六年级奥数简便运算习题

合集下载

小学六年级奥数简便运算(含答案)

小学六年级奥数简便运算(含答案)

小学六年级奥数简便运算(含答案)简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。

二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。

所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。

1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。

所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = 1.2×30。

这样一转化,就可以运用乘法分配律了。

六年级奥数专题-简便运算

六年级奥数专题-简便运算

六年级奥数专题-简便运算简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。

例题1。

计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37 =13-(9.63+1.37) =13-11 =2 练习1计算下面各题。

1. 6.73-2817 +(3.27-1 917 ) 2. 759 -(3.8+1 59 )-1153. 14.15-(778 -61720 )-2.125 4. 13713 -(414 +3713 )-0.75例题2。

计算33338712 ×79+790×6666114原式=333387.5×79+790×66661.25=(33338.75+66661.25)×790 =100000×790 =79000000练习2计算下面各题:1. 3.5×114 +125%+112 ÷452. 975×0.25+934 ×76-9.753. 925 ×425+4.25÷160 4. 0.9999×0.7+0.1111×2.7例题3。

计算:36×1.09+1.2×67.3原式=1.2×30×1.09+1.2×67.3 =1.2×(32.7+67.3) =1.2×100 =120疯狂操练 3 计算:1. 45×2.08+1.5×37.6 2. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6例题4。

计算:335 ×2525 +37.9×625原式=335 ×2525 +(25.4+12.5)×6.4=335 ×2525 +25.4×6.4+12.5×6.4=(3.6+6.4)×25.4+12.5×8×0.8=254+80 =334 练习4计算下面各题:1. 6.8×16.8+19.3×3.22. 139×137138 +137×11383. 4.4×57.8+45.3×5.6例题5。

小学六年级奥数简便运算(含答案)

小学六年级奥数简便运算(含答案)

简便运算(一)一、知识要点根据算式的结构和数的特征.灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简.化难为易。

二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号.使4.75和8.25相加凑整.再运用减法的性质:a-b-c = a-(b+c).使运算过程简便。

所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。

1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。

所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法.仔细观察数的特征后可知:36 = 1.2×30。

这样一转化.就可以运用乘法分配律了。

所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把37.9分成25.4和12.5两部分。

六年级奥数简算题

六年级奥数简算题

六年级奥数简算题
一、利用乘法分配律的简算题
1. 题目
计算:公式
解析:
首先观察到公式。

根据乘法分配律公式,这里公式,公式,公式。

则原式可转化为公式。

先计算括号内的公式。

再计算公式。

2. 题目
计算:公式
解析:
先把百分数和分数都转化为小数,公式,公式。

此时式子变为公式。

根据乘法分配律的推广形式公式,这里公式,公式,公式。

先计算括号内公式。

再计算公式。

二、利用拆分法的简算题
1. 题目
计算:公式
解析:
观察每个分数的特点,公式。

那么原式可转化为:公式。

可以发现从第二项起,每一项的分母与后一项的分子可以抵消。

最后只剩下公式。

计算结果为公式。

2. 题目
计算:公式
解析:
先将每个分数进行拆分,公式。

原式变为公式。

中间项相互抵消后,剩下公式。

计算得公式。

三、利用凑整法的简算题
1. 题目
计算:公式
解析:
把每个数凑整,公式,公式,公式,公式。

原式变为公式。

去括号得公式。

先计算加法公式。

再计算公式。

2. 题目
计算:公式
解析:
把公式拆分为公式。

原式变为公式。

根据乘法结合律公式。

先计算公式,公式。

最后公式。

六年级奥数简便算法练习

六年级奥数简便算法练习
原式=【(1992+1)×1994-1】/(1993+1992×1994)
=(1992×1994+1994-1)/(1993+1992×1994)
=1
练习3:计算下面各题: 1.(362+548×361)/(362×548-186) 2.(1988+1989×1987)/(1988×1989-1) 3.(204+584×1991)/(1992×584―380)―1/143
原式=(65/7+65/9)÷(5/7+5/9) =【65×(1/7+1/9)】÷【5×(1/7+1/9)】 =65÷5 =13
练习5: 计算下面各题:
(8 13 6 ) ( 3 5 4) 9 7 11 11 7 9
(3 7 112) (1 5 10) 11 13 11 13
练习2:计算下面各题 1.99999×77778+33333×66666 2.34.5×76.5-345×6.42-123×1.45 3.77×13+255×9994-1)/(1993+1992×1994)
【思路导航】仔细观察分子、分母中各数的特点,就会发现分子中 1993×1994可变形为(1992+1)×1994=1992×1994+1994,同时发现 1994-1 = 1993,这样就可以把原式转化成分子与分母相同,从而简化运 算。所以
原式=1×1111+2×1111+3×1111+4×1111 =(1+2+3+4)×1111 =10×1111 =11110
练习1: 1.23456+34562+45623+56234+62345 2.45678+56784+67845+78456+84567 3.124.68+324.68+524.68+724.68+924.68
练习4:计算: 1.19912-19902 2.99992+19999 3. 999×274+6274

