高三数学函数的图像、零点试题
高三数学函数图像试题
高三数学函数图像试题1.下列四个图中,函数y=的图象可能是( )A. B. C. D.【答案】C.【解析】当时,有,,∴,故排除A,B,又∵当时,有,,∴,故排除D,∴选C.【考点】1.函数的单调性与奇偶性;2.指对数的性质.2.设表示不超过实数的最大整数,则在坐标平面上,满足的点所形成的图形的面积为__________.【答案】4【解析】设都是整数,则满足的点形成的图形是单位正方形(,),其面积为1,而在椭圆上整点有,共4个,因此满足题设条件的点形成的图形是4个单位正方形,其面积为4.【考点】函数图象,图形面积.3.已知函数的图象大致为()【答案】A【解析】,的图象始终位于的图象的上方,所以函数值为正数,排除当取时,,排除.选.【考点】函数的图象.4.已知定义在R上的函数对任意的x满足,当-l≤x<l时,.函数若函数在上有6个零点,则实数a的取值范围是()A.B.C.D.【答案】【解析】由已知,,所以,是周期为的周期函数.函数在上有个零点,即的图象有个交点.结合函数的图象的示意图可知,当,两函数图象有两个交点,当时,两函数图象有一个交点;所以,时,两函数图象应有三个交点,.解得或,故选.【考点】函数的周期性,函数的图象,函数的零点,对数函数的性质.5.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.6.函数的图像大致为( ).【答案】A【解析】函数有意义,需使,其定义域为,排除C,D,又因为,所以当时函数为减函数,故选A.7.已知函数的图象关于直线对称,则可能是()A.B.C.D.【答案】C【解析】∵函数的图象关于直线对称,∴,∴,当时,,故选C.【考点】由的部分图象确定其解析式.8.已知定义在R上的函数满足:,,则方程在区间上的所有实根之和为( )A.B.C.D.【答案】C【解析】由题意知函数的周期为,则函数在区间上的图象如下图所示:由图形可知函数在区间上的交点为,易知点的横坐标为,若设的横坐标为,则点的横坐标为,所以方程在区间上的所有实数根之和为.【考点】数形结合图像周期性9.如图,不规则四边形ABCD中,AB和CD是线段,AD和BC是圆弧,直线于E,当从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设,左侧部分面积为,则关于的图像大致为( )【答案】C【解析】由直线的变化可知,开始时圆弧那段变化较慢,所以排除A,B选项,由于左边的面积始终在增大,所以D选项不正确.【考点】1.图形的变化规律.2.关注局部图形的变化.10.已知函数,则的图象大致为()【答案】A【解析】,令,则,在同一坐标系下作出两个函数的简图,根据函数图象的变化趋势可以发现与共有三个交点,横坐标从小到大依次设为,在区间上有,即;在区间有,即;在区间有,即;在区间有,即.故选【考点】1转化思想;2函数图像。
高三数学会考练习题及答案
高三数学会考练习题及答案第一题:已知函数 f(x) = x^2 - 3x + 2,求函数 f(x) 的图像与 x 轴交点的坐标。
解析:当函数的图像与 x 轴交点时,即为该函数的零点,即 f(x) = 0。
将 f(x) = x^2 - 3x + 2 置零,得到方程 x^2 - 3x + 2 = 0。
使用因式分解法或配方法,将方程化为 (x - 2)(x - 1) = 0。
解得 x = 2 或 x = 1,即函数 f(x) 的图像与 x 轴交点的坐标为 (2, 0)和 (1, 0)。
答案:(2, 0) 和 (1, 0)第二题:已知等差数列 {an} 的通项公式为 an = 3n + 1,若数列的前 n 项和Sn = 70,求 n 的值。
解析:等差数列的前 n 项和公式为 Sn = (n/2)(a1 + an)。
将已知的等差数列 {an} 的通项公式 an = 3n + 1 代入,得到 Sn =(n/2)(a1 + 3n + 1)。
将 Sn = 70 代入,得到 70 = (n/2)(a1 + 3n + 1)。
化简方程,得到 140 = n(2a1 + 6n + 2)。
由于 a1 = 3(1) + 1 = 4,代入方程,得到 140 = n(2(4) + 6n + 2)。
化简方程,得到 140 = n(12n + 10)。
整理方程,得到 140 = 12n^2 + 10n。
移项得到 12n^2 + 10n - 140 = 0。
使用因式分解法或配方法,将方程化为 (2n - 7)(6n + 20) = 0。
解得 n = 7/2 或 n = -20/6,由于项数不能为负数,所以 n = 7/2。
答案:n = 7/2第三题:已知直角三角形 ABC,∠ABC = 90°,BC = 3 cm,AC = 4 cm,请计算三角形 ABC 的斜边 AB。
解析:根据勾股定理,直角三角形的斜边的长度等于两直角边的平方和的开方。
函数零点问题-学会解题之高三数学多题一解【原卷版】
函数零点问题【高考地位】函数的零点是新课标的新增内容,其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为新课标高考命题的热点.其经常与函数的图像、性质等知识交汇命题,多以选择、填空题的形式考查.类型一 零点或零点存在区间的确定万能模板 内 容使用场景 一般函数类型解题模板第一步 直接根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0; 第二步 若其乘积小于0,则该区间即为存在的零点区间;否则排除其选项即可.例1 函数()43xf x e x =+-的零点所在的区间为( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫⎪⎝⎭ C .13,24⎛⎫ ⎪⎝⎭ D .3,14⎛⎫ ⎪⎝⎭【变式演练1】(2023·全国·高三专题练习)在下列区间中,函数()23xf x x =--的零点所在的区间为( )A .)(01,B .()12,C .()23,D .()34,【变式演练2】(2022·江苏·金沙中学高一阶段练习)函数sin sin()13y x x π=-+-在区间(0,2)π上的零点所在的区间为( )A .(0,)2πB .(,)2ππC .3(,)2ππ D .3(,2)2ππ 【变式演练3】(2022·全国·高一课时练习)已知函数()226xf x x =+-的零点为0x ,不等式06x x ->的最小整数解为k ,则k =( ) A .8B .7C .5D .6类型二 零点的个数的确定方法1:定义法万能模板 内 容使用场景一般函数类型解题模板 第一步 判断函数的单调性;第二步 根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0;若其乘积小于0,则该区间即为存在唯一的零点区间或者直接运用方程的思想计算出其 零点;第三步 得出结论.例2.函数x e x f x3)(+=的零点个数是( ) A .0 B .1 C .2 D .3【变式演练4】(2022·重庆·三模)已知函数()21,02log ,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,则函数()()12g x f x =-的零点个数为( )A .0个B .1个C .2个D .3个【变式演练5】(2023·全国·高三专题练习)已知函数|2|1()2x f x -=,()g x 是定义在R 上的奇函数,且满足(2)(2)g x g x +=-,当[0,2]x ∈时,2()log (1)g x x =+.则当[0,2022]x ∈时,方程()()f x g x =实根的个数为_______.【变式演练6】(2022·北京·高三开学考试)已知函数()x af x a x a+=--,给出下列四个结论: ①存在a ,使得函数()f x 可能没有零点; ②存在a ,使得函数()f x 恰好有1个零点; ③存在a ,使得函数()f x 恰好有2个零点; ④存在a ,使得函数()f x 恰好有3个零点. 其中所有正确结论的序号是______.方法2:数形结合法万能模板 内 容使用场景 一般函数类型解题模板第一步 函数()g x 有零点问题转化为方程()()f x m x =有根的问题; 第二步 在同一直角坐标系中,分别画出函数()y f x =和()y m x =的图像;第三步 观察并判断函数()y f x =和()y m x =的图像的交点个数第四步 由()y f x =和()y m x =图像的交点个数等于函数()0g x =的零点即可得出结论.例3. 方程3()|log |3x x =的解的个数是 ( ) A .3 B .2 C .1 D .0【变式演练7】(2023·全国·高三专题练习)已知函数()f x 是定义在R 上的偶函数,满足()()1f x f x +=-,当[]0,1x ∈时,()πcos 2f x x =,则函数()y f x x =-的零点个数是( ) A .2B .3C .4D .5【变式演练8】(2022·河北省曲阳县第一高级中学高三阶段练习)(多选)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()()()1g x f f x =+,则下列说法正确的是( ) A .当0a >时,()g x 有4个零点 B .当0a >时,()g x 有5个零点 C .当0a <时,()g x 有1个零点D .当0a <时,()g x 有2个零点【变式演练9】(2022·湖南师大附中三模)(已知)已知函数()[)[)1,0,1,21,1,2,3x x f x x x ⎧-∈⎪=⎨-∈⎪-⎩对定义域内任意x ,都有()(2)f x f x =-,若函数()()=-g x f x k 在[0,+∞)上的零点从小到大恰好构成一个等差数列,则k 的可能取值为( ) A .0B .1C 2D 21【高考再现】1.【2021年北京市高考数学试题】已知函数,给出下列四个结论: ①若,则有两个零点; ①,使得有一个零点; ①,使得有三个零点; ①,使得有三个零点. 以上正确结论得序号是_______.2.【2021年天津高考数学试题】设,函数,若在区间()lg 2f x x kx =--0k =()f x 0k ∃<()f x 0k ∃<()f x 0k ∃>()f x a ∈R 22cos(22).()2(1)5,x a x a f x x a x a x a ππ-<⎧=⎨-+++≥⎩()f x (0,)+∞内恰有6个零点,则a 的取值范围是( ) A .B .C .D .3.【2020年高考天津卷9】已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞4.【2020年高考上海卷11】已知a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件,①对任意0x R ∈,0()f x 的值为0x 或02x ;②关于x 的方程()f x a =无实数解;则a 的取值范围为 .5. 【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}6.【2018年全国普通高等学校招生统一考试数学(浙江卷)】已知λ①R ,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________①7.【2017江苏】设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 .8.【2018年全国普通高等学校招生统一考试理科数学(天津卷)】已知a >0,函数f(x)={x 2+2ax +a, x ≤0,−x 2+2ax −2a,x >0.若关于x 的方程f(x)=ax 恰有2个互异的实数解,则a 的取值范围是______________.【反馈练习】1.函数的图象与函数的图象交点横坐标所在的区间可能为( )95112,,424⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭9112,,344⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭11,2,3447⎛⎫⎡⎫⋃ ⎪⎪⎢⎝⎭⎣⎭()()=x f x e ()2ln g x x =-A .B .C .D .【来源】重庆市南开中学2022届高三上学期7月考试数学试题2.(2022·河南·高三阶段练习(文))已知直线l 与曲线ln (01)y x x =<<相切于点00(,)M x y ,若OM l ⊥,则0x 所在的取值区间是( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫ ⎪⎝⎭C .13,24⎛⎫ ⎪⎝⎭D .3,14⎛⎫ ⎪⎝⎭3.(2022·重庆南开中学高三阶段练习)已知函数()()2ln 16f x x x =++-,则下列区间中含()f x 零点的是( )A .()0,1B .()1,2C .()2,3D .()3,44.(2023·全国·高三专题练习)已知()=ln f x x ,()e x g x =,若()()f s g t =,则当s t -取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭5.(2023·全国·高三专题练习)正实数,,a b c 满足422,33,log 4ab a bc c -+=+=+=,则实数,,a b c 之间的大小关系为( ) A .b a c <<B .a b c <<C .a c d <<D .b c a <<6.(2022·江西·南昌二中高三开学考试(理))已知a 是()323652f x x x x =--+-的一个零点,b 是()e 1x g x x =++的一个零点,132log 5c =,则( )A .a c b <<B .a b c <<C .b c a <<D .a c b <<或c b a <<7.(2022·陕西·武功县普集高级中学高三阶段练习(理))定义在R 上的函数()f x 满足()()22f x f x x x =+-,则函数()()21g x xf x x=-的零点个数为( ) A .3B .4C .5D .68.(2022·甘肃·兰州市第五十五中学高三开学考试(文))定义域在R 上的奇函数()f x ,当0x ≥时,12log (1),01()13,1x x f x x x +≤<⎧⎪=⎨⎪--≥⎩,则关于x 的函数()()12g x f x =-的所有零点的和是( )A 21B .122C .122-D .129.(2022·河南·高三开学考试(文))已知定义域为R 的偶函数()f x 的图像是连续不间断的曲线,且()0,1()1,2()2,3()3,4(2)()(1)f x f x f ++=,对任意的1x ,20[]2,x -∈,12x x ≠,()()12120f x f x x x ->-恒成立,则()f x 在区间[]100,100-上的零点个数为( ) A .100B .102C .200D .20210.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( ) A .5或6个B .3或9个C .9或10个D .5或9个11.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( )A .()e 2x y f x -=--B .()e 2x y f x =+C .()e 2x y f x =-D .()e 2x y f x =-+12.(2022·陕西·西安铁一中滨河高级中学高三阶段练习(理))函数()222,0,23,0lnx x x x f x x x x ⎧-+>=⎨--≤⎩的零点个数为( ) A .0B .1C .2D .313.(2022·全国·模拟预测(文))已知函数()2,1,121,11,,1,1xx x f x x x x x x ⎧<-⎪+⎪=--≤≤⎨⎪⎪>-⎩方程()()()()2220f x a f x a a R -++=∈的不等实根个数不可能是( ) A .2个B .3个C .4个D .6个14.(2023·全国·高三专题练习)(多选)已知函数e x y x =+的零点为1x ,ln y x x =+的零点为2x ,则( ) A .120x x +>B .120x x <C .12ln 0xe x +=D .12121x x x x -+<15.(2022·福建·上杭一中高三阶段练习)(多选)已知函数()1,0ln ,0kx x f x x x +≤⎧=⎨>⎩,下列关于函数()1y f f x =+⎡⎤⎣⎦的零点个数判断正确的是( ) A .当0k <时,有1个零点; B .当0k >时,有4个零点; C .无论k 取何值,均有2个零点;D .无论k 取何值,均有4个零点;16.(2022·全国·高二专题练习)设定义域为(0,)+∞的单调函数()f x ,对任意的,()0x ∈+∞,都有[]3()log 4f f x x -=,若0x 是方程()2()3f x f x '-=的一个解,且*0,(1),N x a a a ∈+∈,则实数a =_____. 17.(2022·重庆·高三阶段练习)函数||21()2x f x x ⎛⎫=- ⎪⎝⎭的零点个数是______.18.(2021·福建·福州市第十中学高三开学考试)已知函数24,1()lg 1,1x x x f x x x ⎧-≥⎪=⎨-<⎪⎩,则((9))f f -=__________,()f x 的零点个数为__________个.19.已知函数有两个不同的零点,则实数k 的取值范围是_________. 【来源】河北省衡水市饶阳中学2021届高三5月数学精编试题20.【陕西省榆林市2020-2021学年高三上学期第一次高考模拟测试文科】已知函数2,0()12,02x e x f x x x x ⎧≤⎪=⎨-+->⎪⎩. (1)求斜率为12的曲线()y f x =的切线方程; (2)设()()f x g x m x=-,若()g x 有2个零点,求m 的取值范围.()()112 ()1421x x f x k -=-+-。
高三数学函数图像试题答案及解析
高三数学函数图像试题答案及解析1.函数在上的图像大致为()【答案】A【解析】函数是奇函数,所以C,D被排除;当时,,,由此判断,函数原点右侧开始时应该是正数,所以选A.【考点】函数的图像与性质2.如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )【答案】B【解析】通过圆心角α将弧长x与时间t联系起来.圆半径为1,设弧长x所对的圆心角为α,则α=x,如图所示,cos=1-t,即cos=1-t,则y=cos x=2cos2-1=2(1-t)2-1=2(t-1)2-1(0≤t≤1).其图象为开口向上,在[0,1]上的一段抛物线.3.若函数的图像如右图所示,则下列函数图像正确的是()【答案】B【解析】由题意可得.所以函数是递减的即A选项不正确.B正确. 是递减,所以C不正确. 图象与关于y轴对称,所以D不正确.故选B.【考点】函数的图象.4.已知函数f(x)=|lgx|,若a≠b,且f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【答案】C【解析】函数f(x)=|lgx|的图象如图所示,由图象知a,b一个大于1,一个小于1,不妨设a>1,0<b<1.∵f(a)=f(b),∴f(a)=|lga|=lga=f(b)=|lgb|=-lgb=lg.∴a=.∴a+b=b+>2=2.5.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为________.【答案】【解析】由题意知,y=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y=m与y=x2-5x+4(x∈[0,3])的图像如图所示,结合图像可知,当x∈[2,3]时,y=x2-5x+4∈,故当m∈时,函数y=m与y=x2-5x+4(x∈[0,3])的图像有两个交点.6.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.7.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.8.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.9.已知,则函数的零点个数为()A.1B.2C.3D.4【答案】D【解析】由题意可知,要研究函数的零点,只要研究函数与函数的交点个数,画出两个函数的图象,如图,很明显是4个交点.【考点】1.函数的零点;2.函数的图象.10.函数的图象大致是().【答案】C【解析】不难知道,函数是奇函数,故排除A;又,令得,而此方程有无穷个解,且在每个解的两边函数值不同号,所以函数有无穷多个极值点,故可排除B,D.11.已知,点在曲线上,若线段与曲线相交且交点恰为线段的中点,则称为曲线关于曲线的一个关联点.记曲线关于曲线的关联点的个数为,则( ) A.B.C.D.【答案】B【解析】设则的中点为所以有,因此关联点的个数就为方程解得个数,由于函数在区间上分别单调增及单调减,所以只有一个交点,即.【考点】函数图像12.如图,不规则四边形ABCD中,AB和CD是线段,AD和BC是圆弧,直线于E,当从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设,左侧部分面积为,则关于的图像大致为( )【答案】C【解析】由直线的变化可知,开始时圆弧那段变化较慢,所以排除A,B选项,由于左边的面积始终在增大,所以D选项不正确.【考点】1.图形的变化规律.2.关注局部图形的变化.13.已知函数y=f(x)的图象如图所示,请根据已知图象作出下列函数的图象:①y=f(x+1);②y=f(x)+2;【答案】【解析】(1)将函数y=f(x)的图象向左平移一个单位得到y=f(x+1)的图象(如图①所示),将函数y=f(x)的图象向上平移两个单位得到y=f(x)+2的图象(如图②所示).14.已知函数,,若在区间内,函数与轴有3个不同的交点,则实数的取值范围是()A.B.C.D.【答案】C【解析】∵,∴,∴,∴,∴,∴当时,,∵函数与x轴有3个不同交点,∴函数与有3个不同的交点,函数的图像如图所示,直线与相切是一个边界情况,直线过时是一个边界情况,符合题意的直线需要在这2条直线之间,∵,∴,∴,所以切线方程为,与相同,即,当过点时,,综上可得:,故选C.【考点】1.导数的运算;2.函数图像;3.曲线的切线.15.函数y=lnx-1的图象关于直线y=x对称的图象大致是 ( )A. B. C. D.【答案】A【解析】因为关于直线y=x对称点的关系为,所以函数y=lnx-1的关于直线y=x对称的函数的解析式为.即相当于将函数的图像向左平移一个单位,显然B,D不正确,C 选项中的图像在y轴的交点过低,所以不正确.故选A.【考点】1.函数的对称性.2.指数函数的图像.3.函数图像的平移知识.16.下列函数图象与x轴均有公共点,其中能用二分法求零点的是().【答案】C【解析】只有零点两侧的函数值符号相反且在零点附近连续时才可用二分法.17.函数y=的图象大致是().【答案】D【解析】由y=知为奇函数,排除A,B.根据函数有两个零点x=±1,排除C.18.函数y=-2sin x的图象大致是 ().【答案】C【解析】当x=0时,y=0-2sin 0=0,故函数图象过原点,可排除A.又∵y′=-2cos x,当x在y轴右侧趋向0时,f′(x)<0,此时函数为减函数;当x=2 π时,f′(2 π)=-2 cos 2 π=-<0,所以x=2 π应在函数的减区间上,故选C19.函数的图象大致是( )【答案】D【解析】因为的定义域为,且,故可排除,所以应选D.【考点】1、函数的定义域;2、函数的性质;函数的图象.20.函数的图象大致是( )【答案】A【解析】,故此函数在上为增函数,在为减函数;且只有一个根,故只有一个零点.所以选A.【考点】函数的性质与图像.21.随着生活水平的提高,私家车已成为许多人的代步工具。
