《高等数学》课程教学大纲_2

合集下载

《高等数学2》课程教学大纲

《高等数学2》课程教学大纲

《高等数学2》课程教学大纲课程类别:公共基础课适用专业:理、工专科各专业适用层次:高起专适用教育形式:网络教育/成人教育考核形式:考试所属学院:成人、网络教育学院先修课程:高中数学一、课程简介高等数学2的内容为线性代数和概率论与数理统计。

本课程是非数学类理、工科专业及经济、管理类专业教学计划中的一门重要公共必修基础课,它广泛应用于科学技术的各个领域,尤其是计算机日益发展和普及的今天,使线性代数和概率论与数理统计成为理工科及经济、管理类学生所必备的基础理论知识和重要的数学工具。

线性代数着重学习在应用科学中常用的矩阵方法、线性方程组理论等线性代数的基本知识。

概率论与数理统计研究随机现象的统计规律性。

二、课程学习目标通过线性代数的学习,使学生掌握线性代数的基本概念、基本原理与基本计算方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系;培养学生分析问题、解决实际问题的能力和科学计算能力,为学习后继课程,从事工程技术、经济管理工作,科学研究以及开拓新技术领域打下必要的数学基础。

与此同时有利于培养和训练学生的抽象思维能力、逻辑推理能力,此外还能培养学生抓住事物本质特征的能力。

通过概率论与数理统计的学习,使学生掌握概率论与数理统计的基本概念、基本理论及方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生能运用概率统计方法分析和解决实际问题的能力,为后继专业课程的学习打下良好的基础。

三、与其他课程的关系线性代数后续课程:概率论与数理统计,数值分析,电路,信号与系统课程,数字信号处理,测量学,文献管理,静力学,运动学,数学建模,经济管理,经济学等。

概率论与数理统计是理、工、管理类本科各专业的一门重要的基础理论课。

要求具备《线性代数》、《高等数学》等先修课程,并掌握行列式、矩阵、排列组合和微积分的基本知识。

本课程可为学生后续的《统计学》、《计量经济学》、《随机过程》、《决策风险理论》及相关专业课夯实基础。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

高等数学(二)教学大纲

高等数学(二)教学大纲

高等数学(二)教学大纲课程代码:课程名称:高等数学(二)周学时:5学分:10一、课程性质与教学目的1.课程性质:全校公共数学基础课2.教学目的:高等数学课程是高等学校各专业学生一门必修的重要的基础理论课,它是为培养我国社会主义现代化建设所需要的高素质专门人才服务的。

通过本课程的学习,要使学生获得极限、一元函数微积分学、向量代数和空间解析几何、多元函数微分学、无穷级数、常微分方程等方面的基本概念、基本理论和基本运算技能,为学习后续课程和进一步获得数学知识奠定必要的数学基础。

二、基本要求要通过各个教学环节逐步培养学生具有抽象概括问题的能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学知识分析问题和解决问题的能力。

三、教学内容第一章函数、极限、连续1.理解函数的概念,掌握函数的表示方法。

2.了解函数的奇偶性、单调性、周期性和有界性。

3.理解复合函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形。

5.会建立简单应用问题中的函数关系式。

6.理解极限的概念,理解函数左、右极限的概念,以及极限存在与左、右极限之间的关系。

7.掌握极限的性质及四则运算法则。

8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

9.理解无穷小、无穷大以及无穷小的阶的概念,会用等价无穷小求极限。

10.理解函数连续性的概念,会判别函数间断点的类型。

11.了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和介值定理),并会应用这些性质。

计划学时:16第二章一元函数微分学1.理解导数和微分的概念,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,了解微分在近似计算中的应用。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲一、课程基本信息课程编码:课程名称:《高等数学》总学时:112学时适用专业:长春大学旅游学院商学院、旅游管理学院、工学院相关专业开课单位:基础部计算机与数学教研室课程类别:公共基础课课程性质:必修课二、课程性质、目的与任务高等数学课程的教学内容由3个数学分支的内容组成,即《微积分》(52学时)、《线性代数》(30学时)、《概率论及数理统计》(30学时)。

本课程是一门培养学生具有一定的抽象概括问题能力、逻辑推理能力、熟练的运算能力,综合运用所学知识去分析问题,解决问题能力的公共基础课,是商学院、旅游管理学院、工学院相关专业一门必修的课程。

