交流电机温升的几个主要原因

合集下载

电 机 温 升

电 机 温 升

电机温升电机的温度与温升大家都知道衡量电机发热程度是用“温升”而不是用“温度”,其单位为:K,(开尔文),K 是一个变量的单位,而℃是一个常量的单位当“温升”突然增大或超过最高工作温度时,说明电机已发生故障。

下面就一些基本概念进行讨论。

1 绝缘材料的绝缘等级绝缘材料按耐热能力分为Y、A、E、B、F、H、C 7个等级,所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。

根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。

如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。

所以电机在运行中,温度是寿命的主要因素之一。

2 温升温升是电机与环境的温度差,是由电机发热引起的。

运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。

这些都会使电机温度升高。

另一方面电机也会散热。

当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。

当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。

但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。

GS标准《 90K (GS是德国标准=欧洲标准)UL标准《 75K (UL是美国标准)3 温升与气温等因素的关系对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。

(1) 当气温下降时,正常电机的温升会稍许减少。

这是因为绕组电阻R下降,铜耗减少。

温度每降1℃,R约降0.4%。

(2) 对自冷电机,环境温度每增10℃,则温升增加1.5~3K。

这是因为绕组铜损随气温上升而增加。

所以气温变化对大型电机和封闭电机影响较大。

电机在不同温度下的效率损失表

电机在不同温度下的效率损失表

电机在不同温度下的效率损失表电机在不同温度下的效率损失表【引言】电机作为现代工业中最常用的电力转换装置之一,其效率对于工业生产的效益和可持续发展起着重要的作用。

然而,电机在运行中会因为各种因素而产生效率损失,其中温度是一个重要的影响因素。

本文将围绕电机在不同温度下的效率损失进行全面评估,并探讨其中的原因和可能的解决方案。

【主体】一、电机性能与温度相关性分析温度是影响电机性能的重要因素之一。

电机自身的损耗会导致温度升高;另高温环境下的导热不良也会导致电机温度升高。

这些因素相互作用,使得温度成为了影响电机效率的重要因素。

1. 电机效率随温度的变化电机在不同温度下的效率往往存在一定的差异。

以某型号交流电机为例,其工作温度范围为-40℃到+60℃。

当电机工作在较低温度时,其效率较高,能够达到额定效率的90%以上。

随着温度的升高,电机的效率逐渐下降,当温度达到极限温度时,电机的效率可能降低到额定效率的80%左右。

2. 温度对电机损耗的影响温度升高会导致电机内部各部件的电阻增加,从而产生更多的电阻损耗。

高温环境下电机的绝缘性能会降低,从而增加了漏电损耗。

这些额外的损耗会导致电机整体效率下降。

二、温度对电机效率的影响原因分析电机在不同温度下的效率损失主要受到两个方面的影响,即内部原因和外部原因。

1. 内部原因内部原因主要与电机本身结构和材料的特性有关。

电机内部的摩擦、电磁铁的电阻和电磁线圈的损耗等都会导致效率下降。

电机受到高温环境的影响,可能会导致电机散热不良,进一步增加了电机的内部损耗。

2. 外部原因外部原因主要包括工作环境温度、通风条件和冷却系统等方面的因素。

如果电机所处的工作环境温度较高,会导致电机散热不够充分,无法有效降低电机温度。

通风条件不良或冷却系统故障也会影响电机的散热效果,从而造成温度上升和效率下降。

三、电机在不同温度下效率损失的解决方案为了降低电机在高温环境下的效率损失,我们可以采取一些措施来改善电机的运行状况。

电机的温度与温升范本

电机的温度与温升范本

电机的温度与温升范本引言电机是将电能转化为机械能的装置,广泛应用于各个领域,如工业生产、交通运输和家庭电器等。

在电机的运行过程中,由于内部电阻、电磁场和机械摩擦等原因,会有一部分电能转化为热能,导致电机的温度升高。

电机的温度会直接影响其性能和寿命,因此对于电机的温度与温升范本的研究具有重要意义。

本文将从电机的温度概念和测量方法、电机的温升机理以及电机的温升范本三个方面进行详细阐述。

第一部分电机的温度概念和测量方法1. 电机的温度概念电机的温度是指电机内部各部件(如绕组、轴承等)的温度。

电机的温度通常由运行温度和环境温度这两个参数来确定。

运行温度是指电机在正常工作状态下达到的温度,是电机能够承受的最高温度。

环境温度是指电机所处的环境温度,包括空气温度、周围物体散热对电机的影响等。

