几何概型测试题

合集下载

概率论

概率论
P( A1 A2 An ) P( A1 ) P( A2 A1 ) P( A3 ( A1 A2 )) P( An ( A1 A2 An 1 ))
全概率公式
设A1 ,A2 ,...,An 构成一个完备事件组,且 P(Ai )>0 ,i=1,2,...,n,则对任一随机事件B, 有
P( B) P( Ai ) P( B | Ai )
i 1
n

A1 A2 A3
P( A1 ) P( B | A1 ) P( A2 ) P( B | A2 ) P( A3 ) P(B | A3 )
P( B)
贝叶斯公式 Bayes’ Theorem
设A1,A2,…, An构成完备事件组,且诸P(Ai)>0)
B为样本空间的任意事件,P( B) >0 , 则有
3 某工人照看三台机床,一个小时内1号,2号,3 号机床需要照看的概率分别为0.3, 0.2, 0.1。设各机床 之间是否需要照看是相互独立的,求在一小时内:1) 没有一台机床需要照看的概率;2)至少有一台不需要 照看的概率;3)至多有一台需要照看的概率。
练习2
发报台分别以概率 0.6 和 0.4发出信号“ .” 和“ - ”,• 由于通信系统受到干扰,当发出信 号“ .”时,收报台分别以概率 0.8 及 0.2 收 到信号 “ .”和“ - ”,同样,当发报台发 出信号“ - ”时,收报台分别以概率 0 .9 和 0.1 收到信号“ - ”和“ .”.求 (1) 收报台收到信号“ .”的概率. (2) 当收报台收到信号“ .”时,发报台确系 发出信号“ .”的概率.
x1 , x2 ,

, xn ,
,而取值 xk 的概率为
pk
PX xk pk

数学一轮复习第十章10.6几何概型学案理含解析

数学一轮复习第十章10.6几何概型学案理含解析

第六节几何概型【知识重温】一、必记2个知识点1.几何概型如果每个事件发生的概率只与构成该事件区域的①________(②________或③________)成比例,则称这样的概率模型为几何概率模型,简称为④________。

2.在几何概型中,事件A的概率的计算公式如下:P(A)=⑤______________________________________________________________________ __。

二、必明2个易误点1.计算几何概型问题的关键是怎样把具体问题(如时间问题等)转化为相应类型的几何概型问题.2.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.()(2)几何概型定义中的区域可以是线段、平面图形或空间几何体.()(3)与面积有关的几何概型的概率与几何图形的形状有关.()(4)几何概型与古典概型中的基本事件发生的可能性都是相等的,其基本事件个数都有限.()二、教材改编2.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过2分钟的概率是()A.错误!B.错误!C。

错误!D。

错误!3.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()A.错误!B.错误!C。

错误! D.错误!三、易错易混4.[2021·福建莆田质检]从区间(0,1)中任取两个数作为直角三角形两直角边的长,则所取的两个数使得斜边长不大于1的概率是()A.错误!B.错误!C。

错误!D。

错误!5.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为________.四、走进高考6.[2017·全国卷Ⅰ]如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A。

高考数学专练题 随机事件、古典概型与几何概型(试题部分)

高考数学专练题 随机事件、古典概型与几何概型(试题部分)

专题十一概率与统计【真题探秘】11.1随机事件、古典概型与几何概型探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.随机事件的概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.(3)理解古典概型及其概率计算公式.2019课标Ⅰ,6,5分古典概型排列与组合★★★2018课标Ⅱ,8,5分古典概型组合2018课标Ⅰ,10,5分与面积有关的几何概型圆的面积和三角形的面积2.古典概型2017课标Ⅰ,2,5分与面积有关的几何概型圆的面积3.几何概型2016课标Ⅰ,4,5分与长度有关的几何概型(4)会计算一些随机事件所含的基本事件数及事件发生的概率.(5)了解随机数的意义,能运用模拟方法估计概率. (6)了解几何概型的意义2016课标Ⅱ,10,5分与面积有关的几何概型随机模拟分析解读本节是高考的热点,常以选择题或填空题的形式出现,主要考查利用频率估计随机事件的概率,常涉及对立事件、互斥事件,古典概型及与长度、面积有关的几何概型,有时也与其他知识进行交汇命题,以解答题的形式出现,如概率与统计和统计案例的综合,主要考查学生的逻辑思维能力和数学运算能力.破考点练考向【考点集训】考点一随机事件的概率1.(2019山东烟台一模,3)已知甲袋中有1个红球1个黄球,乙袋中有2个红球1个黄球,现从两袋中各随机取一个球,则取出的两球中至少有1个红球的概率为()A.13B.12C.23D.56答案D2.(2019山西太原模拟,2)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P(A)=()A.0.5B.0.1C.0.7D.0.8答案A考点二古典概型1.(2020届河南百校联盟9月联合检测,4)2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”“有害垃圾”“湿垃圾”“干垃圾”的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投放到楼下的垃圾桶,若楼下分别放有“可回收物”“有害垃圾”“湿垃圾”“干垃圾”四个垃圾桶,则该居民会被罚款和行政处罚的概率为()A.13B.23C.14D.34答案D2.(2019江西南昌一模,6)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年上高一的小明与小芳都准备选历史与政治,假若他们都对后面三科没有偏好,则他们选课相同的概率为()A.12B.13C.16D.19答案B考点三几何概型1.(2020届贵州贵阳8月月考,7)某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为()A.15B.14C.13D.12答案B2.(2018湖南三湘名校教育联盟第三次联考,3)已知以原点O为圆心,1为半径的圆以及函数y=x3的图象如图所示,则向圆内任意投掷一粒小米(视为质点),则该小米落入阴影部分的概率为()A.12B.14C.16D.18答案B炼技法提能力【方法集训】方法1古典概型概率的求法1.(2019安徽蚌埠二模,4)从1,2,3,4中选取两个不同数字组成两位数,则这个两位数能被4整除的概率为()A.13B.14C.16D.112答案B2.(2019江西九江一模,4)洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图案,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从四个阴数中随机抽取两个数,则能使这两数与居中阳数之和等于15的概率是()A.12B.23C.14D.13答案D方法2几何概型概率的求法1.(2020届河南安阳第一次调研月考,10)从[-2,3]中任取一个实数a,则a的值能使函数f(x)=x+asin x在R上单调递增的概率为()A.45B.35C.25D.15答案C2.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1-π4B.π12C.π4D.1-π12答案A【五年高考】A组统一命题·课标卷题组考点一古典概型(2018课标Ⅱ,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118答案C考点二几何概型1.(2018课标Ⅰ,10,5分)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3答案A2.(2017课标Ⅰ,2,5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4答案B3.(2016课标Ⅰ,4,5分)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.34答案B4.(2016课标Ⅱ,10,5分)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mnD.2mn答案CB组自主命题·省(区、市)卷题组考点一古典概型1.(2017山东,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是()A.518B.49C.59D.79答案C2.(2019江苏,6,5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.答案7103.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.答案310考点二几何概型1.(2015陕西,11,5分)设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.34+12πB.14-12πC.12-1πD.12+1π答案 B2.(2017江苏,7,5分)记函数f(x)=√6+x -x 2的定义域为D.在区间[-4,5]上随机取一个数x,则x ∈D 的概率是 . 答案593.(2015福建,13,4分)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f(x)=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .答案512C 组 教师专用题组考点一 古典概型1.(2014课标Ⅰ,5,5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.38C.58D.78答案 D2.(2016江苏,7,5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 答案563.(2015江苏,5,5分)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 答案564.(2013课标Ⅱ,14,5分)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n= . 答案 85.(2016天津,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望. 解析 (1)由已知,有P(A)=C 31C 41+C 32C 102=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P(X=0)=C 32+C 32+C 42C 102=415,P(X=1)=C 31C 31+C 31C 41C 102=715,P(X=2)=C 31C 41C 102=415.所以,随机变量X 的分布列为X 01 2 P415 715 415随机变量X 的数学期望E(X)=0×415+1×715+2×415=1.6.(2015陕西,19,12分)设某校新、老校区之间开车单程所需时间为T,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解析 (1)由统计结果可得T 的频率分布为T(分钟)25 3035 40频率0.2 0.3 0.4 0.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.2 0.3 0.4 0.1从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T 1+T 2≤70)=P(T 1=25,T 2≤45)+P(T 1=30,T 2≤40)+P(T 1=35,T 2≤35)+P(T 1=40,T 2≤30) =0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(A )=P(T 1+T 2>70)=P(T 1=35,T 2=40)+P(T 1=40,T 2=35)+P(T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09. 故P(A)=1-P(A )=0.91.考点二 几何概型1.(2015湖北,7,5分)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≥12”的概率,p 2为事件“|x-y|≤12”的概率,p 3为事件“xy ≤12”的概率,则( ) A.p 1<p 2<p 3 B.p 2<p 3<p 1 C.p 3<p 1<p 2 D.p 3<p 2<p 1答案 B2.(2016山东,14,5分)在[-1,1]上随机地取一个数k,则事件“直线y=kx 与圆(x-5)2+y 2=9相交”发生的概率为 . 答案34【三年模拟】一、选择题(每小题5分,共35分)1.(2020届陕西百校联盟九月联考,4)“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”讲的是西施浣纱的故事;“落雁”指的就是昭君出塞的故事;“闭月”是述说貂蝉拜月的故事;“羞花”谈的是杨贵妃醉酒观花的故事.她们分别是中国古代的四大美女,某艺术团要以四大美女为主题排演一部舞蹈剧,甲、乙、丙、丁抽签决定扮演的对象,则甲不扮演貂蝉且乙不扮演杨贵妃的概率为()A.13B.712C.512D.12答案B2.(2020届四川成都青羊石室中学10月月考,9)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率为()A.136B.116C.18D.16答案D3.(2018重庆九校联盟第一次联考,4)已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B发生,则此人猜测正确的概率为()A.1B.12C.14D.0答案C4.(2019河北石家庄3月教学质量检测,9)袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都被摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为()A.16B.29C.518D.19答案B5.(2020届安徽合肥一中、安庆一中第一次素质测试,8)2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行.长三角城市群包括上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.716答案B6.(2020届四川石室中学高三开学考试,7)一个平面封闭图形的周长与面积之比为“周积率”,如图是由三个半圆构成的图形,最大半圆的直径为6,若在最大的半圆内随机取一点,该点取自阴影部分的概率为49,则阴影部分图形的“周积率”为()A.2B.3C.4D.5答案B7.(2019山西阳泉二模,8)赵爽是我国古代数学家、天文学家,大约在公元222年赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图1).类比“赵爽弦图”,可构造如图2所示的图形,它是由3个全等的三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF=2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形内的概率是()图1 图2A.2√1313B.413C.2√77D.47 答案 B二、填空题(每小题5分,共10分)8.(2020届山西静乐第一中学高三月考,15)如图所示,阴影部分是由曲线y=x 2和圆x 2+y 2=2及x 轴围成的封闭图形.在圆内随机取一点,则此点取自阴影部分的概率为 .答案 18-112π9.(2018广东江门一模,16)两位教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两位教师批改成绩之差的绝对值不超过2的概率为 .答案 0.44。

