函数的表示法(2)
函数的表示法
1.2.2 函数的表示法1.函数的表示法(1)解析法用数学表达式表示两个变量之间的对应关系,这种表示函数的方法叫做解析法,这个数学表达式叫做函数的解析式.比如,计划建成的京沪高速铁路总长约1305 km,设计时速300~350 km/h.建成后,若京沪高速铁路时速按300 km/h计算,火车行驶x时后,路程为y km,则y 是x的函数,可以用y=300x来表示,其中y=300x叫做该函数的解析式.(2)图象法以自变量x的值为横坐标,与之对应的函数值y为纵坐标,在平面直角坐标系中描出各个点(x,f(x)),这些点组成的图形称为函数f(x)的图象,这种用图象表示两个变量之间对应关系的方法叫做图象法.比如,如图所示为艾宾浩斯遗忘曲线,表示记忆数量(百分比)与天数之间的函数关系.(3)列表法列一个两行多列的表格,第一行是自变量取的值,第二行是对应的函数值,这种用表格来表示两个变量之间的对应关系的方法叫做列表法.H与Q 之间的对应关系,也就是函数关系.2},下列选项中,能表示f(x)的图象的只可能是( )解析:根据函数的定义,观察图象,对于选项A,B,值域为{y|0≤y≤2},不满足题意,而C中当0<x<2时,一个自变量x对应两个不同的y,不是函数.故选D.答案:D【例1-2】购买某种饮料x听,所需钱数是y元.若每听2元,试分别用解析法、列表法、图象法将y表示成x(x∈{1,2,3,4})的函数,并指出函数的值域.分析:购买x听,需钱数2x元,但需注意函数的定义域是{1,2,3,4},只有4个元素.解:(解析法)y=2x,x∈{1,2,3,4}.(列表法)(图象法)2.分段函数(1)定义:有些函数在其定义域中,对于自变量x 的不同取值范围,对应关系不同,这样的函数通常称为分段函数.分段函数的表达式因其特点可以分成两个或两个以上的不同表达式,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或几条线段.谈重点 学习分段函数两要点(1)分段函数是一个函数,切不可把它看成几个函数.分段函数在书写时用大括号把各段函数合并写成一个函数的形式,并且必须指明各段函数自变量的取值范围;(2)一个函数只有一个定义域,分段函数的定义域是自变量x 的不同取值范围的并集,值域是每段的函数值y 的取值范围的并集.(2)【例2-①f (x )=211521.x x x x ⎧+≤≤⎨<⎩,,, ②f (x )=21 2.x x x x +∈⎧⎨≥⎩R ,,,③f (x )=223151.x x x x +≤≤⎧⎨≤⎩,,, ④f (x )=2301 5.x x x x ⎧+<⎨-≥⎩,,,A .①②B .①④C .②④D .③④解析:对于①,符合函数定义,且在定义域的不同区间,有不同的对应关系.对于②,当x =2时,f (2)=3或4,故不是函数.对于③,当x =1时,f (1)=5或1,故不是函数.对于④,符合函数定义,且在定义域的不同区间,有不同的对应关系. 答案:B谈重点 分段函数的判断 不能从形式上判断一个式子是否为分段函数,关键看其是否符合函数的定义.【例2-2】如图为一分段函数的图象,则该函数的定义域为__________,值域为__________.解析:由图象可知,第一段的定义域为[-1,0),值域为[0,1);第二段的定义域为[0,2],值域为[-1,0].因此该分段函数的定义域为[-1,0) [0,2]=[-1,2],值域为[0,1) [-1,0]=[-1,1).答案:[-1,2] [-1,1)【例2-3】已知函数f(x)=2000x xx⎧>⎨≤⎩,,,,求f(2),f(-3)的值.解:∵2>0,∴f(2)=22=4.∵-3≤0,∴f(-3)=0.点技巧处理分段函数问题有技巧(1)处理分段函数问题时,首先要明确自变量的取值属于哪一个范围,然后选取相应的对应关系;(2)求分段函数的值域,应先求出各段函数在对应自变量取值范围内的函数值的集合,再求出它们的并集.3.映射(1)映射的定义一般地,设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.谈重点对映射的理解(1)映射中的两个集合A和B可以是数集、点集或由图形组成的集合等;(2)映射是有方向的,A到B的映射与B到A的映射往往是不相同的;(3)映射要求对集合A中的每一个元素在集合B中都有元素与之对应,而这个与之对应的元素是唯一的,这样集合A中元素的任意性和在集合B中对应的元素的唯一性构成了映射的核心;(4)映射允许集合B中存在元素在集合A中没有元素与之对应;(5)映射允许集合A中不同的元素在集合B中对应相同的元素,即映射只能是“多对一”或“一对一”,不能是“一对多”.(2)映射与函数的联系【例3-1】下列对应是A 到B 上的映射的是( ) A .A =N *,B =N * f :x →|x -3|B .A =N *,B ={-1,1,-2} f :x →(-1)xC .A =Z ,B =Q f :x →3xD .A =N *,B =R f :x →x 的平方根解析:对于A 项,A 中的元素3在B 中没有与之对应的元素,故不符合.对于B 项,对任意正整数,(-1)x 为1或-1,在B 中都有唯一的1或-1与之对应,故符合.对于C 项,A 中的0在f 作用下无意义,故不符合.对于D 项,正整数在实数集R 中有两个平方根与之对应,故不符合. 答案:B【例3-2】已知集合A ={1,2,3,…,9},B =R ,从集合A 到集合B 的映射f :x →21x x +.(1)与A 中元素1相对应的B 中的元素是什么? (2)与B 中元素49相对应的A 中的元素是什么? 分析:已知对应关系,分别代入求值即可. 解:(1)A 中元素1,即x =1,代入对应关系得11212113x x ==+⨯+,即与A 中元素1相对应的B 中的元素是13.(2)B 中元素49,即4219x x =+,解得x =4,因此与B 中元素49相对应的A 中的元素是4.4.函数解析式的求法求函数的解析式的常用方法有:(1)代入法:如已知f (x )=x 2-1,求f (x +x 2)时,有f (x +x 2)=(x 2+x )2-1. (2)待定系数法:已知f (x )的函数类型,要求f (x )的解析式时,可根据类型设其解析式,确定其系数即可.例如,一次函数可以设为f (x )=kx +b (k ≠0);二次函数可以设为f (x )=ax 2+bx +c (a ≠0)等.(3)拼凑法:已知f (g (x ))的解析式,要求f (x )时,可从f (g (x ))的解析式中拼凑出“g (x )”,即用g (x )来表示,再将解析式两边的g (x )用x 代替即可.(4)换元法:令t =g (x ),再求出f (t )的解析式,然后用x 代替f (g (x ))解析式中所有的t 即可.(5)方程组法:已知f (x )与f (g (x ))满足的关系式,要求f (x )时,可用g (x )代替两边的所有的x ,得到关于f (x )及f (g (x ))的方程组.解之即可得出f (x );例如,已知f (x )+2f (-x )=4x 2-x ,求f (x )的解析式. 解:以-x 代替x 可得:f (-x )+2f (x )=4x 2+x , 联立方程组:()()222()4()24f x f x x x f x f x x x ⎧+-=-⎪⎨-+=+⎪⎩,,解得f (x )=243x +x . (6)赋值法:给自变量赋予特殊值,观察规律,从而求出函数的解析式.由具体的实际问题建立函数关系求解析式,一般是通过研究自变量、函数及其他量之间的等量关系,将函数用自变量和其他量的关系表示出来,但不要忘记确定自变量的取值范围._______________________________________________________________ _______________________________________________________________ _______________________________________________________________ 【例4】求下列函数的解析式.(1)已知f (x )是二次函数,且满足f (0)=1,f (x +1)-f (x )=2x ,求f (x ); (2)已知f1)=x+f (x );(3)已知12f x ⎛⎫⎪⎝⎭+f (x )=x (x ≠0),求f (x );(4)已知对任意实数x ,y 都有f (x +y )-2f (y )=x 2+2xy -y 2+3x -3y ,求f (x ). 分析:(1)已知f (x )是二次函数,可用待定系数法设出函数解析式,然后利用已知条件求出待定系数即可;(2)1=t ;也可用拼凑法,将x++1的式子;(3)用x 替换1x,构造关于f (x )与1f x ⎛⎫⎪⎝⎭的方程组,解方程组求出f (x );(4)利用赋值法,令x -y =0,求出f (0)的值,再令y =0,求得f (x ),也可令x =0,求出f (y ),进而可得f (x ).解:(1)设所求的二次函数为f (x )=ax 2+bx +c (a ≠0), ∵f (0)=1,∴c =1,则f (x )=ax 2+bx +1. 又∵f (x +1)-f (x )=2x 对任意x ∈R 成立,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x .由恒等式性质,得220a a b =⎧⎨+=⎩,,∴11.a b =⎧⎨=-⎩,∴所求二次函数为f (x )=x 2-x +1.(2)(方法一)+1=t ,则t ≥1,即x =(t -1)2,则f (t )=(t -1)2+2(t -1)=t 2-1.故f (x )=x 2-1(x ≥1).(方法二)∵+1)2=x++1, ∴x++1)2-1.∴f1)=1)2-1+1≥1. ∴f (x )=x 2-2,x ≥1.(3) 12f x ⎛⎫ ⎪⎝⎭+f (x )=x ,将原式中的x 替换为1x,得2f (x )+1f x ⎛⎫⎪⎝⎭=1x. 于是得关于f (x )与1f x ⎛⎫⎪⎝⎭的方程组12(),112(),f f x x x f x f x x ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩解得f (x )=233xx -(x ≠0).(4)(方法一)∵f (x +y )-2f (y )=x 2+2xy -y 2+3x -3y 对任意x ,y ∈R 都成立,故可令x =y =0,得f (0)-2f (0)=0,即f (0)=0.再令y =0,得f (x )-2f (0)=x 2+3x ,∴f (x )=x 2+3x .(方法二)令x =0,得f (y )-2f (y )=-y 2-3y ,即-f (y )=-y 2-3y . 因此f (y )=y 2+3y .故f (x )=x 2+3x .点技巧 解含有两个变量的解析式的方法—赋值法 所给函数方程含有两个变量时,可对这两个变量交替用特殊值代入,或使这两个变量相等代入,再用已知条件,可求出未知的函数,至于取什么特殊值,可以根据函数特征来定.5.函数图象的作法(1)作函数图象的常用方法: ①描点法:描点法是作函数图象的基本方法.根据函数解析式,列出函数中x 与y 的一些对应值的表,然后分别以它们为横、纵坐标,在坐标系中描出点,最后用平滑的曲线将这些点连起来,就是函数的图象,即“列表—描点—连线”.②利用基本函数图象作出所求的图象,已学过的基本函数图象有:常数函数的图象,例如f (x )=1的图象为平行于x 轴的一条直线;一次函数的图象,例如f (x )=-3x +1的图象是一条经过一、二、四象限的直线;二次函数的图象,例如f (x )=2x 2-x +1的图象是一条抛物线;反比例函数的图象,f (x )=kx(k ≠0,且k 为常数),当k >0时,其图象是在一、三象限内,以原点为对称中心的双曲线;当k <0时,其图象是在二、四象限内,以原点为对称中心的双曲线.③变换作图法:1°平移:y =f (x )――-------------→向左平移a 个单位长度y =f (x +a )y =f (x )――------------→向右平移a 个单位长度y =f (x -a ) y =f (x )――------------→向上平移b 个单位长度y =f (x )+b y =f (x )――----------→向下平移b 个单位长度y =f (x )-b 2°对称:y =f (x )―----------―→关于x 轴对称y =-f (x )y =f (x )――--------→关于y 轴对称y =f (-x )y =f (x )――---------→关于原点对称y =-f (-x )y =f (x )――-------------→保留x 轴上方图象,再把x 轴下方图象对称到上方y =|f (x )|; y =f (x )――-------------→保留y 轴右边的图象,再在y 轴左边作其关于y 轴的对称图象y =f (|x |). (2)分段函数图象的作法画分段函数y =⎩⎪⎨⎪⎧f 1(x ),x ∈D 1,f 2(x ),x ∈D 2,…(D 1,D 2,…,两两交集是空集)的图象步骤是:①画函数y =f 1(x )的图象,再取其在区间D 1上的图象,其他部分删去不要; ②画函数y =f 2(x )的图象,再取其在区间D 2上的图象,其他部分删去不要; ③依次画下去;④将各个部分合起来就是所要画的分段函数的图象.注意:在作每一段的图象时,先不管自变量的限制条件,作出其图象,再保留自变量限制条件内的一段图象即可,作图时要特别注意接点处点的虚实,若端点包含在内,则用实点表示;若端点不包含在内,则用虚点表示,要保证不重不漏.________________________________________________________________ ________________________________________________________________ ________________________________________________________________【例5-1】作出下列函数的图象:(1)y=1+x,x∈Z;(2)y=x2-2x,x∈[0,3).解:(1)函数y=1+x,x∈Z的图象由一些点组成,这些点都在直线y=1+x上,如图①所示;(2)因为0≤x<3,所以函数y=x2-2x,x∈[0,3)的图象是抛物线y=x2-2x位于0≤x<3之间的一部分,如图②所示.