电路分析方法-资料
(完整版)第二章电路分析方法
第二章电路的分析方法电路分析是指在已知电路构和元件参数的情况下,求出某些支路的电压、电流。
分析和计算电路可以应用欧姆定律和基尔霍夫定律,但往往由于电路复杂,计算手续十分繁琐。
为此,要根据电路的构特点去寻找分析和计算的简便方法。
2.1 支路电流法支路电流法是分析复杂电路的的基本方法。
它以各支路电流为待求的未知量,应用基尔霍夫定律(KCL 和KVL )和欧姆定律对结点、回路分别列出电流、电压方程,然后解出各支路电流。
下面通过具体实例说明支路电流法的求解规律。
例2-1】试用支路电流法求如图2-1 所示电路中各支路电流。
已知U S1 130V ,U S2 117V ,R1 1 ,R2 0.6 ,R 24 。
【解】该电路有3 条支路(b=3),2个结点(n=2),3 个回路(L=3 )。
先假定各支路电流的参考方向和回路的绕行方向如图所示。
因为有3 条支路则有3 个未知电流,需列出3 个独立方程,才能解得3个未知量。
根据KCL 分别对点A、B 列出的方程实际上是相同的,即结点A、B 中只有一个结点电流方程是独立的,因此对具有两个结点的电路,只能列出一个独立的KCL 方程。
再应用KVL 列回路电压方程,每一个方程中至少要包含一条未曾使用过的支路(即没有列过方程的支路)的电流或电压,因此只能列出两个独立的回路电压方程。
根据以上分析,可列出3 个独立方程如下:结点A I1 I2 I 0回路ⅠI1R1 I2R2 U S1 U S2回路ⅡI2 R2 IR U S2I1 10A, I2 5A, I=5A 联立以上3 个方程求解,代入数据解得支路电流通过以上实例可以总出支路电流法的解题步骤是:1.假定各支路电流的参考方向,若有n个点,根据KCL 列出(n-1)个结点电流方程。
2.若有b 条支路,根据KVL 列(b-n+1)个回路电压方程。
为了计算方便,通常选网孔作为回路。
5 3.解方程组,求出支路电流。
【例 2-2】如图 2-2 所示电路,用支路电流法求各支路电流。
电路原理与电机控制第3章电路的一般分析方法
1
2 - 22V+ 3
3Ω
I
8A 1Ω 1Ω
25A
4
U1 = –9.43V U4 = 2.5V
U3 = 22V
I = –2.36 A
17
• 例2. 列写下图含VCCS电路的节点电压方程。
• 解: (1) 先把受控源当作独立
源列方程;
IS1
1 R2
+ UR2 _
1
R1
1 R2
1 R1
25
I
4
U3–U2 = 22
解得
U1 = –11.93V U2 = –2.5V
U3 = 19.5V I = –2.36 A
16
• 解二:以节点②为参考节点,即U2=0
节点电压方程如下
(1 3
1 4
)U1
1 4
U3
11
4Ω 3A
U3 (1 1)U4 17
U3 = 22
解得:
1
I1 2A
2 1
I2 +U –
2
+
2
3
I
3
用节点电压表示受控源的控制量为:
2I2 –
U U1 U2 1 U1 U2
3
3
I2
U1 2
3
3 24
1
5
U1 U 2
2 0
解之:
U1
20 7
V,
U2
16 7
V
3 3
所求电流为:I
15
• 例1. 电路如图所示,求节点电压U1、U2、U3。
电路的分析方法
I3
I2
R3
R1 R2
++
B
R4 -
I5 R5
E1 -
- E2 I4 C
+ E5
结点电流方程:
A点: I1 I 2 I3 B点: I3 I 4 I5
设: VC 0 V
则:各支路电流分别为 :
I1
E1 VA R1
、
I2
VA E2 R2
I3
VA VB R3
、
I
4
VB R4
I5
VB E5 R5
独立方程只有 1 个
独立方程只有 2 个
小结
设:电路中有N个节点,B个支路 则:独立的节点电流方程有 (N -1) 个
独立的回路电压方程有 (B -N+1)个
+ R1
- E1
a R2 +
R3 E2 _
b
N=2、B=3
独立电流方程:1个 独立电压方程:2个
(一般为网孔个数)
讨论题
+ 3V -
4V I1
I2
abda :
I1
I6
E4 I4R4 I1R1 I6R6
a
R6
c
bcdb :
I3 I4
I5
0 I2R2 I5R5 I6R6
d
+E3
R3
adca : E3 E4 I3R3 I4R4 I5R5
电压、电流方程联立求得: I1 ~ I6
支路电流法小结
解题步骤
结论
1 对每一支路假设 1. 假设未知数时,正方向可任意选择。
E Ro
E 0
(等效互换关系不存在)
a Uab' b
电工学 第二章 电路的分析方法
例4、用叠加原理求图示电路中的I。 1mA 4kΩ + 10V - 2kΩ I 2kΩ
2kΩ
解:
电流源单独作用时 电压源单独作用时: 10 2 44 mA 1 257mA II 1 mA .0.25mA 4 2 [2+4//2] 4 4 2 [(2+2)//2] 2 I=I′+I″= 1.507mA