2. 电机温度的测量方法电机温度的测量方法有多种,常见的方法包括:(1)热电阻法:通过在电机内部各部件上安装热电阻传感器,测量电阻的变化来确定温度。

(2)红外线测温法:利用红外线测温仪可以直接测量电机表面的温度,通过表面温度与内部温度之间的关系来估计电机的温度。

(3)红外热像仪:通过感应红外辐射来绘制物体的热分布图,可以直观地观察电机各部件的温度。

(4)负荷试验法:在特定负荷下,测量电机的绕组温度升高以及电机的功率损耗,从而间接估计电机的温度。

以上方法各有优劣,适用于不同的场景和要求。

在实际应用中,可以根据具体情况选择合适的方法进行温度测量。

第二部分电机的温升机理电机的温升是指电机在运行过程中由于电阻、电磁、机械等原因产生的功耗所导致的温度升高。

下面将分别对这几个原因进行详细介绍。

1. 电阻损耗电机内部的绕组和导线具有一定的电阻,电流通过时会产生热量。

电阻损耗是电机温升的主要原因之一,其大小与电流大小成正比。

2. 电磁损耗电机运行时产生的磁场会与电机内部的铁芯、磁材料等产生相互作用,导致能量转化为热能。

电磁焦耳损耗是电机温升的重要原因之一,其大小与电机的磁通密度有关。

电机温升

电机温升

中小型电动机的温升——资料来自机械设计手册第三版并经整理发热与温升:电动机在运行过程中有能量损耗,可分为固定损耗和可变损耗。

固定损耗包括铁损和机械损耗,与负载大小无关,一般型电动机此项数值较小;可变损耗主要是铜损,是电机发热的主要热源,等于电流的平方乘以电阻。

损耗导致电机发热。

电机的温升:发热与散热达到平衡时电机温度与环境温度之差称为电动机的温升。

若以Q 代表单位时间内电动机的发热量;A代表电动机与环境温度相差1度时,单位时间内电动机的散热量,则温升稳定值∆T=Q/A达到温升稳定值所需的时间:理论上达到温升绝对稳定的时间是无限长的,实际上只能达到基本稳定。

所需要的时间与发热时间常数T有关。

若以C代表电机的热容量,即电动机温度升高1度所需的热量,则T=C/A (A的定义同上)T与电动机的构造和尺寸有关。

小型电动机(中心高80~315属于小型)一般为0.5小时左右,大型电动机(中心高大于630mm属于大型)一般为3~4小时。

电机的冷却时间常数为发热时间常数的2~3倍,采用强迫通风时,两者相等。

T并不就是温升的稳定时间。

温升按指数规律随时间的增加而逐渐趋于稳定值。

下表是根据公式计算出的温升与温升稳定值之比TB与时间的关系表列数据可以用来估计温升稳定值和大致达到温升稳定值所需的时间。

举例来说,如果某小型电动机的T=0.5小时,运行3xT=1.5小时的温升为35度,便可得到TB=0.95,则可以推算出温升稳定值为∆T=35/0.95=36.84度。

电机的绝缘等级与允许温升:电机的绝缘等级决定于所采用的材料的耐热等级。

若电机的主要部件采用不同耐热等级的绝缘材料,则其绝缘等级按绝缘材料的最低耐热等级考核。

一般用途的中小型电机常选用较低耐热等级的绝缘材料,如E级,B级;有特殊要求的如高温环境,频繁启动的电机,则采用较高耐热等级的绝缘材料,但有时为了提高电机的使用寿命与可靠性,往往也采用较高耐热等级的绝缘材料,但其温升按较低等级考核。

电动机过热故障原因分析及处理技巧

电动机过热故障原因分析及处理技巧

电动机过热故障原因分析及处理技巧电动机正常运行时温升稳定,并在规定的温升允许范围内。

如果温升过高,或与在同样工作条件下的同类电动机相比,温度明显偏高,就应视为故障了。

电动机运行时温升过高,其产生的影响是的电机的寿命较短,严重时还会造成火灾。

电动机过热往往是电动机故障的综合表现,也是造成电动机损坏的主要原因。

电动机过热,首先要寻找热源,即是由哪一部件的发热造成的,进而找出引起这些部件过热的原因。

一、负载过大若拖动机械传动带太紧和转轴运转不灵活,可造成电动机长期过载运行。

这时应会问机械维修人员适当放松传动带,拆开检查机械设备位转轴灵活,并设法调整负载,使电动机保持在额定负载状态下运行,另外电机所带的负载过多、过大,超过自己额定功率,长时间电流较大,电机处于过载状态。

二、工作环境恶劣如电动机在阳光下曝晒,环境温度超过40℃,或在通风不畅的环境条件下运行,会引起电动机温升道高。

可搭简易凉棚遮荫或用鼓风机、风扇吹风,更应注意清除电动机本身通风道的油污及灰尘,以改善冷却条件,电机的风扇应该保持运行正常。

三、电源电压过高或过低电动机在电源电压变动-5%—+10%范围内运行时,可保持额定功率不变。

若电源电压超过额定电压的10%,会引起铁心磁通密度急剧增加,使铁损增大而导致电动机过热。

具体检查方法是,用交流电压表测量母线电压或电动机的端电压,若是电网电压原因,应向供电部门反映解决;若是电路压降过大,应更换较大截面积的导线和缩短电动机与电源的距离。

四、电源断相若电源断相,使电动机单相运行,短时间就会造成电动机的绕组急剧发热而导致烧毁。

因此,应先检查电动机的熔断器和开关状况,然后用万用表测量前部线路。

由于笼型转子导条断裂、开焊或转子导条截面积太小,使损耗增加而发热,可在停机后测试转子温度,查找故障原因并予以排除电动机起动频繁或正反转次数过多,应限制起动次数,正确选用过热保护或更换适合生产要求的电动机。

