真核表达系统的选择和高效表达策略

合集下载

真核细胞诱导表达系统研究进展

真核细胞诱导表达系统研究进展

真核细胞诱导表达系统研究进展主要内容一.选题背景二.原核生物表达真核蛋白的缺点三.常见的几种真核表达系统四.总结与展望一、选题背景•随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。

利用表达系统在哺乳动物细胞内表达目的基因是研究基因功能及其相互作用的重要手段,但由于通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,因此,组成型表达系统的应用受到一定限制。

•基因工程的发展使许多微量蛋白得以大量表,使许多难以制备的蛋白得以表达。

大肠杆菌Ecoli表达系统是目前为止最为有效的和方便的表达系统,可以进行许多异源蛋白的高效表达,但在进行一些蛋白的表达时,会产生许多困难。

二、原核生物表达真核蛋白的缺点1、外源蛋白在E.coli中的大量表达是以不溶性的包涵体的形式存在于细胞内,而包涵体的分离破碎通常会造成目的蛋白的失活;2、真核基因通常含有内含子,在E.coli中是不能进行正确的剪切和拼接的,因此必须表达它的cDNA序列;3、真核生物的许多蛋白都是糖蛋白,用E.coli作为表达宿主,不能对真核蛋白进行正确的糖基化等翻译后加工,很难得到有活性的真核表达系统。

三、常见的几种真核表达系统1、四环素诱导表达系统2、蜕皮激素诱导表达系统3、生物素诱导表达系统4、哺乳动物细胞表达系统1、四环素诱导表达系统此系统的作用依赖于四环素调控的反式作用因子(tTA/rtTA)和反式作用因子依赖的启动子两个成分。

四环素反式激活蛋白(tTA)是一个包含大肠杆菌TN10四环素耐药操纵子阻遏物和单纯疱疹病毒p16蛋白(VP16)C端部分的融合蛋白,tTA依赖启动子由融合有RNA聚合酶Ⅱ启动子的四环素操纵子(tet O)基因序列构成,这种融合使真核细胞中的tet阻遏物成为很强的翻译激活物。

作用机理:在缺乏四环素及其衍生物的条件下tTA与tetO序列结合,使tTA依赖启动子的转录过程被激活;而在存在四环素及其衍生物的条件下,tTA无法与其靶位点相互作用,转录也就无法进行。

真核细胞表达系统的类型与常用真核细胞表达载体

真核细胞表达系统的类型与常用真核细胞表达载体

真核细胞表达系统的类型与常用真核细胞表达载体标签:真核细胞酵母表达系统细胞表达载体真核表达系统昆虫表达系统动物表达系统摘要: 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。

原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。

自上世纪70年代基因工程技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。

并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今日已取得令人瞩目的成就。

随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。

利用表达系统在哺乳动物细胞内表达目的基因是研究基因功能及其相互作用的重要手段。

在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。

该项技术的主要方法是将已克隆入目的基因DNA段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过iptg诱导并最终纯化获得所需的目的蛋白。

其优点在于能够在较短时间内获得基因表达产物,而且所需的成本相对比较低廉。

但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。

为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是:①根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑制;②能诱导基因高效表达,可达105倍,为其他系统所不及;③能严格调控基因表达,即不仅可控制基因表达的“开关”,还可人为地调控基因表达量。

真核表达系统的选择和高效表达策略

真核表达系统的选择和高效表达策略
• 选择标记一般为对应于营养缺陷型受体 的野生型基因, 常用his4 , 也可用来源于酿 酒酵母的arg4基因和suc2基因. kanr基因和 Shbler 基因(Zeocin抗性基因)也能够作 为细菌和酵母菌的选择标记,并且携带这 两个标记的表达载体较其他表达载体更易 于筛选。
18
信号肽序列
• 可供毕赤酵母选择的信号肽有外源蛋白自 身的信号肽和酵母本身的信号肽. 有些蛋白 的自身信号肽不能被毕赤酵母有效利用,可 试用甲醇酵母信号肽。目前可供选择的酵
酵母表达系统的优点此外采用诱导表达启动子可以在时间上严格控制目的蛋白的表达如gal110半乳糖诱导ph05胞外无机磷诱导和hse37温度诱导生长繁殖迅速培养周期短工艺简单生产成酵母菌用于真核基因的表达分析既具有原核表达系统生长迅速操作简单价格便宜等优点具有类似哺乳动物细胞的翻译后修饰过程因而特别适用于大量生产真核重组蛋白正是由于有这些优点使酵母功能基因组的研究得以走在生物功能基因组研究的前列是应用最为普遍的真核表达系统之一
容易实现工业化,并且不存在酿酒酵母的过度糖基化问题, 也不易产生免疫原性问题。
12
巴斯德毕赤酵母表达系统
• 巴斯德毕赤酵母菌株: • 一 般 用 于 外 源 基 因 表 达 的 Pichia pastoris 菌 株 有
Y211430 ,M2C10023 , GS115 , X-33,KM71 , SMD1168 等. 根据利用甲醇的能力, 可将巴斯德毕赤酵母分为3 型: ①Mut + 型为甲醇快利用型, 此型毕赤酵母具有完整的 AOX1 和AOX2 基因, 绝大多数毕赤酵母为Mut + 表型。 ② Muts 型,此型毕赤酵母菌(如KM71) 细胞AOX2 基因编码的 醇氧化酶可产生15%AOX活性,为甲醇慢利用型。③Mut型(如M2G10023) , 此型毕赤酵母AOX1 及AOX2 基因均 被敲除,为甲醇不利用型。研究发现, 蛋白酶缺陷型毕赤酵 母, 如SMD1163,SMD1165 和SMD1168 可有效降低外源 目的蛋白的酶解。 一般说来,蛋白胞内表达时,优先考虑用 Muts 表型,对于分泌表达,Mut+和Muts都可使用。甲醇慢 利用型有时比Mut+ 型菌株能够达到更高的表达量。

