新人教版初中数学导学:投影与视图第1节《投影》第2课时导学案
教师导学案教学设计(投影(一)
九年级数学导学案课题:5.1 投影(一)主备学习目标:1、了解投影和中心投影的含义,体会灯光下物体的影子在生活中的应用。
2、能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化。
学习重点:利用中心投影进行画图学导过程一、自主学习活动内容:观察下列图形,你有什么发现?(小组内成员讨论可对上述图片是如何产生的,分析它们有什么共同特点?)知识点:物体在的照射下,会在或其他上留下它的影子,这就是投影现象。
影子所在的平面称为。
二、合作探究做一做:取一些长短不等的小棒和三角形、矩形纸片,用手电筒(或台灯)等去照射这些小棒和纸片,观察它们的影子。
(1)固定手电筒,改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定手小棒或纸片,改变手电筒的摆放位置和方向,它们的影子分别发生了什么变化?(小组内成员讨论分析你们观察到的现象)知识点:手电筒、路灯和台灯的光线可以看出是从发出的,这样的光线所形成的投影称为中心投影三、互动展示1、确定下图中灯泡所在的位置2、两棵小树在一盏路灯下的影子如图所示:(1)确定该路灯灯泡所在位置;(2)画出图中表示婷婷影长的线段。
四、达标检测五、反思延伸整理收获?谈感受?说说本节课学习中好的方法和困扰的地方?作业布置:见背面家庭作业:1、手电筒、路灯、台灯的光线形成的投影称为。
2. 一个人离开灯光的过程中人的影长()A、不变 B、变短 C、变长 D、不确定3.楼房,旗杆在路灯下的影子如图所示。
试确定路灯灯炮的位置,再作出小树在路灯下的影子。
(不写作法,保留作图痕迹)4 .确定图中路灯灯泡的位置,并画出小赵在灯光下的影子;5.同一灯光下两个物体的影子可以是()A、同一方向 B、不同方向 C、相反方向 D、以上都是可能6.(1)请你确定并画出路灯灯泡所在的位置.(2)请你在图中画出小明(用线段EF表示).。
2023年人教版九年级数学下册第二十九章《投影与视图1》导学案
新人教版九年级数学下册第二十九章《投影与视图1》导学案【学习目标】(一)知识技能:1、了解投影的有关概念,能根据光线的方向辨认物体的投影。
2、了解平行投影和中心投影的区别。
3、了解物体正投影的含义,能根据正投影的性质画出简单平面图形的正投影。
(二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。
(三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
(四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。
【学习重点】了解正投影的含义,能根据正投影的性质画出简单平面图形的正投影。
【学习难点】归纳正投影的性质,正确画出简单平面图形的正投影。
【学习准备】手电筒、三角尺、作图工具等。
【学习过程】【情境引入】活动1设问:你注意观察过周围物体在日光或灯光下的影子吗?影子与物体有着怎样的联系呢?教师展示实物及图片,学生观察、思考,感知物体与投影之间的关系。
学生讨论、发表观点;教师归纳。
总结出投影、投影线、投影面的概念。
总结:一般地,用光线照射物体,在上,得到的叫做物体的投影,叫做投影线,投影所在的叫做投影面。
【自主探究】活动2教师给学生展示一组阳光下的投影图片,设问:下列投影中,投影线、投影面分别是什么?这些投影线有何共同特征?学生观察、思考、归纳,教师指导。
归纳总结:由形成的投影叫做平行投影。
试举出平行投影在生活中的应用实例。
活动3出示一组灯光下的投影,学生观察投影线、投影面分别是什么?这些投影线有何共同特征?学生分析、回答。
归纳总结:由发出的光线形成的投影叫做中心投影。
试举出中心投影在生活中的应用实例。
活动4将物体与它们的投影用线连接起来。
【合作探究】活动5:问题1联系:。
区别:。
问题2图中三角板的投影各是什么投影?它们的投影线与投影面的位置关系有什么区别?学生观察、思考、互相交流。
联系:图中的投影都是投影。
人教版九年级数学教案 第29章《投影与视图》全章导学案(共4课时)
人教版九年级数学《投影与视图》全章导学案第1课时投影的概念和分类知识点1:平行投影【例1】下列光线所形成的是平行投影的是( A )A. 太阳光线B. 台灯的光线C. 手电筒的光线D. 路灯的光线,1. 把一个正六棱柱如图1-29-90-1摆放,光线由上向下照射此正六棱柱时的正投影是( A )图1-29-90-1知识点2:中心投影【例2】如图1-29-90-2,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子( B )图1-29-90-2A. 逐渐变短B. 先变短后变长C. 先变长后变短D. 逐渐变长,2. 如图1-29-90-3,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( B )图1-29-90-3A. 越长B. 越短C. 一样长D. 随时间变化而变化知识点3:运用投影的知识解决相关问题【例3】如图1-29-90-4,AB和DE是直立在地面上的两根立柱,AB=4 m,某一时刻AB在阳光下的投影BC=3 m,同一时刻测得DE的影长为4.5 m,则DE=6m.图1-29-90-4,3. 如图1-29-90-5,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5 m,CD=4.5 m,点P到CD的距离为2.7 m,则AB与CD间的距离是1.8m.图1-29-90-5A组4. 下列现象不属于投影的是( B )A. 皮影B. 素描画C. 手影D. 树影,5. 一个人离开灯光的过程中人的影长( A )A. 变长B. 变短C. 不变D. 不确定6. 正方形的正投影不可能是( D )A. 线段B. 矩形C. 正方形D. 梯形,7. 在阳光的照射下,一个矩形框的影子的形状不可能是( C )A. 线段B. 平行四边形C. 等腰梯形D. 矩形B组8. 在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为( B )A. 逐渐变长B. 逐渐变短C. 影子长度不变D. 影子长短变化无规律,9. 小红和小花在路灯下的影子一样长,则她们的身高关系是( D )A. 小红比小花高B. 小红比小花矮C. 小红和小花一样高D. 不确定10. 下列图中是在太阳光下形成的影子的是( A ),11. 