三相电压严重不平衡,应检查定子绕组相间或匝间短路及定子绕组接地情况。

电机温升 环境温度

电机温升 环境温度

电机温升环境温度电机温升与环境温度近年来,电机在各行各业中的应用越来越广泛。

然而,随着电机工作时产生的热量也逐渐引起了人们的关注。

电机温升问题对于电机的正常运行和寿命有着重要的影响。

其中,环境温度是影响电机温升的一个重要因素。

环境温度是指电机所处的周围空气的温度。

它直接影响着电机的散热效果。

一般来说,环境温度越高,电机的温升也会越高。

这是因为高温会加剧电机内部的热量积聚,导致电机散热困难,从而使电机温度升高。

相反,当环境温度较低时,电机的温升也会相对较低。

当电机长时间在高温环境下工作时,电机温度会逐渐升高,这可能导致电机的绝缘材料老化甚至烧毁,从而影响电机的正常运行。

因此,为了确保电机的稳定工作,我们需要合理控制环境温度,并采取相应的散热措施。

可以通过优化电机的结构设计来提高散热效果。

例如,增加散热片的数量和面积,增加散热风扇的转速等。

这些措施可以增加电机与周围空气的接触面积,提高散热效率,从而有效降低电机的温升。

可以选择适当的环境温度范围来工作电机。

一般来说,电机的额定温度是指电机在额定负载下连续工作时的最高温度。

如果环境温度超过了额定温度,就需要采取相应的降温措施,例如增加散热风扇的数量或者使用风冷式散热装置等。

还可以通过改善工作环境来控制电机的温升。

例如,可以增加通风设备,提供良好的通风条件,降低环境温度,从而减少电机的温升。

电机温升与环境温度密切相关。

合理控制环境温度,采取适当的散热措施,可以有效降低电机的温升,保证电机的正常运行。

因此,在电机的设计和使用过程中,我们必须重视环境温度对电机温升的影响,合理选择工作环境,确保电机的稳定工作。

只有这样,才能最大限度地发挥电机的功效,延长电机的使用寿命,为各行各业的发展提供有力的支持。

电动机的温升与过载保护

电动机的温升与过载保护

电动机的温升与过载保护随着电动机在各个领域的广泛应用,对其温升和过载保护问题的研究也越来越重要。

本文将从电动机的温升原理、过载保护的作用和方法等方面进行探讨。

一、电动机的温升原理电动机在运行时会产生热量,而这部分热量主要由电动机的铜耗、铁耗和机械耗等造成。

其中,铜耗是由于电流通过线圈时产生的电阻导致发热,铁耗是由于铁心材料的磁滞和涡流损耗引起的,而机械耗则是由于机械运动时产生的摩擦和空气阻力所致。

电动机的温升可通过以下公式进行计算:Δθ = 1.0 × (Pc / G) + θ_a其中,Δθ为电动机的温升,Pc为电动机的总功率损耗,G为电动机的空气冷却量,θ_a为环境温度。

二、过载保护的作用过载保护是为了防止电动机在长时间或大负载运行时温度升高过快或过高而导致损坏。

过载保护的作用主要有以下几点:1. 保护电动机和设备:过载会导致电动机发热过高,进而影响设备的正常运行。

通过过载保护装置的启动,可以及时切断电源,避免对电动机和设备的损坏。

2. 保护操作人员安全:过载时电动机可能会发生故障,如短路或绕组断线等,引发危险情况。

通过过载保护装置的作用,可以及时切断电源,保护操作人员的人身安全。

3. 提高电动机的使用寿命:过载会导致电动机长时间在高温状态下运转,加速电机部件的老化和损坏。

过载保护装置的运行可以避免这种情况,从而延长电动机的使用寿命。

三、过载保护方法为了保证电动机的安全运行,可以采取以下几种过载保护方法:1. 电流保护:通过设置电流保护装置,当电动机的电流超过额定值时,自动切断电源,避免电动机过载。

这种方法适用于单相电动机和小型三相电动机。

2. 温度保护:通过温度传感器,实时检测电动机的温度,当温度超过设定值时,自动切断电源。

这种方法适用于大型三相电动机和高温环境下的电动机。

3. 过负荷继电器保护:将过负荷继电器连接到电动机的回路上,当电动机的负荷超过额定值时,继电器动作切断电源。

这种方法适用于无法直接测量电流和温度的情况。

浅谈电动机发热的原因及解决的方法

浅谈电动机发热的原因及解决的方法

浅谈电动机发热的原因及解决的方法摘要:本文主要针对电动机在实际运行时经常会出现因某些自身或外部故障而引起温升过高或是出现冒烟现象,造成电动机的损坏,要找到原因才能及时解决和处理,才能防止电动机的烧毁,针对这一现象,主要从电动机自身结构和外部干扰等方面的故障对电动机发热原因进行了分析并提出了相应的解决方法。

关键字:电动机发热解决方法0.引言电动机是一种将电能转化成机械能,用来驱动其他装置的电气设备。

广泛应用于水泵、风机、运输机械、搅拌机、农业机械、食品机械等行业领域。

但是由于各种原因,电动机烧毁的情况时有发生,严重影响了我们的生产、生活的安全与稳定。

本文主要结合实际生产过程,从电动机自身结构和外部干扰等方面讨论影响电动机发热的原因、现象以及解决和处理方法,对电动机发热问题进行分析和说明。

1.实际运行中电动机发热的原因及解决方法在实际运行中引起电动机温升过高或是出现冒烟现象的外界原因有很多,因此选择电动机时应考虑电动机的发热、允许过载能力和启动能力。