小学六年级奥数简便运算(含答案)

小学六年级奥数简便运算(含答案)

简便运算(一)一、知识要点根据算式的结构和数的特征. 灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简. 化难为易。

二、精讲精练【例题 1】计算 4.75-9.63+ (8.25-1.37 )【思路导航】先去掉小括号 . 使 4.75 和 8.25 相加凑整 . 再运用减法的性质:a-b-c = a -( b+c). 使运算过程简便。

所以原式= 4.75+8.25 -9.63 -1.37=13-( 9.63+1.37 )=13-11=2练习 1:计算下面各题。

1. 6.73 - 2 又 8/17+ (3.27 -1 又 9/17 )2.7 又 5/9 -(3.8+1 又 5/9 )- 1 又 1/53.14.15 -( 7 又 7/8 - 6 又 17/20 )- 2.1254.13 又 7/13 -( 4 又 1/4+3 又 7/13 )- 0.75【例题 2】计算 333387 又 1/2 ×79+790× 66661 又 1/4【思路导航】可把分数化成小数后 . 利用积的变化规律和乘法分配律使计算简便。

所以:原式= 333387.5 × 79+790×66661.25=33338.75 ×790+790× 66661.25=( 33338.75+66661.25 )× 790=100000× 790=79000000练习 2:计算下面各题:1.3.5 ×1 又 1/4+125% +1 又 1/2 ÷4/52.975 ×0.25+9 又 3/4 ×76-9.753.9 又 2/5 ×425+4.25÷1/604.0.9999 ×0.7+0.1111 ×2.7【例题 3】计算: 36× 1.09+1.2 ×67.3【思路导航】此题表面看没有什么简便算法. 仔细观察数的特征后可知:36 =1.2 ×30。

小学六年级奥数简便运算含答案

小学六年级奥数简便运算含答案

小学六年级奥数简便运算含答案简便运算(一)一、知识要点根据算式的结构和数的特征.灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简.化难为易。

二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号.使4.75和8.25相加凑整.再运用减法的性质:a-b-c = a-(b+c).使运算过程简便。

所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。

1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。

所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法.仔细观察数的特征后可知:36 = 1.2×30。

这样一转化.就可以运用乘法分配律了。

所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把37.9分成25.4和12.5两部分。

小学六年级奥数简便运算(含答案)

小学六年级奥数简便运算(含答案)

简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。

二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。

所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。

1.6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。

所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = 1.2×30。

这样一转化,就可以运用乘法分配律了。

所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。

小学六年级奥数简便运算(含答案)

小学六年级奥数简便运算(含答案)

简便运算(一)一、知识要点根据算式的结构和数的特征.灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简.化难为易。

二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号.使4.75和8.25相加凑整.再运用减法的性质:a-b-c = a-(b+c).使运算过程简便。

所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。

1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。

所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法.仔细观察数的特征后可知:36 = 1.2×30。

这样一转化.就可以运用乘法分配律了。

所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把37.9分成25.4和12.5两部分。

小学六年级奥数简便运算 含答案

小学六年级奥数简便运算 含答案

条件培训课程
原式=【(1992+1)×1994-1】/(1993+1992×1994)
=(1992×1994+1994-1)/(1993+1992×1994)
=1
练习 3:计算下面各题:
1.(362+548×361)/(362×548-186)
2.(1988+1989×1987)/(1988×1989-1)
2.235×12.1++235×42.2-135×54.3
3.3.75×735-3/8×5730+16.2×62.5
条件培训课程
简便运算(二)
一、知识要点 计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条 件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。 二、精讲精练 【例题 1】计算:1234+2341+3412+4123 【思路导航】整体观察全式,可以发现题中的 4 个四位数均由数 1,2,3, 4 组成,且 4 个数字在每个数位上各出现一次,于是有 原式=1×1111+2×1111+3×1111+4×1111 =(1+2+3+4)×1111 =10×1111 =11110 练习 1: 1.23456+34562+45623+56234+62345 2.45678+56784+67845+78456+84567 3.124.68+324.68+524.68+724.68+924.68 【例题 2】计算:2 又 4/5×23.4+11.1×57.6+6.54×28 【思路导航】我们可以先整体地分析算式的特点,然后进行一定的转化,创 造条件运用乘法分配律来简算。所以 原式=2.8×23.4+2.8×65.4+11.1×8×7.2 =2.8×(23.4+65.4)+88.8× 7.2 =2.8×88.8+88.8×7.2 =88.8×(2.8+7.2) =88.8×10 =888 练习 2:计算下面各题: 1.99999×77778+33333×66666 2.34.5×76.5-345×6.42-123×1.45 3.77×13+255×999+510 【例题 3】计算(1993×1994-1)/(1993+1992×1994) 【思路导航】仔细观察分子、分母中各数的特点,就会发现分子中 1993× 1994 可变形为 1992+1)×1994=1992×1994+1994,同时发现 1994-1 = 1993, 这样就可以把原式转化成分子与分母相同,从而简化运算。所以

