2019精选教育数学北师大版选修11 第四章 导数应用 单元测试.doc

合集下载

高中数学(北师大版,选修11):第四章+导数应用(课件+同步练习+章末归纳总结+综合检测,10份)第

高中数学(北师大版,选修11):第四章+导数应用(课件+同步练习+章末归纳总结+综合检测,10份)第

3.解决优化问题的基本思路:
牛刀小试 1.设底面为等边三角形的直棱柱的体积为 V,则其表面 积最小时,底面边长为( )
A.3 V
B.3 2V
C.3 4V
D.23 V
[答案] C
[解析] 如图,设底面边长为 x(x>0),
则底面积
S=
43x2,∴h=VS=
4V 3x2.
S 表=x·43Vx2×3+ 43x2×2
设底面为正三角形的直棱柱的体积为 V,那么其表面积 最小时,底面边长为( )
3 A. V
3 B. 2V
3 C. 4V
D.23 V
[答案] C
[解析] 设底面边长为 x,侧棱长为 l,则 V=12x2·sin60°·l, ∴l= 43Vx2.∴S 表=2S 底+3S 侧=x2·sin60°+3·x·l= 23x2+ 4 3V x. ∴S 表′= 3x-4 x32 V=0, ∴x3=4V,即 x=3 4V,又当 x∈(0,3 4V)时,S 表′<0; 当 x∈(3 4V,V)时,S 表′>0 ∴当 x=3 4V时,表面积最小.
=4 x3V+ 23x2,
S′表= 3x-4 x32 V,令 S′表=0 得 x=3 4V,
因为 S 表只有一个极值,故 x=3 4V为最小值点.
2.在周长为l的矩形中,面积的最大值为________.
[答案]
l2 16
[解析] 设一边长为 x,则另一边长为12(l-2x),其面积 S =12x(l-2x) (0∴h=2r,
又 r=
6Sπ,∴h=2
6Sπ=
6πS 3π .
即当圆柱的容积 V 最大时,圆柱的高 h 为
6πS 3π .
[方法规律总结] 1.利用导数解决实际问题中的最值的一 般步骤:

学案导学 备课精选高中数学 第四章 导数应用单元检测(A)(含解析)北师大版选修11

学案导学 备课精选高中数学 第四章 导数应用单元检测(A)(含解析)北师大版选修11

第四章 导数应用(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y =x 2+2x -2在点M 处的切线与x 轴平行,则点M 的坐标是( ) A .(-1,3) B .(-1,-3) C .(-2,-3) D .(-2,3)2.函数y =x 4-2x 2+5的单调减区间为( ) A .(-∞,-1)及(0,1) B .(-1,0)及(1,+∞) C .(-1,1)D .(-∞,-1)及(1,+∞)3.函数f (x )=x 3+ax 2+3x -9,在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .54.已知函数f (x )=ax 3-x 2+x -5在(-∞,+∞)上既有极大值,也有极小值,则实数a 的取值范围为( )A .a >13B .a ≥13C .a <13且a ≠0D .a ≤13且a ≠05.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y=-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件6.设曲线y =x n +1(n ∈N +)在(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2 010x 1+log 2 010x 2+…+log 2 010x 2 009的值为( )A .-log 2 0102 009B .-1C .(log 2 0102 009)-1D .17.方程-x 3+x 2+x -2=0的根的分布情况是( )A .一个根,在⎝⎛⎭⎪⎫-∞,-13内 B .两个根,分别在⎝⎛⎭⎪⎫-∞,-13、(0,+∞)内 C .三个根,分别在⎝⎛⎭⎪⎫-∞,-13、⎝ ⎛⎭⎪⎫-13,0、(1,+∞)内 D .三个根,分别在⎝⎛⎭⎪⎫-∞,-13、(0,1)、(1,+∞)内 8.函数f (x )=2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-169.如果圆柱的轴截面周长为定值4,则圆柱体积的最大值为( ) A.827π B.1627π C.89π D.169π 10.已知f (x )的导函数f ′(x )图像如图所示,那么f (x )的图像最有可能是图中的( )11.函数f (x )=ln x -x 2的极值情况为( ) A .无极值 B .有极小值,无极大值 C .有极大值,无极小值 D .不确定12.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是( ) A .(-∞,0) B .(-∞,0] 题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f (x )=-x 3+ax 在区间(-1,1)上是增函数,则实数a 的取值范围是__________.14.f ′(x )是f (x )=13x 3+2x +1的导函数,则f ′(-1)的值是________.15.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为_____________.16.已知函数f (x )=x 2·f ′(2)+5x ,则f ′(2)=______. 三、解答题(本大题共6小题,共70分)17.(10分)已知函数f (x )=x +ax+b (x ≠0),其中a ,b ∈R .若曲线y =f (x )在点P (2,f (2))处的切线方程为y =3x +1,求函数f (x )的解析式.18.(12分)某物流公司购买了一块长AM=30米,宽AN=20米的矩形地块AMPN,规划建设占地如图中矩形ABCD的仓库,其余地方为道路和停车场,要求顶点C在地块对角线MN上,B、D分别在边AM、AN上,假设AB长度为x米.若规划建设的仓库是高度与AB的长相同的长方体建筑,问AB长为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)19.(12分)已知直线l1为曲线y=f(x)=x2+x-2在点(1,0)处的切线,l2为该曲线的另外一条切线,且l1⊥l2.(1)求直线l2的方程;(2)求由直线l1、l2及x轴所围成的三角形的面积.20.(12分)要设计一容积为V 的有盖圆柱形储油罐,已知侧面的单位面积造价是底面造价的一半,盖的单位面积造价又是侧面造价的一半.问储油罐的半径r 和高h 之比为何值时造价最省?21.(12分)若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数的解析式;(2)若方程f (x )=k 有3个不同的根,求实数k 的取值范围.22.(12分)已知函数f (x )=ax 3-32x 2+1(x ∈R ),其中a >0.(1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)若在区间[-12,12]上,f (x )>0恒成立,求a 的取值范围.第四章 导数应用(A)1.B [∵f ′(x )=2x +2=0,∴x =-1. f (-1)=(-1)2+2×(-1)-2=-3. ∴M (-1,-3).]2.A [y ′=4x 3-4x =4x (x 2-1),令y ′<0得x 的范围为(-∞,-1)及(0,1).]3.D [f ′(x )=3x 2+2ax +3.由f (x )在x =-3时取得极值,即f ′(-3)=0,即27-6a +3=0,∴a =5.]4.C [f ′(x )=3ax 2-2x +1,函数f (x )在(-∞,+∞)上有极大值,也有极小值, 等价于f ′(x )=0有两个不等实根, 即⎩⎪⎨⎪⎧3a ≠0,Δ=4-12a >0. 解得a <13且a ≠0.]5.C [y ′=-x 2+81,令y ′=0,得x =9或x =-9(舍去).当0<x <9时,y ′>0;当x >9时,y ′<0,故当x =9时,函数有极大值,也是最大值.] 6.B [∵f ′(1)=n +1,∴切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =nn +1.所以log 2 010x 1+log 2 010x 2+…+log 2 010x 2 009 =log 2 010(x 1·x 2·…·x 2009)=log 2 010(12·23·…·2 0092 010)=log 2 01012 010=-1.]7.A [令f (x )=-x 3+x 2+x -2,则f ′(x )=-3x 2+2x +1,令-3x 2+2x +1=0,得x =1,或x =-13,故函数f (x )在x =1和x =-13处分别取得极大值f (1)=-1和极小值f ⎝ ⎛⎭⎪⎫-13=-5927,据此画出函数的大致图像,可知函数图像与x 轴只有一个交点,即方程只有一个根,且在⎝⎛⎭⎪⎫-∞,-13内.] 8.A9.A [设圆柱横截面圆的半径为R ,圆柱的高为h ,则2R +h =2.∵V =πR 2h =πR 2(2-2R )=2πR 2-2πR 3, ∴V ′=2πR (2-3R )=0.令V ′=0,则R =0(舍)或R =23.经检验知,R =23时,圆柱体积最大,此时h =23,V max =π·49×23=827π.]10.A [∵(-∞,-2)时,f ′(x )<0, ∴f (x )为减函数;同理f (x )在(-2,0)上为增函数,(0,+∞)上为减函数.]11.C [因为f (x )=ln x -x 2,所以f ′(x )=1x-2x ,令f ′(x )=0得x =22 (x =-22舍去).当0<x <22时,f ′(x )>0,函数单调递增;当x >22时,f ′(x )<0,函数单调递减.所以函数f (x )=ln x -x 2在x =22处取得极大值,无极小值.]12.A [∵f ′(x )=5ax 4+1x,x ∈(0,+∞),∴由题知5ax 4+1x=0在(0,+∞)上有解.即a =-15x5在(0,+∞)上有解.∵x ∈(0,+∞),∴-15x5∈(-∞,0).∴a ∈(-∞,0).] 13.a ≥3解析 由题意应有f ′(x )=-3x 2+a ≥0,在区间(-1,1)上恒成立,则a ≥3x 2,x ∈(-1,1)恒成立,故a ≥3. 14.3解析 ∵f ′(x )=x 2+2,∴f ′(-1)=3.15.(-2,15)解析 设P (x 0,y 0)(x 0<0),由题意知:y ′=3x 20-10=2,∴x 20=4.又∵P 点在第二象限内,∴x 0=-2,∴y 0=15. ∴P 点的坐标为(-2,15).16.-53解析 ∵f ′(x )=f ′(2)·2x +5, ∴f ′(2)=f ′(2)×2×2+5,∴3f ′(2)=-5,∴f ′(2)=-53.17.解 f ′(x )=1-a x2,由导数的几何意义得f ′(2)=3,所以a =-8. 由切点P (2,f (2))在直线y =3x +1上得-2+b =7,解得b =9.所以函数f (x )的解析式为f (x )=x -8x+9.18.解 因为DC AM =NDAN ,且AM =30,AN =20.所以ND =AB AM ·AN =2x3,得AD =AN -ND =20-2x3.仓库的库容V (x )=(20-2x3)·x ·x=-2x 33+20x 2(0<x <30),令V ′(x )=-2x 2+40x =-2x (x -20)=0, 得x =20或x =0(舍去). 当x ∈(0,20)时,V ′(x )>0; 当x ∈(20,30)时,V ′(x )<0.所以当x =20时,V (x )有极大值也是最大值. 即AB 的长度为20米时仓库的库容最大. 19.解 (1)因为f ′(x )=2x +1,所以f ′(1)=3,所以直线l 1的方程为y =3(x -1), 即y =3x -3.设直线l 2过曲线上点B (b ,b 2+b -2), 因为f ′(b )=2b +1,所以直线l 2的方程为 y -(b 2+b -2)=(2b +1)(x -b ),即y =(2b +1)x -b 2-2.又l 1⊥l 2,所以3(2b +1)=-1,所以b =-23,所以直线l 2的方程为y =-13x -229.即3x +9y +22=0.(2)解方程组⎩⎪⎨⎪⎧y =3x -3y =-13x -229,可得⎩⎪⎨⎪⎧x =16y =-52.因为直线l 1、l 2与x 轴的交点坐标分别为(1,0)、⎝ ⎛⎭⎪⎫-223,0, 所以所求三角形的面积为 S =12×⎪⎪⎪⎪⎪⎪-52×⎪⎪⎪⎪⎪⎪1+223=12512.20.解 由V =πr 2h ,得h =Vπr2. 设盖的单位面积造价为a ,则储油罐的造价M =a πr 2+2a ·2πrh +4a ·πr 2=5a πr 2+4aV r,M ′=10a πr -4aVr 2,令M ′=0,解得r =32V 5π,∴经验证,当r =32V 5π时,函数取得极小值,也是最小值,此时,h =Vπr 2=325V 4π. ∴当rh =32V5π325V 4π=25时,储油罐的造价最省.21.解 f ′(x )=3ax 2-b .(1)由题意得⎩⎪⎨⎪⎧f ′2=12a -b =0f 2=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13b =4,故所求函数的解析式为f (x )=13x 3-4x +4.(2)由(1)可得f ′(x )=x 2-4=(x -2)(x +2), 令f ′(x )=0,得x =2或x =-2.当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,当x =-2时,f (x )有极大值283,当x =2时,f (x )有极小值-43,所以函数f (x )=13x 3-4x +4的图像大致如右图所示.若f (x )=k 有3个不同的根,则直线y =k 与函数f (x )的图像有3个交点,所以-43<k <283.22.解 (1)当a =1时,f (x )=x 3-32x 2+1,f (2)=3.f ′(x )=3x 2-3x ,f ′(2)=6,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -3=6(x -2), 即y =6x -9.(2)f ′(x )=3ax 2-3x =3x (ax -1).令f ′(x )=0,解得x =0或x =1a.以下分两种情况讨论:①若0<a ≤2,则1a ≥12.当x 变化时,f ′(x ),f (x )的变化情况如下表:当x ∈[-12,12]时,f (x )>0等价于⎩⎪⎨⎪⎧f -12>0,f12>0,即⎩⎪⎨⎪⎧5-a8>0,5+a 8>0.解不等式组得-5<a <5.因此0<a ≤2.②若a >2,则0<1a <12.当x 变化时,f ′(x ),f (x )的变化情况如下表:当x ∈[-12,12]时,f (x )>0等价于⎩⎪⎨⎪⎧f-12>0,f1a>0,即⎩⎪⎨⎪⎧5-a 8>0,1-12a 2>0.解不等式组得22<a <5或a <-22. 因此2<a <5.综合①②,可知a 的取值范围为0<a <5.。