1.1 电动机正常运行时内部结构引起的发热:电机线圈有电阻R1/R2,当电流流过时电阻发热产生热功率损耗;铁芯的磁场有“磁滞回线”,电能转变的磁能有一部分继续转变为热能了产生热功率损耗;铁芯还有涡流,电能转变的磁能有一部分又变成电流进而又变成热能产生涡流损耗;由于机械转动部件之间有摩擦,电能转变的动能有一部分继续转变为热能了热功率损耗。

解决方法:电机要注意保持通风,及时排出的内部热量,避免造成电动机温度升高,一般情况下电动机都自带冷却风扇来散热(一般电机的冷却风扇套在电机后轴承上和电机一体,随着电机的旋转一起转动;变频电机的冷却风机是独立的,固定在电机后端盖上;大型电机配有自己的冷却风管更深层次的冷却),当运行环境温度较高时,冷却风扇不能满足散热条件时可额外增加轴流风机来帮助散热。

1.2 长期过负荷:电动机在长时间过负荷运行时,容易引起电机绕组发热,严重时会烧毁电动机:解决方法:应调整负荷,适当的降低负荷运行,尽量不要长期过负荷运行。

马达温升过高的原因

马达温升过高的原因

电机的温度与温升来源:考试大2009/4/30 【考试大:中国教育考试第一门户】模拟考场视频课程字号:T T大家都知道衡量电机发热程度是用“温升”而不是用“温度”,当“温升”突然增大或超过最高工作温度时,说明电机已发生故障。

下面就一些基本概念进行讨论。

1 绝缘材料的绝缘等级绝缘材料按耐热能力分为y、a、e、b、f、h、c7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。