如图1-29-90-6是同一天四个不同时刻树的影子,其时间由早到晚的顺序为( B )图1-29-90-6A. 1234B. 4312C. 3421D. 4231C组12. 如图1-29-90-7,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为3m.图1-29-90-7,13. 如图1-29-90-8,圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图的圆环形阴影. 已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是( D )图1-29-90-8A. 0.324πm2B. 0.288πm2C. 1.08πm2D. 0.72πm2第2课时简单物体的三视图知识点1:简单几何体的三视图【例1】如图1-29-91-1的圆柱体从正面看得到的图形可能是( B )图1-29-91-1,1. 如图1-29-91-2是一个正六棱柱的茶叶盒,其俯视图为( B )图1-29-91-2知识点2:简单组合体的三视图【例2】如图1-29-91-3是由几个相同的正方体搭成的一个几何体,从上面看得到的平面图形是( B )图1-29-91-3,2. 如图1-29-91-4是由一个正方体和一个正四棱锥组成的立体图形,它的俯视图是( C )图1-29-91-4知识点3:三视图的特征及画法【例3】如图1-29-91-5,画出这个几何体的三视图.图1-29-91-5解:如答图29-91-1.答图29-91-1,3. 图1-29-91-6是由大小相同的小立方块搭成的几何体,请在图中的方格纸中画出该几何体的三视图.解:如答图29-91-2.答图29-91-24. 由4个相同的小立方体搭成的几何体如图1-29-91-7,则它的俯视图是( D )图1-29-91-75. 如图1-29-91-8的立体图形,从左面看可能是( A )图1-29-91-86. 如图1-29-91-9的几何体从左面看到的图形是( A )图1-29-91-97. 如图1-29-91-10的几何体的主视图是( B )图1-29-91-10B组8. 在下面的四个几何体中,从它们各自的正面和左面看,不相同的是( B ),9. 如图1-29-91-11的四个几何体中,主视图与左视图相同的几何体有( D )图1-29-91-11A. 1个B. 2个C. 3个D. 4个C组10. 画出图1-29-91-12的空间几何体的三视图.图1-29-91-12答图29-91-3解:如答图29-91-3.,11. 如图1-29-91-13,在平整的地面上,用若干个棱长完全相同的小正方体堆成一个几何体. 请画出这个几何体的三视图.解:如答图29-91-4.第3课时由三视图确定物体的形状【例1】如图1-29-92-1是某个几何体的主视图、左视图、俯视图,该则几何体是( C )图1-29-92-1A. 圆柱B. 球C. 圆锥D. 棱锥,1. 某几何体的三视图如图1-29-92-2,则这个几何体是( D )图1-29-92-2A. 圆柱B. 长方体C. 三棱锥D. 三棱柱知识点2:根据三视图描述物体原来的形状——简单组合体【例2】如图1-29-92-3是由三个相同的小正方体组成的几何体的主视图,那么这个几何体可以是( A )图1-29-92-3,2. 如图1-29-92-4是一个几何体的三视图,则这个几何体是( B )图1-29-92-4知识点3:由三视图确定小正方体的个数【例3】由一些大小相同的小正方体组成的几何体的三视图如图1-29-92-5,那么,组成这个几何体的小正方体有( B )图1-29-92-5A. 6块B. 5块C. 4块D. 3块,3. 如图1-29-92-6是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( D )图1-29-92-6A. 7个B. 8个C. 9个D. 10个知识点4:利用三视图计算几何体的表面积和体积【例4】如图1-29-92-7是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据数据计算这个几何体的表面积.图1-29-92-7解:(1)由三视图得几何体为圆锥.(2)圆锥的表面积是16π. ,4. 如图1-29-92-8是一个包装盒的三视图.(1)写出这个几何体的名称;(2)求这个几何体的体积.(结果保留π)图1-29-92-8解:(1)这个几何体是圆柱.(2)体积是2 000π.A组5. 某几何体的三种视图是全等的,这个几何体可能是( C )A. 圆柱B. 圆锥C. 球D. 三棱柱,6. 如图1-29-92-9是某几何体的三视图,那么该几何体是( D )图1-29-92-9A. 球B. 正方体C. 圆锥D. 圆柱B组7. 已知某物体的三视图如图1-29-92-10,那么与它对应的物体是( B )图1-29-92-10,8. 某几何体的左视图如图1-29-92-11,则该几何体不可能是( D )图1-29-92-119. 如图1-29-92-12,这是一个几何体的三视图,根据图中数据计算这个几何体的侧面积.图1-29-92-12解:几何体的侧面积为10π.,10. 如图1-29-92-13是一个几何体的三视图,其中俯视图是等边三角形. (1)请写出这个几何体的名称; (2)求这个几何体的表面积.图1-29-92-13解:(1)这个几何体为三棱柱.(2)这个几何体的表面积为44 33(cm 2).C 组11. 某一几何体的三视图均如图1-29-92-14,则搭成该几何体的小立方体的个数为( C )图1-29-92-14A. 9B. 5C. 4D. 3,12. 几个相同的小正方体所搭成的几何体的俯视图和左视图如图1-29-92-15,则小正方体的个数最多是( B )图1-29-92-15A. 5个B. 7个C. 8个D. 9个第4课时投影与视图单元复习课知识点1:投影的定义及分类【例1】人往路灯下行走的影子变化情况是( A )A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长,1. 在阳光照射下的升旗广场的旗杆从上午十点到十二点的影子长的变化规律为( B )A. 逐渐变长B. 逐渐变短C. 影子长度不变D. 影子长短变化无规律知识点2:三视图【例2】下列几何体中,主视图、俯视图、左视图都相同的是( B )2. 如图1-29-93-1是某几何体的三视图,该几何体是( B )图1-29-93-1A. 三棱柱B. 长方体C. 圆锥D. 