高中数学(北师大版,选修11):第四章+导数应用(课件+同步练习+章末归纳总结+综合检测,10份)第

高中数学(北师大版,选修11):第四章+导数应用(课件+同步练习+章末归纳总结+综合检测,10份)第

第四章 §1 1.1一、选择题1.函数f (x )=x +ln x 在(0,6)上是( ) A .单调增函数 B .单调减函数C .在(0,1e )上是减函数,在(1e ,6)上是增函数D .在(0,1e )上是增函数,在(1e ,6)上是减函数[答案] A[解析] ∵0<x <6,∴f ′(x )=1+1x >0,∴函数在(0,6)上单调递增.2.设f (x )=x 2(2-x ),则f (x )的单调增区间是( ) A .(0,43)B .(43,+∞)C .(-∞,0)D .(-∞,0)∪(43,+∞)[答案] A[解析] f (x )=x 2(2-x )=2x 2-x 3,f ′(x )=4x -3x 2,令f ′(x )>0,得0<x <43,故选A.3.(2014·新课标Ⅱ文,11)若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) [答案] D[解析] 由条件知f ′(x )=k -1x ≥0在(1,+∞)上恒成立,∴k ≥1.把函数的单调性转化为恒成立问题是解决问题的关键.4.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图像如图所示,则y =f (x )的图像最有可能的是( )[答案] C[分析]由导函数f′(x)的图像位于x轴上方(下方),确定f(x)的单调性,对比f(x)的图像,用排除法求解.[解析]由f′(x)的图像知,x∈(-∞,0)时,f′(x)>0,f(x)为增函数,x∈(0,2)时,f′(x)<0,f(x)为减函数,x∈(2,+∞)时,f′(x)>0,f(x)为增函数.只有C符合题意,故选C.5.已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且当x>0,有f′(x)>0,g′(x)>0,则当x<0时,有()A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0′,g′(x)>0D.f′(x)<0,g′(x)<0[答案] B[解析]由已知f(x)为奇函数,g(x)为偶函数.∵x>0时,f′(x)>0,g′(x)>0,∴f(x),g(x)在(0,+∞)上递增.∴x<0时,f(x)递增,g(x)递减.∴x<0时f′(x)>0,g′(x)<0.6.设函数f(x)在定义域内可导,y=f(x)的图像如图所示,则导函数y=f′(x)的图像可能为()[答案] D[解析] 函数f (x )在(-∞,0)上单调递增,则f ′(x )在(-∞,0)上恒大于0,排除A 、C ;函数f (x )在(0,+∞)上先增加,再减少,最后又增加,则f ′(x )在(0,+∞)上先为正,再为负,最后又为正,故D 选项符合.二、填空题7.函数f (x )=x 3-5x 2+3x +6的单调递减区间为________. [答案] (13,3)[解析] f ′(x )=3x 2-10x +3=(3x -1)(x -3),令f ′(x )<0,得13<x <3,故函数f (x )的单调递减区间为(13,3).8.函数f (x )=x 3-mx 2+m -2的单调递减区间为(0,3),则m =____________. [答案] 92[解析] 令f ′(x )=3x 2-2mx =0,解得x =0或x =23m ,所以23m =3,m =92.9.(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)已知函数f (x )=x 3-ax 2-3x 在区间[1,+∞)上是增函数,则实数a 的取值范围是________.[答案] (-∞,0][解析] ∵f (x )=x 3-ax 2-3x ,∴f ′(x )=3x 2-2ax -3, 又因为f (x )=x 3-ax 2-3x 在区间[1,+∞)上是增函数, f ′(x )=3x 2-2ax -3≥0在区间[1,+∞)上恒成立, ∴⎩⎪⎨⎪⎧a 3≤1,f ′(1)=3×12-2a -3≥0,解得a ≤0,故答案为(-∞,0].三、解答题10.(2014·甘肃省金昌市二中期中)已知函数f (x )=x 3+ax 2+bx (a 、b ∈R )的图像过点P (1,2),且在点P 处的切线斜率为8.(1)求a 、b 的值;(2)求函数f (x )的单调区间.[答案] (1)a =4,b =-3 (2)增区间(-∞,-3),(13,+∞),减区间(-3,13)[解析] (1)∵函数f (x )的图像过点P (1,2), ∴f (1)=2. ∴a +b =1.①又函数图像在点P 处的切线斜率为8, ∴f ′(1)=8,又f ′(x )=3x 2+2ax +b , ∴2a +b =5.②解由①②组成的方程组,可得a =4,b =-3. (2)由(1)得f ′(x )=3x 2+8x -3, 令f ′(x )>0,可得x <-3或x >13;令f ′(x )<0,可得-3<x <13.∴函数f (x )的单调增区间为(-∞,-3),(13,+∞),单调减区间为(-3,13).一、选择题11.若函数y =f (x )的导函数...在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图像可能是( )[答案] A[解析] ∵导函数f ′(x )是增函数,∴切线的斜率随着切点横坐标的增大,逐渐增大,故选A. 12.函数f (x )=-xe x (a <b <1),则( )A .f (a )=f (b )B .f (a )<f (b )C .f (a )>f (b )D .f (a ),f (b )的大小关系不能确定 [答案] C[解析] f ′(x )=(-xe x )′=(-x )′·e x -(-x )·(e x )′(e x )2=x -1ex .当x <1时,f ′(x )<0,∴f (x )为减函数, ∵a <b <1,∴f (a )>f (b ).13.(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)设函数F (x )=f (x )e x 是定义在R上的函数,其中f (x )的导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2012)>e 2012f (0)B .f (2)<e 2f (0),f (2012)>e 2012f (0)C .f (2)<e 2f (0),f (2012)<e 2012f (0)D .f (2)>e 2f (0),f (2012)<e 2012f (0) [答案] C[解析] ∵函数F (x )=f (x )ex 的导数F ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x <0,∴函数F (x )=f (x )ex 是定义在R 上的减函数,∴F (2)<F (0),即f (2)e 2<f (0)e 0,故有f (2)<e 2f (0).同理可得f (2012)<e 2012f (0).故选C.14.函数y =f (x )的图像如图所示,则y =f ′(x )的图像可能是( )[答案] D[解析] 由f (x )的图像知,f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴在(0,+∞)上f ′(x )≤0,在(-∞,0)上f ′(x )≥0,故选D.二、填空题15.若函数f (x )=ax 3+x 恰有三个单调区间,则a 的取值范围是____________. [答案] a <0[解析] 由题知f ′(x )=3ax 2+1=0有两个不等实根,∴⎩⎪⎨⎪⎧a ≠0,Δ=-12a >0,∴a <0. 16.已知函数f (x )=ax +1x +2在(-2,+∞)上单调递减,则a 的取值范围是________.[答案] (-∞,12)[解析] f ′(x )=a (x +2)-ax -1(x +2)2=2a -1(x +2)2,由题意得x >-2时,f ′(x )≤0恒成立, ∴2a -1≤0,∴a ≤12.又当a =12时,f (x )=12x +1x +2=12,此时,函数f (x )在(-2,+∞)上不是减函数,∴a ≠12.综上可知,a 的取值范围为(-∞,12).三、解答题17.设函数f (x )=x 3-3ax 2+3bx 的图像与直线12x +y -1=0相切于点(1,-11). (1)求a 、b 的值;(2)讨论函数f (x )的单调性.[答案] (1)a =1,b =-3 (2)增区间(-∞,-1),(3,+∞) 减区间(-1,3) [解析] (1)f ′(x )=3x 2-6ax +3b .因为f (x )的图像与直线12x +y -1=0相切于点(1,-11),所以f (1)=-11,f ′(1)=-12,即⎩⎪⎨⎪⎧1-3a +3b =-113-6a +3b =-12,解得a =1,b =-3. (2)由a =1,b =-3得f ′(x )=3x 2-6ax +3b =3(x 2-2x -3)=3(x +1)(x -3). 令f ′(x )>0,解得x <-1或x >3; 又令f ′(x )<0,解得-1<x <3.故当x ∈(-∞,-1)时,f (x )是增函数; 当x ∈(3,+∞)时,f (x )也是增函数; 当x ∈(-1,3)时,f (x )是减函数. 18.已知f (x )=e x -ax -1.(1)若f (x )在定义域R 内单调递增,求a 的取值范围;(2)是否存在实数a 使f (x )在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.[答案] (1)a ≤0 (2)a =1 [解析] (1)∵f (x )=e x -ax -1, ∴f ′(x )=e x -a . ∵f (x )在R 上单调递增,∴f ′(x )=e x -a ≥0(等号只能在有限个点处取得)恒成立,即a ≤e x ,x ∈R 恒成立. ∵x ∈R 时,e x ∈(0,+∞),∴a ≤0. (2)f ′(x )=e x -a .若f(x)在(-∞,0]上是单调递减函数⇒e x-a≤0在x∈(-∞,0]时恒成立⇒a≥(e x)max. 当x∈(-∞,0]时,e x∈(0,1],∴a≥1. ①若f(x)在[0,+∞)上是单调递增函数⇒e x-a≥0在x∈[0,+∞)时恒成立⇒a≤(e x)min.当x∈[0,+∞)时,e x∈[1,+∞),∴a≤1. ②由①②知a=1,故存在a=1满足条件.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(1)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(1)