返回
第三节 电压源与电流源的等 效变换
等效变换的概念 二端电阻电路的等效变换 独立电源的等效变换 电源的等效变换 无源二端网络的输入电阻 和等效电阻
返回
一、等效变换的概念
1、等效电路
两个端口特性相同,即端口对外的 电压电流关系相同的电路,互为等效电 路。
返回
2、等效变换的条件 对外电路来说,保证输出电压U和 输出电流I不变的条件下电压源和电流 源之间、电阻可以等效互换。
1 1 2 2 S
-US+R2I2+R3I3+R4I4 =0
返回
第二节 叠加原理
叠加原理
原理验证
几点说明
返回
一、叠加原理
在由多个 独立电 源共同 作用的 线性 电路中,任一支路的电流(或电压)等于各 个独立电源分别单独作用在该支路中产 生的电流(或电压)的叠加(代数和) 。
不作用的恒压源短路,不作用的恒流 源开路。
US2单独作用
= 4/3A
返回
三、几点说明
叠加原理只适用于线性电路。
电路的结构不要改变。将不作用的恒压
源短路,不作用的恒流源开路。
最后叠加时要注意电流或电压的方向:
若各分电流或电压与原电路中电流或
电压的参考方向一致取正,否则取负。 功率不能用叠加原理计算。
2电路的分析方法-电工电子学
例 求下列各电路的等效电源
2 +
3 5V–
+a
U 2 5A
(a)
解:
2 + 5V –
(a)
a + U 5A b
+a 3 U
b
(b)
a + 3 U
b (b)
+a
2 +
+ 2V-
5V-
U b
(c)
+a + 5V U –
b (c)
例题
试用等效变换的方法计算图中1 电阻上 的电流I。
电路的基本分析方法。 2. 理解实际电源的两种模型及其等效变换。 3. 了解非线性电阻元件的伏安特性及静态电阻、
动态电阻的概念,以及简单非线性电阻电路 的图解分析法。
2.1 电阻串并联联接的等效变换
在电路中,电阻的联接形式是多种 多样的,其中最简单和最常用的是串联 与并联。具有串、并联关系的电阻电路 总可以等等效效变化成一个电阻。
结点电压法适用于支路数较多,结点数较少的电路。
a
+ E
I2
– R2 R1 I1
IS
I3 在左图电路中只含
R3
有两个结点,若设 b 为参考结点,则电路
中只有一个未知的结
b
点电压Uab。
2个结点的结点电压方程的推导:
设:Vb = 0 V 结点电压为 U,参
考方向从 a 指向 b。
+ E1–
+ E–2
1. 用KCL对结点 a 列方程:I1 R1 I2
点电流方程,选a、 b d G
C
、 c三个节点
十种复杂电路分析方法
电路问题计算的先决条件是正确识别电路,搞清楚各部分之间的连接关系。
对较复杂的电路应先将原电路简化为等效电路,以便分析和计算。
识别电路的方法很多,现结合具体实例介绍十种方法。
一、特征识别法串并联电路的特征是;串联电路中电流不分叉,各点电势逐次降低,并联电路中电流分叉,各支路两端分别是等电势,两端之间等电压。
根据串并联电路的特征识别电路是简化电路的一种最基本的方法。
例1 .试画出图1所示的等效电路。
阳b-oBBo,解:设电流由A端流入,在a点分叉,b点汇合,由B端流出。
支路a—R1— b和a—R2—R3(R4)—b各点电势逐次降低,两条支路的a、b两点之间电压相等,故知R3和R4并联后与R2串联,再与R1并联,等效电路如图2所示。
二、伸缩翻转法在实验室接电路时常常可以这样操作,无阻导线可以延长或缩短,也可以翻过来转过去, 或将一支路翻到别处,翻转时支路的两端保持不动;导线也可以从其所在节点上沿其它导线滑动,但不能越过元件。
这样就提供了简化电路的一种方法,我们把这种方法称为伸缩翻转法。
例2 .画出图3的等效电路。
支路外边去,如图4。
再把连接a 、C 节点的导线缩成一点,把连接 b 、d 节点的导线也缩成一点,并把 R5连到 节点d 的导线伸长线上(图5)。
由此可看出R2 R3与R4并联,再与R1和R5串联,接到 电源上。
三、电流走向法 电流是分析电路的核心。
从电源正极出发 (无源电路可假设电流由一端流入另一端流出 )顺着电流的走向,经各电阻绕外电路巡行一周至电源的负极,凡是电流无分叉地依次流 过的电阻均为串联,凡是电流有分叉地分别流过的电阻均为并联。
例3 .试画出图6所示的等效电路。
口3r-n-,囲 「Eb 尸「A* -- a- ■D AD--- 1'—|| —圏6图T解:电流从电源正极流出过 A 点分为三路(AB 导线可缩为一点),经外电路巡行一周,由D 点流入电源负极。
第一路经 R1直达D 点,第二路经R2到达C 点,第三路经R3也到达 C 点,显然R2和R3接联在AC 两点之间为并联。
第二章 电路的分析方法
电路分析基础
回路电流法求解电路的步骤
选取自然网孔作为独立回路,在网孔中标出各回路电流
的参考方向,同时作为回路的绕行方向; 支路上的互阻压降由相邻回路电流而定;
建立各网孔的KVL方程,注意自电阻压降恒为正,公共 联立求解方程式组,求出各假想回路电流. .