通过本课程的学习,使学生掌握高等数学的基本知识、基本理论和基本方法,为学生解决实际问题提供有效的数学方法,以及将高等数学的知识在自然科学和工程技术中的广泛应用奠定良好的数学基础。

本课程的主要任务是为专业课提供必不可少的数学基础知识,在传授知识的同时,努力培养学生进行抽象思维和逻辑推理的理性思维能力,综合运用所学的知识分析问题和解决问题的能力,以及较强的自主学习能力,逐步培养学生的创新精神和创新能力。

三、课程的内容及要求、教学重点与难点(一)函数、极限、连续1.主要教学内容函数的概念;数列的极限;函数的极限;无穷小量与无穷大量;极限运算法则;极限存在准则、两个重要极限;函数的连续性与间断点;连续函数的运算、初等函数的连续性;闭区间上的连续函数的性质。

2.知识点与能力点(1)知识点:加深对函数概念的理解,了解函数性质(奇偶性、单调性、周期性和有界性);理解复合函数的概念,了解反函数的概念;理解极限的概念,了解极限的,Nεεδ--定义、理解左、右极限的定义;掌握极限的四则运算法则;了解极限的性质(唯一性、有界性、保号性)和两个存在准则(夹逼准则与单调有界准则);掌握两个重要极限;了解无穷小、无穷大,理解高阶无穷小和等价无穷小的概念;理解函数在一点连续和在区间上连续的概念;了解函数间断点的概念;了解初等函数的连续性和闭区间上连续函数的介值定理,最大值、最小值定理。

《高等数学II》教学大纲

《高等数学II》教学大纲

《高等数学II》课程教学大纲一、课程基本信息课程代码:课程名称:高等数学II英文名称:Higher mathematics II课程类别:公共课学时:64学分:4适用对象: 理工科专业考核方式:考试先修课程:高等数学I二、课程简介《高等数学II》是高等学校理工科专业学生的必修课。

通过本课程的学习,使学生掌握高等数学的基本概念、基本理论和基本运算技能,为学习后续课程和获得进一步的数学知识奠定必要的基础。

通过知识内容的传授,培养学生的运算能力、抽象思维能力、逻辑推理能力、空间想象能力及综合运用所学知识去分析问题和解决问题的能力。

其具体内容包括:空间解析几何与向量代数;多元函数微积分学(多元函数微分学、重积分、曲线积分和曲面积分);无穷级数。

Higher mathematics II is a compulsory course for students majoring in science and engineering in institutions of higher learning. Through learning of this course, make the students master the basic concepts of higher mathematics and the basic theory and basic computing skills, for learning the follow-up courses and further the mathematics knowledge to lay the necessary foundation. Through the knowledge content of teaching, cultivate students' operation ability, abstract thinking ability, logical reasoning ability, space imagination ability and the integrated use of knowledge to the ability to analyze and solve problems. The specific contents include: spatial analytic geometry and vector algebra; Multifunction calculus (multifunction differential calculus, reintegration, curvilinear integral and surface integral); Infinite series.三、课程性质与教学目的目前,《高等数学II》已成为理工科类及部分经济、管理类专业的主干学科基础课程,是教育部审定的核心课程和硕士研究生入学考试“数学1”和“数学2”的必考科目,对学好其它专业课程意义重大。