一、选择题1.已知1a e =,ln33b =,ln 44c =,则a 、b 、c 的大小关系为( )A .b c a <<B .c b a <<C .c a b <<D .a c b <<2.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f <<D .()()()286234f f f <<3.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( ) A .4B .26C .27D .64.设函数()ln 2e f x x mx n x =--+.若不等式()0f x ≤对()0,x ∈+∞恒成立,则nm 的最大值为( ) A .4e B .2eC .eD .2e5.函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为( )A .B .C .D .6.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .7.已知函数()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R .若函数()f x 有三个零点,则( )A .1a >,0b <B .01a <<,0b >C .0a <,0b >D .01a <<,0b <8.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点9.已知函数()()30f x ax bx c ac =++<,则函数()y f x =的图象可能是( ).A .B .C .D .10.已知实数2343a e =,4565b e =,6787c e =,那么a ,b ,c 大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>11.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f12.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+二、填空题13.已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______.14.已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a的最小值为______.15.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.16.已知函数()()()2ln f x x x x x a a R =+-∈,若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使得()()f x xf x '>成立,则实数a 的取值范围是______________.17.若存在两个正实数x ,y 使等式()()ln ln 0x m y x y x +--=成立,(其中2.71828e =)则实数m 的取值范围是________.18.已知函数()(0)x f x ae a =>与2()2(0)g x x m m =->的图象在第一象限有公共点,且在该点处的切线相同,当实数m 变化时,实数a 的取值范围为______________. 19.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为______. 20.函数()2sin f x x ax =-在0,2π⎡⎤⎢⎥⎣⎦上的单调递减,则实数a 的取值范围为______. 三、解答题21.已知函数()xf x e ax =-.(1)讨论()f x 的单调性;(2)当1a =-,若关于x 的不等式()f x mx ≥在()0,∞+上恒成立,求实数m 的取值范围.22.已知函数()21x f x ae x =-+. (1)讨论()f x 的单调性;(2)函数()()ln g x f x x x =+,当0a >时,讨论()g x 零点的个数. 23.已知函数()()331f x x ax a R =--∈.(1)当1a =时,求函数()f x 的极大值; (2)讨论函数()f x 的单调性. 24.已知函数1()2ln 2f x x x x x=--+. (Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)设函数()'()g x f x =('()f x 为()f x 的导函数),若方程()g x a =在1,e⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,求实数a 的取值范围.25.已知函数()ln af x x x x=--. (1)当2a =-时,求函数()f x 的极值;(2)若()2f x x x >-在()1,+∞上恒成立,求实数a 的取值范围.26.已知函数32113f xx ax ,0a >. (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积;(2)是否存在实数a ,使得()f x 在[]0,2上的最小值为56?若存在,求出a 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 构造函数()ln xf x x=,利用导数分析函数()f x 在区间[),e +∞上的单调性,由此可得出a 、b 、c 的大小关系.【详解】 构造函数()ln x f x x =,则()21ln xf x x -'=, 当x e ≥时,()0f x '≤,所以,函数()f x 在区间[),e +∞上为减函数,34e <<,则()()()34>>f e f f ,即a b c >>.故选:B. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.数值比较多的比较大小问题也也可以利用两种方法的综合应用.2.B解析:B 【分析】构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>, 所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.3.B解析:B 【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围.【详解】由题意可得()160f x x a x'=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞恒成立因为16x x +≥16x x =即x =时取最小值所以a ≤ 故选:B 【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.4.D解析:D 【分析】 由题意可得ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭,根据它们的图象,结合的导数的几何意义,以及射线的性质,即可得到所求的最大值. 【详解】由不等式()0f x ≤对()0,x ∈+∞恒成立, 即为ln 20e x mx n x --+≤,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,由()210eg x x x'=+>, 可得()g x 在()0,∞+上递增,且()0g e =,当0x →时,()g x →-∞;x →+∞,()g x →+∞, 作出()y g x =的图象, 再设()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭, 可得()h x 表示过,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点), 要求nm 的最大值,且满足不等式恒成立,可得2n m的最大值, 由于点,02n m ⎛⎫⎪⎝⎭在x 轴上移动, 只需找到合适的0m >,且()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,如图所示:此时2n e m =,即nm 的最大值为2e . 故选:D 【点睛】关键点点睛:本题考查不等式恒成立问题的解法,解题的关键是将问题转化为()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,注意运用转化思想和数形结合思想,考查了导数的应用,求切线的斜率与单调性,考查了运算能力和推理能力.5.A解析:A 【分析】分析函数()f x 、()f x '的奇偶性,以及2f π⎛⎫' ⎪⎝⎭、()f π'的符号,利用排除法可得出合适的选项. 【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C 选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误, 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.6.A解析:A 【分析】利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减; 当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.7.B解析:B 【分析】首先求出函数的导函数,要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即可求出参数a 的取值范围,再求出函数的单调区间,从而得到()10f a ->,即可判断b 的范围;【详解】解:因为()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R 所以()()()()()()()222111111ax a a x a a ax x a f x ax a a xxx+--+---+-'=++--==要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即11x a=,21x a =-,所以1010a a->⎧⎪⎨>⎪⎩解得01a <<,此时111x a =>,211x a =-<,令()0f x '>,解得01x a <<-或1x a >,即函数在()0,1a -和1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()0f x '<,解得11a x a -<<或1x a >,即函数在11,a a ⎛⎫- ⎪⎝⎭上单调递减,所以()f x 在1x a =-处取得极大值,在1x a=处取得极小值; 因为当0x →时,()f x →-∞;当x →+∞时,()f x →+∞,要使函数函数()f x 有三个零点,则()10f a ->,10f a ⎛⎫<⎪⎝⎭即()()()()()()2211ln 11112a f a a a a a a ab -=--+-+---+ ()()()()211ln 102a a a a b -+⎡⎤=--++>⎢⎥⎣⎦且()()2211111ln 102a f a a a b a a a a ⎛⎫⎛⎫=-++--+< ⎪ ⎪⎝⎭⎝⎭ 因为01a <<,所以011a <-<,20a -<,所以()()2102a a -+<,()ln 10a -<,所以()()()()211ln 102a a a a -+⎡⎤--+<⎢⎥⎣⎦,又()()()()211ln 102a a a ab -+⎡⎤--++>⎢⎥⎣⎦,所以0b >故选:B 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.8.C解析:C 【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误.【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误; 对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误.故选:C.【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.9.B解析:B【分析】利用函数()f x 的对称性排除A 选项;然后分0a >和0a <两种情况讨论,利用导数分析函数()f x 的单调性,结合()0f 的符号可得出合适的选项.【详解】()3f x ax bx c =++,则()3f x ax bx c -=--+,()()2f x f x c ∴+-=,所以,函数()f x 的图象关于点()0,c 对称,排除A 选项;()3f x ax bx c =++,则()23f x ax b '=+,当0a >,x →+∞时,()0f x '>,函数()f x 单调递增,又0ac <,()00f c ∴=<,排除D 选项;当0a <,x →+∞时,()0f x '<,函数()f x 单调递减,又0ac <,()00f c ∴=>,排除C 选项.故选:B .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;(2)从函数的值域,判断图象的上下位置.(3)从函数的单调性,判断图象的变化趋势;(4)从函数的奇偶性,判断图象的对称性;(5)函数的特征点,排除不合要求的图象.10.C解析:C【分析】根据所给实数的表达式进行构造函数,然后利用导数判断出函数的单调性,最后利用函数的单调性进行判断即可.【详解】构造函数'()(2)()(1)x x f x x e f x x e =-⇒=-,当1x >时,'()0,()f x f x <单调递减, 当1x <时,'()0,()f x f x >单调递增. 因为2342()33a e f ==,4564()55b e f ==,6786()77c e f ==,246357<<, 所以642()()()753f f f >>,即c b a >>. 故选:C【点睛】 关键点睛:根据几个实数的特征构造函数,利用导数判断其单调性是解决此类问题的关键. 11.A解析:A【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -. 故选:A .【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题. 12.A解析:A【分析】设()()2x x F x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x x F x e f x e =-,则[]()()()2()()2x x x x F x e f x e f x e e f x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦, 所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-, 故(3)2(2)2ef f e +<+.故选:A.【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.二、填空题13.【分析】由得根据的范围得利用导数得可得令将化为关于的二次函数根据二次函数知识可求得结果【详解】因为所以所以因为所以当时由得由得所以在上递减在上递增所以在处取得最小值所以所以令则所以所以当时取得最小值解析:24,0e ⎡⎤-⎣⎦【分析】由()()12f x f x =得2124x e x e x =-,根据1x 的范围得224x e e x ≤,利用导数得22x e e x ≥,可得224x e e e x ≤≤,令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识可求得结果.【详解】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤, 当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭,令22x e t x =,则4e t e ≤≤, 所以()12x f x 24t et =-()2224t e e =--, 所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦.故答案为:24,0e ⎡⎤-⎣⎦【点睛】 关键点点睛:令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识求解是解题关键.14.【分析】不等式等价变形利用同构函数的单调性得解【详解】令∴在上单调递增∵∴∴恒成立令只需∴单调递增∴单调递减时的最大值为∴∴的最小值为故答案为:【点睛】不等式等价变形同构函数是解题关键 解析:3e【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()lnf x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=, ∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞, ∴[)3,1,x e x a ∈+∞,∴33x x eae x x a ⇔≤⇔≤恒成立, 令()3x x g x e =,只需max ()a g x ≥,()33xx g x e -'=, ∴1[,1),()0,()3x g x g x ∈'>单调递增, ∴(1,),()0,()x g x g x ∈+∞'<单调递减, 1x ∴=时,()g x 的最大值为3e,∴3a e ≥,∴a 的最小值为3e. 故答案为:3e 【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键.15.