圆柱知识点3:三视图的相关计算【例3】已知圆锥的三视图如图1-29-93-2,则这个圆锥的侧面展开图的面积为( B )图1-29-93-2A. 60πcm2B. 65πcm2C. 120πcm2D. 130πcm2,3. 如图1-29-93-3是按1∶10的比例画出的一个几何体的三视图,则该几何体的侧面积是( D )图1-29-93-3A. 200 cm2B. 600 cm2C. 100πcm2D. 200πcm2知识点4:画三视图【例4】画出如图1-29-93-4的几何体的主视图、左视图和俯视图.图1-29-93-4答图29-93-1解:如答图29-93-1.4. 如图1-29-93-5的几何体是由棱长为1的正方体摆放成的形状. 请画出这个几何体的三视图.图1-29-93-5解:如答图29-93-2.答图29-93-2A组5. 在阳光下摆弄一个矩形,它的影子不可能是( C )A. 线段B. 矩形C. 等腰梯形D. 平行四边形,6. 下图的四幅图中,灯光与影子的位置合理的是( B )7. 如图1-29-93-6是一个几何体的主视图和俯视图,则这个几何体是( A )图1-29-93-6A. 三棱柱B. 正方体C. 三棱锥D. 长方体,8. 如图1-29-93-7的正六棱柱的主视图是( A )图1-29-93-7B组9. 用5个棱长为1的正方体组成如图1-29-93-8的几何体. 请在方格纸中用实线画出它的三个视图.图1-29-93-8解:如答图29-93-3.答图29-93-310. 某几何体从正面、左面、上面看到的平面图形如图1-29-93-9,其中从正面看到的图形和从左面看到的图形完全一样.(1)求该几何体的侧面面积(结果保留π);(2)求该几何体的体积(结果保留π).图1-29-93-9解:(1)该几何体的侧面面积为π·6×8=48π.(2)此圆柱体的体积为72π.C组11. 由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图1-29-93-10,则搭成该几何体的小正方体最多是7个.图1-29-93-1012. 如图1-29-93-11是由一些小正方体搭成的几何体从上面看的图形(俯视图),数字表示该位置小正方体的个数,请画出这个几何体从正面看的图形(主视图)、从左面看的图形(左视图).图1-29-93-11答图29-93-4解:如答图29-93-4.。
九年级数学下册投影与视图全章教案新人教版
新人教版九年级数学下册《投影与视图》全章教案第一节:投影的概念与分类教学目标:1. 了解投影的概念,掌握投影的分类。
2. 能够运用投影的知识解决实际问题。
教学重点:投影的概念,投影的分类。
教学难点:投影的应用。
教学过程:1. 导入:通过展示图片,引导学生思考投影的概念。
2. 新课:介绍投影的分类,讲解不同类型的投影特点。
3. 练习:让学生运用投影的知识解决实际问题。
课后作业:1. 复习投影的概念与分类。
2. 运用投影的知识解决实际问题。
第二节:视图的概念与分类教学目标:1. 了解视图的概念,掌握视图的分类。
2. 能够运用视图的知识解决实际问题。
教学重点:视图的概念,视图的分类。
教学难点:视图的应用。
教学过程:1. 导入:通过展示图片,引导学生思考视图的概念。
2. 新课:介绍视图的分类,讲解不同类型的视图特点。
3. 练习:让学生运用视图的知识解决实际问题。
课后作业:1. 复习视图的概念与分类。
2. 运用视图的知识解决实际问题。
第三节:三视图教学目标:1. 了解三视图的概念,掌握三视图的画法。
2. 能够运用三视图的知识解决实际问题。
教学重点:三视图的概念,三视图的画法。
教学难点:三视图的应用。
教学过程:1. 导入:通过展示图片,引导学生思考三视图的概念。
2. 新课:介绍三视图的画法,讲解不同类型的三视图特点。
3. 练习:让学生运用三视图的知识解决实际问题。
课后作业:1. 复习三视图的概念与画法。
2. 运用三视图的知识解决实际问题。
第四节:投影与视图的应用教学目标:1. 了解投影与视图在实际中的应用,掌握投影与视图的转换方法。
2. 能够运用投影与视图的知识解决实际问题。
教学重点:投影与视图的应用,投影与视图的转换方法。
教学难点:投影与视图在实际问题中的应用。
教学过程:1. 导入:通过展示图片,引导学生思考投影与视图在实际中的应用。
2. 新课:介绍投影与视图的转换方法,讲解不同类型的投影与视图应用。
3. 练习:让学生运用投影与视图的知识解决实际问题。
初中数学 导学案1:投影与视图
投影与视图复习导学案复习目标:1、通过实例能够判断简单物体的三种视图,能根据三视图描述基本几何体或实物原型。
2、会画圆柱、圆锥、球的三种视图。
3、通过实例了解中心投影和平行投影的含义及其简单的应用。
4、通过实例了解视点、视线、盲区的含义及其在生活中的应用。
复习过程:一、知识梳理1、从观察物体时,看到的图叫做主视图;从观察物体时,看到的图叫做左视图;从观察物体时,看到的图叫做俯视图.2、主视图与俯视图的一致;主视图与左视图的一致;俯视图与左视图的一致.在绘制三视图时,看得见的轮廓用表示,看不见的轮廓用表示。
3、叫盲区.4、投影可分为平行投影与中心投影.其中所形成的投影叫平行投影;所形成的投影叫中心投影.5、利用光线是否平行或是否交于一点来判断是投影或投影,以及光源的位置和物体阴影的位置.二、典例精析例1、如图4,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( )A .7个B .8个C .9个D .10个例2、如图4,丁轩同学在晚上由路灯走向路灯,当他走到点时,发现身后他影子的顶部刚好接触到路灯的底部,当他向前再步行20m 到达点时,发现身前他影子的顶部刚好接触到路灯的底部,已知丁轩同学的身高是,两个路灯的高度都是9m ,求两路灯之间的距离。
