卡尔曼滤波程序

合集下载

卡尔曼滤波 参数

卡尔曼滤波 参数

卡尔曼滤波参数卡尔曼滤波(Kalman Filter)是一种利用系统的动态模型、观测数据和概率统计方法进行状态估计的算法。

它由美国科学家Rudolf E. Kálmán于1960年提出,被广泛应用于航天、航空、导航、机器人等领域。

卡尔曼滤波是一种最优的线性滤波器,它通过考虑系统模型和测量数据的不确定性来估计系统的最优状态。

卡尔曼滤波的基本思想是利用历史数据和本次观测数据,并结合系统模型进行状态估计,并通过不确定性的协方差矩阵来表示估计值的精确度。

卡尔曼滤波的基本公式如下:1. 预测阶段:状态预测:$\hat{x}_{k|k-1} = F\hat{x}_{k-1|k-1} + Bu_{k-1}$协方差预测:$P_{k|k-1} = FP_{k-1|k-1}F^T + Q$2. 更新阶段:测量残差:$y_k = z_k - H\hat{x}_{k|k-1}$协方差残差:$S_k = HP_{k|k-1}H^T + R$卡尔曼增益:$K_k = P_{k|k-1}H^TS_k^{-1}$状态修正:$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_ky_k$协方差修正:$P_{k|k} = (I - K_kH)P_{k|k-1}$其中,$F$为状态转移矩阵,描述系统状态从上一个时刻到当前时刻的演变关系;$\hat{x}_{k|k-1}$为对状态的先验估计;$B$为控制输入矩阵,描述外部控制对状态的影响;$u_{k-1}$为上一个时刻的控制输入;$P_{k|k-1}$为对状态估计的先验协方差矩阵;$Q$为过程噪声的协方差矩阵,描述系统模型的不确定性;$H$为观测矩阵,描述观测数据和状态之间的关系;$z_k$为当前时刻的观测数据;$R$为观测噪声的协方差矩阵,描述观测数据的不确定性;$S_k$为协方差残差;$K_k$为卡尔曼增益;$y_k$为测量残差,表示观测数据和状态估计之间的差异;$\hat{x}_{k|k}$为对状态的后验估计,是基于观测数据进行修正后的状态估计;$P_{k|k}$为对状态估计的后验协方差矩阵。

卡尔曼滤波python代码

卡尔曼滤波python代码

卡尔曼滤波(Kalman Filter)简介与Python代码实现1. 引言卡尔曼滤波是一种用于估计系统状态的递归滤波算法,广泛应用于信号处理、机器人导航、控制系统等领域。

它通过对测量值和状态变量之间的关系进行建模,并结合过去的测量值和预测值来优化状态估计。

本文将介绍卡尔曼滤波的原理及其在Python中的实现。

首先,我们将详细解释卡尔曼滤波的数学模型,包括状态方程和观测方程。

然后,我们将给出一个简单的例子来演示如何使用Python编写卡尔曼滤波代码。

最后,我们会讨论一些常见的应用场景和改进方法。

2. 卡尔曼滤波原理2.1 系统模型卡尔曼滤波通过建立系统模型来描述状态变量和观测值之间的关系。

假设我们有一个线性动态系统,可以用以下状态方程表示:x(k) = F * x(k-1) + B * u(k-1) + w(k-1)其中,x(k)是在时间步k时刻的状态向量,F是状态转移矩阵,B是控制输入矩阵,u(k-1)是在时间步k-1时刻的控制向量,w(k-1)是过程噪声。

观测方程可以表示为:z(k) = H * x(k) + v(k)其中,z(k)是在时间步k时刻的观测向量,H是观测矩阵,v(k)是观测噪声。

2.2 状态估计卡尔曼滤波的目标是根据过去的测量值和预测值对系统状态进行估计。

它通过最小化预测误差的协方差来实现。

卡尔曼滤波包括两个主要步骤:预测和更新。

2.2.1 预测在预测步骤中,我们使用状态方程来预测下一个时间步的状态:x_hat(k|k-1) = F * x_hat(k-1|k-1) + B * u(k-1)P(k|k-1) = F * P(k-1|k-1) * F^T + Q其中,x_hat(k|k-1)是在时间步k时刻的状态预测值,P(k|k-1)是状态协方差矩阵(描述状态估计误差的不确定性),Q是过程噪声的协方差矩阵。

2.2.2 更新在更新步骤中,我们使用观测方程来校正预测值:K(k) = P(k|k-1) * H^T * (H * P(k|k-1) * H^T + R)^(-1)x_hat(k|k) = x_hat(k|k-1) + K(k) * (z(k) - H * x_hat(k|k-1))P(k|k) = (I - K(k) * H) * P(k|k-1)其中,K(k)是卡尔曼增益(用于校正预测值),R是观测噪声的协方差矩阵,I是单位矩阵。