《高等数学》 课程教学大纲

《高等数学》 课程教学大纲

二、课程基本内容和要求
1. 函数、极限、连续
教学内容
(1) 函数概念、性质、基本初等函数图象的性质,复合函数,初等函数,建立函数关系举例。
(2) 函数极限的概念,极限的四则运算,两个重要极限,无穷小量与无穷大量概念及性质,无穷小的比较
(3) 函数的连续性,初等函数的连续性,间断点,闭区间上连续函数的性质
制定人:朱铭扬
审核人:高 枫
(2)偏导数概念,多元复合函数与隐函数的微分法
(3)全微分及其应用
(4)多元函数的极值和最值
教学要求
(1) 理解多元函数的基本概念,其定义域及图象特点,知道二元函数的极限、连续性等概念,知道有界闭区域上连续函数的性质。
(2) 理解偏导数,熟练地计算函数的一阶偏导数,熟练掌握复合函数的求导法则,会求隐函数的偏导数。
《高等数学》 课程教学大纲
总学时:128 学分:8
一、课程性质、任务和目的
高等数学是大学专科工学和理学专业一门必修的重要公共基础课,通过本课程的学习着重使学生理解极限的思想方法,掌握微积分学、级数、微分方程等内容,并通过各教学内容的有机结合,培养学生的逻辑思维能力和比较熟练的运算能力,为学生学习后继课程和解决实际问题提供必不可少的数学基础知识及常用数学方法。
(2)直角坐标系与极坐标系下二重积分的计算
(3)二重积分在几何上的应用:曲顶柱体体积计算
教学要求
(1) 理解二重积分概念及几何意义,知道其性质
(2) 掌握直角坐标系下二重积分的计算,会利用极坐标系计算二重积分。
(3) 会利用二重积分计算一些简单曲顶柱体的体积。
重点与难点:二重积分(包括概念、计算与应用);化重积分为累次积分;元素法

高等数学教学大纲

高等数学教学大纲

《高等数学》课程教学大纲一、《高等数学》课程说明(一)课程代码:(二)课程英文名称:Advanced Mathematics(三)开课对象:非数学专业专科学生(理科)(四)课程的性质:高等数学是高等教育专科重要的基础理论课之一。

通过本课程的学习,使学生获得微积分、空间解析几何、级数及常微分方程的基础知识和常用的运算方法。

通过各教学环节逐步培养学生分析问题和解决问题的能力。

为学习后继课程及今后的专业工作奠定必要的数学基础。

(五)教学目的:通过本课程的教学,提高学生的逻辑推理的能力,空间想象的能力,使学生具有比较熟练的运算能力和综合运用所学知识去分析问题、解决问题的能力。

(六)教学内容:1 要正确了解和理解以下概念:函数、极限、连续性、导数、微分、偏导数、全微分、函数的极值。

不定积分、定积分、二重积分、三重积分、无穷级数的敛散性、有关空间解析几何及常微分方程的基本概念。

2 要了解和掌握下列基本理论、基本定理和公式:基本初等函数的性质及图形,基本初等函数的导数公式,微分中值定理(罗尔定理、拉格朗日定理),不定积分基本公式,变上限积分及其求导定理、牛顿-莱伯尼兹公式,偏导数的几何意义,极值存在的必要条件,几何级数和P级数的收敛性,级数敛散性的判定条件,直线与平面的方程,典型的二次曲面、二阶线性常微分方程解的结构。

3掌握下列运算法则和方法:求函数和数列极限的方法与运算法则,导数和微分的运算法则,复合函数求导法,初等函数一阶、二阶导数的求法,用导数判断函数的单调性及求极值方法,多元函数复合函数的偏导数求法,不定积分、定积分的换元与分部积分法,正项级数的比值审敛法,求幂级数的收敛半径和收敛区间,函数展开成幂级数的间接展开法,一阶变量可分离变量微分方程的求解,二阶常系数线性微分方程的解法。

4 应用方面:用定积分和常微分方程方法求解一些简单的几何和物理问题,用极值方法求解最大值最小值的应用问题。

(七)教学时数教学时数:136学时教学时数具体分配:(八)教学方式课堂讲授,课外习作及批改.(九)考核方式和成绩记载说明考核方式为考试。

《高等数学》教学大纲

《高等数学》教学大纲

《高等数学》教学大纲一、课程基本信息课程名称:高等数学课程类别:公共基础课课程学分:_____课程总学时:_____授课对象:_____先修课程:_____二、课程性质与任务高等数学是高等院校各专业学生必修的一门重要基础理论课,它不仅为学生学习后续课程和解决实际问题提供了必不可少的数学基础知识和数学方法,而且在培养学生的创新思维能力、逻辑推理能力、空间想象能力以及分析问题和解决问题的能力等方面都起着重要的作用。

本课程的主要任务是使学生掌握高等数学的基本概念、基本理论和基本方法,培养学生运用数学知识解决实际问题的能力,为学生学习后续课程以及今后从事科学研究和实际工作打下坚实的数学基础。