三、基础训练1、当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小 .(填 “相同”、“不一定相同”、“不相同”之一).2、如图,水平放置的长方体 的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于 .3、下图的几何体是由三个同样大小的立方体搭成的,其左视图为 ( )42B .4、有一个铁制零件如图放置,它的左视图是( )5、如图,晚上小亮在路灯下散步,他从A 处向着路灯灯柱方向径直走到B 处,这一过程中他在该路灯灯光下的影子( ) A .逐渐变短 B .逐渐变长 C .先变短后变长 D .先变长后变短6、形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是( )7、若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是( ) A .球 B .圆柱C .圆锥D .棱锥8、下列几何体中,主视图、左视图、俯视图完全相同的是( )A .圆锥B .球C .圆柱D .三棱柱9、如图所示几何体的左视图是( )10、如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为( )A .B .C .D .(俯视图)A .B .C .D .A .320cmB . cmC . cmD .480 cm11、阳光通过窗口照到教室内,如图:竖直窗框在地面上留下长的影子,已知窗框的影子DE 到窗下墙脚的距离CE=,窗口底边离地面的距离BC=,试求窗口的高度(即AB 的值)12、为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?(结果精确到1米)实物图正视图俯视图20cm20cm60cm第10题图水平线ABCD30°新 楼1米40米旧 楼(26)题。
新人教版九年级数学下册 投影与视图第1节《投影》第2课时导学案
29.1 投影(2)导学案【学习目标】1、了解正投影的概念;2、能根据正投影的性质画出简单的平面图形的正投影3、培养动手实践能力,发展空间想象能力。
【学习重点】正投影的含义及能根据正投影的性质画出简单的平面图形的正投影【学习难点】归纳正投影的性质,正确画出简单平面图形的正投影【导学过程】一、知识链接:下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2) (3)的投影线与投影面的位置关系有什么区别?二、自学提纲:(1)正投影的定义:叫做正投影.在实际制图中,经常采用正投影.(2)物体的位置与其正投影的关系:当物体平行于投影面时,其正投影与原物体的形状、大小;当物体倾斜于投影面时,其正投影与原物体的形状、大小;当物体垂直于投影面时,其正投影成。
三、教师点拨:90,在阳光的垂直照射下,点C落在斜边AB上的D点. 例1:如图3,在Rt△ABC中,∠C=0⑴试探究线段AC、AB和AD之间的关系,并说明理由.⑵线段BC、AB和BD之间也有类似的关系吗?例2:一个圆柱的轴截面平行于投影面,圆柱的正投影是一个边长为10的正方形,求圆柱的体积和表面积.解析:本题的关键是求圆柱的高和底面半径,圆柱的轴截面是一个长方形,圆柱体的高和底面圆的直径是它的两邻边的长,由于长方形平行于投影面,因此其投影与它全等,即该长方形的两邻边相等.可求出圆柱的高和地面半径,从而求出圆柱的体积和表面积.四、针对练习:1.球的正投影是( )(A)圆面. (B)椭圆面. (C)点. (D)圆环.2.底面与投影面垂直的圆锥体的正投影是( )(A)圆. (B)三角形. (C)矩形. (D)正方形.3.指出如图所示的立体图各个面的正投影图形,并画出投影线的方向如箭头所示立体图的正投影.4.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )5.如图3,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面形成阴影的示意图。
九年级(人教版)集体备课导学案:投影(一)导学案
29.1投影(1)导学案【学习目标】1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。
3、学会关注生活中有关投影的数学问题,提高数学的应用意识。
【学习重点】理解平行投影和中心投影的特征【学习难点】在投影面上画出平面图形的平行投影或中心投影【导学过程】一、合作学习,探究新知自学提纲:1、投影的定义:一般地,叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2、投影的分类(1)平行投影①平行投影的定义: 是平行投影.如物体在太阳光的照射下形成影子(简称日影)就是平行投影.②太阳光与影子的关系:物体在太阳光照射的不同时刻,不但影子的大小在变化,而且影子的方向也在变化.(2)中心投影①中心投影的定义: 叫做中心投影.如物体在灯泡发出的光线照射下形成影子就是中心投影.②产生中心投影光源的确定:分别自两个物体的顶端及其影子的顶端作一条直线,这两条直线的交点即为光源的位置.(3)如何判断平行投影与中心投影:分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.二、教师点拨:例1:王丽和赵亮两个小朋友晚上在广场的一盏灯下玩,如图1,AB 的长表示王丽的身高,BM 表示她的影子,CD 的长表示赵亮的身高,DN 表示他的影子,请画出这盏灯的位置.例2、某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是【 】 A CD B图1 N M例3:如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度【】A.增大1.5米 B. 减小1.5米 C. 增大3.5米 D. 减小3.5米三、针对练习:1.探照灯、手电筒、路灯等的光线可以看成是从______个点发出的,像这样的光线所形成的投影称为________. 2.投影可分为_____和_____;一个立体图形,共有_______种视图.3.在太阳光的照射下,矩形窗框在地面上的影子常常是______形,在不同时刻,这些形状一般不一样.3.下列物品①探照灯;②车灯;③太阳;④月亮;⑤台灯中所成的投影是中心投影的是()A.①②B.①③C.①②③D.①②⑤4.太阳发出的光照在物体上是______,车灯发出的光照在物体上是_____()A.中心投影,平行投影B.平行投影,中心投影C.平行投影,平行投影D.中心投影,中心投影5.图1是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是()A、③④②①B、②④③①C、③④①②D、③①②④图16.如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m ,CA=0.8m ,则树的高度为( )(A )4.8m (B )6.4m (C )8m (D )10m7.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( )A 、小明的影子比小强的影子长B 、小明的影子比小强的影子短C 、小明的影子和小强的影子一样长D 、无法判断谁的影子长8.某数学课外实验小组想利用树影测量树高。