所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。

根据经验,a级材料在105℃、b级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。

如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。

所以电机在运行中,温度是寿命的主要因素之一。

2 温升温升是电机与环境的温度差,是由电机发热引起的。

运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。

这些都会使电机温度升高。

另一方面电机也会散热。

当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。

当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。

但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。

3 温升与气温等因素的关系对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。

(1) 当气温下降时,正常电机的温升会稍许减少。

这是因为绕组电阻r下降,铜耗减少。

温度每降1℃,r约降0.4%。

(2) 对自冷电机,环境温度每增10℃,则温升增加1.5~3℃。

这是因为绕组铜损随气温上升而增加。

电机温升改善方案

电机温升改善方案

电机温升改善方案电机温升是指电机运行过程中产生的热量使电机内部温度升高的现象。

电机温升过高会影响电机的正常运行,甚至可能导致电机损坏。

因此,改善电机温升是提高电机运行效率和延长电机寿命的重要任务。

要解决电机温升问题,首先需要了解电机温升的原因。

电机温升主要由以下几个方面引起:1. 电机内部损耗:电机在运行过程中会产生一定的电流和磁场,这些电流和磁场会引起电机内部的损耗,进而产生热量。

降低电机内部损耗是减少电机温升的关键。

2. 外部环境温度:电机周围环境温度过高会导致电机散热不畅,从而使电机温升加剧。

因此,合理控制电机周围环境温度也是改善电机温升的重要措施之一。

针对以上问题,下面将提出一些改善电机温升的方案:1. 优化电机设计:通过优化电机结构和材料,减少电机内部损耗是改善电机温升的关键。

采用低损耗的电机铁心材料、合理降低电机线圈电阻、减小磁滞损耗等措施可以有效降低电机内部损耗。

2. 提高电机的通风散热性能:增加电机的散热面积,采用散热效果好的散热材料,合理设计电机的散热通道等措施可以提高电机的散热效果,减少电机温升。

3. 控制电机的负载:合理控制电机的负载可以减少电机的工作功率,从而减少电机的损耗和温升。

采取电机变频调速、负载匹配等措施可以实现对电机负载的有效控制。

4. 合理降低电机的工作温度:通过合理选择电机额定工作温度、控制电机工作时间、增加电机的冷却时间等措施可以降低电机的工作温度,从而减少电机温升。

改善电机温升是提高电机运行效率和延长电机寿命的重要任务。

通过优化电机设计、提高电机的通风散热性能、控制电机的负载、合理降低电机的工作温度等措施可以有效改善电机温升问题。

只有采取综合措施,才能保证电机在正常运行过程中温升控制在合理范围内,确保电机的长期稳定运行。

电机的温度与温升

电机的温度与温升

电机的温度与温升是电机工作过程中的一个重要参数,决定着电机的性能和稳定性。

温度和温升直接影响着电机的绝缘系统、冷却系统和电机的寿命。

首先,我们需要了解电机的工作原理和造成温升的因素。

电机的工作原理是将电能转化为机械能,通过电场和磁场的作用产生转矩,驱动负载工作。

在这个过程中,电机会产生一定的热量。

造成电机温升的主要因素有以下几个:1. 电流:电机的电流大小直接影响着温升。

电流越大,电机内部的电阻损耗就越大,产生的热量也就越多,导致温升较大。

2. 负载:电机的负载大小也会影响温升。

负载越大,电机需要提供的功率也就越大,从而产生更多的热量。

3. 散热:电机的散热条件对温升也有很大影响。

如果散热条件不好,电机内部的热量很难及时散发出去,从而导致电机的温度升高。

4. 环境温度:环境温度也会对电机的温升产生一定影响。

如果环境温度已经比较高,电机本身的温度升高会更快。

了解了造成电机温升的因素后,我们可以进一步探讨电机的温度和温升的问题。

电机的温度是指电机工作时的实际温度。

在电机正常工作时,会有一个热平衡状态,即电机内部的热量产生与散发的速度相等,从而使得电机的温度保持在一个相对稳定的范围内。

这个温度通常由电机的绝缘材料和工作条件决定。

电机温升是指电机在工作过程中温度的增加。

温升包括局部温升和整体温升两个方面。

局部温升是指电机不同部分的温升差异,通常是由于电机有些部分对散热不利,或者电机局部产生了更多的热量。

整体温升是指整个电机的温升情况,是电机表面温度和环境温度之间的差值。

电机的温度和温升是电机运行状态的重要指标。

通常,电机的温度过高会导致电机绝缘系统老化加速,绝缘性能下降,可能导致绝缘击穿甚至引发事故。

另外,电机温度过高还会影响电机的磁特性,引起电机的效率下降和损耗增加,降低电机的工作效率和寿命。

为了保证电机的正常运行和提高电机寿命,必须合理控制电机的温度和温升,采取一些措施来降低电机的温度:1. 选择合适的电机:根据负载需求选择电机的额定功率和转速,合理匹配电机与负载。

