2012年北城中学中考数学《规律探究题》
2012数学中考探索规律专题
中考数学第二轮专题复习 ——探索规律一、数式规律:例1(2010肇庆)观察下列单项式: 按此规律第n 个单项式是 (n 为正整数) 【练习1】(2009重庆綦江)观察下列等式:① 42-12=3×5 ② 52-22=3×7 ③ 62-32=3×9; ④ 72-42=3×11… 则第n (n 是正整数)个等式为____ ____. 【练习2】(07自贡)一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,3236,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是___________.二、图形规律:例3(2009海南省)用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).【练习3】(2009年梅州市)如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.三.利用规律求值例3. (2010湛江)观察算式:通过观察,用你所发现的规律确定32010的个位数字是( ) A .3 B .9 C .7 D .1【练习5】(2010深圳)观察下列算式,用你所发现的规律得出22010的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…, A .2 B .4 C .6 D .8 【练习6】已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += . 【课堂评价】1、如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第6个图案需棋子枚,第n 个图案需棋子 枚。
(n 为正整数)2、(2009年陕西)观察下列各式:1×3=12+2×1;2×4=22+2×2;3×5=32+2×3;… 第1个图第2个图第3个图…,......,16,8,4,2,5432a a a a a --… …第1幅 第2幅 第3幅 第n 幅65613,21873,7293,2433,813,273,93,3387654321======== 图案1 图案2 图案3 ……请你将猜想到的规律用正整数n 表示出来: 。
2012年中考数学复习考点解密 规律探索性问题(含解析)
2012年中考数学二轮复习考点解密 规律探索性问题第一部分 讲解部分一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。
这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。
其目的是考查学生收集、分析数据,处理信息的能力。
所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。
二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。
三.考点精讲考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。
例1. 有一组数:13,25579,,101726L ,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 .分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可.解答:解:21211211⨯-=+; 23221521⨯-=+; 252311031⨯-=+;272411741⨯-=+; 219251265+⨯-=;…; ∴第n (n 为正整数)个数为2211n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1.例2(2010广东汕头)阅读下列材料:1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4), 由以上三个等式相加,可得1×2+2×3+3×4=31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程);(2) 1×2+2×3+3×4+···+n ×(n +1) = ______________;(3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式)1(433221+⨯++⨯+⨯+⨯n n Λ [])1()1()2)(1()321432()210321(31+--++++⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯=n n n n n n Λ )2)(1(31++=n n n ;照此方法,同样有公式: )2()1(543432321+⨯+⨯++⨯⨯+⨯⨯+⨯⨯n n n Λ[])2()1()1()3()2()1()43215432()32104321(41+⨯+⨯⨯--+⨯+⨯+⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯=n n n n n n n n Λ)3)(2)(1(41+++=n n n n . 解:(1)∵1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),…10×11 =31(10×11×12-9×10×11), ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440. (2))2)(1(31++n n n .(3)1260.点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.例3(2010山东日照,19,8分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:一般地,如果⎩⎨⎧>>dc b a , 那么a +c b +d .(用“>”或“<”填空) 你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。