古典概型与几何概型专题训练(答案版)

古典概型与几何概型专题训练(答案版)

古典轮廓与几何轮廓专题训练1.在集合{}04M x x =<≤中随机选取一个元素,2log y x =函数大于1的概率为( ) A. 1 湾。

14 C 。

12 D. 34答案与分析: 1. C2. 考虑一元二次方程20x mx n ++=,其,m n 值等于掷骰子两次后连续出现的点数,则方程有实根的概率为 ( ) 一个。

3619 湾。

187 C 。

94 D.3617 答案与分析: 2. A3.如图,大正方形的面积为34,四个全等直角三角形组成一个小正方形, 直角三角形短边的长度3是一朵小花落在一个小方块上的概率是A .117 B .217 C .317 D .417答案与分析: 3 B .因为大正方形的面积343落在5小3正方形4上2的概率是423417P ==。

所以选择B 。

【解题与探索】本题考查几何概率的计算。

求解几何概率问题的关键是求两个区间的长度(面积或体积),然后用几何概率的概率计算公式()=A P A 构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)求解。

所以在这道题中求小花落在小方块上的概率,关键是求小方块的面积和大方块的面积。

4 、如图所示,在3个地方有一只迷失方向的小青蛙。

每次跳跃都可以进入任意相邻格子(如果跳跃5个地方只能进入3个地方,3个可以等待一次跳跃后进入1、2、4、5的机会),然后在第三跳,第一次进5的概率是( ) A.316B. 14C 。

16D.12答案与分析: 4. A一个盒子6里有好的晶体管和4坏的晶体管。

取两次,每次取一个,每次取后不要放回去。

知道第一个是好晶体管,第二个也是好晶体管的概率是 ( ) 一个。

13 湾。

512 C 。

59 D.925答案与分析: (1) C一个盒子6里有好的晶体管和4坏的晶体管。

服用任意两次,每次服用一次,每次服用拿走不放回去后,第一次和第二次都是好晶体管的概率是 ( ) 一个。

13 湾。

《概率论与数理统计》第一章习题

《概率论与数理统计》第一章习题

第1章 概率论的基本概念---随机事件与样本空间、概率、古典概型和几何概型系 班姓名 学号1、写出下列随机试验的样本空间(1)同时掷三颗骰子,记录三颗骰子点数之和 Ω=(2)生产产品直到有10件正品为止,记录生产产品的总件数 Ω=(3)对某工厂出厂的产品进行检验,合格的记上“正品”,不合格的记上“次品”,如连续查出2 个次品就停止,或检查4个产品就停止检查,记录检查的结果。

用“0”表示次品,用“1”表示正品。

Ω=(4)在单位圆内任意取一点,记录它的坐标 Ω=(5)将一尺长的木棍折成三段,观察各段的长度 Ω=2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系(1)δ<-||a x 与δ≥-||a x (2)20>x 与20≤x (3)20>x 与18<x (4)20>x 与22≤x (5)20个产品全是合格品与20个产品中只有一个废品 (6)20个产品全是合格品与20个产品中至少有一个废品3、设A,B,C 为三事件,用A,B,C 的运算关系表示下列各事件(1)A 发生,B 与C 不发生 (2)A 与B 都发生,而C 不发生 (3)A,B,C 中至少有一个发生 (4)A,B,C 都发生(5)A,B,C 都不发生 (6)A,B,C 中不多于一个发生 (7)A,B,C 中不多于两个发生 (8)A,B,C 中至少有两个发生4、盒内装有10个球,分别编有1- 10的号码,现从中任取一球,设事件A 表示“取 到的球的号码为偶数”,事件B 表示“取到的球的号码为奇数”,事件C 表示“取 到的球的号码小于5”,试说明下列运算分别表示什么事件.(1)B A (2)AB (3)C (4)C A (5)AC (6) AC(7)C B (8)BC 5、指出下列命题中哪些成立,哪些不成立.(1)B B A B A =(2)AB AB =(3)C B A C B A =(4)φ=))((B A AB(5)若B A ⊂,则AB A = (6)若φ=AB ,且A C ⊂,则φ=BC(7)若B A ⊂,则A B ⊂(8)若A B ⊂,则A B A =6、设一个工人生产了四个零件,i A 表示事件“他生产的第i 个零件是正品” (1,2,3,4)i =,用1234,,,A A A A 的运算关系表达下列事件.(1)没有一个产品是次品;(2)至少有一个产品是次品; (3)只有一个产品是次品; (4)至少有三个产品不是次品7、 设,,E F G 是三个随机事件,试利用事件的运算性质化简下列各式: (1) ()()E F E F (2) ()()()E F E F E F (3)()()EF F G解 :(1) (2) (3)8、 设事件,,A B C 分别表示开关,,a b c 闭合,D 表示灯亮,则可用事件,,A B C 表示: (1) D = (2) D =9、 (1)设事件,A B 的概率分别为51与41,且A 与B 互斥,则()P AB = . (2)一个盒中有8只红球,3只白球,9只蓝球 ,如果随机地无放回地摸3只 球 ,则取到的3 只 都 是 红 球 的 事 件 的 概 率 等 于 .(3) 一 袋中有4只白球,2只黑球,另一只袋中有3只白球和5只黑球,如果 从每只袋中各摸一只球 ,则摸到的一只是白球,一只是黑球的事件的概 率 等于 .(4) 设123,,A A A 是随机试验E 的三个相互独立的事件,已知12(),(),P A P A αβ==3()P A γ=,则123,,A A A 至少有一个发生的概率是(5) 一个盒中有8只红球,3只白球,9只蓝球,如果随机地无放回地摸3 只球,则摸到的没有一只是白球的事件的概率等于 . (6)设,,A B C 是随机事件,,A C 互不相容,11(),(),23P AB P C ==则()P AB C = . (7)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 . (8)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于12的概率为 . 10、若,A B 为任意两个随机事件,则: ( )(A)()()()≤P AB P A P B (B)()()()≥P AB P A P B (C) ()()()2+≤P A P B P AB (D) ()()()2+≥P A P B P AB11、设,A B 是两事件且()0.6,()0.7P A P B ==,问(1)在什么条件下()P AB 取到最大值,最大值是多少?(2)在什么条件下()P AB 取到最小值,最小值是多少?12、设,,A B C 是三事件,且11()()(),()()0,()48P A P B P C P AB P BC P AC ======, 求,,A B C 至少有一个发生的概率.13、在1500个产品中有400个次品,1100个正品,任取200个,求(1)恰有90个次品的概率; (2)至少有2个次品的概率.14、两射手同时射击同一目标,甲击中的概率为0.9,乙击中的概率为0.8,两射手同时击中的概率为0.72,二人各击一枪,只要有一人击中即认为“中”的,求“中”的概率.15、8封信随机地投入8个信箱(有的信箱可能没有信),问每个信箱恰有一封信的概率是多少?16、房间里有4个人,问至少有两个人的生日在同一个月的概率是多少?17、将3个球随机地放入4个杯子中去,问杯子中球的最大个数分别为1,2,3的概率各是多少?18、设一个质点等可能地落在xoy平面上的三角形域D内 ( 其中D是由==+=所围成的 ) , 设事件A为:质点落在直线1y=的下x y x y0,0,2P A侧,求().第1章 概率论的基本概念---条件概率、事件的独立性系 班姓名 学号1、一批产品共100个,其中有次品5个,每次从中任取一个,取后不放回, 设(1,2,3.)i A i =表示第i 次抽到的是次品,求:()21P A A = ()21P A A = ()21P A A =()21P A A =()312P A A A =()312P A A A =2、市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率为95%,乙厂的合格率是80%。