图①图②辨误区作函数图象三注意(1)函数图象可以是连续的曲线,也可以是直线、折线、离散的点等,例如函数y=1+x,x∈Z的图象就是一些离散的点;(2)画函数的图象时要注意函数的定义域,例如函数y=x2-2x,x∈[0,3)的定义域为区间[0,3),故其图象不是整条抛物线,而应是抛物线的一部分;(3)一般用描点法作图象,作图时要先找出关键点,再连线.例如本题画函数y =x2-2x,x∈[0,3)的图象时,要先描出两个端点及顶点,再依据二次函数的图象特征作出函数图象,注意3不在定义域内,从而点(3,3)处用空心点.【例5-2】作下列各函数的图象.(1)1,01,,1xy xx x⎧<<⎪=⎨⎪≥⎩;(2)y=|x-1|; (3)y=|x|-1.解:(1)这个函数的图象由两部分组成:当0<x<1时,为双曲线1yx=的一段;当x≥1时,为直线y=x的一段,如图①.图①图②(2)(方法一)所给函数可写成1111x xyx x-≥⎧=⎨-<⎩,,,,是端点为(1,0)的两条射线,如图②.(方法二)可以先画函数y=x-1的图象,然后把其在x轴下方的图象对称到上方.如图③.图③图④图⑤(3)(方法一)所给函数可写成1010x xyx x-≥⎧=⎨--<⎩,,,,如图④.(方法二)可以先画出函数y=|x|-1在y轴右侧,即y=x-1(x≥0)的图象,然后按照关于y轴对称作出函数y=|x|-1在y轴左侧的图象即可.如图⑤.【例5-3】作出下列函数的图象.(1)y=|x+2|-|x-5|;(2)y=|x-5|+|x+3|.分析:要画图象,先化简解析式,据x不同的取值范围去掉绝对值符号.解:(1)7(2]23(25]7(5)xy x xx-∈-∞-⎧⎪=-∈-⎨⎪∈+∞⎩,,,,,,,,;其图象如图a.图a图b(2)22(3)8[35]22(5).x xy xx x-+∈-∞-⎧⎪=∈-⎨⎪-∈+∞⎩,,,,,,,,其图象如图b.点技巧含绝对值的函数图象的作法含有绝对值的函数,可以根据去绝对值的法则去掉绝对值符号,将函数化为分段函数的形式,然后根据定义域的分段情况,选择相应的解析式画出图象.6.与分段函数有关的问题(1)已知自变量的取值,求函数值.已知分段函数f(x)的解析式,求f(a)时,首先要根据a所在的范围来确定函数的对应关系,再将x=a代入相应的对应关系即可,如:已知f(x)=10π000x xxx+>⎧⎪=⎨⎪<⎩,,,,,,求f(-1).因为-1<0,此时f(x)=0,所以f(-1)=0.(2)已知函数值,求自变量的取值.f (x )是一个分段函数,函数值的取值直接依赖于自变量x 属于哪一个区间,所以要对x 的可能取值范围逐段进行讨论.即:设分段函数f (x )=1122()()f x x I f x x I ∈⎧⎨∈⎩,,,,已知f (x 0)=a ,求x 0.步骤如下:①当x 0∈I 1时,由f 1(x 0)=a ,求出x 0;②验证x 0是否属于I 1,若是则留下,反之则舍去;③当x 0∈I 2时,由f 2(x 0)=a ,求出x 0,判断x 0是否属于I 2,方法同上; ④写出结论.(3)已知f (x ),解不等式f (x )>a .在分段函数的前提下,求某条件下自变量的取值范围(即解不等式)的方法:先假设自变量的值在分段函数定义域的某段上,然后相应求出在这段定义域上自变量的取值范围,再与这段定义域求交集即可.即对于分段函数f (x )=⎩⎪⎨⎪⎧f 1 x ,x ∈I 1,f 2 x ,x ∈I 2,f (x )>a 等价于⎩⎪⎨⎪⎧x ∈I 1,f 1 x >a ,或⎩⎪⎨⎪⎧x ∈I 2,f 2 x >a .其他分段函数仿照解决.【例6-1】已知函数f (x )=21222221 2.x x x x x x x +≤-⎧⎪+-<<⎨⎪-≥⎩,,,,, (1)求f (-5),f (,52f f ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值;(2)若f (a )=3,求实数a 的值.解:(1)由-5∈(-∞,-2],∈(-2,2),52-∈(-∞,-2]知,f (-5)=-5+1=-4,f()=()2+2()=3-,52f ⎛⎫- ⎪⎝⎭=52-+1=32-,∵32-∈(-2,2),∴253333222224f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-=-+⨯-=- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.(2)当a ≤-2时,f (a )=a +1,即a +1=3,a =2>-2,不合题意,舍去; 当-2<a <2时,f (a )=a 2+2a ,即a 2+2a =3,a 2+2a -3=0,解得a =1,或a=-3.∵1∈(-2,2),-3∉(-2,2),∴a =1符合题意;当a ≥2时,f (a )=2a -1,即2a -1=3,a =2,符合题意. 综上可得,当f (a )=3时,a =1,或a =2.【例6-2】已知f (x )=222 2.x x x x +≥-⎧⎨--<-⎩,,,若f (x )>2,求x 的取值范围.解:当x ≥-2时,f (x )=x +2,由f (x )>2,得x +2>2,解得x >0,故x >0;当x <-2时,f (x )=-x -2,由f (x )>2,得-x -2>2,解得x <-4,故x <-4.综上可得,x >0或x <-4.辨误区 求解分段函数问题三注意 (1)求f (f (a ))的值时,应从内到外....依次取值,直到求出值为止. (2)已知函数值,求自变量的值时,切记要进行检验....例如本题(2)易忽略对所得值的验证而得到三个解,解题时一定要注意自变量的范围,只有在自变量确定的范围内才可以进行运算.(3)已知f (x ),解关于f (x )的不等式时,要先在每一段内求交集..,最后求并集....例如【例6-2】中,在x ≥-2时,由x +2>2,解得x >0后,需与x ≥-2求交集,得x >0;当x <-2时,由-x -2>2,得x <-4,与x <-2求交集,得x <-4.然后求x >0与x <-4的并集得最后结果.7.函数图象的简单应用函数图象可以直观地显示函数的变化规律,使抽象的问题变得更加形象.图形与数的结合(数形结合)是解决数学问题的一件利器.函数图象的应用主要体现在以下几个方面: (1)由图象确定解析式解决“已知函数图象,求函数的解析式”的问题关键在于充分挖掘图形信息,也就是曲线的形状如何(据此设定相应的函数解析式的类型——定性),图象有关特征点坐标如何(据此确定解析式的系数——定量).例如,若函数y =f (x )的图象如图所示,则其表达式f (x )为__________.解析:此函数在三个区间上的图象各不相同,故分别在各区间内写出其函数表达式.答案:f(x)=[)[)[)33,2,0, 213,0,2, 22,2,4.x xx xx⎧+∈-⎪⎪⎪-+∈⎨⎪⎪∈⎪⎩(2)根据具体问题所表示的函数关系判断函数的图象解决此类问题应结合图象的特征,观察坐标轴所代表的含义,紧扣题目的语言描述,把它转化为曲线的变化情况,问题即可解决.(3)利用函数的图象,求函数的值域或最值.解决这类问题的关键在于能正确作出函数的图象.例如,若x∈R,f(x)是y=2-x2,y=x这两个函数中的较小者,则f(x)的最大值为( )A.2 B.1 C.-1 D.无最大值解析:由题目可获取的信息是:①两个函数一个是二次函数,一个是一次函数;②f(x)是两个函数中的较小者.解答此题可先画出两个函数的图象,然后找出f(x)的图象,再求其最大值.在同一坐标系中画出函数y=2-x2,y=x的图象,如图,根据题意,坐标系中实线部分即为函数f(x)的图象.故x=1时,f(x)max=1,应选B.答案:B(4)研究函数图象的交点个数解决这类问题的关键是正确画出函数的图象,结合图象分析.【例7-1】已知函数y=f(x)的图象由图中的两条射线和抛物线的一部分组成,求函数的解析式.解:题图中给定的图象实际上是一个分段函数的图象,对各段对应的函数解析式进行求解时,一定要注意其区间的端点.根据图象,设左侧的射线对应的函数解析式为y =kx +b (x <1).∵点(1,1),(0,2)在射线上,∴12k b b +=⎧⎨=⎩,,解得12k b =-⎧⎨=⎩,,∴左侧射线对应的函数的解析式为y =-x +2(x <1).同理,x >3时,函数的解析式为y =x -2(x >3).再设抛物线对应的二次函数解析式为y =a (x -2)2+2(1≤x ≤3,a <0). ∵点(1,1)在抛物线上,∴a +2=1,a =-1.∴1≤x ≤3时,函数的解析式为y =-x 2+4x -2(1≤x ≤3).综上可知,函数的解析式为y =22(1)42(13)2(3).x x x x x x x -+<⎧⎪-+-≤≤⎨⎪->⎩ , , 点技巧 分段函数解析式的写法 如果所求的解析式是分段函数,则应综合在一起,写成分段形式,且各段的自变量的取值范围写在各段后的括号内.【例7-2】如图所示的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h 和时间t 之间的关系,其中不正确的有()A .1个B .2个C .3个D .4个解析:对于一个选择题而言,求出每一个图中水面的高度h 和时间t 之间的函数关系式既无必要也不可能,因此可结合相应的两个图作定性分析,即充分利用数形结合.对于第一个图,不难得知水面高度的增加应是均匀的,因此不正确;对于第二个图,随着时间的增加,越往上,增加同一个高度,需要的水越多,因此高度变化趋势愈加平缓,正确;同理可分析第三个图、第四个图都是正确的. 故只有第一个图不正确,因此选A . 答案:A【例7-3】设x ∈R ,求函数y =2|x -1|-3|x |的值域. 分析: 解:当x ≥1时,y =2(x -1)-3x =-x -2. 当0≤x <1时,y =-2(x -1)-3x =-5x +2. 当x <0时,y =-2(x -1)+3x =x +2.因此y=21520120.x xx xx x--≥⎧⎪-+≤<⎨⎪+<⎩,,,,,其图象如下图.由图象可知,该函数的值域为(-∞,2].【例7-4】当m为何值时,y=m和y=x2-4|x|+5的图象有四个交点?_________________________________________________________________ _________________________________________________________________ _________________________________________________________________解:画出y=x2-4|x|+5=22450450x x xx x x⎧-+≥⎪⎨++<⎪⎩,,,的图象,如图.再画出y=m的图象,由图象可以看出:当1<m<5时,两个函数图象有四个交点.8.函数在生活中的应用(1)求实际问题中函数的解析式,其关键是充分利用已知条件建立关于变量x,y 的等式.确定函数的定义域时,除了考虑函数解析式自身的限制条件外,还要考虑到它的实际意义和其他限制条件.正确建立关于变量x,y等式的前提是找到含有变量x,y的关键词,如,长度、面积、体积、利润、总费用、路程=速度×时间等等,往往依赖于已有的生活经验.比如,某客运公司确定客运票价的方法是:如果行程不超过100 km,票价是0.5元/km,如果超过100 km,超过部分按0.4元/km定价,则客运票价y(元)是行程数x(km)的函数,借助于生活经验:票价=路程×单价,则当0<x≤100时,y=0.5x,当x>100时,y =100×0.5+(x -100)×0.4=10+0.4x ,则有0.50100100.4100.x x y x x <≤⎧=⎨+>⎩,,,(2)解实际问题时常用到分类讨论和数形结合的思想,这是历年的高考热点,也是今后高考命题的方向.其解题步骤是:①审题,弄清题意,恰当设未知数,分析变量及其取值范围; ②建立函数模型,将实际问题转化为数学问题; ③解决数学问题即函数问题;④将数学问题的结论还原为实际问题的结论.【例8-1】将长为a 的铁丝折成矩形,其中一条边长为x 时,矩形的面积为y . 求:(1)y 关于x 的函数关系式,并写出定义域;(2)如果矩形的面积为216a ,那么矩形的两边长分别是多少?解:(1)由于矩形一边长为x ,则另一边长为12(a -2x ).则面积y =122a x x ⎡⎤(-)⎢⎥⎣⎦=-x 2+2a x . 又020x a x >⎧⎨->⎩,,解得0<x <2a ,即函数的定义域为0,2a ⎛⎫ ⎪⎝⎭. (2)令-x 2+2216a a x =,解得4ax =.由于0<4a <2a ,则12(a -2x )=4a .故此时矩形的两边长都是4a.【例8-2】某汽车以52 km/h 的速度从A 地行驶到260 km 远处的B 地,在B 地停留1.5 h 后,再以65 km/h 的速度返回A 地,试将汽车离开A 地后行驶的路程s 表示为时间t 的函数.分析:因为行驶速度不一样,所以s 与t 的关系需用分段函数表示. 解:因为260÷52=5(h),260÷65=4(h), 所以,当0≤t ≤5时,s =52t ; 当5<t ≤6.5时,s =260;当6.5<t ≤10.5时,s =260+65(t -6.5).所以52052605 6.526065( 6.5)6.510.5.t t s t t t ≤≤⎧⎪=<≤⎨⎪+-<≤⎩,,,,, 辨误区 “先分后合”求分段函数的解析式 首先根据不同定义域写出相应的函数解析式,最后再合并.因为分段函数是一个函数,而不是几个函数.。
函数的表示法 第二课时
• 作业:P25
3
f
3 32 13 - =1+- = .所以 4 2 2
f
1 13 f = . 4 2
(2)若 x≥0,由 x+1=2,得 x=1; 1 1 1 若 x<0,由 =2,得 x=± ,由于 >0,舍 x= |x| 2 2 1 1 ,所以 x=- . 2 2 1 故 x=1 或- . 2
误区解密
因忽视分段函数自变量的范围而出错
x2-1 f(x)= 2x+1
【例 4】 已知函数 若 f(x)=3,求 x 的值.
x≥0 , x<0
错解:由x2-1=3得x=±2; 由2x+1=3,得x=1,故x的值为2,-2或1. 错因分析:本题是一个分段函数问题,在解决 此类问题时,要紧扣“分段”的特征,即函数在定义 域的不同部分,有不同的对应关系,它不是几个函 数,而是一个函数,求值时不能忽视x的取值范围.