中考数字探索规律专题
2012年全国中考数学试题分类解析汇编探索规律型问题(数字类)一、选择题1. (2012江苏扬州3分)大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是2013,则m 的值是【 】A .43B .44C .45D .462. (2012江苏盐城3分)已知整数1234,,,,a a a a ⋅⋅⋅满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则2012a 的值为【 】A .1005-B .1006-C .1007-D .2012-3. (2012四川自贡3分)一质点P 从距原点1个单位的M 点处向原点方向跳动,第一次跳动到OM 的中点M 3处,第二次从M 3跳到OM 3的中点M 2处,第三次从点M 2跳到OM 2的中点M 1处,如此不断跳动下去,则第n次跳动后,该质点到原点O 的距离为【 】A .n12B .n 112-C .n 11()2+D .n124. (2012山东滨州3分)求1+2+22+23+…+22012的值,可令S =1+2+22+23+…+22012,则2S =2+22+23+24+…+22013,因此2S ﹣S =22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为【 】 A .52012﹣1 B .52013﹣1 C .2013514- D .2012514-5. (2012山东潍坊3分)下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l 3,14,l 5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为【 】.A .32B .126C .135D .14415题图6. (2012广西南宁3分)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有【 】A .7队 B .6队 C .5队D .4队7.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为 ( )A .2009235⎪⎭⎫ ⎝⎛B .2010495⎪⎭⎫ ⎝⎛C .2008495⎪⎭⎫ ⎝⎛ D .4018235⎪⎭⎫ ⎝⎛8.如图是一回形图,其回形通道的宽和OB 的长均为1, 回形线与射线OA交于,,,321A A A ….若从O 点到1A 点的回形线为第1圈(长为7),从1A 点到2A 点的回形线为第2圈,…,依此类推.则第10圈的长为( )A .71B .72C .79D .87二、填空题1. (2012黑龙江大庆3分)已知l 2=1,l 12=121,l 112=12321,…,则依据上述规律,()2811111⋅⋅⋅个的计算结果中,从左向右数第12个数字是 ▲ .2. (2012广东肇庆3分)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲3. (2012浙江台州5分)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立: 1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a ⊕b = ▲ (用a ,b 的一个代数式表示).4. (2012江苏泰州3分)根据排列规律,在横线上填上合适的代数式:x ,23x ,35x , ▲ ,59x ,….5. (2012内蒙古赤峰3分)将分数67化为小数是0.857142,则小数点后第2012位上的数是 ▲6. (2012福建三明4分)填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是 ▲ .7. (2012湖北恩施4分)观察数表根据表中数的排列规律,则B+D= ▲ .8. (2012湖北黄石3分)“数学王子”高斯从小就善于观察和思考.在他读小学时候就能在课堂上快速的计算出12398991005050+++⋅⋅⋅⋅⋅⋅+++=,今天我们可以将高斯的做法归纳如下:令123989910=+++⋅⋅⋅⋅⋅⋅+++①S0S=+++⋅⋅⋅⋅⋅⋅+++②1009998321①+②:有2(1100)100=S=+⨯解得:S5050请类比以上做法,回答下列问题:若n为正整数,357(218+++⋅⋅⋅⋅⋅⋅++=,则n=▲ .n)169. (2012湖北孝感3分)2008年北京成功举办了一届举世瞩目的奥运会,今年的奥运会将在英国伦敦举行,奥运会的年份与届数如下表所示:表中n的值等于▲ .10. (2012湖南永州3分)我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是 ▲ .11. (2012湖南株洲3分)一组数据为:x ,﹣2x 2,4x 3,﹣8x 4,…观察其规律,推断第n 个数据应为▲ .12. (2012河北省3分)某数学活动小组的20名同学站成一列做报数游戏,规则是:从前面第一位开始,每位同学一次报自己的顺序数的倒数加1,第一同学报(11+1),第二位同学报(12+1),第三位同学报(13+1),…这样得到的20个数的积为 ▲ 。
2012年中考数学阅读理解与规律探索
中考数学阅读理解题型内容整体分析:1、意义:中考数学的阅读理解题能较好地考查学生阅读理解能力与日常生活体验,同时又能考查学生获取信息后的抽象概括能力、建模能力,决策判断能力,因而一直是近年来乃至今后全国各地中考命题的热点。
这类题贴近实际,可以引导学生关心社会,对促进中学数学教学改革,强化学生的数学应用意识,优化学生的思维品质,提高学生的数学思维能力,培养学生的个性品质都具有重要意义。
本专题着重解决学生对新概念、术语的理解能力较差,缺乏联系生活经验的意识,对问题的探究能力较弱等问题,从而激发学生勇于探索的激情,实现敢于拿下这类题的分数。
2、分类:初中数学阅读理解题大致可分四类: 纯文型(全部用文字展示条件和问题、例3)、图文型(用文字和图形结合展示条件和问题、例1)、 表文型(用文字和表格结合展示条件和问题、例2)、改错型(条件、问题、解题过程都已展示,但解题过程可能要改正)。
