浙江中考数学考试大纲.doc
中考数学考试大纲(最新版)
中考数学考试大纲
考试目标
【数与代数】
1. 有理数
(1) 有理数的意义
(2) 用数轴上的点表示有理数
及有理数的相反数和绝对
值
(3) 有理数的大小比较
(4) 求有理数的相反数与绝对
值(绝对值内不含字母)
(5) 乘方的意义
(6) 有理数的加、减、乘、除、
乘方运算及混合运算(以三
步为主)
2. 实数
(1) 平方根、算术平方根、立方
根和二次根式的概念
(2) 用根号表示平方根、立方根
(3) 开方和乘方互为逆运算
(4) 求某些非负数的算术平方
根,求实数的立方根
(5) 无理数和实数的概念
(6) 实数与数轴上的点一一对
应关系
(7) 对含有较大数字的信息作
出合理的解释和推断(8) 用有理数估计一个无理数
的大致范围
(9) 近似数与有效数字的概念
(10) 二次根式的加、减、乘、
除运算法则
(11) 实数的简单四则运算3. 代数式
(1) 用字母表示数的意义
(2) 用代数式表示简单问题的
数量关系
(3) 解释一些简单代数式的实
际背景或几何意义
(4) 求代数式的值
(5) 整数指数幂的意义和基本
性质
(6) 用科学记数法表示数
(7) 整式和分式的概念
1
(8) 简单的整式加减运算及乘
法运算(其中的多项式相乘
仅指一次式相乘)
(9) 平方差、完全平方公式的推
导及运用
(10) 提取公因式法和公式
法 (用公式不超过两次,指
数是正整数)因式分解(11) 运用分式基本性质进
行约分和通分
(12) 简单的分式加、减、乘
除运算
4. 方程与方程组
(1) 根据具体问题中的数量关
系,列出方程或方程组(2) 解一元一次方程和二元一
次方程组
(3) 解可化为一元一次方程的
浙教版中考数学考试大纲
浙教版中考数学考试大纲
一、考试性质
本大纲旨在明确浙教版中考数学考试的基本要求,指导考生掌握数学基础知识,培养数学素养,提高解决实际问题的能力。
二、考试目标
1、数学基础知识:考查学生对数学基本概念、公式、定理的掌握程度,能否在具体情境中运用所学知识解决问题。
2、数学技能:考查学生阅读理解、运算求解、数据处理、推理证明等技能,以及运用这些技能解决实际问题的能力。
3、数学思维:考查学生的逻辑思维、创新思维和批判性思维等能力,能否运用数学思想方法分析问题和解决问题。
4、数学文化:考查学生对数学史、数学应用和数学发展的了解程度,以及是否具有对数学学习的兴趣和态度。
三、考试内容
1、代数部分:整数、分数、小数、百分数等基本概念及运算;代数
式、方程式、不等式、函数等基本知识;数的整除性、最大公约数、最小公倍数等数的性质与运算;代数方程、不等式、函数的解法及实际应用。
2、几何部分:直线、射线、线段、角等基本概念及度量;长方形、正方形、三角形、四边形、多边形等基本图形及性质;圆、扇形、圆柱、圆锥等基本几何图形及性质;图形的对称、平移、旋转等变换及实际应用。
3、统计部分:数据的收集、整理、描述和分析;概率与统计推断;随机事件及其概率等基本概念及实际应用。
4、初等数学综合应用:在实际问题中运用数学知识进行分析和解决,包括数据处理、模型建立、信息整合等。
四、考试形式与试卷结构
1、考试形式:闭卷笔试,时间120分钟。
2、试卷结构:试卷满分100分,其中选择题约占40%,填空题约占20%,解答题约占40%。
3、内容比例:代数部分约占40%,几何部分约占35%,统计部分约占
中考数学试卷大纲
一、试卷结构
1. 试卷总分:满分120分,考试时间120分钟。
2. 试卷结构:分为选择题、填空题、解答题三大块。
二、选择题(共20题,每题2分,满分40分)
1. 数与代数
(1)实数的运算及性质
(2)一元一次方程及不等式
(3)二元一次方程组
(4)一元二次方程及根的判别式
(5)函数及其性质
2. 几何与代数
(1)三角形、四边形及相似、全等
(2)圆及圆的性质
(3)平面直角坐标系与坐标计算
(4)解析几何基础
3. 统计与概率
(1)平均数、中位数、众数
(2)频率分布表
(3)概率计算
(4)随机事件
三、填空题(共10题,每题3分,满分30分)
1. 完成实数的运算
2. 求一元一次方程的解
3. 求二元一次方程组的解