九年级数学下册投影与视图全章教案新人教版
教案:九年级数学下册《投影与视图》全章教案新人教版第一课时:投影的概念及分类教学目标:1. 了解投影的概念,掌握平行投影和中心投影的性质。
2. 能够区分不同类型的投影,并应用于实际问题。
3. 培养学生的空间想象能力和实际操作能力。
教学重点:1. 投影的概念及分类。
2. 平行投影和中心投影的性质。
教学难点:1. 理解不同类型投影的特点及应用。
2. 空间想象能力的培养。
教学准备:1. 投影仪或其他展示设备。
2. 相关图片或实物。
教学过程:1. 引入新课:通过展示图片或实物,引导学生观察并思考投影的概念。
2. 讲解投影的概念:解释投影是指光线照射到物体上,在另一平面上形成的影子。
3. 介绍平行投影:讲解平行投影的性质,如光线平行,投影也是平行的;投影与物体的大小相等。
4. 介绍中心投影:讲解中心投影的性质,如光线从一点发出,投影到各个方向;投影的大小与物体到光源的距离有关。
5. 区分不同类型的投影:通过示例,让学生区分平行投影和中心投影。
6. 练习与应用:给出实际问题,让学生运用投影的知识进行解答。
第二课时:视图的概念及分类教学目标:1. 了解视图的概念,掌握正视图、侧视图和俯视图的性质。
2. 能够区分不同类型的视图,并应用于实际问题。
3. 培养学生的空间想象能力和实际操作能力。
教学重点:1. 视图的概念及分类。
2. 正视图、侧视图和俯视图的性质。
教学难点:1. 理解不同类型视图的特点及应用。
2. 空间想象能力的培养。
教学准备:1. 相关图片或实物。
2. 展示设备。
教学过程:1. 引入新课:通过展示图片或实物,引导学生观察并思考视图的概念。
2. 讲解视图的概念:解释视图是指从不同方向观察物体时,在眼睛与物体之间的平面上的投影。
3. 介绍正视图:讲解正视图的性质,如正视图是物体在垂直于观察方向平面上的投影。
4. 介绍侧视图:讲解侧视图的性质,如侧视图是物体在垂直于侧观察方向平面上的投影。
5. 介绍俯视图:讲解俯视图的性质,如俯视图是物体在垂直于俯观察方向平面上的投影。
2022年人教版数学九下《投影》导学案(精品)
投影29.1 投影〔1〕序号:学习目标:1、知识和技能:了解投影的有关概念,能根据光线的方向识别物体的投影。
了解平行投影和中心投影的区别。
了解物体正投影的含义,能根据正投影的性质画出简单平面图形的正投影。
2、过程和方法:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,开展学生的空间观念。
3、情感、态度、价值观:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。
学习重点:了解正投影的含义,能根据正投影的性质画出简单平面图形的正投影。
学习难点:归纳正投影的性质,正确画出简单平面图形的正投影。
导学方法:课时:导学过程一、课前预习:预习课本第P100——101的内容,尝试完成《导学案》的教材导读和自主测评。
二、课堂导学:1、导入你注意观察过周围物体在日光或灯光下的影子吗?影子与物体有着怎样的联系呢?教师展示实物及图片,学生观察、思考,感知物体与投影之间的关系。
2、出示任务自主学习阅读课本第P100——101的内容,尝试答复以下问题:1〕影子是怎么形成的?2〕什么叫投影,投影线,投影面?3〕什么是平行投影?试举例说明。
4〕什么是中心投影?是举例说明。
3、合作探究见《导学》P109难点探究三、展示与与反应:检查自学情况,解释学生疑惑四、学习小结:1投影:一般地,用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2 由平行光线形成的投影叫做平行投影3 由同一点发出的光线形成的投影叫做中心投影。
4、在解决有关投影问题时必须先判断是平行投影还是中心投影,然后再根据它们的具体特点进一步解决问题。
五、达标检测1、课后练习2、《导学案》自主测评课后作业:板书设计:投影〔1〕1 投影投影线投影面。
2 平行投影3 中心投影。
课后反思:第二套学习目标:1、知识和技能:关系;2、会利用二次函数的图像求一元二次方程的近似解;3.会用估算方法估计一元二次方程的根.2、过程和方法:经历探索二次函数与一元二次方程关系的过程,进一步理解体会方程与函数之间的联系.3、情感、态度、价值观:通过探究二次函数图像与x轴的交点的个数与一元二次方程的根的情况的关系,进一步体会数形结合思想.学习重点:一元二次方程与二次函数之间的联系。
导学案九(下)29投影与视图
人教版数学九年级上导学案第二十九章投影与视图第1课时:§29.1.1 投影第2课时:§29.1.2 投影第3课时:§29.1.2 投影习题课第4课时:§29.2.1 三视图(1)第5课时:§29.2.2三视图(2)第6课时:§29.2.3三视图(3)第7课时:§29.2.4三视图(4)第8课时:§29 全章复习第9课时:§29 全章测试2§29.1.1投影学习目标1.了解投影、投影面、平行投影和中心投影的概念;2.了解角平行投影和中心投影的区别;自主学习一、课前准备(预习教材P106~ P107,找出疑惑之处)二、新课导学※互动探究探究任务一:什么叫做物体的投影问题探究:学生先独立阅读课本第106页,再彼此交流结果,举例。
教师点拨:一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.探究任务二:平行投影和中心投影是什么?问题探究:学生先独立阅读课本第106,107页,再交流结果。
教师点拨:有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线.由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.探究任务三:平行投影与中心投影的区别与联系问题探究:学生以数学习小组为单位,观察在太阳光线和灯光下,木杆和三角形纸板在地面的投影。
教师点拨:平行投影与中心投影的区别与联系新知:1、物体的投影的概念;2、平行投影和中心投影的概念3、平行投影与中心投影的区别与联系学生反思本节课未理解的知识点,写在下面:※探究升华(学生独立完成,并自己总结,教师点拨)例1、地面上直立一根标杆AB如图,杆长为2cm。
九年级数学下册 29.1 投影 第1课时 投影导学案 (新版)新人教版
