几何概型例题分析及习题(含答案)
几何概型(有答案)
A
10 10
S
30
x
0 x 30
0 y 30
而二人会面 x y 10
SA P(A)= SS
302-202 = 302
9 5
练习:假设小明家订了一份报纸,送 报人可能在早上6:30至7:30之间把 报纸送到小明家,小明的爸爸离开家 去工作的时间在早上7:00至8:00之 间,问小明的爸爸在离开家前能得到 报纸的概率是多少? 书本上P137例2
练习
在500ml的水中有一个草履虫,现 从中随机取出2ml水样放到显微镜下 观察,则发现草履虫的概率是( ) A.0.5 B.0.4 C.0.004 D.不能确定
练习 取一根长为3米的绳子,拉直后在任意位 置剪断,那么剪得两段的长都不少于1米 1m 1m 的概率有多大?
3m
解:如上图,记“剪得两段绳子长都不 小于1m”为事件A,把绳子三等分,于 是当剪断位置处在中间一段上时,事件 A发生。由于中间一段的长度等于绳子 长的三分之一,所以事件A发生的概率P (A)=1/3。
例9、(1)在面积为S的三角形ABC的AB边上 任取一点P,则三角形PBC的面积小于S∕2的 概率是___; (2)向面积为S的三角形ABC内任投一点P, 则三角形PBC的面积小于S∕2的概率是___;
典型例题讲解
例10、下图的矩形,长为5,宽为2, 在矩形内在随机地撒300颗黄豆,数 得落阴影部分的黄豆数为138颗,则 我们可以估计出阴影部分的面积 为 .
解题方法小结:
对于复杂的实际问题,解题的 关键是要建立概率模型,找出 随机事件与所有基本事件相对 应的几何区域,把问题转化为 几何概型的问题,利用几何概 型公式求解。
练习
高中几何概型试题及答案
高中几何概型试题及答案一、选择题1. 几何概型的概率公式是()。
A. P(A) = 长度(或面积、体积)之比B. P(A) = 面积(或长度、体积)之比C. P(A) = 体积(或长度、面积)之比D. P(A) = 长度(或面积、体积)之比答案:A2. 一个圆的半径为1,随机地在圆内取一点,该点到圆心的距离小于1的概率是()。
A. 0B. 1/2C. 1/4D. 1答案:C3. 一个长方体的长、宽、高分别为3、2、1,随机地在长方体内取一点,该点到长方体的任意一面的距离都小于1的概率是()。
A. 1/2B. 1/3C. 1/6D. 1/9答案:D二、填空题4. 一个圆的半径为2,随机地在圆内取一点,该点到圆心的距离小于1的概率是_________。
答案:1/45. 一个正方体的棱长为4,随机地在正方体内取一点,该点到正方体的任意一面的距离都小于1的概率是_________。
答案:3/8三、解答题6. 一个圆的半径为3,随机地在圆内取一点,求该点到圆心的距离小于2的概率。
解答:首先,我们需要计算圆的面积和半径为2的圆的面积。
圆的面积公式为A = πr²,其中r为半径。
大圆的面积:A1 = π × 3² = 9π小圆的面积:A2 = π × 2² = 4π该点到圆心的距离小于2的概率等于小圆面积与大圆面积之比,即:P(A) = A2 / A1 = 4π / 9π = 4/9答案:4/97. 一个正方体的棱长为5,随机地在正方体内取一点,求该点到正方体的任意一面的距离都小于1的概率。
解答:首先,我们需要计算正方体的体积和棱长为4的正方体的体积。
正方体的体积公式为V = a³,其中a为棱长。
大正方体的体积:V1 = 5³ = 125小正方体的体积:V2 = 4³ = 64该点到正方体的任意一面的距离都小于1的概率等于小正方体体积与大正方体体积之比,即:P(A) = V2 / V1 = 64 / 125答案:64/1258. 一个长方体的长、宽、高分别为6、4、2,随机地在长方体内取一点,求该点到长方体的任意一面的距离都小于1的概率。
几何概型例题及解析
几何概型例题及解析题目:在边长为2的正方形内随机取一个点,则该点到正方形四个顶点的距离都大于1的概率是( )。
A. 1/2B. 1/4C. 3/4D. 1/16解析:在边长为2的正方形内,到四个顶点距离都大于1的区域是一个边长为1的正方形。
因此,所求概率为小正方形的面积与大正方形面积之比,即1/4。
题目:在半径为2的圆内随机取一条弦,则弦长小于等于2√3的概率为( )。
A. 1/4B. 1/2C. 3/4D. √3/2解析:在半径为2的圆内,弦长小于等于2√3的弦对应的圆心角为120°。
因此,所求概率为120°/360° = 1/3,但选项中并没有这个值,可能题目有误或选项不完整。
题目:在区间[0, 2]上随机取两个数x和y,则满足x^2 + y^2 ≤ 2的概率是( )。
A. π/4B. π/2C. 1 - π/4D. 1 - π/2解析:在区间[0, 2]上随机取两个数x和y,对应的平面区域是一个边长为2的正方形。
满足x^2 + y^2 ≤ 2的区域是一个半径为√2的圆在正方形内的部分。
所求概率为圆的面积与正方形面积之比,即π*(√2)^2 / (2*2) = π/2。
题目:在边长为1的正方形内随机取一个点,则该点到正方形中心的距离小于1/2的概率为( )。
A. 1/4B. 1/2C. 3/4D. √2/2解析:在边长为1的正方形内,到中心距离小于1/2的区域是一个边长为1/2的正方形。
因此,所求概率为小正方形的面积与大正方形面积之比,即(1/2)^2 = 1/4。
题目:在三维坐标系中,随机取一个点P(x, y, z),其中x, y, z ∈ [0, 1],则点P到原点O的距离小于等于√2/2的概率为( )。
A. π/6B. π/4C. π/3D. π/2解析:在三维坐标系中,到原点距离小于等于√2/2的点构成一个半径为√2/2的球在[0, 1]^3内的部分。
所求概率为球的体积与[0, 1]^3的体积之比,即(π*(√2/2)^3) / 1^3 = π/6。
高一 几何概型知识点+例题+练习 含答案
1.几何概型的概念设D是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点.这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比,与d的形状和位置无关.我们把满足这样条件的概率模型称为几何概型.2.几何概型的概率计算公式一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率P(A)=d的测度D的测度.3.要切实理解并掌握几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率f n(A)=MN作为所求概率的近似值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.(√)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( × )1.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为________. 答案 13解析 坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为13.2.(2015·山东改编)在区间[0,2]上随机地取一个数x ,则事件“-1≤12log ⎝⎛⎭⎫x +12≤1”发生的概率为________. 答案 34解析 ∵由-1≤12log ⎝⎛⎭⎫x +12≤1,得12≤x +12≤2, ∴0≤x ≤32.∴由几何概型的概率计算公式得所求概率 P =32-02-0=34.3.(2014·辽宁改编)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是________. 答案 π4解析 设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π·121×2=π4.4.(2014·福建)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.答案 0.18解析 由题意知,这是个几何概型问题, S 阴S 正=1801 000=0.18, ∵S 正=1,∴S 阴=0.18.5.(教材改编)如图,圆中有一内接等腰三角形.假设你在图中随机撒一把黄豆,则它落在阴影部分的概率为________. 答案 1π解析 设圆的半径为R ,由题意知圆内接三角形为等腰直角三角形,其直角边长为2R ,则所求事件的概率为: P =S 阴S 圆=12×2R ×2R πR 2=1π.题型一 与长度、角度有关的几何概型例1 (1)(2015·重庆)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.(2)(2015·烟台模拟)在区间[-π2,π2]上随机取一个数x ,则cos x 的值介于0到12之间的概率为________. 答案 (1)23 (2)13解析 (1)方程x 2+2px +3p -2=0有两个负根,则有⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1·x 2>0,即⎩⎪⎨⎪⎧4p 2-4(3p -2)≥0,-2p <0,3p -2>0,解得p ≥2或23<p ≤1,又p ∈[0,5],则所求概率为P =3+135=1035=23.(2)当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,根据几何概型概率公式得所求概率为13.(3)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率. 解 因为∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt △ABD 中,AD =3,∠B =60°, 所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得:P (N )=30°75°=25.引申探究1.本例(2)中,若将“cos x 的值介于0到12”改为“cos x 的值介于0到32”,则概率如何?解 当-π2≤x ≤π2时,由0≤cos x ≤32,得-π2≤x ≤-π6或π6≤x ≤π2,根据几何概型概率公式得所求概率为23.2.若本例(3)中“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC 上找一点M ”,求BM <1的概率.解 依题意知BC =BD +DC =1+3,P (BM <1)=11+3=3-12.思维升华 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).(1)如图,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.(2)已知集合A ={x |-1<x <5},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -23-x >0,在集合A 中任取一个元素x ,则事件“x ∈(A ∩B )”的概率是________. 答案 (1)16 (2)16解析 (1)如题图,因为射线OA 在坐标系内是等可能分布的,所以OA 落在∠yOT 内的概率为60°360°=16. (2)由题意得A ={x |-1<x <5},B ={}x | 2<x <3,故A ∩B ={x |2<x <3}.由几何概型知,在集合A 中任取一个元素x ,则x ∈(A ∩B )的概率为P =16.题型二 与面积有关的几何概型命题点1 与平面图形面积有关的问题例2 (2015·福建改编)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________. 答案 14解析 由图形知C (1,2),D (-2,2),∵S 四边形ABCD =6,S 阴=12×3×1=32.∴P =326=14.命题点2 与线性规划知识交汇命题的问题例3 (2014·重庆)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________. 答案932解析 设小张与小王的到校时间分别为7:00后第x 分钟,第y 分钟,根据题意可画出图形,如图所示,则总事件所占的面积为(50-30)2=400.小张比小王至少早5分钟到校表示的事件A ={(x ,y )|y -x ≥5,30≤x ≤50,30≤y ≤50},如图中阴影部分所示,阴影部分所占的面积为12×15×15=2252,所以小张比小王至少早5分钟到校的概率为P (A )=2252400=932.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.(1)在区间[-π,π]内随机取出两个数分别记为a ,b ,则函数f (x )=x 2+2ax -b 2+π2有零点的概率为________.(2)(2014·湖北改编)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 (1)1-π4 (2)78解析 (1)由函数f (x )=x 2+2ax -b 2+π2有零点, 可得Δ=(2a )2-4(-b 2+π2)≥0,整理得a 2+b 2≥π2, 如图所示,(a ,b )可看成坐标平面上的点,试验的全部结果构成的区域为 Ω={(a ,b )|-π≤a ≤π,-π≤b ≤π}, 其面积S Ω=(2π)2=4π2. 事件A 表示函数f (x )有零点,所构成的区域为M ={(a ,b )|a 2+b 2≥π2}, 即图中阴影部分,其面积为S M =4π2-π3,故P (A )=S M S Ω=4π2-π34π2=1-π4.(2)如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C (-12,32),故由几何概型的概率公式,得所求概率P =S 四边形OACD S △OAB =2-142=78.题型三 与体积有关的几何概型例4 在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 1-π12解析 V 正=23=8,V 半球=12×43π×13=23π,V 半球V 正=2π8×3=π12, 故点P 到O 的距离大于1的概率为1-π12.思维升华 求解与体积有关问题的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.如图,在长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________.答案 16解析 因为11A A BD A ABD V V --==13·S △ABD ·AA 1=16·S矩形ABCD ·AA 1=16V 长方体,故所求概率为1A A BD V V -长方体=16.12.