完整word版小学六年级奥数简便运算含答案,文档

完整word版小学六年级奥数简便运算含答案,文档

=简便运算〔一〕一、知识要点根据算式的结构和数的特征 .灵活运用运算法那么、定律、性质和某些公式.可以把一些较复杂的四那么混合运算化繁为简.化难为易。

二、精讲精练【例题1】计算4.75-9.63+〔〕【思路导航】先去掉小括号.使和相加凑整.再运用减法的性质:a-b-c=a-〔b+c〕.使运算过程简便。

所以原式=--=13-〔〕=13-11=2练习1:计算下面各题。

1.-2又8/17+〔-1又9/17〕7又5/9-〔3.8+1又5/9〕-1又1/5-〔7又7/8-6又17/20〕-13又7/13-〔4又1/4+3又7/13〕-【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。

所以:原式=×79+790××790+790×=〔〕×790=100000×790=79000000练习2:计算下面各题:×1又1/4+125%+1又1/2÷4/5975×0.25+9又3/4×76-9又2/5×÷1/60××【例题3】计算:36××【思路导航】此题外表看没有什么简便算法.仔细观察数的特征后可知:36×30。

这样一转化.就可以运用乘法分配律了。

所以. .原式=×30×××〔30××〕×〔〕×100=120练习3:计算:45××52××77848××72×-×【例题4】计算:3又3/5×25又2/5+×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把分成和两局部。

小学六年级奥数简便运算(含答案)

小学六年级奥数简便运算(含答案)

简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。

二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。

所以原式=4.75+8.25-9.63-1.37 =13-(9.63+1.37)=13-11 =2 练习1:计算下面各题。

1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/5 3. 14.15-(7又7/8-6又17/20)-2.125 4. 13又7/13-(4又1/4+3又7/13)-0.75 79+790××66661又1/4 【例题2】计算333387又1/2×79+790【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算79+790××66661.25 简便。

所以:原式=333387.5×79+790790+790××66661.25 =33338.75×790+790=(33338.75+66661.25)×790 100000××790 =100000=79000000 练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/5 2. 975×0.25+9又3/4×76-9.75 3. 9又2/5×425+4.25÷1/60 4. 0.9999×0.7+0.1111×2.7 【例题3】计算:3636××1.09+1.2×67.3 仔细观察数的特征后可知:36 此题表面看没有什么简便算法,仔细观察数的特征后可知:【思路导航】此题表面看没有什么简便算法,= 1.2×30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级奥数练习(一)
一、定义新运算
1、规定a*b=(b+a)×b,求(2*3)*5。

2、定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b。

例如: 4 △6=(4,6)+[4,6]=2+12=14。

根据上面定义的运算,18△12等于几?
4、对于数a,b,c,d,规定〈a,b,c,d〉=2ab-c +d。

已知〈1,3,5,x〉=7,求x的值。

5、规定:6* 2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234。

求7*5。

6、有A,B,C,D四种装置,将一个数输入一种装置后会输出另一个数。

装置A∶将输入的数加上5;装置B∶将输入的数除以2;装置C∶将输入的数减去4;装置D∶将输入的数乘以3。

这些装置可以连接,如装置A后面连接装置B就写成A•B,输入1后,经过A•B,输出3。

(1)输入9,经过A•B•C•D,输出几?
(2)经过B•D•A•C,输出的是100,输入的是几?
(3)输入7,输出的还是7,用尽量少的装置该怎样连接?
二、简便运算
125
.2
20
17
6
8
7
7
15
.
14-





-
-
5
4
2
1
1
25
.1
4
1
1
5.3÷
+
+

75
.9
76
4
3
9
25
.0
975-

+

6.
37
5.1
08
.2
45⨯
+

778
6.2
1.
11
52⨯
+

8.
56
2.1
08
.1
48⨯
+

2.3
3.
19
8.
16
8.6⨯
+

138
1
137
138
137
139⨯
+

6.5
3.
45
8.
57
4.4⨯
+

3.
54
135
2.
42
235
1.
12
235⨯
-

+

1。

相关文档
最新文档