高考数学复习考点知识与题型专题讲解训练04 函数的图象、零点及应用(含解析)
高考数学复习考点知识与题型专题讲解训练专题04 函数的图象、零点及应用考点1 作函数的图象 1.作出下列函数的图象. (1)y =⎩⎨⎧-2x +3,x ≤1,-x 2+4x -2,x >1;(2)y =2x +2;【解析】(1)分段分别画出函数的图象,如图①所示.(2)y =2x +2的图象是由y =2x 的图象向左平移2个单位长度得到的,其图象如图②所示.考点2 识图与辨图2.已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )【答案】D【解析】法一:先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象; 然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D. 法二:先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.3.(2021·浙江省诸暨市第二高级中学高三模拟)函数()21xy x e =-的图象是( )A .B .C .D .【答案】A【解析】因为()21xy x e =-,则()21xy x e '=+,1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()210x y x e '=+<,所以函数()21x y x e =-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()210x y x e '=+>,所以函数()21x y x e =-在1,2⎛⎫-∞- ⎪⎝⎭上单调递增,且12x <时,()210xy x e =-<,所以BCD 均错误,故选:A.4.(2021·吉林高三模拟)函数()6cos 2sin xf x x x=-的图象大致为( ).A .B .C .D .【答案】A 【解析】函数()6cos 2sin xf x x x=-为奇函数,所以排除选项BC ,又当0x >时,()f x 第一个零点为2x π=,所以令4x π=,则有222sin 0,cos0242x x ππ--=>=>,所以排除D.故选:C 考点3 函数图象的应用 考向1 研究函数的性质5.已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0) 【答案】C【解析】将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎨⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.6.(2021·山东烟台高三模拟)设函数()2,01,0x x f x x -⎧≤=⎨>⎩,则满足()()12f x f x +<的x 的取值范围是( ) A .(],1-∞- B .()0,∞+ C .()1,0- D .(),0-∞【答案】D【解析】作出函数()f x 的图象如下图所示:所以,函数()f x 在(),0-∞上为减函数,且当0x ≥时,()1f x =, 因为()()12f x f x +<,观察图象可得2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是(),0-∞.故选:D. 考向2 求不等式解集7.若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( ) A .(1,2] B.)1,22(C .(1,2) D .(2,2) 【答案】A【解析】要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].8.(2021·甘肃省会宁县第一中学高三模拟)已知)(f x 在R 上是可导函数,)(f x 的图象如图所示,则不等式)()(2230x x f x '-->解集为( )A .)()(,21,-∞-⋃+∞B .)()(,21,2-∞-⋃C .)()()(,11,02,-∞-⋃-⋃+∞D .)()()(,11,13,-∞-⋃-⋃+∞ 【答案】D【解析】原不等式等价于()22300x x f x '⎧-->⎪⎨>⎪⎩或()22300x x f x '⎧--<⎪⎨<⎪⎩,结合)(f x 的图象可得,3111x x x x ><-⎧⎪⎨-⎪⎩或或或1311x x -<<⎧⎨-<<⎩,解得1x <-或3x >或11x -<<.故选:D . 考点4 函数图象对称性的应用9.已知lga +lgb =0,函数f(x)=a x 与函数g(x)=-log b x 的图像可能是( )【答案】B【解析】∵lga +lgb =0,∴lgab =0,ab =1,∴b =1a .∴g(x)=-log b x =log a x ,∴函数f(x)与g(x)互为反函数,图像关于直线y =x 对称,故选B.10.(2021·云南高三模拟)已知函数()f x 是R 上的奇函数,且满足()()11f x f x =+-,当(]0,1x ∈,()ln f x x =,则下列关于函数()f x 叙述正确的是( )A .函数()f x 的最小正周期为1B .函数()f x 在()0,2021内单调递增C .函数()f x 相邻两个对称中心的距离为2D .函数()ln y f x x =+在区间()0,2021内有1010个零点 【答案】D【解析】由()()11f x f x =+-得:()()2f x f x +=,()f x ∴最小正周期为2,A 错误; 当(]0,1x ∈时,()ln f x x =,又()f x 为R 上的奇函数,则()00f =, 可得()f x 大致图象如下图所示:由图象可知:()f x 在()0,2021上没有单调性,B 错误;()f x 的对称中心为()()0,k k Z ∈,则相邻的对称中心之间距离为1,C 错误;()ln y f x x =+在区间()0,2021内的零点个数等价于()f x 与ln y x =-在()0,2021内的交点个数,在平面直角坐标系中画出()f x 与ln y x =-大致图象如下图所示:由图象可知:()f x 与ln y x =-在每个()()2,22k k k Z +∈内都有1个交点,且在区间内的交点横坐标等于或小于21k +,∴两个函数在()0,2021内有1010个交点,即()ln y f x x =+在区间()0,2021内有1010个零点,D正确.故选:D.11.(2021·山东淄博高三模拟)已知函数()y f x =的定义域为{|0}x x x ∈≠R ,,且满足()()0f x f x --=,当0x >时,()ln 1f x x x =-+,则函数()y f x =的大致图象为().A .B .C .D .【答案】D【解析】由()()0f x f x --=得函数()f x 为偶函数,排除A 、B 项, 又当0x >时,()ln 1f x x x =-+,∴(1)0f =,()20f e e =-<.故选:D 考点5 判断函数零点所在的区间12.设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间)1,1(e,(1,e)内均有零点B .在区间)1,1(e,(1,e)内均无零点C .在区间)1,1(e 内有零点,在区间(1,e)内无零点D .在区间)1,1(e内无零点,在区间(1,e)内有零点【答案】D【解析】法一:图象法 令f (x )=0得13x =ln x .作出函数y =13x 和y =ln x 的图象,如图, 显然y =f (x )在)1,1(e内无零点,在(1,e)内有零点.法二:定理法当x ∈),1(e e 时,函数图象是连续的,且f ′(x )=13-1x =x -33x <0,所以函数f (x )在),1(e e 上单调递减.又f )1(e =13e +1>0,f (1)=13>0,f (e)=13e -1<0,所以函数有唯一的零点在区间(1,e)内.13.(2021·黑龙江高三模拟)函数()1293xf x x ⎛⎫=-- ⎪⎝⎭的零点所在的一个区间是()A .()1,2B .()1,0-C .()0,1D .()2,1--【答案】D【解析】如图,绘出函数13xy ⎛⎫= ⎪⎝⎭与函数29y x =+的图像,结合图像易知,函数()1293xf x x ⎛⎫=-- ⎪⎝⎭的零点所在的一个区间是()2,1--,故选:D.考点6 判断函数零点(或方程根)的个数14.(2021·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .3【答案】C【解析】解方程法,令f (x )+3x =0, 则⎩⎨⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x +3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.15.(2021·山东潍坊高三模拟)已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围( ) A .()1,0- B .[]1,0-C .(0,1)D .[]0,1【答案】C【解析】因为函数()()g x f x m =-有3个零点,所以()()0g x f x m =-=有三个实根,即直线y m =与函数()y f x =的图象有三个交点.作出函数()y f x =图象,由图可知,实数m 的取值范围是(0,1).故选:C .16.(2021·浙江镇海中学高三模拟)函数4()log (||1)cos f x x x π=+-的零点个数为( ) A .9 B .8C .7D .6【答案】D【解析】令()4log (||1)x g x =+ ,因为10x +>恒成立,则()g x 的定义域为R , 由()()44log (||1)log (||1)x g x x g x --+=+==,所以()g x 为偶函数, 当0x >时,()4log (1)g x x +=,在()0,∞+上单调递增,令()cos h x x π=, 分别画出()g x 与()h x 的函数图象,由图可知,()g x 与()h x 有六个交点, 即函数4()log (||1)cos f x x x π=+-有六个零点.故选: D.考点7 函数零点的应用 考向1 根据零点的范围求参数17.若函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D .(0,2) 【答案】C【解析】由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a -3)<0,解之得0<a<3.18.(2021·浙江高一期末)已知函数()()2log 1,1212,1x x x f x x ⎧-<-⎪=⎨-+≥-⎪⎩,若函数()()F x f x k =- 恰有3个零点,则实数k 的取值范围是( )A .52,2⎛⎤⎥⎝⎦B .()2,3C .(]3,4D .()2,+∞【答案】A【解析】函数()()F x f x k =- 恰有3个零点,即函数()y f x =与()h x k =的图象有三个交点,分别画出()y f x =与()h x k =的图象,如图所示,5(1)2f -=,观察图象可得,当522k <≤时,两图象有3个交点,即函数()()F x f x k =-恰有3个零点.故选:A.19.(2021·江西高三模拟)设函数,10()11,01(1)x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩,若函数()4y f x t =-在区间()1,1-内有且仅有一个零点,则实数的取值范围是( )A .1,4⎛⎫-+∞ ⎪⎝⎭B .1,04⎛⎫- ⎪⎝⎭C .1,4⎛⎫-∞- ⎪⎝⎭D .1,{0}4⎛⎤-∞- ⎥⎝⎦【答案】D【解析】因为()(),1011,011x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩所以(),1011,011x x f x x x -<≤⎧⎪=⎨+<<⎪-⎩,其图象如下:函数()4y f x t =-在区间()1,1-内有且仅有一个零点,等价于()40f x t -=在区间()1,1-内有且仅有一个实数根,又等价于函数()y f x =的图象与直线4y t =在区间()1,1-内有且仅有一个公共点. 于是41t ≤-或40t =,解得14t ≤-或0t =.故选:D 考向2 已知函数零点或方程根的个数求参数20.(2020·湖南高三模拟)已知函数2141,0()1,02x x x x f x x +⎧-+≥⎪=⎨⎛⎫<⎪ ⎪⎝⎭⎩,若()()g x f x a =-恰好有3个零点,则实数a 的取值范围为( ) A .[0,1) B .(0,1)C .1,12⎡⎫⎪⎢⎣⎭D .1,12⎛⎤ ⎥⎝⎦【答案】D【解析】由条件可知()0f x a -=()a f x ⇒=()()g x f x a =-恰好有3个零点,等价于y a =与()y f x =有3个交点,如图画出函数的图象,由图象可知112a <≤.故选:D21.(2021·安庆摸底)若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________.【答案】]2,41[-【解析】∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =2)412(-x -14,∵x ∈[-1,1],∴2x ∈]2,21[,∴2)412(-x -14∈]2,41[-∴实数a 的取值范围是]2,41[-考点8 用函数图象刻画变化过程22.甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④ 【答案】B【解析】由题知速度v =st 反映在图象上为某段图象所在直线的斜率.由题知甲骑自行车速度最大,跑步速度最小,甲与图①符合,乙与图④符合.23.(2021·重庆高三模拟)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A【解析】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,xhr H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得2223333222333r H vt H v h vt h h t H r r πππ⋅=⇒=⇒=⋅,而,,r H v 都是常数,即2323H v r π是常数,所以盛水的高度h 与注水时间t 的函数关系式是23323H v h tr π=⋅,203r H t v π≤≤,223323103H v h t r π-'=⋅>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同.故选:A 24.(2021·浙江高三模拟)如图,设有圆O 和定点C ,当l 从0l 开始在平面上绕O 匀速旋转(旋转角度不超过90︒)时,它扫过圆内阴影部分面积S 是时间t 的函数,它的图像大致是如下哪一种( )A .B .C .D .【答案】C【解析】当直线l 从初始位置0l 转到经过点C 的过程中阴影部分面积增加的越来越快,图像越来越“陡峭”;l 从过点C 的位置转至结束时阴影部分面积增加的越来越慢,图像越来越“平缓”,故选:C.考点9 应用所给函数模型解决实际问题25.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎨⎧C ,0<x ≤A ,C +B x -A ,x >A .已知某家庭2018年前三个月的煤气费如表: 月份 用气量 煤气费 一月份 4 m 3 4元 二月份 25 m 3 14元 三月份35 m 319元若四月份该家庭使用了20 m 3的煤气,则其煤气费为( ) A .11.5元 B .11元 C .10.5元 D .10元 【答案】A【解析】根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎪⎨⎪⎧4,0<x ≤5,4+12x -5,x >5,所以f (20)=4+12×(20-5)=11.5.26.(2021·湖南高三期末)某工厂8年来某种产品年产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速度越来越慢; ③第三年后这种产品停止生产; ④第三年到第八年每年的年产量保持不变. 其中说法正确的序号是________. 【答案】②④【解析】由图可知,前3年的产量增长的速度越来越慢,故①错误,②正确; 第三年后这种产品的产量保持不变,故③错误,④正确; 综合所述,正确的为:②④. 故答案为:②④.27.(【百强校】福建师范大学附属中学2020-2021学年高一上学期期末考试数学试题)如图所示,边长为 1的正方形PABC 沿 x 轴从左端无穷远处滚向右端无穷远处,点B 恰好能经过原点.设动点P 的纵坐标关于横坐标的函数解析式为()y f x =,则对函数()y f x =有下列判断:①函数()y f x = 是偶函数; ②()y f x =是周期为 4 的函数;③函数 ()y f x =在区间[10,12] 上单调递减; ④函数 ()y f x = 在区间[1,1] 上的值域是[1,2] 其中判断正确的序号是_______.(写出所有正确结论的序号) 【答案】①②④【解析】当2x 1-≤<-时,P 的轨迹是以A 为圆心,半径为1的14圆当1x 1-≤<时,P 的轨迹是以B 为圆心,半径为2的14圆 当1x 2≤<时,P 的轨迹是以C 为圆心,半径为1的14圆当2x 3≤≤时,P 的轨迹是以A 为圆心,半径为1的14圆 故函数的周期为4因此最终构成图象如下所示:①根据图象的对称性可知函数()y f x =是偶函数;故正确②由图可得()f x 的周期为4,故正确③函数()y f x =在区间[2,4]上为增函数,故在区间[10,12]上也是增函数,故错误 ④在区间[1,1]上的值域是[1,2],故正确 综上,正确的序号是①②④考点10 构建函数模型解决实际问题 考向1 构建二次函数模型28.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计) 【答案】2 500【解析】设围成的矩形场地的长为x m ,则宽为200-x4 m ,则S =x ·200-x 4=14(-x 2+200x ). 当x =100时,S max =2 500 (m 2).29.(2021·四川高三模拟)某市出租车的计价标准为1.2元/km ,起步价为6元,即最初3km (不含3km )计费6元.若某人乘坐该市的出租车去往13km 处的目的地,且一路畅通,等候时间为0,那么他需要支付的车费为_____. 【答案】19.2【解析】乘车距离为x km ,车费为y 元,由题意得:6,036 1.2,346 1.22,456 1.23,56x x y x x <<⎧⎪+≤<⎪⎪=+⨯≤<⎨⎪+⨯≤<⎪⎪⎩, 所以当13x =时,()6132 1.219.2y =+-⨯=元,所以他需要支付的车费为19.2元,故答案为:19.230(2021·河南郑州一中高三模拟)在“绿水青山就是金山银山”的环保理念指引下,结合最新环保法规和排放标准,各企业单位勇于担起环保的社会责任,采取有针对性的管理技术措施,开展一系列卓有成效的改造.已知某化工厂每月收入为100万元,若不改善生产环节将受到环保部门的处罚,每月处罚20万元.该化工厂一次性投资500万元建造垃圾回收设备,一方面可以减少污染避免处罚,另一方面还能增加废品回收收入.据测算,投产后的累计收入是关于月份x 的二次函数,前1月、前2月、前3月的累计收入分别为100.5万元、202万元和304.5万元.当改造后累计纯收入首次多于不改造的累计纯收入时,x =( )A .18B .19C .20D .21【答案】A【解析】不妨设投产后的累计收入2y ax bx c =++,则100.520242304.593a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩,解得1,100,02a b c ===, 211002y x x ∴=+, ∴改造后累计纯收入为215001005002y x x -=+-, 不改造的累计纯收入为()10020x -,令()21100500100202x x x +->-, 即212050002x x +->, 解得201014x >-+201014x <--,20101417.4x ∴>-+,x N *∈,x 的最小值为18.故选:A 考向2 构建指数函数、对数函数模型31.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况【答案】B【解析】设该股民购进这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损.32.声强级1L (单位:dB )与声强I 的函数关系式为:11210lg 10I L -⎛⎫= ⎪⎝⎭.若普通列车的声强级是95dB ,高速列车的声强级为45dB ,则普通列车的声强是高速列车声强的( ) A .610倍B .510倍C .410倍D .310倍【答案】B【解析】设普通列车的声强为1I ,高速列车的声强为2I ,因为普通列车的声强级是95dB ,高速列车的声强级为45dB ,所以1129510lg 10I -⎛⎫= ⎪⎝⎭,2124510lg 10I -⎛⎫= ⎪⎝⎭, ()11129510lg 10lg 1210I I -⎛⎫==+ ⎪⎝⎭,解得12.5lg I -=,所以 2.5110I -=, ()22124510lg 10lg 1210I I -⎛⎫==+ ⎪⎝⎭,解得27.5lg I -=,所以7.5210I -=, 两式相除得 2.5517.52101010I I --==, 则普通列车的声强是高速列车声强的510倍.故选:B.33.(2020·重庆市酉阳第一中学校高三月考)为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,英国天文学家普森又提出了亮度的概念,并提出著名的普森公式:22112.51g E m m E -=-,联系两个天体的星等1m 、2m 和它们对应的亮度1E 、2E .这个星等尺度的定义一直沿用至今.已知南十字星座的“十字架三”星等是1.26,猎户星座的“参宿一”星等是1.76,则“十字架三”的亮度大约是“参宿一”的( )倍.(当x 较小时,2101 2.3 2.7x x x ≈++)A .1.567B .1.568C .1.569D .1.570 【答案】B【解析】设“十字架三”的星等是1m ,“参宿一”的星等是2m ,“十字架三”的亮度是1E ,“参宿一”的亮度是2E ,则1 1.26m =,2 1.76m =,设12E rE =, 两颗星的星等与亮度满足22112.51gE m m E -=-, 211.76 1.26 2.51g E E ∴-=-,0.21210E E =0.22101 2.30.2 2.7(0.2) 1.568r ∴=≈+⨯+⨯=,∴与r 最接近的是1.568,故选B . 考向3 构建分段函数模型34(2021·广东江门市·高三模拟)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.【答案】7916【解析】当01t ≤≤时,函数图象是一个线段,由于过原点与点()1,4,故其解析式为4,01y t t =≤≤,当 1t ≥时,函数的解析式为12t a y -⎛⎫= ⎪⎝⎭,因为()1,4M 在曲线上,所以1142a -⎛⎫= ⎪⎝⎭,解得 3a =, 所以函数的解析式为31,12t y t -⎛⎫=≥ ⎪⎝⎭, 综上,34(01)()1(1)2t t t y f t t -≤<⎧⎪==⎨⎛⎫≥ ⎪⎪⎝⎭⎩,由题意有340.2510.252t t -≥⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩,解得1165t t ⎧≥⎪⎨⎪≤⎩,所以1516t ≤≤, 所以服药一次治疗疾病有效的时间为17951616-=个小时,故答案为:7916. 35.(2020·福建三明市·三明一中高三期中)某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是21300,0300()245000,300x x x P x x ⎧-≤<⎪=⎨⎪≥⎩,则总利润最大时店面经营天数是__________,最大总利润是__________.【答案】200 10000元【解析】由题意,0300x ≤<时,221130010010000(200)1000022y x x x x =---=--+,200x ∴=时,10000max y =;300x ≥时,4500010010000350001005000y x x =--=-≤,200x ∴=天时,总利润最大为10000元 故答案为:200, 10000元。