4. 求一元二次方程的解
5. 求函数的值
6. 判断三角形的性质
7. 求圆的面积
8. 在平面直角坐标系中求点的坐标
9. 求概率
10. 求平均数、中位数、众数
四、解答题(共5题,每题10分,满分50分)
1. 数与代数(一元二次方程、函数)
题目:已知一元二次方程ax^2+bx+c=0(a≠0)的解为x1和x2,求:(1)若x1+x2=5,求a、b、c的值;
(2)若x1x2=4,求a、b、c的值。
2. 几何与代数(三角形、四边形)
题目:已知在三角形ABC中,AB=AC,BC=5cm,求:
(1)求三角形ABC的面积;
(2)求角B的度数。
3. 统计与概率
题目:某班级有30名学生,成绩如下表所示:
成绩区间 | 人数
——|——
0-60 | 5
60-70 | 10
70-80 | 10
80-90 | 5
90-100 | 0
浙江省杭州市中考数学考试大纲及政策全景
杭州市中考政策全景
01 02 03 04中考政策简介中考科目&分值录取分数线
中考大事件
1
考试科目考试形式答卷时间满分分值计分
语文闭卷120分钟120分按卷面计分
数学闭卷100分钟120分按卷面计分
英语闭卷100分钟120分按卷面计分
科学闭卷120分钟160分按卷面计分
社会开卷90分钟100分卷面50%计分
体育共3类6项,按规定自主选择项目、
最多参加两次考试30分每类最高得分计入总分
注:上表中考试科目“社会”即“道德与法治·历史与社会”的简称,其计分如有
0.5分的计为1分。体育科目三类得分之和(总分)如有0.5分的计为1分。
招生录取
•各类高中招生录取工作坚持公平、公正、公开的原则,并进一步健全初中毕业升学考试
与综合素质评价相结合的多元招生录取机制。•各类高中招生录取工作分提前自主招生和集中统一招生两个阶段进行。
提前自主招生
Ø初中毕业升学考试前,部分学校可按规定实施提前自主招生。提前自主招生的类别有:
Ø省一级重点普通高中、省一级普通高中特色示范学校及其领办的分校提前自主招收保送生;
Ø中等职业学校提前自主招生。
集中统一招生
•
初中毕业升学考试后进行的招生为集中统一招生。集中统一招生分中职与应用型本科一体化培养试点招生(以下简称“中本一体试点”)批、提前批、第一批、第二批、第三批共五个批次进行。
•
中本一体试点批招生:杭州市将建立全市统一的中本一体试点招生录取平台,统筹招生管理,在中考后其他各批次招生录取前完成录取。
•
提前批招生:提前批招生共有三个类别,包括特长生(体育、艺术、科技类)、中外合作办学课程项目班及列入提前批招生的特色班。提前批招生共设一个志愿,考生在三个类别中选择其中的一类一校报考,不得兼报。
(完整版)初中数学中考考试大纲
知识与技能
注:知识与技能考查分为四个层次
(1) 认识)(al);能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象
(2) 理解(a2):能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系
(3) 掌握(a3):能在理解的基础上,把对象运用到新的情境中
(4) 运用(a4):能综合运用知识,合理地选择与运用有关的方法完成特定的数学任务。上述知识与技能中,属于
“运用”层次的有:图形与变换12 (7)、图形与坐标14
(5) 、统计与概率1 (12)
二、数学思考
数学思考特指在面临各种问题情境时,能够从数学的
角度去思考问题,能够发现其中所存在的数学现象并运用数学的知识与方法去解决问题,该领域应特别关注学生数感、符号感、空间概念、统计概念、应用意识、推理能力等方面的发展情况,在考试中主要体现在以下几个方面:
(1) 实世界中数量关系,具有初步的数感、符号感和抽
象思维能力。这一目标主要包括能够在较复杂的层面上用数字和图表刻画现实生活中的现象,对一些数字信息作出
合理解释与推断,并运用代数中的方程、不等式、函数等去刻画具体问题,建立合适的数学模型。
(2) 对现实空间及图形有较丰富的认识,具体初步的空间观念和形象思维能力。这一目标包括能够通过动手操
作、图形变换等多种方式探讨图形的形状、大小、位置关系、等量关系等,进行简单的图案设计、构建几何空间,并尝试用图形去从事推理活动。