-x-x 当-2<x<0 时,f(x)=1+ =1-x, 2
1 ∴f(x)= 1-x
0≤x≤2 . -2<x<0
(2)函数f(x)的图象如图所示.
(3)由(2)知,f(x)在(-2,2]上的值域为[1,3).
点评:1.对含有绝对值的函数,要作出其图象, 首先应根据绝对值的意义脱去绝对值符号,将函数 转化为分段函数,然后分段作出函数图象. 2.由于分段函数在定义域的不同区间内解析式 不一样,因此画图时要特别注意区间端点处对应点 的实虚之分.
3.1.2一函数的表示法二
则 b=________.
答案
1 2
解析 f 56=3×56-b=52-b,∴f 52-b=4,
52-b<1,
①
325-b-b=4,
无解;
52-b≥1,
②
225-b=4,
综上,b=12.
解得 b=12.
①前三年中,产量增长的速度越来越快;
②前三年中,产量增长的速度越来越慢;
③第三年后,这种产品停止生产; ④第三年后,年产量保持不变. 答案 ②③ 解析 由于纵坐标表示八年来前 t 年产品生产总量, ②③正确.
2x,x≥2,
若 f(x)=3,则 x 等
于( )
A.1
B.± 3
3 C.2
D. 3
4.已知函数 f(x)的图象是两条线段(如图所示,不含
端点),则 f13等于( )
2x,0≤x≤1, 8.函数 f(x)=2,1<x<2,
3,x≥2
的定义域是___.
9.若定义运算 a⊙b=ab,,aa<≥bb. , 则函数 f(x)=
第5页
2020 学年第一学期高一数学课时练习
班级
姓名
由图①中函数取值的情况,结合函数 φ(x)的定义, 可得函数 φ(x)的图象如图②. 令-x2+2=x 得 x=-2 或 x=1. 结合图②,得出 φ(x)的解析式为
函数的表示法 教案 (2)
3.1.2 函数的表示方法教学设计教 学 过 程知 识 师生活动设计意图一、小测检验(检测上节课所学内容)题目:画出下列函数.54;22--=-=x x y x y 二、新授课 (一)创设情景,启发思考 活动一 教材例题 表3.1-4是某校高一 (1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表. 表3.1-4 姓名 测试序号 第一次 第二次 第三次 第四次 第五次 第六次 王伟 98 87 91 92 88 95张城 90 76 88 75 86 80赵磊 68 65 73 72 75 82班级平均分 8 .278.3 85.4 80.3 75.7 82.6请你对这三位同学在高一学年的数学学习情况做一个分析.思考:可以用什么函数表示方法分析问题?解:从表3.1-4中可以知道每位同学在每次测试中的成绩,但不太容易分析每位同学的成绩变化情况.如果将每位同学的 “成绩”与 “测试序号”之间的函数关系分别用图象(均为6个离散的点)表示出来,如图3.1-6,那么就能直观地看到每位同学成绩变化的情况,这对我们的分析很有帮助.从图3.1-6可以看到,王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀.张城同学的数学学习成绩不稳定,总是在班级教师展示题目,学生作答。
教师组织,学生思考。
学生口述,教师总结评价。
回忆上节课所学知识点。
建立联系。
通过具体例题,巩固函数表示方法的特征。
加深理解并巩固函数表示法特征。
(2)小王全年综合所得收入额为189600元,假定缴纳的基本养老保险、基本医疗保险、失业保险等社会保险费和住房公积金占综合所得收入额的比例分别是8%,2%, 1%,9%,专项附加扣除是52800元,依法确定其他扣除是4560元,那么他全年应缴纳多少综合所得个税?分析:根据个税产生办法,可按下列步骤计算应缴纳个税税额:第一步,根据②计算出应纳税所得额t ;第二步,由t 的值并根据表3.1-5得出相应的税率与速算扣除数;第三步,根据①计算出个税税额y 的值. 由于不同应纳税所得额t 对应不同的税率与速算扣除数,所以y 是t 的分段函数.解:(1)根据表3.1-5,可得函数y =f (t )的解析式为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>-≤<-≤<-≤<-≤<-≤<-≤≤=.960000,18192045.0,960000660000,8592035.0,660000420000,529203.0,420000300000,3192025.0,300000144000,169202.0,14400036000,25201.0,360000,03.0t t t t t t t t t t t t t t y 函数图象如图3.1-7所示.教师引导并口述思路,学生自主作答。
函数的表示法知识点总结
函数的表示法知识点总结本节知识点(1)函数的表示法. (2)分段函数. (3)函数的图象变换. 说明:新课标对映射不作要求. 知识点一 函数的表示法函数的表示法有三种,分别是解析法、图象法和列表法. 解析法用数学表达式来表示两个变量之间的对应关系的方法叫做解析法,记作)(x f y . 这个数学表达式叫做函数解析式、函数表达式或函数关系式.解析法是不是函数的一种重要方法,这种表示方法从“数”的方面简明、全面地概括了两个变量之间的数量关系.图象法在平面直角坐标系中,用图象表示两个变量之间的对应关系的方法叫做图象法.图象法能形象、直观地反映因变量随自变量的变化趋势,从“形”的方面刻画了两个变量之间的数量关系.函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点等.列表法列出表格来表示两个变量之间的对应关系的方法叫做列表法.列表法的优点是不用通过计算,就可以得出与自变量对应的函数值.知识点二 分段函数 分段函数的定义有些函数在其定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数称为分段函数. 关于分段函数:(1)分段函数的定义域是各段函数定义域的并集.注意各段函数定义域的交集为空集;(2)分段函数的值域是各段函数值域的并集;(3)分段函数包括几段,它的图象就有几条曲线组成.采用“分段作图”法画分段函数的图象:在同一平面直角坐标系中,依次画出各段函数的图象,这些函数的图象组合在一起就是分段函数的图象;(4)分段函数是一个函数,而不是几个函数;(5)分段函数在书写时要用大括号把各段函数合并写成一个函数的形式,并在各段解析式的后面标明相应的自变量的取值范围;(6)处理分段函数问题时,首先要确定自变量的取值在哪一段函数的区间内,再选取相应的对应关系.几种常见的分段函数1.取整函数[]xy=([]x表示不大于x的最大整数).其图象如图(1)所示.图(1)取整函数的图象图(2)绝对值函数的图象2.绝对值函数含有绝对值符号的函数.如函数()()⎩⎨⎧-<---≥+=+=22222xxxxxy,其图象如图(2)所示,为一条折线.解决绝对值函数的问题时,先把绝对值函数化为对应的分段函数,然后分段解决.3.自定义函数如函数()()()⎪⎩⎪⎨⎧>-≤<----≤--=2221211)(2xxxxxxxxf为自定义的分段函数,其图象如图(3)所示.4.符号函数x y sgn =符号函数()()()⎪⎩⎪⎨⎧<-=>==010001sgn )(x x x x x f ,其图象如图(4)所示.符号函数的性质: x x x sgn =.图(3)图(4)符号函数的图象说明:函数的图象既可以是连续的曲线,也可以是直线、折线或离散的点. 分段函数的常见题型 1.求分段函数的函数值.求分段函数的函数值的方法是:先确定自变量的值属于哪一个区间段,然后代入该段的解析式求值.当出现))((a f f 的形式时,应从内到外依次求值.例1. 已知函数⎪⎩⎪⎨⎧≤+>-+=,2,2,2,21)(2x x x x x x f ,则))1((f f 的值为【 】 (A )21-(B )2 (C )4 (D )11 解:∵21<,∴()32112=+=f ,∴()3))1((f f f = ∵23>,∴()423133=-+=f ,∴4))1((=f f .【 C 】. 习题1. 已知函数⎩⎨⎧>-≤++=,0,3,0,34)(2x x x x x x f ,则=))5((f f 【 】(A )0 (B )2- (C )1- (D )12.已知分段函数的函数值,求自变量的值.方法是:先假设函数值在分段函数的各段上取得,解关于自变量的方程,求出各段上自变量的值.注意:所求出的自变量的值应在相应的各段函数定义域内,不在的应舍去.例2. 已知函数⎩⎨⎧<<--≤+=)21()1(2)(2x x x x x f ,若3)(=x f ,则=x _________.解:当1-≤x 时,32=+x ,解之得:1=x ,不符合题意,舍去;当21<<-x 时,32=x ,解之得:3±=x ,其中13-<-=x ,舍去,∴3=x 综上,3=x .习题2. 已知函数⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若5)(=x f ,则x 的值是【 】(A )2- (B )2或25-(C )2或2- (D )2或2-或25-习题3. 已知⎩⎨⎧≤+>=)0(1)0(2)(x x x x x f ,若0)1()(=+-f a f ,则实数a 的值等于________.3.求分段函数自变量的取值范围在分段函数的前提下,求某条件下自变量的取值范围的方法是:先假设自变量的值在分段函数的各段上,然后求出在相应各段定义域上自变量的取值范围,再求它们的并集即可.例3. 已知函数⎩⎨⎧<+-≥-=)1(32)1(23)(22x x x x x x f ,求使2)(<x f 成立的x 的取值范围. 解:由题意可得:⎩⎨⎧<-≥22312x x x 或⎩⎨⎧<+-<23212x x 解不等式组⎩⎨⎧<-≥22312x x x 得:1≤371+<x ;解不等式在⎩⎨⎧<+-<23212x x 得:22-<x 或122<<x∴使2)(<x f 成立的x 的取值范围为⎭⎬⎫⎩⎨⎧⎩⎨⎧+<<-<3712222x x x 或. 习题4. 已知()()⎩⎨⎧<≥=0001)(x x x f ,则不等式x x xf +)(≤2的解集为【 】(A )][1,0 (B )][2,0 (C )](1,∞- (D )](2,∞-习题5. 设函数()()⎩⎨⎧<+≥+-=06064)(2x x x x x x f ,则不等式)1()(f x f >的解集是_______.习题6. 函数()()()⎪⎩⎪⎨⎧≥<<-+-≤=434212)(x x x x x x x f ,若3)(-<a f ,则实数a 的取值范围是_____.例 4. 已知0≠a ,函数()()⎩⎨⎧≥--<+=1212)(x a x x a x x f ,若()()a f a f +=-11,则a 的值为_________.解:当11<-a ,即0>a 时,11>+a∴()()a a a a f -=+-=-2121,()a a a a f 31211--=---=+ ∵()()a f a f +=-11 ∴a a 312--=-,解之得:023<-=a ,不符合题意,舍去; 当11>-a ,即0<a 时,11<+a()()a a a a f --=---=-1211,()()a a a a f 32121+=++=+∵()()a f a f +=-11∴a a 321+=--,解之得:43-=a ,符合题意.综上,a 的值为43-.习题7. 设()⎩⎨⎧≥-<<=)1(12)10()(x x x x x f ,若)1()(+=a f a f ,则=⎪⎭⎫⎝⎛a f 1_________. 习题8. 设⎩⎨⎧<≥=)0()0()(2x x x x x f ,⎩⎨⎧>-≤=)2()2()(2x x x x x ϕ,则当0<x 时,=))((x f ϕ【 】(A )x - (B )2x - (C )x (D )2x图(5)习题9. 设函数⎪⎪⎩⎪⎪⎨⎧<≥-=)0(1)0(121)(x xx x x f ,若a a f =)(,则实数a 的值为【 】(A )1± (B )1- (C )2-或1- (D )1±或2-4.求分段函数的定义域分段函数的定义域是各段函数定义域的并集.例5. 函数⎪⎩⎪⎨⎧≥+<<+≤≤=)2(12)21(1)10(2)(x x x x x x x f 的定义域是_________.解:由各段函数的定义域可知该分段函数的定义域为[]())[)[∞+=∞+,0,22,11,0 .5.求分段函数的值域分段函数的值域是各段函数值域的并集.对于某些简单的分段函数,可画出其图象,象法).例6. 设∈x R ,求函数x x y 312--=的值域. 解:当x ≥1时,()2312--=--=x x x y ; 当0≤1<x 时,()25312+-=--=x x x y ; 当0<x 时,()2312+=+-=x x x y .综上所述,⎪⎩⎪⎨⎧<+<≤+-≥--=)0(2)10(25)1(2x x x x x x y其图象如图(5)所示,由图象可知其值域为](2,∞-. 另解:由上面可知:⎪⎩⎪⎨⎧<+<≤+-≥--=)0(2)10(25)1(2x x x x x x y 当x ≥1时,函数2--=x y 的值域为](3,-∞-;图(6)当0≤1<x 时,函数25+-=x y 的值域为(]2,3-; 当0<x 时,函数2+=x y 的值域为)(2,∞-.∴函数x x y 312--=的值域为]( 3,-∞-(] 2,3-)(=∞-2,](2,∞-.例7. 若∈x R ,函数)(x f 是x y x y =-=,22这两个函数值中的较小者,则函数)(x f 的最大值为【 】(A )2 (B )1 (C )1- (D )无最大值 解:解不等式22x -≥x 得:2-≤x ≤1 ∴当2-≤x ≤1时,x x f =)(,其值域为[]1,2-; 解不等式x x <-22得:1>x 或2-<x∴当1>x 或2-<x 时,22)(x x f -=,其值域为()1,∞-综上所述,⎩⎨⎧-<>-≤≤-=)21(2)12()(2x x x x x x f 或 函数)(x f 的值域为[] 1,2-()](1,1,∞-=∞- ∴函数)(x f 在其值域内的最大值为1. 函数)(x f 的图象如图(6)所示.习题10. 