混淆长度型与面积型几何概型致误典例 (14分)在长度为1的线段上任取两点,将线段分成三段,试求这三条线段能构成三角形的概率.易错分析 不能正确理解题意,无法找出准确的几何度量来计算概率. 规范解答解 设x 、y 表示三段长度中的任意两个. 因为是长度,所以应有0<x <1,0<y <1,0<x +y <1,即(x ,y )对应着坐标系中以(0,1)、(1,0)和(0,0)为顶点的三角形内的点,如图所示.[6分]要形成三角形,由构成三角形的条件知 ⎩⎪⎨⎪⎧x +y >1-x -y ,1-x -y >x -y ,1-x -y >y -x ,所以x <12,y <12,且x +y >12,故图中阴影部分符合构成三角形的条件.[10分] 因为阴影部分的三角形的面积占大三角形面积的14,故这三条线段能构成三角形的概率为14.[14分]温馨提醒 解决几何概型问题的易误点:(1)不能正确判断事件是古典概型还是几何概型,导致错误.(2)利用几何概型的概率公式时,忽视验证事件是否具有等可能性,导致错误.[方法与技巧]1.区分古典概型和几何概型最重要的是看基本事件的个数是有限个还是无限个. 2.转化思想的应用对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可; (2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与体积有关的几何概型. [失误与防范]1.准确把握几何概型的“测度”是解题关键;2.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.A 组 专项基础训练 (时间:40分钟)1.(2014·湖南改编)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为________. 答案 35解析 在区间[-2,3]上随机选取一个数X ,则X ≤1,即-2≤X ≤1的概率为P =35.2.在区间[-1,4]内取一个数x ,则2x -x 2≥14的概率是________.答案 35解析 不等式22x x -≥14,可化为x 2-x -2≤0, 则-1≤x ≤2,故所求概率为2-(-1)4-(-1)=35.3.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为__________. 答案 12解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12. 4.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是__________.答案 1-π4解析 如图所示,正方形OABC 及其内部为不等式组表示的区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是1-π4. 5.已知一只蚂蚁在边长分别为5,12,13的三角形的边上随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为________.答案 45解析 由题意可知,三角形的三条边长的和为5+12+13=30,而蚂蚁要在离三个顶点的距离都大于1的地方爬行,则它爬行的区域长度为3+10+11=24,根据几何概型的概率计算公式可得所求概率为2430=45. 6.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.答案 23解析 V 圆柱=2π,V 半球=12×43π×13=23π, V 半球V 圆柱=13, 故点P 到O 的距离大于1的概率为23.7.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12 解析 ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n . 如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分,∴所求的概率为P =12. 8.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为______. 答案 12+1π解析 半圆域如图所示:设A 表示事件“原点与该点的连线与x 轴的夹角小于π4,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π. 9.随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是________.答案 24-π24解析 由题意作图,如图则点P 应落在深色阴影部分,S 三角形=12×6×52-32=12,三个小扇形可合并成一个半圆,故其面积为π2,故点P 到三个顶点的距离都不小于1的概率为12-π212=24-π24. 10.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36(个); 由a ·b =-1有-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个;故满足a ·b =-1的概率为336=112. (2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6};满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0};画出图形如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21, 故满足a ·b <0的概率为2125. B 组 专项能力提升(时间:30分钟)11.一个长方体空屋子,长,宽,高分别为5米,4米,3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是________.答案 π120解析 屋子的体积为5×4×3=60立方米,捕蝇器能捕捉到的空间体积为18×43π×13×3=π2立方米.故苍蝇被捕捉的概率是π260=π120. 12.(2015·湖北改编)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则下列正确的是________. ①p 1<p 2<12 ②p 2<12<p 1③12<p 2<p 1 ④p 1<12<p 2 答案 ④ 解析 在直角坐标系中,依次作出不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1,x +y ≤12,⎩⎪⎨⎪⎧ 0≤x ≤1,0≤y ≤1,xy ≤12的可行域如图所示:依题意,p 1=S △ABOS 四边形OCDE ,p 2=S 曲边多边形OEGFC S 四边形OCDE , 而12=S △OEC S 四边形OCDE ,所以p 1<12<p 2. 13.如图,已知点A 在坐标原点,点B 在直线y =1上,点C (3,4),若AB ≤10,则△ABC 的面积大于5的概率是________.答案 524解析 设B (x,1),根据题意知点D (34,1),若△ABC 的面积小于或等于5,则12×DB ×4≤5,即DB ≤52,此时点B 的横坐标x ∈[-74,134],而AB ≤10, 所以点B 的横坐标x ∈[-3,3],所以△ABC 的面积小于或等于5的概率为P =3-(-74)6=1924, 所以△ABC 的面积大于5的概率是1-P =524. 14.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率;(2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率.解 (1)集合M 内的点形成的区域面积S =8.因圆x 2+y 2=1的面积S 1=π,故所求概率为S 1S =π8. (2)由题意|x +y |2≤22,即-1≤x +y ≤1,形成的区域如图中阴影部分,阴影部分面积S 2=4, 所求概率为S 2S =12.15.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部.所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242 =506.5576=1 0131 152.。
几何概型例题分析及习题(含答案)
几何概型例题分析及练习题 (含答案)[例1] 甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。
解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图15||≤-y x 时可相见,即阴影部分167604560222=-=P[例2] 设A 为圆周上一定点,在圆周上等可能任取一点与A 连接,求弦长超过半径2倍的概率。
解:R AC AB 2||||==. ∴ 212===⋂R R BCDP ππ圆周[例3] 将长为1的棒任意地折成三段,求三段的长度都不超过21的概率。
解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为y x --1,则基本事件组所对应的几何区域可表示为 }10,10,10|),{(<+<<<<<=Ωy x y x y x ,即图中黄色区域,此区域面积为21。
事件“三段的长度都不超过21”所对应的几何区域可表示为Ω∈=),(|),{(y x y x A ,}211,21,21<--<<y x y x 即图中最中间三角形区域,此区域面积为81)21(212=⨯ 此时事件“三段的长度都不超过21”的概率为412181==P[例4] 两对讲机持有者张三、李四,为卡尔货运公司工作,他们对讲机的接收范围是25,下午3:00张三在基地正东30内部处,向基地行驶,李四在基地正北40内部处,向基地行驶,试问下午3:00,他们可以交谈的概率。
解:设y x ,为张三、李四与基地的距离]30,0[∈x ,]40,0[∈y ,以基地为原点建立坐标系.他们构成实数对),(y x ,表示区域总面积为1200,可以交谈即2522≤+y x故19225120025412ππ==P [例5] 在区间]1,1[-上任取两数b a ,,运用随机模拟方法求二次方程02=++b ax x 两根均为正数的概率。
高一数学几何概型试题答案及解析
高一数学几何概型试题答案及解析1.如图所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在黑色区域的概率是.【答案】【解析】由图形可知:黑色区域所占的面积是整个面积的一半,所以飞镖落在黑色区域的概率.考点:几何概型.2..如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机撒一粒豆子,它落在阴影区域内的概率是,则阴影部分的面积是A.B.C.D.【答案】D【解析】设阴影部分的面积为,圆的面积,由几何概型的概率计算公式得,得.【考点】几何概型的概率计算公式.3.在棱长为3的正方体内任取一个点,则这个点到各面的距离大于1的概率为()A.B.C.D.【答案】C【解析】以这个正方体的中心为中心且边长为1的正方体内.这个小正方体的体积为1,大正方体的体积为27,故概率为p=.【考点】几何概型.4.已知平面区域,.在区域内随机选取一点区域,则点恰好取自区域的概率是【答案】【解析】依题意可在平面直角坐标系中作出集合所表示的平面区域是正方形与所表示的平面区域是个圆(如图),由图可知则点落入区域的概率为【考点】几何概型;二元一次不等式(组)与平面区域5.如图,在△中,,,点在边BC上沿运动,则的面积小于的概率为.【答案】【解析】解:点在边上沿运动,落线段上任何一点的可能性是相等的,全部基本事件的集可用线段表示;设事件为“则的面积小于”,则事件所包含的基本事件的集合对应长度为2的线段;由几何概型知:=所以答案应填:【考点】几何概型.6.在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为()A.B.C.D.【答案】B【解析】设阴影部分的面积为x,则,解得x=.故选B.【考点】概率的应用点评:简单题,每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型.解题时要认真审题,合理地运用几何概型解决实际问题7.有四个游戏盘面积相等,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )【答案】A【解析】第一个转盘中奖的概率为;第二个转盘中奖的概率为;第三个转盘中奖的概率为;第四个转盘中奖的概率为,所以中奖最高为A。
教师版几何概型(内含答案排好版了已经)
3.3 几何概型1.向面积为S 的△ABC 内任投一点P ,则△PBC 的面积小于2S 的概率为 。
答案:21 2.设A 为圆周上一定点,在圆周上等可能地任取一点与A 连结,求弦长超过半径的概率。
思路解析:该题属几何概型。
如图,AB=OA=R ,则弧AB 的长÷圆O 的周长=61。
3.取一个边长为2a 的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率。
答案:4π 1.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升自来水放到显微镜下观察,求发现大肠杆菌的概率。
答案:0.0054.甲乙两人约定在6时到7时之间在某一处会面,并约定先到者应等候另一个人一刻钟,这时方可离去。
求两人能会面的概率。
P (A )=Q A A S =222604560- =167 1.在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形。
试求这正方形的面积介于36与812cm 之间的概率。
答案:41 图3-3-1-24.现向图3-3-1-2中所示正方形内随机地投掷飞镖,求飞镖落在阴影部分的概率。
答案:14425 5.取一根长度为3m 的绳子,拉直后在任意位置剪断,则剪得的两段的长度都不小于1m 的概率有多大? 答案:2/36.在1L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机抽取10mL ,含有麦锈病种子的概率是多大? 答案:含有麦锈病种子的概率为1001 8.小明家的晚报在下午5:30~6:30之间的任何一个时间随机地被送到,小明家一家人在下午6:00~7:00之间的任何一个时间随机地开始晚餐。
(1)你认为晚报在晚餐开始之前被送到和在晚餐开始之后被送到哪一种可能性更大?(2)晚报在晚餐开始之前被送到的概率是多大?思路解析:运用几何概型。
如图,方形区域内任何一点的横坐标表示送报人到达的时间,纵坐标表示小明一家开饭时间,假设随机试验落在方形内任何一点是等可能的,所以符合几何概型的条件。