基因工程3大肠杆菌表达系统

基因工程3大肠杆菌表达系统
mRNA转录本5’端的独特的结构特征(核糖 体结合位点,RBS),是决定mRNA翻译效率 的主要因素。
至今,仍未鉴定出通用有效的翻译起始序列的保 守结构,但却已经发展出许多种可以用来有效地降 低在mRNA转录本5’-末端形成二级结构的实验方法, 从而提高克隆的外源基因的表达效率。 例如: 在RBS序列中增加AT含量;诱发特异碱基 发生定点突变;以及使用翻译偶联系统进行克隆基 因的表达。
5、容易进行代谢调控;
6、容易进行DNA重组技术操作; 7、产物的产量、产率高, 8、产物容易提取纯化。
宿主细胞分为两大类:
1、原核细胞:常用有大肠杆菌、枯草芽胞杆菌、
链霉菌等;
2、真核细胞:常用有酵母、丝状真菌、哺乳动物
细胞等。
一、真核基因的大肠杆菌表达体系
目前,已被用于表达外源蛋白质的表达系 统有细菌(大肠杆菌和枯草杆菌)、酵母、昆 虫、植物和哺乳动物细胞等。但比较而言,大 肠杆菌表达系统具有明显的优越性。
TAG
TAAGGAGG(N)8
外源基因在大肠杆菌中高效表达的原理
• • • • • 启动子 终止子 核糖体结合位点 密码子 质粒拷贝数
转录水平
翻译水平
(1)启动子
要使克隆的外源基因高水平表达的最佳 启动子,必须具备以下几个条件: 1)必须是一个强启动子。 2)这个启动子应能呈现一种低限的基础表达 水平。使用高度抑制型的启动子是一种极为 重要的条件。 3)这种启动子应是诱导型的,能通过简单的 方式使用廉价的诱导物而得以诱导,如物理 (如热)和化学(如IPTG)诱导 。
(5)翻译终止密码
对mRNA翻译终止而言,一个必不可少的条 件是必须存在终止密码子。因此,在构建大肠杆 菌表达载体时,通常安置上全部的三个终止密码 子,以便阻止发生核糖体的“跳跃”现象。