29.1 投影第1课时投影1.通过观察、实验、探索、想象,了解投影、投影线、投影面、平行投影、中心投影的概念.2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.阅读教材P87-88页,自学“投影”、“平行投影”、“中心投影”的内容,区分清楚概念.自学反馈独立完成后小组内交流①光线照射物体,在某个平面(地面或墙壁等)上得到的 ,叫做物体的投影,照射光线叫做 ,投影所在的平面叫做 .②由光线形成的投影叫做平行投影,由发出的光线形成的影子就是中心投影.③皮影戏是利用 (填“平行投影”或“中心投影”)的一种表演艺术.④“平行投影”与“中心投影”的投影线有何区别?⑤教材P88页练习题.影子的形成需要“光线”、“物体”、“形成影子的面”三个条件;本章中所提的“投影面”是一个平面,生活中的影子不一定在同一个平面上;而光线的平行与否是区分“平行投影”和“中心投影”的条件.活动1 小组讨论例1 太阳光照射到日晷上形成的投影与灯光照射到三角尺在墙面上形成的投影有何不同?解:太阳光形成的投影是平行投影,灯光形成的投影是中心投影.太阳光是平行光线,由此形成的投影是平行投影;灯光是从一点发出的光线,它形成的投影叫做中心投影.例2 如图中①②③④是木杆一天中四个不同时刻在地面上的影子,将它们按时间先后顺序排列为 .解:④③②①.一天当中影子的变化情况是:正西—北偏西—正北—北偏东—正东.活动2 跟踪训练(独立完成后展示学习成果)1.请判断如图所示的两根电线杆的影子是灯光还是太阳光形成的.可画出光线,根据光线的方向来判断,若光线平行则是太阳光照射形成的平行投影;若交于一点则是灯光照射形成的中心投影.2.身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子 .活动1 小组讨论例3 如图,小强家后院有一根电线杆和一棵大树.①请根据树在阳光下的影子,画出电线杆的影子;(用线段表示)②若此时大树的影子长为6 m ,电线杆高8 m,其影长为10 m ,求大树的高度.解:①如图,线段AB 即为所求;②设大树的高度为x m,则有6x =810.∴x=4.8. 答:大树的高度为4.8 m.①小题首先要确定太阳光为光源,投影线是平行的,可以根据树和它的影子确定光线,从而画出电线杆的影子;②在同一时刻,物体的影长与实际长度的比值是定值.活动2 跟踪训练(独立完成后展示学习成果)如图,我国某大使馆内有一单杠支架,支架高2.8 m ,在大使办公楼前竖立着高28 m 的旗杆,旗杆底部离大使办公楼墙根的垂直距离为17 m ,在一个阳光灿烂的某一时刻,单杠支架的影长为2.24 m ,大使办公窗口离地面5 m ,问此刻中华人民共和国国旗的影子是否能达到大使办公室的窗口?可先画出旗杆在办公楼上的投影,通过同一时刻,同一物体的影长与物长的比是一个定值这一规律计算出旗杆投影到墙上的影长,跟5 m 进行比较就可得出结论.活动3 课堂小结学生试述:这节课你学到了什么?教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①影子 投影线 投影面②平行 同一点(点光源)③平行投影④略⑤略【合作探究1】活动2 跟踪训练1.灯光2.短【合作探究2】活动2 跟踪训练旗杆的影长应为22.4 m,投在墙上的影长为6.75 m>5 m,所以影子能达到大使办公室的窗口。
人教版九年级数学下册投影与视图《投影(第2课时)》示范教学设计
投影(第2课时)教学目标1.了解正投影的概念.2.能根据给出的情形画出简单图形的正投影.教学重点正投影的含义,能画出简单图形的正投影.教学难点正确画出简单图形的正投影.教学过程知识回顾1.平行投影的性质与判定:【答案】(1)平行投影的对应点的连线是互相平行(或在同一直线上)的;(2)物体与投影的对应点的连线互相平行,就说明该投影是平行投影.2.平行投影的规律:同一时刻、同一地点的太阳光下,不同物体的影子长度与它们的高度成正比.3.中心投影的规律:【答案】(1)中心投影中光线都是从同一点发出的,光线是发散的、不平行的,投影上的点与物体上对应的点的连线所在的直线交于一点,即点光源处;(2)由形成影子的两条光线即可确定点光源的位置.【设计意图】通过回顾学过的知识,检查学生对平行投影和中心投影的掌握情况,为下文讲解新知作铺垫.新知探究一、探究学习【思考】如图表示一块三角尺在光线照射下形成投影,其中图(1)与图(2)(3)的投影线有什么区别?【师生活动】教师提问,学生思考后回答,教师补充.【答案】上图中,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影.【思考】图(2)(3)的投影线与投影面的位置关系有什么区别?【师生活动】学生小组讨论后作答.【答案】图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.【新知】像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.在实际制图中,经常应用正投影.【设计意图】通过一步步的思考,让学生逐步区分中心投影、投影线与投影面不垂直的投影、投影线与投影面垂直的投影,引出正投影的定义.【探究】如图,把一根直的细铁丝(记为线段AB)放在三个不同位置:三种情形下铁丝的正投影各是什么形状?【师生活动】教师先让学生小组讨论,然后讲解.【答案】铁丝的正投影如图.通过观察、测量可知:(1)当线段AB平行于投影面时,它的正投影是线段A1B1,它们的大小关系为AB=A1B1;(2)当线段AB倾斜于投影面时,它的正投影是线段A2B2,它们的大小关系为AB>A2B2;(3)当线段AB垂直于投影面时,它的正投影是一个点A3.【设计意图】让学生理解线段的正投影的形状、大小与它相对于投影面的位置有关.【探究】如图,把一块正方形硬纸板P(记为正方形ABCD)放在三个不同位置:三种情形下纸板的正投影各是什么形状?【师生活动】学生在思考后作图,教师纠正.【答案】纸板的正投影如图.通过观察、测量可知:(1)当纸板P平行于投影面时,P的正投影与P的形状、大小一样;(2)当纸板P倾斜于投影面时,P的正投影与P的形状、大小不完全一样;(3)当纸板P垂直于投影面时,P的正投影成为一条线段.【新知】当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.【设计意图】让学生理解平面图形的正投影的形状、大小与它相对于投影面的位置有关.二、典例精讲【例】画出如图摆放的正方体在投影面上的正投影.(1)正方体的一个面ABCD平行于投影面(图(1));(2)正方体的一个面ABCD倾斜于投影面,底面ADEF垂直于投影面,并且其对角线AE垂直于投影面(图(2)).【师生活动】教师:不妨用一个盒子作为模型,观察它在墙壁上的投影.教师引导学生分析后画图.