它们与回路电流之间的关系,求出各支路电流.
返节目录
电路分析基础
思考 练习
用结点电压法求解下图所示电路,与回路电流法相比较, 能得出什么结论? US3 R I A+ - 3 3 B
IS1 I1
R1
I4
R4
I5
R5
I2
R2
IS2
此电路结点n=3,用 结点电压法求解此电 路时,只需列出3-1=2 个独立的结点电压方 程式:
U S3 1 1 1 1 ( + + )V A V B = I S1 + R1 R 3 R 4 R3 R3 ( U 1 1 1 1 + + )V B V A = I S2 S3 R 2 R3 R5 R3 R3
返节目录
电路分析基础
结点电压法应用举例
用结点电压法求解结点n=2的复杂电路时,显然只需 列写出2-1=1个结点电压方程式,即: US
例
① I2 R2 + US2 _ I3 R3 I4 R4
-
V1 =
∑R ∑
S
I1 R1 + US1 _
1 R
+
US4
此式称弥尔曼 定理.是结点 电压法的特例
直接应用弥尔曼定理求V1
返节目录
电路分析基础
第1节 支路电流法
定义
以支路电流为未知量,根据基尔霍夫两定律列出必 要的电路方程,进而求解客观存在的各支路电流的方 法,称支路电流法 支路电流法.
第2章 电路分析方法
2.7 电路分析方法的仿真分析
1)首先在电子工作平台上画出待分析的电路,然后用鼠标器点击菜
单中的电路(Circuit)选项,进入原理图选项(Schematic Operation), 选定显示节点(Show Nodes)把电路中的节点标志显示在电路图上。 2)用鼠标器点击菜单中的分析(Analysis)选项,进入直流工作点(DC Operating Point)选项,EWB自动把电路中的所有节点的电位数值及 流过电源支路的电流数值,显示在分析结果图(Analysis Graph)中。 3)将开路电压Uoc和等效电阻Req仿真出结果后,在EWB中创建图2-3
∗2.5
替代定理
替代定理可以叙述如下:给定任意一个电路,其 中第k条支路的电压U p和电流I k已知,那么这条 支路就可以用一个具有电压等于U k的独立电压 源,或者用一个具有电流等于I k的独立电流源来 替代,替代后电路中全部电压和电流均保持原值。
∗2.5
替代定理
图2-21 替代定理电路图
∗2.5
替代定理
•用替代定理,可简化电路计算,由替代定理可 得出以下推论:
•网络的等位点可用导线短接;电流为零的支路 可移去。
2.6 戴维宁定理和诺顿定理
2.6.1 戴维宁定理
2.6.2 诺顿定理
2.6 戴维宁定理和诺顿定理
图2-22 戴维宁方法电路
2.6.1 戴维宁定理
戴维宁定理可表述为:任何一个线性含源的二端 网络,对外电路来说,可以用一条含源支路来等 效替代,该含源支路的电压源的电压等于二端网 络的开路电压,其电阻等于含源二端网络化成无 源网络后的入端电阻R0。
别设为2A和1A。为使得电路元件排放规则,可以利用工具按钮
中的(Rotate,Flip Horizontal和Flip Vertical)按钮将水平放置的元件 置为垂直放置、水平转向和上下翻转。然后按照电路结构,连接 元件,如图2-31所示。注意仿真电路必须有接地参考点,而且为 了和仿真节点一致,选取图2-30的节点标号。
[工学]第2章 电路的基本分析方法
I2 I2 I2
U1 U1 U1
R1 I S E I2 R1 R2 R1 R2
I2
E R1 R2
R1 I2 IS R1 R2
R1 R2 U 1 IS R1 R2
R1 U 1 E R1 R2
R1 R1 R2 U1 US IS R1 R2 R1 R2
电路的基本分析方法
结论: 1. 当电压源等效变换为电流源时,电流源的电激流应等于电压源 的源电压US除以电压源的内电阻Rou;
2. 当电流源等效变换为电压源时,电压源的源电压应等于电流源 的电激流IS与其内电阻R0的乘积;
3. 等效前后两电源的电压和电流的参考方向(极性)应保持一致, 内电阻应相等。
I5
电压方程:取网孔I和网孔II
d
I : I1R1 I 2 R2 I 5 R5 E
II : I 4 R4 I 6 R6 I5 R5 0
联立5个方程求解
第2章
电路的基本分析方法
2.3 结点电压法
结点电压的概念 任选电路中某一结点为零电位参考点(用 表示) 结点电压是指该结点与参考点之间的电压 参考方向从该结点指向参考结点。 图中C为参考结点,则“UA‖―UB‖为A、B结点电压
E E Ro 0
(不存在)
例如:理想电压源短路电流I无穷大 理想电流源短路电流I=IS