卡尔曼滤波流程

卡尔曼滤波流程

卡尔曼滤波流程
《卡尔曼滤波流程》
一、定义
卡尔曼滤波(Kalman Filter)是一种统计预测和滤波方法,主要用于处理相关性比较强的信号,如温度、湿度等,以及状态空间和系统误差模型。

它可以通过及时处理采集的各种信息,来实现估算未知变量的值,以及突发变化时,及时调整预测状态。

二、流程
1、确定系统模型:在开始卡尔曼滤波之前,需要了解系统的模型,以及估计参数,并将其应用于卡尔曼滤波模型中,这样可以使滤波效果更加准确。

2、状态估计:在进行滤波时,首先需要进行状态估计,即估计系统的当前状态,并计算出状态估计误差协方差矩阵。

3、状态跟踪:此时,卡尔曼滤波模型将状态估计和观测到的信息进行结合,从而获得更准确的状态跟踪,此时可以计算出滤波误差协方差矩阵。

4、状态更新:当系统状态有改变时,根据新状态更新预测状态,并重新计算状态估计误差协方差矩阵。

三、优点
1、可以有效的提高采样的概率密度函数;
2、具有能够进行自我调整以适应改变环境和数据质量的能力;
3、可以准确预测系统,从而及时处理数据。

四、缺点
1、在系统估计过程中,系统模型变化较快时,容易引起状态漂移,导致估计结果不准确;
2、对滤波器参数要求较高,若参数设置不合理,会影响滤波器的性能;
3、若在观测器或系统模型中存在非线性,则卡尔曼滤波也无法进行优化。

c语言卡尔曼滤波算法

c语言卡尔曼滤波算法

c语言卡尔曼滤波算法卡尔曼滤波算法是一种用于估计系统状态的优秀方法。

它广泛应用于各种领域,如导航、控制系统、信号处理等。

本文将为您介绍卡尔曼滤波算法的基本原理和应用。

一、什么是卡尔曼滤波算法?卡尔曼滤波算法由卡尔曼于1960年提出,是一种递归的状态估计算法。

它基于贝叶斯滤波理论,通过将先验信息和测量信息进行融合,得到对系统状态的最优估计。

二、卡尔曼滤波算法的基本原理卡尔曼滤波算法基于线性系统模型,可以分为两个步骤:预测和更新。

1. 预测步骤:利用系统的动力学模型和上一时刻的状态估计,预测当前时刻的系统状态。

2. 更新步骤:利用测量模型和当前时刻的测量值,结合预测步骤的结果,更新当前时刻的状态估计。

通过不断迭代预测和更新步骤,卡尔曼滤波算法可以逐步优化对系统状态的估计。

三、卡尔曼滤波算法的应用卡尔曼滤波算法在导航系统中有广泛应用。

例如,在无人机导航中,通过融合惯性测量单元(IMU)和全球定位系统(GPS)的信息,可以实现对无人机位置和姿态的精确估计。

在自动驾驶领域,卡尔曼滤波算法也被广泛使用。

通过融合激光雷达、摄像头和雷达等传感器的数据,可以实现对车辆位置、速度和周围环境的准确感知。

卡尔曼滤波算法还可以用于图像处理、信号处理等领域。

例如,通过对图像序列进行卡尔曼滤波,可以实现图像去噪和运动目标跟踪等任务。

四、总结卡尔曼滤波算法是一种强大而有效的状态估计方法。

它通过融合先验信息和测量信息,可以得到对系统状态的最优估计。

卡尔曼滤波算法在导航、控制系统和信号处理等领域有着广泛的应用。

它的优势在于对线性系统模型的适用性和高效的计算性能。

希望通过本文的介绍,您对卡尔曼滤波算法有了更深入的了解。

相信在实际应用中,卡尔曼滤波算法将会为您带来更好的效果。

Kalman滤波原理及算法

Kalman滤波原理及算法

Kalman滤波原理及算法kalman滤波器一(什么是卡尔曼滤波器卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯, 我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。

二.卡尔曼滤波器算法的介绍以下是卡尔曼滤波器核心的5个式子。

X(k|k-1)=A X(k-1|k-1)+B U(k) (1)P(k|k-1)=A P(k-1|k-1) A’+Q (2)X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3)Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)P(k|k)=(I-Kg(k) H)P(k|k-1) (5)下面我们详细介绍卡尔曼滤波的过程。

首先,我们要引入一个离散控制过程的系统。

该系统可用一个线性随机微分方程来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。

A和B是系统参数,对于多模型系统,他们为矩阵。

Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。

W(k)和V(k)分别表示过程和测量的噪声。

他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。

下面我们来用他们结合他们的covariances来估算系统的最优化输出。

首先我们要利用系统的过程模型,来预测下一状态的系统。

卡尔曼滤波计算举例全

卡尔曼滤波计算举例全

卡尔曼滤波计算举例⏹计算举例⏹卡尔曼滤波器特性假设有一个标量系统,信号与观测模型为[1][][]x k ax k n k +=+[][][]z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。