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22x f x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即 ()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根, 也即()2220x a x a ++++=有2个不相等的实根, 所以()()22420a a ∆=+-+>,即()()2240a a ++->,解得:2a >或2a <-,故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题. 16.【分析】求得导函数后代入不等式则可将不等式化为根据能成立的思想可得利用基本不等式可求得最小值进而得到结果【详解】即为整理得到即使得成立(当且仅当即时取等号)即实数的取值范围为故答案为:【点睛】本题考解析:)+∞ 【分析】 求得导函数后,代入不等式则可将不等式化为12a x x>+,根据能成立的思想可得min 12a x x ⎛⎫>+ ⎪⎝⎭,利用基本不等式可求得最小值,进而得到结果. 【详解】()()()2ln 12f x x x a x x a '=++-+-,()()f x xf x '∴>即为()()()222ln ln 2x x x x a x x x x x a x x a +->++-+-, 整理得到22210x ax -+<,即1,22x ⎡⎤∃∈⎢⎥⎣⎦,使得221122x a x x x +>=+成立,12x x +≥=12x x =,即2x =时取等号),a ∴>,即实数a 的取值范围为)+∞.故答案为:)+∞. 【点睛】 本题考查利用导数解决能成立的问题,关键是能够通过分离变量的方式将问题转化为变量和函数最值之间大小关系的比较问题,进而通过求解函数最值得到结果.17.【分析】由条件转化为换元令由导数确定函数的值域即可求解【详解】设且设那么恒成立所以是单调递减函数当时当时函数单调递增当函数单调递减所以在时取得最大值即解得:故答案为:【点睛】本题主要考查了利用导数研 解析:(),0-∞【分析】由条件转化为11ln y y m x x ⎛⎫=-⋅ ⎪⎝⎭,换元0y t x=>,令()()1ln g t t t =-,由导数确定函数的值域即可求解.【详解】()()ln ln x m x y y x =--,()()ln ln 11ln x y y x y y m x x x --⎛⎫==-⋅ ⎪⎝⎭ 设0y t x =>且1t ≠, 设()()1ln g t t t =-,那么()()11ln 1ln 1g t t t t t t '=-+-⋅=-+-, ()221110t g t t t t+''=--=-<恒成立, 所以()g t '是单调递减函数,当1t =时,()10g '=,当()0,1t ∈时,()0g t '>,函数单调递增,当()1,t ∈+∞,()0g t '<,函数单调递减,所以()g t 在1t =时,取得最大值,()10g =,即10m<, 解得:0m <,故答案为:(),0-∞【点睛】本题主要考查了利用导数研究函数的单调性、最值,考查了变形运算能力,属于中档题. 18.【分析】设切点为根据已知得求出得构造函数求出的范围即可【详解】设切点为则整理得由解得由上可知令则因为所以在上单调递减所以即故答案为:【点睛】本题考查导数的几何意义利用导数求参数的范围考查计算求解能力 解析:280,a e ⎛⎫∈ ⎪⎝⎭【分析】设切点为()00,A x y ,根据已知得0000()(),()()f x g x f x g x ='=',求出02x >,得04x x a e =,构造函数4(),2x x h x x e =>,求出()h x 的范围即可. 【详解】 设切点为()00,A x y ,(),()4xf x aeg x x '='= 则0020024x x ae x m ae x ⎧=-⎪⎨=⎪⎩,整理得20004200x x m x m ⎧=-⎪>⎨⎪>⎩, 由200240m x x =->,解得02x >. 由上可知004x x a e =,令4()xx h x e =,则4(1)()x x h x e -'=. 因为2x >,所以4(1)4()0,()x x x x h x h x e e -'=<=在(2,)+∞上单调递减, 所以280()h x e <<,即280,a e ⎛⎫∈ ⎪⎝⎭. 故答案为:280,e ⎛⎫ ⎪⎝⎭. 【点睛】本题考查导数的几何意义、利用导数求参数的范围,考查计算求解能力,属于中档题. 19.【分析】求函数的导数根据利用参数分离法进行转化然后构造函数转化为求函数的最值即可【详解】解:函数的导数由在上恒成立得在上恒成立即得在上恒成立设则当时恒成立即在上是增函数则当时取得最小值则即实数的取值 解析:(],3-∞【分析】求函数的导数,根据()0f x ',利用参数分离法进行转化,然后构造函数()g x ,转化为求函数的最值即可.【详解】 解:函数的导数2()21f a x x x '=+-, 由()0f x '在1x 上恒成立得2210a x x +-在1x 上恒成立, 即221a x x +, 得322x x a +在1x 上恒成立,设32()2g x x x =+,则2()622(31)g x x x x x '=+=+,当1x 时,()0g x '>恒成立,即()g x 在1x 上是增函数,则当1x =时,()g x 取得最小值()1213g =+=,则3a ,即实数a 的取值范围是(],3-∞,故答案为:(],3-∞【点睛】本题主要考查函数恒成立问题,求函数的导数,利用参数分离法以及构造函数,利用导数研究函数的最值是解决本题的关键.属于中档题.20.【分析】首先求出函数的导数依题意可得在上恒成立参变分离根据余弦函数的性质求出参数的取值范围;【详解】解:因为所以因为函数在上的单调递减所以在上恒成立即在上恒成立因为在上单调递减所以所以即故答案为:【 解析:[2,)+∞【分析】首先求出函数的导数,依题意可得()2cos 0f x x a '=-≤在0,2π⎡⎤⎢⎥⎣⎦上恒成立,参变分离,根据余弦函数的性质求出参数的取值范围;【详解】解:因为()2sin f x x ax =-,0,2x π⎡⎤∈⎢⎥⎣⎦, 所以()2cos f x x a '=-,因为函数()2sin f x x ax =-在0,2π⎡⎤⎢⎥⎣⎦上的单调递减, 所以()2cos 0f x x a '=-≤在0,2π⎡⎤⎢⎥⎣⎦上恒成立, 即2cos a x ≥在0,2x π⎡⎤∈⎢⎥⎣⎦上恒成立,因为()2cos g x x =在0,2x π⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()max 02cos02g x g === 所以2a ≥,即[)2,a ∈+∞故答案为:[)2,+∞【点睛】 本题考查根据函数的单调性求参数的取值范围,利用导数研究函数的单调性,属于中档题.三、解答题21.(1)答案见解析;(2)(],1e -∞+.【分析】(1)求得()xf x e a '=-,分0a ≤、0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调性;(2)利用参变量分离法得出1xe m x≤+在()0,∞+上恒成立,利用导数求出函数()1xe g x x=+在()0,∞+上的最小值,由此可求得实数m 的取值范围. 【详解】解:(1)()x f x e ax =-,()x f x e a '∴=-.当0a ≤时,则()0f x '>在(),-∞+∞上恒成立,所以()f x 在(),-∞+∞上单调递增; 当0a >时,由()0f x '>,得ln x a >,由()0f x '<,得ln x a <,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.综上所述,当0a ≤时,函数()f x 在(),-∞+∞上单调递增;当0a >时,函数()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)由题意知xe x mx +≥在()0,∞+上恒成立,即1xe m x ≤+恒成立, 令()1x e g x x =+,其中0x >,则()()21x x e g x x -'=. 当01x <<时,则()0g x '<;当1x >时,则()0g x '>.所以()g x 在()0,1上单调递减,在()1,+∞上单调递增,则()()min 11g x g e ==+. 所以实数m 的取值范围为(],1e -∞+.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.22.(1)答案见解析;(2)答案见解析.【分析】(1)讨论0a ≤,0a >两种情况,确定()'f x 的正负,利用导数求()f x 的单调性;(2)设()()g x h x x=,利用导数得出()h x 的单调性,进而得出最小值,讨论最小值大于、小于、等于0的情况结合零点存在性定理确定()h x 的零点个数,即()g x 零点的个数. 【详解】解:(1)函数()f x 的定义域为R ,()2x f x ae '=-.①当0a ≤时,()0f x '<,所以()f x 在R 上单调递减;②当0a >时,令()0f x '=得2lnx a =. 若2,ln x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<; 若2ln ,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '>; 所以()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. 综上所述,当0a ≤时,()f x 在R 上单调递减; 当0a >时,()f x 在2,lna ⎛⎫-∞ ⎪⎝⎭单调递减;()f x 在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. (2)()ln 21x g x ae x x x =+-+ 设函数()1()ln 2x g x ae h x x x x x==++- ()2221(1)(1)11()x x ae x ae x h x x x x x +--'=+-= 因为0a >,所以()0h x '=得1x =.当(0,1)x ∈时,()0h x '<,()h x 在(0,1)上单调递减.当(1,)x ∈+∞时,()0h x '>,()h x 在(1,)+∞上单调递增.所以当1x =时,()h x 取最小值,最小值为(1)1h ae =-. 若1a e =时,(1)0h =,所以函数()h x 只有1个零点; 若1a e >时,()(1)0h x h ≥>,所以函数()h x 无零点;若10a e <<时,(1)0h <,()222222240e e h e a e e e ---=-+->->, ()22221220e e h e a e e=++->,故()2(1)0h h e -<,()2(1)0h h e <; 所以函数()h x 在()21,e -和()21,e 各有一个零点,所以函数()h x 有两个零点. 综上所述,当1a e =时,函数()g x 只有1个零点;当1a e >时,函数()g x 无零点; 当10a e<<时,函数()g x 有两个零点 【点睛】 方法点睛:研究含参函数()g x 的零点问题,即方程()0g x =的实根问题,通常选择参变分离,得到()a g x 的形式,后借助数形结合(几何法)思想求解;若无法参变分离,则整体含参讨论函数()g x 的单调性、极值符号,由数形结合可知函数()g x 的图象与x 轴的交点情况即函数()g x 的零点情况.23.(1)极大值为1;(2)答案见解析.【分析】(1)利用导数分析函数()f x 的单调性,由此可求得函数()f x 的极大值;(2)求得()233f x x a '=-,分0a ≤、0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调区间.【详解】(1)当1a =时,()331f x x x =--,该函数的定义域为R ,且233f x x , 令()0f x '>,得1x <-或1x >;令()0f x '<,得11x -<<,()f x ∴在(),1-∞-,()1,+∞上递增,在()1,1-上递减,故()f x 的极大值为()11f -=;(2)()()22333f x x a x a '=-=-. ①当0a ≤时,()0f x '≥在R 上恒成立,()f x ∴在R 上单调递增;②当0a >时,令()0f x '>,得x <x >令()0f x '<,得x <所以,函数()f x 在(,-∞,)+∞上单调递增,在(上单调递减. 【点睛】 方法点睛:利用导数求解函数单调区间的基本步骤:(1)求函数()f x 的定义域;(2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间;解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.24.(1)220x y --=;(2)2(2,1]e -.【分析】(1)求出()'f x ,计算(1)f '得切线斜率,从而得切线议程;(2)对()g x 求导,确定()g x 的单调性,极值,得()g x 的变化趋势,从而可得结论.【详解】(1)由已知2211()2ln 212ln 1f x x x x x'=+-+=++, 所以(1)2f '=,又(1)0f =,所以切线议程为2(1)y x =-,即220x y --=;(2)由(1)21()2ln 1g x x x=++,定义域为(0,)+∞,33222(1)(1)()x x g x x x x -+'=-=, 所以在(0,1)x ∈时,()0g x '<,()g x 递减,(1,)x ∈+∞时,()0g x '>,()g x 递增, 所以1x =时,()g x 取得极小值也是最小值(1)2g =,211g e e ⎛⎫=- ⎪⎝⎭,x →+∞时,()g x →+∞, 所以方程()g x a =在1,e ⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,则实数a 的取值范围是2(2,1]e -. 【点睛】方法点睛:本题考查导数的几何意义,考查用导数研究方程根的分布.根据方程根的个数求参数范围问题,一般方法是数形结合思想,把问题转化为函数图象与直线的交点问题,可利用导数研究出函数的性质,如单调性,极值,确定函数的变化趋势,然后利用函数的图象得出参数范围.25.(1)极小值为3ln 2-,无极大值;(2)(],1-∞.【分析】(1)对函数求导,因式分解求得()0f x '=的根,列表判断单调性与极值;(2)将()2f x x x >-转化为3ln a x x x <-在()1,+∞上恒成立,令新的函数()g x ,然后求导以及二次求导以后判断单调性与极值,求出()g x 的最小值即可.【详解】解:(1) 由2a =-,得()2ln f x x x x=+-,定义域为()0,∞+,()()()2222212121x x x x f x x x x x-+--'=--==, 令()0f x '=,得2x =(或1x =-舍去),列表:所以f x 的极小值为23ln 2=-f ,无极大值.(2)由2ln a x x x x x -->-,得2ln a x x x<-, 问题转化为3ln a x x x <-在()1,+∞上恒成立,记()()3ln ,1,g x x x x x =-∈+∞,即min ()a g x <在()1,+∞上恒成立,则()()2231ln 3ln 1g x x x x x '=-+=--, 令()23ln 1h x x x =--,则()21616x h x x x x -'=-=, 由1x >,知2610x ->,即()0h x '>, 所以()h x 在()1,+∞上单调递增,()()120h x h >=>,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()11g x g >=,由()a g x <在()1,+∞上恒成立,所以1a ≤.【点睛】方法点睛:导函数中两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.26.(1)89;(2)存在,12a =. 【分析】(1)由1a =,求导()22f x x x '=-,利用导数的几何意义求得曲线()y f x =在点()()1,1f 处的切线方程,再求得切线的x 轴、y 轴上的截距,代入三角形的面积公式求解.(2)求导()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =,然后分022a <<,22a ≥,由()f x 在[]0,2上的最小值为56求解. 【详解】(1)当1a =时,()32113f x x x =-+,()22f x x x '=-, 所以()11f '=-,又()113f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()113y x -=--, 即3340x y +-=,直线3340x y +-=在x 轴、y 轴上的截距均为43, 所以三角形的面积为14482339S =⨯⨯=. (2)()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =.当022a <<,即01a <<时,当[]0,2x a ∈时,()0f x '≤,()f x 单调递减;当[]2,2x a ∈时.()0f x '≥,()f x 单调递增.则()()33min 8524136f x f a a a ==-+=,解得12a =, 当22a ≥,即1a ≥时,当[]0,2x ∈时,()0f x '≤,()f x 单调递减,则()()min 8524136f x f a ==-+=,解得17124a =<,舍去. 综上:存在12a =,使得()f x 在[]0,2上的最小值为56. 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.(2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数.。