高三数学函数图像试题答案及解析
高三数学函数图像试题答案及解析1.函数的图像大致是()【答案】A【解析】因为分子分母分别为奇函数,所以原函数为偶函数,排除C、D,而当x取很小的正数时,sin6x>0,2x-2-x>0,故y>0,排除B,选A【考点】函数的图象及其性质2.已知函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是()A.0<<b<1B.0<b<<1C.0<<a<1D.0<<<1【答案】A【解析】由图象知函数单调递增,所以a>1.又-1<f(0)<0,f(0)=loga (20+b-1)=logab,即-1<logab<0,所以0<<b<1,故选A.3.已知f(x)=x2+sin(+x),f′(x)为f(x)的导函数,则f′(x)的图象是()【答案】A【解析】f(x)=x2+sin(+x)=x2+cosx,f′(x)=x-sinx.易知该函数为奇函数,所以排除B、D.当x=时,f′()=×-sin=-<0,可排除C.选A.4.(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.【答案】B【解析】由导数的图象可得,导函数f′(x)的值在[﹣1,0]上的逐渐增大,故函数f(x)在[﹣1,0]上增长速度逐渐变大,故函数f(x)的图象是下凹型的.导函数f′(x)的值在[0,1]上的逐渐减小,故函数f(x)在[0,1]上增长速度逐渐变小,图象是上凸型的,故选B.5.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.6.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.7.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.8.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.9.如图:正方体的棱长为,分别是棱的中点,点是的动点,,过点、直线的平面将正方体分成上下两部分,记下面那部分的体积为,则函数的大致图像是()【答案】C【解析】由题意可得下面那部分的是一个高为AB的三棱柱或四棱柱,当时.所以函数在大致图像是C、D选项.当时,令.所以上面的体积为.所以下面体积.所以函数的图象大致为C所示.故选C.【考点】1.空间几何.2.函数及图象.3.函数与立几交汇.10.对实数a和b,定义运算“”:,设函数.若函数的图象与x轴恰好有两个共公点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】若即时,.若即或时,.画出的图象(如图)∵函数的图象与x轴恰好有两个共公点方程有两解函数与函数有两个不同的交点∴由图象可知或.11.为了得到函数的图像,只需把函数的图像上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【答案】C【解析】A.,B.,C.,D..12.已知函数,若关于的方程有三个不同的实根,则实数的取值范围是_.【答案】【解析】如图,直线y=x-a与函数的图象在处有一个切点,切点坐标为(0,0),此时;直线与函数的图象在处有两个切点,切点坐标分别是和,此时相应的,,观察图象可知,方程有三个不同的实根时,实数的取值范围是。
高三数学函数试题
高三数学函数试题1.设为平面直角坐标系中的点集,从中的任意一点作轴、轴的垂线,垂足分别为,,记点的横坐标的最大值与最小值之差为,点的纵坐标的最大值与最小值之差为. 若是边长为1的正方形,给出下列三个结论:①的最大值为;②的取值范围是;③恒等于0.其中所有正确结论的序号是()A.①B.②③C.①②D.①②③【答案】D【解析】如下图两种画法分别是,取得最大值最小值的位置,由图可知,取得最大值最小值分别为,取得最大值最小值分别为,故的最大值为,的取值范围是,且不管在何位置都有,即,故①②③都正确.【考点】函数的应用.2.类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=a x-a-x,C(x)=a x+a-x,其中a>0,且a≠1,下面正确的运算公式是()①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).A.①②B.③④C.①④D.②③【答案】B【解析】经验证易知①②错误.依题意,注意到2S(x+y)=2(a x+y-a-x-y),又S(x)C(y)+C(x)S(y)=2(a x+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y),综上所述,选B.3.已知函数.若,则的取值范围是( )A.B.C.D.【答案】D【解析】依题意可得或解得.【考点】1.分段函数的应用.2.二次不等式的解法.3.分类的数学思想.4.定义:对于函数,若存在非零常数,使函数对于定义域内的任意实数,都有,则称函数是广义周期函数,其中称为函数的广义周期,称为周距.(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距的值;(2)试求一个函数,使(为常数,)为广义周期函数,并求出它的一个广义周期和周距;(3)设函数是周期的周期函数,当函数在上的值域为时,求在上的最大值和最小值.【答案】(1)2;(2),,;(3).【解析】本题是一个新定义概念问题,解决问题的关键是按照新定义把问题转化为我们熟悉的问题,(1)就是找到使为常数,考虑到,因此取,则有,符合题设,即得;(2)在(1)中求解时,可以想到一次函数就是广义周期函数,因此取,再考虑到正弦函数的周期性,取,代入新定义式子计算可得;(3)首先,函数应该是广义周期函数,由新定义可求得一个广义周期是,周距,由于,可见在区间上取得最小值,在上取得最大值,而当时,由上面结论可得,最小值为,当时,,从而最大值为.试题解析:(1),,(非零常数)所以函数是广义周期函数,它的周距为2.(4分)(2)设,则(非零常数)所以是广义周期函数,且.( 9分)(3),所以是广义周期函数,且.(10分)设满足,由得:,又知道在区间上的最小值是在上获得的,而,所以在上的最小值为.( 13分)由得得:,又知道在区间上的最大值是在上获得的,而,所以在上的最大值为23.(16分)【考点】新定义,新定义概念的理解,新定义概念的应用与函数的最值.5.如果f()=,则当x≠0且x≠1时,f(x)=()A.B.C.D.-1【答案】B【解析】令=t,t≠0且t≠1,则x=,∵f()=,∴f(t)=,化简得:f(t)=,即f(x)=(x≠0且x≠1).6.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图像上存在区域内的点,则实数的取值范围是()A.B.C.D.【答案】B【解析】的两根为,且,,故有,即,作出区域,如图阴影部分,可得,所以.【考点】1.函数的极值;2.线性规划.7.对于函数f(x),若在其定义域内存在两个实数a,b(a<b),使当x∈[a,b]时,f(x)的值域也是[a,b],则称函数f(x)为“布林函数”,区间[a,b]称为函数f(x)的“等域区间”.(1)布林函数的等域区间是 .(2)若函数是布林函数,则实数k的取值范围是 .【答案】(1)[0,1];(2).【解析】(1)因为是增函数,则当x∈[a,b]时,f(x)∈[f(a),f(b)].令f(a)=a,且f(b)=b,即,且,则a=0,b=1.故布林函数的等域区间是[0,1].(2)因为是增函数,若是布林函数,则存在实数a,b(-2≤a<b),使,即.所以a,b为方程的两个实数根,从而方程有两个不等实根.令,则.当时,;当时,.由图可知,当时,直线与曲线有两个不同交点,即方程有两个不等实根,故实数k的取值范围是.【考点】新概念的理解、方程的根与函数的图像8.已知函数.(Ⅰ)求使不等式成立的的取值范围;(Ⅱ),,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用绝对值的几何意义可得范围是;(Ⅱ)利用决定值得几何意义求出的最小值,可得.试题解析:(1)由绝对值的几何意义可知的取值范围为 5分(Ⅱ),,即 7分由绝对值的几何意义知:可看成数轴上到和对应点的距离和.∴ 9分∴所求的取值范围为 10分【考点】1.绝对值不等式;2.函数的最值;3.绝对值的几何意义.9.对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.【答案】(Ⅰ)是,理由详见解析;(Ⅱ);(Ⅲ).【解析】(Ⅰ)判断方程是否有解;(Ⅱ)在方程有解时,通过分离参数求取值范围;(Ⅲ)在不便于分离参数时,通二次函数的图象判断一元二次方程根的分布. 试题解析:解:为“局部奇函数”等价于关于的方程有解.(Ⅰ)当时,方程即有解,所以为“局部奇函数”. 3分(Ⅱ)当时,可化为,因为的定义域为,所以方程在上有解. 5分令,则.设,则,当时,,故在上为减函数,当时,,故在上为增函数,. 7分所以时,.所以,即. 9分(Ⅲ)当时,可化为.设,则,从而在有解即可保证为“局部奇函数”. 11分令,1°当,在有解,由,即,解得; 13分2°当时,在有解等价于解得. 15分(说明:也可转化为大根大于等于2求解)综上,所求实数m的取值范围为. 16分【考点】函数的值域、方程解的存在性的判定.10.已知函数在处取得极值,且恰好是的一个零点.(Ⅰ)求实数的值,并写出函数的单调区间;(Ⅱ)设、分别是曲线在点和(其中)处的切线,且.①若与的倾斜角互补,求与的值;②若(其中是自然对数的底数),求的取值范围.【答案】(Ⅰ)增区间,减区间;(Ⅱ)①,;②.【解析】(Ⅰ)根据函数在处取得极值有,以及是函数的一个零点,有,由这两个等式列方程组求和,从而确定函数,进而利用导数求函数的单调增区间与减区间;(Ⅱ)①在(Ⅰ)函数的解析式确定的基础上,由得,由与的倾斜角互补得到以及可以求出与的值;②根据这个条件确定与的关系,再进行适当转化利用基本不等式或函数的最值的思想求的取值范围.试题解析:(Ⅰ),由已知得:得 3分解得. 4分当时,,当时,,所以函数单调减区间是,增区间是. 6分(Ⅱ)由(Ⅰ)得,依题意,直线和的斜率分别为和,因为,所以,所以.(*)①因为与的倾斜角互补,所以,即,(**) 8分由(*)(**),结合,解得,,即,. 10分②因为,所以,,所以,所以,当且仅当时,等号成立.又因为,当且仅当时,等号成立.所以. 14分【考点】函数的图象、两条直线的垂直、函数的单调区间、基本不等式11.已知函数,(,.若,且函数的图像关于点对称,并在处取得最小值,则正实数的值构成的集合是 .【答案】【解析】由于函数的最小正周期为,由于函数的图象关于点对称,并在处取得最小值,即直线是函数的一条对称轴,故是的奇数倍,即,其中,解得,故正实数的取值集合为.【考点】三角函数的对称性、周期性12.设函数. 若实数a, b满足, 则()A.B.C.D.【答案】A【解析】由题意知,实数是函数的零点,即为函数的图象与直线的交点的横坐标;实数是函数的零点,即为函数的图象与抛物线的交点的横坐标;画出图象不难得出,,而,所以,,故选A.【考点】本小题主要考查函数的零点、函数的图象,考查数形结合思想、转化与化归等数学思想,考查分析问题以及解决问题的能力.13.设函数,其中,区间(Ⅰ)求的长度(注:区间的长度定义为);(Ⅱ)给定常数,当时,求长度的最小值.【答案】(Ⅰ)(Ⅱ)【解析】(1)令解得的长度(2)则由(1),令,得,由于故关于在上单调递增,在上单调递减.,必定在或处取得因此当时,在区间上取得最小值.第(1)题求解一元二次不等式确定区间的取值范围,根据题意能够求出的长度,简单题;第(2)题要能理解其实就是求关于在给定区间内的最小值,通过求导就能确定最小值是当取何值,但此题易错点在于需要比较在与处的大小,利用作差或作商都可以解决,出题思路比较新颖,容易迷惑,但只要能够理解题意,基本能够求解出来.【考点】考查二次不等式的求解,以及导数的计算和应用,并考查分类讨论思想和综合运用数学知识解决问题的能力.14.设函数的定义域为R,是的极大值点,以下结论一定正确的是()A.B.是的极小值点C.是的极小值点D.是的极小值点【答案】D【解析】对于A选项函数的极大值不一定是函数的最大值,所以错;对于B中的是将的图像关于Y轴对称,所以是其极大值点;对于C中的是将的图像关X轴对称,所以才是其极小值点;而对于D中的是将的图像关原点对称,故是其极小值点,故正确。
高三数学函数图像试题答案及解析
高三数学函数图像试题答案及解析1.设函数f(x)=x+的图象为C1,C1关于点A(2,1)对称的图象为C2,C2对应的函数为g(x).(1)求g(x)的解析式;(2)若直线y=m与C2只有一个交点,求m的值和交点坐标.【答案】(1)g(x)=x-2+.(2)当m=0时,经检验合理,交点为(3,0);当m=4时,经检验合理,交点为(5,4).【解析】解:(1)设点P(x,y)是C2上的任意一点,则P(x,y)关于点A(2,1)对称的点为P′(4-x,2-y),代入f(x)=x+,可得2-y=4-x+,即y=x-2+,∴g(x)=x-2+.(2)由消去y得x2-(m+6)x+4m+9=0,Δ=[-(m+6)]2-4(4m+9),∵直线y=m与C2只有一个交点,∴Δ=0,解得m=0或m=4.当m=0时,经检验合理,交点为(3,0);当m=4时,经检验合理,交点为(5,4).2.如图,是张大爷晨练时所走的离家距离(y)与行走时间(x)之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是()【答案】D【解析】根据图象可知在第一段时间张大爷离家距离随时间的增加而增加,在第二段时间内,张大爷离家的距离不变,第三段时间内,张大爷离家的距离随时间的增加而减少,最后回到始点位置,对比各选项,只有D正确.3.已知函数f(x)=x1,x2,x3,x4,x5是方程f(x)=m的五个不等的实数根,则x1+x2+x3+x4+x5的取值范围是()A.(0,π)B.(-π,π)C.(lg π,1)D.(π,10)【答案】D【解析】函数f(x)的图象如图所示,结合图象可得x1+x2=-π,x3+x4=π,若f(x)=m有5个不等的实数根,需lg π<lg x5<1,得π<x5<10,又由函数f(x)在[-π,π]上对称,所以x1+x2+x3+x4=0,故x1+x2+x3+x4+x5的取值范围为(π,10).4.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.5.已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是.【答案】【解析】由题意得函数为偶函数,因此当有4个零点时,在上有且仅有两个零点,所以即【考点】二次函数的图象与性质,零点问题6.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】由于函数的最小正周期为,所以.所以函数.所以将函数向右平移即可得到.故选B.【考点】1.函数的平移.2.函数的诱导公式.7.已知函数f(x)=,若,则a的取值范围是()A.B.C.[-2,1]D.[-2,0]【答案】D【解析】由题意作出的图象(如图)当a>0时直线y=ax过一、三象限(如图),必与y=ln(x+1)相交,所以a≤0当a≤0时,直线y=ax过三、四象限对x>0,|f(x)|=ln(x+1)> ax成立;对x<0,由|f(x)|=x2-2x≥ax a≥x-2,而当x<0时x-2<-2,所以a≥-2综合知-2≤a≤08.已知函数f(x)=若|f(x)|≥ax,则a的取值范围是________.【答案】[-2,0]【解析】作出函数y=|f(x)|的图象,当|f(x)|≥ax时,必有k≤a≤0,其中k是y=x2-2x(x≤0)在原点处的切线斜率,显然k=-2.所以a的取值范围是[-2,0].9.若函数f(x)=的图象如图,则m的取值范围是________.【答案】(1,2)【解析】∵函数f(x)的定义域为R,∴x2+m恒不等于零,∴m>0.由题图知,当x>0时,f(x)>0,∴2-m>0⇒m<2.又∵在(0,+∞)上函数f(x)在x=x0(x>1)处取得最大值,而f(x)=,∴x=>1⇒m>1.综上,1<m<2.10.若函数满足,且时,,函数,则函数在区间内的零点的个数为____.【答案】9【解析】因为,所以函数是周期为2函数.因为时,,所以作出它的图象,利用函数是周期为2函数,可作出在区间上的图象,如图所示:故函数在区间内的零点的个数为9,故答案为9.【考点】函数的零点;函数的周期性.11.已知函数,则不等式的解集为.【答案】【解析】函数的图象如图,由不等式知,,从而得到不等式的解集为.【考点】函数的图象和性质的综合运用..12.设D={(x,y)|(x-y)(x+y)≤0},记“平面区域D夹在直线y=-1与y=t(t∈[-1,1])之间的部分的面积”为S,则函数S=f(t)的图象的大致形状为()【答案】C【解析】由题意,有二次函数图像可得,答案选C.【考点】函数的图象与图象变化.13.已知函数,若方程有且只有两个不相等的实数根,则实数a的取值范围为()A、 B、C、 D、。
高考数学复习选填题专项练习31---函数零点(解析版)
高考数学复习选填题专项练习30---函数零点第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2020·河北高三期末(文))函数131()2x f x x =-的零点所在的区间为( ) A .1(0,)4B .11(,)43C .11(,)32D .1(,1)2【答案】C 【解析】【分析】先判断出函数的单调性,结合零点存在定理即可判断出零点所在区间. 【详解】函数131()2x f x x =-,所以函数在R 上单调递增,因为1113331311111033322f ⎛⎫⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1113321211111022222f ⎛⎫⎛⎫⎛⎫⎛⎫=-=-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以函数零点在11,32⎛⎫ ⎪⎝⎭故选:C【点睛】本题考查了根据零点存在定理判断零点所在区间,注意需判断函数的单调性,说明零点的唯一性,属于基础题.2.(2020·江西高三(文))方程()3sin =f x x 零点的个数是( )A .3B .4C .5D .6【答案】C【解析】大致图形如图所示,接下来比较与在处的切线斜率,,时,,即在处的切线方程为轴,又,在,因此在轴右侧图象较缓,由图象可知,共有个交点,故选C .【点晴】本题考查的是两个函数的交点个数问题.首先运用函数与方程的思想,把给定方程转化成为两个基本函数的交点问题,再通过函数的性质与比较函数在相同自变量处的函数值的大小关系画出两个基本函数图象,需要注意的是,两个函数都过点,而轴右侧的高低情况需要比较两个函数在处的切线斜率得到,为本题的易错点.3.(2019·四川高三月考(理))函数()332,0log 6,0x x f x x x ⎧->=⎨+≤⎩的零点之和为()A .-1B .1C .-2D .2【答案】A 【解析】【分析】由函数零点与方程的根的关系可得函数()332,0log 6,0x x f x x x ⎧->=⎨+≤⎩的零点即方程320x -=,3log 60x +=的根,解方程后再将两根相加即可得解.【详解】令320x -=,解得3log 2x =,令3log 60x +=,解得3log 6x =-,则函数()f x 的零点之和为3331log 2log 6log 13-==-,故选A. 【点睛】本题考查了分段函数零点的求解,重点考查了对数的运算,属基础题.4.(2020·河南高三期末(理))已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( )A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,5【答案】A 【解析】【分析】首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令()()0ff x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93xf x x =+-=,利用零点存在性定理,求得函数()()y f f x =的零点所在区间.【详解】当0x ≤时,()34f x <≤.当0x ≥时,()2932log 92log 9xxx f x x =+-=+-为增函数,且()30f =,则3x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以令()()0f f x =,得()32log 93x f x x =+-=,因为()303f =<,3377log 98 1.414log 39 3.312322f ⎛⎫=->⨯+-=> ⎪⎝⎭,所以函数()()y ff x =的零点所在区间为73,2⎛⎫⎪⎝⎭.故选:A 【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.5.