第2章
电路的基本分析方法
注意
(2)与恒压源并联的元件,对外电路可看成断路 。 (3)与恒流源串联的元件,对外电路可看成短路。
I
I
+
10V -
U
2
Is
U
2
不影响对外电路的作用,I、U不变 但会影响电源内部的电压或电流
第二章(1)电路基本分析方法
I3
U s1
R1
R2
I2
②
U s3
R3
①
1
3
2
②
2.1.1 电路图与拓扑图
②
R2
① R3
R4
R5
③
R6 ④
U s1
R1
实际电路图
②
2
4
①
5
③
3
6
④
1
对应的线图
线图是由点(节点)和线段(支路)组成,反映实际 电路的结构(支路与节点之间的连接关系)。
有向图
如果线图各支路规定了一个方向(用 箭头表示,一般取与电路图中支路电流 方向一致),则称为有向图。
回路2:I3×R3+US3-I4×R4+I2×R2=0
回路3:I4×R4+I6×R6-I5×R5=0
网孔回路电压方程必为独立方程。
网孔回路电压方程数=b(支路数)-n(节点数)+1
解出支路电流
4>. 由n1个节点电流方程和bn+1个网孔电压方程(共b
个方程)可解出b个支路电流变量。
R3
I 3
U s3
第二章(1) 电路基本分析方法
本章内容
1.网络图论初步 2.支路电流法 3.网孔电流法 4.回路电流法 5.节点电压法
2.1 网络图论的概念
图的概念:对于一个由集中参数元件组成的电网络,
若用线段表示支路,用黑圆点表示节点,由此得到一
个由线条和点所组成的图形,称此图为原电网络的拓
扑图,简称为图。
I1 ①
- I1 + I2 - I3 =0
I1 -10+3× I2 =0 3×I2 +2× I3 -13=0
解得: I1 =1A, I2 =3A, I3 =2A
电路的分析方法
WXH
例题 求图示电路的电流I。
I
I
电阻的串并联等效变换
WXH
R1
R5
R3
R1
R5
R3
E R2
E
R4
R2
R4
9
2020年3月26日星期四
WXH
例题 求图示电路的电流I。
I
I
电阻的串并联等效变换
WXH
R1
R5
R3
R1
R5
R3
E
E
R2
R4
R2
R4
10
2020年3月26日星期四
§2-2 电阻的星形联接和三角形联接的等效变换
R12
R1
R2
R1R 2 R3
R 23
R2
R3
R 2R 3 R1
R 31
R3
R1
R 3R1 R2
12
2020年3月26日星期四
WXH
△→ Y
电阻的星形联接和三角形联接的等效变换
WXH
R1
R12
R12R 31 R 23 R31
R2
R12
R12R 23 R 23 R31
R3
R12
R 23R 31 R 23 R31
6
解:(1)求开路电压
等效电路
UOC=4×2-18=-10V I= -1A
(2)求等效电阻R0
R0= 4
也可以用电源等效变 换法求得。
(3)画出等效电路
44
2020年3月26日星期四
戴维宁定理与诺顿定理
WXH
WXH
例题: 电路如图所示,试求电路I。
4 18V +
I 2A 6
电路分析的一般方法是
电路分析的一般方法是电路分析的一般方法按照以下步骤进行:1. 确定电路的拓扑结构:首先,需要将电路图画出来,并确定电路的基本元件,如电源、电阻、电感、电容等。
然后,根据元件之间的连接关系,画出电路的连接方式,即电路的拓扑结构。
2. 应用基本电路定律:根据基本电路定律,如欧姆定律、基尔霍夫定律等,对电路中的电流、电压进行分析。
欧姆定律可以用来计算电路中的电流、电压和电阻之间的关系。
基尔霍夫定律可以用来分析电路中节点和回路之间的关系。
3. 运用戴维南-诺依曼定理:根据戴维南-诺依曼定理,可以将复杂的电路分解为简单的电路,并分别进行分析。
这个定理可以帮助我们简化电路,并通过分析简化后的电路来推导出整个电路的特性。
4. 采用网络定理:在电路分析中,可以应用网络定理,如电压分压定理和电流分流定理等。
这些定理可以帮助我们求解电路中的各个参数值,如电流、电压和功率等。
5. 使用等效电路方法:等效电路方法是一种简化电路分析的方法,通过将复杂的电路转化为等效电路来进行分析。
等效电路是指用少量的元件来代替复杂电路,但能够保持电路的特性不变。
6. 运用概率统计方法:在一些特殊的电路问题中,可以使用概率统计方法进行分析。
概率统计方法可以帮助我们分析电路的可靠性、失效率等指标。
7. 结合计算工具:在电路分析中,可以使用计算工具,如电路仿真软件、数值计算软件等。
这些工具可以帮助我们简化计算过程、提高分析精度,并可以模拟实际电路的工作情况。