高二数学几何概型试题答案及解析
高二数学几何概型试题答案及解析1.如图,设D是图中边长为4的正方形区域,E是D内函数图象下方的点构成的区域(阴影部分).向D中随机投一点,则该点落入E中的概率为A.B.C.D.【答案】C【解析】正方形的面积为,阴影部分的面积为,由几何概型的计算公式当.【考点】几何概型的应用.2.已知△ABC中,∠ABC=600,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为______________.【答案】.【解析】由余弦定理得:;则,所以角为钝角;因此,△ABD为钝角三角形分两种情况:①当时,;②当时,;由几何概型概率公式得.【考点】解三角形、几何概型.3.如图,在一个长为,宽为2的矩形OABC内,曲线与x轴围成如图所示的阴影部分,向矩形OABC内随机投一点(该点落在矩形OABC内任何一点是等可能的),则所投的点落在阴影部分的概率是。
【答案】【解析】记事件A为“所投的点落在阴影部分”,阴影部分面积由几何概型的概率公式得所以答案填:.【考点】1、定积分;2、几何概型.4.记集和集表示的平面区域分别为.若在区域内任取一点,则点落在区域的概率为( )A.B.C.D.【答案】A【解析】平面区域分别是以原点为圆心为半径的圆,其面积为,平面区域分别是以原点为直角顶点的直角边长为等腰直角三角形,其面积为,则点落在区域的概率为。
【考点】(1)根据约束条件画出可行域;(2)几何概型概率的求法。
5.在区间之间随机抽取一个数,则满足的概率为( )A.B.C.D.【答案】A【解析】设“在区间之间随机抽取一个数,,则满足”为事件A,,则区间的长度为,而由,长度为,故由几何概型,事件A的概率为【考点】几何概型6.从如图所示的正方形OABC区域内任取一个点M,则点M取自阴影部分的概率为()A.B.C.D.【答案】B【解析】可知此题求解的概率类型为关于面积的几何概型,由图可知基本事件空间所对应的几何度量S(Ω)=1,满足所投的点落在叶形图内部所对应的几何度量:S(A)=,所以P(A)=,故选:B.【考点】1.定积分在求面积中的应用;2.几何概型.7.设函数.若从区间内随机选取一个实数,则所选取的实数满足的概率为 .【答案】【解析】,所以所求概率为。
归纳与技巧:几何概型(含解析)
归纳与技巧:几何概型基础知识归纳1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的概率公式在几何概型中,事件A 的概率的计算公式如下: P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).基础题必做1.(教材习题改编)设A (0,0),B (4,0),在线段AB 上任投一点P ,则|P A |<1的概率为( ) A.12 B.13 C.14D.15解析:选C 满足|P A |<1的区间长度为1,故所求其概率为14.2. 有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A 中奖的概率依次为P (A )=38,P (B )=28,P (C )=26,P (D )=13.3.分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为( )A.4-π2B.π-22C.4-π4D.π-24解析:选B 设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去圆内接正方形的面积,即为π-2,则阴影区域的面积为2π-4,所以所求概率为P =2π-44=π-22.4.有一杯2升的水,其中含一个细菌,用一个小杯从水中取0.1升水,则此小杯中含有这个细菌的概率是________.解析:试验的全部结果构成的区域体积为2升,所求事件的区域体积为0.1升,故P =0.05.答案:0.055.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.解析:如题图,因为射线OA 在坐标系内是等可能分布的,则OA 落在∠yOT 内的概率为60360=16.答案:16解题方法归纳1.几何概型的特点:几何概型与古典概型的区别是几何概型试验中的可能结果不是有限个,它的特点是试验结果在一个区域内均匀分布,故随机事件的概率大小与随机事件所在区域的形状位置无关,只与该区域的大小有关.2.几何概型中,线段的端点、图形的边界是否包含在事件之内不影响所求结果.与长度、角度有关的几何概型典题导入[例1] 已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)圆C 的圆心到直线l 的距离为________;(2)圆C 上任意一点A 到直线l 的距离小于2的概率为________. [自主解答] (1)根据点到直线的距离公式得d =255=5;(2)设直线4x +3y =c 到圆心的距离为3,则|c |5=3,取c =15,则直线4x +3y =15把圆所截得的劣弧的长度和整个圆的周长的比值即是所求的概率,由于圆半径是23,则可得直线4x +3y =15截得的圆弧所对的圆心角为60°,故所求的概率是16.[答案] 5 16本例条件变为:“已知圆C :x 2+y 2=12,设M 为此圆周上一定点,在圆周上等可能地任取一点N ,连接MN .”求弦MN 的长超过26的概率.解:如图,在图上过圆心O 作OM ⊥直径CD .则MD =MC =2 6. 当N 点不在半圆弧CM D 上时,MN >2 6. 所以P (A )=π×232π×23=12.解题方法归纳求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.确定点的边界位置是解题的关键.以题试法1.(1) 已知A 是圆上固定的一点,在圆上其他位置上任取一点A ′,则AA ′的长度小于半径的概率为________.(2)在Rt △ABC 中,∠BAC =90°,AB =1,BC =2.在BC 边上任取一点M ,则∠AMB ≥90°的概率为________.解析:(1)如图,满足AA ′的长度小于半径的点A ′位于劣弧BA C 上,其中△ABO 和△ACO 为等边三角形,可知∠BOC =2π3,故所求事件的概率P=2π32π=13. (2)如图,在Rt △ABC 中,作AD ⊥BC ,D 为垂足,由题意可得BD =12,且点M 在BD 上时,满足∠AMB ≥90°,故所求概率P =BD BC =122=14. 答案:(1)13 (2)14与面积有关的几何概型典题导入[例2] (1) 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1πC.2πD.1π(2)已知不等式组⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,x ≤a (a >0)表示平面区域M ,若点P (x ,y )在所给的平面区域M 内,则点P 落在M 的内切圆内的概率为( )A.(2-1)4πB .(3-22)πC .(22-2)πD.2-12π [自主解答] (1)法一:设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC .不妨令OA =OB =2,则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1,所以整体图形中空白部分面积S 2=2.又因为S 扇形OAB=14×π×22=π,所以阴影部分面积为S 3=π-2. 所以P =π-2π=1-2π.法二:连接AB ,设分别以OA ,OB 为直径的两个半圆交于点C ,令OA =2. 由题意知C ∈AB 且S 弓形AC =S 弓形B C =S 弓形O C , 所以S 空白=S △OAB =12×2×2=2.又因为S 扇形OAB =14×π×22=π,所以S 阴影=π-2.所以P =S 阴影S 扇形OAB=π-2π=1-2π.(2)由题知平面区域M 为一个三角形,且其面积为S =a 2.设M 的内切圆的半径为r ,则12(2a +22a )r =a 2,解得r =(2-1)a .所以内切圆的面积S 内切圆=πr 2=π[(2-1)·a ]2=(3-22)πa 2.故所求概率P =S 内切圆S=(3-22)π.[答案] (1)A (2)B解题方法归纳求解与面积有关的几何概型首先要确定试验的全部结果和构成事件的全部结果形成的平面图形,然后再利用面积的比值来计算事件发生的概率.这类问题常与线性规划[(理)定积分]知识联系在一起.以题试法2. 点P 在边长为1的正方形ABCD 内运动,则动点P 到顶点A 的距离|P A |≤1的概率为( )A.14B.12C.π4D .π解析:选C 如图,满足|P A |≤1的点P 在如图所示阴影部分运动,则动点P 到顶点A 的距离|P A |≤1的概率为S 阴影S 正方形=14×π×121×1=π4.与体积有关的几何概型典题导入[例3] (1) 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12C.π6D .1-π6(2)一只蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中始终保持与正方体玻璃容器的6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一个位置的可能性相同,那么蜜蜂飞行是安全的概率为( )A.18B.116C.127D.38[自主解答] (1)点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球的外部.记点P 到点O 的距离大于1为事件A ,则P (A )=23-12×4π3×1323=1-π12. (2)由题意,可知当蜜蜂在棱长为10的正方体区域内飞行时才是安全的,所以由几何概型的概率计算公式,知蜜蜂飞行是安全的概率为103303=127.[答案] (1)B (2)C解题方法归纳与体积有关的几何概型是与面积有关的几何概型类似的,只是将题中的几何概型转化为立体模式,至此,我们可以总结如下:对于一个具体问题能否应用几何概型概率公式,关键在于能否将问题几何化;也可根据实际问题的具体情况,选取合适的参数,建立适当的坐标系,在此基础上,将试验的每一个结果一一对应于该坐标系中的一个点,使得全体结果构成一个可度量区域.以题试法3. 在体积为V 的三棱锥S —ABC 的棱AB 上任取一点P ,则三棱锥S —APC 的体积大于V3的概率是________. 解析:如图,三棱锥S —ABC 的高与三棱锥S —APC 的高相同.作PM ⊥AC 于M ,BN ⊥AC 于N ,则PM 、BN 分别为△APC 与△ABC 的高,所以V S —APC V S —ABC =S △APC S △ABC =PM BN ,又PM BN =AP AB ,所以AP AB >13时,满足条件.设AD AB =13,则P 在BD 上,所求的概率P =BD BA =23. 答案:231. 在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sin x 的值介于-12与12之间的概率为( ) A.13 B.2π C.12D.23解析:选A 由-12<sin x <12,x ∈⎣⎡⎦⎤-π2,π2, 得-π6<x <π6.所求概率为π6-⎝⎛⎭⎫-π6π2-⎝⎛⎭⎫-π2=13.2. 在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A.16B.13C.23D.45解析:选C 设AC =x cm ,CB =(12-x )cm,0<x <12,所以矩形面积小于32 cm 2即为x (12-x )<32⇒0<x <4或8<x <12,故所求概率为812=23.3. 在区间[0,1]上任取两个数a ,b ,则函数f (x )=x 2+ax +b 2无零点的概率为( ) A.12 B.23 C.34D.14解析:选C 要使该函数无零点,只需a 2-4b 2<0,即(a +2b )(a -2b )<0. ∵a ,b ∈[0,1],a +2b >0, ∴a -2b <0. 作出⎩⎪⎨⎪⎧0≤a ≤1,0≤b ≤1,a -2b <0的可行域,易得该函数无零点的概率P =1-12×1×121×1=34.4. 已知函数f (x )=kx +1,其中实数k 随机选自区间[-2,1].∀x ∈[0,1],f (x )≥0的概率是( )A.13 B.12 C.23D.34解析:选C 由∀x ∈[0,1],f (x )≥0得⎩⎪⎨⎪⎧f (0)≥0,f (1)≥0,有-1≤k ≤1,所以所求概率为1-(-1)1-(-2)=23. 5. 在水平放置的长为5米的木杆上挂一盏灯,则悬挂点与木杆两端的距离都大于2米的概率为( )A.15B.25C.35D.12解析:选A 如图,线段AB 长为5米,线段AC 、BD 长均为2米,线段CD 长为1米,满足题意的悬挂点E 在线段CD 上,故所求事件的概率P =15.6. 一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形任一顶点的距离小于2的概率为( )A.π12 B.π10 C.π6D.π24解析:选A 记昆虫所在三角形区域为△ABC ,且AB =6,BC =8,CA =10,则有AB 2+BC 2=CA 2,AB ⊥BC ,该三角形是一个直角三角形,其面积等于12×6×8=24.在该三角形区域内,到三角形任一顶点的距离小于2的区域的面积等于A +B +C 2π×π×22=π2×22=2π,因此所求的概率等于2π24=π12.7. 若不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -3≤0表示的平面区域为M ,x 2+y 2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.解析:∵y =x 与y =-x 互相垂直,∴M 的面积为3,而N 的面积为π4,所以概率为π43=π12.答案:π128. 如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向图2中虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.解析:设题图1长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h(2h +2)(2h +1)=14,解得h =3或h =-12(舍去),故长方体的体积为1×1×3=3. 答案:39. 投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为12米的小方块.试验是向板中投镖,事件A 表示投中阴影部分,则事件A 发生的概率为________.解析:∵事件A 所包含的基本事件与阴影正方形中的点一一对应,事件组中每一个基本事件与大正方形区域中的每一个点一一对应.