数学二轮复习专题限时集训2统计与统计案例随机事件的概率古典概型几何概型含解析文

数学二轮复习专题限时集训2统计与统计案例随机事件的概率古典概型几何概型含解析文

专题限时集训(二) 统计与统计案例随机事件的概率、古典概型、几何概型1.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数B[评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B.]2.(2019·全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0。

5 B.0。

6 C.0.7 D.0。

8C[由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.]3.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0。

4 C.0.6 D.0.7B[设“只用现金支付”为事件A,“既用现金支付也用非现金支付”为事件B,“不用现金支付”为事件C,则P(C)=1-P(A)-P(B)=1-0.45-0。

15=0。

4。

故选B.]4.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为() A.错误!B.错误!C.错误!D.错误!B[如图,若该行人在时间段AB的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为错误!=错误!,故选B.]5.(2020·全国卷Ⅲ)设一组样本数据x1,x2,…,x n的方差为0。

【数学】3.3《几何概型》测试(苏教版必修3)

【数学】3.3《几何概型》测试(苏教版必修3)

高中苏教数学③3.3~3.4几何概型、互斥事件水平测试一、选择题1.设A 为圆周上一点,在圆周上等可能地任取一点与A 连接,则弦长超过半径2倍的概率是( ) A.34 B.12 C.13 D.35答案:B2.某环靶由中心圆Ⅰ和两个同心圆环Ⅱ、圆环Ⅲ构成,某射手命中区域Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则该射手射击一次未命中环靶的概率为( )A.0.1 B.0.65 C.0.70 D.0.75答案:A3.如图,边长为2的正方形中有一封闭曲线围成的阴影区域, 在正方形中随机撒一粒豆子,它落在阴影区域内的概率是23, 则阴影区域的面积为( ) A.43 B.83C.23 D.无法计算 答案:B4.在某试验中,若A B ,是互斥事件,则( )A.()()1P A P B +< B.()()1P A P B +≤C.()()1P A P B +>D.()()1P A P B +=答案:B5.如图,在矩形ABCD 中,AB =4cm ,BC =2cm ,在图形上随机撒一粒黄豆,则黄豆落到阴影部分的概率是( ) A.π4 B.14 C.π8 D.12答案:C二、填空题6.假设一个小组有6个学生,现要通过逐个抽取的方法从中抽取3个学生参加一项活动,第一次抽取时每个被抽到的概率是 ,第二次抽取时,余下的每个被抽到的概率都是 ,第三次抽取时,余下的每个被抽到的概率都是 . 答案:111654,, 7.三角形ABC 中,E F G ,,为三边的中点,若在三角形上投点且点不会落在三角形ABC 外,则落在三角形EFG 内的概率是 .答案:148.如图,在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,则使得∠AOC 和∠BOC 都不小于30°的概率是 . 答案:139.在所有的两位数中,任取一个数,则这个数被2或3整除的概率为 . 答案:23三、解答题10.判断下面各对事件是否“互斥”.(1)某人射击1次,“射中9环”与“射中8环”;(2)甲、乙二人各射击一次,“甲射中10环”与“乙射中8环”;(3)甲、乙二人各射击一次,“甲、乙二人都击中目标”与“甲、乙二人都没有击中目标”;(4)甲、乙二人各射击一次.“至少有一个人击中目标”与“甲未击中目标,但乙击中目标”. 解:(1)互斥;(2)不互斥;(3)互斥;(4)不互斥.11.从一箱产品中随机地抽取一件产品,设事件A 为“抽到一等品”,事件B 为“抽到二等品”,事件C 为“抽到三等品”,且已知()0.7()0.1()0.05P A P B P C ===,,.求下列事件的概率:(1)事件D “抽到的是一等品或二等品”;(2)事件E “抽到的是二等品或三等品”.解:由题知A B C ,,彼此互斥,且D A B =+,e b c =+,(1)()()()()0.70.10.8P D P A B P A P B =+=+=+=;(2)()()()()0.10.050.15P E P B C P B P C =+=+=+=.12.连续10次抛掷一枚骰子,结果都是出现1点,你认为这枚骰子均匀吗?解:不均为,6点的那面比较重,这是因为:如果它是均匀的,一次试验出现每个面的可能性是16,从而连续出现10次1点的概率是1081 1.6538106-⎛⎫≈⨯ ⎪⎝⎭,这在一次试验中几乎是不可能发生的,而这种结果恰好发生了,我们有理由认为,这枚骰子的质量不均匀,6点的那面比较重.13. 在集合{}()0504x y x y ,,且≤≤≤≤内任取一个元素,能使代数式1903412y x +-≥的概率是多少?解:如右图,集合{}()|0504x y x y ,,且≤≤≤≤为矩形内(包括边界)的点的集合,19()|03412x y x y ⎧⎫+-⎨⎬⎩⎭,≥上方(包括直线)所有点的集合,所以所求概率143324510S S ⨯⨯===⨯阴影矩形.高中苏教数学③3.3~3.4几何概型、互斥事件水平测试一、选择题1.甲、乙两人进行下棋比赛,甲获胜的概率是0.4,两人下成和棋的概率是0.2,则甲不输的概率是( )A.0.8 B.0.4C.0.2 D.0.6答案:D2.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A.都不是一等品B.恰有一件一等品C.至多一件一等品D.至少有一件一等品答案:C3.在△ABC 内任取一点P ,则△ABP 与△ABC 的面积比大于23的概率为( ) A.13B.14 C.16 D.19答案:D4.一只蚂蚁在图所示的地板砖(除颜色不同外,其余部分相同)上爬来爬去,它最后随意停留在黑色地板砖上的概率是( ) A.13B.23 C.14 D.18答案:A二、填空题5.取一个边长为a 的正方形,如图所示,随机地向正方形内丢一粒沙子,则沙子落入阴影部分的概率是 . 答案:4π2- 6.一栋楼房有4个单元, 甲、乙两人住在此楼内 ,则甲、乙两人住同一个单元的概率 为 . 答案:14三、解答题7.一海豚在水池里自由游弋,水池为长30m ,宽20m 的长方形,求此刻海豚嘴尖离岸边不超过2m 的概率.答案:解:如右图,区域D 是长30m ,宽20m 的长方形,图中阴影部分表示事件A :“海豚嘴尖离岸边不超过2m ”,于是23020600(m )D μ=⨯-,230202616184(m )d μ=⨯-⨯=,()0.31d DP A μμ=≈.8.甲、乙两人约定6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去,求两人能会面的概率.解:用x 和y 分别表示甲、乙两人到达约会地点的时间,则两人能够会面的条件是15x y -≤,在平面上建立直角坐标系如图所示,则()x y ,的所有可能结果是边长为60的正方形,而可能会面的时间由图中的阴影部分所表示,这是一个几何概型问题,由等可能性知,22260457()6016d D P A μμ-===.备选题1.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是 . 答案:572.鱼池中共有N 尾鱼,从中捕出n 尾鱼并标上记号后放回鱼池中,经过一段时间后,再从鱼池中捕出s 尾,其中有记号的有t 尾,则估计鱼池中共有鱼N = 尾. 答案:ns t3.袋中有12个小球,其中有外形,重量一样的红球、黑球、黄球、绿球.从中任取一球得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,分别试求得到黑球、黄球、绿球的概率各是多少?解:从袋中任取一球,记“摸得红球”,“摸得黑球”,“摸得黄球”,“摸得绿球”分别为事件A B C D ,,,, 则有5()()()12P B C P B P C +=+=, 5()()()12P C D P C P D +=+=, 又1()3P A =,故2()1()3P B C D P A ++=-=, 所以1()4P B =, 1()6P C =,1()4P D =. 4.在区间(01),上随机取两个数m 、n ,求关于x 的一元二次方程20x nx m -+=有实根的概率.解:在平面直角坐标系中,以x 轴和y 轴分别表示m n ,的值,因为m 、n 是(01),中任意取的两个数,所以点()m n ,与右图中正方形内的点一一对应,即正方形内的所有点构成全部试验结果的区域.设事件A 表示方程20x nx m -+=有实根,则事件40()|101n m A m n n m n ⎧⎫⎧-⎪⎪⎪=<<⎨⎨⎬⎪⎪⎪<<⎩⎩⎭,≥,所对应的区域为右图中的阴影部分, 且阴影部分的面积为18.故由几何概型公式得 1()8S P A S ==阴影正方形,即关于x 的一元二次方程20x nx m -+=有实根的概率为18.。