总结起来,电路分析的一般方法包括确定拓扑结构、应用基本电路定律、运用戴维南-诺依曼定理、采用网络定理、使用等效电路方法、运用概率统计方法以及结合计算工具。
这些方法可以帮助我们对电路进行全面的分析,求解电路中的参数值,并理解电路的工作原理。
最终,通过电路分析,我们可以更好地设计、优化电路,并预测电路在实际应用中的性能。
电路原理电路的分析方法
设电路含有n个节点,b条支路,则
(1)独立节点为(n-1)个,因此有(n-1)个KCL独立方程。 (即独立KCL方程:(n-1)个)
(2)平面网孔有b-(n-1)个,因此有b-(n-1)个KVL独 立方程。(即独立KVL方程:b-(n-1)个(平面电路的网孔数)
(3)b条支路共有b个VCR方程。故总的独立方程为2b个。(即
第3章 线性电路分析方法
简单电路:仅有一个独立节点或一个回路. 复杂电路:含有多个节点或回路。
平面电路:可画在一个平 面上,且使各条支路除连 接点外不再有交叉支路的 电路。
对于平面电路,可以引入 网孔的概念。
精选课件
1
支路法:
3.1 2b方程法
定义:以支路电压、支路电流为待求量列写电路方程
求解电路的方法。
ia
(1) 选择网孔电流,参考 方向取顺时针方向;
I2 ib
(2) 列写网孔电流方程:
15ia - 5 ib = 40 - 5ia +20 ib = 5 (3) 解网孔电流
ia = 3A
ib = 1A
(4) 求各支路电流 I1 =ia = 3A I2 = ib = 1A I3 = ia - ib = 2A
i1 = Ia i2=Ia - Ib
i1
i2
i3
i3=Ib i4=Ia - Ic i5=Ic
i6
i4
i5
i6=Ic - Ib
独立性:网孔电流彼此独立,不能互求。
节点1: - i1 + i2 + i3=0
用网孔电流表示: - Ia +(I精a选-课Ib件) + Ib=0
8
三、网孔电流法:u(Isb6-+IaI)aRR46+-u(Isb5-+Ic)(RIa-2I+c)Rus52+-(uIas-1I+b)IbRR41==00
电工技术--第二章 电路的分析方法
A
R1 Us1 R2
I2
R3 Us2 B
I3
A
I1 '
A
I2' I1"
R1 Us1
R2
R1
R2
I2"
R3
I3'
+
R3 Us2
I3 "
B
B
A
I1
R1 R2
A
I2
R3
A
I2'
R3
I1' I3
R1
R2
I1" I3'
R1
R2
I2"
R3
Us1 Us2
=
Us1
+
Us2
I3"
B
B
B
解: I1
U S1 R 2R 3 R1 + R2 + R3
例1 :
I1 R1 I3
a
I2 R2 R3 2 +
对结点 a: I1+I2–I3=0 对网孔1: I1 R1 +I3 R3=E1 E2 对网孔2: I2 R2+I3 R3=E2
+ E1
-
1
-
b
联立求解各支路电流
例:试求各支路电流。
a
c
支路中含有恒流源 I3 注意:当支路中含有恒流源 时,若在列KVL方程时,所选 回路中不包含恒流源支路
+
U -
I RL
Ro Uo
+
+ _
I RL
网络
U B
B 有源二端网络
戴维南等效电路
任意一个线性有源二端网络对外都可等 效为等效电压源。
第2章 电路的分析方法
+
10V
+
2A 4Ω
10V
+
2Ω U
+ _
3V
_
_
_
图2-25 题2-3-1图
图2-26 题2-3-2图
• 2-3-2电路如图2-26所示,试用叠加原理求电流U。
2.4 戴维南定理
• 1.二端网络
• 对于一个复杂的电路,有时只需计算其中
某一条支路的电流或电压,此时可将这条支路
单独划出,而把其余部分看作一个有源二端网
2.注意事项
• (1)在电压源和电流源等效过程中,两种电路模型 的极性必须一致。 • (2)电压源与电流源的等效关系是对外电路而言的, 对电源内部,则是不等效的。 • (3)理想电压源与理想电流源之间没有等效关系, 不能等效变换。 • 因为对理想电压源讲,其短路电流无穷大;对理想 电流源讲,其开路电压为无穷大,都不能得到有效 数值,故两者之间不存在等效变换条件。
US=9V、IS=6A,求各支路的电流I1和I。
• 2-2-2 电路如图2-22所示,求各支路的电流I1、I2
和I3。
R1
2Ω
3Ω
_
US R2 IS
_
10V
I1
I2
4Ω
I3
2A
+
+
图2-21 题2-2-1图
图2-22 题2-2-2图
2.3 叠加原理
• 1.线性电路
•
线性电路是由线性元件组成的电路。线性元件是 指元件参数不随外加电压及通过其中的电流而变化, 即电压和电流成正比。