(2020·山东枣庄八中高三月考)已知()f x 是定义在[10,10]-上的奇函数,且()(4)f x f x =-,则函数()f x 的零点个数是( )A .3B .4C .5D .6【答案】C 【解析】【分析】由定义在[10,10]-上的奇函数可知(0)0f =且零点关于原点对称,利用(0)0f =,由()(4)f x f x =-可得到部分零点【详解】()f x Q 是定义在[10,10]-上的奇函数,(0)0f ∴=,且零点关于原点对称,∴零点个数为奇数,又()(4)f x f x =-Q ,(0)(4)0f f ∴==,(4)(4)0f f -=-=,(4)(44)(8)0f f f ∴-=+==,(8)(8)0f f -=-=,()f x ∴的零点至少有0,4,±8±这5个,【点睛】本题主要考查函数的零点、函数奇偶性的应用以及抽象函数的解析式,意在考查综合应用所学知识解答问题的能力,属于中档题.6. (2020·江西高三(理))已知函数()ln(||1)cos 2f x x a x =+++只有一个零点,则a =( )A .2B .4C .3D .2-【答案】D 【解析】【分析】判断函数为偶函数,根据偶函数的对称性即可求解.【详解】因为()ln(||1)cos()2()f x x a x f x -=-++-+=,所以函数()f x 为偶函数, 又函数()f x 只有一个零点, 故(0)0f =,所以2a =-.故答案为:2- 【点睛】本题主要考查了函数的奇偶性,函数的零点,属于容易题.7.(2020·湖北高三月考(理))已知函数23()123x x f x x =+-+,若()(2020)h x f x =-的零点都在(),a b 内,其中a ,b 均为整数,当b a -取最小值时,则b a +的值为( )A .4038B .2019C .4037D .4039【答案】D 【解析】【分析】求导分析23()123x x f x x =+-+的单调性,再根据零点存在定理与函数的平移分析即可.【详解】因为2'()10f x x x =-+>恒成立.故23()123x x f x x =+-+为增函数.所以()f x 有且仅有一个零点.又(0)10=>f ,115(1)110236f -=---=-<,故()f x 零点在区间()1,0-之间.又()(2020)h x f x =-为函数()f x 往右平移2020个单位,所以()(2020)h x f x =-的零点落在()2019,2020上.由题意可知, b a -取最小值时2020,2019b a ==,所以4039b a +=.故答案为:4039【点睛】本题主要考查了函数的零点存在性定理与函数平移的问题,属于基础题.8.(2020·河南南阳中学高三月考(理))已知函数()()2sin 10,2f x x πωϕωϕ⎛⎫=++>≤ ⎪⎝⎭,其图象与直线1y =-相邻两个交点的距离为π,若()1f x >对于任意的,123x ππ⎛⎫∈- ⎪⎝⎭恒成立,则ϕ的取值范围是( )A .,63ππ⎡⎤⎢⎥⎣⎦B .,122ππ⎡⎤⎢⎥⎣⎦ C .,123ππ⎡⎤⎢⎥⎣⎦ D .,62ππ⎛⎤⎥⎝⎦ 【答案】A【解析】由题意可得相邻最低点距离1个周期,T π=,2ω=,()1f x >,即()sin 20x ϕ+>,222,k x k k Z πϕππ≤+≤+∈,即,,222x k k k Z ϕϕπππ⎡⎤∈-+-++∈⎢⎥⎣⎦所以,123ππ⎛⎫- ⎪⎝⎭ ⊆,,222k k k Z ϕϕπππ⎡⎤-+-++∈⎢⎥⎣⎦,包含0,所以k=0, ,,222k Z ϕϕπ⎡⎤--+∈⎢⎥⎣⎦,122223πϕϕππ⎧-≥-⎪⎪⎨⎪-+≥⎪⎩,63ππϕ≤≤. 【点睛】由于三角函数是周期周期函数,所以不等式解集一般是一系列区间并集,对于恒成立时,需要令k为几个特殊值,再与已知集合做运算.9.(2020·天津南开中学高三月考)已知函数22,2()(2),2⎧-≤=⎨->⎩x x f x x x ,函数()3(2)g x f x =--,则函数()()y f x g x =-的零点的个数为( )A .2B .3C .4D .5【答案】A【解析】由22,2()(2),2⎧-≤=⎨->⎩x x f x x x ,()3(2)g x f x =--,所以2222231,0()()231,0244155,2⎧+-+=+-≤⎪=-=--+=-<≤⎨⎪-+-+=-+>⎩x x x x x y f x g x x x x x x x x x x 所以当0x ≤时,零点为12x --=一个,当02x <≤时,无零点,当2x >时,零点为52+一个,所以零点个数为2个,故选A . 考点:函数的零点个数的判断.【方法点睛】该题属于考查函数的零点个数的问题,在解题的过程中,需要先确定出函数解析式,根据题中所给的函数()f x 的解析式求得函数()g x 的解析式,从而得到()()f x g x -关于x 的分段函数,通过对每一段上的解析式进行分析,求得相应的函数的零点,注意结合自变量的取值范围进行相应的取舍,最后确定出该题的答案.10.(2020·河南鹤壁高中高三月考(文))已知函数2()cos2cos 1(0)222xxxf x ωωωω=+->的周期为π,当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()f x m =恰有两个不同的实数解1x ,2x ,则()12f x x +=( ) A .2 B .1C .﹣1D .﹣2【答案】B 【解析】【分析】对()f x 进行化简,利用周期为π,求出2ω=,根据()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的图象,得到12x x +的值,再求出()12f x x +的值.【详解】2()cos2cos 1222xxxf x ωωω=+-cos 2sin 6x x x πωωω⎛⎫=+=+ ⎪⎝⎭由2T ππω== ,得2ω=.()2sin 26f x x π⎛⎫∴=+ ⎪⎝⎭.作出函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的图象如图:由图可知,123x x π+=,()1212sin 221362f x x ππ⎛⎫∴+=⨯+=⨯= ⎪⎝⎭.故选B 项. 【点睛】本题考查正弦型函数的化简及其图像与性质,属于简单题.11. (2020·河北工业大学附属红桥中学高三月考)已知函数32,0(),0x x x f x lnx x ⎧-=⎨->⎩…,若函数()()g x f x x a=--有3个零点,则实数a 的取值范围是( )A .[0,2)B .[0,1)C .(-∞,2]D .(-∞,1]【答案】A 【解析】【分析】本道题先绘制()f x 图像,然后将零点问题转化为交点问题,数形结合,计算a 的范围,即可. 【详解】绘制出()f x 的图像,()f x x a =+有3个零点,令()h x x a =+与()f x 有三个交点,则()h x 介于1号和2号之间,2号过原点,则0a =,1号与()f x 相切,则()2'321,1f x x x =-==-,1y =,代入()h x 中,计算出2a =,所以a 的范围为[)0,2,故选A .【点睛】本道题考查了数形结合思想和函数与函数交点个数问题,难度中等.12.(2020·湖南长沙一中高三月考(理))已知偶函数()y f x =的定义域为R ,当0x ≥时,()23sin ,01221,1x x x f x x π-⎧≤≤⎪=⎨⎪+>⎩函数()()2221g x x ax a a R =-+-∈,若函数()()y g f x =有且仅有6个零点,则实数a 的取值范围为( )A .(]1,2B .()1,2C .(]2,3D .()2,3【答案】B 【解析】【分析】画出()f x 的图像,先求解()22210g x x ax a =-+-=,再数形结合列出关于a 的不等式求解即可.【详解】由题意画出()f x 的图像如图所示,由()22210g x x ax a =-+-=解得11x a =+,21x a =-,由函数()()y g f x =有且仅有6个零点知113011a a <+<⎧⎨<-≤⎩,解得12a <<,【点睛】本题主要考查了数形结合解决函数零点个数的问题,需要根据函数图像与带参数的方程交点的个数,列出对应的不等式进行求解.属于中等题型.第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
高考数学复习考点题型解题技巧专题讲解10 函数零点
高考数学复习考点题型解题技巧专题讲解第10讲函数零点专项突破高考定位函数的零点其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为高考命题的热点.其经常与函数的图像、性质等知识交汇命题,以选择、填空题的形式考查可难可易,以大题形式出现,相对较难.考点解析(1)零点个数的确定(2)二次函数的零点分布(3)零点与函数性质交汇(4)嵌套函数零点的确定(5)复杂函数的零点存在性定理(6)隐零点的处理(7)隐零点的极值点偏移处理题型解析类型一、转化为二次函数的零点分布例1-1.(2022·全国·高三专题练习)已知f(x)是奇函数并且是R上的单调函数,若函数y=f(2x2+1)+f(λ-x)只有一个零点,则实数λ的值是()A.14B.18C.78-D.38-【答案】C利用函数零点的意义结合函数f (x )的性质将问题转化为一元二次方程有等根即可. 【详解】依题意,函数y =f (2x 2+1)+f (λ-x )的零点,即方程f (2x 2+1)+f (λ-x )=0的根, 由f (2x 2+1)+f (λ-x )=0得f (2x 2+1)=-f (λ-x ),因f (x )是R 上奇函数, 从而有f (2x 2+1)=f (x -λ),又f (x )是R 上的单调函数,则有2x 2+1=x -λ,而函数y =f (2x 2+1)+f (λ-x )只有一个零点,于是得2x 2-x +1+λ=0有两个相等实数解, 因此得Δ=1-8(1+λ)=0,解得λ=78-,所以实数λ的值是78-.故选:C.练(2021·湖北·黄冈中学模拟预测)若函数2()2a f x x ax =+-在区间(1,1)-上有两个不同的零点,则实数a 的取值范围是( )A .2(2,)3-B .2(0,)3C .(2,)+∞D .(0,2)【答案】B 【详解】因为()f x 为开口向上的抛物线,且对称轴为2a x =-,在区间(-1,1)上有两个不同的所以()()101002112f f a f a ⎧->⎪>⎪⎪⎛⎫⎨-< ⎪⎝⎭⎪⎪⎪-<-<⎩,即22102102022222a a a a a a a a ⎧-->⎪⎪⎪+->⎪⎨⎪⎛⎫---<⎪ ⎪⎝⎭⎪⎪-<<⎩,解得023a <<, 所以实数a 的取值范围是2(0,)3.故选:B例1-2.(2021·湖北恩施·高三其他模拟)设函数()()2x f x x a e =+在R 上存在最小值(其中e 为自然对数的底数,a R ∈),则函数()2g x x x a =++的零点个数为( )A .0B .1C .2D .无法确定 【答案】C解析:()()22x f x x x a e '=++当1a ≥时,220x x a ++≥在R 恒成立,所以()()2'20xf x x x a e =++≥在R 恒成立,所以函数()()2x f x x a e =+在R 上单调递增,没有最小值;当1a <时,令() '0f x =得111x a =---,211x a =--,且12x x <当x →-∞时,所以若有最小值,只需要2∵()()22221022100xf x a e a a =--⇔--≤⇔≤≤,∴20x x a ++=的判别式1410a ∆=->≥,因此()2g x x x a =++有两个零点.故选:C .类型二、区间零点存在性定理例2-1.(2021·天津二中高三期中)已知函数()ln 1f x x x =-,则()f x 的零点所在的区间是( ) A .()0,1B .()1,2 C .()2,3D .()3,4【答案】B 【详解】∵()ln 1f x x x =-,()1ln f x x '=+,由()1ln 0f x x '=+=得,1ex =,∴1,()0ex f x '>>,函数()f x 为增函数,当01x <<时,()ln 10f x x x =-<,又()()410,2ln 21ln 0e12f f =-<=-=>,故()f x 的零点所在的区间是()1,2.练.(2021·天津·大钟庄高中高三月考)函数()2xf x x =+的零点所在的区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,2【答案】B 【详解】因为()2xf x x =+为单调递增函数,当2x =-时,()2722204f --=-=-<,当1x =-时,()1112102f --=-=-<,当0x =时,()002010f =+=>,由于()()010f f ⋅-<,且()f x 的图象在()1,0-上连续, 根据零点存在性定理,()f x 在()1,0-上必有零点,故选:B.类型三、利用两图像交点判断函数零点个数例3-1(一个曲线一个直线)14.(2021·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为( ) A .1个B .2个C .3个D .0个【分析】由已知函数()f x 的解析式作出图象,把函数()1y f x =-的零点转化为函数()f x 与1y =的交点得答案. 【详解】由函数解析式222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩由图可知,函数()1y f x =-的零点的个数为2个.故选:B .练.已知m 、n 为函数()1ln xf x ax x+=-的两个零点,若存在唯一的整数()0,x m n ∈则实数a 的取值范围是( )A .ln 3,92e e ⎡⎫⎪⎢⎣⎭B .ln 20,4e ⎛⎫⎪⎝⎭C .0,2e ⎛⎫ ⎪⎝⎭D .ln 2,14e⎡⎫⎪⎢⎣⎭【分析】()1ln 0x f x ax x +=-=可得21ln xa x +=,作出函数()21ln x g x x +=的图象,可知满足不等式()a g x <的整数解有且只有一个,从而可得出关于实数a 的不等式,由此可解得实数a 的取值范围. 【详解】由()1ln 0x f x ax x +=-=可得21ln xa x +=,令()21ln x g x x +=,其中0x >,则()()243121ln 2ln 1x x x x x g x x x ⋅-+--'==.当120x e -<<时,()0g x '>,此时函数()g x 单调递增,当12x e ->时,()0g x '<,此时函数()g x 单调递减.且当12x e ->时,()21ln 0xg x x +=>,作出函数()g x 的图象如下图所示:由图可知,满足不等式()a g x <的整数解有且只有一个,所以,()1,m n ∈,()2,m n ∉,所以,()()21g a g ≤<,即1ln2ln2144e a +=≤<.因此,实数a 的取值范围是ln 2,14e ⎡⎫⎪⎢⎣⎭.故选:D. 【点睛】关键点点睛:本题考查利用函数不等式的整数解的个数求参数,解题的关键在于利用图象确定整数有哪些,进而可得出关于参数不等式(组)来进行求解.例3-2(一个曲线一个直线)28.(2018·浙江·绍兴市柯桥区教师发展中心高三学业考试)已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围为_______.【答案】7,24⎛⎫ ⎪⎝⎭ 【分析】求出函数()()y f x g x =-的表达式,构造函数()()(2)h x f x f x =+-,作函数()h x 的图象,利用数形结合进行求解即可. 【详解】∵()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩,∴()222,02,0x x f x x x ⎧--⎪-=⎨<⎪⎩… ,∵函数y =f (x )−g (x )恰好有四个零点,∴方程f (x )−g (x )=0有四个解,即f (x )+f (2−x )−b =0有四个解, 即函数y =f (x )+f (2−x )与y =b 的图象有四个交点,()()222,022,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=⎨⎪-+>⎩剟 , 作函数y =f (x )+f (2−x )与y =b 的图象如下,115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,结合图象可知,74<b <2, 故答案为:7,24⎛⎫⎪⎝⎭. 例3-3【一个曲线和一个倾斜直线】【2021福建省厦门市高三】已知函数()221,20, ,0,xx x x f x e x ⎧--+-≤<=⎨≥⎩若函数()()g x f x ax a =-+存在零点,则实数a 的取值范围为__________.【答案】13a ≤-或2a e ≥【解析】函数g x f x ax a =-+()()存在零点,即方程0f x ax a -+=() 存在实数根,也就是函数y f x =()与1y a x =-()的图象有交点.如图:直线1y a x =-()恒过定点10(,), 过点21-(,)与10(,)的直线的斜率101213k -=---=; 设直线1y a x =-()与x y e =相切于00x x e (,),则切点处的导数值为0x e ,则过切点的直线方程为()000x x y e e x x --=,由切线过10(,),则()00000012x x x x e e x x e e --∴=,=, 得02x = .此时切线的斜率为2e .由图可知,要使函数g x f x ax a =-+()() 存在零点,则实数a 的取值范围为13a ≤- 或2a e ≥.【点睛】本题考查函数零点的判定,其中数形结合的解题思想方法与数学转化思想方法的灵活应用.例3-4(两个曲线)49.(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________. 【答案】2 【分析】先利用诱导公式、二倍角公式化简,再将函数零点个数问题转化为两个函数图象的交点个数问题,进而画出图象进行判定. 【详解】2π()2sin sin()2f x x x x =+-222sin cos sin 2x x x x x =-=-,函数f (x )的零点个数可转化为函数1sin 2y x =与22y x =图象的交点个数, 在同一坐标系中画出函数1sin 2y x =与22y x =图象的(如图所示):由图可知两函数图象有2个交点, 即f (x )的零点个数为2. 故答案为:2.(两个曲线)8.(2021·四川·高三期中(理))已知定义在R 上的函数()f x 和()1f x +都是奇函数,当(]0,1x ∈时,21()log f x x=,若函数()()sin()F x f x x π=-在区间[1,]m -上有且仅有10个零点,则实数m 的最小值为( ) A .3B .72C .4D .92【答案】B 【分析】根据函数的奇偶性确定函数()f x 的周期,将函数的零点问题转化为两函数的交点,最后通过数形结合求解出参数的值. 【详解】因为()1f x +是奇函数,所以函数()y f x =的图象关于点()1,0成中心对称, 即(2)()0f x f x -+=.又因为函数()f x 为奇函数,所以(2)()()f x f x f x -=-=-,即(2)()f x f x +=,所以函数()y f x =是周期为2的周期函数.由于函数()y f x =为定义在R 上的奇函数,则(0)0f =,得(2)(4)0f f ==. 又因为当(]0,1x ∈时,21()log f x x=,所以21log 212f ⎛⎫== ⎪⎝⎭,11122f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 于是得出7311222f f f ⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,51122f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.作出函数()y f x =与函数()sin y x π=的图象如下图所示,由图象可知,函数()y f x =与函数()sin y x π=在区间[]1,m -上从左到右10个交点的横坐标分别为1-,12-,0,12,1,32,2,52,3,72,第11个交点的横坐标为4.因此,实数m 的取值范围是7,42⎡⎫⎪⎢⎣⎭,故实数m 的最小值为72.故选:B.f x满足(两个曲线)【2021河北省武邑中学高三】若定义在R上的偶函数() ()()=,则函数()3logf x xy f x x=-的零点个数是+=,且当[]2x∈时,()f x f x0,1()A. 6个 B. 4个 C. 3个 D. 2个【答案】B|x|的图象,【解析】分析:在同一个坐标系中画出函数y=f(x)的图象与函数y=log3这两个函数图象的交点个数即为所求.详解:∵偶函数f(x)满足f(x+2)=f(x),故函数的周期为2.当x∈[0,1]时,f (x)=x,|x|的零点的个数等于函数故当x∈[﹣1,0]时,f(x)=﹣x.因为函数y=f(x)﹣log3|x|的图象的交点个数.在同一个坐标系中画出函数y=f y=f(x)的图象与函数y=log3|x|的图象,如图所示:(x)的图象与函数y=log3显然函数y=f (x )的图象与函数y=log 3|x|的图象有4个交点,故选B .点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,根据函数零点和方程的关系进行转化是解决本题的关键.判断零点个数一般有三种方法:(1)方程法;(2)图像法;(3)方程+图像法.本题利用的就是方法(3).例3-5(直接解出零点)(2021·四川·高三月考(理))函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为( ) A .12B .14C .16D .18 【答案】C 【分析】令()25sin sin 10f x x x =--=可得21sin sin 5x x -=,根据()2sin sin g x x x =-为偶函数,只需求()21sin sin 5g x x x =-=在5π0,2x ⎡⎤∈⎢⎥⎣⎦上的解的个数,等价于21sin sin 5x x -=或21sin sin 5x x -=-的解的个数,结合正弦函数的性质以及对称性即可求解.【详解】令()0f x =可得21sin sin 5x x -=,设()2sin sin g x x x =-,则()()22sin sin sin sin g x x x x x g x -=--=-=,所以()2sin sin g x x x =-是偶函数,故只需要讨论21sin sin 5x x -=在5π0,2x ⎡⎤∈⎢⎥⎣⎦上的解得个数, 当0x ≥时,由21sin sin 5x x -=可得21sin sin 5x x -=或21sin sin 5x x -=-,解方程21sin sin 5x x -=可得sin x =sin x =,此时在5π0,2x ⎡⎤∈⎢⎥⎣⎦上,sin x =解方程21sin sin 5x x -=-可得sin x =或sin x =,此时在5π0,2x ⎡⎤∈⎢⎥⎣⎦上,sin x =有三解,sin x =有三解, 所以在5π0,2x ⎡⎤∈⎢⎥⎣⎦上,()21sin sin 5g x x x =-=有8解, 根据对称性可得()21sin sin 5g x x x =-=在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上有16解,所以函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为16, 故选:C.类型三、利用周期性判断零点个数例3-1.