(3) 能运用数据描述信息,作出合理推断,具有统计的观念。这一目标主要包括能够从事教为完整的统计活动,
中考数学考试大纲(最新版).doc
中考数学考试大纲考试目标
【数与代数】
有理数
有理数的意义
用数轴上的点表示有理数及有理数的相反数和绝对值
有理数的大小比较
求有理数的相反数与绝对值(绝对值内不含字母)
乘方的意义
有理数的加、减、乘、除、乘方运算及混合运算(以三步为主)实数
平方根、算术平方根、立方根和二次根式的概念
用根号表示平方根、立方根
开方和乘方互为逆运算
求某些非负数的算术平方根,求实数的立方根
无理数和实数的概念
实数与数轴上的点一一对应关系对含有较大数字的信息作出合理的解释和推断
用有理数估计一个无理数的大致范围
近似数与有效数字的概念
二次根式的加、减、乘、除运算法则
实数的简单四则运算
代数式
用字母表示数的意义
用代数式表示简单问题的数量关系
解释一些简单代数式的实际背景或几何意义
求代数式的值
整数指数幂的意义和基本性质用科学记数法表示数
整式和分式的概念
简单的整式加减运算及乘法运算(其中的多项式相乘仅指一次式相乘)
平方差、完全平方公式的推导及运用
提取公因式法和公式法(用公式不超过两次,指数是正整数)因式分解
运用分式基本性质进行约分和通分
简单的分式加、减、乘除运算方程与方程组
根据具体问题中的数量关系,列出方程或方程组
解一元一次方程和二元一次方程组
解可化为一元一次方程的分式方程(方程中分式不超过两个)用因式分解法、公式法和配方法解简单的数字系数的一元二次方程
用观察、画图或计算等方法估计方程的解
根据具体问题的实际意义,检验结果是否合理不等式与不等式组
不等式的意义
不等式的基本性质
解一元一次不等式及由两个一元一次不等式组成的不等式组,并在数轴上表示出解集
完整版)初中数学中考考试大纲
完整版)初中数学中考考试大纲
初中数学中考考试大纲
一、知识与技能
1、数与代数
考试内容:
本部分主要考察有理数、实数、二次根式、代数式、整式、因式分解、分式、方程与方程组、不等式与不等式组、函数及其表示等知识点。
要求目标:
学生需要掌握有理数的概念、大小比较、加减乘除乘方运算、数的开方等基本知识;理解实数、无理数的概念,以及近似数和有效数字的概念;掌握代数式、整式的概念和基本运算法则,以及因式分解、分式、方程与方程组、不等式与不等式
组等知识;理解函数的概念和表示方法,能够求解一次函数和反比例函数等问题。
2、几何
考试内容:
本部分主要考察平面图形的性质、三角形的性质、圆的性质、相似与全等等知识点。
要求目标:
学生需要掌握平面图形的基本性质,如线段、角、多边形等;掌握三角形的性质,如三角形内角和、中线定理、角平分线定理等;掌握圆的性质,如圆心角、弧长、切线等;理解相似和全等的概念,能够判断两个图形是否相似或全等。
3、数据与统计
考试内容:
本部分主要考察数据的收集、整理和表示方法,以及统计分析方法等知识点。
要求目标:
学生需要掌握数据的收集、整理和表示方法,如频数、频率、累计频率等;掌握统计分析方法,如均值、中位数、众数、极差、方差等;能够进行简单的数据分析和统计。
4、应用题
考试内容:
本部分主要考察数学知识在实际问题中的应用能力。
要求目标:
学生需要能够将数学知识应用到实际问题中,解决生活中的实际问题。例如,能够解决关于比例、利润、利率、速度等方面的实际问题。
反比例函数的意义是指两个变量之间的关系是反比例关系,即其中一个变量的值增加,另一个变量的值就会相应地减少。例如,当一个物品的价格上涨时,人们购买该物品的数量会下降。
杭州中考考纲
杭州中考考纲
杭州中考考纲是指在杭州地区进行的中等教育学校招生考试中确定
的考试内容和标准。它是中考命题、阅卷和评分的重要依据,对于学
生的备考和教师的教学都具有重要的指导意义。本文将详细介绍杭州
中考考纲的内容和相关说明。
一、考试科目和分值分布
杭州中考考纲包括必考科目和选考科目,必考科目主要包括语文、
数学和英语,分值为120分,即每个科目占总分的40%。选考科目的
具体安排及分值分布以教育主管部门的通知为准。
1. 语文:考查学生的语言文字运用能力和综合分析能力,包括词汇
理解、阅读理解、写作等。阅读题部分占总分的50%,作文部分占总