∴由几何概型的概率公式得P (A )=⎝⎛⎭⎫12212=14. 答案:1410.已知|x |≤2,|y |≤2,点P 的坐标为(x ,y ),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).故所求的概率P 1=14π×224×4=π16.11.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率; (2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率. 解:(1)集合M 内的点形成的区域面积S =8.因x 2+y 2=1的面积S 1=π,故所求概率为P 1=S 1S =π8.(2)由题意|x +y |2≤22即-1≤x +y ≤1,形成的区域如图中阴影部分,面积S 2=4,所求概率为P =S 2S =12.12. 已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a·b <0的概率.解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;由a·b =-1有-2x +y =-1,所以满足a·b =-1的基本事件为(1,1),(2,3),(3,5)共3个.故满足a·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6};满足a·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6,且-2x +y <0}; 画出图形, 矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a·b <0的概率为2125.1.在区间[0,π]上随机取一个数x ,则事件“sin x +3cos x ≤1”发生的概率为( ) A.14 B.13 C.12D.23解析:选C 由sin x +3cos x ≤1得2sin ⎝⎛⎭⎫x +π3≤1, 即sin ⎝⎛⎭⎫x +π3≤12. 由于x ∈[0,π],故x +π3∈⎣⎡⎦⎤π3,4π3,因此当sin ⎝⎛⎭⎫x +π3≤12时,x +π3∈⎣⎡⎦⎤5π6,4π3,于是x ∈⎣⎡⎦⎤π2,π. 由几何概型公式知事件“sin x +3cos x ≤1”发生的概率为P =π-π2π-0=12.2.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解析:先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=2π3.则点P 到点O 的距离小于或等于1的概率为2π32π=13,故点P 到点O 的距离大于1的概率为1-13=23.答案:233. 设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段. (1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. 解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能情况是1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =13.(2)设其中两条线段长度分别为x ,y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为⎩⎪⎨⎪⎧0<x <6,0<y <6,0<6-x -y <6,即⎩⎪⎨⎪⎧0<x <6,0<y <6,0<x +y <6所表示的平面区域为△OAB .若三条线段x ,y,6-x -y 能构成三角形, 则还要满足⎩⎪⎨⎪⎧x +y >6-x -y ,x +6-x -y >y ,y +6-x -y >x ,即为⎩⎪⎨⎪⎧x +y >3,y <3,x <3所表示的平面区域为△DEF ,由几何概型知,所求概率为P =S △DEF S △AOB =14.1.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23解析:选C 由题意知,可设事件A 为“点Q 落在△ABE 内”,构成试验的全部结果为矩形ABCD 内所有点,事件A 为△ABE 内的所有点,又因为E 是CD 的中点,所以S △ABE =12AD ×AB ,S 矩形ABCD =AD ×AB ,所以P (A )=12.2.在区间[0,1]上任取两个数a ,b ,则关于x 的方程x 2+2ax +b 2=0有实数根的概率为________.解析:由题意得Δ=4a 2-4b 2≥0, ∵a ,b ∈[0,1],∴a ≥b . ∴⎩⎪⎨⎪⎧0≤a ≤1,0≤b ≤1,a ≥b ,画出该不等式组表示的可行域(如图中阴影部分所示).故所求概率等于三角形面积与正方形面积之比,即所求概率为12.答案:123. 设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4 B.π-22C.π6D.4-π4解析:选D 不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示坐标平面内的一个正方形区域,设区域内点的坐标为(x ,y ),则随机事件:在区域D 内取点,此点到坐标原点的距离大于2表示的区域就是圆x 2+y 2=4的外部,即图中的阴影部分,故所求的概率为4-π4.为( )A.14 B.34 C.964D.2764解析:选C 设事件A 在每次试验中发生的概率为x ,由题意有1-C 33(1-x )3=6364,得x =34,则事件A 恰好发生一次的概率为C 13×34×⎝⎛⎭⎫1-342=964.。
几何概型参考答案
3-3-1几何概型参考答案1[答案] B [解析] 向△ABC 内部投一点的结果有无限个,属于几何概型.设点落在△ABD 内为事件M ,则P (M )=△ABD 的面积△ABC 的面积=12.2.[答案] C [解析] 把汽车到站的间隔时间分为[0,5]上的实数,其中乘客候车时间不超过3分钟时应在[0,3]内取值,所以发生的概率为35. 3.[答案] B [解析] 如图所示,拉直后的绳子看成线段AB ,且C 、D 是线段AB 上的点,AC =2m ,BD =2m ,由于剪断绳子的位置是等可能的且有无限个位置,属于几何模型.设剪得两段的长度都不小于2 m 为事件E ,设M 是事件E 的一个剪断点,则M ∈CD ,则事件E 构成线段CD ,则P (E )=CD AB =5-2-25=15.4.[答案] C [解析] 矩形的面积S =6×4=24,设椭圆的面积为S 1,在矩形内随机地撒黄豆,黄豆落在椭圆内为事件A ,则P (A )=S 1S =S 124=300-96300,解得S 1=16.32.5.[答案] C [解析] 由于x ∈⎣⎢⎡⎦⎥⎤-π2,π2,若0≤sin x ≤1,则0≤x ≤π2,设“0≤sin x ≤1”为事件A ,则P (A )=π2-0π2-(-π2)=π2π=12.6.[答案]B[解析]正方体的体积为:2×2×2=8,以O为球心,1为半径且在正方体内部的半球的体积为:12×43πr3=12×43π×13=23π,则点P到点O的距离小于或等于1的概率为:23π8=π12,故点P到点O的距离大于1的概率为:1-π12.7. B;8.C;9.C;10.B ;11.13[解析][-1,2]的长度为3,[0,1]的长度为1,所以所求概率是1 3.12.0.005 ;[解析]大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型.设取出2毫升水样中有大肠杆菌为事件A,则事件A构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P(A)=2400=0.005.13.3π6[分析]解答本题从正面考试较繁琐,所以从反面来解答,先计算事件“使点P到三个顶点的距离都大于1”的概率,利用对立事件的概率公式计算.[解析]边长为2的正三角形ABC内,到顶点A的距离等于或小于1的点的集合为以点A为圆心,1为半径,圆心角为∠A=60°的扇形内.同理可知到顶点B、C的距离等于或小于1的点的集合.故使点P到三个顶点的距离都大于1的概率为12×2×3-3×16×π×1212×2×3=1-3π6,故所求的概率为1-(1-3π6)=3π6.14.53125[解析]由三视图可知,该几何体是球与圆柱的组合体,球半径R=5,圆柱底面半径r=4,高h=6,故球体积V=43πR3=500π3,圆柱体积V1=πr2·h=96π,∴所求概率P=500π3-96π500π3=53125.15.[在75秒内,每一时刻到达路口是等可能的,属于几何概型.(1)P=亮红灯的时间全部时间=3030+40+5=25;(2)P=亮黄灯的时间全部时间=575=115;(3)P=不是红灯亮的时间全部时间=黄灯或绿灯亮的时间全部时间=4575=3 5.16.记事件C={钻到油层面},在这1万平方千米的海域中任意一点钻探的结果有无限个,故属于几何概型.事件C构成的区域面积是40平方千米,全部试验结果构成的区域面积是1万平方千米,则P (C )=贮藏石油的大陆架面积所有海域大陆架的面积=4010 000=0.004.17.[分析] 由题目可获取以下主要信息:①正方体ABCD -A 1B 1C 1D 1的棱长为1,M 为其内一点; ②求四棱锥M -ABCD 的体积小于16的概率. 解答本题的关键是结合几何图形分析出概率模型.[解析] 如图,正方体ABCD -A 1B 1C 1D 1,设M -ABCD 的高为h ,则13×S四边形ABCD ×h <16,又S 四边形ABCD =1,则h <12,即点M 在正方体的下半部分.故所求概率P =12V 正方体V 正方体=12.18.[解析] (1)设事件A =“弦长超过3”,弦长只与它跟圆心的距离有关,∵弦垂直于直径,∴当且仅当它与圆心的距离小于12时才能满足条件,由几何概率公式知P (A )=12.(2)设事件B =“弦长超过3”,弦被其中点惟一确定,当且仅当其中点在半径为12的同心圆内时,才能满足条件,由几何概率公式知P (B )=14.(3)设事件C =“弦长超过3”,固定一点A 于圆周上,以此点为顶点作内接正三角形ABC ,显然只有当弦的另一端点D 落在BC ︵上时,才有|AD |>|AB |=3,由几何概率公式知P (C )=13.。
几何概型
几何概型习题(含答案)一、单选题1.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8πC.12D.4π2.在区间[-2,2]上随机取一个数b,若使直线与圆有交点的概率为,则a =A.B.C.1D.23.在区间上随机取两个数x,y,记P为事件“”的概率,则A.B.C.D.4.甲乙两艘轮船都要在某个泊位停靠6小时,假定他们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停泊位时必须等待的概率( )A.B.C.D.5.如图,边长为2的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为.则阴影区域的面积约为( )A.B.C.D.无法计算6.在区间上随机取两个实数,记向量,,则的概率为()A.B.C.D.7.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为()A.B.C.D.8.在上任取一个个实数,则事件“直线与圆”相交的概率为( )A.B.C.D.9.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为()A.B.C.D.二、填空题10.任取两个小于1的正数x、y,若x、y、1能作为三角形的三条边长,则它们能构成钝角三角形三条边长的概率是________.11.已知,,,都在球面上,且在所在平面外,,,,,在球内任取一点,则该点落在三棱锥内的概率为__________.12.已知,点的坐标为,则当时,且满足的概率为__________.13.在区间上随机地取一个数,则事件“”发生的概率为_______。
高三数学几何概型试题答案及解析
高三数学几何概型试题答案及解析1.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.B.C.D.【答案】B【解析】由题知,以AB为直径的圆的半径为1,故质点落在以AB为直径的半圆内的概率为=,故选B.考点:几何概型2.在区间上随机取两个数其中满足的概率是()A.B.C.D.【答案】B【解析】在区间[0,2]上随机取两个数x,y,对应区域的面积为4,满足y≥2x,对应区域的面积为×1×2=1,∴所求的概率为,故选B.考点:几何概型3.张先生订了一份《南昌晚报》,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能拿到报纸的概率是________.【答案】【解析】以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)==.4.已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.【答案】(1)(2)【解析】(1)记“复数z为纯虚数”为事件A.∵组成复数z的所有情况共有12个:-4,-4+i,-4+2i,-3,-3+i,-3+2i,-2,-2+i,-2+2i,0,i,2i,且每种情况出现的可能性相等,属于古典概型,其中事件A包含的基本事件共2个:i,2i,∴所求事件的概率为P(A)==.(2)依条件可知,点M均匀地分布在平面区域{(x,y)| }内,属于几何概型,该平面区域的图形为右图中矩形OABC围成的区域,面积为S=3×4=12.而所求事件构成的平面区域为{(x,y)| },其图形如图中的三角形OAD(阴影部分).又直线x+2y-3=0与x轴、y轴的交点分别为A(3,0)、D(0,),∴三角形OAD的面积为S1=×3×=.∴所求事件的概率为P===.5.在区间[-6,6]内任取一个元素x0,抛物线x2=4y在x=x处的切线的倾斜角为α,则α∈[,]的概率为________.【答案】【解析】当切线的倾斜角α∈[,]时,切线斜率的取值范围是(-∞,-1]∪[1,+∞),抛物线x2=4y在x=x0处的切线斜率是x,故只要x∈(-∞,-2]∪[2,+∞)即可,若在区间[-6,6]内取值,则只能取区间[-6,-2]∪[2,6)内的值,这个区间的长度是8,区间[-6,6]的长度是12,故所求的概率是=.6.在可行域内任取一点,规则如流程图所示,求输出数对(x,y)的概率.【答案】【解析】可行域为中心在原点,顶点在坐标轴上的正方形(边长为),x2+y2≤表示半径为的圆及其内部,所以所求概率为=.7.在长为的线段上任取一点,并且以线段为边作正三角形,则这个正三角形的面积介于与之间的概率为()A.B.C.D.【答案】D【解析】解:边长为的正三角形的面积为,由得:在长为的线段上任取一点,有无限个可能的结果,所有可能结果对应一个长度为20的线段,设“以线段为边的正三角形面积介于与之间”为事件M,则包含M的全部基本事对应的是长度为6的线段,所以故选D.【考点】几何概型.8.在平面区域内随机取一点,则所取的点恰好满足的概率是()A.B.C.D.【答案】C【解析】如图,此题为几何概型,,故选C.【考点】几何概型9.一只昆虫在边长分别为、、的三角形区域内随机爬行,则其到三角形顶点的距离小于的地方的概率为 .【答案】.【解析】如下图所示,易知三角形为直角三角形,昆虫爬行的区域是在三角形区域内到以各顶点为圆心,半径为的圆在三角形区域内的部分,实际上就是三个扇形,将这三个扇形拼接起来就是一个半圆,其半径长为,面积为,三角形的面积为,因此昆虫爬行时到三角形顶点的距离小于的地方的概率为.【考点】几何概型10.如图,一半径为的圆形靶内有一个半径为的同心圆,将大圆分成两部分,小圆内部区域记为环,圆环区域记为环,某同学向该靶投掷枚飞镖,每次枚. 假设他每次必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中获得环的概率;(2)设表示该同学在次投掷中获得的环数,求的分布列及数学期望.【答案】(1);(2)详见解析.【解析】(1)先根据题中条件确定相应的事件为几何概型,然后利用几何概型的概率计算公式(对应区域面积之比)求出相应事情的概率即可;(2)(1)由题意可得是几何概型,设,该同学一次投掷投中环的概率为;(2)由题意可知可能的值为、、、,,,,,的分布列为环,答:的数学期望为环.【考点】1.几何概型;2.离散型随机变量分布列与数学期望11.已知正方体的棱长为2,在四边形内随机取一点,则的概率为_______ ,的概率为_______.【答案】;【解析】四边形为矩形且。