R1 R3 1015 R13 6 R1 R3 10 15
R2 R4 20 5 R24 4 R2 R4 20 5
第2章电路分析的基本方法
2Ω
is
2A
2Ω
解: (1) 与电压源并联的R2和与电流源串联的R3不 考虑(等效)
us 2
+ 10V -
- 4V +
4Ω
RL
I 5Ω
+Ω
us 2
- 4V +
4Ω
RL
I
2A
2Ω
us 2
5Ω
+ U -
3A 2Ω
- 4V +
4Ω
RL
I
2Ω
5Ω
+ U -
控制量u1应转换为支路电流表示
u1 = us2+ R2i2 ( 4)
求解得 :i1=0.43A ,i2=-0.71A,i3=1.14A, u1=0.57V
求解受控源上的电压u2时,不 能延用图(b)所示的电路, 回到原电路即图3-2(a)所 示的电路中进行求解 u2= -R3i3+ us2+R2i2
i1 R i R2 2 1 + il1 + uS1 il2 uS2 – – b
列写的方程
i3
R3
独立回路数为 2 。选 图示的两个独立回路,支 路电流可表示为:
i1 il1 i3 il 2 i2 il 2 il1
网孔电流在网孔中是闭合的,对每个相关结 点均流进一次,流出一次,所以KCL自动满足。 因此网孔电流法是对网孔回路列写KVL方程,方 程数为网孔数。
a
R1
c
b
R2 d
R4 Rab=(R1+R3)//(R2+R4) a b R1 c
R3
R2
d
电桥平衡条件: R1R4=R2R3
教你几种电路分析的高效方法
教你几种电路分析的高效方法对电路进行分析的方法很多,如叠加定理、支路分析法、网孔分析法、结点分析法、戴维南和诺顿定理等。
根据具体电路及相关条件灵活运用这些方法,对基本电路的分析有重要的意义。
现就具体电路采用不同方法进行如下比较。
支路电流法01支路电流法是以支路电流为待求量,利用基尔霍夫两定律列出电路的方程式,从而解出支路电流的一种方法。
一支路电流分析步骤1) 假定各支路电流的参考方向,对选定的回路标出回路绕行方向。
若有n个节点,根据基尔霍夫电流定律列(n一1)个独立的节点电流方程。
2) 若有m条支路,根据基尔霍夫电压定律列(m-n+1)个的独立回路电压方程。
为了计算方便,通常选网孔作为回路(网孔就是平面电路内不再存在其他支路的回路)。
对于平面电路,独立的基尔霍夫电压方程数等于网孔数。
3) 解方程组,求出支路电流。
【例1】如上图所示电路是汽车上的发电机(US1)、蓄电池(US2)和负载(R3)并联的原理图。
已知US1=12V,US2=6V,R1=R2=1Ω,R3=5Ω,求各支路电流。
分析:支路数m=3;节点数n=2;网孔数=2。
各支路电流的参考方向如图,回路绕行方向顺时针。
电路三条支路,需要求解三个电流未知数,因此需要三个方程式。
解:根据KCL,列节点电流方程(列(n-1)个独立方程):a节点:I1+I2=I3根据KVL,列回路电压方程:网孔1:I1R1-I2R2=Us1- Us2网孔2:I2R2+I3R3=Us2解得:I1=3.8A I2=-2.2A I3=1.6A叠加定理02在线性电路中,所有独立电源共同作用产生的响应(电压或电流),等于各个电源单独作用所产生的响应的叠加。
在应用叠加定理时,应注意以下几点:1) 在考虑某一电源单独作用时,要假设其它独立电源为零值。
电压源用短路替代,电动势为零;电流源开路,电流为零。
但是电源有内阻的则都应保留在原处。
其它元件的联结方式不变。
2) 在考虑某一电源单独作用时,其参考方向应选择与原电路中对应响应的参考方向相同,在叠加时用响应的代数值代入。
最实用的5种电路分析方法
学好电路分析是后续课程的基础,可谓简单而重要,只有电路分析学好了,在后续课程中才能有良好的思路去解决问题。
电路是一门专业基础课,相对于文化基础课来说,它更侧重于解决工程实际问题,而比起专业课来讲,它则更强调物理概念和一般理论分析。
电路理论是从实际事物中抽象出来的,与实际事物既有联系又有区别的理论,因此要特别注意应用场合的条件。
电路课程具有特殊的规律,掌握了规律则学习起来就轻松多了,也容易记忆。
电路理论分析一是主要决定电路元件模型,即理想电阻元件、电感元件、电容元件,掌握了这些元件的伏安特性,则许多问题就迎刃而解。
要注意电路结构所遵循的原则即基本尔霍夫二大定律是解决电路结构问题的关键,在以上基础上应用电路中的主要原理、定理,即叠加定理、戴维南定理,对电路进行分析、计算。
为了正确、简单的分析、计算电路,对于复杂电路必须通过等效变换进行化简,这是电路理论中的首要手段,所谓等效即在不影响所需计算分析的情况下对外电路等效,这是必须牢牢掌握的。