分的25%。
2. 数学:考查学生的数学运算和解题能力,主要包括数与式的关系、几何与图形、数据与概率等方面。选择题占总分的60%,解答题占总
分的40%。
3. 英语:考查学生的英语听力、阅读、写作和口语表达等方面的综
合能力。听力题占总分的20%,阅读和写作题占总分的60%,口语表
达题占总分的20%。
二、考试要求和评分标准
1. 考试要求:杭州中考考纲强调学生的基础知识和能力的全面发展。要求学生掌握各科目的基本知识和解题方法,并能够综合运用,在解
决实际问题的过程中体现出批判性思维和创新性思考。同时,注重学
生的语言表达和书写规范,要求学生写作时要清晰、连贯、有逻辑。
2. 评分标准:杭州中考考纲对于每个科目的评分标准都做了明确规定,以确保评分的公平、客观和准确。评分主要从答题的正确性、完
整性、合理性以及语言表达的准确性和规范性等方面进行综合评定。
根据评分标准,每个题目都会有相应的分值加减。
中考数学考试大纲(最新版)
中考数学考试大纲
考试目标
【数与代数】
1.有理数
(1)有理数的意义
(2)用数轴上的点表示有理数
及有理数的相反数和绝对
值
(3)有理数的大小比较
(4)求有理数的相反数与绝对
值(绝对值内不含字母)(5)乘方的意义
(6)有理数的加、减、乘、除、乘方运算及混合运算(以
三步为主)
2.实数
(1)平方根、算术平方根、立
方根和二次根式的概念(2)用根号表示平方根、立方
根
(3)开方和乘方互为逆运算(4)求某些非负数的算术平方
根,求实数的立方根
(5)无理数和实数的概念
(6)实数与数轴上的点一一对
应关系
(7)对含有较大数字的信息作
出合理的解释和推断
(8)用有理数估计一个无理数
的大致范围
(9)近似数与有效数字的概念(10)二次根式的加、减、乘、除运算法则
(11)实数的简单四则运
算
3.代数式(1)用字母表示数的意义
(2)用代数式表示简单问题的
数量关系
(3)解释一些简单代数式的实
际背景或几何意义
(4)求代数式的值
(5)整数指数幂的意义和基本
性质
(6)用科学记数法表示数
(7)整式和分式的概念
(8)简单的整式加减运算及乘
法运算(其中的多项式相
乘仅指一次式相乘)
(9)平方差、完全平方公式的
推导及运用
(10)提取公因式法和公
式法(用公式不超过两次,
指数是正整数)因式分解(11)运用分式基本性质
进行约分和通分
(12)简单的分式加、减、乘除运算
4.方程与方程组
(1)根据具体问题中的数量关
系,列出方程或方程组(2)解一元一次方程和二元一
次方程组
(3)解可化为一元一次方程的
分式方程(方程中分式不
超过两个)
(4)用因式分解法、公式法和
2024年全国中考数学考试大纲详解
2024年全国中考数学考试大纲详解数学一直以来都是中考科目中的重中之重,对于考生来说,掌握数
学考试大纲的内容和要求至关重要。在2024年的全国中考数学考试中,考生将会面临怎样的题型和知识点呢?本文将对2024年全国中考数学
考试大纲进行详解,以帮助考生更好地备考。
一、数与代数
1. 数的运算
2024年的中考数学考试将重点考查数的四则运算,包括加减乘除,
并增加了较复杂的混合运算。考生需要注意运算的优先级和法则,并
能够准确地进行计算。
2. 代数式与简单方程
本部分考查代数式的展开和化简,以及简单方程的解法。考生需要
熟悉代数式的基本性质和操作法则,并能够解一元一次方程和一元一
次不等式。
3. 等式与不等式
考生需要掌握等式和不等式的性质和解题方法,包括一元一次方程、一元一次不等式的解法,以及含有绝对值的方程和不等式的解法。
二、几何与图形
1. 两角关系与直角三角形
本部分考查角的度量和角的关系,以及直角三角形的性质和求解。
考生需要掌握角的度量单位和换算,熟练计算角的大小和角的关系,
能够运用正弦、余弦、正切等概念解决直角三角形的相关问题。
2. 勾股定理与平面向量
考生需要熟悉勾股定理的表述和应用,能够判断三边长度是否构成
直角三角形,以及利用勾股定理计算未知边长。此外,平面向量的基
本概念和运算法则也是考试的重点内容。
3. 图形的性质与计算
本部分考查各种图形的性质和计算方法,包括平行四边形、矩形、
正方形、菱形等的特点和计算公式,以及圆的性质和相关计算。考生