系统的起始变量x [0]为随机变量,其均值为零,方差为。

2nσ2σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。

220.9,1,10,[0]10nx a P =σ=σ==1. 计算举例根据卡尔曼算法,预测方程为:ˆˆ[/1][1/1]xk k ax k k -=--预测误差方差为:22[/1][1/1]x x nP k k a P k k -=--+σ卡尔曼增益为:()1222222[][/1][/1][1/1][1/1]x x x nx n K k P k k P k k a P k k a P k k -=--+σ--+σ=--+σ+σˆˆˆ[/][/1][]([][/1])ˆˆ[1/1][]([][1/1])ˆ(1[])[1/1][][]xk k x k k K k z k x k k axk k K k z k ax k k a K k xk k K k z k =-+--=--+---=---+滤波方程:()()2222222222222[/](1[])[/1][1/1]1[1/1][1/1][1/1][1/1]x x x nx n x n x nx nP k k K k P k k a P k k a P k k a P k k a P k k a P k k =--⎛⎫--+σ=---+σ ⎪--+σ+σ⎝⎭σ--+σ=--+σ+σ滤波误差方差起始:ˆ[0/0]0x=[0/0][0]x x P P =k [/1]x P k k -[/]x P k k []K k 012345689104.76443.27012.67342.27652.21422.18362.16832.16089.104.85923.64883.16542.94752.84402.79352.76870.47360.32700.26730.24040.22770.22140.21840.2168ˆ[0/0]0x=[0/0]10x P =220.9110na =σ=σ=2. 卡尔曼滤波器的特性从以上计算公式和计算结果可以看出卡尔曼滤波器的一些特性:(1)滤波误差方差的上限取决于测量噪声的方差,即()2222222[1/1][/][1/1]x nx x na P k k P k k a P k k σ--+σ=≤σ--+σ+σ2[/]x P k k ≤σ这是因为(2)预测误差方差总是大于等于扰动噪声的方差,即2[/1]x nP k k -≥σ这是因为222[/1][1/1]x x n nP k k a P k k -=--+σ≥σ(3)卡尔曼增益满足,随着k 的增加趋于一个稳定值。