3、步骤:无论哪种类型,其解题步骤一般都可分为以下几步: 1)快速阅读,把握大意在阅读时不仅要特别留心短文中的事件情景、具体数据、关键语句等细节,还要注意问题的提出方式。
据此估计是我们平常练习时的哪种类型,会涉及到哪些知识,一般是如何解决的,在头脑中建立初步印象。
2)仔细阅读,提炼信息在阅读过程中不仅要注意各个关键数据,还要注意各数据的内在联系、标明单位,特别是一些特殊条件(如附加公式),以简明的方式列出各量的关系,提炼信息,读“薄”题目,同时还要能回到原题中去。
3)总结信息,建立数模根据前面提炼的信息分析,通过文中关键词、句的提示作用,选用恰当的数学模型,例如由“大于、超过、不足……”等联想到建立不等式,由“恰好……,等于……”联想到建立方程,由“求哪种方案更经济……”联想到运用分类讨论方法解决问题,由“求出……和……的函数关系式或求最大值(最小值)”联想到建立函数关系,将题中的各种已知量用数学符号准确地反映出其内在联系。
北城中学2012年中考数学专题研究:规律探究性问题
北城中学中考数学试题中规律探究性问题的研究规律探究性问题的特点是问题的结论不是直接给出,而是通过对问题的观察、分析、归纳、概况、演算、判断等一系列的探究活动,才能得到问题的结论。
这类问题,因其独特的规律性和探究性,在考查学生分析问题、解决问题能力方面,具有很好的甄别功能,因此备受出题教师青睐。
在近几年全国各地的中考试题中,不仅频频出现,而且"花样百出"。
常见的类型有:(1)新定义型(2)数列规律型;(3)数式规律型;(4)图形变化规律型;(5)点坐标变化规律型;(6)数形结合规律型;(7)阅读理解型等等。
下面笔者筛选了2011年中考试题,对这类问题中的七种类型进行探讨。
一.新定义型例1已知函数2()1f x x =+,其中f (a )表示x =a 时对应的函数值,如2()1f x x =+,2(1)11f =+,2(2)12f =+,2()1f a a=+, 则(1)(2)(3)(100)f f f f _ .分析:根据函数得,f (1)= 31 ,f (2)= 42,f (3)= 53…f (99)= 10199,f (100)=102100;容易得出答案为5151. 点评:本题考查了函数知识,能够根据所给的函数式正确表示出对应的函数值,找到题目的规律是解答的关键.例2在右表中,我们把第i 行第j 列的数记为a i ,j (其中i ,j 都是不大于5的正整数),对于表中的每个数a i ,j ,规定如下:当i≥j 时,a i ,j =1;当i <j 时,a i ,j =0.例如:当i=2,j=1时,a i ,j =a 2,1=1.按此规定,a 1,3= ;表中的25个数中,共有 个1;计算a 1,1•a i ,1+ a 1,2•a i ,2+a 1,3•a i ,3+a 1,4•a i ,4+a 1,5•a i ,5的值为 .分析:由题意当i <j 时,a i ,j =0.当i≥j 时,a i ,j =1;由图表中可以很容易知道等于1的数有15个. a 1,1 a 1,2 a 1,3 a 1,4 a 1,5a 2,1 a 2,2 a 2,3 a 2,4 a 2,5a 3,1 a 3,2 a 3,3 a 3,4 a 3,5 a 4,1 a 4,2 a 4,3 a 4,4 a 4,5 a 5,1 a 5,2 a 5,3 a 5,4 a 5,5点评:本题考查了数字的变化,由题意当i <j 时,a i ,j =0.当i≥j 时,a i ,j =1;仔细分析很简单的问题.归纳总结:新定义型问题是指在试题中给出一个同学从未接触过的新概念,要求现学现用,主要考查学生的阅读理解能力,应变能力和创新能力。
北城中学2012年中考数学专题研究:开放探索题
北城中学中考数学专题:开放探索题【经典范例引路】例1 在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3(如图,已知A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题找到的规律将△OAB进行了n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)在上述变换过程中,各三角形中没有发生变化的是.(2001,徐州市,略有改编)解(1)A4(16,3),B4(32,0)(2)A n(2n,3),B n(2n+1,0)(3)A n的纵坐标及A n O=A n B n (n为自然数)例2 如图,⊙O1与⊙O2交于A、B两点,点O1在⊙O2上,C为⊙O1中优弧AB上任意一点,直线CB交⊙O2于D,连结O1D。
(1)用两种不同的方法(分别利用图1,图 2)证明:DO1⊥AC(2)若点C在劣弧AB上,(1)中的结论是否仍成立?请在图3中画出图形,并证明你的结论.解(1)证法一:连结AB,AO1,延长AO1交⊙O1于E,连结CE,则∠EAB=∠O1DB,∠ECB=∠EAB,∴∠ECB=∠O1DB∴CE∥O1D,又AE为⊙O1直径,∴CE⊥AC∴O1D⊥AC证法二:如图2连结AO1, AB,O1O2,BO1,则AB⊥O1O2,∵∠O1AB=∠D,∠AO1O2=∠AO1B=∠C∴∠C+∠D=∠AO1O2+∠O1AB=90°∴O1D⊥AC(2)图形如图3,请读者自己证明。
【解题技巧点拨】此类问题以几何探索题居多,代数探索题多以找规律写公式形式出现。
北城中学2012中考数学学科预测讲
2012河北中考数学学科预测这几年蒙对了几道中考题型,比如,1.2010、2012连续两年我在鸿文的预测:A .大家说三年一变2010该变了,我说2010年的与2009年试卷结构题型应基本一致,我说对了,特别地,第22题(比例函数)第24题(中点与相似)也被蒙对;B .按两一大变,2011就是变年,并且是个大变化,正好也被蒙对,特别地2011年的第19题(方程)、第21题(概率)、24题(一次函数与统计)连题型也被蒙对,第20题我说考三角函数与相似结合题、第26题我只是提醒要注意抛物线背景的题目,那不算。