cho细胞表达系统及筛选原理

cho细胞表达系统及筛选原理

cho细胞表达系统及筛选原理Cho细胞表达系统及筛选原理一、引言Cho细胞表达系统是一种常用的哺乳动物细胞表达系统,被广泛应用于重组蛋白的生产。

本文将介绍Cho细胞表达系统的原理以及其在蛋白质筛选中的应用。

二、Cho细胞表达系统的原理Cho细胞是一种中国仓鼠卵巢细胞系,具有较高的生长速度和蛋白质表达能力。

Cho细胞表达系统主要包括以下几个关键步骤。

1. 转染将目标基因导入Cho细胞中,通常使用质粒转染法或病毒载体转染法。

质粒转染法通过将目标基因插入质粒DNA中,然后利用转染试剂将质粒DNA导入细胞内。

病毒载体转染法则通过构建携带目标基因的病毒载体,将其感染到Cho细胞中。

2. 选择性筛选为了确保只有转染成功的细胞能够表达目标蛋白,通常在培养基中添加适当的选择性抗生素,如G418或葡萄糖酸钾。

只有转染成功的细胞才能抵抗抗生素的作用,存活下来。

3. 扩增和表达经过筛选的细胞将被扩增培养,以获得足够数量的细胞进行大规模蛋白质表达。

通常选择合适的培养基和培养条件,以提高细胞的生长速度和蛋白质表达水平。

4. 蛋白质纯化经过表达的目标蛋白质需要进行纯化,以去除其他杂质。

常用的纯化方法包括亲和层析、离子交换层析、凝胶过滤层析等。

通过这些方法,可以获得高纯度的目标蛋白质。

三、Cho细胞表达系统在蛋白质筛选中的应用Cho细胞表达系统在蛋白质筛选中具有以下优势。

1. 高表达水平Cho细胞具有较高的蛋白质表达能力,能够快速产生大量目标蛋白。

这对于需要大量蛋白质的研究和工业应用非常有利。

2. 真核细胞表达与原核细胞表达系统相比,Cho细胞表达系统能够实现真核细胞蛋白质表达。

这使得Cho细胞表达系统适用于需要进行正确的蛋白质翻译修饰、蛋白质折叠和组装的蛋白质研究。

3. 可选择性筛选通过添加适当的选择性抗生素,可以筛选出成功表达目标蛋白的细胞。

这样可以确保筛选后的细胞具有较高的表达水平和纯度。

4. 灵活性Cho细胞表达系统可以应用于多种类型的蛋白质,包括单链抗体、重组蛋白、酶等。

蛋白质表达的常见问题及其解决办法

蛋白质表达的常见问题及其解决办法

蛋白质表达的常见问题及其解决办法蛋白质表达是生物学研究中的一个关键步骤,它涉及到将基因信息转化为具有功能性蛋白质的过程。

然而,在蛋白质表达的过程中,常常会遇到一些问题,这些问题可能会影响到研究的进展和结果。

本文将介绍蛋白质表达中常见的问题,并提供相应的解决办法。

一、表达系统选择不当在蛋白质表达过程中,选择合适的表达系统是至关重要的。

不同的表达系统在表达效率、折叠状态和产量等方面存在差异。

常见的表达系统包括大肠杆菌(E. coli)、酵母、哺乳动物细胞等。

找到适合自己研究目的的表达系统是解决表达问题的第一步。

解决办法:根据研究的目的和所需蛋白质的特性选择合适的表达系统。

对于简单蛋白质,E. coli系统往往是一个不错的选择。

对于复杂的蛋白质,可以考虑使用酵母或哺乳动物细胞系统。

此外,还可以尝试使用不同的表达载体和宿主菌株,优化表达条件来提高表达效率和产量。

二、蛋白质无法正确折叠蛋白质的折叠状态是其功能的基础,如果无法正确地折叠,可能导致蛋白质无法发挥预期的功能。

在某些情况下,蛋白质可能会出现聚集、形成夹心态或夹杂体等异常折叠状态。

解决办法:针对无法正确折叠的蛋白质,可以考虑使用分子伴侣(chaperone)辅助折叠。

分子伴侣是一类在细胞中参与蛋白质正确折叠的分子,通过与目标蛋白质相互作用,帮助其正确折叠,并防止其异常聚集。

此外,还可以优化表达条件,如温度、培养基成分等,以提供适合蛋白质折叠的环境。

三、蛋白质表达产量较低蛋白质表达的产量是一个关键指标,特别是对于需要大量蛋白质进行后续实验的研究。

然而,很多时候表达产量较低,难以满足研究需求。

解决办法:提高蛋白质表达产量可以从多个方面入手。

首先,可以优化表达载体和宿主菌株的选择,采用高效表达载体和具有高表达能力的宿主菌株。

其次,可以优化表达条件,如诱导条件、培养温度、培养时间等。

此外,还可以使用辅助表达因子,如融合标签或信号肽,来提高表达产量。

四、目标蛋白质的纯化困难在蛋白质表达之后,需要对目标蛋白质进行纯化,以获取高纯度的蛋白质进行后续实验。

真核细胞表达系统

真核细胞表达系统

真核细胞表达系统常用的真核表达系统有酵母、杆状病毒/昆虫细胞和哺乳动物细胞表达系统。

简而言之,酵母和昆虫细胞表达系统蛋白表达水平高,生产成本低,但加工修饰体系与哺乳动物细胞不完全相同;哺乳动物细胞产生的蛋白质更接近于天然蛋白质,但其表达量低、操作烦琐。

1.酵母表达系统最早应用于蛋白表达的酵母是酿酒酵母,后来相继出现其他种类酵母,其中甲醇酵母表达系统应用最广泛。

甲醇酵母的表达载体含有大肠杆菌复制起点和筛选标志,可在大肠杆菌大量扩增。

甲醇酵母表达载体中含有与酵母染色体中同源的序列,容易整合入酵母染色体中。

大部分甲醇酵母的表达载体中都含有醇氧化酶基因-1(AOX1),在强启动子作用下,以甲醇为唯一碳源的条件下诱导外源基因表达。

甲醇酵母表达蛋白一般需很长时问才能达到峰值水平,实验操作过程中有甲醇毒性和一定安全风险。

2.昆虫细胞表达系统杆状病毒载体广泛应用于培养的昆虫细胞中指导外源基因的表达,其中大多含有苜蓿银纹夜蛾核多角体病毒(AcNPV)中的多角体启动子。

杆状病毒系统蛋白表达量很高,而且大部分蛋白质能保持可溶性。

杆状病毒基因组较大(130kb),可容纳大的外源DNA片段;杆状病毒启动子在哺乳动物细胞中没有活性,安全性较高。

目前常用的是以位点特异性转位至大肠杆菌中增殖的杆状病毒穿梭载体,能快速有效地产生重组杆状病毒。

与通过外源基因重组在昆虫细胞中产生杆状病毒重组体相比,大大简化了操作步骤,缩短了鉴定重组病毒的时间,适于表达蛋白突变体以进行结构或功能的研究。

3.哺乳动物细胞表达系统哺乳动物细胞能够指导蛋白质的正确折叠,它所表达的真核蛋白通常能被正确修饰,在分子结构、理化特性和生物学功能方面最接近于天然的高等生物蛋白质,几乎都能在细胞内准确定位,在医学研究中得到广泛应用。

虽然哺乳动物细胞表达比大肠杆菌表达难度大,更耗时,成本更高,但是对于熟悉细胞培养的研究人员表达小到中等量的蛋白非常实用。

哺乳动物细胞表达载体包含原核序列、启动子、增强子、选择标记基因、终止子和多聚核苷酸信号等。

蛋白质的高效表达和纯化技术

蛋白质的高效表达和纯化技术

蛋白质的高效表达和纯化技术蛋白质是细胞中最为基本的分子,不仅构成细胞的基本结构,也参与到细胞的代谢、信号转导等生命活动中。

因此,蛋白质的高效表达和纯化技术是生命科学研究的重要基础。

蛋白质的表达技术主要包括原核和真核表达系统。

原核表达系统包括大肠杆菌和酵母表达系统,这两种表达系统都具有高效的蛋白质表达能力,并且易于操作和大规模生产。

在酵母表达系统中,通常会将目的蛋白质基因插入到酵母表达载体中,然后通过转化酵母细胞实现表达。

大肠杆菌表达系统则是将目的蛋白质基因插入到大肠杆菌表达载体中,然后通过转化大肠杆菌细胞进行表达。

相比于酵母表达系统,大肠杆菌表达系统具有更高的表达速率,但表达的蛋白质常常是未折叠的形态,需要进一步的纯化和折叠过程。

真核表达系统则利用真核细胞本身的细胞器完成蛋白质的表达和折叠,这类表达系统可以用于表达大多数复杂的蛋白质。

例如,哺乳动物细胞表达系统(如CHO细胞和HEK293细胞)是利用哺乳动物细胞自身的蛋白合成机制进行表达的,这种表达系统通常会得到高质量的蛋白质,但生产成本相对较高。

对于高效的蛋白质表达来说,关键是基因的优化和载体的选择。

在基因的优化方面,通常会进行基因的序列优化、信号肽的选取、启动子的选择等操作,以提高蛋白质的表达量和纯度。

而载体的选择则需要根据具体的表达需求进行选择,例如对于大肠杆菌表达系统来说,常用的载体有pET系列载体和pBAD系列载体;对于酵母表达系统来说,常用的载体有pYES2和pGAPZ系列载体;对于哺乳动物细胞表达系统来说,常用的载体有pCDNA3.1和pEF系列载体。