需要熟练运用相关公式解决与图形相关的计算题。
三、数据与统计
2024年全国中考数学考试大纲
2024年全国中考数学考试大纲
一、考试目标和要求
2024年全国中考数学考试旨在全面评估学生对数学知识和技能的掌握程度,培养学生的逻辑思维和问题解决能力。考试内容涵盖数学的基本概念、运算技巧、应用能力和数学思维方法。具体考试目标和要求如下:
1. 理解与应用知识
学生应掌握数与代数、几何、函数、统计与概率等方面的基本概念和基本原理,并能灵活运用这些知识解决实际问题。
2. 计算与推理能力
学生应具备基本的计算能力,能熟练运用数与代数、几何、函数等方面的运算技巧。同时,学生应具备良好的逻辑思维和推理能力,能运用数学方法和思维解决实际问题。
3. 建模与解决问题能力
学生应具备基本的建模能力,能从具体问题中抽象出数学模型,并能利用数学模型解决实际问题。
4. 快速反应与解决问题能力
学生应具备较强的计算与推理能力,能在一定时间内迅速反应和解决问题,提高解决问题的效率。
二、考试内容
2024年全国中考数学考试内容包括数与代数、几何、函数、统计与概率四个方面。其中,数与代数占30%,几何占30%,函数占20%,统计与概率占20%。具体内容如下:
1. 数与代数
(1)整数、有理数和无理数的概念与性质;
(2)代数式及其运算;
(3)一元一次方程及其应用;
(4)比例与比例方程;
(5)四则运算和整式的运算;
(6)一元二次方程及其应用。
2. 几何
(1)相交线与平行线;
(2)三角形的性质与构造;
(3)多边形的性质与构造;
(4)相似与全等三角形;
(5)三角形的面积;
(6)圆的性质与构造;
(7)平面图形的投影与旋转。
3. 函数
(1)函数的概念与性质;
(完整版)初中数学中考考试大纲
V
③反比例函数的表达式
V
④用反比例函数解决某些实际问题
V
15、二次函数
①二次函数的意义
②确定二次函数的解析式
V
③二次函数的图像和性质
V
④图像的顶点、开口方向和对称轴
V
⑤用二次函数的图像求一兀二次方 程的近似解
⑥方程、不等式、函数的联系
V
⑨等腰三角形的性质和判定
V
⑩直角三角形的概念
整 式 与 分 式
7、整式
①整式的概念
V
②整式的加、减运算
V
③整式指数幕的意义和基本性质
V
④乘法公式
V
⑤科学计数法
V
⑥整式的乘、除运算(多项式乘法 仅限于一次式相乘)
V
&因式分解
①因式分解的意义
V
②提取公因式法
V
③公式法(直接用公式不超过两次)
V
9、分式
①分式的概念
V
②分式的基本性质
V
③约分与通分
V
V
考试内容
考试 要求目标
单 元
知识条目
a1
a2
V
④简单的整式、分式和实际问题中 的函数自变量取值范围
V
⑤求函数值
V
⑥对变量的变化规律进行初步预测
V
2023浙江宁波中考数学
2023浙江宁波中考数学
前言
2023年是浙江宁波市的中学毕业生参加中考的一年。中考数学是中考科目之一,对考生的数学水平和思维能力进行考察,是考生们备战中考的重要内容。在本文档中,我们将介绍2023浙江宁波中考数学的考试大纲和常见题型,帮助考生们
顺利备考。
考试大纲
2023浙江宁波中考数学的考试大纲主要包括以下几个方面的内容:
1.数与代数:包括数的性质、整式的加减法、乘法、
因式分解、二次根式等内容。
2.函数与方程:包括一次函数与方程、二次函数与方
程等内容。
3.几何与图形:包括平面图形的性质、平行线与三角
形、相似与全等等内容。
4.统计与概率:包括数据的收集整理与统计、概率计
算等内容。
常见题型
2023浙江宁波中考数学的常见题型主要包括选择题、填空题、计算题和解答题。下面将介绍每种题型的特点和解题方法。
选择题
选择题是最常见的题型,它要求考生在给出的选项中选择
一个正确答案。考生需要注意认真阅读题目,并对选项进行仔细比较。在解答选择题时,可以通过排除法将选项进行筛选,找到最符合题意的答案。
填空题
填空题要求考生填写一个或多个空格,使得所填入的数或
字母能够满足题目要求。在解答填空题时,考生需要根据题目给出的条件进行推理和计算,找到符合要求的答案,并将其填入空格中。
计算题