2.2003年、2008年两年,都蒙到过两道原题(2008河北9题)如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x ≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )(2003河北16题) 乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A 、B两站之间需要安排不同的车票 种。
可能基于以上原因,我教过的学生说我蒙题准,也可能如此今年又有一些地方约我出2012年的模拟卷,我说“2012不预测,也不出模拟卷了。
”因为我把2011年的中考卷连看了不知多少遍,但没有从前的感觉。
过去一看当年的中考卷,对下年要考什么我都有一种感觉,而且随时间的推移多是越来越肯定,因为河北省的中考卷太程式化了,所以从09年开始我就说中考得改,不然凭突击就能提高不少成绩。
2011年的中考卷,终于打破了这程式化的中考模式,但不知它是否将形成一种新的模式,如果又是一种模式,就好预测了。
坐在这里,得预测。
不然人家不管饭。
以下再根据过去的经验谈谈自己的不成熟的看法(成熟的看法得见中考说明20天后才可能有)。
按贯例,今年是个“稳”年,即三大题型的赋分不变,题目的数量、结构不变。
中考数学规律探索型问题
2012年中考数学规律探索型问题1.(2012山东省滨州,12,3分)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52014的值为( )(2012广东肇庆,15,3)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ .18. ( 2012年四川省巴中市,18,3)观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2012个数是___________20.(2012贵州省毕节市,20,5分)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形。
18.(2012贵州六盘水,18,4分)图7是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如222()2a b a ab b +=++展开式中的系数1、2、1恰好对应图中第三行的数字;再入,33223()33a b a a b ab b +=+++展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出4()a b +的展开式.4()a b += ▲ .17. (2012山东莱芜, 17,4分) 将正方形ABCD 的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点321,,A A A ….,按此规律,则点A2012在射线 上.16、(2012,黔东南州,16)如图,第(1)个图有2个相同的小正方形,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n)个图有(1)(2)(3)(4)15.(2012,湖北孝感,15,3分)2008年北京成功举办了一届举世瞩目的奥运会,今年的奥运会将在英年份1896 1900 1904 (2012)届数 1 2 3 …n16. (2012·湖北省恩施市,题号16 分值4)观察下表:(2012河北省17,3分)17、某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫⎝⎛+111,第2位同学报⎪⎭⎫⎝⎛+121,…这样得到的20个数的积为_________________.20. (2012珠海,20,9分)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我射线名称点点点点点点点点点A1 A3 A10 A12 A17 A19 A26 A28 …CD A2 A4 A9 A11 A18 A20 A25 A27 …BC A5 A7 A14 A16 A21 A23 A30 A32 …DA A6 A8 A13 A15 A22 A24 A29 A31 …们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”: ①52× = ×25; ② ×396=693× .(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤b a +≤9,写出表示“数字对称等式”一般规律的式子(含a 、b ),并证明.14(2012云南省,14 ,3分)观察下列图形的排列规律(其中 分别表示三角形、正方形、五角星).若第一个图形是三角形,则第18个图形是 (填图形名称)16.(2012山西,16,3分)如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 .17.(2012山东东营,17,4分)在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx b =+和x 轴上.△OA1B1,△B1A2B2,△B2A3B3,… 都是等腰直角三角形,如果A1(1,1),A2(23,27),那么点n A 的纵坐标是_ _____.21.(2012广东汕头,21,7分)观察下列等式: 第1个等式:a 1==×(1﹣);第2个等式:a 2==×(﹣);第3个等式:a 3==×(﹣);第4个等式:a 4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;(2)用含有n 的代数式表示第n 个等式:a n = = (n为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.y xy=kx+b OB 3B 2B 1 A 3A 2A 1 (第17题图)专项二规律探索型问题(2011山东省潍坊市,题号17,分值3)17、右图中每一个小方格的面积为1,则可根据面积计算得到如下算式:()127531-+⋅⋅⋅++++n= .()是正整数表示,用nn16.(湖南株洲市3,16)一组数据为:234,2,4,8,x x x x--L观察其规律,推断第n个数据应为.10. (2012浙江丽水3分,10题)小明用棋子摆放图形来研究数的规律.