2019北师大版高中数学选修1-1:第四章 导数应用 同步测试

2019北师大版高中数学选修1-1:第四章   导数应用 同步测试

第四章导数应用§1函数的单调性与极值1.1导数与函数的单调性1.B[解析]f'(x)=3x2-6x,令f'(x)=3x2-6x=0,解得x=0或x=2,当x<0时,f'(x)>0;当0<x<2时,f'(x)<0;当x>2时,f'(x)>0.所以函数f(x)=x3-3x2+1的递减区间是(0,2).2.D[解析]f(x)=x-ln x的定义域是{x|x>0},f'(x)=1-=-,当->0时,x>1,∴函数f(x)=x-ln x的递增区间是(1,+∞),故选D.3.A[解析]当x∈(0,+∞)时,f'(x)=+>0,所以f(x)在(0,+∞)上是增加的,所以f(2)<f(e)<f(3).故选A.4.B[解析]由导函数f'(x)的图像得:在(-∞,-2)上,f'(x)的图像在x轴下方,即f'(x)<0,则f(x)是减少的;在(-2,-1)上,f'(x)的图像在x轴上方,即f'(x)>0,则f(x)是增加的;在(-1,+∞)上,f'(x)的图像在x轴上及x轴下方,即f'(x)≤0,则f(x)是减少的.故选B.5.C[解析]由函数y=x sin x+cos x,得y'=sin x+x cos x-sin x=x cos x.观察给出的四个选项,均有x>0,故仅需cos x>0,结合余弦函数的图像可知,当x∈,时,cos x>0,故选C.6.B [解析]由题意知f'(x)=-3x2+2ax-1≤0在(-∞,+∞)上恒成立,则Δ=4a2-12≤0,可得-≤a≤.7.A[解析]因为函数f(x)满足(x-1)f'(x)<0,所以当x<1时,f'(x)>0,当x>1时,f'(x)<0,则f(x)在(-∞,1)上是增加的,在(1,+∞)上是减少的,又f(x)的图像关于直线x=1对称,所以f=f,则有f(4)<f(3)<f=f,即c<b<a.8.,3[解析]f'(x)=--,令f'(x)>0,解得<x<3,即f(x)的递增区间为,3.9.-∞[解析]∵f'(x)=3ax2+1,且f(x)在区间[-1,1]上是增加的,∴f'(x)=3ax2+1≥0在[-1,1]上恒成立.当a≥0时,不等式在[-1,1]上恒成立;当a<0时,由x2≤-在[-1,1]上恒成立,得1≤-,解得-≤a<0.故实数a的取值范围为-∞.10.(-∞,-1)[解析]由f(x)=sin x+3x,得f(-x)=sin(-x)+3(-x)=-(sin x+3x)=-f(x),则函数f(x)为奇函数.由f'(x)=cos x+3≥2>0,得函数f(x)在R上是增加的,故f(2x)+f(1-x)<0,即f(2x)<-f(1-x),即f(2x)<f(x-1),即2x<x-1,解得x<-1,即不等式的解集为(-∞,-1).11.1,[解析]f (x )的定义域为(0,+∞),f'(x )=4x-=-.由f'(x)>0,得x>,故函数f(x)的递增区间是∞.由f'(x)<0,得0<x<,故函数f(x)的递减区间是.由于函数f(x)在区间(k-1,k+1)上不是单调函数,所以k-1<<k+1,解得-<k<.又(k-1,k+1)为函数f(x)的定义域的一个子区间,所以k-1≥0,解得k≥1.综上,可得1≤k<.12.解:(1)y'=(x3-9x2+24x)'=3x2-18x+24=3(x-2)(x-4),令3(x-2)(x-4)>0,解得x>4或x<2,∴y=x3-9x2+24x的递增区间是(4,+∞)和(-∞,2).令3(x-2)(x-4)<0,解得2<x<4,∴y=x3-9x2+24x的递减区间是(2,4).(2)y'=(+x)'=-+1=+1,当x>0,+1>0,∴y'>0,∴y=+x的递增区间是(0,+∞).13.解:(1)函数f(x)=ax4+bx2+c的图像经过点(0,1),则c=1.f'(x)=4ax3+2bx,则f'(1)=4a+2b=1,易知切点坐标为(1,-1),则函数f(x)=ax4+bx2+c的图像经过点(1,-1),得a+b+c=-1,可得a=,b=-,∴f(x)=x4-x2+1.(2)令f'(x)=10x3-9x>0,得-<x<0或x>,则f(x)的递增区间为-和∞.14.A[解析]由f(x)>f'(x),得f(x)-f'(x)>0.设g(x)=,则g'(x)=-=-<0,则g(x)在R上是减少的,则g(ln 2017)>g(ln 2018),即>,则2018f(ln 2017)>2017f(ln 2018),故选A.15.解:(1)当a=3时,f(x)=x2+2x-ln x,其定义域为(0,+∞),f'(x)=3x+2-=-.当x∈0,时,f'(x)<0,f(x)是减少的;当x∈,+∞时,f'(x)>0,f(x)是增加的.故f(x)的递减区间为0,,递增区间为,+∞.(2)f(x)=ax2+2x-ln x(a∈R)的定义域为(0,+∞).f'(x)=ax+2-=-(a∈R).若函数f(x)存在递增区间,则f'(x)≥0在区间(0,+∞)上有解,即ax2+2x-1≥0在区间(0,+∞)上有解.分离参数得a≥-(x∈(0,+∞)),令g(x)=-(x∈(0,+∞)),则a≥g(x)min.∵g(x)=-=-12-1,∴g(x)min=-1,当a=-1时,f'(x)≤0,f(x)在定义域上不存在递增区间,故实数a的取值范围为(-1,+∞).1.2函数的极值1.B[解析]由导函数的图像可知,f'(x)在(-∞,x0)上为负,f'(x)在(x0,+∞)上非负,∴f(x)在(-∞,x0)上是减少的,在(x0,+∞)上是增加的,∴f(x)在x=x0处有极小值,无极大值,故选B.2.A[解析]f'(x)=3x2-6x+3=3(x-1)2,当x=1时导函数值为0,但在此零点左、右两侧导函数值均大于0,所以x=1不是函数f(x)的极值点,所以函数f(x)的极值点的个数为0.3.C[解析]函数f(x)=ax3+x+1有极值的充要条件是f'(x)=3ax2+1=0有两个不等的实根,易得a<0.4.C[解析]f'(x)=2cos x-1,f'=0,由图像可知在x=左侧f'(x)>0,在x=右侧f'(x)<0,所以x=是f(x)的极大值点.5.B[解析]f'(x)=3x2-2ax-b.∵在x=1处f(x)有极值10,∴----解得-或-验证知当a=3,b=-3时,f(x)在x=1处无极值,∴a=-4,b=11.6.B[解析]函数f(x)=x3-6bx+3b的导函数为f'(x)=3x2-6b,因为函数f(x)=x3-6bx+3b在(0,1)内有极小值,所以f'(x)=3x2-6b在(0,1)内有零点,则f'(0)<0且f'(1)>0,即-6b<0且3-6b>0,所以0<b<,故实数b的取值范围是0,,故选B.7.D[解析]h(x)=f(x)e x,则h'(x)=(2ax+b)e x+(ax2+bx+c)e x=(ax2+2ax+bx+b+c)e x.由x=-1为函数h(x)=f(x)e x的一个极值点,得当x=-1时,ax2+2ax+bx+b+c=c-a=0,∴c=a,∴f(x)=ax2+bx+a.若方程ax2+bx+a=0有两根x1,x2,则x1x2==1,D中图像一定不满足该条件,故选D.8.17[解析]函数f(x)的定义域为R,f'(x)=3x2-12,令f'(x)=0,解得x=-2或x=2.列表:∴当x=-2时,函数有极大值f(-2)=9.3[解析]f'(x)=-,由题意知f'(1)=-=0,解得a=3.10.(-2,2)[解析]令f'(x)=3x2-3=0,得x=±1,可得f(x)的极大值为f(-1)=2,极小值为f(1)=-2,结合图像(图略)知,当-2<a<2时,直线y=a与函数f(x)的图像有三个相异的交点.11.(-3,0)[解析]设切点为(a,0)(a≠0),f(x)=x(x2+px+q),由题意得,方程x2+px+q=0有两个相等实根a,故可得f(x)=x(x-a)2=x3-2ax2+a2x,f'(x)=3x2-4ax+a2=(x-a)(3x-a).令f'(x)=0,则x=a或x=.∵f(a)=0≠-4,∴f=-4,于是-=-4,∴a=-3,即切点坐标为(-3,0).12.解:由于a>0,所以“f(x)=x3+bx2+cx+d在(-∞,+∞)内无极值点”等价于“f'(x)=ax2+2bx+c≥0在(-∞,+∞)内恒成立”.由f'(x)-9x=0即ax2+(2b-9)x+c=0的两根为1,4,可得-即-所以一元二次方程ax2+2bx+c=0的判别式Δ=(2b)2-4ac=9(a-1)(a-9).不等式ax2+2bx+c≥0在(-∞,+∞)内恒成立等价于--解得1≤a≤9,即a的取值范围是[1,9].13.解:(1)f'(x)=3ax2+2bx+c,由已知可得--即----∴-(2)当a=1时,b=2,c=1,∴f(x)=x3+2x2+x+2,∴f'(x)=3x 2+4x+1=3(x+1).令f'(x)=0,得x=-1或x=-.当x∈--时,f'(x)<0,f(x)是减少的;当x∈-,+∞,x∈(-∞,-1)时,f'(x)>0,f(x)是增加的.∴f(x)有极小值f-=-+-+2=.14.D[解析]f'(x)=ln x-ax+x -a =ln x-2ax+1.由题意知f'(x)=ln x-2ax+1=0在(0,2)上有两个不等实根,即a=在(0,2)上有两个不等实根.设g(x)=,则g'(x)=-,易知当0<x<1时,g'(x)>0,g(x)是增加的,当1<x<2时,g'(x)<0,g(x)是减少的,∴g(x)极大值=g(1)=,又g(2)=,当0<x<时,g(x)<0,∴<a<.故选D.15.解:(1)f(x)=x(x-m)2=x3-2mx2+m2x,f'(x)=3x2-4mx+m2=(3x-m)(x-m).令f'(2)=0,解得m=2或m=6.当m=2时,f'(x)=(3x-2)(x-2),故f(x)在区间,2上是减少的,在区间(2,+∞)上是增加的,∴f(x)在x=2处有极小值,不合题意.故m=6.(2)由(1)知f(x)=x(x-6)2,f'(x)=(3x-6)(x-6),故f(x)在(-∞,2)上是增加的,在(2,6)上是减少的,在(6,+∞)上是增加的,∴f(x)极大值=f(2)=32,f(x)极小值=f(6)=0,则当x∈[-1,7]时,f(-1)=-49,f(7)=7,故当x∈[-1,2]时,f(x)∈[-49,32],当x∈(2,6]时,f(x)∈[0,32),当x∈(6,7]时,f(x)∈(0,7],又∵关于x的方程f(x)=a,x∈[-1,7]有三个不同的实根,即函数f(x)的图像与直线y=a在[-1,7]上有三个不同交点,∴实数a的取值范围是(0,7].§2导数在实际问题中的应用2.1实际问题中导数的意义1.D[解析]s'(t)=t3-5t2+4t,令t3-5t2+4t=0,解得t=0或t=1或t=4.2.D[解析]导数为正说明盈利是增加的,导数变小说明增加的幅度变小了,但还是增加的.3.C[解析]由导数的实际意义知,位移关于时间的瞬时变化率为该时刻的瞬时速度.4.A[解析]由阴影部分面积的变化情况可知,开始时面积增长的速度在增加,然后增长的速度保持不变,最后增长的速度逐渐减缓,对应的图像就是切线的斜率先增加,再不变,最后减小.故选A.5.C[解析]∵h'=-200t+800,∴当t=2时,-200×2+800=400(m/h).6.D[解析]通过某种导体的电量q在第5 s时的瞬时变化率就是第5 s时的电流强度.∵q'=4t+3,∴当t=5时,电流强度为4×5+3=23(C/s).7.C[解析]==--=g=35(m/s).8.-5[解析]由题意得,f'(x)=2x-7,当x=1时,f'(1)=2×1-7=-5,即原油温度的瞬时变化率是-5 ℃/h.9.14[解析]速度v(t)=s'(t)=6t2-10t,所以加速度a(t)=v'(t)=12t-10,当t=2时,a(t)=14,即t=2时,汽车的加速度为14.10.16π[解析]∵V'(r)=4πr2,∴V'(2)=16π.11.52.84,1321[解析]c'(x)=-'=-,∴c'(90)=-=52.84,c'(98)=-=1321.故纯净度为90%时,净化费用的瞬时变化率为52.84;纯净度为98%时,净化费用的瞬时变化率为1321.12.解:(1)T(10)-T(0)=+15--15=-16(℃),所以蜥蜴的体温下降了16 ℃.(2)平均变化率是-1.6 ℃/min,它表示从t=0 min到t=10 min这段时间内,蜥蜴体温平均每分钟下降1.6 ℃.