平时要认真阅读例题。
例题是课程内容的组成部分,又是从概念到解题的中间桥梁,把定律、定理、原理以例题形式编入书中,这是电路教材的特点。
多做习题也是电路课学习的重要方面。
习题是教材中不可分割的重要部分,习题的练习,有助于加深对基本概念的理解。
习题不但要做对,更应该理解每道习题所要考察的概念,搞清为什么要出这一道题,考核了什么内容,这样学习才能学得深,学得好。
解习题是培养思考能力的一个极其重要的环节,同时也是检验自己是否真正掌握了概念的一把尺子。
区别电路模型与实际器件。
理想电路元件是从实际电路器件中科学抽象出来的假想元件。
应当注意电路元件与实际器件的联系和差别。
一般器件都可以用理想电路元件及它们的组合来模拟,但两者之间不完全等同。
例如,在频率不太高的条件下,一个线圈的数学模型就是电阻元件和电感元件的串联,而当频率较高时,线圈的绕线之间的电容效应就不容忽视,在这种情况下表征这个线圈的较精确的模型还应当包含电容元件。
电路的分析方法及电路定理
注意:US的正极性端为IS箭头指向的一端
10
对于复杂电路(如下图)仅通过串、并联无法求解, 必须经过一定的解题方法,才能算出结果。
如: I1
I2 I6
I3 I4
R6 I5
+E3
R3
11
2.2 支路电流法
未知数:各支路电流 解题思路:根据基尔霍夫定律,列节点电流
和回路电压方程,然后联立求解。
12
例1
K2 0.1
37
UO 1V
2.5等效电源定理
一、名词解释:
二端网络:若一个电路只通过两个输出端与外电路 相联,则该电路称为“二端网络”。 (Two-terminals = One port)
无源二端网络: 二端网络中没有电源
A
有源二端网络: 二端网络中含有电源
2.1.1 电阻串联
1. 定义: 若干个电阻元件一个接一个顺序相连, 并且流过同一个电流。
2. 等效电阻: R=R1+R2+…+Rn= Rn
+
+
R1 U_1
U
+
_
R2 U_2
4
+
U
R
_
+
+
+
R1 U_1
U
_
+ R2 U_2
U
_
R
U U1 U2 I( R1 R2 ) IR R R1
即电流分配与电阻成反比. 功率P1:P2=R2:R1 4.应用: 负载大多为并联运行。
7
2.1.3.两种电源的等效互换
Ia
RO
+
+
Uab
常见的四种电路及其分析方法
常见的五种电路及其分析方法湖北省大悟县第一中学 432800 徐高本1.静态电路用等效法分析弄清电路中各电阻元件的连接方式,把握电路在稳定状态时所具有的上述两个特点,是解决稳态含容直流电路问题的关键.例6.如图6所示,在A 、B 两点间接一电动势为4V ,内电阻为1Ω的直流电源,电阻R 1、R 2、R 3的阻值均为4Ω,电容器的电容为30μF,电流表的内阻不计,求:(1)电流表的读数;(2)电容器所带的电量; (3)断开电源后,通过R 2的电量。
分析与解:(1)A rR EI 8.03=+=(2)C CIR CU Q R 533106.9-⨯===(3) 断开电源,R 1与R 2并联,与R 3、C 构成放电回路。
所以通过R 2的电量C QQ 52108.42-⨯==. 非理想电表的读数问题同学们在求非理想电压表或非理想电流表的读数时,只要将电压表看作电阻R V ,求出R V 两端的电压就是电压表的示数;将同学们在求非理想电压表或非理想电流表的读数时,只要将电压表看作电阻R V ,求出R V 两端的电压就是电压表的示数;将电流表看作电阻R A ,求出通过R A 的电流就是电流表的示数。
例5.阻值较大的电阻R 1和R 2串联后,接入电压U 恒定的电路,如图4所示,现用同一电压表依次测量R 1与R 2的电压,测量值分别为U 1与U 2,已知电压表内阻与R 1、R 2相差不大,则:A .U 1+U 2=U ;B .U 1+U 2<U ;C .U 1/U 2=R 1/R 2;D .U 1/U 2≠R 1/R2 分析与解:正确答案是B 、C ,电压表是个特殊的“电阻”, 第一它的电阻R v 阻值较大;第二该“电阻”的电压是已知的, 可以从表盘上读出,当把电压表与R 1并联后,就等于给R 1并联 上一个电阻R v ,使得电压表所测的电压U 1是并联电阻的电压,由于R R R R R VV<+11,所以U 1小于R 1电压的真实值,同理测量值U 2也小于R 2电压的真实值,因此U 1+U 2<U ,选项B 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正电荷运动方向规定为电流的实际方向。