图1中棋子围成三角形,其颗数3,6,9,12,···成为三角形数,类似地,图2中的4,8,12,16,···称为正方形数.下列数中既是三角形数又是正方形数的是()A.2010B.2012C.2014D.20169(2012重庆,9,4分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( )14.(2012山东省荷泽市,14,3)一个自然数的立方,可以分裂成若干个连续奇数的和,例如:23,33,和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;……;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的那个奇数是_____.16.(2012广州市,16,3分)如图5,在标有刻度的直线L上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆;……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的倍,第n个半圆的面积为。
北城中学2012年中考数学专题练习:规律
2012年北城中学中考数学分类汇编——规律一、选择题1.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a ,b ,c ,…,z 依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s 对应密文c 字母 a b c d e f g h i j k l m 序号 0 1 2 3 4 5 6 7 8 9 10 11 12 字母 n o p q r s t u v w x y z 序号 13 14 15 16 17 18 19 20 21 22 23 24 25 按上述规定,将明文“maths ”译成密文后是( ) A .wkdrc B .wkhtc C .eqdjc D .eqhjc 【答案】A2.若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位 【答案】D 二、填空题1. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4a b b c c d d +++.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为. 【答案】6,4,1,72.我们常用的数是十进制数,计算机程序使用的是二进制数 (只有数码0和1),它们两者之间可以互相换算,如将(101)2, (1011)2换算成十进制数应为:5104212021)101(0122=++=⨯+⨯+⨯= 1121212021)1011(01232=⨯+⨯+⨯+⨯=按此方式,将二进制(1001)2换算成十进制数的结果是_______________. 【答案】93.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(b ,a )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-2,-3)放入其中,得到实数是 . 【答案】04.定义运算“@”的运算法则为:x@y =xy -1,则(2@3)@4=__ __.【答案】195.因为cos30°= 3 2 ,cos210°=﹣ 32 ,所以cos210°=cos (180°+30°)=﹣cos30°=﹣ 3 2 ,因为cos45°= 2 2 ,cos225°=﹣ 22 ,所以cos225°=cos(180°+45°)=﹣ 22,猜想:一般地,当α为锐角时,有cos (180°+α)=﹣cosα,由此可知cos240°的值等于 .【答案】:﹣12 6.阅读材料:若一元二次方程ax 2+bx+c=0(a≠0)的两个实根为x 1、x 2,则两根与方程系数之间有如下关系:x 1+x 2= -b a ,x 1x 2= ca根据上述材料填空:已知x 1、x 2是方程x 2+4x+2=0的两个实数根,则 1x 1 +1x 2=_________.【答案】-27.若自然数n 使得作竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为 . 【答案】24 三、解答题1.一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做“分类”的思想;将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做“分类讨论”的方法。
2012年全国中考数学分类解析-专题57 探索规律型问题图形类
2012年全国中考数学试题分类解析汇编专题57:探索规律型问题(图形类)一、选择题1. (2012重庆市4分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【】A.50B.64C.68D.72【答案】D。
【考点】分类归纳(图形的变化类)。
【分析】寻找规律:每一个图形左右是对称的,第①个图形一共有2=2×1个五角星,第②个图形一共有8=2×(1+3)=2×22个五角星,第③个图形一共有18=2×(1+3+5)=2×32个五角星,…,则第⑥个图形中五角星的个数为2×62=72。
故选D。
2. (2012广东深圳3分)如图,已知:∠MON=30o,点A1、A2、A3 在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7 的边长为【】A.6 B.12 C.32 D.64【答案】C。
【考点】分类归纳(图形的变化类),等边三角形的性质,三角形内角和定理,平行的判定和性质,含30度角的直角三角形的性质。
【分析】如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°。
∴∠2=120°。
∵∠MON=30°,∴∠1=180°-120°-30°=30°。
又∵∠3=60°,∴∠5=180°-60°-30°=90°。