2014文科概率大题(几何概率、古典概型、统计)专题

2014文科概率大题(几何概率、古典概型、统计)专题

古典概型、几何概型 统计 1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为( )A.12 B.13 C.23D .12.从1,2,3,4,5,6六个数中任取2个数,则取出的两个数不是连续自然数的概率是( )A.35B.25C.13D.233.甲、乙两同学每人有两本书,把四本书混放在一起,每人随机拿回两本,则甲同学拿到一本自己书一本乙同学书的概率是( )A.13B.23C.12D.144、袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15 B.25 C.35 D.455.设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x )=x 3+ax -b 在区间[1,2]上有零点的概率为( )A.12B.58C.1116D.346.从x 2m -y 2n =1(其中m ,n ∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为( )A.12B.47C.23D.347.已知A ={1,2,3},B ={x ∈R |x 2-ax +b =0},a ∈A ,b ∈A ,则A ∩B =B 的概率是( )A.29 B.13 C.89D .18.从分别写有0,1,2,3,4的五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.则两次取出的卡片上的数字之和恰好等于4的概率是________.9.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 10.设连续掷两次骰子得到的点数分别为m 、n 则直线y =mnx 与圆(x -3)2+y 2=1相交的概率为________.1.已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率是 ( )A.110 B.19 C.111 D.182.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为一边作正方形,则此正方形的面积介于36 cm 2与81 cm 2 之间的概率为 ( )A.116 B.18 C.14 D.123.《广告法》对插播广告的时间有一定的规定,某人对某台的电视节目做了长期的统计后得出结论,他任意时间打开电视机看该台节目,看不到广告的概率为910,那么该台每小时约有________分钟的广告.4. ABCD 为长方形,AB =2,BC =1O 的距离大于1的概率为 ( )A.π4 B .1-π4 C.π8 D .1-π85.设-1≤a ≤1,-1≤b ≤1,则关于x 的方程x 2+ax +b 2=0有实根的概率是 ( )A.12 B.14 C.18 D.1166.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为 ( )A.13 B.23 C.19 D.297.在区域⎩⎪⎨⎪⎧x +y -2≤0,x -y +2≥0,y ≥0内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( )A.π2 B.π8 C.π6 D.π48.在边长为2的正三角形ABC 内任取一点P ,则使点P 到三个顶点的距离至少有一个小于1的概率是________.9.已知函数f (x )=x 2-2ax +b 2,a ,b ∈R.(1)若a 从集合{0,1,2,3}中任取一个元素,b 从集合{0,1,2}中任取一个元素,求方程f (x )=0有0 5两个不相等实根的概率;(2)若a 从区间[0,2]中任取一个数,b 从区间[0,3]中任取一个数,求方程f (x )=0没有实根的概率.10.相碰的概率是__________.11.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落在E 中的概率是__________.12.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,求有一艘船停靠泊位时必需等待一段时间的概率.11.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落在E 中的概率是__________.1.有一笔统计资料,共有11个数据如下(不完全以大小排列):2,4,4,5,5,6,7,8,9,11,x ,已知这组数据的平均数为6,则这组数据的方差为 A .6BC .66D .6.52.对于一组数据(1,2,3,,)i x i n = ,如果将它们改变为(1,2,3,,)i x c i n += ,其中0c ≠,则下面结论中正确的是:A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化6.甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x 、y ,则满足复数i x y +的实部大于虚部的概率是( )A .16B .512C .712 D .133.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a 、b 的值分别为 A .0.27,78 B .0.27,83C .2.7,78D .27,834.对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x与y 负相关,u 与v 正相关 D .变量x 与y 负相关,u 与v 负相关5. 期末考试后,班长算出了全班40名同学的数学成绩的平均分为M ,如果把M 当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N ,那么M :N 为( ) A .40:41 B .1:1 C .41:40 D .2:16.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90 B.75 C. 60 D.457.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A .6 B .8 C .10 D .12 8.甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示, 12,x x 平均数,12,s s 分别表示甲、乙两名运动员这项测试成绩的标准差,则有( ) A .12x x >,12s s <B .12x x =,12s s <C .12x x =,12s s >D .12x x <,12s s >9.给出下列四个命题:①命题2",0"x x∀∈≥R 的否定是2",0"x x ∃∈≤R ; ②线性相关系数r 的绝对值越接近于1,表明两个随机变量线性相关性越强; ③若,[0,1],a b ∈则不等式2214ab +<成立的概率是4π; ④函数11x x a --+≤||||||恒成立,则实数a 的取值范围是[2,)+∞。

几何概型讲义

几何概型讲义

D O BA C 几何概型[知识点]:1. 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件2. 特别提醒:基本事件有如下两个特点: ○1任何两个基本事件都是互斥的; ○2任何事件都可以表示成基本事件的和。

2.所有基本事件的全体,叫做样本空间,用Ω表示,例如“抛一枚硬币”为一次实验,则Ω={正面,反面}。

3.等可能性事件(古典概型):如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件古典概型的两个共同特点: ○1有限性,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的; ○2等可能性,即每个基本事件出现的可能性相等。

4.古典概型的概率公式:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n =5.几何概型:如果第个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

6.几何概型的特点: ○1试验的结果是无限不可数的; ○2每个结果出现的可能性相等。

7.几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 8. 用几何概型解题,主要运用转化,数形结合等重要的数学思想方法,解决问题的关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率。

[典例]:1.如图,60AOB ∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求:(1)AOC ∆为钝角三角形的概率;(2)AOC ∆为锐角三角形的概率.解:如图,由平面几何知识:当AD OB ⊥时,1OD =; 当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形记"AOC ∆为钝角三角形"为事件M ,则11()0.45OD EB P M OB ++===即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角,记"AOC ∆为锐角三角"为事件N,则3()0.65DE P N OB ===即AOC ∆为锐角三角形的概率为0.6.2.甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。

(必考题)数学高二上期中经典练习题(含答案解析)

(必考题)数学高二上期中经典练习题(含答案解析)

一、选择题1.(0分)[ID :13012]如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联2.(0分)[ID :13000]“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大. 假设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P ,若21P P ≥,则n 的最小值是( ) A .3B .4C .5D .63.(0分)[ID :12995]在区间上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“12x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p << D .321p p p <<4.(0分)[ID :12988]甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下:甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用12,x x 表示,方差分别为2212,S S 表示,则( )A .221212,x x s s >> B .221212,x x s s >< C .221212,x x s s << D .221212,x x s s <> 5.(0分)[ID :12984]某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )A .25B .1225C .1625D .456.(0分)[ID :12971]我国数学家陈景润在哥德巴赫猜想的研究中做出了重大贡献,哥德巴赫猜想是:“任一大于2的偶数都可以写成两个质数之和”,如32=13+19.在不超过32的质数中,随机选取两个不同的数,其和等于30的概率为( ) A .111B .211C .355D .4557.(0分)[ID :12969]某城市2017年的空气质量状况如下表所示: 污染指数T 3060100110130140概率P110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180C .119D .568.(0分)[ID :12965]微信中有个“微信运动”,记录一天行走的步数,小王的“微信步数排行榜”里有120个人,今天,他发现步数最少的有0.85万步,最多的有1.79万步.于是,他做了个统计,作出下表,请问这天大家平均走了多少万步?( )A .1.19B .1.23C .1.26D .1.319.(0分)[ID :12950]下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A ,B ,C 彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A ,B 满足P(A)+P(B)=1,则A 与B 是对立事件. 其中正确命题的个数是( ) A .1 B .2C .3D .410.(0分)[ID :12934]某程序框图如图所示,若输出的结果是126,则判断框中可以是( )A .6?i >B .7?i >C .6?i ≥D .5?i ≥11.(0分)[ID :12930]某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程y bx a =+,其中ˆ 2.4b=,a y bx =-,据此模型预测广告费用为9万元时,销售轿车台数为( ) 广告费用x (万元) 2 3 4 5 6 销售轿车y (台数)3461012A .17B .18C .19D .2012.(0分)[ID :13016]同时掷三枚硬币,至少有1枚正面向上的概率是( ) A .78B .58C .38D .1813.(0分)[ID :13025]执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .15814.(0分)[ID :12972]《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十五日所织尺数为( )A .13B .14C .15D .1615.(0分)[ID :13023]为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元二、填空题16.(0分)[ID :13120]判断大小a =log 30.5,b =log 32,c =log 52,d =log 0.50.25,则a 、b 、c 、d 大小关系为_____________.17.(0分)[ID :13119]下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.18.(0分)[ID :13112]某人向边长分别为5,12,13的三角形区域内随机丢一粒芝麻,假设芝麻落在区域内的任意一点是等可能的,则其恰落在离三个顶点距离都大于2的地方的概率为__ .19.(0分)[ID :13107]连续抛掷一颗骰子2次,则掷出的点数之和不超过9的概率为______.20.(0分)[ID :13081]执行如图所示的算法流程图,则输出x 的值为__________.21.(0分)[ID :13073]某单位为了了解用电量y (度)与气温x (℃之间的关系,随机统计了某4天的用电量与当天气温(如表),并求得线性回归方程ˆ360yx =-为: x c9 14 -1y 184830d不小心丢失表中数据c ,d ,那么由现有数据知3c d -____________.22.(0分)[ID :13051]执行如图所示的程序框图,如果输出3s =,则正整数M 为__________.23.(0分)[ID :13049]执行如图所示的程序框图,如果输出1320s =,则正整数M 为__________.24.(0分)[ID :13048]计算机执行如图所示的程序后,输出的结果是__________.25.(0分)[ID :13046]某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是_______.三、解答题26.(0分)[ID :13220]为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民生产粮食的积极性,从2014年开始,国家实施了对种粮农民直接补贴的政策通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额x (单位:亿元)与该地区粮食产量y (单位:万亿吨)之间存在着线性相关关系,统计数据如下表: 年份 2014 2015 2016 2017 2018 补贴额x /亿元 9 10 12 11 8 粮食产量y /万亿2526313721(1)请根据上表所给的数据,求出y 关于x 的线性回归直线方程ˆˆybx a =+; (2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴7亿元,请根据(1)中所得到的线性回归直线方程,预测2019年该地区的粮食产量.参考公式:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-.27.(0分)[ID:13207]如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题:(1)79.589.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)和平均数?28.(0分)[ID:13185]现将甲、乙两个学生在高二的6次数学测试的成绩(百分制)制成如图所示的茎叶图,进入高三后,由于改进了学习方法,甲、乙这两个学生的考试成绩预计同时有了大的提升:若甲(乙)的高二任意一次考试成绩为x,则甲(乙)的高三对应x .的考试成绩预计为4(1)试预测:高三6次测试后,甲、乙两个学生的平均成绩分别为多少?谁的成绩更稳定?(2)若已知甲、乙两个学生的高二6次考试成绩分别由低到高进步的,定义y为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值,求y的平均值.29.(0分)[ID:13155]从某校期中考试数学试卷中,抽取样本,考察成绩分布,将样本分成5组,绘成频率分布直方图,图中各小组的长方形面积之比从左至右依次为1:3:6:4:2,第一组的频数是4.(1)求样本容量及各组对应的频率;(2)根据频率分布直方图估计成绩的平均分和中位数(结果保留两位小数).30.(0分)[ID:13135]某校举行书法比赛,下图为甲乙两人近期8次参加比赛的成绩的茎叶图。