三、课程教学目标1、知识目标使学生掌握函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程等方面的基本概念、基本理论和基本方法。

了解数学建模的基本思想和方法,能够运用所学的数学知识建立简单的数学模型,并求解实际问题。

2、能力目标培养学生的逻辑推理能力、抽象思维能力和空间想象能力。

提高学生的运算能力和综合运用所学知识分析问题、解决问题的能力。

培养学生的创新意识和创新能力。

3、素质目标培养学生的科学态度和严谨的治学精神。

提高学生的数学素养和文化素质。

培养学生的团队合作精神和沟通能力。

四、课程教学内容与要求(一)函数、极限与连续1、函数理解函数的概念,掌握函数的表示方法。

了解函数的单调性、奇偶性、周期性和有界性。

掌握基本初等函数的性质和图形,了解初等函数的概念。

2、极限理解数列极限和函数极限的概念。

掌握极限的性质和运算法则,会求数列和函数的极限。

了解无穷小量和无穷大量的概念,掌握无穷小量的性质和比较方法。

3、连续理解函数连续的概念,掌握函数在一点连续的充要条件。

了解函数的间断点及其类型,会判断函数的间断点。

掌握初等函数的连续性,会利用连续性求函数的极限。

(二)一元函数微分学1、导数与微分理解导数的概念,掌握导数的几何意义和物理意义。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲课程名称高等数学学分/学时10/160适用专业理工类、经管类和医药类等对数学要求较高的各(非数学)专业课程目的和任务高等数学课程是理工类高等院校非数学专业学生必修的一门重要基础理论课,是培养造就高层次专门人才所需数学素质的基本课程。

通过本课程的学习,使学生获得有关连续变量的数学基本概念、基本理论和基本运算方法,从而一方面为各种后继课程的学习奠定必要的数学基础;另一方面培养学生抽象思维、逻辑推理、空间想象的能力,尤其是运用数学知识解决来自实际中问题的能力。

课程的教学内容和要求1.函数、极限、连续理解函数的概念;了解函数的单调、有界、周期和奇偶等特性的含义;了解反函数、复合函数和函数的概念;熟悉基本初等函数的性质与图形;会建立简单实际问题中的函数关系;了解各类极限的概念;了解极限与单侧极限的关系;掌握极限的性质和运算法则;掌握极限存在的准则(夹逼定理、单调有界极限存在定理)并会运用它们求极限;理解无穷小、无穷大的概念,会确定无穷小的阶和利用等价无穷小求极限;理解函数连续的概念,会判断间断点的类型;了解初等函数的连续性;知道闭区间上连续函数的性质并能应用于简单问题。

2.一元函数微分学理解导数和微分的概念;了解导数的几何意义和作为变化率的其他一些实例;了解函数的可导与连续之间的关系;了解高阶导数的概念;变化率司题和相关变化率;熟悉导数和微分的四则运算法则和复合运算的链法则;熟悉基本初等函数的导数公式表,能熟练求初等函数的一阶和二阶导数;会求隐函数和参数形式函数的一阶和二阶导数;理解Rolle定理、Lagrange定理和Taylor定理,了解Cauchy定理,并会应用它们解决一些简单问题。

掌握用导数判断(或求)函数的单调性、极值点和最值点的方法,掌握函数凸性的判断和图形拐点的求法,会求函数图形的渐近线,会描绘函数图形;掌握用L‘Hospital法则求极限的方法;知道曲率和曲率半径的概念并会计算;知道利用导数和微分进行近似计算和求方程的近似根。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲高等数学课程教学大纲1. 引言高等数学是大学理工类专业中一门重要的基础课程,它为学生提供了深入理解数学概念和方法的机会。

本教学大纲旨在明确高等数学课程的目标、内容和教学方式,以帮助教师和学生在学习过程中更好地掌握知识和技能。

2. 课程目标2.1 知识目标通过本课程的学习,学生应能够:- 掌握高等数学的基本概念、原理和公式;- 理解和运用微积分的基本思想和方法;- 熟悉常微分方程的求解技巧;- 理解多元函数的极限、连续性和偏导数等概念;- 掌握重要的高等数学定理和定理的证明方法。