(3)由已知得T'(t)=-,所以T'(5)=-1.2,它表示t=5 min时,蜥蜴体温的下降速度为1.2 ℃/min.13.解:(1)∵p0=1,∴p(t)=(1+5%)t=1.05t,∴p'(t)=(1.05t)'=1.05t·ln 1.05,∴p'(10)=1.0510ln 1.05≈0.08.因此,在第10个年头,这种商品的价格以约0.08元/年的速度上涨.(2)当p0=5时,p(t)=5×(1+5%)t=5×1.05t,则p'(t)=(5×1.05t)'=5×1.05t×ln 1.05,∴p'(10)=5×1.0510×ln 1.05≈0.40.因此,在第10个年头,这种商品的价格以约0.40元/年的速度上涨.14.D[解析]函数的定义域为[0,+∞),当x∈[0,2]时,在单位长度变化量内面积变化量越来越大,即斜率f'(x)在[0,2]内越来越大,因此,函数S=f(x)的图像是上升的,且图像是下凸的;当x∈(2,3)时,在单位长度变化量内面积变化量越来越小,即斜率f'(x)在(2,3)内越来越小,因此,函数S=f(x)的图像是上升的,且图像是上凸的;当x∈[3,+∞)时,在单位长度变化量内面积变化量为0,即斜率f'(x)在[3,+∞)内为常数0,此时,函数图像为平行于x轴的射线.15.解:(1)船的实际速度为(x-6) km/h,故全程用时- h,所以耗油量y关于x的函数关系式为y=f(x)=-=-(x>6).(2)f'(x)=3·---=--,f'(36)=--=2.88.f'(36)表示当船相对于水的速度为36 km/h时耗油量增加的速度为2.88 L/(km/h),也就是说当船相对于水的速度为36 km/h时,船的航行速度每增加1 km/h,耗油量就要增加2.88 L.2.2最大值、最小值问题1.D[解析]由函数最值的定义知,A,B,C均不正确,D正确.2.A[解析]由题意可得,y'=-,当x∈(0,e)时,y'>0,则函数y=是增加的;当x∈(e,+∞)时,y'<0,则函数y=是减少的.故y max==e-1.3.D[解析]设总利润为P(x)(单位:元),则P(x)=由P'(x)=0,得x=300,经检验选D.4.A[解析]设圆柱的底面半径为r,高为h,体积为V,则4r+2h=l,∴h=-,V=πr2h=πr2-2πr3,则V'=lπr-6πr2,令V'=0,得r=0或r=,而r>0,∴r=是其唯一的极值点.当r=时,V取得最大值,最大值为π.5.C[解析]由题意可得f'(x)=-3x2-4x+4=-(x+2)(3x-2),令f'(x)=0,可得x1=-2,x2=,又f(-3)=-3,f(-2)=-8,f =,f(3)=-33,据此可知函数f(x)在区间[-3,3]上的最小值为-33,则m2-14m≤-33,解得3≤m≤11,即实数m的取值范围是[3,11].6.C[解析]由函数f(x)=x2-a ln x+1,得f'(x)=x-.∵函数f(x)在(0,1)内有最小值,∴f'(x)=0在(0,1)上有解,函数f(x)的极小值也为最小值,显然a>0.令x-=0,x∈(0,1),得x=,则0<<1,得a∈(0,1).当x∈(0,)时,f'(x)<0,当x∈(,1)时,f'(x)>0,∴x=时函数f(x)取得极小值,也是最小值,∴0<a<1.故选C.7.C[解析]函数f(x)=ax3+2x2+x+1在(1,2)上有最大值无最小值,则f(x)的极大值点在(1,2)之间.由已知得f'(x)=3ax2+4x+1,则f'(1)>0,f'(2)<0,解得-<a<-,故选C.8.-[解析]f'(x)=-cos x,x∈[0,π].当0<x<时,f'(x)<0,故f(x)在0,上是减少的;当<x<π时,f'(x)>0,故f(x)在,π上是增加的.∴当x=时,函数f(x)取得最小值,且f=-.9.2[解析]由于瓶子的半径为r cm,每出售1 mL的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6 cm,设每瓶饮料的利润是y分,则y=f(r)=0.2×πr3-0.8πr2,0<r≤6,令f'(r)=0.8πr2-1.6πr=0,则r=2.当r∈(0,2)时,f'(r)<0;当r∈(2,6)时,f'(r)>0.∴函数y=f(r)在(0,2)上是减少的,在(2,6)上是增加的,∴r=2时,每瓶饮料的利润最小.10.(7,+∞)[解析]由题意知当x∈[0,2]时,f(x)<m恒成立等价于m>f(x)max.f'(x)=3x2-x-2=(x-1)(3x+2),当0≤x<1时,f'(x)<0,当1<x≤2时,f'(x)>0,所以函数f(x)在[0,1)上是减少的,在(1,2]上是增加的,f(0)=5,f(2)=7,所以当x∈[0,2]时,f(x)max=7,故m>7.11.-8[解析]由已知得f'(x)=4x3cos x-x4sin x+2mx+1,令g(x)=4x3cos x-x4sin x+2mx,则g(x)是奇函数,由f'(x)的最大值为10知,g(x)的最大值为9,最小值为-9,从而f'(x)的最小值为-9+1=-8.12.解:(1)y'=3ax2+2bx,当x=1时,y'|x=1=3a+2b=0,y|x=1=a+b=3,解得a=-6,b=9,所以函数解析式为y=-6x3+9x2.(2)由(1)知y=-6x3+9x2,y'=-18x2+18x.令y'>0,得0<x<1;令y'<0,得x>1或x<0.所以函数的递增区间为(0,1),递减区间为(-∞,0),(1,+∞).(3)由(2)知当x=0时函数取得极小值0,当x=1时函数取得极大值3,又y|x=-2=84,y|x=2=-12,故函数在[-2,2]上的最大值为84,最小值为-12.13.解:(1)f'(x)=3x2+2ax+b,f'(1)=3+2a+b.曲线y=f(x)在点P处的切线方程为y-f(1)=(3+2a+b)·(x-1),即y-(a+b+c+1)=(3+2a+b)(x-1),即y=(3+2a+b)x+(c-a-2).又已知该切线方程为y=3x+1,所以--即-因为f(x)在x=-2处有极值,所以f'(-2)=0,所以-4a+b=-12.解方程组-得-所以f(x)=x3+2x2-4x+5.--(2)由(1)知f'(x)=3x2+4x-4=(3x-2)(x+2).令f'(x)=0,得x1=-2,x2=.当x∈[-3,-2)时,f'(x)>0;当x∈-2,时,f'(x )<0;当x ∈时,f'(x)>0.所以f(x)在[-3,1]上的递增区间是[-3,-2)和,递减区间是-2,.因为f(1)=4,f(x)极大值=f(-2)=13,所以f(x)在区间[-3,1]上的最大值为13.14.A[解析]由已知得f'(x)=a e x-2x-(2a+1),设g(x)=f'(x),由函数f(x)在区间(0,ln 2)上有最值得,g(x)在区间(0,ln 2)上单调且存在零点,∴g(0)g(ln 2)=(a-2a-1)(2a-2ln 2-2a-1)<0,可得a+1<0,解得a<-1.此时g'(x)=a e x-2在区间(0,ln 2)上是减少的,∴实数a的取值范围是(-∞,-1).15.解:(1)当a=1时,f(x)=x2-5x+2ln x(x>0),∴f'(x)=2x-5+,∴f(1)=-4,f'(1)=-1,∴切线方程为y+4=-(x-1),即x+y+3=0.(2)函数f(x)=ax2-(a+4)x+2ln x的定义域为(0,+∞).当a>0时,f'(x)=2ax-(a+4)+=-=--.令f'(x)=0得x=或x=.①当0<≤1,即a≥2时,f(x)在[1,2e]上是增加的,∴f(x)在[1,2e]上的最小值为f(1)=-4,符合题意;②当1<<2e,即<a<2时,f(x)在1,上是减少的,在,2e上是增加的,∴f(x)在[1,2e]上的最小值为f<f(1)=-4,不合题意;③当≥2e,即0<a≤时,f(x)在[1,2e]上是减少的,∴f(x)在[1,2e]上的最小值为f(2e)<f(1)=-4,不合题意.综上,a的取值范围是[2,+∞).滚动习题(四)1.D[解析]f'(x)=3x2+2>0恒成立,故f(x)不存在递减区间.2.B[解析]f'(x)=-,令f'(x)=0,得ln x=0或ln x=2,∴x=1或x=e2.当f'(x)<0时,解得0<x<1或x>e2,当f'(x)>0时,解得1<x<e2,∴x=1时,函数取得极小值,且f(1)=0.3.B[解析]由已知得f'(x)=1-2sin x,令f'(x)=0,得sin x=,又x∈,所以x=.又f=+,f(0)=2,f=,所以f为最大值.故选B.4.D[解析]f'(x)=3x2+2ax+3,则f'(-3)=3×9-6a+3=0,∴a=5.5.A[解析]x<-2时,f'(x)<0,则f(x)是减少的;-2<x<0时,f'(x)>0,则f(x)是增加的;x>0时,f'(x)<0,则f(x)是减少的.符合上述条件的只有选项A中的图像.故选A.6.D[解析]由题得f'(x)=-.令x=e,可得f'(e)=,所以f'(x)=-.令f'(x)=->0,得0<x<2e;令f'(x)=-<0,得x>2e.故函数f(x)=2e f'(e)ln x-在x=2e处取得极大值,f(x)极大值=f(2e)=2ln 2,故选D.7.C[解析]函数f(x)=x+a ln x的定义域为x>0.函数f(x)=x+a ln x的导函数为f'(x)=1+.当a≥0时,f'(x)>0,函数f(x)=x+a ln x是增加的;当a<0时,函数f(x)=x+a ln x在(0,-a)上是减少的,在(-a,+∞)上是增加的,f(x)=x+a ln x不是单调函数,则实数a的取值范围是(-∞,0),故选C.8.A[解析]令g(x)=,则g'(x)=-<0(x>0),g(-2)=0.因为f(x)为奇函数,所以g(x)为偶函数,且g(x)在(-∞,0)上是增加的,在(0,+∞)上是减少的,g(2)=g(-2)=0.因此当x>0时,f(x)>0等价于g(x)>0=g(2),可得0<x<2;当x<0时,f(x)>0等价于g(x)<0=g(-2),可得x<-2.因此使得f(x)>0成立的x的取值范围是(-∞,-2)∪(0,2),故选A.9.(-1,1)[解析]由题得f'(x)=3x2-3=3(x+1)(x-1),令f'(x)=3(x+1)(x-1)<0,得-1<x<1,∴函数f(x)的递减区间为(-1,1).10.2[解析]由f'(x)=-=0,得x=±1,当x=1时,f(x)取得最大值2.11.(0,3)[解析]f'(x)=-3x2+2mx=x(-3x+2m).令f'(x)=0,得x=0或x=.由题意知0<<2,∴0<m<3.12.40[解析]由y'=x2-39x-40=0,得x=-1(舍去)或x=40.当0<x<40时,y'<0;当x>40时,y'>0.所以当x=40时,y有最小值.13.解:∵函数y=ax与y=-在(0,+∞)上都是减少的,∴a<0,b<0.由y=ax3+bx2+5,得y'=3ax2+2bx,令y'>0,即3ax2+2bx>0,∴-<x<0.因此,函数在-上是增加的.令y'<0,即3ax2+2bx<0,∴x<-或x>0,因此,函数在-∞-和(0,+∞)上是减少的.14.解:设x为没有租出去的公寓套数,可获得的收入为y元,则y=(1000+50x)(50-x)-100(50-x)=(900+50x)(50-x),0≤x≤50,且x为整数,∴y'=1600-100x,∴当x=16时,y取最大值,即把租金定为1800元时,收入最大.15.解:(1)由题意,f(x)的定义域为(0,+∞),且f'(x)=+=.∵a>0,∴f'(x)>0,故f(x)在(0,+∞)上是增加的.(2)由(1)可知,f'(x)=.①若a≥-1,则x+a≥0,即f'(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上是增加的,∴f(x)min=f=-a=2,∴a=-2(舍去).②若a≤-e,则x+a≤0,即f'(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上是减少的,∴f(x)min=f=1-=2,∴a=-e.③若-e<a<-1,令f'(x)=0得x=-a.当1<x<-a时,f'(x)<0,∴f(x)在(1,-a)上是减少的;当-a<x<e时,f'(x)>0,∴f(x)在(-a,e)上是增加的.∴f(x)min=f-=ln(-a)+1=2,a=-e(舍去).综上可知,a=-e.。