(2021·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为( )A .404B .804C .806D .402 【答案】A 【分析】根据两个偶函数得()f x 的对称轴,由此得函数的周期,10是其一个周期,由周期性可得零点个数. 【详解】因为(2)y f x =+与(7)y f x =+都为偶函数,所以(2)(2)f x f x +=-+,(7)(7)f x f x +=-+,所以()f x 图象关于2x =,7x =轴对称,所以()f x 为周期函数,且2(72)10T =⋅-=,所以将[0,2013]划分为[0,10)[10,20)[2000,2010][2010,2013]⋅⋅⋅.而[0,10)[10,20)[2000,2010]⋅⋅⋅共201组,所以2012402N =⨯=,在[2010,2013]中,含有零点(2011)(1)0f f ==,(2013)(3)0f f ==共2个,所以一共有404个零点.故选:A.例3-2.偶函数()f x 满足()()44f x f x +=-,当(]0,4x ∈时,()()ln 2x f x x=,不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,则实数a 的取值范围是( )A .1ln6,ln23⎛⎤- ⎥⎝⎦B .1ln2,ln63⎡⎫--⎪⎢⎣⎭C .1ln2,ln63⎛⎤-- ⎥⎝⎦D .1ln6,ln23⎛⎫- ⎪⎝⎭【答案】C【解析】因为()f x 为偶函数,所以()()()444f x f x f x +=-=-, 所以()()8f x f x +=所以()f x 是周期函数,且周期为8,且()f x 关于4x =对称,又当(]0,4x ∈时,()()ln 2x f x x=, 则()()()221ln 21ln 2(0)x x xx f x x x x ⋅--'==>, 令()0f x '=,解得e2x =,所以当e0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 为增函数,当e ,42x ⎛⎤∈ ⎥⎝⎦时,()0f x '<,()f x 为减函数,作出()f x 一个周期内图象,如图所示:因为()f x 为偶函数,且不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,所以不等式在()0,200内有100个整数解,因为()f x 周期为8,所以在()0,200内有25个周期, 所以()f x 在一个周期内有4个整数解,(1)若0a >,由()()20f x af x +>,可得()0f x >或()f x a <-,由图象可得()0f x >有7个整数解,()f x a <-无整数解,不符合题意; (2)若0a =,则()0f x ≠,由图象可得,不满足题意;(3)若0a <,由()()20f x af x +>,可得 ()f x a >-或()0f x <,由图象可得()0f x <在一个周期内无整数解,不符合题意, 所以()f x a >-在一个周期()0,8内有4个整数解,因为()f x 在()0,8内关于4x =对称, 所以()f x 在()0,4内有2个整数解,因为()1ln 2f =,()ln 42ln 22f ==,()ln 633f =, 所以()f x a >-在()0,4的整数解为1x =和2x =,所以ln 6ln 23a ≤-<,解得ln 6ln 23a -<≤-. 故选:C类型四、零点之和例4-1.(2022·全国·高三专题练习(文))已知函数()1sin sin f x x x=+,定义域为R 的函数()g x 满足()()0g x g x -+=,若函数()y f x =与()y g x =图象的交点为()()()112266,,,,,,x y x y x y ⋯,则()61i j i x y =+=∑( )A .0B .6C .12D .24 【答案】A 【分析】首先判断()f x 的奇偶性,再根据奇偶函数的对称性计算可得;【详解】由()()0g x g x -+=得()y g x =的图象关于()0,0对称,因为()1sin sin f x x x=+,定义域为{}|,x x k k Z π≠∈,且()()()()11sin sin sin sin f x x x f x x x -=+-=--=--,所以()1sin sin f x x x=+为奇函数,即()1sin sin f x x x=+也关于()0,0对称, 则函数()1sin sin f x x x=+与()y g x =图象的交点关于()0,0对称,则不妨设关于点()0,0对称的坐标为()()1166,,,,x y x y ⋯,则16160,022x x y y ++==, 252534340,0,0,02222x x y y x x y y ++++==== 则1616252534340,0,0,0,0,0x x y y x x y y x x y y +=+=+=+=+=+=,即()61i i i x y =+=∑()3000⨯+=,故选:A .例4-2(2021·新疆·克拉玛依市教育研究所模拟预测(理))已知定义在R 上的奇函数()f x 满足()()2f x f x =-,当[]1,1x ∈-时,()3f x x =,若函数()()()4g x f x k x =--的所有零点为()1,2,3,,i x i n =,当1335k <<时,1nii x==∑( )A .20B .24C .28D .36 【答案】C 【分析】根据题意可得函数()f x是周期为4,关于点(4,0)中心对称的函数,再将函数()()()4y k x=与()4=-的交点的横坐标,又函数=--的所有零点转化为()y f xg x f x k x()4=-经过定点(4,0),且关于(4,0)中心对称,在坐标系中作出草图,根据数形结合y k x即可求出结果.【详解】∵定义在R上的奇函数()=-,故图象关于1f x f x2f x满足()()x=对称,∴()()2+=-,f x f x--=-,故()()2f x f x∴()()()f x f x f x+=-+=,即周期为4,42又()f x一个对称中心,f x定义在R上的奇函数,所以(4,0)是函数()又因为当[]=,作出函数()f x的草图,如下:f x xx∈-时,()31,1函数()()()4=与()4y k x=-的交点的横坐标,y f xg x f x k x=--的所有零点即为()易知函数()4=-经过定点(4,0),且关于(4,0)中心对称,y k x又1335k <<,分别作出函数()143y x =-和()345y x =-的图象,则函数()4y k x =-的图象在函数()143y x =-和()345y x =-的图象之间,如下图所示:则()y f x =与()4y k x =-交点关于(4,0)中心对称,由图像可知关于(4,0)对称的点共有3对,同时还经过点(4,0),所以1324428ni i x ==⨯⨯+=∑.故选:C.类型五、等高线的使用例5-1.(2021·福建宁德·高三期中)已知函数()()8sin ,02log 1,2x x f x x x π≤≤⎧=⎨->⎩,若a 、b 、c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是___________. 【答案】[)3,10/310a b c ≤++<【分析】根据题意,作出函数()y f x =图象,数形结合即可求解.根据题意,作出函数()y f x =图象,令()()()f a f b f c t ===,可知函数()y f x =图象与y t =的图象有三个不同交点,由图可知01t ≤<.因a 、b 、c 互不相等,故不妨设a b c <<,由图可知1212a b +=⨯=.当01t <<,时()8log 1c t -=,因01t <<,所以118c <-<,即29c <<,故310a b c <++<; 当0t =时,2c =,故3a b c ++=. 综上所述,310a b c ≤++<. 故答案为:[)3,10.例5-2(2021·山西太原·高三期中)设函数22log (1),13()(4),3x x f x x x ⎧-<≤⎪=⎨->⎪⎩,()f x a =有四个实数根1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3412114x x x x ++的取值范围是( ) A .109,32⎛⎫⎪⎝⎭B .(0,1)C .510,23⎛⎫ ⎪⎝⎭D .3,22⎛⎫⎪⎝⎭【答案】A根据分段函数解析式研究()f x 的性质,并画出函数图象草图,应用数形结合及题设条件可得123412345x x x x <<<<<<<<、348x x +=、12(1)(1)1x x --=,进而将目标式转化并令11121t x x =-+,构造1()21g x x x =-+,则只需研究()g x 在3(,2)2上的范围即可. 【详解】由分段函数知:12x <≤时()(,0]f x ∈-∞且递减;23x <≤时()[0,1]f x ∈且递增;34x <<时,()(0,1)f x ∈且递减;4x ≥时,()[0,)f x ∈+∞且递增;∴()f x 的图象如下:()f x a =有四个实数根1x ,2x ,3x ,4x 且1234x x x x <<<,由图知:01a <<时()f x a =有四个实数根,且123412345x x x x <<<<<<<<,又348x x +=, 由对数函数的性质:121212(1)(1)()11x x x x x x --=-++=,可得21111x x =-, ∴令()3411122111112214x x x x x t x x x ++=+=-+=,且1322x <<, 由1()21g x x x=-+在3(,2)2上单增,可知31()21(2)2g x g x<-+<,所以10932t <<故选:A.例5-3(2021·吉林吉林·高三月考(理))()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩,若存在互不相等的实数a ,b ,c ,d 使得()()()()f f b f d m a c f ====,则下列结论中正确的为( ) ①()0,1m ∈;②()122e 2,e 1a b c d --+++∈--,其中e 为自然对数的底数; ③函数()y f x x m =--恰有三个零点.A .①②B.①③C.②③D.①②③ 【答案】D 【分析】①将问题转化为直线y m =与函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩图像有4个交点,观察图像可得答案;②设a b c d <<<,则可得2a b +=-, ()1ln 1ln c d -+=+,根据关系代入a b c d +++求值域即可;③函数()y f x x m =--的零点个数,即为函数()y f x =与y x m =+的图像交点个数,关注1m =和0m =时的交点个数即可得答案根据图像可得答案. 【详解】解:函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩的图像如图:()()()()f f b f d a c f m ====,即直线y m =与函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩图像有4个交点,故()0,1m ∈,①正确;()()()()f f b f d a c f m ====,不妨设a b c d <<<,则必有2a b +=-, ()1ln 1ln c d -+=+,ln ln 2d c ∴+=-,则2e c d-=,且11e d << 2e c d d d-∴++=,由对勾函数的性质可得函数2e y x x -=+在1,1e ⎛⎫ ⎪⎝⎭上单调递增,()2122e ,e 1e dc d d ---∴+=∈++,()1222,1a b c d e e --∴+++∈--,②正确;函数()y f x x m =--的零点个数,即为函数()y f x =与y x m =+的图像交点个数,如图当1m =时,函数()y f x =与y x m =+的图像有3个交点, 当0m =时,研究y x =与1ln y x =+是否相切即可,1y x'=,令1y '=,则1x =,则切点为()1,1,此时切线方程为11y x -=-,即y x =, 所以y x =与1ln y x =+图像相切,此时函数()y f x =与y x m =+的图像有3个交点, 因为()0,1m ∈,故函数()y f x =与y x m =+的图像恒有3个交点, 即函数()y f x x m =--恰有三个零点,③正确.故选:D. 【点睛】关键点点睛:将函数的零点问题转化为图像的交点问题,可以使问题更加直观,并方便解答.例5-4.(2021·辽宁实验中学高三期中)已知函数()266,1ln 1,1x x x f x x x ⎧---≤⎪=⎨+>⎪⎩,若关于x 的方程()f x m =恰有三个不同实数解123x x x <<,则关于n 的方程()()121222356516n x x x x x -+=++-的正整数解取值可能是( ) A .1B .2C .3D .4 【答案】ABC 【分析】在同一平面直角坐标系中作出(),y f x y m ==的函数图象,根据图象有3个交点确定出123,,x x x 的关系,所以可将方程转化为()3315(ln 21)n x x -+=-,然后构造函数()()()ln 21g x x x =+-并分析()g x 的单调性确定出其值域,由此可求解出n 的取值范围,则n 的值可确定.【详解】在同一平面直角坐标系中作出(),y f x y m ==的函数图象如下图所示:当1x ≤时,()2333y x =-++≤,当1x >时,ln 11y x =+>,所以由图象可知:()1,3m ∈时关于x 的方程()f x m =恰有三个不同实数解,又()221223236,ln 625x x x x x ++=⨯-=+-=--,所以()()()121223323ln 2)5651(16n x x x x x x x -+=+++-=-, 又因为()1,3m ∈,所以()3ln 11,3x +∈,所以()231,e x ∈ , 设()()()()()2ln 211,e g x x x x =+-∈,所以()1ln 3g x x x'=-+,显然()g x '在()21,e 上单调递增,所以()()120g x g ''>=>,所以()g x 在()21,e 上单调递增,所以()()()()21,e g x g g ∈,即()()20,4e 4g x ∈-, 所以()1250,4e 4n -∈-,所以n 可取1,2,3 故选:ABC.类型六、嵌套函数零点例6-1.(2021·黑龙江·哈尔滨三中高三期中(理))设函数()32,0lg ,0x x f x x x +≤⎧=⎨>⎩,则函数()()12y f f x =-的零点个数为( )A .1个B .2个C .3个D .4个 【答案】C 【详解】函数()32,0lg ,0x x f x x x +≤⎧=⎨>⎩的图象如图所示,由()()102y f f x =-=,得()()12f f x =,令()f x t =,则1()2f t =,当0t ≤时,1322t +=,得12t =-,当0t >时,1lg 2t =,则t所以当12t =-时,1()2f x =-,由图象可知方程有两个实根,当 =t ()f x =,由图象可知,方程有1个实根,综上,方程()()12f f x =有3个实根,所以函数()()12y f f x =-的零点个数为3,故选:C例6-2.(2021·天津市第四十七中学高三月考)已知函数()2e ,0,0x x f x x x ⎧≤⎪=⎨>⎪⎩,2()2g x x x=-+(其中e 是自然对数的底数),若关于x 的方程(())g f x m =恰有三个不等实根123,,x x x ,且123x x x <<,则12322x x x -+的最大值为___________. 【答案】3ln3- 【分析】设()f x t =,则根据题意得2()20g t m t t m -=-+-=必有两个不相等的实根12,t t ,不妨设12t t <,故122t t +=,212t t =-,再结合()f x 的图象可得1221x x e t ==,3212x t t ==-,101t <<,进而1231122ln 34x x x t t -+=-+,再构造函数()()ln 34,01h t t t t =-+<<,分析函数的单调性,求得最大值. 【详解】由题意设()f x t =,根据方程(())0g f x m -=恰有三个不等实根,即2()20g t m t t m -=-+-=必有两个不相等的实根12,t t ,不妨设12t t <122t t ∴+=,则212t t =-,方程1()f x t =或2()f x t =有三个不等实根123,,x x x ,且123x x x <<, 作出图象如图所示:那么1221x x e t ==,可得3212x t t ==-,101t <<, 所以1231122ln 34x x x t t -+=-+,构造新函数()()ln 34,01h t t t t =-+<<,则13()t h t t-'=,所以()h t 在10,3⎛⎫ ⎪⎝⎭上单调递增,在1,13⎛⎫⎪⎝⎭上单调递减,所以max 1()3ln 33h t h ⎛⎫==- ⎪⎝⎭,所以12322x x x -+的最大值为3ln3-. 故答案为:3ln3-.例6-3(2021·全国·高三专题练习)设函数()210log 0x x f x x x +≤⎧=⎨>⎩,,,,若函数()()()g x f f x a=-有三个零点,则实数a 的范围为________. 【答案】(]01,.【分析】令()t f x =,则原方程的解变为方程组()()t f x f t a =⎧⎪⎨=⎪⎩,①②的解,作出函数()y f x =,采用数形结合法即求. 【详解】函数()g x 的零点即为方程()0g x =的解,令()t f x =,则原方程的解变为方程组()()t f x f t a =⎧⎪⎨=⎪⎩,①②的解,作出函数()y f x =的图象,由图象可知,当1t>时,有唯一的x与之对应;当1t≤时,有两个不同的x与之对应.由方程组()()t f xf t a=⎧⎪⎨=⎪⎩,①②有三个不同的x知,需要方程②有两个不同的t,且一个1t>,一个1t≤,结合图象可知,当(]01a∈,时,满足一个(]10t∈-,,一个(]12t∈,,符合要求,综上,实数a的取值范围为(]01,.故答案为:(]01,.例6-4. 已知函数,若关于的方程有8个不等的实数根,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】由题意结合函数的图形将原问题转化为二次方程根的分布的问题,据此得到关于a的不等式组,求解不等式组即可.【详解】绘制函数的图象如图所示,令,由题意可知,方程在区间上有两个不同的实数根,令,由题意可知:,据此可得: .即 的取值范围是.类型七、隐零点处理例7-1.(1)已知函数f(x)=x 2+πcos x ,求函数f(x)的最小值;(2)已知函数()()32213210f x xax a x a a ⎛⎫=++++> ⎪⎝⎭,若()f x 有极值,且()f x 与()f x '(()f x '为()f x 的导函数)的所有极值之和不小于263-,则实数a 的取值范围是( ) A .(]0,3B .(]1,3C .[]1,3D .[)3,+∞【解析】(1)易知函数f(x)为偶函数,故只需求x∈[0,+∞)时f(x)的最小值.f′(x)=2x -πsin x ,令2x -πsin x=0,得2,0π==x x ,即x∈⎝ ⎛⎭⎪⎫0,π2,f′(x)<0,f(x)单调递减,又当x∈⎝ ⎛⎭⎪⎫π2,+∞时,2x >π>πsin x ,f′(x)>0,f(x)单调递增,所以f(x)min =f ⎝ ⎛⎭⎪⎫π2=π24.(2)【答案】B 【解析】由题意得()221362f x x ax a a'=+++()0a >, 因为()f x 有极值,所以()2213620f x x ax a a'=+++=有2个不等实根,即()222116432120a a a a a ⎛⎫⎛⎫∆=-⨯⨯+=-> ⎪ ⎪⎝⎭⎝⎭,即310a a->, 因为0a >,解得1a >.令()()()2213620h x f x x ax a a a '==+++>,由()660h x x a '=+=得x a =-,设()f x 的极值点为1x ,2x ,则1x ,2x 为方程()2213620f x x ax a a'=+++=的根,则122x x a +=-,2122133a x x a=+, 因为()()3223221211122211321321f x f x x ax a x x ax a x a a ⎛⎫⎛⎫+=+++++++++ ⎪ ⎪⎝⎭⎝⎭()()()()3221212121212121336220x x x x x x a x x ax x a x x a ⎛⎫=+-+++-++++= ⎪⎝⎭,所以()()()2121263f x f x f a a a '++-=-+≥-, 令()()211g a a a a =-+>,易得()g a 在()1,+∞上单调递减,且()2633g =-,所以31≤<a . 故选:B.例7-2已知函数()ln()(0)x a f x e x a a -=-+>. (1)证明:函数()'f x 在(0,)+∞上存在唯一的零点;(2)若函数()f x 在区间(0,)+∞上的最小值为1,求a 的值.【答案】(1)证明见解析;(2)12(1)求解出导函数,分析导函数的单调性,再结合零点的存在性定理说明()'f x 在(0,)+∞上存在唯一的零点即可;(2)根据导函数零点0x ,判断出()f x 的单调性,从而()min f x 可确定,利用()min 1f x =以及1ln y x x=-的单调性,可确定出0,x a 之间的关系,从而a 的值可求. 【详解】(1)证明:∵()ln()(0)x a f x e x a a -=-+>,∴1()x af x e x a-'=-+. ∵x a e -在区间(0,)+∞上单调递增,1x a+在区间(0,)+∞上单调递减, ∴函数()'f x 在(0,)+∞上单调递增.又1(0)a aaa e f e a ae--'=-=,令()(0)a g a a e a =->,()10ag a e '=-<, 则()g a 在(0,)+∞上单调递减,()(0)1g a g <=-,故(0)0f '<.令1m a =+,则1()(1)021f m f a e a ''=+=->+ 所以函数()'f x 在(0,)+∞上存在唯一的零点.(2)解:由(1)可知存在唯一的0(0,)x ∈+∞,使得()00010x af x ex a-'=-=+,即001x a e x a-=+(*). 函数1()x af x e x a-'=-+在(0,)+∞上单调递增. ∴当()00,x x ∈时,()0f x '<,()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,()f x 单调递增.∴()()0min 00()ln x af x f x e x a -==-+.由(*)式得()()min 0001()ln f x f x x a x a==-++. ∴()001ln 1x a x a-+=+,显然01x a +=是方程的解. 又∵1ln y x x =-是单调递减函数,方程()001ln 1x a x a -+=+有且仅有唯一的解01x a +=, 把01x a =-代入(*)式,得121a e -=,∴12a =,即所求实数a 的值为12.