电机的温升定义

电机的温升定义

电机的温升定义1. 引言电机是一种将电能转换为机械能的装置,广泛应用于各个领域,包括工业、农业、交通等。

在电机运行过程中,会产生一定的热量,这就是所谓的温升现象。

了解电机的温升定义对于电机的设计、运行和维护非常重要。

本文将详细介绍电机的温升定义及其影响因素。

2. 温升定义2.1 温升概念温升是指电机在运行过程中由于内部损耗而产生的热量使得电机内部温度上升的现象。

在理想状态下,电机内部热量与外界环境之间可以达到平衡,使得电机内部温度保持稳定。

然而,在实际情况下,由于损耗等因素,电机内部会出现一定程度的温度上升。

2.2 温升计算方法为了准确计算电机的温升,需要考虑以下几个因素:2.2.1 热阻热阻是指单位面积单位时间内通过材料传导热量的难易程度,通常用R表示。

电机中的各个部件具有不同的热阻,通过计算各个部件的热阻可以得到整个电机的热阻。

2.2.2 热容热容是指单位质量物质在温度变化下吸收或释放的热量,通常用C表示。

电机中的各个部件具有不同的热容,通过计算各个部件的热容可以得到整个电机的热容。

2.2.3 损耗功率损耗功率是指电机在运行过程中因摩擦、转子铜损等原因产生的功率损失。

损耗功率可以通过实验测量或者理论计算得到。

根据以上参数,可以使用以下公式计算电机的温升:ΔT=P loss×RC其中,ΔT表示温升,P loss表示损耗功率,R表示热阻,C表示热容。

2.3 温升限制电机在运行过程中如果温升过高,会对电机造成一定程度的损坏甚至引发火灾等安全事故。

为了保证电机的安全运行,需要对电机的温升进行限制。

通常情况下,电机的温升限制由国际标准和行业规范来确定。

各个国家和地区的标准和规范可能有所不同,但一般情况下,电机的温升限制在80℃左右。

3. 影响因素电机的温升受到多种因素的影响,包括但不限于以下几个方面:3.1 外界环境温度外界环境温度是指电机周围环境的温度。

当外界环境温度较高时,电机的散热效果会受到影响,从而导致温升增加。

交流风机过热保护原因

交流风机过热保护原因

交流风机过热保护原因
交流风机过热保护的原因可能有以下几种:
1.散热器不干净:积灰、积尘等会阻碍散热器的正常散热,
导致温度升高。

2.风机轴承老化:风机长期运转会导致轴承磨损,转速变
慢,产生过多的热量。

3.电源电压不稳定:电源电压不稳定会导致风机负荷过大,
产生过多的热量。

4.进风口堵塞:风机进风口堵塞,进风不畅,使得电机工
作过程中散热不畅,温度升高引起保护。

5.周围换气不畅:使用环境过于密闭,周围的氧气不足,
容易导致电机长时间工作后内部温度过高,引发保护。

6.电机内部故障:当电机老化、绕组短路、电线老化等内
部故障时,会导致电机长时间工作温度过高,从而引发保护机制。

为了解决交流风机过热保护的问题,可以采取以下措施:1.清洗散热器:定期清洗散热器可以避免积灰、积尘等带
来的影响,保证风机正常散热。

2.更换风机轴承:如果轴承老化,需要更换新的轴承,以
保证风机的运转速度和散热效率。

3.升级风扇:可以根据使用环境的需求升级更高效的风扇,
可以大大提高风机散热效率。

4.更换风机:如果以上方法都不能解决问题,只能考虑更
换新的风机。

5.检查供电电源电压,保证电源电压稳定。

6.优化使用环境,保持周围换气流畅。

7.清理风机进风口和附近区域,保持散热畅通。

以上信息仅供参考,建议咨询专业人士获取更准确的信息。

电动机温升分析

电动机温升分析

3.负载 (1) 电动机长期过载。 (2) 电动机起动过于频繁,起动时间过长。 (3) 被拖动机械故障,使电动机出力增大,或被卡住不转。
4.环境和通风散热 (1) 环境温度高于 35℃, 进风过热。 (2) 机内灰尘过多,不利散热。 (3) 风罩或机内挡风板未装,风路不畅。 (4) 风扇损坏,未装或装反。 (5) 封闭式电机外壳散热片缺损过多,防护式电机风道堵塞。 (刘开江)
1. 电源质量
(1)电源电压高于规定范围(+10%) ,使铁芯磁通密度过大,铁耗增加而过热;也使 励磁电流加大,导致绕组温升增高。
(2)电源电压过低(-5%) ,在负载不ห้องสมุดไป่ตู้情况下,三相绕组电流增大而过热。
(3)三相电源缺相,电动机缺相运行而过热。 (4)三相电压不平衡超过规定(5%) ,从而引起三相电源不平衡,电机额外发热。 (5)电源频率过低,导致电机转速降低,出力不足,但负载不变,绕组电流增加,电动 机过热。 2. 电动机本身 (1)误将Δ形接成丫形或丫形接成Δ形,电机绕组过热。 (2)绕组相间、匝间短路或接地,导致绕组电流增大,三相电流不平衡。 (3)绕组并联支路中某些支路断线,造成三相电流不平衡,未断线支路绕组过载发热。 (4)定、转子相擦发热。 (5)鼠笼转子导条断裂,或绕线型转子绕组断线。电机出力不足而发热。 (6)电机轴承过热。
当然较准确的是在电动机吊环孔内插入一支温度计(孔口可用碎布或棉花密封)来测量, 温度计测得的温度一般比绕组最热点温度低 10℃~20℃ 。根据测得的温度推算最热点的 温度,正常运行时,不应超过该电动机绝缘等级规定的最高允许温度。
二、造成电动机温升过高的原因
造成电动机温升过高的原因是多方面的,电源、电动机本身、负载以及工作环境和通风散 热情况都会导致电动机过热。主要原因归纳如下:

电机的温度与温升

电机的温度与温升

电机的温度与温升电机温升是指电机工作时产生的热量使电机温度升高的现象。

电机的温度与温升是电机设计和运行中非常重要的参数,因为电机的温度升高可能会导致电机过热,进而损坏电机工作效率、减少使用寿命甚至引发事故。

一、电机的温度与温升原因电机的温度升高主要由以下几个原因造成:1. 磁场损耗:电机在工作时会产生磁场,而磁场的产生与磁铁和线圈的能量转化有关,一部分电能会转化为磁能,而剩余的一部分电能会转化为热能,使电机温度升高。

2. 电阻损耗:电机在工作过程中,电流通过导线或电绕组时会产生电阻,电阻会使电能转化为热能并发热,从而导致电机温度升高。

3. 摩擦损耗:电机的机械部件(如轴承、齿轮等)在运转时会产生摩擦,摩擦会使机械能转化为热能,从而使电机温度升高。

4. 冷却不良:当电机运行时,若冷却条件不良,无法有效地将热量散发出去,就会导致电机温度升高。

二、电机的温度与温升的影响电机的温度升高会对电机的性能和寿命产生重要影响。

1. 功率损失:电机温度升高会导致功率损失增加,降低电机的工作效率。

一般来说,电机在高温下的效率要低于在低温下的效率。

2. 电绕组的绝缘老化:电机温度升高会使电绕组的绝缘老化加速,导致电机绝缘损坏,增加继电保护动作的可能性,甚至引发火灾。

3. 机械部件的热膨胀:电机温度升高会导致机械部件的热膨胀,增加轴承的摩擦,使轴承磨损加剧,导致电机噪音增加、振动加大。

4. 使用寿命的缩短:过高的温度升高会导致电机的使用寿命缩短。

电机部件在高温下承受的热应力大,容易出现松动、变形等问题,从而缩短电机的寿命。

三、控制电机温度与温升的方法控制电机温度与温升是确保电机正常运行和延长使用寿命的重要措施,可以采取以下措施:1. 选择合适的冷却方法:根据电机的使用环境和功率大小,选择合适的冷却方法,如自然风冷却、强制风冷却、水冷却等方式,提高电机的散热效果。

2. 提高电机的绝缘等级:选择具有较高绝缘等级的电机,提高绝缘材料的耐高温性能,延长电机的使用寿命。

电机温升原因及解决方法详解

电机温升原因及解决方法详解

电机温升原因及解决方法详解什么是电机温升?电机由常温(其各部分温度与环境温度相同)开始运行,温度不断升高,当其高出环境温度后,一方面继续吸收热量缓慢升温。

另一方面开始向周围散发热量。

当电机处于热量平衡装态,温度不再升高时,电机的温度与环境温度之差称之为电机温升。

既:温升=电机温度-环境温度; 用K为单位。

此外,电机中绝缘材料的寿命与运行温度有密切的关系,为确保电机的安全、合理使用,需要监视与测量电机的绕组、铁芯等其他部分的温度;按照国家标准规定,不同的绝缘等级的电机绕组有不同的允许温升,如下表所示:若超过规定值,如E级绝缘的电机,温升每增加5℃,电机的寿命将降低一半。

