹣C﹣D方向运动至点D处停止.设点P运动的路程为x,△APD的面积为S,如果S关于x的函数图象如图2所示,则当x=7时,点P应运动到()A.点C处B.点D处C.点A处D.点B处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数一章基础知识 一、映射与函数:(1)映射的概念: (2)一一映射:(3)函数的概念:如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。
函数)(x y ϕ=的图象与直线a x =交点的个数为 个。
二、函数的三要素: , , 。
相同函数的判断方法:① ;② (两点必须同时具备) (1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法: ①)()(x g x f y =,则 ; ②)()(*2N n x f y n ∈=则 ; ③0)]([x f y =,则 ; ④如:)(log )(x g y x f =,则 ;⑤含参问题的定义域要分类讨论; 如:已知函数)(x f y =的定义域是]1,0[,求)()()(a x f a x f x -++=ϕ的定义域。
⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
如:已知扇形的周长为20,半径为r ,扇形面积为S ,则==)(r f S ;定义域为 。
(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:),(,n m x dcx bax y ∈++=;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
求下列函数的值域:①])1,1[,,0,0(-∈>>>-+=x b a b a bxa bxa y (2种方法);②)0,(,32-∞∈+-=x x x x y (2种方法);③)0,(,132-∞∈-+-=x x x x y (2种方法);三、函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数) 复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。
f(x) -f(-x)=0⇔ f(x) =f(-x)⇔f(x)为偶函数;f(x)+f(-x)=0⇔ f(x) =-f(-x) ⇔f(x)为奇函数。
判别方法:定义法, 图像法 ,复合函数法 应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x 满足:f(x+T)=f(x),则T 为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x 满足:f(x+a)=f(x -a),则2a 为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考) 平移变换 y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系数,要先提取系数。
如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。
对称变换 y=f(x)→y=f(-x),关于y轴对称 y=f(x)→y=-f(x) ,关于x轴对称y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称y =f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。
(注意:它是一个偶函数) 伸缩变换:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a -x)=f(a+x),则函数y=f(x)的图像关于直线x=a 对称;如:)(x f y =的图象如图,作出下列函数图象:(1))(x f y -=;(2))(x f y -=; (3)|)(|x f y =;(4)|)(|x f y =; (5))2(x f y =;(6))1(+=x f y ; (7)1)(+=x f y ;(8))(x f y --=; (9))(1x fy -=。
五、反函数: (1)定义:(2)函数存在反函数的条件: ;(3)互为反函数的定义域与值域的关系: ; (4)求反函数的步骤:①将)(x f y =看成关于x 的方程,解出)(1y fx -=,若有两解,要注意解的选择;②将y x ,互换,得)(1x fy -=;③写出反函数的定义域(即)(x f y =的值域)。
(5)互为反函数的图象间的关系: ; (6)原函数与反函数具有相同的单调性;(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
如:求下列函数的反函数:)0(32)(2≤+-=x x x x f ;122)(-=xx x f ;)0(21log )(2>-+=x x x x f 七、常用的初等函数: (1)一元一次函数:)0(≠+=a b ax y ,当0>a 时,是增函数;当0<a 时,是减函数;(2)一元二次函数: 一般式:)0(2≠++=a c bx ax y ;对称轴方程是 ;顶点为 ;两点式:))((21x x x x a y --=;对称轴方程是 ;与x 轴的交点为 ; 顶点式:h k x a y +-=2)(;对称轴方程是 ;顶点为 ;①一元二次函数的单调性: 当0>a时: 为增函数; 为减函数;当0<a 时: 为增函数; 为减函数;②二次函数求最值问题:首先要采用配方法,化为h k x a y +-=2)(的形式,Ⅰ、若顶点的横坐标在给定的区间上,则0>a 时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;0<a 时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;Ⅱ、若顶点的横坐标不在给定的区间上,则0>a 时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得; 0<a 时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;有三个类型题型:(1)顶点固定,区间也固定。