若函数⎪⎩⎪⎨⎧<≤<≤<<=)2015(5)1510(4)100(2)(x x x x f ,则函数)(x f 的值域是【 】(A ){}5,4,2 (B )()5,2 (C )()4,2 (D )()5,4习题11. 函数⎪⎩⎪⎨⎧≥<<≤≤=)2(3)21(2)10(2)(2x x x x x f 的值域是【 】(A )R (B ))[∞+,0 (C )[]3,0 (D )[]{}32,0 习题12. 已知函数()2221)(≤<--+=x xx x f . (1)用分段函数的形式表示该函数;(2)画出该函数的图象; (3)写出该函数的值域.习题13. 已知函数⎪⎩⎪⎨⎧<-=>-=)0(21)0(2)0(3)(2x x x x x x f .(1)画出函数)(x f 的图象;(2)求))(1(2R a a f ∈+,))3((f f 的值; (3)当)(x f ≥2时,求x 的取值范围.图(7)知识点三 函数的图象变换 函数图象的平移变换在平面直角坐标系中,函数图象的平移变换分为上下平移变换和左右平移变换两种.图象变换后,函数的解析式也发生了有规律的变化. (1)上下平移变换将函数)(x f y =的图象沿y 轴方向向上()0>b 或向下()0<b 平移b 个单位长度,得到函数b x f y +=)(的图象,即遵循“上加下减”的原则. (2)左右平移将函数)(x f y =的图象沿x 轴方向向左()0>a 或向右()0<a 平移a 个单位长度,得到函数)(a x f y +=的图象,即遵循“左加右减”的原则.例1. 将函数x y =的图象向上和向下平移2个单位长度,画出平移后的函数的图象.解:函数x y =,即函数()()⎩⎨⎧<-≥=00x x x x y .将函数x y =的图象向上平移2个单位长度,得到函数2+=x y 的图象,如图(1)所示;将函数x y =的图象向下平移2个单位长度,得到函数2-=x y 的图象,如图(2)所示.图(1)图(2)例2. 将函数x y 1=的图象向左平移1个单位长度,画出平移后的函数的图象. 解:将函数x y 1=的图象向左平移1个单位长度,得到函数11+=x y 的图象,如图(3)所示.图(3)说明:在图(3)中,反比例函数xy 1=的图象无限趋近于x 轴和y 轴,但不相交.因此把x 轴和y 轴叫做双曲线x y 1=的两条渐近线.所以,函数11+=x y 的图象的两条渐近线分别是x 轴和直线1-=x .例3. 将函数221)(x x f =的图象向右平移1个单位长度,画出平移后的函数的图象. 解:将函数221)(x x f =的图象向右平移1个单位长度,得到函数()2121)(-=x x f 的图象,如图(4)所示.图(4)1)2函数图象的对称变换在同一平面直角坐标系中,下列函数图象的对称关系为: (1)函数)(x f y =与函数)(x f y -=的图象关于x 轴对称; (2)函数)(x f y =与函数)(x f y -=的图象关于y 轴对称;(3)函数)(x f y =与函数)(x f y --=的图象关于原点对称(即关于原点成中心对称). 根据以上两个函数图象的对称关系,作出其中一个函数的图象,可以作出相应的另一个函数的图象.例4. 已知函数)(x f y =的图象如图(5)所示,画出函数)1(x f y -=的大致图象.图(5)解:∵ ()[]1)1(--=-=x f x f y ,∴先作出函数)(x f y =的图象关于y 轴对称的函数)(x f y -=的图象,如图(6)所示,再把函数)(x f y -=的图象向右平移1个单位长度,即可得到函数)1(x f y -=的图象,如图(7)所示.图(6)图(7)函数图象的翻折变换在同一平面直角坐标系中,通过对函数)(x f y =图象的翻折变换,可以得到函数)(x f y =和)(x f y =的图象.(1)要作出函数)(x f y =的图象,可先作出函数)(x f y =的图象,然后保留x 轴上及其上方的图象,把x 轴下方的图象翻折到x 轴上方即可;(2)要作出函数)(x f y =的图象,可先作出函数)(x f y =的图象,然后保留y 轴上及其右侧的图象,把y 轴右侧的图象翻折到y 轴左侧即可.例5. 画出函数132+-=x x y 的大致图象. 解:()1521512132+-=+-+=+-=x x x x x y 先作出函数,5的图象x y -=然后把函数的图象xy 5-=向左平移1个单位长度,得到函数15+-=x y 的图象,再把函数15+-=x y 的图象向上平移2个单位长度,即可得到函数132+-=x x y 的大致图象,如图(8)所示.图(8)说明:在图(8)中,直线1-=x 和直线2=y 是函数132+-=x x y 的图象的两条渐近线. 例6. 作出函数322--=x x y 的大致图象.解:先作出函数322--=x x y 的图象,然后把x 轴下方的图象翻折到x 轴上方即可得到函数322--=x x y 的图象,如图(9)所示.图(9)3说明:事实上,函数322--=x x y 为绝对值函数,可化为分段函数:()()⎩⎨⎧<<-++-≥-≤--=--=3132313232222x x x x x x x x x y 或.例7. 作出函数322--=x x y 的大致图象.解:先作出函数322--=x x y 的图象,然后保留其在y 轴上及其右侧的图象,把y 轴右侧的图象翻折到y 轴左侧即可得到函数322--=x x y 的图象,如图(10)所示.x 3图(9)说明:事实上,()()⎩⎨⎧<-+≥--=--=03203232222x x x x x x x x y .习题1. 若方程m x x =+-342有四个互不相等的实数根,则实数m 的取值范围是________. 提示:根据数形结合思想,构造两个函数:342+-=x x y 和常数函数m y =,将方程的根的个数转化为两个函数图象的交点个数问题.习题2. 将函数()3122-+=x y 的图象向右平移1个单位长度,再向上平移3个单位长度,所得的图象对应的函数解析式为________________.习题3. 画出函数1322--+=x x x y 的图象,并根据图象指出函数的值域.知识点四 求函数的解析式 求函数的解析式的方法(1)待定系数法; (2)换元法; (3)配凑法; (4)解方程组法; (5)赋值法. 一、待定系数法已知函数的类型,求函数的解析式,用待定系数法.例1. 已知一次函数)(x f 满足64))((+=x x f f ,求函数)(x f 的解析式. 解:设函数b kx x f +=)( ∵64))((+=x x f f∴()64)(2+=++=++=+x b kb x k b b kx k b kx f∴⎩⎨⎧=+=642b kb k ,解之得:⎩⎨⎧==22b k 或⎩⎨⎧-=-=62b k∴22)(+=x x f 或62)(--=x x f .例2. 已知)(x f 是一次函数,且满足172)1(2)1(3+=--+x x f x f ,求函数)(x f 的解析式. 解:设函数b kx x f +=)(,则:()b k kx b x k x f ++=++=+1)1(,()b k kx b x k x f +-=+-=-1)1(∵172)1(2)1(3+=--+x x f x f ∴()()17223+=+--++x b k kx b k kx 整理得:1725+=++x b k kx∴⎩⎨⎧=+=1752b k k ,解之得:⎩⎨⎧==72b k∴72)(+=x x f .例 3. 已知函数)(x f 是二次函数,且满足1)0(=f ,x x f x f 2)()1(=-+,求函数)(x f 的解析式.解:设c bx ax x f ++=2)( ∵1)0(=f∴1)(,12++==bx ax x f c∴()()()12111122+++++=++++=+b a bx ax ax x b x a x f∵x x f x f 2)()1(=-+ ∴x b a ax 22=++∴⎩⎨⎧=+=022b a a ,解之得:⎩⎨⎧-==11b a∴1)(2+-=x x x f .习题1. 已知)(x f 是一次函数,且14))((-=x x f f ,求函数)(x f 的解析式.习题2. 已知)(x f 是二次函数,且0)0(=f ,1)()1(++=+x x f x f ,求函数)(x f 的解析式.习题3. (1)已知一次函数)(x f y =,3)1(,1)1(-=-=f f ,求)3(f ; (2)已知q px x x f ++=2)(,0)2()1(==f f ,求)1(-f .二、换元法已知函数))((x g f 的解析式,求函数)(x f 的解析式,用换元法. 例4. 已知函数x x x f 2)1(+=+,则)(x f 的解析式为____________. 解:设t x =+1,则()21-=t x (t ≥1)∴()()1121)(22-=-+-=t t t t f (t ≥1)∴1)(2-=x x f (x ≥1). (第二种解法见例8)注意:使用换元法求函数解析式,换元后要标明新元的取值范围,即函数)(x f 的定义域. 例5. 已知函数22)1(2++=+x x x f ,求)(x f 及)3(+x f . 解:设t x =+1,则1-=t x (∈t R ) ∴()()12121)(22+=+-+-=t t t t f∴1)(2+=x x f∴()10613)3(22++=++=+x x x x f .例6. 已知函数111+=⎪⎭⎫⎝⎛-x x f ,求函数)(x f 的解析式.解:由111+=⎪⎭⎫⎝⎛-x x f 可知:1≠x .设t x =-11,则tt x 1+=()0≠t ∴t t t t f 1211)(+=++=∴xx f 12)(+=()0≠x .习题7. 已知函数x x x f 2)1(2-=+,则)(x f 的解析式为____________. 习题8. 已知函数x x x f 2)1(+=-,求函数)(x f 的解析式.习题9. 若xx x f -=⎪⎭⎫⎝⎛11,则当0≠x 且1≠x 时,)(x f 等于【 】(A )x 1 (B )11-x (C )x -11 (D )11-x三、配凑法已知函数))((x g f 的解析式,求某些函数)(x f 的解析式,也可用配凑法. 例7. 已知函数x x x f 2)1(2-=+,求函数)(x f 的解析式. 解:∵x x x f 2)1(2-=+∴()()3141)1(2++-+=+x x x f∴34)(2+-=x x x f .例8. 已知函数x x x f 2)1(+=+,则)(x f 的解析式为____________. 解:∵x x x f 2)1(+=+ ∴()11)1(2-+=+x x f∵1+x ≥1∴1)(2-=x x f (x ≥1).例9. 已知x x x x x f 11122++=⎪⎭⎫ ⎝⎛+,求函数)(x f 的解析式. 解法1(配凑法)∵x x x x x f 11122++=⎪⎭⎫ ⎝⎛+ ∴111111111122+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=++=⎪⎭⎫ ⎝⎛+x x x x x f∵111≠+x∴1)(2+-=x x x f (1≠x ). 解法2(换元法):习题10. 已知22)1(2++=+x x x f ,求函数)(x f 的解析式.习题11. 已知1)1(++=-x x x f ,求函数)(x f 的解析式.习题12. 已知函数13)(-=x x f ,若32))((+=x x g f ,则函数)(x f 的解析式为【 】(A )3432)(+=x x g (B )3432)(-=x x g (C )3234)(+=x x g (D )3234)(-=x x g提示:1)(3))((-=x g x g f . 四、解方程组法已知中含有⎪⎭⎫⎝⎛x f x f 1),(或)(),(x f x f -形式的函数,求函数)(x f 的解析式,用解方程组法.例10. 已知函数)(x f 满足x x f x f =⎪⎭⎫⎝⎛+12)(,则函数)(x f 的解析式为____________.解:∵x x f x f =⎪⎭⎫⎝⎛+12)(∴用x 1替换上式中的x ,得到:x x f x f 1)(21=+⎪⎭⎫⎝⎛解方程组⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛+x x f x f x x f x f 1)(2112)(得:xx x f 3231)(+-=.例11. 定义在区间()1,1-上的函数)(x f 满足2)()(2x x f x f =--,求函数)(x f 的解析式. 解:∵()1,1-∈x ,∴()1,1-∈-x ∵2)()(2x x f x f =--∴用x -替换上式中的x ,得到:()22)()(2x x x f x f =-=--解方程组⎩⎨⎧=--=--22)()(2)()(2x x f x f x x f x f 得: )11()(2<<-=x x x f .习题13. 已知函数)(x f 满足2112)(+=⎪⎭⎫ ⎝⎛+xx f x f ,则函数)(x f 的解析式为____________.习题14. 已知x x x f x f 2)(2)(2+=-+,求函数)(x f 的解析式.五、赋值法求抽象函数的解析式用赋值法.例12. 设)(x f 是R 上的函数,且满足1)0(=f ,并且对任意的实数y x ,都有:)12()()(+--=-y x y x f y x f ,求)(x f 的解析式.解:设y x =,∵1)0(=f∴()112)()0()(=+--==-x x x x f f y x f ∴1)(2++=x x x f .习题15. 已知对于任意实数y x ,都有y x y xy x y f y x f 332)(2)(22-+-+=-+,求函数)(x f 的解析式.。
函数的表示法(2)映射的概念
…
王五
… …
30
…
图像变换
一:平移变换
二:翻折变换
小组合作学习任务
问 题 1.映射的概念导学案 问题2、3 展示 点评
2映射的概念导学案
3.映射的概念导学案
例1及变式1
变式2
4.映射的概念导学案 例4变式 5.映射的概念导学案 例2(1、2)
映射的概念:
一般地,设A、B是两个非空的集合,如 果按照某种确定的对应关系f,使对于集合 A中的每一个元素x,在集合B中都有唯一 的元素f(x)和它对应,这样的对应叫做从集 合A到集合B的一个映射.