计算题是需要进行具体计算的题目,一般要求考生进行算式推导或进行简单的数学运算。在解答计算题时,考生需要注意计算的顺序和方法,并在最后给出准确的数值答案。
解答题
解答题是需要考生进行详细解答的题目,一般要求考生给出详细的解题步骤和答案。在解答题时,考生需要理清思路,合理组织语言,清晰地展示解题过程,并给出准确的答案。
杭州 中考 考试大纲
杭州中考考试大纲
杭州中考考试大纲如下:
考试科目:语文、数学、英语、物理、化学、政治。
考试分值:语文、数学、英语三科分值占比分别为40%、30%、20%,物理、化学、政治三科分值占比均为10%。
考试时长:语文120分钟,数学90分钟,英语90分钟,物理75分钟,化学75分钟,政治60分钟。
考试内容和要求:考试内容依据国家课程标准和考试性质确定,要求以知识技能为载体,以思维能力和问题解决能力为核心,以探究学习和自主学习为重点,培养学生的创新意识和实践能力。
(完整版)初中数学中考考试大纲
根据要求设计简单的概念实验
√
用频率估计概念
√
用概率知识解决简单的实际问题
√
注:知识与技能考查分为四个层次
(1)认识)(a1);能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象
(2)理解(a2):能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系
(3)能运用数据描述信息,作出合理推断,具有统计的观念。这一目标主要包括能够从事教为完整的统计活动,能针对现实情境中呈现的原始数据,并根据需要进行重新整理和分析,对数据作数学处理,按照处理的结果做出合理推断和决策,同时了解在现实情境中收集与表达数据的基本方法,能够运用计算器或计算机处理较为复杂的数据。
√
简单的二元一次方程的解法
√
可化为一元一次方程的分式方程的解法(方程中的分式方程不超过两个)
√
简单数字系数的一元二次方程的解法(公式法、配方法、因式分解法)
√
列方程(组)解应用题
√
11、不等式与不等式组
不等式的意义
√
不等式的基本性质
√
简单的一元一次不等式的解法
√
两个一元一次不等式组成的不等式组的解法
√
方程、不等式、函数的联系
√
2、空间与图形
考试内容
考试
目标要求
中考数学考试大纲(最新版
中考数学考试大纲
考试目标
【数与代数】
1.有理数
(1)有理数的意义
(2)用数轴上的点表示有理数及有理数的相反数和绝对值
(3)有理数的大小比较
(4)求有理数的相反数与绝对值(绝对值内不含字母)
(5)乘方的意义
(6)有理数的加、减、乘、除、乘方运算及混杂运算(以三步为主)
2.实数
(1)平方根、算术平方根、立方根和二次根式的看法
(2)用根号表示平方根、立方根
(3)开方和乘方互为逆运算
(4)求某些非负数的算术平方根,务实数的立方根
(5)无理数和实数的看法
(6)实数与数轴上的点一一对应关系
欢迎阅读(7)对含有较大数字的信息作出合理
的解说和推测
(8)用有理数预计一个无理数的大体
范围
(9)近似数与有效数字的看法
(10)二次根式的加、减、乘、除运算法规
(11)实数的简单四则运算
3.代数式
(1)用字母表示数的意义
(2)用代数式表示简单问题的数目关
系
(3)解说一些简单代数式的实质背景
或几何意义
(4)求代数式的值
(5)整数指数幂的意义和基天性质
(6)用科学记数法表示数
(7)整式和分式的看法
(8)简单的整式加减运算及乘法运算(此中的多项式相乘仅指一次式
相乘)
(9)平方差、完整平方公式的推导及运用
(10)提取公因式法和公式法(用公一次不等式构成的不等式组,并在式不超出两次,指数是正整数)因数轴上表示出解集
式分解(4)不等式与不等式组的简单应用(11)运用分式基天性质进行约分 6. 函数
和通分(1)常量、变量的意义
(12)简单的分式加、减、乘除运算(2)举出函数的实例
4. 方程与方程组(3)函数的看法及函数的三种表示方(1)依据详尽问题中的数目关系,列出法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年初中学业考试大纲(数学)
一、命题依据
教育部制订的《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》).