∵∠MON=∠1=30°,∴OA1=A1B1=1。
∴A2B1=1。
∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°。
∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3。
中考专题复习《规律探究问题》
BA CDA 1 A 2中考专题复习《规律探究问题》姓名: 班级: 分数:(两个例题和18个练习题,每小题3分,共60分)中考数学规律探索型问题是近几年来中考的热点,需要敏锐的观察力和一定的推理、计算能力,利用从特殊到一般或从一般到特殊的方法来解决几何类规律探索型问题。
一 规律明显 数数看看定有发现例1、如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有 个。
解析:方法 :一数。
在数字中发现。
在开始的几幅图中把所要的问题分别数字记载,如1、3、5、7 、… ,发现奇数规律排列,猜想最终结果为2n-1 ;二看。
发现图形规律和结果数字规律。
直接由图序排列发现大小菱形逐次各自多1,得出所要的结果是:1、1+2、1+2+2、1+2+2+2、… ,再发现是1加上若干个2 组成,2的多少与序列号少1,于是得1+2(n-1)即2n-1 。
归纳方法:这类给定的图形或数字规律及寻找的数字规律容易发现,通过一看二数三变的方法即可解决问题。
二 规律隐含 算算数量待发现 例2、如图,在△ABC 中,∠A =α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; ……;∠A 2009BC 与∠A 2009CD 的平分线相交于点A 2010,得∠A 2010,则∠A 2010= .方法:利用三角形的内角和或外角和的性质及角平分线性质,采取从特殊到一般的数学思想解决问题,逐次探究出∠A 1 ;∠A 2 ;∠A 3 ;… ;∠A n 与∠A 的关系,∠A n = 12∠A三、练习第一类: 数字类1、(2012四川巴中)观察下面一列数:1,-2,3,-4,5,-6,……,根据你发现的规律,第2012个数是2、(2012广东肇庆)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 .3. (2012贵州安顺)已知2+23=22×23,3+38=32×38,4+415=42×415…,若8+a b =82×a b (a ,b 为正整数),则a +b = . 4. (2012内蒙古赤峰)将分数67化为小数是0.857142,则小数点后第2012位上的数是 .5.(2013·泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( )A .0B .1C .3D .76. (2012山东滨州)求1+2+22+23+…+22012的值,可令S =1+2+22+23+…+22012,则2S =2+22+23+24+…+22013,因此2S ﹣S =22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为【 】 A .52012﹣1 B .52013﹣1 C .2013514- D .2012514-第二类: 数式类7. (2012江苏泰州)根据排列规律,在横线上填上合适的代数式:x ,23x ,35x , ,59x ,…. 8、(2012江苏)已知整数1234,,,,a a a a ⋅⋅⋅满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+, 43|3|a a =-+,…,依次类推,则2012a 的值为【 】A .1005-B .1006-C .1007-D .2012-第三类: 图形类9、(2012贵州省毕节市)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形。
2012年中考二轮专题复习专辑一规律探索专题
……图③图②图①专题一 关于规律探索的复习规律探索型问题能够体现”特殊—一般—特殊”的认知规律,通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论. 一. 等差数列规律:解题思路:1.通过观察数列或者从图形演变中探寻到序号与结果存在的函数关系:从1,2,3到n 对应的结果之间存在等差;2.要从特殊到一般发现规律,并且注重验证;3.前n 项求和公式:(首项+末项)×项数÷2. 例题分析:例1.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第n 个图中,共有________个正三角形.例2.观察表一寻找规律.表二、三、四分别是从表一中截取的的一部分,其中a,b,c 的值分别为 .(表2) (表三) (表四) 表一 二.与等比数列相关的问题 解题思路:1.前后结果存在等比问题;2,要从特殊到一般发现规律,注重验证.例1.如图,边长为1的菱形ABCD 中,∠DAB=60°,连结对角线AC ,以AC 为边作第二个菱形ACC l D l ,使∠D 1AC=60°;连结AC 1,再以AC 1为边作第三个菱形AC l C 2D 2,使∠D 2AC 1=60°;……,按此规律所作的第n 个菱形的边长为 .例2.如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答. (1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数; (3)求第n 行各数之和: .123 4... 2 4 6 8... 3 6 9 12 ... 4 8 1216 ... …………...18e 32 12 15 a 20 24 25b输入x1 2x x +3输出X 为奇数 x 为偶数 ⑴ 1+8=? 1+8+16=?⑵⑶ 1+8+16+24=? ……三.周期循环规律问题:解题思路:周期循环主要是通过求余数的方法确定结果.例1.如图所示,两个全等菱形的边长为1米,一个微型机器人由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2012米停下,则这个微型机器人停在__ ____点.