高中数学(北师大版,选修11):第四章+导数应用(课件+同步练习+章末归纳总结+综合检测,10份)第

高中数学(北师大版,选修11):第四章+导数应用(课件+同步练习+章末归纳总结+综合检测,10份)第

第四章 §2 2.2 第2课时一、选择题1.要制做一个圆锥形的漏斗,其母线长为20cm ,要使其体积最大,则高为( ) A.33cm B.1033cmC.1633cmD.2033cm[答案] D[解析] 设圆锥的高为x ,则底面半径为202-x 2,其体积为V =13πx (400-x 2) (0<x <20),V ′=13π(400-3x 2),令V ′=0,解得x =2033.当0<x <2033时,V ′>0;当2033<x <20时,V ′<0,所以当x =2033时,V 取最大值.2.将数8拆分为两个非负数之和,使其立方之和为最小,则分法为( ) A .2和6 B .4和4 C .3和5 D .以上都不对[答案] B[解析] 设一个数为x ,则另一个数为8-x ,则y =x 3+(8-x )3,0≤x ≤8,y ′=3x 2-3(8-x )2,令y ′=0,即3x 2-3(8-x )2=0,解得x =4.当0≤x <4时,y ′<0,函数单调递减;当4<x ≤8时,y ′>0,函数单调递增,所以x =4时,y 最小.3.用总长为6m 的钢条制作一个长方体容器的框架,如果所制作容器的底面的相邻两边长之比为,那么容器容积最大时,高为( ) A .0.5m B .1m C .0.8m D .1.5m [答案] A[解析] 设容器底面相邻两边长分别为3x m 、4x m ,则高为6-12x -16x 4=⎝⎛⎭⎫32-7x (m),容积V =3x ·4x ·⎝⎛⎭⎫32-7x =18x 2-84x 3⎝⎛⎭⎫0<x <314,V ′=36x -252x 2,由V ′=0得x =17或x =0(舍去).x ∈⎝⎛⎭⎫0,17时,V ′>0,x ∈⎝⎛⎭⎫17,314时,V ′<0,所以在x =17处,V 有最大值,此时高为0.5m.4.内接于半径为R 的球且体积最大的圆锥的高为( ) A .R B .2R C.43R D.34R [答案] C[解析] 设圆锥高为h ,底面半径为r ,则R 2=(R -h )2+r 2,∴r 2=2Rh -h 2, ∴V =13πr 2h =π3h (2Rh -h 2)=23πRh 2-π3h 3,V ′=43πRh -πh 2.令V ′=0得h =43R .当0<h <43R 时,V ′>0;当4R3<h <2R 时,V ′<0.因此当h =43R 时,圆锥体积最大.故应选C.5.设圆柱的体积为V ,那么其表面积最小时,底面半径为( ) A.3V B.3V πC.34V D .23V 2π[答案] D[解析] 设底面圆半径为r ,高为h ,则V =πr 2h ,∴h =V πr 2.∴S 表=2S 底+S 侧=2πr 2+2πr ·h =2πr 2+2πr ·V πr 2=2πr 2+2V r .∴S 表′=4πr -2Vr 2,令S 表′=0得,r =3V 2π,又当x ∈(0,3V 2π)时,S 表′<0;当x ∈(3V 2π,V )时,S 表′>0,∴当r =3V2π时,表面积最小.6.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么,原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1 D .-8[答案] C[解析] 瞬时变化率即为f ′(x )=x 2-2x 为二次函数,且f ′(x )=(x -1)2-1,又x ∈[0,5],故x =1时,f ′(x )min =-1. 二、填空题7.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最小,则圆柱的底面半径为________. [答案] 3[解析] 设圆柱的底面半径为R ,母线长为L ,则V =πR 2L =27π,∴L =27R 2,要使用料最省,只需使圆柱形表面积最小,∴S 表=πR 2+2πRL =πR 2+2π27R,∴S ′(R )=2πR -54πR 2=0,令S ′=0得R =3,∴当R =3时,S 表最小.8.一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为10km/h 时燃料费是每小时6元 ,而其他与速度无关的费用是每小时96元,则此轮船的速度为______km/h 航行时,能使行驶每公里的费用总和最小.[答案] 20[解析] 设船速为每小时x (x >0)公里,燃料费为Q 元,则Q =kx 3, 由已知得:6=k ·103, ∴k =3500,即Q =3500x 3.记行驶每公里的费用总和为y 元,则 y =(3500x 3+96)·1x =3500x 2+96xy ′=3250x -96x 2,令y ′=0,即3250x -96x 2=0,解之得:x =20.这就是说,该函数在定义域(0,+∞)内有唯一的极值点,该极值必有所求的最小值,即当船速为每小时20公里时,航行每公里的总费用最小,最小值为7.2元.9.如图所示,一窗户的上部是半圆,下部是矩形,如果窗户面积一定,窗户周长最小时,x 与h 的比为________.[答案][解析] 设窗户面积为S ,周长为L ,则S =π2x 2+2hx ,h =S 2x -π4x ,∴窗户周长L =πx +2x +2h=π2x +2x +Sx, ∴L ′=π2+2-S x 2.由L ′=0,得x =2Sπ+4,x ∈⎝ ⎛⎭⎪⎫0,2S π+4时,L ′<0,x ∈⎝ ⎛⎭⎪⎫2S π+4,+∞时,L ′>0,∴当x =2S π+4时,L 取最小值,此时h x =2S -πx 24x 2=2S 4x 2-π4=π+44-π4=1. 三、解答题10.(2014·福州市八县联考)永泰某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值y 万元与投入x (x ≥10)万元之间满足:y =f (x )=ax 2+10150x -b ln x10,a ,b 为常数.当x =10万元时,y =19.2万元;当x =30万元时,y =50.5万元.(参考数据:ln2=0.7,ln3=1.1,ln5=1.6).(1)求f (x )的解析式;(2)求该景点改造升级后旅游利润T (x )的最大值.(利润=旅游增加值-投入). [答案] (1)f (x )=-x 2100+10150x -ln x10(x ≥10) (2)24.4万元[解析] (1)由条件可得⎩⎨⎧a ×102+10150×10-b ln1=19.2,a ×302+10150×30-b ln3=50.5,解得a =-1100,b =1, 则f (x )=-x 2100+10150x -ln x10(x ≥10).(2)T (x )=f (x )-x =-x 2100+5150x -ln x10(x ≥10),则T ′(x )=-x 50+5150-1x =-(x -1)(x -50)50x ,令T ′(x )=0,则x =1(舍)或x =50,当x ∈(10,50)时,T ′(x )>0,因此T (x )在(10,50)上是增函数; 当x ∈(50,+∞)时,T ′(x )<0,因此T (x )在(50,+∞)上是减函数, ∴当x =50时,T (x )取最大值.T (50)=-502100+5150×50-ln 5010=24.4(万元).即该景点改造升级后旅游利润T (x )的最大值为24.4万元.一、选择题11.以长为10的线段AB 为直径画半圆,则它的内接矩形面积的最大值为( ) A .10 B .15 C .25 D .50[答案] C[解析] 如图,设∠NOB =θ,则矩形面积S =5sin θ·2·5cos θ=50sin θ·cos θ=25sin2θ,故S max =25.12.若一球的半径为r ,作内接于球的圆柱,则圆柱侧面积的最大值为( ) A .2πr 2 B .πr 2 C .4πr 2 D.12πr 2 [答案] A[解析] 设内接圆柱的底面半径为r 1,高为t , 则S =2πr 1t =2πr 12r 2-r 21=4πr 1r 2-r 21.∴S =4πr 2r 21-r 41.令(r 2r 21-r 41)′=0得r 1=22r . 此时S =4π·22r ·r 2-⎝⎛⎭⎫22r 2=4π·22r ·22r =2πr 2.13.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 39 000+400x,0≤x ≤390,则当总利润最大时,每年生产的产品单位数是( )A .150B .200C .250D .300[答案] D[解析] 由题意可得总利润P (x )=-x 3900+300x -20 000,0≤x ≤390.由P ′(x )=0,得x =300.当0≤x ≤300时,p ′(x )>0;当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大,故选D.二、填空题14.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为,该长方体的最大体积是________.[答案] 3m 3[解析] 设长方体的宽为x ,则长为2x ,高为92-3x (0<x <32),故体积为V =2x 2⎝⎛⎭⎫92-3x =-6x 3+9x 2,V ′=-18x 2+18x ,令V ′=0得,x =0或1, ∵0<x <2,∴x =1.∴该长方体的长、宽、高各为2m 、1m 、1.5m 时,体积最大,最大体积V max =3m 3.15.某厂生产某种产品x 件的总成本:C (x )=1 200+275x 3,又产品单价的平方与产品件数x 成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为________件.[答案] 25[解析] 设产品单价为a 元,又产品单价的平方与产品件数x 成反比,即a 2x =k , 由题知a =500x .总利润y =500x -275x 3-1200(x >0),y ′=250x -225x 2,由y ′=0,得x =25,x ∈(0,25)时,y ′>0,x ∈(25,+∞)时,y ′<0,所以x =25时,y 取最大值.三、解答题16.(2014·三峡名校联盟联考)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式y =mx -2+4(x -6)2,其中2<x <6,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数)[答案] (1)10 (2)3.3元/套 [解析] (1)因为x =4时,y =21,代入关系式y =m x -2+4(x -6)2,得m2+16=21,解得m =10.(2)由(1)可知,套题每日的销售量y =10x -2+4(x -6)2,所以每日销售套题所获得的利润f (x )=(x -2)[10x -2+4(x -6)2]=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x <6),从而f ′(x )=12x 2-112x +240=4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,且在(0,103)上,f ′(x )>0,函数f (x )单调递增;在(103,6)上,f ′(x )<0,函数f (x )单调递减,所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值.故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大.17.(2014·山东省德州市期中)统计表明某型号汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数为y =1128000x 3-380x +8(0<x <120). (1)当x =64千米/小时时,行驶100千米耗油量多少升? (2)若油箱有22.5升油,则该型号汽车最多行驶多少千米? [答案] (1)11.95升 (2)200千米[解析] (1)当x =64千米/小时时,要行驶100千米需要10064=2516小时,要耗油(1128000×643-380×64+8)×2516=11.95(升).(2)设22.5升油能使该型号汽车行驶a 千米,由题意得, (1128000x 3-380x +8)×ax =22.5, ∴a =22.51128000x 2+8x -380,设h (x )=1128000x 2+8x -380, 则当h (x )最小时,a 取最大值,h ′(x )=164000x -8x 2=x 3-80364000x 2,令h ′(x )=0⇒x =80,当x ∈(0,80)时,h ′(x )<0,当x ∈(80,120)时,h ′(x )>0,故当x ∈(0,80)时,函数h (x )为减函数,当x ∈(80,120)时,函数h (x )为增函数, ∴当x =80时,h (x )取得最小值,此时a 取最大值为 ∴a =22.51128000×802+880-380=200.答:若油箱有22.5升油,则该型号汽车最多行驶200千米.18.设有一个容积V 一定的有铝合金盖的圆柱形铁桶,已知单位面积铝合金的价格是铁的3倍,问如何设计使总造价最小?[答案] 当此铁桶的高与底面半径之比为时,总造价最小.[解析] 设圆柱体的高为h ,底面半径为r ,又设单位面积铁的造价为m ,桶的总造价为y ,则y =3m πr 2+m (πr 2+2πrh ).由于V =πr 2h ,得h =V πr 2,所以y =4m πr 2+2mV r (r >0).所以y ′=8m πr -2mVr2,令y ′=0,得r =⎝⎛⎭⎫V 4π13 ,此时,h =V πr2=4⎝⎛⎭⎫V 4π13 . 当r ∈⎝⎛⎭⎫0,⎝⎛⎭⎫V 4π13时,y ′<0,当r ∈⎝⎛⎭⎫⎝⎛⎭⎫V 4π13,+∞时,y ′>0,因此r =⎝⎛⎭⎫V 4π13 是函数y =4m πr 2+2mVr(r >0)的极小值点,也是最小值点.故当r =⎝⎛⎭⎫V 4π13时,y 有最小值,即h r =时,总造价最小.。