卡尔曼滤波步骤

卡尔曼滤波步骤

卡尔曼滤波步骤
卡尔曼滤波是一种用于估计系统状态的算法,它可以通过观测数据和系统模型来预测未来状态,并根据观测数据进行修正。

下面将介绍卡尔曼滤波的步骤。

1. 系统建模
卡尔曼滤波的第一步是建立系统模型,包括状态方程和观测方程。

状态方程描述系统的状态如何随时间变化,观测方程描述如何从系统状态中得到观测数据。

这些方程需要根据具体问题进行建立。

2. 初始化
卡尔曼滤波需要一个初始状态,通常可以通过观测数据进行估计。

如果没有观测数据,可以使用先验知识或者猜测来初始化。

3. 预测
在卡尔曼滤波中,预测是指根据系统模型和当前状态估计未来状态。

预测的结果是一个状态向量和协方差矩阵,它们描述了状态的不确定性。

4. 更新
更新是指根据观测数据修正预测结果。

更新的结果是一个新的状态向量和协方差矩阵,它们描述了状态的更精确的估计。

5. 迭代
卡尔曼滤波是一个迭代过程,每次迭代都会进行预测和更新。

预测使用上一次的状态向量和协方差矩阵,更新使用当前的观测数据。

迭代次数取决于具体问题和算法的收敛速度。

6. 输出
卡尔曼滤波的输出是一个状态向量和协方差矩阵,它们描述了系统状态的估计和不确定性。

这些结果可以用于控制、决策或者其他应用。

总结
卡尔曼滤波是一种强大的估计算法,它可以用于各种应用,如导航、控制、信号处理等。

卡尔曼滤波的步骤包括系统建模、初始化、预测、更新、迭代和输出。

这些步骤需要根据具体问题进行调整和优化,以获得更好的估计结果。

卡尔曼滤波算法流程

卡尔曼滤波算法流程

卡尔曼滤波算法流程
1.初始化:设定系统的初始状态和协方差矩阵,以及系统模型的初始
参数。

2.预测步骤(时间更新):
-通过系统模型和上一时刻的状态估计值,预测当前时刻的状态,并
计算预测的状态协方差。

-根据预测的状态和测量方差,计算预测的测量值。

3.更新步骤(测量更新):
-通过测量值和测量方差,计算测量的残差(测量残差是测量值与预
测值之间的差异)。

-计算测量残差的协方差。

-计算卡尔曼增益(卡尔曼增益是预测误差和测量残差之间的比例关系)。

-通过卡尔曼增益,对预测值进行修正,得到当前时刻的最优状态估
计值。

-更新状态估计值的协方差。

4.循环迭代:将预测和更新步骤循环进行,逐步逼近真实的系统状态。

整个卡尔曼滤波的核心是通过不断的预测和更新来修正状态估计值,
从而逼近真实的系统状态。

其基本思想是根据测量值和预测值的权重建立
一个最优估计,同时考虑了预测的误差和测量的误差。

通过不断地迭代,
可以实现对系统状态的准确估计。

卡尔曼滤波广泛应用于图像处理、机器人导航、信号处理等领域。


优势在于能够对噪声和不确定性进行有效的处理,同时具有较低的计算复
杂度。

但是,卡尔曼滤波的有效性还取决于系统模型和测量噪声的准确性,因此在实际应用中需要进行参数调整和误差分析。

总之,卡尔曼滤波是一种通过预测和更新来估计系统状态的最优算法,通过结合系统模型和测量方差信息,能够有效处理噪声和不确定性,广泛
应用于估计问题中。

卡尔曼滤波及其扩展

卡尔曼滤波及其扩展

卡尔曼滤波是一种利用时间序列数据进行状态估计和预测的算法,它可以通过对系统状态和观测值的预测误差进行修正,不断优化估计结果,从而提高估计精度。

卡尔曼滤波的基本思想是将系统状态和观测值分别作为状态向量和观测向量,建立数学模型,通过递归计算估计状态向量的值。

卡尔曼滤波的基本流程包括预测和更新两个步骤,其中预测步骤根据上一时刻的状态向量和系统噪声进行状态预测,更新步骤则根据当前时刻的观测向量和观测噪声对预测状态进行修正,得到更精确的状态向量估计值。

卡尔曼滤波的公式比较复杂,但是它可以被应用于很多领域,如导航、机器人、信号处理等。

卡尔曼滤波的扩展包括扩展卡尔曼滤波、无迹卡尔曼滤波、粒子滤波等。

扩展卡尔曼滤波是在卡尔曼滤波基础上引入了更高阶的状态变量,可以处理非线性系统;无迹卡尔曼滤波则是通过将非线性系统线性化,近似为线性系统进行滤波;粒子滤波则是一种基于蒙特卡罗方法的滤波算法,可以处理非线性、非高斯系统。

这些扩展算法在不同的应用场景中都具有一定的优势和适用性。

卡尔曼滤波 matlab代码

卡尔曼滤波 matlab代码

卡尔曼滤波matlab代码卡尔曼滤波Matlab 代码卡尔曼滤波是一种递归的状态估计算法,用于估计随时间变化的系统状态,它通过将过去的观测值与预测模型相结合,得出对当前状态的最优估计。

在Matlab中,我们可以利用内置函数或自己编写的函数来实现卡尔曼滤波算法。

首先,我们需要定义一个状态空间模型。

状态空间模型由状态方程和观测方程组成。

状态方程描述了系统状态如何从先前的状态和控制输入中演化到当前状态,观测方程描述了如何从系统状态中得出观测值。

在Matlab中,我们可以使用以下代码定义状态方程和观测方程。

matlab状态方程A = [1 1; 0 1]; 状态转移矩阵B = [0.5; 1]; 控制输入矩阵C = [1 0]; 观测矩阵Q = [0.1 0; 0 0.1]; 状态噪声协方差矩阵R = 1; 观测噪声方差观测方程sys = ss(A, B, C, 0);[K, P, E] = lqr(sys, Q, R); 最优控制器增益矩阵上述代码中,`A`是状态转移矩阵,表示系统状态如何从t-1时刻转移到t 时刻。

`B`是控制输入矩阵,表示控制输入如何影响系统状态的演化。

`C`是观测矩阵,用于将系统状态映射到观测值。

`Q`是状态噪声协方差矩阵,用于描述系统状态的不确定性。

`R`是观测噪声方差,用于描述观测值的不确定性。

接下来,我们可以利用卡尔曼滤波算法来估计系统状态。

在Matlab中,可以使用`kalman`函数来实现卡尔曼滤波。

matlab卡尔曼滤波x0 = [0; 0]; 初始状态估计P0 = eye(2); 初始估计误差协方差矩阵观测值t = 0:0.1:10;u = sin(t);w = sqrt(Q) * randn(size(t));v = sqrt(R) * randn(size(t));x = zeros(2, length(t));y = zeros(1, length(t));for k = 1:length(t)系统模型x(:, k+1) = A * x(:, k) + B * u(k) + w(:, k);y(:, k) = C * x(:, k) + v(:, k);end卡尔曼滤波x_hat = zeros(size(x));P = zeros(size(P0));for k = 1:length(t)预测x_hat(:, k+1) = A * x_hat(:, k) + B * u(k);P = A * P * A' + Q;更新K = P * C' / (C * P * C' + R);x_hat(:, k+1) = x_hat(:, k+1) + K * (y(:, k) - C * x_hat(:, k+1));P = (eye(2) - K * C) * P;end在上述代码中,`x0`和`P0`分别是初始状态估计和初始估计误差协方差矩阵。