电流的方向用一个箭头表示。
电流的单位:安培 1A=1000毫安=1000000微安。
2020/5/17
1.1.2 电压、电位和电动势
电路中a、b点两点间的电压定义为单位正
电荷由a点移至b点电场力所做的功。
uab
dWab dq
电路中a、b点两点间的电压等于a、b两点
u1
R1
R1 R2
u
+i
u
u2
R2 R1 R2
u
-
2020/5/17
+
R1
u1 -
+ R2 u2
-
2.电阻的并联
i
i
+
i1
i2
in
+
u
R1
R2
Rn
u
R
-
-
n个电阻并联可等效为一个电阻
11 1
1
R R1 R2
Rn
2020/5/17
分流公式
ik
个电阻并联时
i1
R1
R2 R2
R=ρl/s
功率:
ρ:电阻率,常用导体的电阻
puiRi2 u2
率顺序为:银、铜、铝、钨、 铁、碳
R 3)电阻与温度成正比关系
2020/5/17
2.电感元件
电感元件是一种能够贮存磁场能量的元 件,是实际电感器的理想化模型。
伏安关系: 符号: i
L
u L di dt
+ u -
只有电感上的电流变化时,
2020/5/17
第1章 电路基础
学习要点
• 电流、电压参考方向及功率计算 • 常用电路元件的伏安特性 • 基尔霍夫定律
• 1.1 电路基本物理量 • 1.2 电路基本元件 • 1.3 电路分析方法
2020/5/17
1.1 电路基本物理量
为了某种需要而由电源、导线、开关和负载按 一定方式组合起来的电流的通路称为电路。
i
+
i i1
i2
i2
R1
R1 R2
i
u -
R1
R2
2020/5/17
1.4电缆
R L
S
电阻与电阻率、长度成正比, 与导线截面积成反比
常用电缆的通流能力如下: 4平方毫米电缆:通流约为25A~36A 6平方毫米电缆:通流约为40A~60A 16平方毫米电缆:通流约为90A~110A 国内没有8平方毫米的电缆
电路元件在电路中的作用或者说它 的性质是用其端钮的电压、电流关系即 伏安关系(VAR)来决定的。
2020/5/17
1.2.1 无源元件
1.电阻元件
电阻元件是一种消耗电能的元件。
伏安关系(欧姆定律): 1)电阻的单位:欧姆
iR
符号:
+ u -
1M欧=1000K欧=1000000欧。 2)电阻的计算公式为:
电压的单位:伏特 1V=1000毫伏=1000000微伏。
1.1.3 电功率
电场力在单位时间内所做的功称为电功率,
简称功率。
p dW UI dt
功率与电流、电压的关系:
关联方向时: p =ui
非关联方向时: p =-ui
p>0时吸收功率,p<0时放出功率。
1.2 电路基本元件
常见的电路元件有电阻元件、电容 元件、电感元件、电压源、电流源。
u L di dt
电感两端才有电压。在直流 电路中,电感上即使有电流 通过,但u=0,相当于短
L称为电感元件的路电。感,单位是亨利(H)。
2020/5/17
3.电容元件
电容元件是一种能够贮存电场能量的元 件,是实际电容器的理想化模型。
伏安关系:i C du dt
符号: i C
+ u -
只有电容上的电压变化时,电容两端才有电流 。在直流电路中,电容上即使有电压,但i= 0,相当于开路,即 电容具有隔直作用。
图为室内用日光灯管的应用原理图 通用电路组成如下:
整流器
1、电源(电压源、电流源)
光管
2、电器元件(电压源、电流源)
3、导线
2020/5/17
启电器
1.1.1 电流
电荷的定向移动形成电流。
电流的大小用电流强度表示,简称电流。 电流强度:单位时间内通过导体截面的电荷量。
i dq dt
大写 I 表示直流电流 小写 i 表示电流的一般符号
的电位差。 uabua ub
电压的实际方向规定由电位高处指向电位低处。
与电流方向的处理方法类似,
对一个元件,电流参考方向和电压参考 方向可以相互独立地任意确定,但为了方便 起见,常常将其取为一致,称关联方向;如 不一致,称非关联方向。
i
a
b
+ u -
(a) 关联方向
i
a
b
- u +
(b) 非关联方向
电容的单位:法拉(F)。地球的容量是1F
1F16 0F11 0 2F
2020/5/17
1.3 电路分析方法
1.电阻的串联
+
i
R1
+ u1 -
+
u
R2 u2 -
+
-
Rn
u-n
i
+
u
R
-
n个电阻串联可等效为一个电阻
RR 1R 2R n
2020/5/17
分压公式
uk
Rki
Rk R
u
两个电阻串联时
思考题:热电阻与热电偶的差别
2020/5/17