【方法总结】类型一:化为一元二次函数得零点问题 类型二:复杂函数得零点思想:①先设后求、设而不求②与零点存在性定理结合使用步骤:(1)用零点存在性定理判定导函数零点的存在性,列出零点方程f(x 0)=0,并结合f(x)的单调性得到零点的取值范围.(2)将零点方程适当变形,整体代入最值式子进行化简证明,有时(1)中的零点范围还可以适当缩小.例7-3已知函数()xf x xe =,()lng x x x =+.若()()()21f x g x b x -≥-+恒成立,求b 的取值范围. 【答案】(],2-∞.解:原不等式等价于()()ln 21xxe x x b x -+≥-+,即ln 1x xe x x bx +--≥,在()0,x ∈+∞上恒成立,等价于ln 1x xe x x b x +--≥,在()0,x ∈+∞上恒成立,令()ln 1x xe x x t x x +--=,()0,x ∈+∞,∴()22ln x x e xt x x+'=, 令()2ln xx x e x ϕ=+,则()x ϕ为()0,∞+上的增函数,又当0x →时,()x ϕ→-∞,()10e ϕ=>,∴()x ϕ在()0,1存在唯一的零点0x ,即0020e n 0l xx x +=,由0001ln 2000000ln 1ln 0ln x x x x x e x x e e x x ⎛⎫+=⇔=-= ⎪⎝⎭,又有x y xe =在()0,∞+上单调递增, ∴0001ln ln x x x ==-,001x e x =,∴()()00000min 0ln 12x x e x x t x t x x +--===⎡⎤⎣⎦, ∴2b ≤,∴b 的取值范围是(],2-∞.例7-4已知函数()()22e xx x f a x =-+.(1)讨论函数()f x 的单调性;(2)当1a =时,判断函数()()21ln 2g x f x x x -+=零点的个数,并说明理由.【答案】(1)答案见解析;(2)()g x 只有一个零点,理由见解析.(1)求出导数()'f x ,按a 分类讨论确定()'f x 的正负,得函数的单调性;(2)求出导函数()'g x ,对其中一部分,设()1e xh x x=-(0x >),用导数确定它的零点0(0,1)x ∈,这样可确定()g x 的单调性与极值,然后结合零点存在定理确定结论. 【详解】(1)()f x 的定义域为R ,()()()()2222e 2e 2e x x xx x x a f x a x =-+-+=+-',当2a ≥时,()0f x '≥,则()f x 在R 上是增函数;当2a <时,()(2(2)e e xx x a x x f x ⎡⎤=--=⎣⎦',所以()0x f x =⇔='()0x f x >⇔<'或x > ()0f x x ⇔<'<所以()f x 在(上是减函数,在(,-∞和)+∞上是增函数.(2)当1a =时,()()2211e ln 2xg x x x x =--+,其定义域为()0,∞+,则()()()1e 11x g x x x x '=+--⎛⎫⎪⎝⎭.设()1e xh x x =-(0x >),则()21e 0xh x x'=+>,从而()h x 在()0,∞+上是增函数,又1202h ⎛⎫=< ⎪⎝⎭,()1e 10h =->, 所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()0001e 0x h x x =-=,即001e x x =,00ln x x =-. 列表如下:由表格,可得()g x 的极小值为()12g =-;()g x 的极大值为()()022222000000000002111111e ln 2222x x x g x x x x x x x x x -+=--+=--=-+-因为()0g x 是关于0x 的减函数,且01,12x ⎛⎫∈ ⎪⎝⎭,所以()03128g x -<<-,所以()g x 在(]0,1内没有零点.又()1102g =-<,()22e 2ln 20g =-+>,所以()g x 在()1,+∞内有一个零点. 综上,()g x 只有一个零点.类型八、隐零点之极值点偏离类型一、目标与极值点相关 思想:偏离−−→−转化对称步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域 (4)构造对称函数 类型二、目标与极值点不相关步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域(4)寻找零点之间的关系,消元换元来解决例8-1.(2021·江苏高三开学考试)已知函数()ln a f x x x=+(a ∈R )有两个零点.(1)证明:10ea <<.(2)若()f x 的两个零点为1x ,2x ,且12x x <,证明:a x x 221>+.(3)若()f x 的两个零点为1x ,2x ,且12x x <,证明:.121<+x x 【答案】(1)证明见解析;(2)证明见解析. 【分析】(1)首先求出导函数,当0a ≤时显然不成立,当0a >时求出函数的单调区间,即可得到函数的极小值()f a ,依题意()0f a <,即可求出参数a 的取值范围;(2)由(1)可得120x a x <<<,设()()()2g x f a x f x =--,求出函数的导函数,即可得到122x x a +>,(3)由(1)可得120x a x <<<,再设21x tx =,1t >,则1221ln ln x x t x x ==,则()()12ln 1ln ln 1t t x x t t t +⎛⎫+=- ⎪-⎝⎭,再利用导数说明()ln 1th t t =-的单调性,即可得到121x x +<,从而得证; 【详解】(1)证明:由()ln af x x x=+,0x >,可得()21af x x x '=-,0x >.当0a ≤时,()0f x '>,所以()f x 在()0,∞+上单调递增,与题意不符.当0a >时,令()210af x xx '=-=,得x a =. 当()0,x a ∈时,()0f x '<,()f x 单调递减;当(),x a ∈+∞时,()0f x '>,()f x 单调递增.可得当x a =时,()f x 取得极小值()ln 1f a a =+.又因为函数()ln a f x x x=+有两个零点,所以()n 10l a f a =+<,可得1e a <.综上,10ea <<.(2)解:由上可得()f x 的极小值点为x a =,则120x a x <<<.设()()()()l 2ln 22n a ag x f a x f x a x a x xx =--=-+---,()0,x a ∈, 可得()()()()222224110222a x a a ag x a x x x a x x a x ---'=--+=>---,()0,x a ∈,所以()g x 在()0,a 上单调递增,所以()()0g x g a <=,即()()20f a x f x --<,则()()2f a x f x -<,()0,x a ∈,所以当120x a x <<<时,12a x a ->,且()()()1122f a x f x f x -<=.因为当(),x a ∈+∞时,()f x 单调递增,所以122a x x -<,即122x x a +>.(3)由(1)可得120x a x <<<,设21x tx =,1t >,则1122ln 0,ln 0,a x x a x x ⎧+=⎪⎪⎨⎪+=⎪⎩则1221ln ln x x t x x ==,即()1211ln ln ln ln ln x t x t tx t x t ===+.所以1ln ln 1t tx t =--, 所以()()()()()1211ln 1ln ln ln ln 1ln ln 1ln 111t t tt x x x t x t t t t t t ⎛⎫++=+=++=-++=- ⎪--⎝⎭.又因为()ln 1th t t =-,则()()211l n 01t t h t t --'=<-,所以()h t 在()1,+∞上单调递减,所以()ln 1ln 1t t t t +<-,所以()12ln 0x x +<,即12 1.x x +<综上,1221a x x <+<.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 练、已知函数f(x)=x 2+πcos x. (1)求函数f(x)的最小值;(2)若函数g(x)=f(x)-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π. 【解析】 (1)易知函数f(x)为偶函数,故只需求x∈[0,+∞)时f(x)的最小值.f′(x)=2x -πsin x ,当x∈⎝ ⎛⎭⎪⎫0,π2时,设h(x)=2x -πsin x ,h′(x)=2-πcos x ,显然h′(x)单调递增,而h′(0)<0,h′⎝ ⎛⎭⎪⎫π2>0,由零点存在性定理知,存在唯一的x 0∈⎝ ⎛⎭⎪⎫0,π2,使得h′(x 0)=0.当x∈(0,x 0)时,h′(x)<0,h(x)单调递减,当x∈⎝ ⎛⎭⎪⎫x 0,π2时,h′(x)>0,h(x)单调递增,而 h(0)=0,h ⎝ ⎛⎭⎪⎫π2=0,故x∈⎝ ⎛⎭⎪⎫0,π2,h(x)<0,即x∈⎝ ⎛⎭⎪⎫0,π2,f′(x)<0,f(x)单调递减,又当x∈⎝ ⎛⎭⎪⎫π2,+∞时,2x >π>πsin x ,f′(x)>0,f(x)单调递增,所以f(x)min =f ⎝ ⎛⎭⎪⎫π2=π24.(2)证明:依题意得x 1∈⎝ ⎛⎭⎪⎫0,π2,x 2∈⎝ ⎛⎭⎪⎫π2,+∞,f(x 1)=f(x 2), 构造函数F(x)=f(x)-f(π-x),x∈⎝⎛⎭⎪⎫0,π2,F′(x)=f′(x)+f′(π-x)=2π-2πsin x >0,即函数F(x)单调递增,所以F(x)<F ⎝ ⎛⎭⎪⎫π2=0,即当x∈⎝⎛⎭⎪⎫0,π2时,f(x)<f(π-x),而x 1∈⎝ ⎛⎭⎪⎫0,π2,所以f(x 1)<f(π-x 1),又f(x 1)=f(x 2),即f(x 2)<f(π-x 1),此时x 2,π-x 1∈⎝ ⎛⎭⎪⎫π2,+∞. 由(1)可知,f(x)在⎝ ⎛⎭⎪⎫π2,+∞上单调递增,所以x 2<π-x 1,即x 1+x 2<π.练、已知函数21()1xx f x e x-=+. (Ⅰ)求()f x 的单调区间;(Ⅱ)证明:当12()()f x f x =12()x x ≠时,120x x +<【解析】解: (Ⅰ) .)123)12)1()1)11()('222222x x x xe x x e x x e x x f x x x ++--⋅=+⋅--+⋅-+-=((( ;)(,0)(']0-02422单调递增时,,(当x f y x f x =>∞∈∴<⋅-=∆单调递减)时,,当)(,0)('0[x f y x f x =≤∞+∈.所以,()y f x =在0]-∞在(,上单调递增;在[0x ∈+∞,)上单调递减. (Ⅱ)由(Ⅰ)知,只需要证明:当x>0时f(x) < f(-x)即可。
高中高三数学集训【精品】《4.5.1 函数的零点与方程的解》同步检测
《函数的零点与方程的解》同步检测一、选择题1.若函数y =x 2-bx +1有一个零点,则b 的值为( ) A.2 B.-2 C.±2 D.32.函数f(x)=x 3+3x -15的零点所在的区间为( ) A.(-1,0) B.(0,1) C.(1,2) D.(2,3)3.根据表格中的数据,可以判定方程e x -2x -5=0的一个根所在的区间是( )x 0 1 2 3 4 e x 1 2.72 7.39 20.09 54.60 2x +55791113A.(0,1) C .(2,3) D .(3,4)4.已知函数212x log x x 0f(x)x 0>⎧⎪=⎨⎪≤⎩, , ,若关于x 的方程f(x)=k 有两个不等的实根,则实数k 的取值范围是( )A.(0,+∞)B.(-∞,1)C.(1,+∞)D.(0,1]5.函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A.(1,3) B.(1,2) C.(0,3) D.(0,2)6.(多选)设函数f(x)=⎩⎨⎧|ln x|,x>0,-x 2-4x ,x≤0,若函数g(x)=f(x)-m 有四个零点,则实数m 可取( )A.-1B.1C.3D.57.(多选)若方程x 2+2x +λ=0在区间(-1,0)上有实数根,则实数λ的取值可以是( )A.-3B.18C.14 D.1二、填空题 8.函数f(x)=(x -1)ln xx -3的零点是________9.若abc≠0,且b 2=ac ,则函数f(x)=ax 2+bx +c 的零点的个数是________ 10.已知函数f(x)=⎩⎨⎧2x +4,x≤0,2x -2,x>0,若函数y =f(f(x)+m)有四个零点,则实数m的取值范围是________三、解答题11.已知函数f(x)是定义在R 上的偶函数,当x≥0时,f(x)=x 2-2x +1. (1)求f(x)的解析式;(2)讨论函数g(x)=f(x)-m(m ∈R)的零点个数.12.已知函数f(x)=x 2-(k -2)x +k 2+3k +5有两个零点. (1)若函数的两个零点是-1和-3,求k 的值; (2)若函数的两个零点是α和β,求α2+β2的取值范围.13.已知f(x)=log3(3x+1)+12kx(x∈R)是偶函数.(1)求k的值;(2)若函数y=f(x)的图象与直线y=12x+a有公共点,求a的取值范围.14.已知函数f(x)=2x,g(x)=log2x.(1)若x0是方程f(x)=32-x的根,证明2x0是方程g(x)=32-x的根;(2)设方程f(x-1)=52-x,g(x-1)=52-x的根分别是x1,x2,求x1+x2的值.参考答案:一、选择题1.C2.D3.C4.D5.C6.BC7.BC二、填空题8.答案:1 9.答案:0 10.答案:[-3,-1)三、解答题11.解:(1)当x <0时,-x >0,f(-x)=(-x)2-2(-x)+1=x 2+2x +1, ∵f(x)是R 上的偶函数,∴f(x)=x 2+2x +1,∴f(x)=⎩⎨⎧x 2+2x +1,x<0,x 2-2x +1,x≥0.(2)函数f(x)的图象如图所示.当m <0时,g(x)没有零点;当m =0或m >1时,g(x)有2个零点; 当0<m <1时,g(x)有4个零点;当m =1时,g(x)有3个零点.12.解:(1)-1和-3是函数f(x)的两个零点,故-1和-3是方程x 2-(k -2)x +k 2+3k +5=0的两个实数根. 则⎩⎨⎧-1-3=k -2,-1×(-3)=k 2+3k +5,解得k =-2. (2)函数的两个零点为α和β,则α和β是方程x 2-(k -2)x +k 2+3k +5=0的两根.∴⎩⎨⎧α+β=k -2,αβ=k 2+3k +5,Δ=(k -2)2-4×(k 2+3k +5)≥0.则-4≤k≤-43,且α2+β2=(α+β)2-2αβ=-k 2-10k -6在-4≤k≤-43上单调递减, ∴α2+β2在区间⎣⎢⎡⎦⎥⎤-4,-43上的最大值是18,最小值是509.13.解:(1)∵y =f(x)是偶函数,∴f(-x)=f(x),∴log 3(3-x +1)-12kx =log 3(3x +1)+12kx ,化简得log 3⎝ ⎛⎭⎪⎫3-x +13x+1=kx ,即log 313x =kx ,∴log 33-x =kx ,∴-x =kx , 即(k +1)x =0对任意的x ∈R 都成立,∴k =-1.(2)由题意知,方程log 3(3x+1)-12x =12x +a 有解,亦即log 3(3x+1)-x =log 3⎝ ⎛⎭⎪⎫3x +13x =a 有解,∴log 3⎝ ⎛⎭⎪⎫1+13x =a 有解.由13x >0,得1+13x >1,∴log 3⎝ ⎛⎭⎪⎫1+13x >0,故a >0,即a 的取值范围是(0,+∞).14.(1)证明:因为x 0是方程f(x)=32-x 的根,所以2x 0=32-x 0,即x 0=32-2x 0, 则g(2x 0)=log 22x 0=x 0=32-2x 0.所以2x 0是方程g(x)=32-x 的根. (2)解:由题意知,方程2x -1=52-x ,log 2(x -1)=52-x 的根分别是x 1,x 2,即方程2x -1=32-(x -1),log 2(x -1)=32-(x -1)的根分别为x 1,x 2, 令t =x -1,则方程2t =32-t ,log 2t =32-t 的根分别为t 1=x 1-1,t 2=x 2-1.由(1)知t 1是方程2t=32-t 的根,则2t 1是方程log 2t =32-t 的根.令h(t)=log 2t +t -32,则2t 1是h(t)的零点, 又因为h(t)是(0,+∞)上的增函数,所以2t 1是h(t)的唯一零点,即2t 1是方程log 2t =32-t 的唯一根.所以2t 1=t 2,所以t 1+t 2=t 1+2t 1=32,即(x 1-1)+(x 2-1)=32,所以x 1+x 2=32+2=72.。
高三数学函数图像试题
高三数学函数图像试题1.设表示不超过实数的最大整数,则在直角坐标平面上满足的点所形成的图形的面积为()A.10B.12C.10D.12【答案】B【解析】首先对任意的,满足的点组成的图形是单位正方形(,),面积为1,而椭圆上整点有,,,共12个,因此所求图形面积为12.选B.【考点】函数图象,图形面积.2.函数的大致图象为 ( )【答案】D【解析】∵,∴,∴,又∵,∴,∴,∴选D.【考点】函数图象.3. [2013·四川高考]函数y=的图象大致是()【答案】C【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A;取x=-1,y==>0,故再排除B;当x→+∞时,3x-1远远大于x3的值且都为正,故→0且大于0,故排除D,选C.4.已知函数是周期为2的周期函数,且当时,,则函数的零点个数是()A.9B.10C.11D.18【答案】B【解析】由于函数是周期为2的周期函数,所以.因为的零点个数等价于方程的根的个数.即函数与函数的个数.又时,.如图所示.共有10个交点,即选B.【考点】1.函数的周期性.2.函数与方程的关系.3.对数指数函数的图象.5.函数的所有零点之和为.【答案】8【解析】设,则,原函数可化为,其中,因,故是奇函数,观察函数与在的图象可知,共有4个不同的交点,故在时有8个不同的交点,其横坐标之和为0,即,从而.【考点】1.函数零点;2.正弦函数、反比例函数.6.已知函数,则的图象大致为()【答案】A【解析】,令,则,在同一坐标系下作出两个函数的简图,根据函数图象的变化趋势可以发现与共有三个交点,横坐标从小到大依次设为,在区间上有,即;在区间有,即;在区间有,即;在区间有,即.故选【考点】1转化思想;2函数图像。
7.函数的图象大致是( )【答案】A【解析】分析函数性质可知:函数为偶函数,当时,.故排除C和D.可知:但开始时,函数应该是增函数,排除B,故选A.【考点】函数的图像8.设函数则______;若函数存在两个零点,则实数的取值范围是______.【答案】;【解析】;令,得,等价于的图象和直线有两个不同的交点,在直角坐标系中画出的图象,如图所示,.【考点】1、分段函数;2、函数的图象和性质.9.已知且,函数,在同一坐标系中的图象可能是()【答案】C【解析】是直线的纵截距.根据指数函数、对数函数的性质,时,函数的图象同时上升;时图象同时下降.对照选项可知,A,B,D均矛盾,C中,选C.【考点】一次函数、指数函数、对数函数的图象和性质.10.函数的图像可能是( )【答案】B【解析】因为函数,所以函数是奇函数,排除选项A和选项C.当时,在区间是增函数,所以选B.【考点】1.分段函数的图像与性质;2.函数奇偶性的判断;3.对数函数的图像与性质11.已知函数和的图象关于轴对称,且.(1)求函数的解析式;(2)解不等式.【答案】(1);(2)不等式的解集是.【解析】(1)先利用两个函数图象关于轴对称的关系,得出函数上的点与其关于轴对称点在函数,进而通过坐标之间的关系得出函数的解析式;(2)方法一是去绝对值,将问题转化为二次不等式,从而解出相应的不等式;方法二是由于等于或,由成立可知,小于或,从而将原不等式等价转化为或,最终求解出原不等式.试题解析:试题解析:(1)设函数图象上任意一点,由已知点关于轴对称点一定在函数图象上,代入,得;(2)方法1或,或,或,不等式的解集是;方法2:等价于或,解得或,所以解集为.【考点】1.函数图象的对称性;2.含绝对值的不等式12.已知二次函数,则函数图像可能是()【答案】C【解析】时,开口向下,因为,所以同号,对于A、由图象可知,则,∴,选项A不符合题意, 由B图可知,故,∴,即函数对称轴在y轴左侧,选项B不符合题意,当时,因为,所以异号,由C,D图可知,故,∴,即函数对称轴在y轴左侧,选项D不符合题意,C符合.故选C.【考点】二次函数的图像.13.若函数的图象与函数的图象至多有一个公共点,则实数的取值范围是( )A.B.C.D.【答案】D【解析】函数是将函数的图像先向下平移个单位,然后将轴下方的图像向上翻折得到的,如图所示:由图可知,函数与轴的右交点只要在函数与轴交点的右边即可.当时,已知两函数没有交点;当时,,解得.所以实数的取值范围是.【考点】1.含绝对值函数的图像与性质;2.数形结合思想14.已知函数,若互不相等,且,则的取值范围是________________.【答案】【解析】先作出函数的图像,知关于对称.互不相等,且不妨设则又.【考点】函数图象及其性质.15.已知函数的图象如图所示,则函数的大致图象是(A)(B)(C)(D)【答案】D【解析】先将的图象的图像沿轴翻折,得到的图像,然后再将的图像向右平移1个单位长度,即可得到的图像,观察比较个选项,只有合题意.【考点】函数图像的对称和平移.16.函数的图像可能是()【答案】B【解析】显然函数为定义域上的奇函数,可排除A、C,而当时,,所以答案选B.【考点】函数的图像与性质.17.已知函数f(x)满足f(x+1)=﹣f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x2,若在区间[﹣1,3]内,函数g(x)=f(x)﹣kx﹣k有4个零点,则实数k的取值范围是()A.B.C.D.【答案】C【解析】根据f(x+1)=﹣f(x),可得f(x)是周期为2的周期函数.再由f(x)是偶函数,当x∈[0,1]时,f(x)=x2,可得函数在[﹣1,3]上的解析式.根据题意可得函数y=f(x)的图象与直线y="kx+k" 有4个交点,数形结合可得实数k的取值范围.∵函数f(x)满足f(x+1)=﹣f(x),故有f(x+2)=f(x),故f(x)是周期为2的周期函数.再由f(x)是偶函数,当x∈[0,1]时,f(x)=x2,可得当x∈[﹣1,0]时,f(x)=x2,故当x∈[﹣1,1]时,f(x)=x2,当x∈[1,3]时,f(x)=(x ﹣2)2.由于函数g(x)=f(x)﹣kx﹣k有4个零点,故函数y=f(x)的图象与直线y="kx+k" 有4个交点,如图所示:把点(3,1)代入y=kx+k,可得k=,数形结合可得实数k的取值范围是(0,],故选C.【考点】根的存在性及根的个数判断点评:本题主要考查函数的周期性的应用,函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题18.已知,函数是它的反函数,则函数的大致图象是( )【答案】D【解析】由对数函数与指数函数互为反函数得,,从而,;由特殊点(0,2)与(1,1)即可验证.也可以利用图像变换画出.【考点】1.指数函数与对数函数 2.图像变换19.设是定义在R上的周期为3的周期函数,如图表示该函数在区间上的图像,则+=( )A.3B.2C.1D.0【答案】A【解析】由于是定义在上的周期为3的周期函数,所以,而由图像可知,,所以.【考点】1.函数的周期性;2.函数图像.20.函数,其中,若动直线与函数的图像有三个不同的交点,它们的横坐标分别为,(1)的取值范围是_______________.(2)是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”_______________.【答案】(1);(2)1.【解析】如图,由得即,解得,或,所以,由图象可知要使直线与函数的图像有三个不同的交点,则有,即实数的取值范围是.不妨设,则由题意可知,所以,由得,,当取最大值1时,.【考点】1.分段函数;2.函数的图象.21.(5分)函数的图象大致是()A.B.C.D.【答案】A【解析】当x<0时,x3<0,3x﹣1<0,∴,故排除B;对于C,由于函数值不可能为0,故可以排除C;∵y=3x﹣1与y=x3相比,指数函数比幂函数,随着x的增大,增长速度越大,∴x→+∞,→0,∴D不正确,A正确,22.函数的图象大致是【答案】A【解析】根据题意,由于函数,变量不能为零,且为偶函数,排除B,C,对于A,D,则根据当x=时,函数值为零,故选A.【考点】函数图象点评:主要是考查了函数图象的运用,属于基础题。