卡尔曼滤波算法步骤

卡尔曼滤波算法步骤

卡尔曼滤波算法步骤1.建立模型:首先,需要建立系统的数学模型,即状态转移方程和观测方程。

状态转移方程描述了系统状态如何从一个时刻演化到下一个时刻,通常用矩阵和向量表示。

观测方程描述了系统状态与测量之间的关系,也用矩阵和向量表示。

2.初始化:在开始滤波之前,需要初始化卡尔曼滤波器的状态估计值和协方差矩阵。

通常,初始化时假设系统的初始状态是已知的,并且协方差矩阵初始化为一个较大的值,表示对系统状态的初始估计不确定性较大。

3.预测:预测步骤用于预测系统状态在下一个时刻的估计值和协方差矩阵。

首先通过状态转移方程预测系统状态,并计算预测估计值。

然后通过观测方程将预测估计值转换为测量空间,并计算预测测量值。

最后,通过预测估计和预测测量的协方差矩阵计算预测协方差矩阵。

4.更新:更新步骤用于将预测的状态估计值和实际的测量值进行融合,得到系统状态的最优估计值和协方差矩阵。

首先计算卡尔曼增益,它表示预测协方差矩阵和测量噪声协方差矩阵之间的权重关系。

然后通过测量值和预测测量值之间的残差计算更新量。

最后,通过卡尔曼增益和更新量对预测值进行修正,得到最优的状态估计值和协方差矩阵。

5.循环:经过一次预测和更新后,可以继续进行下一次的预测和更新。

通过循环迭代,可以逐步减小状态估计的不确定性,并且对系统状态进行更准确的估计。

需要注意的是,卡尔曼滤波算法假设系统的模型是线性的,并且所有的噪声都是高斯分布的。

如果系统模型或噪声不符合这些假设,可能需要使用扩展卡尔曼滤波(Extended Kalman Filter)或其他非线性滤波算法。

卡尔曼滤波算法的核心思想是通过综合当前观测值和系统模型的预测值,来估计系统状态的最优值。

它利用系统模型的动力学信息和观测值的检测信息,对估计值进行动态调整,在高噪声环境下仍能保持较高的准确性。

因此,卡尔曼滤波算法在实际应用中具有广泛的应用价值。

卡尔曼(Kalman)滤波

卡尔曼(Kalman)滤波

2.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。

但是,他的5条公式是其核心内容。

结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。

在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

假设我们要研究的对象是一个房间的温度。

根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。

假设你对你的经验不是100%的相信,可能会有上下偏差几度。

我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。

另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。

我们也把这些偏差看成是高斯白噪声。

好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。

下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

假如我们要估算k时刻的是实际温度值。

首先你要根据k-1时刻的温度值,来预测k时刻的温度。

因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。

然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。

由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。

究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。

卡尔曼滤波的计算步骤

卡尔曼滤波的计算步骤
卡尔曼滤波算法涉及到状态模型、观测模型、过程噪声和观测噪声的建模,根据具体应用场景和问题,需要定义相应的模型参数。实际使用时,可以通过编程语言(如Python、Matlab等)来实现卡尔曼滤波算法,并根据具体问题进行参数调整和结果分析。
卡尔曼滤波
卡尔曼滤波(Kalman Filter)是一种用于估计状态变量的递归算法,它基于观测数据和系统模型来进行预测和更新。以下是卡尔曼滤波的计算步骤:
1.初始化:定义系统的状态变量(例如位置、速度等)和观测数据的初始值。设定初始估计值和协方差矩阵。
2.预测(预测步骤):
使用系统的动力学模型(包括状态转移矩阵和过程噪声协方差矩阵)预测下一个时刻的状态。
更新估计的协方差矩阵,加入获取实际的观测值。
利用观测模型(包括观测矩阵和观测噪声协方差矩阵)将预测的状态与观测数据进行比较,计算观测残差。
利用计算得到的残差和估计的协方差矩阵,更新状态估计值和协方差矩阵。这里使用卡尔曼增益来平衡预测和观测之间的权重。
4.重复预测和更新步骤:重复进行预测和更新步骤,以递归方式估计下一个时刻的状态。