在蛋白质的纯化方面,常用的方法有离子交换层析、亲和层析、凝胶过滤等。

离子交换层析是利用离子交换树脂对带有带电的蛋白质进行分离,在这个过程中,可以通过改变洗脱缓冲液的pH或离子浓度来调节分离效果。

亲和层析则是通过利用蛋白质与其特异性配体之间的亲和性实现分离,例如亲和层析树脂中的金属离子会与带有多个组氨酸残基的蛋白质结合形成配位键,从而实现分离。

蛋白质表达的体外技术研究

蛋白质表达的体外技术研究

蛋白质表达的体外技术研究蛋白质是生物体中最重要的大分子有机化合物之一,它们在细胞内担任着重要的生物学功能。

为了更好地理解蛋白质的结构及功能,科学家们进行了大量的研究并开发了一系列体外蛋白质表达技术。

本文将探讨一些常用的蛋白质表达的体外技术,并对其原理和应用进行详细介绍。

一、原核系统的蛋白质表达技术原核系统是最早被应用于蛋白质表达的体外技术之一。

它包括质粒转化、大肠杆菌表达系统和细菌发酵等步骤。

首先,将目标基因克隆到表达载体上,然后将载体转化至宿主细菌中。

在细菌中,目标基因通过大肠杆菌表达系统得以表达,而细菌发酵则提供了大量蛋白质的产出。

原核系统的蛋白质表达技术具有操作简便、表达量高等优点。

然而,由于大肠杆菌是真核细胞的进化分支,它的表达机制与真核细胞存在差异,这使得部分蛋白质无法在原核系统中正确地折叠及修饰,导致产物的结构和功能发生变化。

二、真核系统的蛋白质表达技术与原核系统相比,真核系统更贴近生物体内蛋白质的天然合成环境,因此在一些需要蛋白质正确修饰的研究中得到了广泛应用。

真核系统主要包括哺乳动物细胞和昆虫细胞等。

1. 哺乳动物细胞表达系统哺乳动物细胞表达系统是体外蛋白质表达技术中最常用的方法之一。

常用的哺乳动物细胞包括CHO细胞、HEK293细胞等。

在这种系统中,目标基因被转染至宿主细胞中,并经过蛋白质翻译、折叠和修饰等步骤来实现目标蛋白的表达。

哺乳动物细胞表达系统具有产物结构和功能接近天然蛋白的优势,特别适用于需要蛋白质正确折叠和修饰的研究。

然而,哺乳动物细胞培养和蛋白质表达的成本较高,加之细胞培养的时间较长,限制了其在大规模蛋白质生产中的应用。

2. 昆虫细胞表达系统昆虫细胞表达系统是另一种常用的真核蛋白质表达技术。

在这种系统中,大量目标基因被转染至昆虫细胞中,并通过蛋白质翻译、折叠和修饰等过程实现蛋白质的表达。

常用的昆虫细胞包括Spodoptera frugiperda细胞和Trichoplusia ni细胞等。

利用原核和真核系统在重组蛋白质表达中的比较

利用原核和真核系统在重组蛋白质表达中的比较

利用原核和真核系统在重组蛋白质表达中的比较当今生物科学领域中,蛋白质表达技术的发展一直备受关注。

利用原核和真核系统来重组蛋白质,是常见的两种方法。

这两种系统在蛋白质表达中有着各自的优势和适用范围。

一、原核系统的蛋白质表达原核系统主要指大肠杆菌(Escherichia coli,简称E.coli)等细菌,并且是最常用的蛋白质表达系统之一。

原核细胞具有复制速度快、易于培养、表达量高等特点,使其成为研究人员的首选。

在原核系统中,通常使用表达载体质粒将目标基因插入到细菌细胞中,并利用细菌自身的转录、翻译系统来实现蛋白质的合成。

在表达载体上,一般包含启动子、转录终止子、选择性标记等功能元件,以控制目标基因的表达和纯化。

原核系统的蛋白质表达具有高效、简便、经济等优势。

然而,由于原核细胞的风险素材含量高,存在内源性的蛋白质翻译后修饰机制有限等局限,某些复杂蛋白质的表达可能会受到限制。

二、真核系统的蛋白质表达真核系统主要指哺乳动物细胞(如CHO细胞)、昆虫细胞(如Sf9细胞)等,相对于原核系统,真核系统具有更接近生物体内蛋白质表达的环境,更能实现复杂蛋白质的表达。

在真核系统中,常用的蛋白质表达包括稳定转染和瞬时转染两种方式。

稳定转染是将目标基因整合到宿主细胞的基因组中,从而实现长期稳定的表达。

而瞬时转染则是将目标基因引入宿主细胞的质粒中,通过短时间高表达来获得大量蛋白质。

真核系统的蛋白质表达能够实现更多的翻译后修饰,如糖基化、磷酸化、乙酰化等。

这些修饰对于某些蛋白质功能的发挥至关重要。

此外,真核细胞中包含更多复杂的蛋白翻译机制和分子伴侣蛋白,有利于蛋白正确折叠和纯化。

然而,真核系统的蛋白质表达过程更为复杂,所需时间和成本也相对较高。

此外,真核细胞具有更严格的质控机制和蛋白降解系统,蛋白质的表达稳定性较差。

三、原核与真核系统的比较原核和真核系统的选择应根据具体的研究目的和需求。

如果目标是表达小分子量、水溶性和结构简单的蛋白质,原核系统是较好的选择。

真核细胞常见表达载体

真核细胞常见表达载体

真核细胞常见表达载体真核细胞,表达载体1、pCMVp—NEO-BAN载体特点:该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因.更重要的是,由于该真核细胞表达载体中抗neo 基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。

插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。

注意在此载体中有二个EcoR1位点存在.2、pEGFP,增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector)特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。

载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制.Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV—TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。

此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。

用途:该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。

借此可确定外源基因在细胞内的表达和/或组织中的定位。

亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。

3、pEGFT—Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体特点:pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β—肌动蛋白基因,在PCMV 启动子驱动下,在真核细胞中高水平表达。