【分析】(1)当正方体在如图(1)的位置时,正方体的一个面ABCD及与其相对的另一面与投影面平行,这两个面的正投影是与正方体的一个面的形状、大小完全相同的正方形A′B′C′D′.正方形A′B′C′D′的四条边分别是正方体其余四个面(这些面垂直于投影面)的投影.因此,正方体的正投影是一个正方形.(2)当正方体在如图(2)的位置时,它的面ABCD和面ABGF倾斜于投影面,它们的投影分别是矩形A′B′C′D′和A′B′G′F′;正方体其余两个侧面的投影也分别是上述矩形;上、下底面的投影分别是线段D′F′和C′G′.因此,正方体的投影是矩形F′G′C′D′,其中线段A′B′把矩形一分为二.【答案】解:(1)如图(1),正方体的正投影为正方形A′B′C′D′,它与正方体的一个面是全等关系.(2)如图(2),正方体的正投影为矩形F′G′C′D′,这个矩形的长等于正方体的底面对角线长,矩形的宽等于正方体的棱长.矩形上、下两边中点连线A′B′是正方体的侧棱AB及它所对的另一条侧棱EH的投影.\【归纳】1.物体正投影的形状、大小与它相对于投影面的位置有关;2.画图形的正投影的方法:【设计意图】锻炼学生画立体图形的正投影的能力,让学生体会物体的正投影的形状、大小与它相对于投影面的位置有关,总结画图形的正投影的方法.课堂小结板书设计一、正投影的定义二、线段、平面图形、立体图形的正投影三、画图形的正投影的方法课后作业完成教材第92页练习.。
人教版初三数学下册29.1 投影(导学案)
§29.1投影(1)导学案寄语:有信心就有希望!试一试你一定行,拼一拼你一定赢!执教:颍东区冉庙乡中心学校申成卫一、学习目标★知识与技能:1、体会投影的含义,了解投影的有关概念和投影的分类。
2、理解平行投影和中心投影的区别与联系,能根据光线的方向辨认物体的投影类别以及简单作图。
★、过程与方法:通过探索物体与投影关系的活动,培养学生的动手实践能力,发展空间想象能力。
★、情感、态度与价值观:通过举例说明我国古代对投影的应用,渗透德育于数学教学当中。
提高学习热情,增强探究意识,应用意识。
二、学习重难点:1、学习重点:了解投影的有关概念,掌握平行投影和中心投影的区别与联系。
2、学习难点:在投影面上画平行投影或中心投影以及解决简单实际问题。
三、自学教材p87—88页,完成以下问题:1、投影的有关概念:一般地,用光线照射(不透明)的物体,在某个平面(地面、墙壁等)上得到的_______叫做物体的投影,照射光线叫做___________,投影所在的平面叫做________。
2、平行投影与中心投影:平行投影:由___________光线形成的投影。
例如:物体在太阳光的照射下形成的影子(简称日影)就是平行投影中心投影:由___________ 发出的光线形成的投影。
例如:物体在灯泡发出的光照射下形成影子就是中心投影。
3、看一看,想一想:在下图中找出投影、投影线、投影面。
4、想一想:下面的投影是什么光线照射形成的投影?它们分别是什么投影?四、合作学习,探究新知探究1、投影分类请观察以上生活中图形,找出异同。
问:你知道投影如何分类吗?探究2、平行投影和中心投影的区别与联系①、以数学习小组为单位,观察在太阳光线下,木杆在地面的投影。
(不断改变木杆的位置,)你发现了什么?②以数学习小组为单位,观察在太阳光线下,三角板在地面的投影。
(不断改变三角板的位置,)你发现了什么?③、以数学习小组为单位,观察在灯照射下,木杆和三角形纸板在地面的投影.(不断改变木杆和三角形纸板的位置,)你发现了什么?④请思考平行投影和中心投影,它们有什么相同点与不同点? 完成下表。
九年级数学上册第五章投影与视图1投影第2课时平行投影与正投影教案
第2课时平行投影与正投影设计说明:《新课程标准》的“实践与综合应用”领域,是《标准》的一个特色。
影子是生活中常见的现象,本节课研究平行投影。
目的是让学生体会影子与生活的息息相关,激发学生学习的动机与兴趣,树立正确的数学观。
本课时密切联系实际,涉及到地理、物理等知识,体现了数学与各学科内容间的联系。
丰富了数学课堂,对老师是新的挑战。
教学中以学生探索为主线,借助人文化的词语串联整个的课堂,以丰富的图片吸引学生,借助具体操作观察不同时刻影子的方向与大小的变化特征,尽可能的使学生增强感性认识。
这是本人与学生一次共同发展的过程。
教学内容平行投影与正投影教学目标1、知识与技能目标了解平行投影的含义,能够确定物体在太阳光下的影子。
了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。
2、过程与方法目标经历实践、探索的过程,了解平行投影的含义。
通过观察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。
理解在同一时刻,物体的影子与它们的高度成比例.3、情感与态度目标让学生积极参加数学活动,认识数学与人类的密切联系及对人类历史发展的作用,激发学生探究与创造,加强学生的合作与交流。
教学重点了解平行投影的含义,能够确定物体在太阳光下的影子。
了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。
理解在同一时刻,物体的影子与它们的高度成比例.教学难点经历操作、观察,由直观到推理,归纳总结到理论的过程。
教教学内容及过程备注学过程一、创设情境、设问导入引言:太阳光下的影子是我们司空见惯的,物体在太阳光下形成的影子与在灯光下形成的影子有什么不同呢?二、操作感知、建立表象做一做实践:取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。
提问:(1)固定投影面,改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒或纸片,改变投影面的摆放位置和方向,它们的影子分别发生了什么变化?学生操作,观察,探索.概念:太阳光线可以看成平行光线,平行光线所形成的投影称为平行投影。
人教版九年级数下册导学案29.1 投影学案2
3)当线段AB垂直于投影面P时,它的正 投影是一个点A。
3、正方形的正投影
1)当纸 板P平行于投影面时,P的正投影与纸板P的形状、大小一样;
2)当纸板P倾斜于投影面时,P的正投影与 纸板P的形状、大小发生变化;;
3)当纸板P垂直于投影面时,P的正投影成为一条线段。
4、正投影的性质:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状 、大小完全相同。
2、出示任务自主学习
阅读课本第P100——101的内容,尝试回答下列问题:
解答课本思考中的问题;
2)什么叫正投影?