山东建筑大学概率论考试真题

山东建筑大学概率论考试真题

12 11 k1 C 66 2 1 A2 {两件商品来自产地乙}包含基本事件总数
2 12
A1 {两件商品来自产地甲}包含基本事件总数
15 14 nC 105. 2 1
2 15
2 k2 C3 3
A {两件商品来自同一产地}= A1
k 69 23 P( A) . n 105 35
BA C
DB
2 1 7 P( B) P( A) P(C ) . 5 15 15
P( D) P( B) 1 P( B) 1 7 8 . 15 15
6
例5 将 n 个球随机地放入 N ( N n) 个盒子中,若盒子的容量 无限制,求事件 A {每个盒子中至多有一个球}的概率. 解 基本事件个数 N N N N n
9
例7 设 N 件产品中有 K 件是次品, N K 件是正品,现从 N
件中任意抽取1件产品,在检查过它是正品或是次品后再放回.
这样共抽取了 n 次,求事件 A { n 件产品中恰有 k 件次品} 的概率, k 0,1, 2, , n
解 基本事件个数 N n 每次从 K 件次品中取出1件,取 k 次,共有 K k 种取法;
B ={至少有一次出现币值朝上}. 求 P( A) P( B)

{ HHH HHT HTH HTT THH THT TTH TTT } A {HHT , HTH , THH }
P( A) 3 8
B {TTT }
1 7 P( B) 1 P( B) 1 8 8
3
例3 货架上有外观相同的商品15件,其中12件来自产地甲,3件 来自产地乙. 现从15件商品中随机地抽取两件,求这两件商 品来自同一产地的概率.

概率论与数理统计——第一章练习题

概率论与数理统计——第一章练习题

第一章 随机事件与概率(一)随机事件知识点1、称试验E 的样本空间的子集为随机事件,用A 、B 、C …表示。

事件A 的元素是样本点,它在一次试验中,可能出现,也可能不出现。

A 中的某个样本点出现了,事件A 发生,否则,A 不发生。

因此,在一次试验中,可能发生也可能不发生的事情,就是随机事件。

样本空间S 有两个特殊的子集;S 自身和空集φ。

S 含所有的样本点,每次试验,必然发生;φ不含样本点,每次试验一定不发生。

在一定条件下,每次试验一定发生的事情,称为必然事件。

每次试验一定不发生的事情,称为不可能事件。

必然事件S ,不可能事件φ是事先就能明确是否会发生,属于确定性现象,但在概率统计中,为了研究问题的需要,仍将其作为特殊的随机事件处理,使得事件间有着完整的关系,S A ⊂⊂φ。

此外,在样本空间的子集中,只含一个样本点的事件,称为基本事件。

样本点的个数超过一个的事件,称为复合事件。

2、事件之间的关系和运算由于事件是样本点的集合,因此,事件之间的关系和运算可借助集合之间的关系与运算来定义。

其运算规律也同集合间的运算规律。

(1)事件的包含与相等若事件A 发生必然导致事件B 发生,则称A 包含于B (或B 包含A ),记B A ⊂(或A B ⊃)。

若B A ⊂且A B ⊃,则称事件A 与事件B 相等,记B A =。

(2)事件的和事件A 与事件B 至少有一个发生的事件,记作B A ,称为A 与B 的和事件,有{}B e A e e B A ∈∈=或 。

同样地有限个事件n A A A ,,,21 至少有一个发生的事件,记作 ni i A 1=,称为有限个事件的和事件。

可列多个事件 ,,,,21i A A A 至少有一个发生的事件,记作 ∞=1i i A ,称为可列多个事件的和事件。

(3)事件的积事件A 与事件B 同时发生的事件,记作B A (或AB ),称为A 与B 的积事件,{}B e A e e AB ∈∈=且 类似地,有限个多个事件n A A A ,,,21 同时发生的事件,记作 ni i A 1=。

3.3几何概型测试题

3.3几何概型测试题

3.3几何概型测试题一、选择题1、张子昱取了一个正方形及其它的外接圆,并随机向内抛一粒豆子,则豆子落入正方形外的概率为( )A 、π2B 、ππ2-C 、π2 D 、4π 2、两根相距3m 的木杆上系一根拉直的绳子,李鑫磊在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( )A 、21B 、31C 、41D 、32 3、刘杰在长为18cm 的线段AB 上任取了一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与812cm 之间的概率为( ) A 、65 B 、21 C 、31 D 、61 4、水面直径为0.5米的金鱼缸的水面上漂着一块面积为0.022米的浮萍,韩瑞向缸里随机洒鱼食时,鱼食掉在浮萍上的概率约为( )A 、0.1019B 、0.2038C 、0.4076D 、0.02555、在正方形内有一扇形(见阴影部分),点P 随意等可能被刘仕杰放在正方形内,这点落在扇形外正方形内的概率 ( )A 、41π-B 、4π C 、41 D 、21 6、如图所示,在圆心角为 90的扇形中,李芯茹以圆心O 为起点作射线OC 则使得AOC ∠和 BOC ∠ 都不小于 15的概率为( )A 、41B 、31C 、21D 、327、某路公共汽车5分钟一班准时到达车站,则李云昕在该车站等车时间少于3分钟的概率为( )A 、53B 、21C 、52D 、41B AOC二、填空题8、设A 为圆周上一点,曹乐乐在圆周上等可能取点,与A 连接,则弦长不超过半径的概率为9、王鹿向面积为S 的ABC ∆内任投一点P ,则随机事件“PBC ∆的面积小于3S ”的概率为三、解答题10、姚远、李菲菲两人约定在6时到7时之间在长治二中后门会面,并约定先到者应等候一刻钟,过时即离去,求两人能会面的概率。