载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。

重组蛋白的高效表达及纯化技术研究

重组蛋白的高效表达及纯化技术研究

重组蛋白的高效表达及纯化技术研究随着生物技术的发展,蛋白表达与纯化技术在医疗、工业以及科学研究等领域中扮演着越来越重要的角色。

其中,重组蛋白的高效表达及纯化技术是蛋白质学研究的关键环节之一。

本文旨在探讨目前被广泛应用的几种重组蛋白表达及纯化技术,以及它们的新进展与应用前景。

一、背景介绍重组蛋白指的是通过基因重组技术将人工合成的DNA片段引导到细胞中,使其在受到特定刺激后大量表达特定功能蛋白的一种新型蛋白质。

由于其具有高度专一性、易制备性以及更高的效力和安全性,越来越多的药物被开发为基于重组蛋白的生物制剂。

二、重组蛋白表达技术1. 原核表达系统原核表达系统是将DNA片段导入大肠杆菌等细菌中,在其形成菌落的过程中进行表达。

该系统的优点在于表达速度快、操作简便、表达产量高。

但同时,由于原核表达与真核细胞中的表达相比,它对于蛋白翻译辅助因子和蛋白修饰等生物特征的模拟程度较差,不利于蛋白的正确折叠,因此该系统表达的蛋白质通常需要经过重新折叠处理。

2. 原核表达系统与原核表达系统相比,真核表达系统更接近真实情况中的表达方式,对于全长的蛋白大多数时候能够实现正确的折叠。

在真核表达系统中,常用的系统包括昆虫细胞、哺乳动物细胞以及酵母菌表达系统等。

其中,哺乳动物细胞表达系统能够实现高产量、高质量的蛋白质表达,因此被广泛应用于蛋白质制备。

三、重组蛋白纯化技术1. 亲和层析法亲和层析法是一种将目标蛋白质从混合物中分离出来的技术。

该技术的依据是一种特定的与目标蛋白质具有相互作用的配体分离柱。

在该技术中,目标蛋白质与配体分离柱上的特定功能团结合,非特异性的蛋白质能够在洗脱过程中被去除。

2. 总体分离法总体分离法是将目标蛋白从混合物中分离出来,采用离心、可溶性和非可溶性的分离方法。

其中,在采用可溶性分离的方式时,常用的方法有两相法、分配层析等。

四、新兴技术及应用前景近年来,3D打印技术的应用逐渐渗透到生物医疗领域,并开始用于制备组织工程器官和人造蛋白质等领域。

分子生物学:真核生物表达系统

分子生物学:真核生物表达系统

人延长因子1基因 人巨细胞病毒立早基因 劳斯肉瘤病毒LTR 猿猴病毒40晚期基因 猿猴病毒40早期基因 腺病毒主要晚期启动子 小鼠β-珠蛋白基因
40~160 4 2 1.1 1 0.4 0.2
2013年7月27日星期六
17
(2)多聚腺苷酸化信号(加尾信号):所 有真核细胞mRNA3ˊ末端都具有Poly(A)结 构,多腺苷酸化信号一般由位于多腺苷酸化 位点上游11~30核苷酸的保守序列AAUAAA 和一个下游的GU或U富含区组成,
2013年7月27日星期六
22
(4)复制子:哺乳动物基因表达载体的 复制子一般采用病毒基因组的复制子, 由于某些病毒可以在哺乳动物宿主细胞 内进行自主复制。不同的病毒复制子的 工作效率不同,常用于构建哺乳动物表 达载体的复制子有SV40、多瘤病毒和牛 乳头瘤病毒等的复制子。
2013年7月27日星期六
1、真核蛋白在原核宿主中不稳定
2、表达出来的蛋白质不能有效、正 确的折叠及二硫键配对错误 3、缺乏信号肽切除、糖基化、磷酸 化和羧化等翻译后修饰以及对原核 细胞有毒性。
2013年7月27日星期六 3
一、真核细胞表达宿主的种类及优势
不同表达系统蛋白质表达及翻译后修饰情况的比较 大肠杆菌 产率 蛋白酶消化
2013年7月27日星期六 26
2013年7月27日星期六
27
pCMV-HA:为Clontech公司产品, 该质粒载体含CMV启动子,在CMV 下游的内含子为晚期SV40 19S mRNA内含子及SV40 16S mRNA内 含子,在N端有血凝素(HA)表位标签 和氨基苄青霉素抗性基因选择标记。
2013年7月27日星期六 6
病毒感染 转染
化学法
物理法

Pichia pastoris表达系统提高表达量的几个关键点

Pichia pastoris表达系统提高表达量的几个关键点

的糖基 化位点 相 同 , 特别适 用 于表达应 用 于人体 的药物 _4. 外 , 传统 的酿酒 酵母 不 同 , 很适 合 进 】 此 IJ 与 它 行高 密度发 酵 , 因而能 提高单 位体 积的生 产率 . 是 , .p s r作 为外 源蛋 白表 达系 统也 有 其不 足之 处 , 但 P at i o
生产 重组 蛋 白 由于该系 统存 在着需 具有毒 性 的 甲醇 作 为碳 源 , 且 , 产 过程 中需 要 进 行碳 源转 换 等 但 并 生
缺点 , 因而制 约 了 P atr 的 p O .p s i os A X 1系统在 外源蛋 白大规模 生产 中的应 用 H .
收 稿 日期 : 0 7— 9— 9 20 0 0 基 金 项 目 : 南 省 重 点 科 技 计 划 项 目( 50 ) 海 0 24 作者简 介:周细南 (9 0一) 女 , 18 , 湖南湘 乡人 , 南大学农 学院 2 0 海 05级 生物化学 与分子生 物学 专业硕 士 研究生.
化 进 行 了综 述 .
关键词 :Pc i p s r ;表达 系统 ; 量 i a at i h os 产 中图分 类号:Q7 6 8 文献标识码 : A
Pci atr 营 养要求 不高 , i ap s i h os 在普通 培养 基和含 有 盐 、 生素 的选择 培养基 中均能 良好 生长 , 维 且培 养
主要 表现 为 : P p s r 表 达重组蛋 白 , 产量 普遍较 低 _ , 而制 约 了 P p s r 作 为大 规模 生产重 用 . at i os 其 5 从 J . at i os 组蛋 白宿 主菌 的应用. 针对这 一 问题 , 们做 了大量 的优 化 P atr 表 达系统 的研究 工 作 , 取得 一些 人 .p s i os 并

真核表达系统

真核表达系统

真核表达系统原核表达系统因其工艺简单、速度快而为人类带来许多便利,eg制药业由原先的脏器提取→发酵制备(IFN),降低了本钱,扩大了来源,也缩短了生产周期。

可是由于原核细胞中没有转录后加工系统,不能识别、剪除内含子,因此很多真核基因就无法在原核细胞中表达;另外,原核细胞缺乏翻译后加工系统,不能对翻译的蛋白质进一步修饰加工。