思考:映射与函数有什么区别与联系?
函数 映射 建立在两个非空数集上的特殊对应
扩 展
建立在两个非空任意集合上的特殊对应
6.导学案 例2变式 (1)(2) 例3
7.映射的概念导学案
不是映射?
A 9 4 开平方 B 3 -3 2 -2 1 -1 B 1 4 9 A 30° 求正弦 B
1 2
2 2 3 2
45°
60° 90° A 乘以2 1 2 3
1
1
B 1 2 3 4 5 6
A 1 -1 2 -2 3 -3
求平方
下面对应是否为函数?映射?
A={高一(1)班同学} ,B={正实数} ,f:让每位同学与 学号数对应.对应如下表所示:
映射的概念
复习:函数的概念
一般地,设A、B是两个非空的数集, 如果按照某种确定的对应关系f,使对于集 合A中的每一个数x,在集合B中都有唯一的 数f(x)和它对应,这样的对应叫做从集合A 到集合B的一个函数. 函数的本质:
建立在两个非空数集上的特殊对应
2007-9-13 函数的表示法(2)
四、小结
1、分段函数
2、求解析式
3、映射的概念
1 2 2 2 3 2 1
A B
求平方
3 -3 2 -2 1 -1
9 4 1
A B
开平方
9 4 1
3 -3 2 -2 1 -1
A B
乘以 2
1 2
3
1 2 3 4 5 6
例7 以下给出的对应是不是从集合A到B的映射? (1)集合A={P|P是数轴上的点},集合B=R,对应关系f: 数轴上的点与它所代表的实数对应; (2)集合A={P|P是平面直角坐标系中的点},集合B = ( x, y) | x R , y R ,对应关系f:平面直角坐标系 中的点与它的坐标对应; (3)集合A={x|x是三角形},集合B={x|x是圆},对 应关系f:每一个三角形都对应它的内切圆; (4)集合A={x|x是新华中学的班级},集合B={x|x是 新华中学的学生},对应关系f:每一个班级都对应班里 的学生;
问题 函数概念与映射概念之间有怎样的关系?有什么异同?
函数是从非空数集A到非空数集B的映射。映射 是从集合A到集合B的一种对应关系,这里的集 合A、B可以是数集,也可以是其他集合。函数 是一种特殊的映射。
问题 如何判断一个对应关系是不是映射?
A B
求正弦
30 45 60 90
0 0 0 0
一、复习回顾Байду номын сангаас
(1)函数的三种表示方法:
解析法、图象法、列表法
(2)用描点法画函数图象的步骤:
列表、描点、连线 (视其定义域决定是否连线)
(3)有些函数在它的定义域中,对于自变量的
不同取值范围,对应关系不同,这种函数通常称 为分段函数。分段函数是一个函数!
人教版高中数学必修一1.2.2_函数的表示法_第二课时ppt课件
考点一
课堂互动讲练
考点突破 分段函数图象的画法
根据分段区间及各段解析式.常用描点法画图,注意区间 端点的虚实.
例1 已知函数 f(x)=1+|x|- 2 x(-2<x≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 【思路点拨】 讨论x的取值范围
→ 化简fx的解析式
例2 从甲同学家到乙同学家的途中有一个公园 甲、乙两家到该公园的距离都是 2 km,甲 10 点钟 发前往乙家,如图表示甲从自家出发到乙家为止 过的路程 y(km)与时间 x(分钟)的关系.依图象回 下列问题:
(1)甲在公园休息了吗?若休息了,休息了多 长时间? (2)甲到达乙家是几点钟? (3)写出函数 y=f(x)的解析式. (4)计算当 x=50 分钟时,甲所走的路程.
x →y=12x.
【思路点拨】 解答本题可由映射定义出发,观察A中任何一 个元素在B中是否都有唯一元素与之对应. 【解】 (1)由于A中元素3在对应关系f作用下其与3的差的绝对 值为0,而0∉B,故不是映射. (2)因为一个圆有无数个内接矩形,即集合A中任何一个元素在 集合B中有无数个元素与之对应,故不是映射.
问题探究
x x≥0 1.y=|x|=-x x<0 可以说 y=|x|是两 个函数吗? 提示:y=|x|,x∈R,仍是一个函数,只是 x ∈[0,+∞)与 x∈(-∞,0)的对应关系不同, 对于具体 x 值,所用的对应关系是唯一的.
2.从定义上看,函数与映射有什么关系? 提示:对比函数定义与映射定义可知,函数是特殊的映射, 是从非空数集到非空数集的映射.并非所有映射都为函数.
将(60,4),(40,2)分别代入,得 k2=110,b=- 2.
函数的概念及其表示法(2)
一、新课教学(一)函数的有关概念 1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ).记作:y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ).注意:○1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x . 2. 构成函数的三要素:定义域、对应关系和值域 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论 说明:○1 函数的定义域通常由问题的实际背景确定 ○2 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式. ○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
○2 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? (1)f ( x ) = (x -1) 0;g ( x ) = 1(2)f ( x ) = x ; g ( x ) = 2x(3)f ( x ) = x 2;f ( x ) = (x + 1) 2 (4)f ( x ) = | x | ;g ( x ) = 2x(三)课堂练习求下列函数的定义域(1)|x |x 1)x (f -=(2)x111)x (f +=(3)5x 4x )x (f 2+--=(4)1x x 4)x (f 2--= (5)10x 6x )x (f 2+-= (6)13x x 1)x (f -++-=1. 理解函数的三种不同的表示方法:列表法,图象法和解析法,并体会它们的优缺点;2. 会求函数的解析式,掌握求函数解析式的基本方法:配凑法,换元法,待定系数法,解方程组法,赋值法等;3.会用描点作图法画基本初等函数的图象. 1. 复习回顾(1)已知π=)(x f ,则)(2x f =_______;(2)函数34)(2-+=x x x f ,则)1(+x f =_______________; 2. 阅读课本,完成下列题目(1)解析法:就是用____________表示两个变量之间的对应关系,这个数学表达式就叫做____________.(2)图象法:就是用_______表示两个变量之间的对应关系。
1.2.2函数的表示法(二)——映射的概念
§1.2.2函数的表示法(二)——映射的概念一、内容与解析(一)内容:映射(二)解析:⑴映射是两个集合A与B中,元素之间存在的某种对应关系.说其是一种特殊的对应,就是因为它只允许存在“一对一”与“多对一”这两种对应,而不允许存在“一对多”的对应.⑵映射中只允许“一对一”与“多对一”这两种对应的特点,从A到B的映射f:A→B实际是要求集合A中的任一元素都必须对应于集合B中唯一的元素.但对集合B中的元素并无任何要求,即允许集合B中的元素在集合A中可能有一个元素与之对应,可能有两个或多个元素与之对应,也可能没有元素与之对应.⑶映射中对应法则f是有方向的,一般来说从集合A到集合B的映射与从集合B到集合A的映射是不同的.(4)我们可以把对应关系看成一面镜子,集合A中的元素在这面镜子中存在一个像,一个相对应的元素,原像则是集合A中的元素.这样像和原像的概念就比较容易理解.并且映射中集合A的每一个元素在集合B中都有它的像,通过对应关系——即通过镜子总存在像,而且像是唯一的,不会“照”出许多的像来,这是映射区别于一般对应的本质特征.二、目标及其解析:(一)教学目标(1)了解映射的概念及表示方法;结合简单的对应图示,了解一一映射的概念.(2)解析:重点把握映射与函数的区别。
三、问题诊断分析函数与映射的区别与联系(1)函数包括三要素:定义域、值域、两者之间的对应关系;映射包括三要素: 集合A, 集合B, 以及A,B之间的对应关系(2)函数定义中的两个集合为非空数集; 映射中两个集合中的元素为任意元素,如人、物、命题等都可以.(3)在函数中,对定义域中的每一个x,在值域中都有唯一确定的函数值和它对应;在映射中,对集合A中的任意元素a,在集合B中都有唯一确定的像b和它对应.(4)在函数中,对值域中的每一个确定的函数值,在定义域中都有确定的自变量的值和它对应;在映射中,对于集合B中的任一元素b,在集合A中不(5)函数实际上就是非空数集A到非空数集B的一个映射:f A B →(6)通过右图我们可以清晰的看到这三者的关系. 四、教学支持条件分析在本节课一次递推的教学中,准备使用PowerPoint 2003。
函数的三种表示法
函数的三种表示法
函数是一种重要的编程概念,它可以帮助我们更有效地完成编程任务。
函数有三种表示法:声明式,表达式和函数声明。
声明式是最常见的函数表示法,它是一种定义函数的方法,它可以让我们更容易地定义函数。
声明式函数的语法如下:function 函数名(参数){函数体}。
声明式函数的优点是可
以在函数体中定义变量,并且可以在函数体中使用return语句返回函数的结果。
表达式是另一种定义函数的方法,它可以让我们更容易地定义函数。
表达式函数的语法如下:var 函数名 = function(参数){函数体}。
表达式函数的优点是可以在函数体中定义变量,并且可以在函数体中使用return语句返回函数的结果。
函数声明是另一种定义函数的方法,它可以让我们更容易地定义函数。
函数声明的语法如下:function 函数名(参数){函数体}。
函数声明的优点是可以在函数体中定义变量,并
且可以在函数体中使用return语句返回函数的结果。
总之,函数有三种表示法:声明式,表达式和函数声明。
它们都可以帮助我们更有效地完成编程任务,但是每种表示法都有自己的优点和缺点,我们应该根据实际情况选择合适的
表示法。
函数的表示法2:分段函数
分段函数Q 情景引入ing jing yin ru某魔术师猜牌的表演过程是这样的,表演者手中持有六张扑克牌,不含王牌和牌号数相同的牌,让6位观众每人从他手里任摸一张,并嘱咐摸牌时看清和记住自己的牌号,牌号数是这样规定的,A 为1,J 为11,Q 为12,K 为13,其余的以牌上的数字为准,然后,表演者让他们按如下的方法进行计算,将自己的牌号乘2加3后乘5,再减去25,把计算结果告诉表演者(要求数值绝对准确),表演者便能立即准确地猜出谁拿的是什么牌,你能说出其中的道理吗?分段函数所谓分段函数,是指在定义域的不同部分,有不同的对应关系的函数.[知识点拨] 分段函数是一个函数,不要把它误认为是几个函数.分段函数的定义域是各段定义域的并集,值域是各段值域的并集.预习自测1.函数y =|x |的图象是( B )[解析] 因为y =|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,所以B 选项正确.2.y =f (x )的图象如图所示,则函数的定义域是( D )A .[-5,6)B .[-5,0]∪[2,6]C .[-5,0)∪[2,6)D .[-5,0]∪[2,6)[解析] 根据分段函数定义域的确定原则:将每一段上函数的自变量的范围取并集,即:[-5,0]∪[2,6).3.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f [g (π)]的值为( B )A .1B .0C .-1D .π[解析] 由题设,g (π)=0,f (g (π))=f (0)=0. 4.已知函数f (x )=⎩⎪⎨⎪⎧2x -3,x >0,3,x =0,2x +3,x <0,求f (f (12))的值.[解析] f (12)=12×2-3=-2,f (-2)=2×(-2)+3=-1, ∴f (f (12))=f (-2)=-1.命题方向1 ⇨分段函数的求值问题 典例1 已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2.(1)求f (-4),f (3),f [f (-2)]; (2)若f (a )=10,求a 的值.[思路分析] 分段函数的解析式⇒求函数值或已知函数值列方程求字母的值. [解析] (1)f (-4)=-4+2=-2, f (3)=2×3=6,f (-2)=-2+2=0, f [f (-2)]=f (0)=02=0.(2)当a ≤-1时,a +2=10,可得a =8,不符合题意; 当-1<a <2时,a 2=10,可得a =±10,不符合题意; 当a ≥2时,2a =10,可得a =5,符合题意; 综上可知,a =5.『规律方法』 求分段函数函数值的方法 (1)先确定要求值的自变量属于哪一段区间. (2)然后代入该段的解析式求值,直到求出值为止. 当出现f [f (x 0)]的形式时,应从内到外依次求值. 〔跟踪练习1〕已知f (x )=⎩⎪⎨⎪⎧x +3,x >10,f [f (x +5)],x ≤10,则f (5)的值是( A )A .24B .21C .18D .16[解析] f (5)=f [f (10)],f (10)=f [f (15)]=f (18)=21,f (5)=f (21)=24. 