如:]1,1[,12-∈++=x x x y(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。
(3)顶点固定,区间变动,这时要讨论区间中的参数.]1,[,12+∈++=a a x x x y③二次方程实数根的分布问题: 设实系数一元二次方程0)(2=++=c bx ax x f 的两根为21,x x ;则:注意:若在闭区间],[n m 讨论方程0)(=x f 有实数解的情况,可先利用在开区间),(n m 上实根分布的情况,得出结果,在令n x=和m x =检查端点的情况。
(3)反比例函数:)0(≠=x x a y ⇒bx ca y -+=(4)指数函数:)1,0(≠>=a a a y x指数运算法则: ; ; 。
指数函数:y=xa (a>o,a≠1),图象恒过点(0,1),单调性与a 的值有关,在解题中,往往要对a 分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。
(5)对数函数:)1,0(log ≠>=a a x y a指数运算法则: ; ; ; 对数函数:y=x alog (a>o,a≠1) 图象恒过点(1,0),单调性与a 的值有关,在解题中,往往要对a 分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。
注意:(1)x a y =与x y a log =的图象关系是 ;(2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。
(3)已知函数)2(log )(221++=kx x x f 的定义域为R ,求k 的取值范围。
已知函数)2(log )(221++=kx x x f 的值域为R ,求k 的取值范围。
六、)0(>+=k xkx y 的图象: 定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数。
七、补充内容:抽象函数的性质所对应的一些具体特殊函数模型: ①)()()(2121x f x f x x f +=+⇒正比例函数)0()(≠=k kx x f②)()()(2121x f x f x x f ⋅=+;)()()(2121x f x f x x f ÷=-⇒ ; ③)()()(2121x f x f x x f +=⋅;)()()(2121x f x f x x f -=⇒ ; ④)2()2(2)()(212121x x f x x f x f x f -⋅+=+⇒ ;函数一章要注意的问题 1. 函数的几个重要性质:①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+,那么函数()x f y =的图象关于直线a x =对称.②函数()x f y =与函数()x f y -=的图象关于直线0=x 对称; 函数()x f y =与函数()x f y -=的图象关于直线0=y 对称; 函数()x f y =与函数()x f y --=的图象关于坐标原点对称. ③函数()x a f y +=与函数()x a f y -=的图象关于直线0=x 对称.④若奇函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上也是递增函数.⑤若偶函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上是递减函数.⑥函数()a x f y +=)0(>a 的图象是把函数()x f y =的图象沿x 轴向左平移a 个单位得到的;⑦函数()a x f y +=()0(<a 的图象是把函数()x f y =的图象沿x 轴向右平移a 个单位得到的;⑧函数()x f y =+a )0(>a 的图象是把函数()x f y =助图象沿y 轴向上平移a 个单位得到的;⑨函数()x f y =+a )0(<a 的图象是把函数()x f y =助图象沿y 轴向下平移a 个单位得到的.⑩函数()ax f y =)0(>a 的图象是把函数()x f y =的图象沿x 轴伸缩为原来的a1得到的; ⑾函数()x af y =)0(>a 的图象是把函数()x f y =的图象沿y 轴伸缩为原来的a 倍得到的. 2. 求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 3. 函数与其反函数之间的一个有用的结论:()().b f 1a b a f=⇔=-4. 原函数()x f y =在区间[]a a ,-上单调递增,则一定存在反函数,且反函数()x f y 1-=也单调递增;但一个函数存在反函数,此函数不一定单调. 5. 判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗?6. 根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)10. 你知道函数()0,0>>+=b a xb ax y 的单调区间吗?(该函数在(]ab -∞-,或[)+∞,ab 上单调递增;在[)0,ab -或(]ab ,0上单调递减)这可是一个应用广泛的函数!11. 解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀. 12. 对数的换底公式及它的变形,你掌握了吗?(b b abb a n ac c a n log log ,log log log ==) 13. 你还记得对数恒等式吗?(b aba =log )14. “实系数一元二次方程02=++c bx ax 有实数解”转化为“042≥-=∆ac b ”,你是否注意到必须0≠a ;当a=0时,“方程有解”不能转化为042≥-=∆ac b .若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?。