因此许多糖蛋白在原核细胞中表达后,尽管一样形成蛋白质具有抗原性,却因为不能糖基化,而不产生功能。

例如,C1INH是一种高度糖基化的单链蛋白(49%分子量为糖基),因其不可逆结合C1q而阻断补体活化途径,是一种极好的补体抑制剂,若是C1INH缺点可致使遗传性血管神经性水肿(HANE),表现为全身水肿,尤其是喉头水肿,能够输血,以正常人血中的C1INH来补充医治,但长期输血价钱高,易引发副反映,故可用基因工程产品来医治HANE,但因C1INH为高度糖基化蛋白,在中表达没有活性,现已有人利用CHO表达C1INH,拟用于医治。

一、优势1.具转录后加工系统;2.具翻译后修饰系统;3.可实现真正的分泌表达,分泌至细胞外简化了纯化工艺。

二、真核基因结构及表达调控特点:(一)、基因结构特点:1.DNA极为丰硕,具全能性——mRNA丰度(选材)克隆真核基因的经常使用方式是提取细胞mRNA,反转录合成为cDNA。

尽管真核生物各类细胞中基因含量、种类相同,但却不是选择任一细胞提取其mRNA就可反转录合成出目的基因cDNA,因不同细胞间存在mRNA的丰度问题,基因在不同细胞中转录情形不一样,产生不同的功能蛋白,才表现出各类细胞的丰硕多样性。

故应选择mRNA丰度高的细胞为材料,eg. TNFα基因的克隆是以前髓细胞或早幼粒细胞为材料来源(Alice,1985)。

2.结构复杂,DNA与组蛋白结合,并在其外有核膜——真核生物转录、翻译不可能持续进行。

3.不持续性:内含子、外显子。

内含子可能参与基因调控,不同剪切方式产生不同蛋白质。

浅谈赖型钩端螺旋体外膜蛋白LipL32基因真核表达载体的

浅谈赖型钩端螺旋体外膜蛋白LipL32基因真核表达载体的

浅谈赖型钩端螺旋体外膜蛋白LipL32基因真核表达载体的导言钩端螺旋体是一种常见的细菌,其中赖型钩端螺旋体是非常具有代表性的一种,其引起的钩端螺旋体病是一种主要通过血液传播的细菌性疾病。

赖型钩端螺旋体外膜蛋白LipL32是钩端螺旋体中的重要结构蛋白,具有重要的免疫原性。

目前,LipL32的真核表达系统已经成为研究LipL32生物学功能和应用的热门方向之一。

本文主要介绍了赖型钩端螺旋体LipL32基因的真核表达载体,并对其在LipL32的表达、纯化及功能研究方面的应用进行了探讨。

一、赖型钩端螺旋体LipL32蛋白与其相关性质1.赖型钩端螺旋体简介赖型钩端螺旋体是一种革兰氏阴性菌,属于螺旋菌科螺旋体属,具有弯曲的外形,其长约0.2-0.3微米,直径为0.1-0.2微米,有6-10个外螺旋。

赖型钩端螺旋体具有很强的运动能力,能够在体内通过血液、尿液等液体传播。

其通过抗原变异和基因重组等机制产生的强大多样的免疫逃逸能力,使得赖型钩端螺旋体能够逃过人体自身免疫的攻击,发展为一种难以对付的路径病菌。

2.LipL32蛋白简介LipL32是赖型钩端螺旋体的一种膜蛋白,具有重要的免疫原性。

LipL32含有205个氨基酸,在分子量上大约为25千道尔顿,具有一个信号肽序列、一个细胞膜穿越结构域和一个亲和摩擦子结构域。

LipL32是一种高度保守性的蛋白质,它在不同赖型钩端螺旋体菌株中的氨基酸序列具有高度的同源性,甚至不同种的钩端螺旋体的LipL32蛋白序列也具有较高的同源性。

LipL32在赖型钩端螺旋体中具有多项重要的生物学功能,包括:病原性、免疫佐剂、诊断标志、抗体和CD4+T细胞应答的强烈感染因子等。

二、赖型钩端螺旋体LipL32基因的真核表达载体LipL32蛋白具有重要的免疫学作用,其在病原学、诊断学以及预防和治疗方面都具有重要的应用前景。

利用真核细胞表达系统进行LipL32的高效表达及规模化纯化是开展此种生物学研究的关键。

如何构建一个大肠杆菌高效表达的分子克隆

如何构建一个大肠杆菌高效表达的分子克隆

如何构建一个大肠杆菌高效表达的分子克隆?影响基因在大肠杆菌中表达的因素是多方面的,以下我就从载体选择、启动子、终止子、核糖体结合位点、密码子、质粒拷贝数、表达产物的稳定性、受体细胞代谢等方面说明构建大肠杆菌高效表达的方法。