11、元旦期间,侯老师在阳台上挂了两串彩灯。

这两串彩灯第一次闪亮相互独立,且都在通电后的4s 内任一时刻等可能发生,然后每串彩灯以4s 为间隔闪亮。

古典概型与几何概型精选习题

古典概型与几何概型精选习题

古典概型和几何概型检测试题1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( )A .0.62B .0.38C .0.02D .0.682.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2与49 cm 2之间的概率为( )A .310 B .15 C .25 D .45 3.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )A .116B .216 C .316 D .14 4.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( )A .34B .38C .14D .18 5.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的概率为( )A .13B .49C .59D .7106如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( )A .2π B .1π C .23 D .137.如图,有一圆盘其中的阴影部分的圆心角为45o ,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为( )甲 乙 1 2 3 4 1 2 34A.18B.14C.12D.348.现有100ml的蒸馏水,假定里面有一个细菌,现从中抽取20ml的蒸馏水,则抽到细菌的概率为()A.1100 B.120C.110D.159.一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨5:00至7:00和下午5:00至6:00,则该船在一昼夜内可以进港的概率是()A.14 B.18 C.110 D.11210.在区间[0,10]中任意取一个数,则它与4之和大于10的概率是()A.15 B.25 C.35 D.2711.若过正三角形ABC的顶点A任作一条直线L,则L与线段BC相交的概率为()A.12 B.13 C.16 D.11212.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是()A.0.5 B.0.4 C.0.004 D.不能确定13.平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率()A.ra B.2ra C.ara-D.2a ra-14.已知地铁列车每10min一班,在车站停1min.则乘客到达站台立即乘上车的概率为.15.随机向边长为2的正方形ABCD中投一点P,则点P与A的距离不小于1且与CPD为锐角的概率是__________________.的概率是.16.在区间(0,1)中随机地取出两个数,则两数之和小于5617.假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间为早上7:00~8:00之间,你父亲在离开家前能拿到报纸的概率为_______.18.飞镖随机地掷在下面的靶子上.(1)在靶子1中,飞镖投到区域A、B、C的概率是多少?(2)在靶子1中,飞镖投在区域A或B中的概率是多少?在靶子2中,飞镖没有投在区域C中的概率是多少?19.一只海豚在水池中游弋,水池为长30m,宽20m的长方形,求此刻海豚嘴尖离岸边不超过2m的概率.20.在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.21.已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.(1)求甲射击一次,命中不足8环的概率;(2)求甲射击一次,至少命中7环的概率.22.口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.⑴、甲、乙按以上规则各摸一个球,求事件“甲赢且编号的和为6”发生的概率;⑵、这种游戏规则公平吗?试说明理由.23.某人有3枚钥匙,其中只有一枚房门钥匙,但忘记了开房门的是哪一枚,于是,他逐枚不重复地试开,问:(Ⅰ)恰好第三次打开房门锁的概率是多少?(Ⅱ)两次内打开房门的概率是多少?24. 图甲“根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80 mg/100ml (不含80)之间,属于酒后驾车,血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车.”2009年8月15日晚8时开始某市交警一队在该市共查出酒后驾车者60名,图甲是用酒精测试仪对这 出的频率分布直方图. (1)求这60名酒后驾车者中属醉酒驾车的人数;(图甲中每组包括左端点,不包括右端点) (2)统计方法中,同一组数据常用该组区间的中点值作为代表,图乙的程序框图是对这60名酒后驾车者血液的酒精浓度做进一步的统计,求出图乙输出的S 值, 并说明S 的统计意义;(图乙中数据i m 与i f 分别表示图图乙甲中各组的组中值及频率)(3)本次行动中,吴、李两位先生都被酒精测试仪测得酒精浓度在70/100mg ml (含70)以上,但他俩坚称没喝那么多,是测试仪不准,交警大队陈队长决定在被酒精测试仪测得酒精浓度在70/100mg ml (含70)以上的酒后驾车者中随机抽出2人抽血检验,求吴、李两位先生至少有1人被抽中的概率.25.在等腰Rt △ABC 中,在斜边AB 上任取一点M ,求AM 的长小于AC 的长的概率..13.B; 14. 111;1.B;2.B;3.C;4.A;5.C;6.A;7.A;8.B;9.C; 10.C; 11.C; 12.B; 15. 4arcsin52π; 16. 2572; 17. 87.5%; 2.18.(1)都是13;(2)23;34。

苏教版必修3单元测试卷【12】几何概型(A)(含答案)

苏教版必修3单元测试卷【12】几何概型(A)(含答案)

几何概型(A)时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,)1.如图,一颗豆子随机扔到桌面上,假设豆子不落在线上,则它落在阴影区域的概率为 .2.在500mL 的水中有一个草履虫,现从中随机取出2mL 水样放到显微镜下观察,则发现草履虫的概率为 .3.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率是 . 4.在区间]2,2[-上随机取一个数x ,则事件“1||≤x ”发生的概率是 .5.如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96颗,以此实验数据为依据可以估计出椭圆的面积约为 .6.在平面直角坐标系中,45=∠AOB (o 为坐标原点),任作射线OP ,则OP 落在AOB∠内的概率为 .7.设x 是一个锐角,则sin x >12的概率为 .8.(2010·陕西宝鸡)点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离PA <1的概率为 .9.已知f (x )=x 2+x -2 x ∈D ,其中D =[-3,3],在D 内任取x 0,使f (x 0)≥0的概率为 . 10.设A 为圆周上一点,在圆周上等可能的任取一点与A 连接,则弦长超过半径2倍的概率是 .11. 设b 是区间()1,0内的任一实数,则方程02=++b x x 有实根的概率为 .12.在边长为2的正△ABC 所在平面内,以A 为圆心,3为半径画一弧,分别交AB 、AC 于D 、E ,若在△ABC 这一平面区域内任丢一粒豆子,则豆子落在扇形ADE 内的概率是________.13. 矩形ABCD 中,8,6==AD AB ,向该矩形内随机投一点P ,则90>∠APD 的概率为 .14.在区间(0,1)中,随机的取出两数,其和小于12的概率 . 二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤...................) 15.设有一个正方形网格,其中每个小正方形的边长都是6cm ,现用直径为2cm 的硬币投掷到此网格上,求硬币落下后与格线有公共点的概率.16.在长为12cm 的线段AB 上任取一点C ,现作一矩形,令边长分别等于线段AC ,CB 的长,求该矩形面积小于32cm 2的概率.17.在区间))(5,(R a a a ∈+上任取一个数x . (1)若1=a ,求5>x 的概率; (2)若x 比3.5大的概率为54,求x 比4小的概率.18.已知函数()[]1,1,-∈+=x b x x f ,若b 是从区间[]2,0上任取一个实数,求函数()x f y =有零点的概率.19.在ABC ∆中,3=AB ,3=AC ,30=∠BAC ,在边AB 上任取一点D , (1)求CDB ∠为钝角的概率; (2)求CDB ∆为钝角三角形的概率.参考答案一、填空题(本大题共14小题,每小题5分,共70分,) 1.31;2.0.004;3. 34 ;4.0.5;5.25408;6.81;7.32;8. π4;9.0.5;10. 1211.41;12.3π6;13.6π;14.18二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤...................) 15.解答 取其中一格,把正方形的各边向内缩1cm ,得到一个边长为4cm 的小正方形,若硬币的圆心落在小正方形内,则硬币与格线没有公共点,否则与格线有公共点,故所求概率为95646222=-. 16.设线段AC 的长为x cm ,则线段CB 的长为(12x -)cm,那么矩形的面积为(12)x x -cm 2,由(12)32x x -<,解得48x x <>或.又012x <<,所以该矩形面积小于32cm 2的概率为23. 17.(1)若1=a ,则区间()5,+a a 为()6,1,故5>x 的概率.511656=--=P(2)由题意可得5455.35=-+-+a a a ,解得5.2=a ,此时区间()5,+a a 为()5.7,5.2,所以x比4小的概率为1035.25.75.24=--.18. 函数()[]1,1,-∈+=x b x x f 有零点,即方程[]()1,10-∈=+x b x 有解, 又由[]2,0∈b ,得[]0,2-∈-b ,故[]0,1-∈-=b x ,即[]1,0∈b .故试验的全部结果构成的区域为[]2,0,构成事件“()x f y =有零点”的区域为[]1,0,所求概率210201=--=P . 19.解 (1)作AB CF ⊥于F ,则当D 在线段BF(不含F )上时,CDB ∠为钝角,所以所求概率为21323'==AB BD .(2)若CDB ∆为钝角三角形,则可以是CDB ∠为钝角, 或BCD ∠为钝角.作BC CE ⊥交AB 于E ,可求得1=AE ,故所求概率为653231'=+=+ABBDAE . 20.(1)把能取到的所有整数对()n m ,看做是平面直角坐标系上的点.。