命题方向2 ⇨分段函数与不等式的应用 典例2 已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≤-2,x +1,-2<x <4,3x ,x ≥4,若f (a )<-3,则a 的取值范是__(-∞,-3)__.[思路分析]解不等式f (a )<-3需先求f (a )的值―→讨论a 落在分段函数的哪一段上―→解得a 的取值范围[解析] 当a ≤-2时,f (a )=a <-3,此时不等式的解集是(-∞,-3); 当-2<a <4时,f (a )=a +1<-3,此时不等式无解; 当a ≥4时,f (a )=3a <-3,此时不等式无解. 所以a 的取值范围是(-∞,-3).『规律方法』 解决分段函数与不等式的问题,应分段利用函数解析式求得自变量的取值范围,最后再将每段中求得的范围取并集,即可得到所求自变量的取值集合.〔跟踪练习2〕已知函数f (x )=⎩⎪⎨⎪⎧-1,x <0,1,x ≥0,则不等式xf (x -1)≤1的解集为( A )A .[-1,1]B .[-1,2]C .(-∞,1]D .[-1,+∞)[解析] 当x -1<0,即x <1时,f (x -1)=-1, ∴xf (x -1)=-x ≤1,∴x ≥-1, ∴-1≤x <1.当x -1≥0,即x ≥1时, f (x -1)=1,∴xf (x -1)=x ≤1, 又∵x ≥1,∴x =1.综上可知,-1≤x ≤1,故选A . 命题方向3 ⇨分段函数的图象及应用 典例3 已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示函数f (x );(2)画出函数f (x )的图象; (3)写出函数f (x )的值域.[思路分析] 先根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,再利用描点法作出函数图象.[解析] (1)当0≤x ≤2时,f (x )=1+x -x2=1;当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).『规律方法』 1.由分段函数的图象确定函数解析式的步骤(1)定类型:根据自变量在不同范围内图象的特点,先确定函数的类型. (2)设函数式:设出函数的解析式.(3)列方程(组):根据图象中的已知点,列出方程或方程组,求出该段内的解析. (4)下结论:最后用“{”表示出各段解析式,注意自变量的取值范围. 2.作分段函数图象的注意点作分段函数的图象时,定义域分界点处的函数取值情况决定着图象在分界点处的断开或连接,特别注意端点处是实心点还是空心点.〔跟踪练习3〕已知函数f (x )=⎩⎪⎨⎪⎧-2x +1,x <1,x 2-2x ,x ≥1.(1)画出函数的图象; (2)若f (x )=1,求x 的值. [解析] (1)函数图象如图所示.(2)由f (x )=1和函数图象综合判断可知,当x ∈(-∞,1)时,得f (x )=-2x +1=1,解得x =0;当x ∈[1,+∞)时,得f (x )=x 2-2x =1,解得x =1+2或x =1-2(舍去). 综上可知x 的值为0或1+2 分段函数概念的理解错误.典例4 求函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≥0)x (x <0)的定义域.[错解] ∵x ≥0时,f (x )=x 2-1,x <0时,f (x )=x , ∴当x ≥0时,f (x )的定义域为[0,+∞), 当x <0时,f (x )的定义域为(-∞,0).[错因分析] 错解的原因是对分段函数概念不理解,认为分段函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≤0)x (x <0)是两个函数.[正解] 函数f (x )的定义域为(-∞,0)∪[0,+∞),即(-∞,+∞),∴函数f (x )的定义域为(-∞,+∞).建模应用能力数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题.数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式.数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力.在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验.学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识.典例5 如图,在边长为4的正方形ABCD 的边上有一点P ,沿折线BCDA 由点B (起点)向点A (终点)运动,设点P 运动的路程为x ,△APB 的面积为y .(1)求y 关于x 的函数关系式y =f (x ); (2)画出y =f (x )的图象;(3)若△APB 的面积不小于2,求x 的取值范围. [思路分析] (1)点P 位置不同△ABP 的形状一样吗? (2)注意该函数的定义域.[解析] (1)y =⎩⎪⎨⎪⎧2x (0≤x ≤4)8 (4<x ≤8)2(12-x ) (8<x ≤12).(2)y =f (x )的图象如图所示.(3)即f (x )≥2,当0≤x ≤4时,2x ≥2,∴x ≥1,当8<x ≤12时,2(12-x )≥2, ∴x ≤11,∴x 的取值范围是1≤x ≤11.[点评] (3)可以作直线y =2与函数y =f (x )的图象交于点A (1,2),B (11,2),要使y ≥2,应有1≤x ≤11.『规律方法』 利用分段函数求解实际应用题的策略 (1)首要条件:把文字语言转换为数学语言. (2)解题关键:建立恰当的分段函数模型.(3)思想方法:解题过程中运用分类讨论的思想方法.1.已知函数已知f (1)=0,且对任意n ∈N *,都有f (n +1)=f (n )+3,则f (3)=( C ) A .0 B .3 C .6D .9[解析] f (3)=f (2)+3=f (1)+6=6.2.在下列的四个图象中,是函数f (x )=x|x |的图象的是( C )3.函数f (x )=⎩⎪⎨⎪⎧x +2,(x ≤-1)x 2,(-1<x <2)2x (x ≥2),若f (x )=3,则x 的值为( D )A .1B .1或 3C .32D . 34.已知函数f (x )=⎩⎪⎨⎪⎧2x +1(x ≥0)|x |(x <0),且f (x 0)=3,则实数x 0=__-3或1__.[解析] 当x 0≥0时,f (x 0)=2x 0+1=3, ∴x 0=1;当x 0<0时,f (x 0)=|x 0|=3, ∴x 0=±3, 又∵x 0<0, ∴x 0=-3.一、选择题1.设f (x )=⎩⎪⎨⎪⎧x +2(x ≥0)1(x <0),则f [f (-1)]=( A )A .3B .1C .0D .-1[解析] ∵x <0时,f (x )=1, ∴f (-1)=1,∴f [f (-1)]=f (1), 又∵x ≥0时,f (x )=x +2, ∴f (1)=1+2=3.2.设函数f (x )=⎩⎪⎨⎪⎧1-x 2(x ≤1)x 2+x -2(x >1),则f [1f (2)]的值为( A )A .1516B .-2716C .89D .18[解析] ∵x >1时,f (x )=x 2+x -2, ∴f (2)=22+2-2=4, ∴1f (2)=14∴f [1f (2)]=f (14),又∵x ≤1时,f (x )=1-x 2, ∴f (14)=1-(14)2=1-116=1516,故选A .3.某市出租车起步价为5元(起步价内行驶里程为3 km),以后每1 km 价为1.8元(不足1 km 按1 km 计价),则乘坐出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为下列图中的( B )[解析] 由已知得y =⎩⎪⎨⎪⎧5(0<x ≤3)5+[x -3]×1.8(x >3).故选B .4.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1(x >0)0(x =0)-1(x <0),则( D )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x[解析] 当x >0时,|x |=x ,sgn x =1,则|x |=x sgn x ;当x <0时,|x |=-x ,sgn x =-1,则|x |=x sgn x ;当x =0时,|x |=x =0,sgn x =0,则|x |=x sgn x ,故选D .5.若函数f (x )=⎩⎪⎨⎪⎧ x 2,x ≥0,x ,x <0,φ(x )=⎩⎪⎨⎪⎧x ,x ≥0,-x 2,x <0,则当x <0时,f [φ(x )]( B )A .-xB .-x 2C .xD .x 2[解析] x <0时,φ(x )=-x 2<0,∴f (φ(x ))=-x 2.6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在图中,纵轴表示离学校的距离,横轴表示出发后的时间,则四个图形中较符合该学生走法的是( D )[解析] ∵纵轴表示离学校的距离,横轴表示出发后的时间,∴当t =0时,纵坐标表示家到学校的距离,不能为零,故排除A ,C ;又由于一开始是跑步,后来是走完余下的路,∴刚开始图象下降的较快,后来下降的较慢,故选D .二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧2,x ∈[-1,1],x ,x ∉[-1,1],若f (f (x ))=2,则x 的取值范围是__{2}∪[-1,1]__.[解析] 设f (x )=t ,∴f (t )=2,当t ∈[-1,1]时,满足f (t )=2,此时-1≤f (x )≤1,无解,当t =2时,满足f (t )=2,此时f (x )=2即-1≤x ≤1或x =2.8.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,0,x <0,则不等式xf (x )+x ≤2的解集是__{x |x ≤1}__.[解析] 当x ≥0时,f (x )=1,由xf (x )+x ≤2,知x ≤1,∴0≤x ≤1; 当x <0时,f (x )=0,∴x <0. 综上,不等式的解集为{x |x ≤1}. 三、解答题9.若方程x 2-4|x |+5=m 有4个互不相等的实数根,求m 的取值范围.[解析] 令f (x )=⎩⎪⎨⎪⎧x 2-4x +5,x ≥0,x 2+4x +5,x <0.作其图象,如图所示由图可知1<m <5.10.如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左向右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左侧部分的面积y 关于x 的函数解析式.[解析] 如图所示,过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .因为四边形ABCD 是等腰梯形, 底角为45°,AB =22cm , 所以BG =AG =DH =HC =2 cm. 又BC =7 cm ,所以AD =GH =3 cm. 当点F 在BG 上时,即x ∈(0,2]时,y =12x 2;当点F 在GH 上时,即x ∈(2,5]时, y =12×2×2+2(x -2)=2x -2; 当点F 在HC 上时,即x ∈(5,7]时,y =S 五边形ABFED =S 梯形ABCD -S Rt △CEF =12(7+3)×2-12(7-x )2=-12(x -7)2+10.综上,y =⎩⎪⎨⎪⎧12x 2,x ∈(0,2],2x -2,x ∈(2,5],-12(x -7)2+10,x ∈(5,7].。
1.2.2函数的表示法
例题剖析
例3 某种笔记本的单价是5元,买x(x{1,2,3,4,5}) 个笔记本需要y元。试用函数的三种表示法表示函数 y=(x)。 解:这个函数的定义域是数集{1,2,3,4,5}用解 析法可将函数y=f(x)表示为y=5x,x{1,2,3,4,5}. 用列表法可将函数表示为 笔记本数x 钱数y 1 5 2 10 3 15 4 20 5 25
y 100
90 80
70
.
班♦ 平 均 分
■
▲
ቤተ መጻሕፍቲ ባይዱ. . . .
▲
.
■ ▲
王伟
♦
▲
♦ ▲
■
■
♦
♦ 张城
▲ ■
■
♦
赵磊
60 0
1
2
3
4
5
6
x
例5 画出函数y=|x|的图象. 解:由绝对值的概念,我们有
y=
图象如下:
x, x≥0, -x, x<0.y
5
4 3 2
1 -3 -2 -1 0 1
2 3 x
有些函数在它的定义域中,对于自变量X的不同取值 范围,对应关系不同,这样函数通常称为分段函数。
第一次 第二次 王伟 张城 赵磊 班级平均分 98 90 68 88.2 87 76 65 78.3
第三次 91 88 73 85.4
第三次 92 75 72 80.3
第五次 88 86 75 75.7
第六次 95 80 82 82.6
y 100
90 80
70
.