一、表达载体表达载体应具有以下条件:1、能够独立复制。

根据载体复制的特点,可分为严谨型和松弛型。

严谨型载体伴随宿主染色体的复制而复制,在宿主中拷贝数很少(1~3个);松弛型的复制而不依赖于宿主染色体,在宿主细胞中的拷贝数可多达3000个。

2、应具有灵活得多克隆位点和方便的筛选标记,便于外源基因的克隆、鉴定和筛选。

而且多克隆位点应位于启动子序列之后,以使外源基因表达。

3、应具有很强的启动子,能被大肠杆菌的RNA聚合酶识别。

4、应具有使启动子受抑制的阻遏子,只有在受到诱导时才能进行转录。

阻遏子的阻遏作用可由物理(如温度)、化学(如IPTG、IAA等)因素进行调节,这样可人为地选择启动子启动转录mRNA的时机。

因外源基因的高效表达往往会抑制宿主细胞的生长、增殖。

而阻遏子可使宿主细胞免除此不良影响。

例如可使宿主细胞快速生长增殖到相当量,再通过瞬时消除阻遏,使所表达的蛋白质在短时间内大量积累,同时可减少表达产物的降解。

5、应具有很强的终止子,以便使RNA聚合酶集中力量转录克隆的外源基因,而不转录其他无关基因。

同时强终止子所产生的mRNA较为稳定。

诱导表达时,由于强终止子所致的高水平转录反过来会影响质粒DNA自身的复制,从而引起质粒的不稳定或脱质粒现象。

因此在外源基因的下游安置强终止子可以克服由质粒转录引起的质粒不稳定。

6、所产生的mRNA必须有翻译的起始信号,即起始密码AUG和SD序列。

二、启动子启动子是表达载体最重要的组成成分,这是因为启动子控制了基因表达的第一个阶段,决定了mRNA合成的速度。

启动子是在转录水平上影响基因表达。

转录的最大速率取决于启动子中碱基的组成,往往会因为一个碱基的不同,启动子效率可能提高上千倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真核表达系统的选出多种外源蛋白,是由于毕赤酵母 具有以下独特的优点:
• (1) 能够快速繁殖和进行高密度培养; • (2) 具有强启动子- 乙醇氧化酶(AOX1)基因启动子,并且能 • 够严格调控外源基因的表达; • (3) 可以对外源蛋白进行类似真核的加工折叠和翻译后修 • 饰,产物从而具有天然蛋白的活性; • (4) 表达产量高,杂蛋白少,并且能够胞外分泌表达,容易分 • 离提纯; • (5) 培养条件简单,成本低。 • 毕赤酵母与最早研究的酿酒酵母相比,能够高密度培养,
真核表达系统的选择和高效表达策略
转基因植物表达系统
• 转基因植物是指利用一定的手段将外源性或内源性的基因 导入到植物体内,使植物的遗传性状改变而产生的植物体。 转基因植物作为生物反应器已在药物蛋白的生产中被广泛 使用,成功表达的药用蛋白质和多肽有:人的细胞因子、表 皮生长因子、促红细胞生成素、干扰素、生长激素、单克 隆抗体等. 烟草、马铃薯、大豆、香蕉、莴苣、羽扇豆等 作为生物反应器生产口服疫苗,也得到了人们的广泛关注。 转基因植物疫苗和药用蛋白的表达系统主要有农杆菌介导 的核转化系统、植物病毒瞬时高效表达载体和植物叶绿体 高效表达系统。 在研究成功的转基因植物药用蛋白中, 80%是由农杆菌介导形成的转基因植物表达系统生产。
真核表达系统的选择和高效表达策略
酵母表达系统
• 主要包括酿酒酵母、裂殖酵母、克鲁维酵母、 甲醇酵母等表达系统。其中甲醇酵母基因表 达系统是一种最近发展迅速的外源蛋白质生 产系统,也是目前应用最广泛的酵母表达系 统。主要有H. polymorpha、Candida Bodinii、 Pichia Pastoris三种, 其中Pichia Pastoris作 为基因表达系统使用得最多、最广泛。由于 它具有无可匹敌的高表达特性,已被认为是最 具有发展前景的生产蛋白质的真核表达系统 之一。
真核表达系统的选择和高效表达策略
真核表达系统的选择和高效表达策略
Pichia pastoris表达载体
• 毕赤酵母表达载体包括自我复制型的游离载体和整合型载 体,但以整合型载体为主。常见的整合载体又分为胞内表 达和分泌表达2类。胞内表达的载体有pPIC3、pPIC3K、 pPIC3.5K 、 pHILD2 、 pPICZA 、 pPICZAB 和 pPICZAC 等 ; 分 泌 表 达 的 载 体 有 pPIC9 、 pPIC9K 、 pACO815 、 pPICZαA(B、C)和pHILS1等。通用的整合载体多含有 AOX1 启 动 子 , 有 一 个 外 源 基 因 表 达 框 、 多 克 隆 位 点 ( MCS ) 和 一 个 从 AOX1 基 因 上 拷 贝 下 来 的 终 止 序 列 (TT),作为筛选标记的his4 基因和在细菌中进行复制 起始点和选择标记(如ColE1复制起始点和抗氨苄青霉素 基因)以及AOX13’端的非编码区序列,使外源基因能以 同源重组的方式整合到染色体的AOX1部位。
五、真核表达系统的选择和高效表达策略 真核生物表达系统主要包括: 酵母表达系统、杆状病毒表达系统、哺乳动 物细胞表达系统、 转基因植物表达系统、 杜氏盐藻生物反应器等五种表达系统。 其中应用最广泛的是酵母表达系统。
真核表达系统的选择和高效表达策略
真核表达系统的优点
• 真核表达系统具有翻译后的加工修饰体系, 表达的外源蛋白更接近于天然蛋白质。
真核表达系统的选择和高效表达策略
信号肽序列
• 可供毕赤酵母选择的信号肽有外源蛋白自 身的信号肽和酵母本身的信号肽. 有些蛋白 的自身信号肽不能被毕赤酵母有效利用,可 试用甲醇酵母信号肽。目前可供选择的酵
母信号肽有2交配因子的前导肽序列、酸
性磷酸酶信号肽和蔗糖酶信号肽等。其中
酿酒酵母 2交配因子前导肽序列的使用最
真核表达系统的选择和高效表达策略
酵母表达系统的优点
• 此外, 采用诱导表达启动子可以在时间上严格控制 目的蛋白的表达, 如GAL1- 10( 半乳糖诱导) 、 PH05( 胞外无机磷诱导) 和HSE( 37℃温度诱导) ; ⑥生长繁殖迅速, 培养周期短, 工艺简单, 生产成 本低。