高三数学古典概型试题答案及解析

高三数学古典概型试题答案及解析

高三数学古典概型试题答案及解析1.小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.(1)根据图中的数据信息,求出众数和中位数(精确到整数分钟);(2)小明的父亲上班离家的时间在上午之间,而送报人每天在时刻前后半小时内把报纸送达(每个时间点送达的可能性相等),求小明的父亲在上班离家前能收到报纸(称为事件)的概率.【答案】(1),;(2).【解析】(1),由频率分布直方图可知即,列方程=0.5即得;(2)设报纸送达时间为,小明父亲上班前能取到报纸等价于,由几何概型概率计算公式即得.试题解析:(1) 2分由频率分布直方图可知即, 3分∴ =0.5解得分即 6分(2)设报纸送达时间为 7分则小明父亲上班前能取到报纸等价于, 10分如图可知,所求概率为12分【考点】1.频率分布直观图;2.几何概型.2.从0,1,2,3,4,5这6个数字中任意取4个数字组成一个没有重复数字的四位数,这个数不能被3整除的概率为()A.B.C.D.【答案】A【解析】从0,1,2,3,4,5这6个数字中任意取4个数字组成没有重复数字的四位数,共有=300个.∵0+1+2+3+4+5=15,∴这个四位数能被3整除只能由数字:1,2,4,5;0,3,4,5;0,2,3,4;0,1,3,5;0,1,2,3组成,所以能被3整除的数有+4×=96个,∴这个数能被3整除的概率为P==,∴这个数不能被3整除的概率为1-=,选A.3.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为()A.B.C.D.【答案】B【解析】如图,从正方形四个顶点及其中心这5个点中,任取2个点,共有条线段,点与,,,四点中任意1点的连线段都小于该正方形边长,共有,所以这2个点的距离小于该正方形边长的概率,故选B.【考点】古典概型及其概率计算公式.4.掷两颗均匀的骰子,则点数之和为5的概率等于()【答案】B【解析】掷两颗均匀的骰子,共有36种基本事件,点数之和为5的事件有(1,4),(2,3),(3,2),(4,1)这四种,因此所求概率为,选B.【考点】古典概型概率5.(本小题满分14分)将连续正整数从小到大排列构成一个数,为这个数的位数(如时,此数为,共有15个数字,),现从这个数中随机取一个数字,为恰好取到0的概率.(1)求;(2)当时,求的表达式;(3)令为这个数中数字0的个数,为这个数中数字9的个数,,,求当时的最大值.【答案】(1)(2)(3)【解析】(1)解概率应用题,关键要正确理解事件. 当时,这个数中有9个一位数,90个二位数,一个三位数,总共有192个数字,其中数字0的个数为9+2=11,所以恰好取到0的概率为(2)按(1)的思路,可分类写出的表达式:,(3)同(1)的思路,分一位数,二位数,三位数进行讨论即可,当当当即同理有由可知,当时,当时,,当时,由关于k单调递增,故当,最大值为又,所以当时,最大值为试题解析:(1)解:当时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为(2)(3)当当当即同理有由可知所以当时,,当时,当时,,当时,由关于k单调递增,故当,最大值为又,所以当时,最大值为【考点】古典概型概率6.从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 .【答案】【解析】从这4个数中任取2个数共有种取法,其中乘积为6的有和两种取法,因此所求概率为.【考点】古典概型.7. 10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.【答案】【解析】从10件产品中任取4件,共有种基本事件,恰好取到1件次品就是取到1件次品且取到3件正品,共有,因此所求概率为【考点】古典概型概率8.一个袋中装有8个大小质地相同的球,其中4个红球、4个白球,现从中任意取出四个球,设X为取得红球的个数.(1)求X的分布列;(2)若摸出4个都是红球记5分,摸出3个红球记4分,否则记2分.求得分的期望.【答案】(1)分布列详见解析;(2).【解析】本题主要考查离散型随机变量的分布列和数学期望、古典概型等基础知识,考查学生的分析问题解决问题的能力和计算能力.第一问,分析题意,先写出取得红球的个数X的所有可能取值,利用古典概型,利用排列组合列出每一种情况的概率表达式,最后列出分布列;第二问,利用第一问的分布列,结合第二问提到的分数列出数学期望的表达式.(1)X,1,2,3,4其概率分布分别为:,,,,.其分布列为X01234(2).(12分)【考点】离散型随机变量的分布列和数学期望、古典概型.9. [2013·课标全国卷Ⅰ]从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.【答案】B【解析】从1,2,3,4中任取2个不同的数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种不同的结果,取出的2个数之差的绝对值为2有(1,3),(2,4)2种结果,概率为,故选B.10.(2014·温州模拟)记a,b分别是投掷两次骰子所得的数字,则方程x2-ax+2b=0有两个不同实根的概率为()A.B.C.D.【答案】B【解析】所有的(a,b)共有6×6=36(个),方程x2-ax+2b=0有两个不同实根,等价于Δ=a2-8b>0,故满足条件的(a,b)有(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共9个,故方程x2-ax+2b=0有两个不同实根的概率为=.11.连掷两次骰子分别得到点数m,n,则向量(m,n)与向量(-1,1)的夹角θ>90°的概率是__________.【答案】【解析】即(m,n)·(-1,1)=-m+n<0.所以m>n,基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共1+2+3+4+5=15(个).所以P==.12.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.则3个景区都有部门选择的概率是________.【答案】【解析】某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.3个景区都有部门选择可能出现的结果数为·3!(从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有=6种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A1,那么事件A1的概率为P(A1)==.13.有驱虫药1618和1573各3杯,从中随机取出3杯称为一次试验(假定每杯被取到的概率相等),将1618全部取出称为试验成功.(1)求恰好在第3次试验成功的概率(要求将结果化为最简分数).(2)若试验成功的期望值是2,需要进行多少次相互独立重复试验?【答案】(1)试验一次就成功的概率为; (2)4.【解析】(1) 从6杯中任选3杯,不同选法共有种,而选到的3杯都是1618的选法只有1种,由古典概型概率的求法可得试验一次就成功的概率为.恰好在第3次试验成功相当于前两次试验都没成功,第3次才成功.由于成功的概率为,所以一次试验没有成功的概率为,三次相乘即得所求概率.(2)该例是一个二项分布,二项分布的期望是,解此方程即可得次数.试题解析:(1)从6杯中任选3杯,不同选法共有种,而选到的3杯都是1618的选法只有1种,从而试验一次就成功的概率为.恰好在第3次试验成功相相当于前两次试验都没成功,第3次才成功,故概率为.(2)假设连续试验次,则试验成功次数,从而其期望为,再由可解出.【考点】1、古典概型;2、二项分布及其期望.14.一个口袋中装有形状和大小完全相同的3个红球和2个白球,甲从这个口袋中任意摸取2个球,则甲摸得的2个球恰好都是红球的概率是()A.B.C.D.【解析】设3个红球为A,B,C,2个白球为X,Y,则取出2个的情况共有10种,其中符合要求的有3种,所求的概率为,故选A【考点】古典概型概率。

浙江省严州名校2024届高三下第一次测试数学试题含解析

浙江省严州名校2024届高三下第一次测试数学试题含解析

2024年高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在ABC ∆中,“cos cos A B <”是“sin sin A B >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件2.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若m n ⊥,//n α,则m α⊥B .若//m β,βα⊥,则m α⊥C .若m β⊥,n β⊥,n α⊥,则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥3.已知0x >,a x =,22xb x =-,ln(1)c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<4.已知函数()y f x =在R 上可导且()()f x f x '<恒成立,则下列不等式中一定成立的是( )A .3(3)(0)f e f >、2018(2018)(0)f e f >B .3(3)(0)f e f <、2018(2018)(0)f e f >C .3(3)(0)f e f >、2018(2018)(0)f e f <D .3(3)(0)f e f <、2018(2018)(0)f e f <5.设集合A 、B 是全集U 的两个子集,则“A B ⊆”是“UA B =∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:141 432 341 342 234 142 243 331 112 322 342 241 244 431 233 214 344 142 134 412由此可以估计,恰好第三次就停止摸球的概率为( ) A .14B .15C .25D .357.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P 是C 的右支上一点,连接1PF 与y 轴交于点M ,若12||FO OM =(O 为坐标原点),12PF PF ⊥,则双曲线C 的渐近线方程为( ) A .3y x =±B .3y x =±C .2y x =±D .2y x =±8.若双曲线()22210x y a a-=>的一条渐近线与圆()2222x y +-=至多有一个交点,则双曲线的离心率的取值范围是( ) A .)2,⎡+∞⎣B .[)2,+∞C .(1,2⎤⎦D .(]1,29. “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是( )A .165B .325C .10D .18510.下列命题中,真命题的个数为( ) ①命题“若1122a b <++,则a b >”的否命题; ②命题“若21x y +>,则0x >或0y >”;③命题“若2m =,则直线0x my -=与直线2410x y -+=平行”的逆命题. A .0B .1C .2D .311.已知双曲线的中心在原点且一个焦点为7,0)F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是A .22134x y -= B .22143x y -= C .22152x y -=D .22125x y -=12.若复数z 满足(23i)13i z +=,则z =( ) A .32i -+B .32i +C .32i --D .32i -二、填空题:本题共4小题,每小题5分,共20分。

上海 华东师范大学第一附属初级中学高中数学选修4-1第一章《直线,多边形,圆》测试卷(含答案解析)

上海 华东师范大学第一附属初级中学高中数学选修4-1第一章《直线,多边形,圆》测试卷(含答案解析)