因此电机的温度温升试验对改进电机的设计和制造工艺有着重大的影响,同时对提高电机的品质起到决定性的作用。

电机的温度温升该怎么测试呢?常用的有三种方法,电阻法、温度计法、埋置检温计法。

电机温升原因1.电气原因电源的质量,电压是否太高或太低,三相电压是否平衡(原则上不能超过额定值的5%),是否缺相。

电力电源线和开关的触点是否松动。

如有必要,可以将交流电压表并联在电动机端子上,以进行运行监视,以查看电压是否为水平。

稳定性好,是否有起伏,跳动现象,进而是发现电机故障的原因。

2.电机本身的原因。

检查电机冷却风扇是否正常,风扇叶片是否损坏,风扇叶片与轴之间的键或顶线是否松散,丢失。

风扇盖是否关闭或损坏。

电机是否有异常声音:有必要检查电机定子和转子是否有划痕,轴承是否损坏以及润滑剂是否干燥。

另一个罕见的故障是鼠笼式异步电动机的转子是否有裂纹。

3.使用和环境因素。

首先确定电机是否过载,驱动的设备是否异常,操作是否违反规定。

在北方的冬天,如果环境温度太低,很容易由于润滑油凝结而造成过载!环境温度是否过高,对于在温暖环境中使用的设备,请务必检查电动机的温度。

对于常温环境下的电动机,请注意:电动机的通风散热条件是否良好,恶化。

例如:杂物阻塞风扇的进气口,电动机上的大量灰尘或内部绕组.......所有这些都可能导致电机过热高。

电机在空载状态,为何会出现温度过高情况?

电机在空载状态,为何会出现温度过高情况?

电机在空载状态,为何会出现温度过高情况?有位网友讲,他们用的三相水冷电机,空载十几分钟运行实验,电机水套出来的水就很烫手,询问是什么原因导致。

电机的发热问题,更多地来自于绕组运行时的温度升高。

对于大多数的电机,空载运行的电流,会远远小于电机的额定电流,因而空载运行时电机绕组的温度相对很低,不会出现温度高的情况,一旦电机在空载时出现高温情况,特别是运行时间很短时出现该问题,大多是由于空载电流大导致的问题。

水冷,是电机冷却的方式之一,出水温度与进水温度的差值可以反映电机的温升情况,该网友所说的空载运行10分钟左右出现的水温高的问题,是电机绕组温度较高的具体表现。

正常生产的电机,如果在空载试验出现空载电流大的问题,特别是三相电机,应考虑电机定子接法的问题,如果将星接接法的电机,误接成三角形接法,并按照星接时的额定电压施压,电机会出现明显的空载电流大,导致绕组温升非常高,甚至有明显的电磁声音,并短时间出现烧毁电机绕组的情况。

除电机接法与电源电压的不匹配问题外,就是其他如定转子有效铁长不足、定转子气隙不符合、硅钢片材质不符合等多种情况。

除电机的电气性能外,如果电机的轴承系统出现发热问题,同样会导致电机的温度升高,因而应结合实际情况具体分析。

水冷电机基本结构介绍水冷电机,是在电机外壳上固定有不锈钢套筒,电机外壳与不锈钢套筒之间形成密封空腔,空腔上开有进水孔和回水孔;进水孔和回水孔开在电机外壳与不锈钢套筒之间的下端盖上,回水孔上安装有冷却水回流导管;电机外壳与不锈钢套筒之间通过法兰固接,并在电机外壳与不锈钢套筒连接处安装有O型密封圈。

冷却循环水则由冷却水进水孔流入电机外壳和不锈钢套筒之间的空腔内,冷却循环水通过回流孔流到电机外的循环水装置内。

以上非官方发布内容,仅代表个人观点。

不同电机的允许温升

不同电机的允许温升

不同电机的允许温升电机是我们日常生活中常见的机械设备,广泛应用于各个领域。

在电机的运行过程中,由于能量转化和摩擦等因素的存在,电机会产生一定的温升。

不同类型的电机对于其允许温升有着不同的要求,这也是保证电机安全运行的重要指标之一。

本文将就不同电机的允许温升进行介绍。

我们来看直流电机的允许温升。

直流电机是一种广泛应用的电机类型,其允许温升一般在70℃左右。

在直流电机运行过程中,由于电枢和磁极之间的摩擦和能量转化,会产生一定的热量。

如果温升过高,会导致电机绝缘材料老化、电阻上升等问题,从而影响电机的正常运行。

因此,保持直流电机的允许温升在合理范围内是非常重要的。

接下来,我们来讨论交流电机的允许温升。

交流电机是另一种常见的电机类型,其允许温升一般在80℃左右。

与直流电机类似,交流电机在运行过程中也会产生热量。

交流电机的允许温升范围相对较高,主要是因为交流电机通常采用的是铸铁外壳,具有较好的散热性能。

然而,即使如此,我们仍然要保持交流电机的温升在规定范围内,以确保其正常运行。

还有一种特殊的电机类型,即步进电机。

步进电机是一种控制精度较高的电机,其允许温升一般在90℃左右。

步进电机在运行过程中,由于电磁场的变化以及转子和定子之间的摩擦,也会产生一定的热量。

步进电机的允许温升范围较高,主要是因为步进电机通常用于一些需要高精度控制的场合,对温升要求相对较高。

除了以上几种常见的电机类型,还有一些特殊用途的电机,其允许温升要求也有所不同。

例如,风机电机通常要求允许温升在60℃左右,因为风机电机通常安装在密闭的设备内部,散热条件相对较差;而水泵电机通常要求允许温升在75℃左右,因为水泵电机在运行过程中会受到水的冷却,温升相对较低。