几何概型例题分析及习题(含答案)
几何概型例题分析及练习题(含答案)[例1]甲、乙两人约定在下午 4:00~5:00间在某地相见他们约好当其中一人先到后一定要等 另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。
解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图|x — y|乞15时可相见,即阴 60 -4527影部分P2 6021 21 [例3]将长为1的棒任意地折成三段,求三段的长度都不超过的概率。
2解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为1-x -y ,则基本事件 组所对应的几何区域可表示为门二{(x, y) |0 ::: x :: 1,0 ::: y ::: 1,0 ::: x • y ::: 1},即图中黄色区域,此区域面积为[例2]设A 为圆周上一定点, 率。
在圆周上等可能任取一点与A 连接,求弦长超过半径,2倍的概cf BCD P =-圆周1事件“三段的长度都不超过丄”所对应的几何区域可表示为2 111 A ={(x, y)| (x, yb 11,x , y ,1 — x — y }2 22=181丄”的概率为P 二直2 12即图中最中间三角形区域,此区域面积为此时事件“三段的长度都不超过2 • -(-)22 2解:| AB |=| AC 匸..2R .y=-15x-y=1515 06012[例4]两对讲机持有者张三、李四,为卡尔货运公司工作,他们对讲机的接收范围是25km,X i x 2 _ -a 0 X 2 = b 0解: (2)(1)利用计算器产生 0 变换 a = a ! ” 2 _ 1 , (3) 从中数出满足条件 b至1区间两组随机数a 1,b 1 b = b - ” 2 -1 1 2a 且a . 0且b 0的数m 4c :解法1:记 ABC 的三内角分别为 形”,则试验的全部结果组成集合$11={「, )0 J , :: ,0 J因为ABC 是锐角三角形的条件是n , 3TnJI0 ,且二川:—2 2所以事件A 构成集合A={(「)|,0 (2)由图2可知,所求概率为A 、B 、C,求 ABC 是锐角三角形的概率。
几何概型例题分析及习题(含答案)
2几何概型例题分析及练习题(含答案)[例1]甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等另一人 15分钟,若另一人仍不 到则可以离去,试求这人能相见的概率。
解:设X 为甲到达时间,y 为乙到达时间.建立坐标系,如图[例2]设A 为圆周上一定点,在圆周上等可能任取一点与 A 连接,求弦长超过半径 2倍的概率[例3]将长为1的棒任意地折成三段,求三段的长度都不超过丄2的概率。
解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为1 x y ,则基本事件组所对应的几何区域可表示为{(x,y)|O x 1,0 y 1,0 x y 1},即图中黄色区域,此区域面积为1。
2事件“三段的长度都不超过 1”所对应的几何区域可表2 示为1 1 1A {( x, y)|(x, y) , x -,y J x y 才即图中最中间三角形区域,此区域面积为 丄(丄)2 12 2 81此时事件“三段的长度都不超过1”的概率为P -8 1 2 14|x y| 15时可相见,即阴影部分602 452 602rinx-尸一 13flJ 1 S 哎y60 K解:| AB| | AC| ,2R .BCD圆周7 16A[例4]两对讲机持有者张三、李四,为卡尔货运公司工作,他们对讲机的接收范围是25,下午3: 00张三在基地正东30内 部处,向基地行驶,李四在基地正北 40内部处,向基地行 驶,试问下午3: 00,他们可以交谈的概率。
解:设x,y 为张三、李四与基地的距离x [0,30],y [0,40],以基地为原点建立坐标系.他们构成实数对(x,y ),表示区域总 面积为1200,可以交谈即x 2 y 2 25程x 2 ax b 0两根均为正数的概率a 2 4b 0-252 120025 192[例5]在区间[1,1]上任取两数a,b , 运用随机模拟方法求二次方解:(2)X2 a 0x2 b 0(1 )利用计算器产生变换 a a1 2 1,0至1区间两组随机数a1,b1b1 2 1,事件A表示b三角形的概率。
几何概型(新高考地区专用)(含解析)
几何概型(客观题)一、单选题1.如图所示,若在大正方形内随机取一点,这一点落在小正方形内(图中阴影部分)的概率为A .12B C .13D .152.在等腰直角三角形ABC 中,角C 为直角.在ACB ∠内部任意作一条射线CM ,与线段AB 交于点M ,则AM AC <的概率A .2B .12C .34D .143.在区间[2,2]-内随机取一个数a ,则关于x 的方程220x x a -+=无实根的概率是 A .15 B .14C .13D .344.五铢钱是一种中国古铜币,奠定了中国硬通货铸币圆形方孔的传统,这种钱币外圆内方,象征着天地乾坤.如图是一枚西汉五铢钱币,其直径为2.5厘米.现向该钱币上随机投掷一点,若该点落在方孔内的概率为1625π,则该五铢钱的穿宽(即方孔边长)为A .0.8厘米B .1厘米C .1.1厘米D .1.2厘米5.在区间[4,12]上随机地取一个实数a ,则方程2280x ax -+=有实数根的概率为43C.13D.126.宋代文学家欧阳修在《卖油翁》中写道“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔人,而钱不湿”,由此诠释出了“熟能生巧”的道理.已知铜钱是直径为()1cma a>的圆,正中间有一边长为0.5cm的正方形小孔,现随机向铜钱上滴--滴油(油滴的大小忽略不计),若油滴落入孔中的概率为116π,则a=A.4B.3C.2D7.在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为A.16B.13C.23D.458.古埃及、古印度、古巴比伦和中国是四大文明古国之一,金字塔(如图1)作为古埃及劳动人民的智慧结晶,是历史留给当下的宝贵遗产著名的胡夫金字塔的俯视图如图2所示,该金字塔的高146.5米,底面正方形边长230米.若小明在距离金字塔底而中心230米的圆周.上任取一点(圆周上所有点被选取的概率相等),从该点处观察金字塔,则小明可以同时看到金字塔两个侧面的概率为A.13B.23449.在区间[]0,8上随机取一个实数a ,则方程22160x ax ++=有实数根的概率为A .14 B .12C .13D .2310.已知x 、y 满足1x y +≤,则事件“2212x y +≤”的概率为 A .8π B .4π C .18π-D .14π-11.如图,随机向大圆内投一粒豆子,则豆子落在阴影部分的概率为A .13 B .4ππ-C .22ππ-D .22ππ+12.在平面区域02,{02x y ≤≤≤≤内随机取一点,在所取的点恰好满足x y +≤ A .116 B .18C .14D .1213.部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程得到如图所示的图案,若向该图案随机投一点,则该点落在黑色部分的概率是1616C.35D.1214.如图所示,在边长为4的正三角形中有一封闭曲线围成的阴影区域.在正三角形中随机撒一粒豆子,它落在阴影区域内的概率为34,则阴影区域的面积为A B.C.D.15.如图来自中国古代的木纹饰图.若大正方形的边长为6个单位长度,每个小正方形的边长均为1个单位长度,则在大正方形内随机取一点,此点取自图形中小正方形内的概率是A.136B.19C.16D.2916ABCD,射线BP从BA出发,绕着点B顺时针方向旋转至BC,点E为线段DC上的点,且1CE ,则在旋转的过程中,BP与线段EC有交点的概率为A.13B.12C.23D.1417.“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出入怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号,如图是折扇的示意图,A 为OB 的中点,若在整个扇形区域内随机取一点,则此点取自扇面(扇环)部分的概率是A .14B .12C .58D .3418.刘徽是我国魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”所谓“割圆术”是指用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.已知半径为1的圆O 内接正二十四边形,现随机向圆O 内投放a 粒豆子,其中有b 粒豆子落在正二十四边形内()*,a b b a N 、∈<,则圆周率的近似值为A.(a bB.(b aC.(a bD.(b a-19.在正方形ABCD 中,弧AD 是以AD 为直径的半圆,若在正方形ABCD 中任取一点,则该点取自阴影部分内的概率为A .16π B .12πC .44π-D .1420.在区间[-2,2]上随机抽取一个数x ,则事件“-1≤ln (x +1)≤1”发生的概率为A .2e 13e-B .2e 14e-C .2e 2e 13e--D .2e 2e 14e--21.“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的锐角6πα=,现在向该大正方形区域内随机地投掷一枚飞镖,则飞镖落在阴影部分的概率是A B .12C .14-D .3422.为了求得椭圆()222210x y a b a b+=>>的面积,把该椭圆放入一个矩形当中,恰好与矩形相切,向矩形内随机投入()()()1122,,,,,n n x y x y x y 共n 个不同的点,其中在椭圆内的点恰好有()m m n <个.若矩形的面积是2,则可以估计椭圆的面积为A .mn B .2mn C .2m nD .n m23.刘徽是魏晋期间伟大的数学家,他是中国古典数学理论的奠基者之一.他全面证明了《九章算术》中的方法和公式,指出并纠正了其中的错误,更是擅长用代数方法解决几何问题.如下图在圆的直径CD 上任取一点E ,过点E 的弦AB 和CD 垂直,则AB 的长不超过半径的概率是A .1-B .13C .14D .14- 24.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 2θθ⎛⎫++= ⎪⎝⎭形区域的概率为.A .14 B .15 C .25D .3525.《九章算术·商功》中有这样一段话:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.”其中“解”字的意思是用一个平面对某几何体进行切割.已知正方体1111ABCD A B C D -,随机在线段1AC 上取一点,过该点作垂直于1AC 的平面α,则平面α“解”正方体1111ABCD A B C D -所得的大、小两部分体积之比大于5的概率为 A .16B .13 C .12D .2326.“勾股定理”在西方被称为“华达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用形数结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角6πα=,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是A .12- B .2C .44D27.已知[]8,4a ∈-,则命题00x ∃>,20010x ax ++<为假命题的概率A .0.2B .0.3C .0.4D .0.528.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为A .8πB .16π C .18π-D .116π-29.如图,点C 在以AB 为直径的圆上,且满足CA CB =,圆内的弧线是以C 为圆心,CA 为半径的圆的一部分.记ABC ∆三边所围成的区域(灰色部分)为Ⅰ,右侧月牙形区域(黑色部分)为Ⅱ.在整个图形中随机取一点,记此点取自Ⅰ,Ⅱ的概率分别为1P ,2P ,则A .12P P =B .12P P >C .1241P P π+=+ D .2111P P π-=+ 30.魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”(如图),刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为π:4.在棱长为2的正方体内任取一点,此点取自“牟合方盖”的概率为A .12BC .23D二、填空题1.在区间()0,6中任取一个数x .则能使2,3,x 是某个三角形三边长的概率是__________. 2.在区间[]1,5内任取一个实数,则此数大于2的概率为__________.3.