kalman filter 卡尔曼滤波调参的实用方法和经验

kalman filter 卡尔曼滤波调参的实用方法和经验

kalman filter 卡尔曼滤波调参的实用方法和经验
卡尔曼滤波是一种广泛用于估计和预测线性动态系统状态的有效方法。

调参是使用卡尔曼滤波的关键步骤之一,以下是一些实用的方法和经验:
1. 理解系统:在开始调参之前,需要深入理解所处理问题的性质和动态系统的特性。

这包括确定系统的状态变量、输入和测量噪声的特性等。

2. 选择合适的模型:卡尔曼滤波需要一个线性动态系统模型。

如果系统是非线性的,需要使用扩展卡尔曼滤波或者其他非线性滤波方法。

3. 初始参数选择:初始参数包括初始状态估计、初始状态协方差矩阵、初始测量协方差矩阵和初始过程噪声协方差矩阵。

这些参数可以根据先验知识和问题的特性进行选择,也可以通过实验数据进行初步估计。

4. 实验和验证:在实际应用中,需要对卡尔曼滤波进行实验和验证,以确定参数的最优值。

这可以通过对比卡尔曼滤波的结果和实际测量数据进行调整。

5. 动态调整:在实际应用中,如果系统状态的变化是动态的,需要动态调整卡尔曼滤波的参数。

例如,在无人机导航中,位置和速度的估计会随着时间的推移而不断变化,需要根据实际情况调整滤波参数。

6. 调参工具:可以使用一些工具来辅助调参,例如Matlab或Python中的卡尔曼滤波库,这些库提供了各种参数调整的功能,可以方便地进行实验和验证。

7. 不断尝试和改进:调参是一个试错的过程,需要通过不断的尝试和改进来确定最优的参数值。

在某些情况下,可能需要结合经验和理论来调整参数。

总之,卡尔曼滤波的调参需要综合考虑理论、经验和实验验证。

通过深入理解系统、合理选择模型和初始参数、进行实验和动态调整,可以获得更好的估计效果。

卡尔曼滤波 matlab代码

卡尔曼滤波 matlab代码

卡尔曼滤波 matlab代码【实用版】目录一、卡尔曼滤波简介二、卡尔曼滤波算法原理三、MATLAB 代码实现卡尔曼滤波四、总结正文一、卡尔曼滤波简介卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计动态系统的状态,具有良好的实时性、鲁棒性和准确性。

它广泛应用于导航、定位、机器人控制等领域。

二、卡尔曼滤波算法原理卡尔曼滤波主要包括两个部分:预测阶段和更新阶段。

预测阶段:1.初始化状态变量和协方差矩阵。

2.根据系统动态模型,预测系统的状态变量和协方差矩阵。

更新阶段:1.测量系统的状态变量,得到观测数据。

2.根据观测数据和预测的状态变量,计算卡尔曼增益。

3.使用卡尔曼增益,更新状态变量和协方差矩阵。

三、MATLAB 代码实现卡尔曼滤波以下是一个简单的卡尔曼滤波 MATLAB 代码示例:```MATLABfunction [x, P] = kalman_filter(x, P, F, Q, H, R, z)% 初始化x = 初始状态向量;P = 初始协方差矩阵;% 预测阶段F = 系统动态矩阵;Q = 测量噪声协方差矩阵;H = 观测矩阵;R = 观测噪声协方差矩阵;z = 观测数据;% 预测状态变量和协方差矩阵[x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R);% 更新阶段[x_upd, P_upd] = update(x_pred, P_pred, z);% 输出结果x = x_upd;P = P_upd;endfunction [x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R)% 预测状态变量和协方差矩阵x_pred = F * x;P_pred = F * P * F" + Q;endfunction [x_upd, P_upd] = update(x_pred, P_pred, z)% 更新状态变量和协方差矩阵S = H" * P_pred * H;K = P_pred * H" * S^-1;x_upd = x_pred + K * (z - H * x_pred);P_upd = (I - K * H") * P_pred;end```四、总结卡尔曼滤波是一种高效、准确的状态估计方法,适用于各种线性高斯动态系统。