高三提优班:函数的零点,含绝对值函数问题
【高三】提优讲义函数零点讲义 +含绝对值函数问题1. 设f(x)={x 2−mx +2,x <0lnx −mx,x >0,若方程f(x)=x 恰有三个零点,则实数m 的取值范围为______.2. 函数,函数g(x)=k(x −2),若方程f(x)=g(x)恰有三个实数解,则实数k 的取值范围为3. 已知函数f(x)={−x 2−4x +1,x ≤03x ,x >0,则函数f(f(x))=3的零点的个数是________. 4. 已知函数f(x)={2√x,0≤x ≤1,1x,x >1.若关于x 的方程f(x)=−14x +a(a ∈R)恰有两个互异的实数解,则a 的取值范围为( )A. [54,94]B. (54,94]C. (54,94]∪{1}D. [54,94]∪{1} 5. 设函数f(x)=lg(1+2|x|)−11+x 4,则使得f(3x −2)>f(x −4)成立的x 的取值范围是______6. 已知函数f(x)=x |x −a |,若f(x)在区间[1 , 32]上是单调递增函数,则实数a 的取值范围是 .7. 已知函数f(x)={x 3,x ≥0,−x,x <0.若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则k 的取值范围是( ) A. (−∞,−12)∪(2√2,+∞)B. (−∞,−12)∪(0,2√2) C. (−∞,0)∪(0,2√2)D. (−∞,0)∪(2√2,+∞)8. 设a,k ∈R ,已知函数f(x)=x 2−|x −a |+ka .(Ⅰ)当a =1时,求f(x)的单调增区间;(Ⅱ)若对任意a ∈[0,16],函数f(x)至少有三个零点,求实数k 的取值范围.9. 已知函数f(x)=x 2+(x −1)|x −a|.(1)若a =−1,解方程f(x)=1;(2)若函数f(x)在R 上单调递增,求实数a 的取值范围;(3)是否存在实数a,使不等式f(x)≥2x−3对一切实数x∈R恒成立?若存在,求出a的取值范围,若不存在,请说明理由.【答案】1.设f(x)={x 2−mx+2,x<0lnx−mx,x>0,若方程f(x)=x恰有三个零点,则实数m的取值范围为______.【答案】【解析】【分析】本题考查由方程根的个数求参数范围,涉及利用导数研究函数单调性,对勾函数,属综较难题.将问题转化为与图像交点个数有3个的问题,利用导数研究函数单调性和最值,数形结合即可求得结果.【详解】解:当时,,等价于;当时,,等价于;令,则方程恰有三个零点,等价于与直线有三个交点.当时,则,令,解得,故该函数在区间单调递增,在单调递减.且时,;又时,;而当时,由对勾函数性质,容易知:当时,函数取得最大值.故的图象如下所示:数形结合可知,要满足题意,只需,解得.故答案为.2.函数,函数g(x)=k(x−2),若方程f(x)=g(x)恰有三个实数解,则实数k的取值范围为.【答案】(0,4−2√3)【解析】【分析】本题考查函数的零点与方程的根之间的关系,函数的导数求解切线方程,考查数形结合以及计算能力,是难题.x2+2x,画,的图象,结合直线g(x)=k(x−2)过定点(2,0),函数g(x)的图象与f(x)=12x<0的图象相切时,函数f(x),g(x)的图象恰有两个交点.设切点为P(x0,y0),由fˈ(x)=x+2,x<0,求出切线的斜率,利用函数的图象的交点个数与函数的零点个数,推出k的范围即可.【解答】解:依题意,画出的图象如图:因为直线g(x)=k(x−2)过定点(2,0),由图象可知,当函数g(x)的图象与f(x)=12x2+2x,x<0的图象相切时,函数f(x),g(x)的图象恰有两个交点.下面利用导数法求该切线的斜率.设切点为P(x0,y0),由fˈ(x)=x+2,x<0,则k=f′(x0)=x0+2=12x02+2x0x0−2,解得x0=2+2√3(舍去)或x0=2−2√3,则k=4−2√3,要使方程f(x)=g(x)恰有三个实数解,则函数f(x),g(x)的图象恰有三个交点,结合图象可的实数k的取值范围为(0,4−2√3),故答案为(0,4−2√3).3.已知函数f(x)={−x 2−4x+1,x≤03x,x>0,则函数f(f(x))=3的零点的个数是________.【答案】4【解析】【分析】此题考查函数的零点与方程的根个数的求法,是基础题,易错点是分类不全,容量出现丢解,解题时要注意分段函数的性质和应用,注意分类讨论、数形结合的合理运用.【解答】解:函数y=f(f(x))−3的零点的个数与方程f(f(x))=3的根的个数相同,若f (x )≤0,则−f 2(x )−4f (x )+1=3,则f (x )=−2±√2≤0,由函数的图象可得,方程f (x )=−2±√2,有两个根;当f(x)>0时,3f (x )=3,则f(x)=1,由函数的图象可得,f(x)=1有两个根,所以函数y =f(f (x ))−3的零点个数,即f(f(x))=3的根的个数为4.故答案为4.4. 已知函数f(x)={2√x,0≤x ≤1,1x,x >1.若关于x 的方程f(x)=−14x +a(a ∈R)恰有两个互异的实数解,则a 的取值范围为( )A. [54,94]B. (54,94]C. (54,94]∪{1}D. [54,94]∪{1} 【答案】D【解析】【分析】本题考查分段函数的运用,注意运用函数的图象和平移变换,考查分类讨论思想方法和数形结合思想,属于中档题.分别作出y =f(x)和y =−14x 的图象,考虑直线经过点(1,2)和(1,1)时,有两个交点,直线与y =1x 在x >1相切,求得a 的值,结合图象可得所求范围.【解答】解:作出函数f(x)={2√x,0≤x ≤11x,x >1的图象,以及直线y =−14x 的图象,关于x 的方程f(x)=−14x +a(a ∈R)恰有两个互异的实数解, 即为y =f(x)和y =−14x +a 的图象有两个交点,平移直线y =−14x ,考虑直线经过点(1,2)和(1,1)时, 有两个交点,可得a =94或a =54,考虑直线与y =1x 在x >1相切,可得ax −14x 2=1, 由△=a 2−1=0,解得a =1(−1舍去),综上可得a 的范围是[54,94]∪{1}. 故选:D .5. 设函数f(x)=lg(1+2|x|)−11+x 4,则使得f(3x −2)>f(x −4)成立的x 的取值范围是______.【答案】(−∞,−1)∪(32,+∞)【解析】解:因为f(−x)=lg(1+2|−x|)−11+(−x)4=lg(1+2|x|)−11+x 4=f(x),故f(x)为偶函数,且x ≥0时,f(x)=lg(1+2x)−11+x 4单调递增,由f(3x −2)>f(x −4)可得|3x −2|>|x −4|,两边平方整理可得,2x 2−x −3>0,解可得,x <−1或x >32.故答案为{x|x <−1或x >32}. 根据函数奇偶性和单调性之间的关系,即可得到结论.本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.6. 已知函数f(x)=x |x −a |,若f(x)在区间[1 , 32]上是单调递增函数,则实数a 的取值范围是 .【答案】(−∞,1]∪[3,+∞)【解析】【分析】本题考查分段函数的图像,考查函数的单调性,属于难题.化简f(x)=x|x −a|={x (x −a ),x ⩾a x (a −x ),x <a,分a ⩽0,和a >0给合图像分析即可. 【解答】解:f(x)=x|x −a|={x (x −a ),x ⩾a x (a −x ),x <a ,(1)当a ⩽0时,如图所示,给合图像,f(x)在区间[1 , 32]上是单调递增函数恒成立,(2)当a >0时,如图所示,给合图像,要使f(x)在区间[1 , 32]上是单调递增函数,则a 2⩾32或a ⩽1, 即0<a ⩽1或a ⩾3,综合(1)(2)知,实数a 的取值范围是a ⩽1或a ⩾3.故答案为:(−∞,1]∪[3,+∞).1. 已知函数f(x)={x 3,x ≥0,−x,x <0.若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则k 的取值范围是( ) A. (−∞,−12)∪(2√2,+∞)B. (−∞,−12)∪(0,2√2)C. (−∞,0)∪(0,2√2)D. (−∞,0)∪(2√2,+∞) 【答案】D【解析】解:若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则f(x)=|kx 2−2x|有四个根,即y =f(x)与y =ℎ(x)=|kx 2−2x|有四个交点,当k =0时,y =f(x)与y =|−2x|=2|x|图象如下:两图象只有一个交点,不符合题意,当k <0时,y =|kx 2−2x|与x 轴交于两点x 1=0,x 2=2k (x 2<x 1)图象如图所示,两图象有4个交点,符合题意,当k >0时,y =|kx 2−2x|与x 轴交于两点x 1=0,x 2=2k (x 2>x 1) 在[0,2k )内两函数图象有两个交点,所以若有四个交点,只需y =x 3与y =kx 2−2x 在(2k ,+∞)还有两个交点,即可,即x 3=kx 2−2x 在(2k ,+∞)还有两个根,即k =x +2x 在(2k ,+∞)还有两个根,函数y =x +2x ≥2√2,(当且仅当x =√2时,取等号),所以0<2k <√2,且k >2√2,所以k >2√2,综上所述,k 的取值范围为(−∞,0)∪(2√2,+∞).故选:D .问题转化为f(x)=|kx 2−2x|有四个根,⇒y =f(x)与y =ℎ(x)=|kx 2−2x|有四个交点,再分三种情况当k =0时,当k <0时,当k >0时,讨论两个函数四否能有4个交点,进而得出k 的取值范围.本题考查函数的零点,参数的取值范围,关键利用分类讨论思想,分析函数的交点,属于中档题.7. 设a,k ∈R ,已知函数f(x)=x 2−|x −a |+ka .(Ⅰ)当a =1时,求f(x)的单调增区间;(Ⅱ)若对任意a ∈[0,16],函数f(x)至少有三个零点,求实数k 的取值范围.【答案】解:(Ⅰ)当a =1时,f(x)=x 2−|x −1|+k ={x 2−x +k +1,x ≥1x 2+x +k −1,x <1, ∴f(x)的单调增区间为(−12,+∞);(Ⅱ)∵f(x)=x 2−|x −a|+ka ={x 2−x +a(k +1),x ≥a x 2+x +a(k −1),x <a ,且a ∈[0,16], 可知f(x)在(−∞,−12)和(a,12)(a,12)上单调递减,在(−12,a)和(12,+∞)上单调递增,若f(a)<0,则f(x)在(−12,a)和(a,12)上无零点,由f(x)的单调性及零点存在性定理可知,f(x)至多有两个零点,故f(a)≥0,即a 2+ak ≥0对任意a ∈[0,16]恒成立,可知k ≥0,当f(a)≥0时,若f(12)>0或f(−12)>0成立,则由f(x)的单调性及零点存在性定理可知,f(x)至多有两个零点,故{f(12)≤0f(−12)≤0,即{−14+a(k +1)≤0−14+a(k −1)≤0成立, 注意到−14+a(k +1)≥−14+a(k −1),故−14+a(k +1)≤0,即k ≤14a −1对于任意a ∈[0,16]成立,∴k ≤12,综上k 的取值范围为[0,12].【解析】本题考查了绝对值不等式单调性的求法和函数零点的判定,考查了分类讨论思想和转化思想,属中档题.(Ⅰ)当a =1时,f(x)=x 2−|x −1|+k ={x 2−x +k +1,x ≥1x 2+x +k −1,x <1,根据二次函数的单调性可得其增区间;(Ⅱ)对f(x)去绝对值,然后判断单调性,再结合零点存在性定理判断f(x)的零点即可.8. 已知函数f(x)=x 2+(x −1)|x −a|.(1)若a =−1,解方程f(x)=1;(2)若函数f(x)在R 上单调递增,求实数a 的取值范围;(3)是否存在实数a ,使不等式f(x)≥2x −3对一切实数x ∈R 恒成立?若存在,求出a 的取值范围,若不存在,请说明理由.【答案】解:(1)当a =−1时,f(x)=x 2+(x −1)|x +1|,故有f(x)={2x 2−1,x ≥−11,x <−1, 当x ≥−1时,由f(x)=1,有2x 2−1=1,解得x =1或x =−1.当x <−1时,f(x)=1恒成立.∴方程的解集为{x|x ≤−1或x =1};(2)f(x)={2x 2−(a +1)x +a,x ≥a (a +1)x −a,x <a, 若f(x)在R 上单调递增,则有{a+14≤a a +1>0, 解得,a ≥13. ∴当a ≥13时,f(x)在R 上单调递增;(3)设g(x)=f(x)−(2x −3),则g(x)={2x 2−(a +3)x +a +3,x ≥a (a −1)x −a +3,x <a, 不等式f(x)≥2x −3对一切实数x ∈R 恒成立,等价于不等式g(x)≥0对一切实数x ∈R 恒成立.①若a >1,则1−a <0,即21−a <0,取x 0=21−a ,此时x 0∈(−∞,a),g(x 0)=g(21−a )=(a −1)⋅21−a −a +3=1−a <0,即对任意的a >1,总能找到x 0=21−a ,使得g(x 0)<0,∴不存在a >1,使得g(x)≥0恒成立.②若a =1,g(x)={2x 2−4x +4,x ≥12,x <1,g(x)值域为[2,+∞), ∴g(x)≥0恒成立.③若a <1,当x ∈(−∞,a)时,g(x)单调递减,其值域为(a 2−2a +3,+∞),由于a 2−2a +3=(a −1)2+2≥2,∴g(x)≥0成立.当x ∈[a,+∞)时,由a <1,知a <a+34,g(x)在x =a+34处取最小值, 令g(a+34)=a +3−(a+3)28≥0,得−3≤a ≤5,又a <1,∴−3≤a <1.综上,a ∈[−3,1].【解析】本题考查了函数恒成立问题,考查了分类讨论的数学思想方法,考查了分离变量法,训练了利用函数单调性求参数的取值范围,属难度较大的题目.(1)把a =−1代入函数解析式,分段后分段求解方程f(x)=1的解集,取并集后得答案;(2)分段写出函数f(x)的解析式,由f(x)在R 上单调递增,则需第一段二次函数的对称轴小于等于a ,第二段一次函数的一次项系数大于0,且第二段函数的最大值小于等于第一段函数的最小值,联立不等式组后求解a 的取值范围;(3)把不等式f(x)≥2x −3对一切实数x ∈R 恒成立转化为函数g(x)=f(x)−(2x −3)≥0对一切实数x ∈R 恒成立.然后对a 进行分类讨论,利用函数单调性求得a 的范围,取并集后得答案.。
高三数学函数与方程试题答案及解析
高三数学函数与方程试题答案及解析1.已知是定义在上且周期为3的函数,当时,,若函数在区间上有10个零点(互不相同),则实数的取值范围是 .【答案】【解析】作出函数的图象,可见,当时,,,方程在上有10个零点,即函数和图象与直线在上有10个交点,由于函数的周期为3,因此直线与函数的应该是4个交点,则有.【考点】函数的零点,周期函数的性质,函数图象的交点问题.2.函数f(x)=lnx-x-a有两个不同的零点,则实数a的取值范围是()A.(-∞,-1]B.(-∞,-1)C.[-1,+∞)D.(-1,+∞)【答案】B【解析】函数f(x)=lnx-x-a的零点,即为关于x的方程lnx-x-a=0的实根,将方程lnx-x-a=0,化为方程lnx=x+a,令y1=lnx,y2=x+a,由导数知识可知,直线y2=x+a与曲线y1=lnx相切时有a=-1,若关于x的方程lnx-x-a=0有两个不同的实根,则实数a的取值范围是(-∞,-1).故选B.3.已知函数f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).(1)若g(x)=m有实数根,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.【答案】(1)m≥2e(2)(-e2+2e+1,+∞)【解析】解:(1)∵g(x)=x+≥2=2e等号成立的条件是x=e,故g(x)的值域是[2e,+∞),因此,只需m≥2e,g(x)=m就有实数根.(2)若g(x)-f(x)=0有两个相异的实根,即g(x)与f(x)的图象有两个不同的交点,作出g(x)与f(x)的大致图象.∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,∴其图象的对称轴为x=e,开口向下,最大值为m-1+e2.故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.∴m的取值范围是(-e2+2e+1,+∞).4.已知f(x+1)=f(x-1),f(x)=f(-x+2),方程f(x)=0在[0,1]内有且只有一个根x=,则f(x)=0在区间[0,2014]内根的个数为()A.1006B.1007C.2013D.2014【答案】D【解析】由f(x+1)=f(x-1),可知f(x+2)=f(x),所以函数f(x)的周期是2.由f(x)=f(-x+2),可知函数f(x)关于直线x=1对称,因为函数f(x)=0在[0,1]内有且只有一个根x=,所以函数f(x)=0在区间[0,2014]内根的个数为2014,故选D.5.已知函数,集合,,记分别为集合中的元素个数,那么下列结论不正确的是()A.B.C.D.【答案】【解析】集合,均表示方程的解集,集合中元素的个数,就是方程解的个数.当时,有一解,无解,正确;当时,有一解,有一解,正确;当时,有两解,有两解,其不可能有三个解,正确,不正确.故选.【考点】1、新定义;2、集合的概念;3、函数与方程.6.偶函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=x,则关于x的方程f(x)=x在x∈[0,4]上解的个数是________.【答案】4【解析】由f(x-1)=f(x+1)可知T=2.∵x∈[0,1]时,f(x)=x,又∵f(x)是偶函数,∴可得图像如图.∴f(x)=x在x∈[0,4]上解的个数是4个.7.关于x的方程e x ln x=1的实根个数是________.【答案】1【解析】由e x ln x=1(x>0)得ln x=(x>0),即ln x=x(x>0).令y1=ln x(x>0),y2=x(x>0),在同一直角坐标系内绘出函数y1,y2的图像,图像如图所示.根据图像可知两函数只有一个交点,所以原方程实根的个数为1.8.已知方程x=的解x∈,则正整数n=________.【答案】2【解析】在同一直角坐标系中画出函数y=x,y=的图像,如图所示.由图可得x∈(0,1),设f(x)=x-,因为f=-<0,f=->0,故n=2.9.(13分)(2011•湖北)设函数f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(Ⅰ)求a、b的值,并写出切线l的方程;(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.【答案】(Ⅰ)x﹣y﹣2=0(Ⅱ)(﹣,0)【解析】(I)利用曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l,可得f(2)=g(2)=0,f'(2)=g'(2)=1.即为关于a、b的方程,解方程即可.(II)把方程f(x)+g(x)=mx有三个互不相同的实根转化为x1,x2是x2﹣3x+2﹣m=0的两相异实根.求出实数m的取值范围以及x1,x2与实数m的关系,再把f(x)+g(x)<m(x﹣1)恒成立问题转化为求函数f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值,综合在一起即可求出实数m的取值范围.解:(I) f'(x)=3x2+4ax+b,g'(x)=2x﹣3.由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.故有f(2)=g(2)=0,f'(2)=g'(2)=1.由此得,解得,所以a=﹣2,b=5..切线的方程为x﹣y﹣2=0.(II)由(I)得f(x)=x3﹣4x2+5x﹣2,所以f(x)+g(x)=x3﹣3x2+2x.依题意,方程x(x2﹣3x+2﹣m)=0,有三个互不相等的实根0,x1,x2,故x1,x2是x2﹣3x+2﹣m=0的两相异实根.所以△=9﹣4(2﹣m)>0,解得m>﹣.又对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,特别地取x=x1时,f(x1)+g(x1)<m(x1﹣1)成立,得m<0.由韦达定理得x1+x2=3>0,x1x2=2﹣m>0.故0<x1<x2.对任意的x∈[x1,x2],x﹣x2≤0,x﹣x1≥0,x>0.则f(x)+g(x)﹣mx=x(x﹣x1)(x﹣x2)≤0,又f(x1)+g(x1)﹣mx1=0.所以f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值为0.于是当m<0,对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,综上得:实数m的取值范围是(﹣,0).点评:本题主要考查函数,导数,不等式等基础知识,同时考查综合运用数学知识进行推理论证的能立,以及函数与方程和特殊与一般的思想.10.用min{a,b)表示a,b两数中的最小值.若函数恰有三个零点,则t的值为( ).A.-2B.2C.2或-2D.1或-l【答案】D【解析】此题可以考虑数形结合:做出的图象,当过两函数交点时,恰有三个交点,即有三个零点,时,,,得到(舍)或,或,故选D.【考点】函数的零点11.已知函数,则下列说法错误的是( )A.若,则有零点B.若有零点,则且C.使得有唯一零点D.若有唯一零点,则且【答案】B【解析】令,当时,的图象如下图(1)所示,由图可知,有零点,故A正确.取,的图象如下图(2)所示,由图可知,有零点,故B错误.选B.【考点】函数的零点.12.已知是二次函数,不等式的解集是(0,5),且在区间[-1,4]上的最大值是12.(1)求f(x)的解析式;(2)是否存在正整数m,使得方程在区间内有且只有两个不等的实数根?