例2.如图所示的运算程序,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……第2012次输出的结果为__ . 四、以幂的形式呈现的规律:解题思路:通过观察与计算,分析结果与序号之间存在的幂规律.例1. 下面是一个三角形数阵:12 4 23 6 9 6 34 8 12 16 12 8 4…… 根据该数阵的规律,猜想第n 行所有数的和是 .例2.观察图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为 . 五、其他类例 1.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n的代数式表示)例2.根据如图(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形第1个图形第 2 个图形第3个图形 第 4 个图形的个数是 .综合训练题:1. 有一个数列:0,3,8,15,24……,则第2012个数为 . 2.下列是有规律排列的一列数: ,53,85,32,43,1其中从左至右第n 个数是______ ____.3.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C .4.观察图形,它们是按一定规律排列的,依照此规律,第___ __个图形共有120 个。
2012中考复习规律探究复习课件
四、信息处理规律
B
【变式练习】
47
n2 4n 4 n2 4n
n(n+2)
当
堂
64x 7
2n1 xn
达
D
标
B
链接中考
1、(1)计算:如图①,直径为a的三等圆⊙O1、 ⊙O2、⊙O3两两外切,切点分别为A、B、C,求 O1A的长(用含a的代数式表示); (2)探索:若干个直径为a的圆圈分别按如图②所 示的方案一和如图③所示的方案二的方式排放,探 索并求出这两种方案中n层圆圈的高度hn和hn′(用 含n、a的代数式表示); (3)应用:现有长方体集装箱,其内空长为5米, 宽为3.1米,高为3.1米.用这样的集装箱装运长为5 米,底面直径(横截面的外圆直径)为0.1米的圆柱 形钢管,你认为采用(2)中的哪种方案在该集装 箱中装运钢管数最多?并求出一个这样的集装箱最 多能装运多少根钢管?(≈1.73)
二、定义新运算: 9900
变式练习
2a 1
三、图形规律
88
规律总结:通过观察、归纳、抽象出数列的规律.
变式练习(三)
13
s 4n 11 或 s 4n 3
(3)第一个三角形的周长为1,则第N个三角形的周长为 ,面积为1,?
1357 42 1 3 5 7 9 52
1 3 5 7 2n 1 n2
中考复习专题 ——规律探究
寺后初中 曾红荣
题型分析:规律探索型问题是近几年来中考的热点 问题,经常以填空题或选择题的形式出现,在全 国各地中考中,出现了不少立意新颖、构思巧妙、 形式多样的规律探索型问题,虽然分值不大,但 是不易找出其中存在的规律,容易丢分.
题型分类:数式规律、定义新运算、图形规律、 信息处理规律
2012中考经典找规律题目探索
规律探索小谈1、 观察法,对于比较明显的变化,可直接加以解决,比如呈现周期性变化的题2、一次函数法,通过一组数据,对于n 的变化,考察数据是在坐标轴上成直线的变化,可以设此变化规律为y=kx+b,记得解出后要检验。
3、二次函数法,对于n 的变化,考察数据在坐标上呈现弧形,可联想到二次函数,设此规律为y=ax 2+bx+c,找出三组数据,然后解出来。
记得检验 3、(公式法)等差数列:1+2+3+++ ++n= 1+3+5+7++++++++15= 3+6+9+12+15+18++++++3n= 等比数列:2+4+8++++++2n =3+3*3+3*3*3+3*3*3*3+++++++3n =1. 先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 2、观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;……解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯ . 3. 观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1② 2 × 4 - 32 = 8 - 9 = -1 ③ 3 × 5 - 42 = 15 - 16 = -1④……(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由. 4.如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;(3)求第n 行各数之和. 5.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…, 观察上面的计算过程,寻找规律并计算=610C .小结:多观察,分析变化与不变化1. 如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 ▲ .2. 将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)3. 观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个。
中考数学12题探索规律题解题思路分析
在中考试卷中经常出现一类题型,它要求学生 通过对题目中所给出的一些“数或图形”的特点, 分析其规律,从而给出结论,这就是所谓“探索 规律题”。 规律探索型题是根据已知条件或题干所提供的 若干特例,通过观察、类比、归纳,发现题目所 蕴含的数字或图形的本质规律与特征的一类探索 性问题。这类问题在素材的选取、文字的表述、 题型的设计等方面都比较新颖新。其目的是考查 学生收集、分析数据,处理信息的能力。
一、类型: 数字规律题 算式规律题 递进规律类型 规律类型 图形规律题 数形结合规律题
循环规律类型
(一)数字排列规律型的探索性问题
例1.(七上期末)14. 填在下面各正方形中的四个数之 间都有相同的规律,根据这种规律m的值是 .