3)解读探究1(线段的正投影),并归纳你的发现;
4)解读探究2(正方形的正投影),并归纳你的发现;
5)归纳总结:通过探究1、探究2;你发现了什么?正投影具有什么性质?
5)认真阅读课本例题,规范解题过程,并反思物体正投影的形状、大小与什么有关?
五、达标检测
1、课后练习
2、《导学案》自主测评
课后作业:
板书设计:
29.1投影(2)
1、 正投影的概念
2、线段的正投影
3、正方形的正投影
4、正投影的性质
课后反思:
学习重点:
能根据正投影的性质 画出简单平面图形的正投影。
学习难点:
归纳正投影的性质,正确画出简单平面图形的正投影。
导学方法:
课时:
导学过程
一、课前预习:
预习课本第P102——103内容,尝试完成《导学案》的教材导读和自主测评。
二、课堂导学:
1、导入
通过上节课的学习,我们了解了投影的一些知识。想一想,什么叫投影?投影有哪些类型?这节课我们来学习一种特殊的投影——正投影。
投影
人教版九年级下册数学 第2课时 正投影导学案
29.1 投影第2课时正投影【学习目标】(一)知识技能:1.进一步了解投影的有关概念。
2.能根据正投影的性质画出简单平面图形的正投影。
(二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。
(三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
(四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。
【学习重点】能根据正投影的性质画出简单平面图形的正投影。
【学习难点】归纳正投影的性质,正确画出简单平面图形的正投影。
【学习准备】手电筒、三角尺、作图工具等。
【学习过程】【知识回顾】正投影的概念:投影线于投影面产生的投影叫正投影。
【自主探究】活动1出示探究1如图29.1—7中,把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面:(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点)。
三种情形下铁丝的正投影各是什么形状?通过观察、讨论可知:(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB A1B1;(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB A2B2;(3)当线段AB垂直于投影面P时,它的正投影是。
设计意图:用细铁丝表示一条线段,通过实验观察,分析它的正投影简单直观,易于发现结论。
活动2如图,把一块正方形硬纸板P(记为正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面。
三种情形下纸板的正投影各是什么形状?通过观察、讨论可知:(1)当纸板P平行于投影面时,P的正投影与纸板P的一样;(2)当纸板P倾斜于投影面时,P的正投影与纸板P的;(3)当纸板P垂直于投影面时,P的正投影成为。
归纳总结:通过活动1、活动2你发现了什么?正投影的性质:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
29.1 投影(2)导学案
【学习目标】
1、了解正投影的概念;
2、能根据正投影的性质画出简单的平面图形的正投影
3、培养动手实践能力,发展空间想象能力。
【学习重点】
正投影的含义及能根据正投影的性质画出简单的平面图形的正投影
【学习难点】
归纳正投影的性质,正确画出简单平面图形的正投影
【导学过程】
一、知识链接:
下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中
心投影?图(2) (3)的投影线与投影面的位置关系有什么区别?
二、自学提纲:
(1)正投影的定义: 叫做正投影.在实际制图中,经常采用正投影.
(2)物体的位置与其正投影的关系:当物体平行于投影面时,其正投影与原物体的形状、大小 ;当物体倾斜于投影面时,其正投影与原物体的形状、大小 ;当物体垂直于投影面时,其正投影成 。
三、教师点拨:
例1:如图3,在Rt △ABC 中,∠C=090,在阳光的垂直照射下,点C 落在斜边AB 上的D 点.
⑴试探究线段AC 、AB 和AD 之间的关系,并说明理由.
⑵线段BC 、AB 和BD 之间也有类似的关系吗?
例2:一个圆柱的轴截面平行于投影面,圆柱的正投影是一个边长为10的正方形,求圆柱的体积和表面积.
解析:本题的关键是求圆柱的高和底面半径,圆柱的轴截面是一个长方形,圆柱体的高和底面圆的直径是它的两邻边的长,由于长方形平行于投影面,因此其投影与它全等,即该长方形的两邻边相等.可求出圆柱的高和地面半径,从而求出圆柱的体积和表面积.
四、针对练习:
1.球的正投影是( )
(A)圆面.
(B)椭圆面. (C)点. (D)圆环. 图3 D
C
B A
2.底面与投影面垂直的圆锥体的正投影是()
(A)圆.(B)三角形.(C)矩形.(D)正方形. 3.指出如图所示的立体图各个面的正投影图形,并画出投影线的方向如箭头所示立体图的正投影
.
4.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()
5.如图3,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面形成阴影的示意图。
已知桌面的直径为1.2米,桌面距离地面1米。
若灯泡距离地面3米,则地面上阴影部分的面积为()
(A)0.36π平方米(B)0.81π平方米(C)2π平方米(D)3.24π平方米6.分别画出下列几个几何体从正面和上面看的正投影.
图3
7.正方形在太阳光的投影下得到的几何图形一定是()
(A)正方形.(B)平行四边形或一条线段.(C)矩形.(D)菱形.8.将一个三角形放在太阳光下,它所形成的投影是;9.关于盲区的说法正确的有()
(1)我们把视线看不到的地方称为盲区
(2)我们上山与下山时视野盲区是相同的
(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比它矮的建筑物挡住
(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大
A.1 个B.2个C.3个D.4个。