二、命题原则
⒈体现数学课程标准的评价理念,有利于促进数学教学,全面落实《数学课程标准》所设立的课程目标;有利于改变学生的数学学习方式,提高学习效率;有利于高中阶段学校综合有效评价学生数学学习状况.
⒉重视对学生学习数学“双基”的结果与过程的评价,重视对学生数学思考能力和解决问题能力的发展性评价,重视对学生数学认识水平的评价.
⒊体现义务教育的性质,命题应面向全体学生,关注每个学生的发展.
⒋试题的考查内容、素材选取、试卷形式对每个学生而言要体现其公平性.制定科学合理的参考答案与评分标准,尊重不同的解答方式和表现形式.
⒌试题背景具有现实性.试题背景应来自学生所能理解的生活现实,符合学生所具有的数学现实和其他学科现实.
⒍试卷的有效性.关注学生学习数学结果与过程的考查,加强对学
生思维水平与思维特征的考查.
中考试卷要有效发挥选择题、填空题、计算(求解)题、证明题、开放性问题、应用性问题、阅读分析题、探索性问题及其它各种题型的功能,试题设计必须与其评价的目标相一致.
试题的求解思考过程力求体现《数学课程标准》所倡导的数学活动方式,如观察、实验、猜测、验证、推理等等.
三、适用范围
全日制义务教育九年级学生初中数学学业考试.
四、考试范围
教育部颁发的全日制义务教育数学课程标准(7—9年级)中:数与代数、空间
与图形、统计与概率、课题学习四个部分的内容.
五、内容和目标要求
⒈初中毕业生数学学业考试的主要考查方面包括:基础知识与基本技能;数学活动过程;数学思考;解决问题能力;对数学的基本认识等.⑴基础知识与基本技能考查的主要内容
了解数产生的意义,理解代数运算的意义、算理,能够合理地进行基本运算与估算;能够在实际情境中有效地应用代数运算、代数模型及相关概念解决问题;能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性;正确理解数据的含
义,能够结合实际需要有效地表达数据特征,会根据数据结果作合理的预测;了解概率的涵义,能够借助概率模型、或通过设计活动解释一些事件发生的概率.
⑵“数学活动过程”考查的主要方面
数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究与交流的意识、能力和信心等.⑶“数学思考”方面的考查应当关注的主要内容
学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况,其内容主要包括:
能用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换获得对事物的理解;能够观察到现实生活中的基本几何现象;能够运用图形形象来表达问题、借助直观进行思考与推理;能意识到作一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论作合理的质疑;面对现实问题时,能主动尝试从数学角度、用数学思维方法去寻求解决问题的策略;能通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性;能合乎逻辑地与他人交流等等.
⑷“解决问题能力”考查的主要方面:
能从数学角度提出问题、理解问题、并综合运用数学知识解决问题;具有一定的解决问题的基本策略.
⑸“对数学的基本认识”考查的主要方面:
对数学内部统一性的认识(不同数学知识之间的联系、不同数学方法之
间的相