卡尔曼滤波简介+ 算法实现代码

卡尔曼滤波简介+ 算法实现代码

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。

从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。

为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。

卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。

它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)Y(k) = H(k)·X(k)+N(k)其中X(k)和Y(k)分别是k时刻的状态矢量和观测矢量F(k,k-1)为状态转移矩阵U(k)为k时刻动态噪声T(k,k-1)为系统控制矩阵H(k)为k时刻观测矩阵N(k)为k时刻观测噪声则卡尔曼滤波的算法流程为:1.预估计X(k)^= F(k,k-1)·X(k-1)2.计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'Q(k) = U(k)×U(k)'3.计算卡尔曼增益矩阵K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)R(k) = N(k)×N(k)'4.更新估计X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]5.计算更新后估计协防差矩阵C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'6.X(k+1) = X(k)~C(k+1) = C(k)~重复以上步骤其c语言实现代码如下:#include "stdlib.h"#include "rinv.c"int lman(n,m,k,f,q,r,h,y,x,p,g)int n,m,k;double f[],q[],r[],h[],y[],x[],p[],g[];{ int i,j,kk,ii,l,jj,js;double *e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if (l<n) l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*l+j; a[ii]=0.0;for (kk=0; kk<=n-1; kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*n+j; p[ii]=q[ii];for (kk=0; kk<=n-1; kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];}for (ii=2; ii<=k; ii++){ for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];}for (i=0; i<=m-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj];for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];}js=rinv(e,m);if (js==0){ free(e); free(a); free(b); return(js);}for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0;for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0;for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];}for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i];for (j=0; j<=n-1; j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i;for (j=0; j<=m-1; j++)x[jj]=x[jj]+g[i*m+j]*b[j*l];}if (ii<k){ for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];if (i==j) a[jj]=1.0+a[jj];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; b[jj]=0.0;for (kk=0; kk<=n-1; kk++)b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*n+j; p[jj]=q[jj];for (kk=0; kk<=n-1; kk++)p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];}}}free(e); free(a); free(b);return(js);}C++实现代码如下:============================kalman.h================= ===============// kalman.h: interface for the kalman class.////////////////////////////////////////////////////////////////////////#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_)#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_#if _MSC_VER > 1000#pragma once#endif// _MSC_VER > 1000#include <math.h>#include "cv.h"class kalman{public:void init_kalman(int x,int xv,int y,int yv);CvKalman* cvkalman;CvMat* state;CvMat* process_noise;CvMat* measurement;const CvMat* prediction;CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0);//virtual ~kalman();};#endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_)============================kalman.cpp=============== =================#include "kalman.h"#include <stdio.h>/* tester de printer toutes les valeurs des vecteurs*//* tester de changer les matrices du noises *//* replace state by cvkalman->state_post ??? */CvRandState rng;const double T = 0.1;kalman::kalman(int x,int xv,int y,int yv){cvkalman = cvCreateKalman( 4, 4, 0 );state = cvCreateMat( 4, 1, CV_32FC1 );process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 );int code = -1;/* create matrix data */const float A[] = {1, T, 0, 0,0, 1, 0, 0,0, 0, 1, T,0, 0, 0, 1};const float H[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};const float P[] = {pow(320,2), pow(320,2)/T, 0, 0,pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,0, 0, pow(240,2), pow(240,2)/T,0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)};const float Q[] = {pow(T,3)/3, pow(T,2)/2, 0, 0,pow(T,2)/2, T, 0, 0,0, 0, pow(T,3)/3, pow(T,2)/2,0, 0, pow(T,2)/2, T};const float R[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 );rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));//cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) ); //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));//cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise );}CvPoint2D32f kalman::get_predict(float x, float y){/* update state with current position */state->data.fl[0]=x;state->data.fl[2]=y;/* predict point position *//* x'k=A鈥 k+B鈥 kP'k=A鈥 k-1*AT + Q */cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl [0]), 0 );cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman-> state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, meas urement, measurement );/* adjust Kalman filter state *//* Kk=P'k鈥 T鈥?H鈥 'k鈥 T+R)-1xk=x'k+Kk鈥?zk-H鈥 'k)Pk=(I-Kk鈥 )鈥 'k */cvKalmanCorrect( cvkalman, measurement );float measured_value_x = measurement->data.fl[0];float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );float predict_value_x = prediction->data.fl[0];float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y));}void kalman::init_kalman(int x,int xv,int y,int yv){state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv; }。

卡尔曼滤波算法原理和实现

卡尔曼滤波算法原理和实现

卡尔曼滤波算法原理和实现
卡尔曼滤波算法是一种用于估计系统状态的数学方法,它通过融合来自传感器的测量数据和系统模型的预测值,提供对系统状态的最优估计。

该算法最初由R.E. Kalman在1960年提出,被广泛应用于控制系统、导航系统、机器人技术等领域。

该算法的原理可以简要描述为以下几个步骤:
1. 预测(Predict),利用系统的动态模型,根据先验信息和控制输入,预测系统的状态。

2. 更新(Update),根据传感器提供的测量数据,结合预测的状态值和测量的值,计算出最优的状态估计值。

3. 重复,不断地进行预测和更新,以持续地优化对系统状态的估计。

在实现卡尔曼滤波算法时,需要考虑以下几个关键点:
1. 状态方程和观测方程,需要准确地建立描述系统动态特性的
状态方程和观测方程,这两个方程是卡尔曼滤波算法的基础。

2. 状态估计初始化,需要对系统的初始状态进行估计,并设定状态估计的协方差矩阵。

3. 测量数据处理,需要对传感器提供的测量数据进行预处理,确保其符合卡尔曼滤波算法的要求。

4. 参数调节,卡尔曼滤波算法中有一些参数需要根据具体应用进行调节,如过程噪声协方差矩阵和测量噪声协方差矩阵等。

在实际应用中,卡尔曼滤波算法能够有效地处理传感器数据的噪声和不确定性,提供对系统状态的精准估计,因此被广泛应用于导航、目标跟踪、无人车辆等领域。

总的来说,卡尔曼滤波算法通过不断地预测和更新,结合系统模型和测量数据,提供对系统状态的最优估计。

在实现时需要考虑系统模型的准确性、初始状态的估计、测量数据的处理和参数的调节等因素。

希望这个回答能够帮助你更好地理解卡尔曼滤波算法的原理和实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。