一、选择题1.已知直线:2l x y +=和圆222:C x y r +=,若r 是在区间()1,3上任意取一个数,那么直线l 与圆C 相交且弦长小于22的概率为( ) A .12B .22C .214-D .212-2.已知圆()221:24C x y +-=,抛物线22:2(0)C y px p =>, 1C 与2C 相交与,A B 两点,且855AB =,则抛物线2C 的方程为( ) A .285y x =B .2165y x =C .2325y x =D .2645y x = 3.已知点是圆内的一点,则该圆上的点到直线的最大距离和最小距离之和为( )A .B .C .D .不确定4.已知AC 、BD 分别为圆O :x 2+y 2=4的两条垂直于坐标轴的弦,且AC 、BD 相交于点M(1,),则四边形ABCD 的面积为( ) A .2B .3C .D .5.圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是( )A .36B .18C .62D .526.圆22:4210A x y x y ++++=与圆22:2610B x y x y +--+=的位置关系是( ).A .相交B .相离C .相切D .内含7.已知圆O :x 2+y 2=4上到直线l :x+y=m 的距离为1的点有且仅有2个,则m 的取值范围是( )A .(2,32)B .(32,2)(2,32)--⋃C .(32,32)-D .(2,2)-8.已知双曲线的一个焦点为,且双曲线的渐近线与圆相切,则双曲线的方程为( ).A .B .C .D .9.已知P 是直线01143:=+-y x l 上的动点,PA 、PB 是圆1)1()1(:22=-+-y x C 的两条切线, 圆心为C ,那么四边形PACB 面积的最小值是( )A .2B .22C .3D .3210.(2015春•咸阳校级期中)若图中,PA 切⊙O 于点A ,PCB 交⊙O 于C 、B 两点,且PCB 过点O ,AE ⊥BP 交⊙O 于E ,则图中与∠CAP 相等的角的个数是( )A .1B .2C .3D .411.直线:1l y kx =-与圆221x y +=相交于A 、B 两点,则OAB ∆的面积最大值为( ) A .14 B .12 C .1 D .3212.从原点O 引圆m kx y m y m x 当的切线,1)2()(222=+=-+-变化时,切点P 的轨迹方程是 A .322=+y x B .2)1(22=+-y x C .3)1()1(22=-+-y x D .222=+y x二、填空题13.若x ,y ∈R ,且x =21y -,则21y x ++ 的取值范围是________. 14.(几何证明选讲选做题)如图,圆O 的直径9AB =,直线CE 与圆O 相切于点C ,AD CE ⊥于点D ,若1AD =,设ABC θ∠=,则sin θ=______.15.如果直线将圆平分,那么坐标原点到直线的最大距离为__________.16.已知直线34x y b +=与圆222210x y x y +--+=相切,则实数b =_____. 17.若直线1y kx =+和圆22:1O x y +=相交于,A B 两点(其中O 为坐标原点),且60AOB ∠=,则实数k 的值为__________.18.在平行四边形ABCD 中,点E 在边AB 上,且AE ∶EB =1∶2,DE 与AC 交于点F ,若△AEF 的面积为6 cm 2,则△ABC 的面积为________ cm 2. 19.已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合,曲线的参数方程为4cos {3sin x y θθ==(θ为参数),直线l 的极坐标方程为.点在曲线上,则点到直线l 的距离的最小值为 . 20.以点为圆心且与直线相切的圆的方程为______.三、解答题21.已知以点C (t ∈R ,t≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M ,N ,若,求圆C 的方程;(3)在(2)的条件下,设P ,Q 分别是直线l :x +y +2=0和圆C 上的动点,求的最小值及此时点P 的坐标. 22.选修4-1:几何证明选讲如图,AB 是⊙O 的直径,AD ,DE 是⊙O 的切线,AD ,BE 的延长线交于点C .(1)求证:A O E D 、、、四点共圆;(2)若3OA CE =,CE=1,B ∠=30°,求CD 长.23.如图,△ABC 内接于直径为BC 的圆O ,过点作圆O 的切线交CB 的延长线于点P ,AE 交BC 和圆O 于点D 、E ,且DBCDAB AC =,若PA=2PB=10.(Ⅰ)求证:AC=2AB ; (Ⅱ)求AD•DE 的值.24.已知圆M 的方程为x 2+(y ﹣2)2=1,直线l 的方程为x ﹣2y=0,点P 在直线l 上,过点P 作圆M 的切线PA ,PB ,切点为A ,B .(1)若点P 的横坐标为1,求切线PA ,PB 的方程;(2)若点P 的纵坐标为a ,且在圆M 上存在点Q 到点P 的距离为1,求实数a 的取值范围.25.已知圆()()22:344C x y -+-=,直线l 过点()1,0A . (1)若直线l 与圆C 相切,求直线l 的方程;(2)若圆D 的半径为3,圆心D 在直线2:20l x y +-=上,且与圆C 内切,求圆D 的方程.26.已知以点为圆心的圆经过点和,线段的垂直平分线交圆于点和,且. (1)求直线的方程;(2)求圆的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】先据题意求出满足条件的r 的范围,利用区间长度之比求出满足条件的概率即可. 【详解】由点到直线的距离公式可得22002211d +-==+因为直线与圆相交,所以2r >相交弦的长度为222r -由题知22222r -<22r << 所以弦长小于222221312p ==-- 故选:D. 【点睛】本题目考查了直线与圆相交问题和几何概型的综合知识,注意直线与圆相交r 的取值,属于中档题.2.C解析:C【解析】根据直线与圆相交的弦长公式可知22285224R d d -=-=,解得255d =,设直线AB 的方程为y kx =,圆心()0,2到直线的距离222551d k==+ ,解得2k =-(舍)或2k =, ()222{24y x x y =+-= ,解得0{0x y == 或85{165x y == ,代入抛物线方程2168255p ⎛⎫=⨯ ⎪⎝⎭ ,解得: 3225p = ,所以抛物线方程为2325y x =,故选C. 【点睛】本题考查了直线与圆,直线与抛物线和圆与抛物线的位置关系,如果直接选择圆与抛物线联立,那不易得到两个交点坐标,所以首先看成直线与圆的位置关系,根据弦心距公式得到直线方程,再让直线与抛物线联立,得到交点的坐标,求出抛物线方程.3.B解析:B 【解析】由题意得,所以圆心到直线距离为,因此该圆上的点到直线的最大距离和最小距离之和为,选B.点睛:与圆有关的距离的最值问题,一般根据距离的几何意义,利用圆的几何性质数形结合求解.4.A解析:A 【解析】试题分析:求出|AC|,|BD|,代入面积公式S=•|AC||BD|,即可求出四边形ABCD 的面积.解:由题意圆心O 到AC 、BD 的距离分别为、1,∴|AC|=2=2,|BD|==2, ∴四边形ABCD的面积为:S=•|AC|(|BM|+|MD|)=•|AC||BD|==2,故选:A .考点:直线与圆的位置关系.5.C解析:C 【解析】试题分析:圆2244100x y x y +---=的圆心为()22,,半径为32,圆心到到直线140x y +-=的距离为22142+-52=23>,圆上的点到直线的最大距离与最小距离的差是262R =,故选C . 考点:直线与圆的位置关系.【思路点睛】首先利用圆心到直线的距离和半径的关系确定直线与圆的位置关系,如果相切或相离最大距离与最小距离的差是直径;相交时,圆心到直线的距离加上半径为所求.6.C解析:C 【解析】试题分析:将圆A 的方程标准化可得()()22214x y +++=,可得()2,1,2A R --=,圆B 的方程标准化()()22139x y -+-=可得()1,3,3B r =,所以()()2212315AB =+++=,所以AB R r =+,所以圆,A B 外切。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、选择题
1、取一根长度为3cm 的绳子,拉直后在任意位置剪断,那么间的两段的长都不
小于m 的概率是( )
、不能确定
发现表停了,他打开收音机想听电台整点报时,则他等待
的时间小于10分钟的概率是(

3、在线段[0,3]上任取一点,则此点坐标大于1的概率是(
4、在1万平方公里的海域中有40平方公里的大陆架贮藏着石油,假若在海域中
任意一点钻探,那么钻到油层面的概率是(

、填空题
5、已知地铁列车每10分钟一班,在车站停1分钟,则乘客到达站台立即乘上车 的概率
是 _________________ 。

&边长为2a 的正方形及其内切圆,随机向正方形内扔丢一粒豆子,则豆子落在
圆和及正方形夹的部分的概率是 ___________ 。

7、在等腰直角三角形ABC 中,在斜线段AB 上任取一点M 则AM 的长小于AC 的 长的概率
是 _____________________ 。

8、在400ml 自来水中有一个大肠杆菌,今从中随机取出
2ml 水样放到显微镜下
观察,则发现大肠杆菌的概率是 _____________ 。

几何概型测试题
2、某人睡午觉醒来, 1 12
1 60

72
40

25
1 250
1 500
9、两人相约8点到9点在某地会面,先到者等候后到者20分钟,过时就可离开, 这两人能会面的概率为_______________________ 。

10、公共汽车站每隔5分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可
能的,则乘客候车不超过3分钟的概率是_____________ 。

三、解答题
11、如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,
现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少?
12、在2L高产优质小麦种子中混入了一粒带白粉病的种子,从中随机取出10mL
求含有白粉病种子的概率是多少?
13、设有一个均匀的陀螺,其圆周的一半上均匀地刻上区间[0 ,1] 上的诸数字,另一半上均匀地刻上区间[1,3] 上的诸数字,旋转这陀螺,求它停下时,其圆周上触及桌面的刻度位于[0.5 ,1.5] 上的概率。

14、用扑克牌四种花色的A、K共8张,洗匀。

甲从中任意抽取2张,求抽出的2张都为A的概率; 若甲已经抽到了2张K,求乙抽到2张A的概率。

15、射箭比赛的箭靶涂有五个彩色的分环,从外向内依次为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫做“黄心”。

奥运会的比赛中,靶面直径为122cm,靶心直径为
12.2 cm。

运动员在70m外射箭,假设每一箭都射中靶, 且射中靶面任意一点都是等可能的,那么射中黄心的概率是多少?
一、 选择题
1、B ;
2、A;
3、D;
4、C;
二、 填空题
5、
10 6 (4
)a 1 2
7、 8、0.005 9、 10、0. 6
三、解答题
11、解:因为均匀的粒子落在正方形内任何一点是等可能的 所以符合几何概型的
条件。

设人=“粒子落在中间带形区域”则依题意得 正方形面积为:25X 25= 625
1
两个等腰直角三角形的面积为:2X 丄X 23X 23= 529
2
带形区域的面积为:625-529= 96
12、解:取出10mL 麦种,其中“含有病种子”这一事件记为 A ,贝 P (A )=取出种子的体积/所有种子的体积 =10
2000
=1
200
1
答:含有白粉病种子的概率为——。

200
参考答案
P (A )=
96 625
13

8
解:
是15。

而乙抽到2张A的基本事件数是6,故概率为2/5
15、
解:
•••假设射箭都能中靶,且射中靶面内的任一点都是等可能的, •••本题是一个几何概型,
试验发生包含的事件射中靶,s=nX 612,
满足条件的事件是射中靶心,s=nX 6.1 2,
•••射中靶心当概率是P= | | I ■■ ■■ =0.01
故答案为:丄
100。

相关文档
最新文档