若存在,求出所有m的值;若不存在,请说明理由.【答案】(1);(2)方程,设,则.当时,,是减函数;当时,,是增函数.因为.所以方程在区间,内分别有唯一实数根,而区间,内没有实数根.所以存在唯一的正数,使得方程在区间内有且只有两个不等的实数根.【解析】(1)由已知得0,5是二次函数的两个零点值,所以可设,开口方向向上,对称轴为,因此在区间上的最大值是,则,即,因此可求出函数的解析式;(2)由(1)得,构造函数,则方程的实数根转化为函数的零点,利用导数法得到函数减区间为、增区间为,又有,,,发现函数在区间,内分别有唯一零点,而在区间,内没有零点,所以存在唯一的正数,使得方程在区间内有且只有两个不等的实数根.(1)因为是二次函数,且的解集是,所以可设 2分所以在区间上的最大值是. 4分由已知,得,.. 6分(2)方程,设,则. 10分当时,,是减函数;当时,,是增函数. 10分因为.所以方程在区间,内分别有唯一实数根,而区间,内没有实数根. 12分所以存在唯一的正数,使得方程在区间内有且只有两个不等的实数根. 14分【考点】1.函数解析式;2.函数零点.13.函数的部分图象如图所示,则的解析式可以是A.B.C.D.【答案】C【解析】由图象可知函数定义域为实数集,故选项B不正确,又图象可知函数零点有,,,,,所以选项A,D不正确,C正确.故选C.【考点】1、函数的图象与性质;2、函数的零点.14.设定义域为R的函数若函数有7个零点,则实数的值为()A.0B.C.D.【答案】D【解析】代入检验,当时,,有2个不同实根,有4个不同实根,不符合题意;当时,,有3个不同实根,有2个不同实根,不符合题意;当时,,作出函数的图象,得到有4个不同实根,有3个不同实根,符合题意. 选D.【考点】1.函数图象;2.函数零点.15.设函数,则函数的零点个数为个.【答案】3【解析】将的图象向上平移个单位得的图象,由图象可知,有3个零点.【考点】函数的零点.16.已知函数f(x)=x2+ax+b的两个零点是-2和3,解不等式bf(ax)>0;【答案】(-3,2)【解析】由题意,得f=(x+2)(x-3)=x2-x-6,所以a=-1,b=-6,所以不等式bf(ax)>0,即为f(-x)<0,即x2+x-6<0,解得-3<x<2,所以解集为(-3,2).17.已知f(x)=2x,g(x)=3-x2,试判断函数y=f(x)-g(x)的零点个数.【答案】两个【解析】在同一坐标系内作出函数f(x)=2x与g(x)=3-x2的图象,两图象有两个交点,∴函数y=f(x)-g(x)有两个零点.18.若=x- (表示不超过x的最大整数),则方程-2013x=的实数解的个数是________.【答案】2【解析】方程可化为+[x]=2013x,可以构造两个函数:y=+[x],y=2013x,由图可知,两函数图象有2个交点,故方程有两个根.19.f(x)=|2x-1|,f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),则函数y=f4(x)的零点个数为________.【答案】8【解析】f4(x)=|2f3(x)-1|的零点,即f3(x)=的零点,即|2f2(x)-1|=的零点,即f2(x)=或的零点,即|2f(x)-1|=或的零点,即f(x)=,,,的零点,显然对上述每个数值各有两个零点,故共有8个零点.20.方程的解的个数为()A.1B.3C.4D.5【答案】B【解析】本题中方程不可解,但方程解的个数可以借助于函数和的图象的交点的个数来解决,作出这两个函数的图象(如图),,,但当时,,而,故两个函数图象有三交点,即原方程有三个解.【考点】方程的解与函数图象的交点.21.已知函数,若函数在上有两个零点,则的取值范围是()A.B.C.D.【答案】D【解析】当时,函数,令,解得;当时,,此时函数在上有且仅有一个零点,等价转化为方程在上有且仅有一个实根,而函数在上的值域为,所以,解得,故选D.【考点】函数的零点22.函数在区间内的零点个数是()A.0B.1C.2D.3【答案】B.【解析】又在上单调递增,在内只有一个零点.【考点】函数的零点.23.已知函数,在上的零点个数有()A.1个B.2个C.3个D.4个【答案】B【解析】(数形结合)函数在上的零点个数,由函数与的图象在上的交点个数为2,故选B.【考点】函数的零点24.设函数,若实数满足,则( )A.B.C.D.【答案】A【解析】由已知得,,∴;,,∴,∴,∵,在上是单调增函数,∴.【考点】方程的根与函数的零点.25.对于任意定义在区间D上的函数f(x),若实数x0∈D,满足f(x)=x,则称x为函数f(x)在D上的一个不动点,若f(x)=2x++a在区间(0,+∞)上没有不动点,则实数a取值范围是_______.【答案】【解析】根据题意知只要①在上没有实数解就行,将①化简得,要使其在没有实数解,那么要满足或者解得.【考点】方程的根与系数的关系.26.若定义在R上的偶函数满足且时,则方程的零点个数是( )A.2个B.3个C.4个D.多于4个【答案】C【解析】试题分析:函数f(x)是以2为周期的周期函数,且是偶函数,根据上的解析式,图象关于y轴对称,可以绘制上的图象,根据周期性,可以绘制上的图象,而是个偶函数,绘制其在y轴右侧图象可知两图象右侧有两个交点,根据对称性可得共有四个交点,故选B.【考点】函数与方程.27.已知函数,其中表示不超过实数的最大整数.若关于的方程有三个不同的实根,则实数的取值范围是()A.B.C.D.【答案】B【解析】关于的方程有三个不同的实根,转化为两个函数图像有三个不同的交点,函数的图像(如图),函数恒过定点为,观察图像易得【考点】函数图象交点个数.28.函数是定义域为R的奇函数,且时,,则函数的零点个数是()A.1B.2C.3D.4【答案】C【解析】由题意知,当时,令,即,令,,当时,与有1个交点,即时有1个零点,又是定义域为R的奇函数,所以函数有3个零点.【考点】奇函数的性质、零点问题.29.已知,其中为常数,且.若为常数,则的值__________【答案】【解析】根据题意分别得到和的解析式,算出化简后等于k,根据合分比性质得到k即可。
高三数学函数试题
高三数学函数试题1.给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在(0,)上不是凸函数的是________.①f(x)=sim x+cos x ②f(x)=ln x-2x③f(x)=x3+2x-1 ④f(x)=x·e x【答案】④【解析】由凸函数的定义可得该题即判断f(x)的二阶导函数f″(x)的正负.对于A,f′(x)=cos x-sin x,f″(x)=-sin x-cos x,在x∈(0,)上,恒有f″(x)<0;对于B,f′(x)=-2,f″(x)=-,在x∈(0,)上,恒有f″(x)<0;对于C,f′(x)=-3x2+2,f″(x)=-6x,在x∈(0,)上,恒有f″(x)<0;对于D,f′(x)=e x+xe x,f″(x)=e x+e x+xe x=2e x+xe x,在x∈(0,)上,恒有f″(x)>0.2.具有性质:=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①y=x-;②y=x+;③y=,其中满足“倒负”变换的函数是________(填序号).【答案】①③【解析】对于①,f(x)=x-,f=-x=-f(x),满足;对于②,f=+x=f(x),不满足;对于③,f=即f=故f=-f(x),满足.综上可知,满足“倒负”变换的函数是①③.3.(2013•浙江)已知函数f(x)=,若f(a)=3,则实数a=_________.【答案】10【解析】因为函数f(x)=,又f(a)=3,所以,解得a=10.故答案为:10.4.设[x]表示不大于x的最大整数, 则对任意实数x, y, 有A.[-x]=-[x]B.[x + ]=[x]C.[2x]=2[x]D.【答案】D【解析】代值法。
高三数学函数试题答案及解析
高三数学函数试题答案及解析1.已知[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.2]=-2.x是函数f(x)=ln x-的零点,则[x]等于________.【答案】2【解析】∵函数f(x)的定义域为(0,+∞),∴函数f′(x)=+>0,即函数f(x)在(0,+∞)上单调递增.由f(2)=ln 2-1<0,f(e)=ln e->0,知x0∈(2,e),∴[x]=2.2.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法3.下图揭示了一个由区间到实数集上的对应过程:区间内的任意实数与数轴上的线段(不包括端点)上的点一一对应(图一),将线段围成一个圆,使两端恰好重合(图二),再将这个圆放在平面直角坐标系中,使其圆心在轴上,点的坐标为(图三).图三中直线与轴交于点,由此得到一个函数,则下列命题中正确的序号是();是偶函数;在其定义域上是增函数;的图像关于点对称.A.(1)(3)(4).B.(1)(2)(3).C.(1)(2)(4).D.(1)(2)(3)(4).【答案】A【解析】由题意得:对应点为,此时直线与轴交于坐标原点,所以成立,由于函数定义区间为,所以是偶函数不成立,由题意得:直线与轴的交点从左到右,因此在其定义域上是增函数成立,根据直线与轴的交点关于原点对称,而由知的图像关于点对称成立.【考点】函数对应关系4.已知函数,则使函数有零点的实数的取值范围是()A.B.C.D.【答案】C【解析】由题意方程有解,即有解,的取值范围就是函数的值域,当时,,当时,是增函数,取值范围是,即函数的值域是,这就是的取值范围.【考点】方程有解与函数的值域.5.设函数,其中,为正整数,,,均为常数,曲线在处的切线方程为.(1)求,,的值;(2)求函数的最大值;(3)证明:对任意的都有.(为自然对数的底)【答案】(1);(2);(3)见解析.【解析】(1)在切点处的的函数值,就是切线的斜率为,可得;根据切点适合切线方程、曲线方程,可得,.(2)求导数,求驻点,讨论区间函数单调性,确定最值.(3)本小题有多种思路,一是要证对任意的都有只需证;二是令,利用导数确定,转化得到.令,证明.(1)因为, 1分所以,又因为切线的斜率为,所以 2分,由点(1,c)在直线上,可得,即 3分4分(2)由(1)知,,所以令,解得,即在(0,+上有唯一零点 5分当0<<时,,故在(0,)上单调递增; 6分当>时,,故在(,+上单调递减; 7分在(0,+上的最大值=== 8分(3)证法1:要证对任意的都有只需证由(2)知在上有最大值,=,故只需证 9分,即① 11分令,则,①即② 13分令,则显然当0<t<1时,,所以在(0,1)上单调递增,所以,即对任意的②恒成立,所以对任意的都有 14分证法2:令,则. 10分当时,,故在上单调递减;而当时,,故在上单调递增.在上有最小值,.,即. 12分令,得,即,所以,即.由(2)知,,故所证不等式成立. 14分【考点】导数的几何意义,直线方程,应用导数研究函数的单调性、最(极)值、证明不等式,转化与化归思想,分类讨论思想,应用导数研究恒成立问题.6.设[x]表示不超过x的最大整数(如[2]=2,[]=1),对于给定的n N*,定义x,则当x时,函数的值域是()A.B.C.D.【答案】D【解析】当时,,故;当时,,故,因为,故,综上函数的值域是.【考点】函数的值域.7.若直角坐标平面内两点满足条件:①点都在的图象上;②点关于原点对称,则对称点对是函数的一个“兄弟点对”(点对与可看作一个“兄弟点对”).已知函数, 则的“兄弟点对”的个数为( )A.2B.3C.4D.5【答案】D【解析】设,则点关于原点的对称点为,于是,,只需判断方程根的个数,即与图像的交点个数,函数图像如下:所以的“兄弟点对”的个数为5个.【考点】1.函数的值;2.新定义题;3.函数的零点.8.已知函数满足,当,,若在区间内,函数有三个不同零点,则实数的取值范围是()A.B.C.D.【答案】B【解析】当时,则,于是,故,如图所示,作出函数的图像,观察图像可知:要使函数有三个不同零点,则直线应在图中的两条虚线之间,于是.【考点】1.导数求切线斜率;2.函数的图像9.已知函数,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】函数,所以函数在上是增函数,由得,解得或,所以选C.【考点】函数的单调性.10.已知函数,给出下列命题:(1)必是偶函数;(2)当时,的图象关于直线对称;(3)若,则在区间上是增函数;(4)有最大值.其中正确的命题序号是()A.(3)B.(2)(3)C.(3)(4)D.(1)(2)(3)【答案】A【解析】当时,不是偶函数,(1)错;取可得,但图象不关于直线对称,(2)错;当时,,其对称轴为,开口向上在区间上是增函数,(3)正确;因为开口向上无最大值,所以也无最大值,(4)错,所以正确的是(3),选A.【考点】函数奇偶性、二次函数图象.11.若直角坐标平面内不同的两点满足条件:①都在函数的图像上;②关于原点对称,则称点对是函数的一对“友好点对”(注:点对与看作同一对“友好点对”).若函数,则此函数的“友好点对”有()对.A.B.C.D.【答案】C【解析】函数关于坐标原点对称的函数为与函数的交点个数(如下图)即为“友好点对”的个数,从图象上可知有两个交点.【考点】求函数解析式,函数的奇偶性,二次函数,对数函数的图象.12.已知函数设表示中的较大值,表示中的较小值,记得最小值为得最大值为,则 ( )A.B.C.D.【答案】C.【解析】即,当时,取最小值;当时,取最大值,所以,选C.【考点】分段函数求最值.13.对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.【答案】(Ⅰ)是,理由详见解析;(Ⅱ);(Ⅲ).【解析】(Ⅰ)判断方程是否有解;(Ⅱ)在方程有解时,通过分离参数求取值范围;(Ⅲ)在不便于分离参数时,通二次函数的图象判断一元二次方程根的分布. 试题解析:为“局部奇函数”等价于关于的方程有解.(Ⅰ)当时,方程即有解,所以为“局部奇函数”. 3分(Ⅱ)当时,可化为,因为的定义域为,所以方程在上有解. 5分令,则.设,则,当时,,故在上为减函数,当时,,故在上为增函数,. 7分所以时,.所以,即. 9分(Ⅲ)当时,可化为.设,则,从而在有解即可保证为“局部奇函数”. 11分令,1°当,在有解,由,即,解得; 13分2°当时,在有解等价于解得. 15分(说明:也可转化为大根大于等于2求解)综上,所求实数m的取值范围为. 16分【考点】函数的值域、方程解的存在性的判定.14.对于函数与和区间D,如果存在,使,则称是函数与在区间D上的“友好点”.现给出两个函数①,②,③,④,其中在区间上存在“友好点”的有()A.①②B.②③C.③④D.①④【答案】C【解析】对于①,不符合;对于②,,不符合;对于③,=,,函数在(0,+∞)上是单调减函数,当时,,所以,存在,使成立;对于④令得令,得所以,时,函数取得极大值,且为最大值,最大值为,所以,存在,使成立;故选C.【考点】新定义问题,配方法、导数法求函数的值域.15.已知函数若直线与函数的图象有两个不同的交点,则实数的取值范围是 .【答案】.【解析】如下图所示,作出函数的图象如下图所示,当直线与函数的图象有两个不同的交点,则.【考点】分段函数的图象、函数的零点16.已知函数,(,.若,且函数的图像关于点对称,并在处取得最小值,则正实数的值构成的集合是 .【答案】【解析】由于函数的最小正周期为,由于函数的图象关于点对称,并在处取得最小值,即直线是函数的一条对称轴,故是的奇数倍,即,其中,解得,故正实数的取值集合为.【考点】三角函数的对称性、周期性17.设,定义,则+2等于()A.B.C.D.【答案】A【解析】设终边过点的角(不妨设)则,其中是终边过的角(不妨设).当时,有+2.故选A.【考点】三角函数的性质点评:主要是考查了三角函数的求解,属于基础题。
高三数学基本初等函数Ⅰ试题
高三数学基本初等函数Ⅰ试题1.若函数有两个不同的零点,则实数的取值范围是.【答案】【解析】当时,函数图象与x轴有一个交点,即有一个零点,所以当时,要使函数图象与x轴还要有一个交点,而过点(0,1),所以要向下平移,所以.【考点】本小题主要考查分段函数的图象和函数零点个数问题.点评:函数的零点个数一般都转化为函数图象与x轴的交点个数解决,考查学生的数形结合能力.2.如果函数没有零点,则的取值范围为( )A.B.C.D.【答案】C【解析】因为没有零点,所以无交点,画出两个函数的图像,由图像可知:的取值范围为。
【考点】函数的零点;函数的综合应用。
点评:此题主要利用了数形结合的数学思想,考查了学生画图、识图、用图的能力。
题目较难,对学生的能力要求较高。
3.若的反函数为,且,则的最小值是( ).A.B.C.D.【答案】B【解析】解:由y=2x解得:x=log2y∴函数f(x)=2x的反函数为f-1(x)=log2x,x>0由f-1(a)+f-1(b)=4得:log2a+log2b=4即:log2ab=4∴ab=16∴≥2 = 即的最小值是.答案:B4.函数f (x)=e x+3x的零点个数是A.0B.1C.2D.3【答案】B【解析】,f(x)在R上单调递增,f(0)=1>0,f(-1)=<0,则f(x) 有一个零点在区间(-1,0)内5.若函数且,则下列结论中,必成立的是( ) A.B.C.D.【答案】D【解析】作函数的图像则故选D6.已知函数f(x)=ax2+bx+c(a>0), f′(x)为f(x)的导函数. 设A={x|f(x)<0}, B={x|f′(x)<0}. 若A∩B=P{x|2<x<3},则(b+c)/a = ________【答案】2【解析】略7.对某种产品市场产销量情况如图所示,其中:l1表示产品各年年产量的变化规律;l2表示产品各年的销售情况。
高三数学函数题练习题
高三数学函数题练习题【高三数学函数题练习题】1. 已知函数f(x)的定义域为实数集R,且f(x)=x^2+2x+1,求f(x)的零点及其性质。
解析:为了求f(x)的零点,我们需要解方程f(x)=0。
将f(x)展开得到x^2+2x+1=0,可以通过配方法进行求解:(x+1)^2=0x+1=0x=-1所以,f(x)的零点为x=-1。
下面分析f(x)的性质:- 首先,f(x)是一个二次函数,二次函数的图像为抛物线。
根据二次函数的性质,我们知道f(x)的开口方向为向上,因为x^2的系数为正。
- 其次,由于f(x)的零点为x=-1,所以抛物线与x轴交于该点。
由于抛物线开口向上,所以该点为抛物线的最低点。
- 最后,通过计算可得,f(x)的导数f'(x)=2x+2。
由于导数大于零,所以f(x)在整个定义域上是递增的。
综上所述,函数f(x)=x^2+2x+1的零点为x=-1,抛物线开口向上,最低点为(-1,0),在整个定义域上是递增的。
2. 设函数g(x)的定义域为实数集R,且g(x)=|x+2|+|x-2|,求g(x)的值域。
解析:为了得到g(x)的值域,我们需要确定g(x)的取值范围。
根据绝对值函数的性质,我们可以分为以下几种情况讨论:情况一:x+2≥0,x-2≥0在此情况下,g(x)=x+2+x-2=2x情况二:x+2≥0,x-2<0在此情况下,g(x)=x+2-(x-2)=4情况三:x+2<0,x-2≥0在此情况下,g(x)=-(x+2)+(x-2)=-4情况四:x+2<0,x-2<0在此情况下,g(x)=-(x+2)-(x-2)=-2x-4综上所述,根据不同的情况,g(x)的值域为{-4, -2x-4, 2x, 4}。
3. 给定函数h(x)=3^x-2^x,求h(x)的增函数区间。
解析:为了求h(x)的增函数区间,我们需要找到使h(x)递增的x取值范围。
首先,我们可以尝试计算h(x)的导数,看看是否能够得到关于x的不等式:h'(x)=3^xln3-2^xln2由于3^x和2^x都是正数,ln3和ln2也都是正数,所以h'(x)>0的条件为3^xln3>2^xln2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学函数的图像、零点
一:选择题
1.已知函数f(x)=x2﹣2x+b在区间(2,4)内有唯一零点,则b的取值范围是()
A、R
B、(﹣∞,0)
C、(﹣8,+∞)
D、(﹣8,0)
2.设,用二分法求方程在(1,3)内近似解的过程中,f(1)>0,f(1.5)<0,f(2)<0,f(3)<0,则方程的根落在区间()
A、(1,1.5)
B、(1.5,2)
C、(2,3)
D、无法确定
3.已知函数,那么在下列区间中含有函数零点的是()
(A)(B)
(C)(D)
4.设函数,则函数y=f(x)()
A、在区间(0,1),(1,2)内均有零点
B、在区间(0,1)内有零点,在区间(1,2)内无零点
C、在区间(0,1),(1,2)内均无零点
D、在区间(0,1)内无零点,在区间(1,2)内有零点
5.已知是方程的根, 是方程的根,则的值为()
A.2
B.3
C.6
D.10
6.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则()
A、f(x1)<0,f(x2)<0
B、f(x1)<0,f(x2)>0
C、f(x1)>0,f(x2)<0
D、f(x1)>0,f(x2)>0
7.如图是函数f(x)=x2+ax+b的部分图象,函数g(x)=e x﹣f'(x)的零点所在的区间是(k,k+1)(k∈z),则k的值为()
8.若函数f(x)的零点与g(x)=4x+2x﹣2的零点之差的绝对值不超过0.25,则f(x)可
﹣)9.若,则方程在(0,2)上恰好有()个根
A.0B.1C.2D.3
10.已知函数f(x)=,若方程f(x)+2a﹣1=0恰有4个实数根,
(﹣,﹣,,),]
11.函数f(x
)=tanx﹣(﹣2π≤x≤3π)的所有零点之和等于()
12.定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,
3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至多三个零
(,(,,)(,
13.已知定义在R上的奇函数f(x),当x>
0时,f(x)=则关
2
14.已知函数,若方程f(x)=t(t∈R)有四个不同的实
数根x1,x2,x3,x4,则x1x2x3x4的取值范围是()
二:填空题
15.若函数的零点个数为,则______。
16.已知函数f(x)=k•4x﹣k•2x+1﹣4(k+5)在区间[0,2]上存在零点,则实数k的取值范围是
17.已知函数,则关于x的方程f2(x)﹣3f(x)+2=0的实根的个数是.
18.若关于x的方程有四个不同的实根,则实数k的取值范围是.
三:解答题
19.已知函数(k,m为常数).
(1)当k和m为何值时,f(x)为经过点(1,0)的偶函数?
(2)若不论k取什么实数,函数f(x)恒有两个不同的零点,求实数m的取值范围.
20.已知A,B,C是直线l上的不同的三点,O是直线外一点,向量,,满足
,记y=f(x).
(1)求函数y=f(x)的解析式;
(2)若关于x的方程f(x)=2x+b在[0,1]上恰有两个不同的实根,求实数b的取值范围.
21.已知函数f(x)=lnx,,
(I)设函数F(x)=ag(x)﹣f(x)(a>0),若F(x)没有零点,求a的取值范围;(II)若x1>x2>0,总有m[g(x1)﹣g(x2)]>x1f(x1)﹣x2f(x2)成立,求实数m的
取值范围.
22.定义在R上的函数g(x)及二次函数h(x)满足:
且h(﹣3)=﹣2.
(Ⅰ)求g(x)和h(x)的解析式;
(Ⅱ)对于x1,x2∈[﹣1,1],均有h(x1)+ax1+5≥g(x2)﹣x2g(x2)成立,求a的取值范围;
(Ⅲ)设,讨论方程f[f(x)]=2的解的个数情况.。