如图,已知正方形的边长为10,向正方形内随机地撒200颗黄豆,数得落在阴影外的黄豆数为114颗,以此实验数据为依据,可以估计出阴影部分的面积约为__________.4.如图所示,在Rt ABC ∆中,90C =∠,30B ∠=,在BAC ∠内过点A 任作一射线与BC 相交于点D ,使得30DAC ∠<的概率为__________.5.2020年2月17开始,为实现“停课不停学”,张老师每天晚上20:05-20:50时间段通过班级群直播的形式为学生们在线答疑,某天一位高三学生在19:00至20:30之间的某个时刻加入群聊,则他等待直播的时间不超过30分钟的概率是__________.6.勾股定理又称商高定理,三国时期吴国数学家赵爽创制了一幅“勾股圆方图”,正方形ABDE 是由4个全等的直角三角形再加上中间的阴影小正方形组成的,如图,记ABC θ∠=,若tan 74πθ⎛⎫+=- ⎪⎝⎭,在正方形ABDE 内随机取一点,则该点取自阴影正方形的概率为__________.7.七巧板是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,后清陆以活《冷庐杂识》卷一中写道“近又有七巧图,其式五,其数七,其变化之式多至千余.”在18世纪,七巧板流传到了国外,被誉为“东方魔板”,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.完整图案为一正方形(如图):五块等腰直角三角形、一块正方形和一块平行四边形,如果在此正方形中随机取一点,那么此点取自阴影部分的概率是__________.8.在区间[2,3]-上随机取一个实数x ,则“||1x ≤”的概率为__________. 9.点P 是ABC 内部任意一点,则PAB △的面积小于ABC 面积一半的概率为__________.10.记函数()f x =D ,若在区间[]5,5-上随机取一个数x ,则x D ∈的概率为__________.11.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请160名同学,每人随机写下开一个都小于4的正实数对(),x y ;再统计两数能与4构成钝角三角形三边的数对(),x y 的个数n ;最后再根据统计数n 来估计π的值.假如统计结果是126n =,那么据此估计π的值为__________.12.部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形,如上图.现在图(3)中随机选取一个点,则此点取自阴影部分的概率为__________.13.如图,AB 是圆O 的直径,OC AB ⊥,假设向该圆随机撒一粒黄豆,则它落到阴影部分的概率为__________.14.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形,一块正方形和一块平行四边形组成.如图是一块用七巧板组成的正方形,若在此正方形中任意取一点,则该点来自于阴影部分的概率为__________.15.如图是以一个正方形的四个顶点和中心为圆心,以边长的一半为半径在正方形内作圆弧得到的.现等可能地在该正方形内任取一点,则该点落在图中阴影部分的概率为__________.16.已知直线:4l y x =-与曲线:C y =C 上随机取一点M ,则点M 到直线l 的概率为__________.17.太极图是以黑白两个鱼形纹组成的图形图案,它形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被y =3sin4πx 的图象分割为两个对称的鱼形图案(如图所示).其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为__________.18.若在不等式221x y +≤所表示的平面区域内随机投一点P ,则该点P 落在不等式组11x y x y ⎧-≤⎪⎨+≤⎪⎩所表示的平面区域内的概率为__________. 19.如图是古希腊数学家希波克拉底所研究的弓月形的一种,此图是以BC ,AB ,AC 为直径的三个半圆组成,2BC =,点A 在弧BC 上,若在整个图形中随机取一点,点取自阴影部分的概率是P ,则P 的最大值是__________.20.在区间[]1,1-上随机取一个数k ,则能够使直线()3y k x =+与圆221x y +=相交的概率为______.21.如图所示,是一正方形苗圃图案,中间黑色的大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机地取一点,则该点取自黑色区域的概率为__________.22.如图是一种圆内接六边形ABCDEF ,其中BC CD DE EF FA ====且AB BC ⊥.则在圆内随机取一点,则此点取自六边形ABCDEF 内的概率是__________.23.在区间[0,]π上随机取一个数α,则11cos ,22α⎡⎤∈-⎢⎥⎣⎦的概率为__________. 24.黄金三角形有两种,一种是顶角为36°的等腰三角形,另一种是顶角为108°的等腰三角形.例如,一个正五边形可以看成是由正五角星和五个顶角为108°的黄金三角形组成,如图所示,在黄金三角形1A AB 中,112A A AB =.根据这些信息,若在正五边形ABCDE 内任取一点,则该点取自正五边形11111A B C D E 内的概率是__________.25.已知P ,E ,F 都在球面C 上,且P 在EFG ∆所在平面外,PE EF ⊥,PE EG ⊥,224PE GF EG ===,120EGF ︒∠=,在球C 内任取一点,则该点落在三棱锥P ﹣EFG内的概率为__________.26.在曲线22x y x y +=+上及其内部随机取一点,则该点取自圆221x y +=上及其内部的概率为__________.一、单选题1.如图所示,若在大正方形内随机取一点,这一点落在小正方形内(图中阴影部分)的概率为A .12B C .13D .15【试题来源】云南省德宏州2020届高三上学期期末教学质量检测(文) 【答案】D【分析】求出阴影部分的面积,大正方形的面积即可得概率.25S ==,小正方形边长为1,面积为2111S ==,所以所求概率为115S P S ==.故选D . 2.在等腰直角三角形ABC 中,角C 为直角.在ACB ∠内部任意作一条射线CM ,与线段AB 交于点M ,则AM AC <的概率A .2B .12C .34D .14【试题来源】湖南师大附中2020届高三下学期6月月考(文) 【答案】C【分析】求出满足AM AC <时CM 所扫过的角度,利用角度比可得概率. 【解析】当AM AC =时,1804567.52ACM ︒-︒∠==︒,90ACB ∠=︒, 所以所求概率为67.53904P ︒︒==.故选C . 3.在区间[2,2]-内随机取一个数a ,则关于x 的方程220x x a -+=无实根的概率是54C .13D .34【试题来源】陕西省西安市高新一中2019-2020学年高三上学期期末(文) 【答案】B【分析】由已知条件,得440a ∆=-<,结合[2,2]a ∈-,求出a 的范围,根据几何概型的概率公式,a 取值范围区间长度除以[2,2]-长度,即可求解. 【解析】关于x 的方程220x x a -+=无实根, 得440,1,[2,2],(1,2]a a a a ∆=-<>∈-∴∈,所以所求的概率为14P =.故选B . 4.五铢钱是一种中国古铜币,奠定了中国硬通货铸币圆形方孔的传统,这种钱币外圆内方,象征着天地乾坤.如图是一枚西汉五铢钱币,其直径为2.5厘米.现向该钱币上随机投掷一点,若该点落在方孔内的概率为1625π,则该五铢钱的穿宽(即方孔边长)为A .0.8厘米B .1厘米C .1.1厘米D .1.2厘米【试题来源】广西桂林市广西师范大学附属2021届高三年级上学期数学第三次月考试题 【答案】B【分析】设该五铢钱的穿宽为x 厘米,根据几何概型的概率公式列式可解得结果. 【解析】圆的半径为54厘米,圆的面积为25()4π⨯2516π=, 设该五铢钱的穿宽为x 厘米,则方孔面积为2x 厘米,根据几何概型可得216252516x ππ=,解得1x =厘米.故选B .5.在区间[4,12]上随机地取一个实数a ,则方程2280x ax -+=有实数根的概率为43C .13D .12【试题来源】2020届广西壮族自治区高三第一次教学质量诊断性联合(理) 【答案】D【分析】根据∆求出a 的取值范围,结合几何概型的概念,可得结果.【解析】因为方程2280x ax -+=有实数根,所以2()4280a ∆=--⨯⨯≥,解得8a ≥或8a ≤-,故方程2280x ax -+=有实数根的概率12811242p -==-.故选D .6.宋代文学家欧阳修在《卖油翁》中写道“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔人,而钱不湿”,由此诠释出了“熟能生巧”的道理.已知铜钱是直径为()1cm a a >的圆,正中间有一边长为0.5cm 的正方形小孔,现随机向铜钱上滴--滴油(油滴的大小忽略不计),若油滴落入孔中的概率为116π,则a =A .4B .3C .2D【试题来源】百师联盟2021届高三开学摸底联考(文)全国卷III 试题 【答案】A【分析】分别计算钱的圆面面积和钱空正方形的面积,由几何概型概率公式求出一滴油滴落入孔中的概率.【解析】圆的面积为22a π⎛⎫⨯ ⎪⎝⎭2cm ,正方形的面积为20.50.5cm ⨯,则一滴油滴落入孔中的概率20.50.16512a P ππ⎛==⨯⎫ ⎪⎝⎭,得4a =,故选A .7.在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20cm 2的概率为A .16 B .13 C .23D .45【试题来源】安徽省合肥六中2019-2020学年高三上学期第一次段考(文) 【答案】C【解析】设AC=x ,则BC=12-x (0<x <12),矩形的面积S=x (12-x )>20, 所以x 2-12x+20<0,所以2<x <10,由几何概率的求解公式可得,矩形面积大于20cm 2的概率10221203p -==-.8.古埃及、古印度、古巴比伦和中国是四大文明古国之一,金字塔(如图1)作为古埃及劳动人民的智慧结晶,是历史留给当下的宝贵遗产著名的胡夫金字塔的俯视图如图2所示,该金字塔的高146.5米,底面正方形边长230米.若小明在距离金字塔底而中心230米的圆周.上任取一点(圆周上所有点被选取的概率相等),从该点处观察金字塔,则小明可以同时看到金字塔两个侧面的概率为A .13 B .23 C .14D .34【试题来源】江苏省宿迁中学2020-2021学年高三上学期期中巩固测试 【答案】A【分析】根据题意,利用长度比的几何概型求得只能看到金字塔的一个侧面的概率,进而求得看到两个侧面的概率.【解析】如图所示,中间正方形的边长为230米,可得230AB CD ==米, 其中在AB 处的任意一点,只能看到金字塔的一个侧面,又由圆的半径为230米,其中230OA OB ==米, 所以ABO 为等边三角形,即60AOB ∠=, 其中由四个这的区域,只能看到金字塔的一个侧面, 所以只能看到一个侧面的概率为46023603⨯=, 所以小明可以同时看到金字塔两个侧面的概率为13.故选A .9.在区间[]0,8上随机取一个实数a ,则方程22160x ax ++=有实数根的概率为A .14 B .12C .13D .23【试题来源】云南省昆明市第一中学2021届高三第三次双基检测(文) 【答案】B【分析】由2441160a ∆=-⨯⨯≥可得4a ≤-或4a ≥,然后根据几何概型的概率计算公式可得答案.【解析】由2441160a ∆=-⨯⨯≥,得216a ≥,即4a ≤-或4a ≥, 它与08a ≤≤的公共元素为48a ≤≤,所以4182p ==,故选B . 10.已知x 、y 满足1x y +≤,则事件“2212x y +≤”的概率为 A .8π B .4π C .18π-D .14π-【试题来源】四川省成都市蓉城名校联盟2020-2021学年高三第一次联考(文) 【答案】B【分析】作出区域(){},1A x y x y =+≤与区域()221,2B x y xy ⎧⎫=+≤⎨⎬⎩⎭,并计算出两个区域的面积,利用几何概型的概率公式可求得所求事件的概率. 【解析】区域(){},1A x y x y =+≤是由()1,0、()0,1、()1,0-、()0,1-为四个顶点的正方形及其内部,区域()221,2B x y x y ⎧⎫=+≤⎨⎬⎩⎭是以原点为圆心,半径为2的圆及其内部,如下图所示:区域A的正方形及其内部,区域A的面积为22A S ==,区域B的面积为22B S ππ=⨯=⎝⎭,因此,所求概率为224B A S P S ππ===.故选B . 11.如图,随机向大圆内投一粒豆子,则豆子落在阴影部分的概率为A .13 B .4ππ-C .22ππ-D .22ππ+ 【试题来源】江西省鹰潭市2021届高三第二次模拟考(理) 【答案】C【分析】设小圆的半径为r ,则大圆的半径为2r ,计算出阴影部分区域的面积和大圆的面积,利用几何概型的概率公式可求得所求事件的概率. 【解析】设小圆的半径为r ,则大圆的半径为2r ,则空白区域可看作是边长为2r 的正方形与半径为r 的四个半圆组合而成, 所以,空白区域的面积为()()222124422r r r ππ+⨯⨯⨯=+,所以,阴影部分区域的面积为()()()22224224S r r r πππ=⨯-+=-,因此,所求概率为()2224242r P r ππππ--==.故选C .12.在平面区域02,{02x y ≤≤≤≤内随机取一点,在所取的点恰好满足x y +≤A .116 B .18C .14D .12【试题来源】广西南宁三中2020届高三数学(理)考试二试题 【答案】C【解析】由题意可知所取的点应在图中阴影部分.从而其概率为.故本题正确答案为C .13.部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程得到如图所示的图案,若向该图案随机投一点,则该点落在黑色部分的概率是A .716 B .916 C .35D .12【试题来源】陕西省安康市2020届高三下学期第三次联考(理) 【答案】B【分析】先观察图象,再结合几何概型中的面积型可得()991616S P A S ==小三角形小三角形,得解. 【解析】由图可知黑色部分由9个小三角形组成,该图案由16个小三角形组成, 设“向该图案随机投一点,则该点落在黑色部分”为事件A , 由几何概型中的面积型可得()991616S P A S ==小三角形小三角形,故选B . 14.如图所示,在边长为4的正三角形中有一封闭曲线围成的阴影区域.在正三角形中随机撒一粒豆子,它落在阴影区域内的概率为34,则阴影区域的面积为AB.C.D.