2.2 技能目标通过本课程的学习,学生应能够:- 运用高等数学知识解决实际问题;- 熟练使用数学工具(如计算器和数学软件)进行计算和绘图;- 能够进行简单的数学推理和证明;- 培养数学建模和问题求解的能力。

3. 课程内容3.1 函数与极限- 函数的概念与性质- 极限的定义与运算法则- 连续与间断3.2 微积分- 导数与微分- 函数的极值与最值- 曲线的图形与函数的分析- 不定积分与定积分- 微分方程的基本概念与求解方法3.3 多元函数与偏导数- 多元函数的极限与连续性- 偏导数与全微分- 多元函数的极值与最值- 多元函数的泰勒展开4. 教学方式4.1 授课教师通过讲授基本概念、原理和公式,引导学生理解和掌握数学知识。

4.2 讨论与互动教师组织学生进行小组讨论、问题解答和数学实例演练,促进学生之间和教师之间的互动。

4.3 实践与实验教师引导学生进行数学建模和实际问题的求解,通过实践和实验帮助学生巩固和应用所学知识。

4.4 作业与课堂测试教师布置作业和组织课堂测试,帮助学生及时巩固所学知识,并提供反馈和指导。

5. 教材及参考资料- 主教材:《高等数学教程》(或其他适合的教材)- 辅助教材:《高等数学习题集》(或其他适合的教材)- 参考资料:相关数学期刊、学术论文和互联网资源6. 考核方式6.1 平时成绩包括作业、实验报告、课堂表现等6.2 期中考试考察学生对前期知识的掌握和理解能力6.3 期末考试考察学生对所有学习内容的整体掌握和应用能力7. 教学评价通过课程问卷调查、评估反馈和学生学业成绩等多种方式对教学效果进行评价,不断改进教学方法和内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》课程教学大纲
适用专业:会计电算化、营销管理(高职单招,两年制)
(学分:4,学时数:68)
课程的性质和任务
《高等数学》是经济管理系会计电算化、营销管理专业的一门基础课。

其主要任务是为后续课程以及进一步学习数学知识奠定必要的高等数学基础。

在学习有关知识和技能的同时,培养学生具有较熟练的运算能力、一定的概括能力和逻辑思维能力以及应用所学知识分析、解决问题的能力。

课程内容
第一章函数的极限与连续性
本章的教学目的与要求:
1、理解函数的概念和函数的四个特性;
2、掌握基本初等函数、复合函数的概念,了解几个常用的经济函数;
3、了解数列极限与函数极限的概念;
4、掌握极限的四则运算法则,熟练运用这些法则进行极限的运算;
5、掌握两个重要极限,熟练利用两个重要极限进行极限的运算;
6、理解无穷小量与无穷大量的概念及其相互关系,会进行无穷小量的比较;
7、理解函数在一点连续的概念,会求函数的间断点。

了解连续函数的运算法则与闭区间上连续函数的性质。

第一节函数
一、函数及其特性
二、基本初等函数
三、复合函数
四、初等函数
五、非初等函数举例
第二节极限的有关概念
一、数列的极限
二、函数的极限
三、无穷小量与无穷大量
第三节极限的运算
一、极限存在准则
二、两个重要极限
三、无穷小的比较
第四节函数的连续性
一、函数的增量
二、连续函数的概念
三、间断点
四、初等函数的连续性
五、闭区间上连续函数的性质
重点与难点:
重点:基本初等函数(特别是指数函数、对数函数和三角函数)、复合函数,极限的运算、两个重要极限,函数在一点连续的概念。

难点:反三角函数、极限的概念,间断点的判别。

第二章 导数与微分
本章的教学目的与要求:
1、理解导数和微分的概念及其相互关系,掌握导数和微分的几何意义,会利用导数求曲线的切线方程与法线
方程,了解可导与连续的关系;
2、熟练掌握导数四则运算法则和导数基本公式,熟练地进行导数(微分)的运算;
3、熟练掌握复合函数的求导法则,熟练地求复合函数的导数;
4、掌握隐函数的求导方法和对数求导法;
5、了解反函数的求导法则及高阶导数的概念,会求函数的二阶导数。