不同类型的电机对于其允许温升有着不同的要求。

直流电机的允许温升一般在70℃左右,交流电机的允许温升一般在80℃左右,步进电机的允许温升一般在90℃左右。

此外,特殊用途的电机对于允许温升的要求也有所不同。

电机的温度与温升

电机的温度与温升

电机的温度与温升电机是一种将电能转换成机械能的装置,在工业和家用电器中被广泛使用。

然而,在电机工作过程中,会产生大量的热量。

这些热量会导致电机温度升高,而温度的升高又会对电机的性能和寿命产生一定的影响。

因此,电机的温度与温升是电机设计和运行中非常重要的参数。

一、电机温度与温升的原因:电机的温度升高是由以下几个因素引起的:1. 电阻损耗:电机的骨架和线圈会有一定的电阻,当通过电流时,会由于电流通过导致电阻产生的热量,这部分热量会导致电机温度升高。

2. 铁心损耗:电机中的铁芯在工作过程中,会因为铁磁材料的磁化和消磁而产生磁滞损耗和涡流损耗。

这些损耗都会以热量的形式产生,导致电机温度升高。

3. 机械摩擦和空气阻力:电机在运行过程中,由于轴承的旋转摩擦和风扇的运转,都会产生一定的摩擦力和阻力,使得电机温度升高。

4. 轴向热传导:电机支撑结构和机壳都会对电机的温升产生一定的影响,因为这些部件会通过热传导的方式将电机内部产生的热量传递到外界环境,使得电机温度升高。

以上几个因素都会对电机的温度产生影响,因此在电机设计和运行过程中,需要考虑如何有效地降低电机的温升。

二、电机温度与温升的影响因素:电机的温度升高对电机的性能和寿命都有一定的影响,以下是电机温度与温升的几个主要影响因素:1.电机绝缘性能:电机温度升高会使得绝缘材料的性能下降,绝缘材料的介电强度和耐热性都会受到影响。

当电机温度过高时,可能会导致绝缘材料的击穿或老化,从而造成电机故障。

2. 功率输出:由于电机内部损耗和热量产生,电机的温度升高会导致电机的效率下降,从而使得功率输出也会受到影响。

3. 寿命:电机的温度升高会加速电机零部件的老化和劣化,从而降低电机的寿命。

4. 运行可靠性:电机的温度升高会导致电机在运行过程中出现故障的概率增加,因此温度升高也会影响电机的运行可靠性。

以上几个因素都说明了电机的温度与温升对电机性能和寿命的重要影响,因此在电机设计和运行过程中,需要合理地控制电机的温度升高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交流电机温升的几个主要原因
一、首先要看看绝缘等级
绝缘材料按耐热能力分为y、a、e、b、f、h、c7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。

所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。

根据经验,a级材料在105℃、b级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。

如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。

所以电机在运行中,温度是寿命的主要因素之一.
温升是电机与环境的温度差,是由电机发热引起的。

运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。

这些都会使电机温度升高。

另一方面电机也会散热。

当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。

当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。

但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。

二、温升与气温等因素的关系
对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高
低无关,但实际上还是受环境温度等因素影响的。

(1)当气温下降时,正常电机的温升会稍许减少。

这是因为绕组电阻r 下降,铜耗减少。

温度每降1℃,r约降0.4%。

(2)对自冷电机,环境温度每增10℃,则温升增加1.5~3℃。

这是因为绕组铜损随气温上升而增加。

所以气温变化对大型电机和封闭电机影响较大.
(3)空气湿度每高10%,因导热改善,温升可降0.07~0.38℃,平均为0.19℃。

(4)海拔以1000m为标准,每升100m,温升增加温升极限值的1%。

通常说a级的极限工作温度为105℃,a级的最高允许工作温度是90℃。

那么,极限工作温度与最高允许工作温度有何不同?其实,这与测量方法有关,不同的测量方法,其反映出的数值不同,含义也不一样。

电机各部位的温度限度
(1)与绕组接触的铁心温升(温度计法)应不超过所接触的绕组绝缘的温升限度(电阻法),即a级为60℃,e级为75℃,b级为80℃,f级为100℃,h级为125℃。

(2)滚动轴承温度应不超过95℃,滑动轴承的温度应不超过80℃。

因温度太高会使油质发生变化和破坏油膜。

(3)机壳温度实践中往往以不烫手为准。

,s!y9W#|2F%`-g1I
(4)鼠笼转子表面杂散损耗很大,温度较高,一般以不危及邻近绝缘为限。

可预先刷上不可逆变色漆来估计。

三、电机发热故障的排除
当电机温度超过最高工作温度或温升超过规定或温升虽然未超过规定,但在低负荷时温升突然增大时,说明电机有故障。

(1)在额定负荷下温升未超过温升限度,仅由于环境温度超过40℃,而使电机温度超过最大允许工作温度。

这种现象说明电机本身是正常的。

解决的办法是用人工方法使环境温度下降,如办不到,则必须减负载运行。

(2)在额定负载下温升超出铭牌规定。

不管什么情况,均属电机有故障,必须停机检查,特别对温升突然变大更要注意。

其外部原因有:电网电压太低或线路压降太大(超过10%),负载太重(超过10%),电机与机械配合不当;内部原因有:单相运行、匝间短路、相间短路、定子接地、风扇损坏或未固紧、风道阻塞、轴承损坏,定转子相擦、电机与电缆接头发热(特别是铜铝或铝铝连接)、电机受腐蚀或受潮等。

此外,从理论上讲电机均可正反转,但有些电机的风扇有方向性,如反了,温升会超出许多。

总之,必须针对各种具体情况,排除故障。

相关文档
最新文档