… …
探索数值结果
分析规律
上述问题中的规律是较典型的多种规律的复合叠加,应该是有相当的难 度,首先单个的方格分析,一个对角方向的两数之和等于另一对角方向 的两数之积如0+2=1×2、2+10=3×4等),左边的两格是两个连续偶数; 而从横向的不同方格分析,它又不是我们常见的1、2、3…n 的规律,我 们知道它们的右上格依次也是连续偶数排列。关键是右上格,单独挑出 来分析1、3、6、10,…又是一个数列,其第n个数是
n n 1 2 2 4 3 2 3 2
×
3
例9(2009年北京中考)
例10(2013.昌平一模)
A
B P
C
例11(2013.海淀一模)
关于寻找“数形结合”规律题的思维步骤:
对于此类型的题目,我们应该先观察图 形排列顺序的规律, 然后把它们转化为相应 的数据,并根据规律用代数式、方程、函数、 不等式等数学模型表示事物的数量关系、 变化规律的过程。
中考数学复习《探索规律问题》经典题型及测试题(含答案)
中考数学复习《探索规律问题》经典题型及测试题(含答案)阅读与理解探索规律问题是中考数学中的常考问题,往往以选择题或填空题中的压轴题形式出现,主要命题方向有数式规律、图形变化规律、点的坐标规律等.基本解题思路为:从简单的、局部的、特殊的情形出发,通过分析、比较、提炼,发现其中的规律,进而归纳或猜想出一般性的结论,最后验证结论的正确性.即“从特殊情形入手→探索发现规律→猜想结论→验证”.类型一数式规律这类问题通常是先给出一组数或式子,通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论.解决这类题目的关键是找出题目中的规律,即不变的和变化的,变化部分与序号的关系.例1 (2016·绥化)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为an ,计算a1+a2,a2+a3,a3+a4,…,由此推算a399+a400=.【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律根据规律得出结论,进而求出a399+a400的值.【自主解答】∵a1+a2=1+3=4=22,a2+a3=3+6=9=32,a3+a4=6+10=16=42,…,∴an +an+1=(n+1)2.∴a399+a400=4002=160 000.故答案为160 000.变式训练:1.(2017·遵义)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.2.(2017年黄石)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)类型二图形规律这类题目通常是给出一组图形的排列(或通过操作得到一系列的图形),探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系.解决此类问题先观察图案的变化趋势是增加还是减少,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出增加或减少的变化规律,并用含有字母的代数式进行表示,最后用代入法求出特殊情况下的数值.例2 (2016·重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.64 B.77 C.80 D.85【分析】观察图形特点,可将图形分为两部分:上面的三角形和下面的正方形,因此小圆圈的个数分别是3+12,6+22,10+32,15+42,…,据此总结出规律求解即可.【自主解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15 …,所以第n个图形为:+n2,当n=7时,+72=85,故选D.变式训练:3.(2017·随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为( )A.84株 B.88株 C.92株 D.121株4.(2015·德州)如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形An BCnDn的面积为_______类型三点的坐标规律这类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.例3 (2017·东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.21433an【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到An的横坐标为,据此可得点A2017的横坐标.【自主解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,An的横坐标为,∴点A2017的横坐标是,故答案为:.变式训练5.(2016·德州)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2 017的坐标为__6.(2017·安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形An Bn-1Bn顶点Bn的横坐标为___。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年北城中学中考数学《规律探究题》
1.观察下列图形,则第n 个图形中三角形的个数是( )
A .22n +
B .44n +
C .44n -
D .4n
2.观察下列等式:
221.4135-=⨯;222.5237-=⨯;223.6339-=⨯224.74311-=⨯;…………则第n (n 是正整数)个等式为________.
3.图6是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.
-
4.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 .
5.图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )
……
n =1 n =2 n
=3 ……
第1个 第2个 第3个 图
6
(1)
(2) (3) ……
第1个第2个第3个
6.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).
7.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .
8.如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.
9.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A .13 = 3+10
B .25 = 9+16
C .36 =
15+21 D .49 = 18+31
10.为庆祝“五·一”国际劳动节,市政府决定在人民广场上增设一排灯花,其
设计由以下图案逐步演变而成,其中圆圈代表灯花中的灯泡,n 代表第n 次演变过程,s 代表第n 次演变后的灯泡的个数.仔细观察下列演变过程,当n =6时,s =_________.
(1) (2) (3)
4=1+3 9=3+6
16=6+10
图7 …
… …
第1幅 第2幅 第3幅 第n 幅
图5
11. 如图7-①,图7-②,图7-③,图7-④,,是用围棋棋子按照某种规律
摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n个“广”字中的棋子个数是________( 15 )
50.
12.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,,按照这样的规律排列下去,则第9个图形由_______个圆组成.
13.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.按照这个规律,若这样铺成一个n×n的正方形图案,则其中完整的圆共有个.
14.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n组应该有种子数()粒。
A、1
+
n
n C、n2D、2
2-
n B、1
2+。