【试题来源】安徽省四校2020-2021学年高三上学期适应性测试(文) 【答案】C【分析】由题意结合几何概型计算公式得到关于面积的方程,解方程即可求得最终结果.【解析】设阴影部分的面积为S3422=,解得S =3.故选C .15.如图来自中国古代的木纹饰图.若大正方形的边长为6个单位长度,每个小正方形的边长均为1个单位长度,则在大正方形内随机取一点,此点取自图形中小正方形内的概率是A .136 B .19C .16D .29【试题来源】河南省名校联考2020-2021学年高三上学期第一次模拟考试(文) 【答案】D【分析】分别求出各自对应的面积即可求解结论.【解析】因为大正方形的面积为6636⨯=;而小正方的面积为111⨯=;故在大正方形内随机取一点,大正方形内部有6个小正方形,此点取自图形中小正方形内的概率是812369⨯=.故选D . 16ABCD ,射线BP 从BA 出发,绕着点B 顺时针方向旋转至BC ,点E 为线段DC 上的点,且1CE =,则在旋转的过程中,BP 与线段EC 有交点的概率为A .13 B .12C .23D .14【试题来源】河南省名校联盟2020届高三(6月份)高考数学((理))联考试题 【答案】A【分析】首先求出CBE ∠,再根据角度型几何概型概率公式计算可得;【解析】tan CE CBE CB ∠===,6CBE π∴∠=, BP ∴与线段EC 有交点的概率为1632ππ=.故选A .17.“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出入怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号,如图是折扇的示意图,A 为OB 的中点,若在整个扇形区域内随机取一点,则此点取自扇面(扇环)部分的概率是A .14B .12C .58D .34【试题来源】江西省南昌二中2020届高三高考数学((理))校测试卷题(三) 【答案】D【解析】设扇形的圆心角为α,大扇形的半径长为R ,小扇形的半径长为r , 则22S R α=大扇形,22S r α=小扇形,2R r =.根据几何概型,可得此点取自扇面(扇环)部分的概率为222222223322442R r R r r P R r R ααα--====.故选D . 18.刘徽是我国魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”所谓“割圆术”是指用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.已知半径为1的圆O 内接正二十四边形,现随机向圆O 内投放a 粒豆子,其中有b 粒豆子落在正二十四边形内()*,a b b a N 、∈<,则圆周率的近似值为A.(a bB.(b aC.(a bD.(b a-【试题来源】河南省2020届高三(6月份)高考数学((理))质检试题 【答案】C【分析】本题首先可计算出正二十四边形的面积1S ,然后计算出半径为1的圆的面积2S ,最后根据几何概型的概率计算公式即可得出结果.【解析】因为正二十四边形的面积211241sin152432S ︒=⨯⨯⨯==,半径为1的圆的面积2S π=,所以123S S b aπ==,解得(a bπ=,故选C .【名师点睛】本题考查几何概型的概率计算公式,能否求出正二十四边形的面积以及圆的面积是解决本题的关键,考查计算能力,是简单题.19.在正方形ABCD 中,弧AD 是以AD 为直径的半圆,若在正方形ABCD 中任取一点,则该点取自阴影部分内的概率为A .16πB .12πC .44π-D .14【试题来源】四川省德阳市2020届高三高考数学((文))三诊试题【答案】D【分析】设正方形ABCD 的边长为2,计算出阴影部分区域和正方形ABCD 的面积,利用几何概型的概率公式可求得所求事件的概率.【解析】设正方形ABCD 的边长为2,将图中阴影部分中的弓形区域沿着图中的虚线对称,如下图所示:所以,阴影部分区域的面积为12112S '=⨯⨯=,正方形ABCD 的面积为224S ==,因此,所求概率为14S P S '==.故选D . 20.在区间[-2,2]上随机抽取一个数x ,则事件“-1≤ln (x +1)≤1”发生的概率为A .2e 13e-B .2e 14e-C .2e 2e 13e--D .2e 2e 14e--【试题来源】云南省红河州第一中学2021届高三年级(理)第一次联考试题 【答案】B【分析】先解不等式()1ln 11x -≤+≤,然后利用几何概型的长度类型求解.【解析】由不等式()1ln 11x -≤+≤,得11e 1ex -≤≤-,所以事件“-1≤ln (x +1)≤1”发生的概率为()1e 11e 4P ⎛⎫---⎪⎝⎭==2e 14e-.故选B .【名师点睛】本题主要考查几何概型的概率求法,还考查了运算求解的能力,属于基础题. 21.“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的锐角6πα=,现在向该大正方形区域内随机地投掷一枚飞镖,则飞镖落在阴影部分的概率是A .22- B .12CD .34【试题来源】山西省长治市第二中学校2021届高三上学期9月质量调研(文) 【答案】A【分析】设大正方形的边长为2,求出阴影部分的面积后,由几何概型概率公式即可得解. 【解析】设大正方形的边长为2,则大正方形的面积14S =,易知阴影部分图形为正方形,因为直角三角形中较小的锐角6πα=,所以小正方形的边长为2cos2sin166ππ-=,。
高二数学几何概型试题答案及解析
高二数学几何概型试题答案及解析1.在同一坐标系中,D是由曲线y=cosx,x∈[﹣,]与x轴所围成的封闭区域,E是由曲线y=cosx,直线x=﹣,x=与x轴所围成的封闭区域,若向D内随机投一点,则该点落入E中的概率为()A.B.C.D.【答案】B【解析】D的面积 ,E的面积 ,若向D内随机投一点,则该点落入E中的概率为故选 B.【考点】几何概型.2.设有关于的一元二次方程(1)若是从0,1,2,3四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若是从区间[0,3]任取的一个数,是从区间[0,2]任取的一个数,求上述方程有实根的概率.【答案】(1)(2)【解析】(1)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;(2)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;(3)注意判断是古典概型还是几何概型,基本事件前者是有限的,后者是无限的,两者都是等可能性.(4)在几何概型中注意区域是线段,平面图形,立体图形.试题解析:解:设事件A为“方程x2+2ax+b2=0有实根”.当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件,事件A发生的概率为P(A)==..6分(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b},所以所求的概率为P(A)== 12分【考点】(1)古典概型的概率;(2)几何概型的概率.3.如图,在一个长为,宽为2的矩形OABC内,曲线与x轴围成如图所示的阴影部分,向矩形OABC内随机投一点(该点落在矩形OABC内任何一点是等可能的),则所投的点落在阴影部分的概率是。
几何概型典型例题
几何概型1.(2009年高考福建卷)点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧的长度小于1的概率为________.答案:23解析:设事件M 为“劣弧的长度小于1”,则满足事件M 的点B 可以在定点A 的两侧与定点A 构成的弧长小于1的弧上随机取一点,由几何概型的概率公式得:P (M )=23.2.(2010年苏、锡、常、镇四市调研)已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.答案:36解析:设所求的面积为S ,由题意得6001000=S5×12,∴S =36.3.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a 的概率为________.解析:P =18×43πa 3a 3=π6.答案:π64.(2010年扬州调研)已知集合A {x |-1<x <5},B ={x |x -23-x>0},在集合A 中任取一个元素x ,则事件“x ∈A ∩B ”的概率是________.解析:由题意得A ={x |-1<x <5},B ={x |2<x <3},由几何概型知:在集合A 中任取一个元素x ,则x ∈A ∩B 的概率为P =16.答案:165.某公共汽车站每隔10分钟就有一趟车经过,小王随机赶到车站,则小王等车时间不超过4分钟的概率是________.答案:256.如图,M 是半径为R 的圆周上一个定点,在圆周上等可能地任取一点N ,连结MN ,则弦MN 的长度超过2R的概率是________.答案:12解析:连结圆心O 与M 点,作弦MN 使∠MON =90°,这样的点有两个,分别记为N 1,N 2,仅当点N 在不包含点M 的半圆弧上取值时,满足MN >2R ,此时∠N 1ON 2=180°,故所求的概率为180°360°=12. 7.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},E ={(x ,y )|x -2y ≥0,x ≤4,y ≥0},若向区域Ω内随机投一点P ,则点P 落入区域E 的概率为________.解析:如图,区域Ω表示的平面区域为△AOB 边界及其内部的部分,区域E 表示的平面区域为△COD 边界及其内部的部分,所以点P 落入区域E 的概率为S △CODS △AOB=12×2×412×6×6=29.答案:298.已知函数f (x )=-x 2+ax -b .若a 、b 都是从区间[0,4]任取的一个数,则f (1)>0成立的概率是________.解析:f (1)=-1+a -b >0,即a -b >1,如图:A (1,0),B (4,0),C (4,3),S △ABC =92,P =S △ABC S 矩=924×4=932.答案:9329.在区间[0,1]上任意取两个实数a ,b ,则函数f (x )=12x 3+ax -b 在区间[-1,1]上有且仅有一个零点的概率为________.解析:f ′(x )=32x 2+a ,故f (x )在x ∈[-1,1]上单调递增,又因为函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点,即有f (-1)·f (1)<0成立,即(-12-a -b )(12+a -b )<0,则(12+a+b )(12+a -b )>0,可化为⎩⎪⎨⎪⎧ 0≤a ≤10≤b ≤112+a -b >012+a +b >0或⎩⎪⎨⎪⎧0≤a ≤1≤b ≤112+a -b <0,12+a +b <0由线性规划知识在平面直角坐标系aOb 中画出这两个不等式组所表示的可行域,再由几何概型可以知道,函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点的概率为可行域的面积除以直线a =0,a =1,b =0,b =1围成的正方形的面积,计算可得面积之比为78.答案:7810.设不等式组⎩⎪⎨⎪⎧ 0≤x ≤60≤y ≤6表示的区域为A ,不等式组⎩⎪⎨⎪⎧0≤x ≤6x -y ≥0表示的区域为B .(1)在区域A 中任取一点(x ,y ),求点(x ,y )∈B 的概率;(2)若x ,y 分别表示甲、乙两人各掷一次骰子所得的点数,求点(x ,y )在区域B 中的概率. 解:(1)设集合A 中的点(x ,y )∈B 为事件M ,区域A 的面积为S 1=36,区域B 的面积为S 2=18,∴P (M )=S 2S 1=1836=12.(2)设点(x ,y )在区域B 为事件N ,甲、乙两人各掷一次骰子所得的点(x ,y )的个数为36个,其中在区域B 中的点(x ,y )有21个,故P (N )=2136=712.11.(2010年江苏南通模拟)已知集合A ={x |-1≤x ≤0},集合B ={x |ax +b ·2x -1<0,0≤a ≤2,1≤b ≤3}.(1)若a ,b ∈N ,求A ∩B ≠∅的概率; (2)若a ,b ∈R ,求A ∩B =∅的概率.解:(1)因为a ,b ∈N ,(a ,b )可取(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)共9组.令函数f (x )=ax +b ·2x -1,x ∈[-1,0], 则f ′(x )=a +b ln2·2x .因为a ∈[0,2],b ∈[1,3],所以f ′(x )>0, 即f (x )在[-1,0]上是单调递增函数.f (x )在[-1,0]上的最小值为-a +b2-1.要使A ∩B ≠∅,只需-a +b2-1<0,即2a -b +2>0.所以(a ,b )只能取(0,1),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)7组.所以A ∩B ≠∅的概率为79.(2)因为a ∈[0,2],b ∈[1,3],所以(a ,b )对应的区域为边长为2的正方形(如图),面积为4.由(1)可知,要使A ∩B =∅,只需f (x )min =-a +b2-1≥0⇒2a -b +2≤0,所以满足A ∩B =∅的(a ,b )对应的区域是如图阴影部分.所以S 阴影=12×1×12=14,所以A ∩B =∅的概率为P =144=116.12.将长为1的棒任意地折成三段,求:三段的长度都不超过a (13≤a ≤1)的概率.解:设第一段的长度为x ,第二段的长度为y , 第三段的长度为1-x -y ,则基本事件组所对应的几何区域可表示为Ω={(x ,y )|0<x <1,0<y <1,0<x +y <1},此区域面积为12.事件“三段的长度都不超过a (13≤a ≤1)”所对应的几何区域可表示为A ={(x ,y )|(x ,y )∈Ω,x <a ,y <a,1-x -y <a }.即图中六边形区域,此区域面积:当13≤a ≤12时,为(3a -1)2/2,此时事件“三段的长度都不超过a (13≤a ≤1)”的概率为P=(3a -1)2/21/2=(3a -1)2;当12≤a ≤1时,为12-3(1-a )22.此时事件“三段的长度都不超过a (13≤a ≤1)”的概率为P =1-3(1-a )2.。
高一数学几何概型试题答案及解析