班♦ 平 均 分
■
▲
. . . .
▲
应关系f,在集合B中都有唯一的元素和它对应,那么这个
高中数学《函数的表示法》(第2课时)教学设计
函数的表示法(第2课时)教学设计一、内容和内容解析1.内容实际问题中的函数表示.2.内容解析数学教育的终极目标是让学生:会用数学的眼光观察世界、会用数学的思维思考世界、会用数学的语言表达世界.其中“会用数学的语言表达世界”体现的是数学的应用价值,即利用数学模型解决实际问题.通过第1课时的学习,学生已基本掌握了函数的三种表示法及其特点,并且初步体会了在具体的问题(分段函数)中如何选择适当的表示法解决数学问题.那么,如何选择适当的表示法解决实际问题呢?通过本节课的学习,学生应有所体会.在本节课中不仅可以进一步研究函数本身,将实际问题数学化,应用函数解决实际问题,而且可以加深对函数概念的理解,学会比较选择最优解法.例7是关于数学成绩的问题,贴近学生生活,体现了列表法向图象法的转化,通过对三名同学成绩的简单分析,学生可进一步体会图象法的直观性,可提倡学生用科学的方法看待自身成绩.例8是2019年国家热点问题——个税的新计算方式.函数以列表法给出,可通过对条件的分析,转化成解析法和图象法,体现了分段函数的应用价值.基于以上分析,确定本节课的教学重点:选择恰当的方法表示具体问题中的函数关系.二、目标和目标解析1.目标选择恰当的方法表示具体问题中的函数关系.2.目标解析达成上述目标的标志是:学生会正确选择合适的表示法解决教科书例7、例8所示的问题,结合例7,例8的学习,初步体会建立函数模型解决实际问题的过程,发展数学建模素养。
三、教学问题诊断分析经过义务教育阶段的数学学习,学生对具体数学知识和问题的求解比较熟悉,而解决带有情境的实际问题的能力相对欠缺,于是新版教材专门对前版教材结构进行了调整,搭建了两个与学生密切相关、应用性很强的实际问题情境,对其进行合理分析,培养学生选择恰当的方法表示具体问题中的函数关系的能力.对于例7,可能有的同学觉得表3.1-4包含了三名同学的6次成绩数据,已经很直观了,教师可进行相应解释:列表法虽然具有“不需要计算就可以直接看出与自变量的值相对应的函数值”的优点,但是不利于发现每位同学的成绩变化情况,以及与班级平均分的关系,换句话说仍然不够直观.学生一般可自然想到更加直观的表示方式——图象法.但是当学生们在同一直角坐标系中画出了三位同学6次成绩及班级6次平均分共24个散点时,问题随之而来——无法区分每个散点数据属于哪个学生,其直观性更是无从谈起.于是教师可进行相应引导:为了更容易看出一个同学的学习情况,我们将表示每位同学成绩的函数图象(离散的点)用虚线连接.在此基础上,可进一步引导学生对三名同学的数学学习情况进行分析.对于例8,学生首先面对的问题就是对题目的理解.带有情境的实际问题往往篇幅略长,因此需要给学生充足的时间读懂题目,明确研究对象,理清题中变量间的关系,是解决问题的前提和保障.之后就需要依据题目建立适当的数学模型,解决问题.本题是分段函数模型,每一段都是一次函数,相对简单,但要注意分段时自变量取值的原则——不重不漏.四、教学支持条件分析本节课的教学重点是选择恰当的方法表示具体问题中的函数关系.可借助图形计算器、几何画板、Geogebra等技术工具做出函数图象,用图象法表示函数,对问题进行直观分析.五、教学过程设计引导语:对于一个具体的问题,如果涉及函数,你会选择恰当的方法表示问题中的函数关系吗?这节课我们通过两个实例来做相关研究.(一)实际问题问题1:表3.1-4是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表.你能直接通过表3.1-4对这三位同学在高一学年的数学学习情况做一个分析吗?师生活动:教师给出问题后让学生先简单独立思考并尝试写出结论,大部分同学无法直接通过表3.1-4所给数据分析这三位同学在高一学年的数学学习情况.如有个别同学提出可以,教师可提醒:表3.1-4不太容易分析每位同学的成绩变化情况,不够直观,因而会制约结论的形成.追问:你选择哪种表示法分析这三位同学在高一学年的数学学习情况?为什么?学生会首先想到图象法.教师让学生在同一直角坐标系中画出与表3.1-4所对应的函数图象,并让学生尝试利用图象得出结论.面对毫无规律的24个散点,学生基本没有头绪.此时教师可做适当引导:为了更容易看出一个同学的学习情况,我们将表示每位同学成绩的函数图象(离散的点)用虚线连接.并用多媒体展示教科书第70页图3.1-6,然后让学生分组讨论,分享自己眼中的结论.最后教师找几位学生代表回答与补充,得出结论.设计意图:问题1是架设学生熟悉的数学成绩情境,引导学生直接通过列表法无法直观的看出学生成绩的变化情况,不要直接利用表格做出一些并不准确的结论,而应另寻他法;追问是为了启发学生主动选择更加直观的图象法解决问题,培养从列表法转到图象法表示函数的能力.正确合理地做出图象,问题就解决了一半.问题2:(教科书第71页练习1)下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车离开家后一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我从家出发后,心情轻松,一路缓缓加速行进.师生活动:教师可在多媒体上展示问题,让学生独立完成,然后找学生回答.对于选项C,可给出参考:我从家出发后,发现时间还早,于是慢慢放缓了脚步.设计意图:培养学生将实际情境转化成数学图象的能力,训练思维与表达能力.问题3:依法纳税是每个公民应尽的义务,个人取得的所得应依照《中华人民共和国个人所得税法》向国家缴纳个人所得税(简称个税).2019年1月1日起,个税税额根据应纳税所得额、税率和速算扣除数确定,计算公式为个税税额=应纳税所得额×税率-速算扣除数. ①应纳税所得额的计算公式为应纳税所得额=综合所得收入额-基本减除费用-专项扣除-专项附加扣除-依法确定的其他扣除. ②其中,“基本减除费用”(免征额)为每年60 000元.税率与速算扣除数见表3.1-5.(1)设全年应纳税所得额为应缴纳个税税额为你能求出y=f(t)并画出图象吗?(2)小王全年综合所得收入额为189 600元,假定缴纳的基本养老保险、基本医疗保险、失业保险等社会保险费和住房公积金占综合所得收入额的比例分别是8%,2%,1%,9%,专项附加扣除是52 800元,依法确定其他扣除是4 560元,那么他全年应缴纳多少综合所得个税?师生活动:给学生充足的时间阅读题目,理清计算应缴纳个税税额的计算步骤.之后可将教科书第71页前三行用PPT展示,帮助学生了解解题脉络.(1)教师用PPT展示个税计算公式及表3.1-5,给学生适当时间阅读思考.之后可进行如下追问.追问:由表3.1-5第二列,你认为y=f(t)是什么函数?学生基本都可回答出是分段函数.教师可板书y=f(t)的前两段,带领学生感受求解析式的过程,后几段可让学生自己完成,注意提示最后写成分段函数的规范形式(大括号、范围不重不漏),并让学生自己画出相应图象,之后可利用多媒体将学生代表的图象放到屏幕上展示,最终确定正确结果.(2)利用之前明确的计算步骤,结合第(1)问的解析式,让学生自己解决剩余问题.设计意图:帮助学生读懂题目,提高学生的数学阅读能力,以及将实际问题数学化的能力;引导学生将表3.1-5的函数表示方式转化成解析式的方式,建立多元表示之间的联系。
函数的表示方法(2)
(2)分段函数的定义域是各段定义域的并集,值
域是各段值域的并集。
例2、 画出函数 y
= | x |的图象.
变一: 画出函数 y
= | x+1| 的图象. 变二: 画出函数 y = |x-1| 的图象. 变三: 画出函数 y = |x|+1的图象. 变四: 画出函数 y = |x|-1的图象.
变五: 画出函数 y = | x-1 |+ |x + 4|的图象,并求函
问题2、在函数的定义中,若将“A,B是两个 非空的数集”改为“A,B是两个非空的集合”, 会得到什么概念呢?
设A、B是两个非空的集合,如果按某个确定的对应 关系f,使对于集合A中的任意一个数x,在集合B中都 有唯一确定的数 f(x)和它对应,那么就称f:A→B为集 合A到集合B的一个 映 射 。
例4. 下面哪些对应是从A到B的映射?哪些是函数?
数的值域。
x 5,x 1 2 例3、 已知函数f(x) x , 求f (3),f[f ( 3)];
(2)画出y f (x)的图像;
1 (3)若f(a)= ,求a的值 . 2
函数的定义:
设A、B是两个非空的数集,如果按某个确定的对应 关系f,使对于集合A中的任意一个数x,在集合B中都 有唯一确定的数 f(x)和它对应,那么就称f:A→B为集 合A到集合B的一个函数。
A 9 4 1 A 1 -1 2 -2 3 -3
(3 ) (1 )
开平方
B 3 -3 2 -2 1 -1
A 求正弦 B
30o
45
o
1 2
2 2
60o
3 2
90o
(2)
1
求平方 B 1 4
A
3.1.2函数的表示法教学设计(2)
3.1.2函数的表示法课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下.可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样姓理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2.在实际情境中,会根据不同的需要选择恰当的方法表示函数:3,通过具体实例,了解简单的分段函数.并能简单应用.数学学科素养1.数学抽象:函数解析法及能由条件求出解析式;2.逻辑推理:由条件求函数解析式:3.数学运算:由函数解析式求值及函数解析式的计算;4.数据分析:利用图像表示函数;5.数学建模:由实际问题构建合理的函数模型。
重点:函数的三种表示方法•分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数•什么才算“恰当”?分段函数的表示及其图象.教学方法:以学生为主体,采用诱思探究式教学•精讲多练。
教学工具:多媒体。
一,情景导入初中已经学过函数的三种表示法:列表法.图像法.解析法,那么这三种表示法定义是?优缺点是?要求:让学生自由发言.教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本67-68页,思考并完成以下问题1.表示两个变量之间函数关系的方法有几种?分别是什么?2.函数的各种表示法各有什么特点?3.什么是分段函数?分段函数是一个还是几个函数?4.怎样求分段函数的值?如何画分段函数的留象?要求:学生独立完成•以小组为单位•组内可商星,最终选出代表回答问题。
函数的表示法
例3.画出函数y=|x|的图象.
解:y
x
x
x0 x0
图象如下:
y
5 4 3
.2 . 1 x -3 -2 -1 0 1 2 3
分段函数的定义
函数在它的定义域中,对于自变量 x 的不同取值范围,对应关系不同,这 种函数通常称为分段函数.
分段函数的表达式虽然不止一个, 但它不是几个函数,而是一个函数.
80 均 分
♦▲
.▲
♦
■
.
♦
▲ ■
.▲
■♦
. 王伟
■♦ ▲ 张城
70
■
赵磊
■
60
0
12 3456
x
解:将“成绩”与“测试时间”之间的关系用函数图象表示 出来。可以看出:王伟同学学习情况稳定且成绩优秀;张城 同学的成绩在班级平均水平上下波动,且波动幅度较大;赵 磊同学的成绩低于班级平均水平,但成绩在稳步提高。
O
x
想一想
1)所有的函数都能用解析法表示吗? 2)所有的函数都能用列表法表示吗? 3)所有的函数都能用图像法表示吗?
例1.某种笔记本每个5元,买 x (x∈ {1, 2, 3, 4})个笔记本的钱数记为y(元), 试写出以x为自变量的函数y的解析式, 并画出这个函数的图象.
例1.某种笔记本每个5元,买 x (x∈ {1, 2, 3, 4})个笔记本的钱数记为y(元), 试写出以x为自变量的函数y的解析式, 并画出这个函数的图象.