从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。

为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。

卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。

它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)Y(k) = H(k)·X(k)+N(k)其中X(k)和Y(k)分别是k时刻的状态矢量和观测矢量F(k,k-1)为状态转移矩阵U(k)为k时刻动态噪声T(k,k-1)为系统控制矩阵H(k)为k时刻观测矩阵N(k)为k时刻观测噪声则卡尔曼滤波的算法流程为:1.预估计X(k)^= F(k,k-1)·X(k-1)2.计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'Q(k) = U(k)×U(k)'3.计算卡尔曼增益矩阵K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)R(k) = N(k)×N(k)'4.更新估计X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]5.计算更新后估计协防差矩阵C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)' 6.X(k+1) = X(k)~C(k+1) = C(k)~重复以上步骤其c语言实现代码如下:#include "stdlib.h"#include "rinv.c"int lman(n,m,k,f,q,r,h,y,x,p,g)int n,m,k;double f[],q[],r[],h[],y[],x[],p[],g[];{ int i,j,kk,ii,l,jj,js;double *e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if (l<n) l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*l+j; a[ii]=0.0;for (kk=0; kk<=n-1; kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*n+j; p[ii]=q[ii];for (kk=0; kk<=n-1; kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];}for (ii=2; ii<=k; ii++){ for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)}for (i=0; i<=m-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj];for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];}js=rinv(e,m);if (js==0){ free(e); free(a); free(b); return(js);}for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0;for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0;for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];}for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i];for (j=0; j<=n-1; j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i;for (j=0; j<=m-1; j++)x[jj]=x[jj]+g[i*m+j]*b[j*l];}if (ii<k){ for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];if (i==j) a[jj]=1.0+a[jj];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; b[jj]=0.0;for (kk=0; kk<=n-1; kk++)}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*n+j; p[jj]=q[jj];for (kk=0; kk<=n-1; kk++)p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];}}}free(e); free(a); free(b);return(js);}C++实现代码如下:============================kalman.h================= ===============// kalman.h: interface for the kalm an class.////////////////////////////////////////////////////////////////////////#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_)#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_#if _MSC_VER > 1000#pragma once#endif// _MSC_VER > 1000#include <math.h>#include "cv.h"class kalman{public:void init_kalman(int x,int xv,int y,int yv);CvKalman* cvkalman;CvMat* state;CvMat* process_noise;CvMat* m easurem ent;const CvMat* prediction;CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0);//virtual ~kalman();};#endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_)============================kalman.cpp=============== =================#include "kalman.h"#include <stdio.h>/* tester de printer toutes les valeurs des vecteurs*//* tester de changer les matrices du noises *//* replace state by cvkalman->state_post ??? */CvRandState rng;const double T = 0.1;kalman::kalman(int x,int xv,int y,int yv){cvkalm an = cvCreateKalman( 4, 4, 0 );state = cvCreateMat( 4, 1, CV_32FC1 );process_noise = cvCreateMat( 4, 1, CV_32FC1 );m easurement = cvCreateMat( 4, 1, CV_32FC1 );int code = -1;/* create m atrix data */const float A[] = {1, T, 0, 0,0, 1, 0, 0,0, 0, 1, T,0, 0, 0, 1};const float H[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};const float P[] = {pow(320,2), pow(320,2)/T, 0, 0,pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0, 0, 0, pow(240,2), pow(240,2)/T,0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)};const float Q[] = {pow(T,3)/3, pow(T,2)/2, 0, 0,pow(T,2)/2, T, 0, 0,0, 0, pow(T,3)/3, pow(T,2)/2,0, 0, pow(T,2)/2, T};const float R[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI ); cvZero( m easurement );cvRandSetRange( &rng, 0, 0.1, 0 );rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );m em cpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));m em cpy( cvkalman->measurement_m atrix->data.fl, H, sizeof(H));m em cpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));m em cpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));m em cpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));//cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );//cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));//cvSetIdentity( cvkalm an->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalm an->state_post->data.fl[0]=x;cvkalm an->state_post->data.fl[1]=xv;cvkalm an->state_post->data.fl[2]=y;cvkalm an->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise );}CvPoint2D32f kalman::get_predict(float x, float y){/* update state with current position */state->data.fl[0]=x;state->data.fl[2]=y;/* predict point position *//* x'k=A鈥 k+B鈥 kP'k=A鈥 k-1*AT + Q */cvRandSetRange( &rng, 0, sqrt(cvkalman->measurem ent_noise_cov->data.fl [0]), 0 );cvRand( &rng, m easurement );/* xk=A?xk-1+B?uk+wk */cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalm an->state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, m eas urement, m easurement );/* adjust Kalman filter state *//* Kk=P'k鈥 T鈥?H鈥 'k鈥 T+R)-1xk=x'k+Kk鈥?zk-H鈥 'k)Pk=(I-Kk鈥 )鈥 'k */cvKalmanCorrect( cvkalman, measurement );float m easured_value_x = m easurem ent->data.fl[0];float m easured_value_y = m easurem ent->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );float predict_value_x = prediction->data.fl[0];float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y));}void kalman::init_kalman(int x,int xv,int y,int yv){state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalm an->state_post->data.fl[0]=x;cvkalm an->state_post->data.fl[1]=xv;cvkalm an->state_post->data.fl[2]=y;cvkalm an->state_post->data.fl[3]=yv;}。

相关文档
最新文档