第一节 导数和微分的概念
一、导数的定义
二、微分及其与导数的关系
三、几个基本初等函数的导数
四、导数与微分的几何意义
五、可导与连续的关系
第二节 微分法则与基本公式
一、导数(微分)的四则运算法则
二、复合函数的微分法则
三、反函数的微分法则
四、导数(微分)基本公式与法则
第三节 求导方法
一、隐函数的求导方法
二、对数求导法
第四节 高阶导数
重点与难点:
重点:导数的定义,微分与导数的关系,导数(微分)的四则运算法则,
复合函数的微分法。

难点:复合函数的微分法,隐函数的微分法。

第三章 导数与微分的应用
本章的教学目的与要求:
1、了解拉格朗日定理和罗尔定理的条件结论和几何解释; 2、熟练利用洛必达法则求解00型、∞
∞型和∞⋅0、∞-∞型的未定式的极限; 3、掌握函数单调性的判别方法以及函数极值存在的必要条件和充分条件,熟练地利用导数求函数的单调区间
与极值;
4、掌握求连续函数在闭区间上的最大值与最小值的方法,会解简单的应用问题;
5、会利用导数进行边际分析和弹性分析。

第一节 微分中值定理
一、罗尔定理
二、拉格朗日定理
第二节 洛必达法则 一、
0型未定式 二、∞∞型未定式 三、其它未定式(∞⋅0型、∞-∞型)
第三节 函数(曲线)性态的讨论
一、函数单调性的判别
二、函数的极值
三、函数最大值与最小值的求法
第四节 导数与微分的其他应用
导数在经济上的应用
重点与难点:
重点:洛必达法则,函数的单调性与极值。

难点:最大值与最小值的应用问题。

第四章 积分
本章的教学目的与要求:
1、理解原函数和不定积分的概念;
2、掌握不定积分的性质,熟练掌握基本积分公式,会熟练应用直接积分法求一些函数的不定积分; 3、熟练应用换元法(凑微分法)求复合函数、有理函数的不定积分(第二类换元法不作要求); 4、熟练掌握分部积分公式,会熟练利用分部积分法求某些函数的不定积分;
5、会使用积分表。

6、了解定积分的概念,理解定积分的几何意义和性质;
7、理解变上限函数及其性质,熟练掌握牛顿-莱布尼兹公式,熟练利用该公式进行定积分的计算;
8、掌握定积分的换元积分法和分部积分法,会熟练地进行定积分的计算;
4、熟练掌握利用定积分求简单平面图形面积和解经济管理上的问题的方法,会求绕x 轴旋转体的体积; ★9、了解无限区间广义积分的概念。

第一节 不定积分的概念与基本公式
一、原函数
二、不定积分及其性质
三、基本积分公式
第二节 积分法(一)
一、换元积分法
二、简单有理函数的积分法
三、积分表的使用法
第三节 定积分及其与不定积分的关系
一、定积分的概念
二、定积分的性质
三、定积分与不定积分的关系
第四节积分的应用
重点与难点:
重点:原函数与不定积分的概念、基本积分公式、换元积分法(凑微分法)、分部积分法。

难点:凑微分法。

第五章定积分及其应用
本章的教学目的与要求:
第一节定积分的概念与性质
一、定积分的概念
二、定积分的性质
第二节定积分与不定积分的关系
一、变上限函数
二、牛顿-莱布尼兹公式
第三节定积分的换元法与分部积分法
一、定积分的换元积分法
二、定积分的分部积分法
第四节定积分的应用
一、平面图形的面积
二、旋转体(绕x轴)的体积
三、经济应用举例
★第五节无限区间上的广义积分
重点与难点:
重点:牛顿-莱布尼兹公式,定积分的换元法,平面图形的面积。

难点:定积分的概念,无限区间上的广义积分。

课程学时分配表
教材及教学参考书
教材:《高等数学(高职少学时)》曾文斗编上海交通大学出版社2004年8月教参:
1、《经济数学(少学时)》及《经济数学(少学时)学习指导与训练》
2、《经济数学基础(上册)》顾静相主编高等教育出版社2000年7月
3、《高等数学》(高等教育学历文凭考试教材) 韩云端主编
中国财政经济出版社1999年3月
4、《经济数学》张左刚、董春胜编,东北大学出版社 2001年6月
黎明职业大学数学教研室
执笔:曾文斗
2004年6月订
2005年3月修订。

相关文档
最新文档