高一数学几何概型试题答案及解析1.已知实数x,y满足0≤x≤2π,|y|≤1则任意取期中的x,y使y>cosx的概率为()A.B.C.D.无法确定【答案】A【解析】0≤x≤2π,|y|≤1所对应的平面区域如下图中长方形所示,“0≤x≤2π,|y|≤1,且y>cosx”对应平面区域如下图中蓝色阴影所示:根据余弦曲线的对称性可知,蓝色部分的面积为长方形面积的一半,故满足“0≤x≤2π,|y|≤1,且y>cosx”的概率P=.故选A.【考点】几何概型.2.甲、乙两人约定某天晚上7:00~8:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是()A.B.C.D.【答案】C【解析】设甲到达会面处的时该为7点x分钟,则,设乙到达会面处的时该为7点y分钟,则;根据题意知所有可能情况为不等式组,两人能会面则必须满足,画出不等式组所表示的平面区域:,则所求的概率为:,故选C.【考点】几何概率.3.向如图中所示正方形内随机地投掷飞镖,飞镖落在阴影部分的概率为 ().A.B.C.D.【答案】C【解析】观察这个图可知:阴影部分是一个小三角形,在直线AB的方程为6x-3y-4=0中,令x=1得A(1,),令y=-1得B(,-1).∴三角形ABC的面积为S=AC×BC=×(1+)(1-)=,则飞镖落在阴影部分(三角形ABC的内部)的概率是:P=.故选C.【考点】几何概型.4.在区间(0,1)中随机地取出两个数,则两数之和小于的概率是【答案】【解析】设在区间(0,1)中随机地取出的两个数为,满足条件的为图中阴影部分,所以概率为阴影部分面积:总面积=.【考点】几何概型.5.有四个游戏盘面积相等,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )【答案】A【解析】第一个转盘中奖的概率为;第二个转盘中奖的概率为;第三个转盘中奖的概率为;第四个转盘中奖的概率为,所以中奖最高为A。
高一数学几何概型试题答案及解析
高一数学几何概型试题答案及解析1.在腰长为2的等腰直角三角形内任取一点,使得该点到此三角形的直角顶点的距离不大于1的概率为A.B.C.D.【答案】B【解析】以直角顶点为圆心,1为半径作圆,与三角形相交部分设为,当点在内时,到顶点的距离小于等于1,因此该点到此三角形的直角顶点的距离不大于1的概率为.【考点】几何概型的概率计算公式.2. x的取值范围为[0,10],给出如图所示程序框图,输入一个数x.求:(Ⅰ)输出的x(x<6)的概率;(Ⅱ)输出的x(6<x≤8)的概率.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由已知中的程序框图,我们根据选择结构的功能,可分析出程序的功能是计算并输出分段函数y=的函数值,输出的x(x<6),可得x<5,即可求出输出的x(x<6)的概率;(Ⅱ)由输出的结果在区间6<x8上,我们可以分当x7时和x>7时两种情况,分别讨论满足条件的x的取值范围,得到输出结果的范围,最后根据输入x的取值范围利用几何概型求出概率即可.试题解析:(Ⅰ)由已知中的程序框图可得该程序的功能是计算并输出分段函数y=的函数值,当x<6时,输出x+1,此时输出的结果满足x+1<6,所以x<5,所以输出的x(x<6)的概率为P==;(Ⅱ)当x≤7时,输出x+1,此时输出的结果满足6<x+1≤8解得5<x≤7;当x>7时,输出x﹣1,此时输出的结果满足6<x﹣1≤8解得7<x≤9;综上,输出的x的范围中5<x≤9.则使得输出的x满足6<x≤8的概率为P==.【考点】1.程序框图;2.几何概率.3.利用计算机产生之间的均匀随机数,则事件“”发生的概率为_______.【答案】【解析】3a-1<0即a<,则事件“3a-1<0”的概率为P==.故答案为:.【考点】几何概型.4.一只蚂蚁在三边长分别为3、4、5的三角形面内爬行,某时间该蚂蚁距离三角形的三个顶点的距离均超过1的概率为;【答案】【解析】距离三角形的三个顶点的距离均超过1即在如图所示的阴影区域内爬行:三角形面积为,阴影面积为,∴概率为.【考点】5.向等腰直角三角形内任意投一点, 则小于的概率为( ) A.B.C.D.【答案】D【解析】以A为圆心、AC为半径作圆,令圆与AB边相交于点D,则点M在扇形ACD内时,小于,因为在等腰直角三角形ABC中,,所以扇形的面积,又等腰直角三角形ABC的面积,所以所求概率。
高二数学几何概型试题答案及解析
高二数学几何概型试题答案及解析1.已知Ω={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|x≤4,y≥0,x-2y≥0},若向区域Ω上随机投一点P,则点P落入区域A的概率为( )A.B.C.D.【答案】A【解析】在平面直角坐标系中画出区域Q与A,可求得区域Q与A的面积分别为18与4,所以概率为,答案选A.【考点】几何概型的概率计算2.(2014•濮阳县一模)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是_________.【答案】.【解析】根据题意,计算出扇形区域ADE和扇形CBF的面积之和为,结合矩形ABCD的面积为2,可得在矩形ABCD内且没有信号的区域面积为,再利用几何概型计算公式即可得出所求的概率.首先,因为扇形ADE的半径为1,圆心角等于,所以扇形ADE的面积为.同理可得,扇形CBF的面积也为;然后又因为长方形ABCD的面积,再根据几何概型的计算公式得,在该矩形区域内随机地选一地点,则该地点无信号的概率是.【考点】几何概型.3.如图,设D是图中边长为4的正方形区域,E是D内函数图象下方的点构成的区域(阴影部分).向D中随机投一点,则该点落入E中的概率为A.B.C.D.【答案】C【解析】正方形的面积为,阴影部分的面积为,由几何概型的计算公式当.【考点】几何概型的应用.4.设有关于的一元二次方程(1)若是从0,1,2,3四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若是从区间[0,3]任取的一个数,是从区间[0,2]任取的一个数,求上述方程有实根的概率.【答案】(1)(2)【解析】(1)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;(2)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;(3)注意判断是古典概型还是几何概型,基本事件前者是有限的,后者是无限的,两者都是等可能性.(4)在几何概型中注意区域是线段,平面图形,立体图形.试题解析:解:设事件A为“方程x2+2ax+b2=0有实根”.当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件,事件A发生的概率为P(A)==..6分(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b},所以所求的概率为P(A)== 12分【考点】(1)古典概型的概率;(2)几何概型的概率.5.如图,在一个长为,宽为2的矩形OABC内,曲线与x轴围成如图所示的阴影部分,向矩形OABC内随机投一点(该点落在矩形OABC内任何一点是等可能的),则所投的点落在阴影部分的概率是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何概型例题分析及练习题 (含答案)
[例1] 甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等
另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。
解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图15||≤-y x 时可相见,即阴
影部分167
6045602
22=-=P
[例2] 设A 为圆周上一定点,在圆周上等可能任取一点与A 连接,求弦长超过半径2倍的概
率。
解:R AC AB 2||||=
=. ∴ 2
1
2==
=
⋂
R R BCD
P ππ圆周
[例3] 将长为1的棒任意地折成三段,求三段的长度都不超过
2
1
的概率。
解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为y x --1,则基本事件
组所对应的几何区域可表示为
}10,10,10|),{(<+<<<<<=Ωy x y x y x ,即图中黄色区域,此区域面积为
2
1。
事件“三段的长度都不超过
21
”所对应的几何区域可表示为 Ω∈=),(|),{(y x y x A ,}2
1
1,21,21<--<<y x y x
即图中最中间三角形区域,此区域面积为8
1
)21(212=⨯
此时事件“三段的长度都不超过2
1”的概率为41
2
181
==P
[例4] 两对讲机持有者张三、李四,为卡尔货运公司工作,他们对讲机的接收范围是25km ,
下午3:00张三在基地正东30km 内部处,向基地行驶,李四在基地正北40km 内部处,向基地行驶,试问下午3:00,他们可以交谈的概率。
解:设y x ,为张三、李四与基地的距离]30,0[∈x ,]40,0[∈y ,以基地为原点建立坐标系.他们构成实数对),(y x ,表示区域总面积为1200,可以交谈即252
2
≤+y x
故192
251200
25
41
2
π
π=
=P [例5] 在区间]1,1[-上任取两数b a ,,运用随机模拟方法求二次方程02
=++b ax x 两根均
为正数的概率。
⎪⎩⎪
⎨⎧>=⋅>-=+≥-=∆000
42
1212b x x a x x b a 解:(1)利用计算器产生 0至1区间两组随机数11,b a (2)变换 121-*=a a ,121-*=b b (3)从中数出满足条件 2
4
1a b ≤且0<a 且0>b 的数m (4)n
m
P =
(n 为总组数)
[例6] 在单位圆的圆周上随机取三点A 、B 、C ,求∆ABC 是锐角三角形的概率。
解法1:记∆ABC 的三内角分别为αβ,,παβ--,事件A 表示“∆ABC 是锐角三角形”,则试验的全部结果组成集合
Ω=<<<+<{(,)|,,}αβαβπαβπ00。
因为∆ABC 是锐角三角形的条件是 02
<<
αβπ
,且αβπ
+>
2
所以事件A 构成集合 A =+>
<<{(,)|,,}αβαβπ
αβπ
202
由图2可知,所求概率为
P A A ()=的面积的面积Ω==12212
1
422()
ππ。
解法2:如图3所示建立平面直角坐标系,A 、B 、C 1、C 2为单位圆与坐标轴的交点,当∆ABC 为锐角三角形,记为事件A 。
则当C 点在劣弧C C 12上运动时,∆ABC 即为锐角三
角形,即事件A 发生,所以
P A ()=⨯=1
42214
π
π
解决问题的关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率。
[例7]将长为L 的木棒随机的折成3段,求3段构成三角形的概率.
解:设M =“3段构成三角形”.x y ,分别表示其中两段的长度,则第三段的长度为
L x y --.{}()000x y x L y L x y L Ω=<<<<<+<,,,|.
由题意,x y L x y --,,要构成三角形,须有x y L x y +>--,即1
2
x y +>
; ()x L x y y +-->,即2
L
y <
;()y L x y x +-->,即2
L x <
. 故()|222L L L M x y x y y x ⎧
⎫=+><<⎨⎬⎩
⎭,,,.
如图
1
所示,可知所求概率为
2
21122()42
L M P M L ⎛⎫ ⎪⎝⎭===Ω·的面积的面积. [例8]在区间[01],上任取三个实数x y z ,,,事件222{()1}A x y z x y z =++<,,|.
(1)构造出此随机事件对应的几何图形; (2)利用该图形求事件A 的概率.
解:(1)如图2所示,构造单位正方体为事件空间Ω,正方体以O 为球心,以1为半径
在第一卦限的
1
8
球即为事件A . (2)3314π1
π
83()16
P A ⨯==·
P
例9图
D
C
B
A
[例9] 例5、如图所示,在矩形ABCD 中,AB =5,AC =7.现在向该矩形内随机投一点P ,求0
90>∠APB 时的概率。
解:由于是向该矩形内随机投一点P ,点P 落在矩形内的机会是均等的,故可以认为矩形ABCD 是区域Ω.要使得0
90>∠APB ,须满足点P 落在以线段AB 为直径的半圆内,以线段AB 为直径的半圆可看作区域A.记“点P 落在以线段AB 为直径的半圆内”为事件A ,于是求0
90>∠APB 时的概率,转化为求以线段AB 为直径的半圆的面积与矩形ABCD 的面积的比,依题意得,8
25)25(212π
πμ=
⋅=
A ,矩形ABCD 的面积为35=Ωμ,故所求的概率为.56
535825)(π
π
==A P
点评:挖掘出点P 必须落在以线段AB 为直径的半圆内是解答本题的关键。
[课后习题]
1.一枚硬币连掷3次,至少出现两次正面的概率是( ) A.
14 B.
12 C.
38 D.
2
3
答案:B 2.在正方形ABCD 内任取一点P ,则使90APB ∠<°的概率是( ) A.
π8
B.
π4
C.π18
-
D.π
14
-
答案:C 3.已知地铁列车每10min 到站一次,且在车站停1min ,则乘客到达站台立即乘上车的概率是( ) A.
110
B.
16
C.
1160
D.
1
11
答案:D 4.在两根相距6m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2m 的概率是( ) A.
12
B.
13
C.
14
D.
1
5
答案:B 5.在腰长为2的等腰直角三角形内任取一点,使得该点到此三角形的直角顶点的距离不大于1的概率是( ) A.
π16
B.
π8
C.
π4
D.
π
2
答案:B 6.在线段[03],上任取一点,则此点坐标小于1的概率是 . 答案:
13
7.在1万平方千米的海域中有40平方千米的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是 . 答案:
1
250
8.从1L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10ml ,则其含有麦锈病的种子的概率是 . 答案:0.01 9.将数2.5随机地(均匀地)分成两个非负实数,例如2.143和0.357或者3和2.5-3,然后对每一个数取与它最接近的整数,如在上述第一个例子中是取2和0,在第二个例子中
取2和1.那么这两个整数之和等于3的概率是多少?(答案:
5
2) 11.在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率。
(答案:
4
3) 12.设p 在[0,5]上随机地取值,求方程02142
=++
+p px x 有实根的概率。
(答案:5
3
) 13.在集合}40,50|),{(≤≤≤≤y x y x 内任取一个元素,能使代数式012
19
34≥-+y x 的概
率是多少?(答案:10
3
)。