• 酵母菌用于真核基因的表达、分析, 既具有原核表 达系统生长迅速、操作简单、价格便宜等优点, 又 具有类似哺乳动物细胞的翻译后修饰过程, 因而特 别适用于大量生产真核重组蛋白, 正是由于有这些 优点, 使酵母功能基因组的研究得以走在生物功能 基因组研究的前列, 是应用最为普遍的真核表达系 统之一。
真核表达系统的选择和高效表达策略
杆状病毒表达系统
• 昆虫杆状病毒表达系统是目前国内外十分推崇的 真核表达系统。利用杆状病毒结构基因中多角体 蛋白的强启动子构建的表达载体,可使很多真核目 的基因得到有效甚至高水平的表达。它具有真核 表达系统的翻译后加工功能,如二硫键的形成、糖 基化及磷酸化等,使重组蛋白在结构和功能上更接 近天然蛋白;其最高表达量可达昆虫细胞蛋白总量 的50%;可表达非常大的外源性基因(~200kD);具 有在同一个感染昆虫细胞内同时表达多个外源基 因的能力;对脊椎动物是安全的。由于病毒多角体 蛋白在病毒总蛋白中的含量非常高,至今已有很多 外源基因在此蛋白的强大启动子作用下获得高效 表达。
真核表达系统的选择和高效表达策略
酵母表达系统的优点
• ①酵母长期广泛应用于酿酒和食品工业, 不 会产生毒素, 安全可靠; ②酵母是真核生物, 能进行一些表达产物的加工, 有利于保持生 物产品的活性和稳定性; ③外源基因在酵母 中能分泌表达,表达产物分泌至胞外不仅有 利于纯化, 而且避免了产物在胞内大量蓄积 对细胞的不利影响; ④遗传背景清楚, 容易 进行遗传操作; ⑤ 较为完善的表达控制系统, 如PMA1 和PDR5 等强启动子可以介导目的 蛋白高水平表达, 表达蛋白的丰度可以达到 膜蛋白的10%;
真核表达系统的选择和高效表达策略
哺乳动物细胞表达系统
• 与其他的真核表达体系相比,哺乳动物细胞表达的 蛋白与天然蛋白的结构、糖基化类型和方式几乎 相同且能正确组装成多亚基蛋白,但成本较高。近 年来,研究者们主要通过改造宿主细胞和基因导入 方法来提高外源蛋白的表达效率。哺乳动物细胞 表达系统常用的宿主细胞有CHO、COS、BHK、 SP2 /0、N IH3T3等。将外源基因导入哺乳动物 细胞内的方法,主要有化学法、电穿孔法、基因枪 法和哺乳动物病毒载体系统等。
毕赤酵母表达载体上的选择标记
• 选择标记一般为对应于营养缺陷型受体 的野生型基因, 常用his4 , 也可用来源于酿 酒酵母的arg4基因和suc2基因. kanr基因和 Shbler 基因(Zeocin抗性基因)也能够作 为细菌和酵母菌的选择标记,并且携带这 两个标记的表达载体较其他表达载体更易 于筛选。
容易实现工业化,并且不存在酿酒酵母的过度糖基化问题, 也不易产生免疫原性问题。
真核表达系统的选择和高效表达策略
巴斯德毕赤酵母表达系统
• 巴斯德毕赤酵母菌株: • 一 般 用 于 外 源 基 因 表 达 的 Pichia pastoris 菌 株 有
Y211430 ,M2C10023 , GS115 , X-33,KM71 , SMD1168 等. 根据利用甲醇的能力, 可将巴斯德毕赤酵母分为3 型: ①Mut + 型为甲醇快利用型, 此型毕赤酵母具有完整的 AOX1 和AOX2 基因, 绝大多数毕赤酵母为Mut + 表型。 ② Muts 型,此型毕赤酵母菌(如KM71) 细胞AOX2 基因编码的 醇氧化酶可产生15%AOX活性,为甲醇慢利用型。③Mut型(如M2G10023) , 此型毕赤酵母AOX1 及AOX2 基因均 被敲除,为甲醇不利用型。研究发现, 蛋白酶缺陷型毕赤酵 母, 如SMD1163,SMD1165 和SMD1168 可有效降低外源 目的蛋白的酶解。 一般说来,蛋白胞内表达时,优先考虑用 Muts 表型,对于分泌表达,Mut+和Muts都可使用。甲醇慢 利用型有时比Mut+ 型菌株能够达到更高的表达量。
• 在重组药物的多种表达体系中,转基因植物是最经济的。同 一种重组蛋白在植物中的生产成本是微生物发酵体系的2% -10% ,是哺乳动物细胞生产的0.1%。
真核表达系统的选择和高效表达策略
杜氏盐藻生物反应器
• 杜氏盐藻是一种单细胞真核藻类,没有细胞壁,原生质外 仅有一层糖蛋白和神经氨酸组成的外膜,具有一个杯状、 大型的叶绿体,体积约占细胞的一半。 盐藻是极其耐盐的, 可以在0. 05 - 5 mol/ l氯化钠的极端环境中生存。盐藻属 于光和自养生物,能利用简单的培养基进行培养,富含β胡 萝卜素、甘油、蛋白质等。盐藻作为新型的真核生物反应 器,除了具有转录和翻译后的加工能力外,还具有经济廉 价、简单有效、安全可靠等特点。由于它能在高盐条件下 培养,所以不会污染其他的微生物,这点是哺乳动物细胞 所不及的。外源基因在盐藻中的表达主要是集中在cat、 bar、gus和egfp等报告基因上,大多为瞬时表达。目前,只 有乙肝表面抗原(HbsAg)和筛选标记bar基因能够在盐藻中 稳定表达。 盐藻作为一种新型的生物反应器,目前还不能 真正生产外源性物质。 研究者们正从强启动子的筛选、 高效转化载体的构建、最佳转化方法的确立等几方面努力, 目前已经取得了一定的成果。
• pGAPZ. ②分泌表达载体。如p HIL2S1 ,p PIC9 K,p PICZα,p GAPZα。
• 目前主要采用酵母内源性的信号肽来引导外源基 因表达产物的分泌, 常用α2 因子信号肽。许多蛋 白的正确构象和翻译后加工(如糖基化等) 都是在 分泌途中完成的。
真核表达系统的选择和高效表达策略
真核表达系统的选择和 高效表达策略
2020/11/29
真核表达系统的选择和高效表达策略
教学内容
• 一、PC酶制剂研究中
• 的应用; 四、原核表达系统的选择和高效表达策略;
• 五、真核表达系统的选择和高效表达策略。
真核表达系统的选择和高效表达策略
相关文档
最新文档