练习 根据下列函数的图象写出函数解析式
y 1
O1x
y 1
O
x
-1
y 1
2
O
x
-1
小结
1、函数的三种表示法;
人教新课标版数学高一必修1学案 函数的表示法(二)
1.2.2 函数的表示法(二)自主学习1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题. 2.了解映射的概念及含义,会判断给定的对应关系是否是映射.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.(3)作分段函数图象时,应分别作出每一段的图象. 2.映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。
3.映射与函数由映射的定义可以看出,映射是函数概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A ,B 必须是非空数集.对点讲练分段函数的求值问题【例1】 已知函数f (x )=⎩⎪⎨⎪⎧x +2 (x ≤-1),x 2 (-1<x <2),2x (x ≥2).(1)求f [f (3)]的值; (2)若f (a .)=3,求a . 的值.分析 本题给出的是一个分段函数,函数值的取得直接依赖于自变量x 属于哪一个区间,所以要对x 的可能范围逐段进行讨论. 解 (1)∵-1<3<2,∴f (3)=(3)2=3. 而3≥2,∴f [f (3)]=f (3)=2×3=6.(2)当a .≤-1时,f (a .)=a .+2,又f (a .)=3,∴a .=1(舍去);当-1<a .<2时,f (a .)=a .2,又f (a .)=3,∴a .=±3,其中负值舍去,∴a .=3;当a .≥2时,f (a .)=2a .,又f (a .)=3, ∴a .=32(舍去).综上所述,a .= 3.规律方法 对于f (a .),究竟用分段函数中的哪一个对应关系,与a . 所在范围有关,因此要对a .进行讨论.由此我们可以看到: (1)分段函数的函数值要分段去求;(2)分类讨论不是随意的,它是根据解题过程中的需要而产生的.变式迁移1 设f (x )=⎩⎨⎧12x -1 (x ≥0),1x (x <0),若f (a .)>a .,则实数a .的取值范围是________.答案 a .<-1解析 当a .≥0时,f (a .)=12a .-1,解12a .-1>a .,得a .<-2与a .≥0矛盾,当a .<0时,f (a .)=1a ,解1a>a .,得a .<-1.∴a .<-1.分段函数的图象及应用【例2】 已知函数f (x )=1+|x |-x2(-2<x ≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 化简f (x )的解析式 →化简f (x )的解析式 →把f (x )表示为分段函数形式→画出f (x )的图象→求f (x )的值域 解 (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .∴f (x )=⎩⎨⎧1 (0≤x ≤2)1-x (-2<x <0).(2)函数f (x )的图象如图所示,(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).规律方法 对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图时要特别注意区间端点处对应点的实虚之分.变式迁移 2 设函数f (x )=⎩⎪⎨⎪⎧|x +1| (x <1)-x +3 (x ≥1),使得f (x )≥1的自变量x 的取值范围是______________________. 答案 (-∞,-2]∪[0,2] 解析在同一坐标系中分别作出f (x )及y =1的图象(如图所示),观察图象知,x 的取值范围是(-∞,-2]∪[0,2].映射概念及运用【例3】 判断下列对应关系哪些是从集合A 到集合B 的映射,哪些不是,为什么?(1)A={x|x 为正实数},B={y|y ∈R[},f :x →y=±x(2)A=R ,B={0,1},对应关系f :x,→y =⎩⎪⎨⎪⎧1, x ≥0;0, x<0;(3)A=Z ,B=Q ,对应关系f :x →y=1x;(4)A={0,1,2,9},B={0,1,4,9,64},对应关系f:a →b=()21a -解 (1)任一个x 都有两个y 与之对应,∴不是映射.(2)对于A 中任意一个非负数都有唯一的元素1和它对应,任意一个负数都有唯一的元素0和它对应, ∴是映射.(3)集合A 中的0在集合B 中没有元素和它对应,故不是映射. (4)在f 的作用下,A 中的0,1,2,9分别对应到B 中的1,0,1,64,∴是映射.规律方法 判断一个对应是不是映射,应该从两个角度去分析:(1)是否是“对于A 中的 每一个元素”;(2)在B 中是否“有唯一的元素与之对应”.一个对应是映射必须是这两个方面都具备;一个对应对于这两点至少有一点不具备就不是映射.说明一个对应不是映射,只需举一个反例即可. 变式迁移3 下列对应是否是从A 到B 的映射,能否构成函数? (1)A=R ,B=R,f:x →y =1x +1;(2)A ={a.|a.=n ,n ∈N +},B =⎩⎨⎧⎭⎬⎫b|b =1n ,n ∈N +,f :a.→b =1a;(3)A=[)0,+∞,B=R ,f:x→y 2=x ;(4)A ={x|x 是平面M 内的矩形},B ={x|x 是平面M 内的圆},f :作矩形的外接圆. 解 (1)当x =-1时,y 的值不存在, ∴不是映射,更不是函数.(2)是映射,也是函数,因A 中所有的元素的倒数都是B 中的元素.(3)∵当A 中的元素不为零时,B 中有两个元素与之对应,∴不是映射,更不是函数. (4)是映射,但不是函数,因为A ,B 不是数集.1.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.2.判断一个对应是不是映射,主要利用映射的定义:(1)集合A 到B 的映射,A 、B 必须是非空集合(可以是数集,也可以是其他集合); (2)对应关系有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;(3)与A 中元素对应的元素构成的集合是集合B 的子集.课时作业一、选择题1.下列集合A 到集合B 的对应f 是映射的是( ) A .A ={-1,0,1},B ={-1,0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =N *,f :a .→b =(a .+1)2D .A =R ,B ={正实数},f :A 中的数取绝对值 答案 A2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ) A . f:x→y =12x B. f:x→y =13xC. f:x→y =14xD. f:x→y =16x答案 A由f:x →y =12x ,集合A 中的元素6对应3∉{y |0≤y ≤2},故选项A 不是映射.3.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6)(x ∈N ),那么f (3)等于( )A .2B .3C .4D .5 答案 A解析 由题意知f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.4.已知f (x )=⎩⎪⎨⎪⎧ x 2 (x ≥0)x (x <0),g (x )=⎩⎪⎨⎪⎧x (x ≥0)-x 2 (x <0),则当x <0时,f [g (x )]等于( )A .-xB .-x 2C .xD .x 2 答案 B解析 当x <0时,g (x )=-x 2<0, ∴f [g (x )]=-x 2. 二、填空题5.已知f (x )=⎩⎪⎨⎪⎧0 (x <0)π (x =0)x +1 (x >0),则f (f (f (-1)))的值是__________.答案 π+1解析 f (-1)=0,f (0)=π,f (π)=π+1 ∴f (f (f (-1)))=f (f (0))=f (π)=π+1.6.已知f (x )=⎩⎪⎨⎪⎧1,x ≥00,x <0,则不等式xf (x )+x ≤2的解集是__________.答案 {x |x ≤1}解析 当x ≥0时,f (x )=1,代入xf (x )+x ≤2, 解得x ≤1,∴0≤x ≤1;当x <0时,f (x )=0,代入xf (x )+x ≤2, 解得x ≤2,∴x <0. 综上可知x ≤1. 三、解答题7.若[x ]表示不超过x 的最大整数,画出y =[x ] (-3≤x <3)的图象. 解 作出y =[x ]的图象如下图所示.8.已知函数y =f (x )的图象是由图中的两条射线和抛物线的一部分组成,求函数的解析式.解 根据图象,设左侧射线对应的函数解析式为y =kx +b (x <1).∵点(1,1)、(0,2)在射线上,∴⎩⎪⎨⎪⎧ k +b =1,b =2, 解得⎩⎪⎨⎪⎧k =-1,b =2.∴左侧射线对应的函数解析式为y =-x +2 (x <1). 同理,x >3时,函数的解析式为y =x -2 (x >3). 又抛物线对应的二次函数的解析式为 y =a .(x -2)2+2 (1≤x ≤3,a .<0),∵点(1,1)在抛物线上,∴a .+2=1,a .=-1, ∴当1≤x ≤3时,函数的解析式为 y =-x 2+4x -2 (1≤x ≤3). 综上所述,函数的解析式为 y =⎩⎪⎨⎪⎧-x +2 (x <1),-x 2+4x -2 (1≤x ≤3),x -2 (x >3).【探究驿站】9.已知函数f (x )=⎩⎪⎨⎪⎧1, x ∈[0,1],x -3, x ∉[0,1],求使等式f [f (x )]=1成立的实数x 构成的集合.解 当x ∈[0,1]时,恒有f [f (x )]=f (1)=1, 当x ∉[0,1]时,f [f (x )]=f (x -3),若0≤x -3≤1,即3≤x ≤4时,f (x -3)=1, 若x -3∉[0,1],f (x -3)=(x -3)-3, 令其值为1,即(x -3)-3=1,∴x =7. 综合知:x 的值构成的集合为 {x |0≤x ≤1或3≤x ≤4或x =7}.。
函数的表示法2
求 f 1 ,f 2 .
动点P从边长为1的正方形ABCD的顶点A出发 顺次经过B、C、D再回到A.设x表示P点的行 程,y表示PA的长,求y关于x的函数。
0 x 1 x 2 x 2 x 2 1 x 2 y 2 x 6 x 10 2 x 3 3 x 4 4 x
D
P
C
P
A
P
B
ቤተ መጻሕፍቲ ባይዱ
设A、B是两个非空的集合,如果按 某个确切的对应关系f,使队与集合A 中的任意一个元素x,在集合B中都有 唯一确切的元素y与之对应,那麽就 称 f:AB为从集合A到集合的一个映射
下列对应能否构成映射?
1 ① A Z,B Z,f:x x
② A R,B R,f:平方;
a
;
③
A R,B R,f:开平方;
a
b c
d
1 2 3
a
b
c
d
1 2 3 4
A
④
B
A
B
⑤
归纳:① A 中元素必须在 B 中只有惟一元素 与之对应;② B 中元素可以与 A 中的多个元 素对应;③允许 B 中有“空”的元素。
; 微信刷票 微信刷票 ;
自身能取代幽冥宗?”壹个贰品势历战营の统领,得到楚家の讯息后,讥笑道.“统领大人,呐楚家现在有强大助历,连幽冥宗现在都不得不放弃聚集地.俺们若是不合作,那恐怕楚家会对俺们动手.”壹名副统领道.“俺倒要看看,楚家能将俺们林家怎样!真是可笑,还要俺们将抽 成送到他们面前,他楚红南好大の脸.俺还就不信了,若俺们不将资源送过去,他楚家还能灭掉俺们林家の战营.”林家统领目光壹闪道.林家统领,显然不认为楚家拥有掌控流沙申域の能历.同事,他也确定,幽冥宗不会就此罢手,放任楚
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x叫集合B中元素y的原象,集合B中的元素y叫集合A的元素x的象.
二、典例分析,深化理解
例1 .以下给出的对应是不是从集合A到B的映射?
⑴ 集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点与它 所代表的数对应;
⑵ 集合A={P|P是平面直角坐标系中的点},集合B={(x,y)|x∈R,y∈R},对
例4
设映射f:xx2+2x是实数集R=M到实数集R=N的映射,若对于实数 pN,在M中不存在原象,则实数p的取值范围是( ) A.(1,+) C.(,1) B.[1,+) D.(,1]
三、回顾反思,提炼升华
1、从知识技能上 ⑴ 映射概念; ⑵对应、映射、函数的示法(二)
北京市数学特级教师 王保东
复习巩固,推陈出新
常见的对应关系 1 对于任何一个实数a,数轴上都有惟一的点p和它对应. 2 对于坐标平面内任何一个点A,都有惟一的有序实数对(x,y) 和 它对应 3 对于任意一个三角形,都有惟一确定的面积和它对应. 4 某电影院的某场电影的每一张电影票有惟一确定的坐位与它对应 5 函数的概念
合A到集合B的映射的是( ) A. 对集合A中的数开平方 B. 对集合A中的数取倒数 D.对集合A中的数立方 C.对集合A中的数取算术平方根
2.已知函数f(x),g(x)分别由下表给出
x f(x)
x
1 1
2 3
3 1
x g(x)
1 3
2 2
3 1
则f(g(1))的值为
;满足f(g(x)) > g(f(x))的值是 _____
1 2
观察下面几个对应关系,看这三个对应关系有什么共同特点?
求正弦
1 2
2 2 3 2
求平方
1 -1 -2 2 3 -3
乘2
30° 45° 60° 90°
1 4 9
1 2 3
1 B A B
1 2 3 4 5 6 B
A
A
一、归纳总结,抽象概念
映射的概念 设A、B是两个非空的集合,如果按某一个确定的对应关系f, 使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y 与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射. 如果集合A的元素x对应集合B中的元素y,那么集合A中的元素
例2 设f:是A到B的映射,其中A=B={(x,y)|x,y R},
f: (x,y) 求
(x-y,x+y),
(1)元素(1,2)的象; (2)元素(1,2)的原象.
例3.集合M={a,b,c},N={-1,0,1},从M到N的映射f满足关系式
f(a)f(b)=f(c),那么映射f的个数是( ) (A)2 (B)4 (C)5 (D)7
应关系f:平面直角坐标系中的点与它的坐标对应;
⑶ 集合A={x|x是三角形},集合B={x|x是圆},对应关系f:每一个三 角形都对 应它的内切圆; ⑷ 集合A={x|x是密云二中的班级},集合B={x|x是密云二中的学 生},对应关系f:每一个班级都对应班里的学生.
练习
1 . 集合A={a,b,c},集合B=R,以下对应关系中,一定能建立集
用概念规范解题,用概念指导解题. 3、研究方法 从特殊到一般抽象概念,由一般到特殊指导解题实践.