北师大版高中数学选修1-1第四章《导数应用》测试卷(包含答案解析)

北师大版高中数学选修1-1第四章《导数应用》测试卷(包含答案解析)

一、选择题1.已知,a b ∈R ,若函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>,则下列结论可能成立的是( ). A .0ae b >>B .0ae b >>C .0b ae >>D .0ae b >> 2.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定3.已知函数()2()x xf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<4.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是( )A .(,2e ⎤-∞⎦B .()0,2eC .(,4e ⎤-∞⎦D .()0,4e5.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .6.若函数32()x x x f x e e e a =---存在零点,则实数a 的取值范围为( ) A .[2,)-+∞B .[,)e C .2[,)e -+∞ D .[1,)-+∞7.已知曲线1C :()xf x xe =在0x =处的切线与曲线2C :()()ln a xg x a x=∈R 在1x =处的切线平行,令()()()h x f x g x =,则()h x 在()0,∞+上( )A .有唯一零点B .有两个零点C .没有零点D .不确定8.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( )A .(0)(0)-∞+∞,, B .(0)(3)-∞⋃+∞,, C .(0)+∞,D .(3)+∞,9.已知函数()()30f x ax bx c ac =++<,则函数()y f x =的图象可能是( ).A .B .C .D .10.已知函数()f x 的定义域为[)2-+∞,,部分对应值如下表;()f x '为()f x 的导函数,函数()y f x '=的图象如下图所示.若实数a 满足()211f a +≤,则a 的取值范围是() x2-0 4 ()f x11-1A .33,22⎛⎫-⎪⎝⎭ B .13,22⎛⎫-⎪⎝⎭ C .33,22⎡⎤-⎢⎥⎣⎦ D .13,22⎡⎤-⎢⎥⎣⎦ 11.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2xf x e ->的解集是( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0-∞12.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有2()()0f x xf x '+>,且(1)0f -=,则使得()0f x >成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-二、填空题13.对于函数22,0()12,02x x e x f x x x x ⎧⋅≤⎪=⎨-+>⎪⎩有下列命题: ①在该函数图象上一点(﹣2,f (﹣2))处的切线的斜率为22e -; ②函数f (x )的最小值为2e-; ③该函数图象与x 轴有4个交点;④函数f (x )在(﹣∞,﹣1]上为减函数,在(0,1]上也为减函数. 其中正确命题的序号是_____.14.已知函数()cos sin f x x x x =-,下列结论中, ①函数()f x 的图象关于原点对称; ②当(0,)x π∈时,()0f x π-<<; ③若120x x π<<<,则1122sin sin x x x x >;④若sin ax x bx <<对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1. 所有正确结论的序号为______.15.若a 是区间[]0,3e 上任意选取的一个实数,则xea x>对()0,x ∈+∞恒成立的概率为______.16.已知函数()()()3ln 06x f x a x x x a =-->,当0x >时,()0f x '≥(()f x '为函数()f x 的导函数),则实数a 的取值范围为______.17.若存在两个正实数x ,y 使等式()()ln ln 0x m y x y x +--=成立,(其中2.71828e =)则实数m 的取值范围是________.18.函数()cos f x x x =+在()0,π上的极大值为M ,极小值为N ,则M N +=__________.19.已知函数()y f x =在R 上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为()f x ',当0x >时,有不等式()()22x f x xf x '>-成立,若对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,则正整数a 的最大值为_______.20.函数31()3f x x ax =-的极大值为a =__________. 三、解答题21.已知函数22()1ln f x x ax a x =++-. (1)当1a =时,求()f x 的单调区间; (2)若0a =,且(0,1)x ∈,求证:2()2ln 122xf x x x e x-+-<. 22.已知函数()xf x e ax a =--.(1)当1a =时,求过点()0,1-且与曲线()y f x =相切的直线方程; (2)若()0f x ≥,求实数a 的取值范围.23.已知函数()()21xf x x a e =-+.(1)讨论()f x 的单调性;(2)若()f x 存在零点,求a 的取值范围. 24.已知曲线3211()33f x x ax bx =+++在点()()1,1f 处的切线斜率为3,且2x =时()y f x =有极值.(1)求函数()f x 的解析式;(2)求函数()f x 在[]0,3上的极值和最小值. 25.已知函数2()ln (0)f x x a x a =->.(1)若2a =,求曲线()y f x =的斜率等于3的切线方程; (2)若()y f x =在区间1,e e⎡⎤⎢⎥⎣⎦上恰有两个零点,求a 的取值范围.26.已知函数()ln f x x ax =-有两个不同的零点()1212,x x x x <,其中e 2.71828=是自然对数的底数.(1)求实数a 的取值范围; (2)求证:(i )11x a<;(ii )212x x ->【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意将问题转化为方程xb e a x=在0,上有两个实数根,进而令()(),0,xe g x x x=∈+∞,再研究函数()g x 的单调性得0b e a >>,进而分0a >和0a <讨论即可得答案. 【详解】解:当0a =时,函数()f x 只有一个零点,故0a ≠, 因为函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>所以方程xb e a x=在0,上有两个不相等的实数根.令()(),0,x e g x x x =∈+∞,()()21'x x e g x x-=, 所以当()1,∈+∞x 时()'0g x >,()0,1∈x 时()'0g x <,故函数()(),0,xe g x x x=∈+∞在1,上单调递增,在0,1上单调递减;所以()()min 1g x g e ==,所以0be a>>, 当0a >时,0b ae >>,当0a <时,0b ae <<. 故选:D. 【点睛】本题考查利用导数研究函数零点问题,解题的关键在于将问题转化为方程xb e a x=在0,上有两个不相等实数根,进而令()g x 研究函数的单调性即可.考查运算求解能力与化归转化思想,是中档题.2.A解析:A【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增,()f x 的最小值是()1f 1=,故1a =, ()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x x x g x x e xe x x+=+--=-', 令()1x h x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->,故存在0(0,1)x ∈使得()0h x =即001xx e =,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =, 所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.3.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx x x f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符; 如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A 【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.4.A解析:A 【分析】先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可.【详解】()()212x g x x e ax '=+-,由题意可知()()2120x g x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数; 1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数; ()f x的最小值为12f ⎛⎫= ⎪⎝⎭a ≤故选:A. 【点睛】利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立; (2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.5.A解析:A 【分析】利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减; 当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.6.D解析:D 【分析】由题意得32x x x a e e e =--,令32()x x x g x e e e =--,求()g x 的取值范围可得答案. 【详解】由32()0x x x f x e e e a =---=,则32x x x a e e e =--, 令32()x x x g x e e e =--, 则()()()3223()3211213xx x x x x x x x g x ee e e e e e e e '=--=+-=--,当()0g x '>得0x >,()g x 单调递增,当()0g x '<得0x <,()g x 单调递减, 所以min()(0)1g x g ≥=-,()2215()124xxxxx g x e e e e e ⎡⎤⎛⎫=--=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当x 趋向于正无穷大时,()g x 也趋向于正无穷大, 所以函数()f x 存在零点,则1a ≥-. 故选:D. 【点睛】方法点睛:本题考查函数零点问题.解题方法是把零点个数转化为方程解的个数,再转化为函数图象交点个数,由图象观察所需条件求得结论.考查了分析问题、解决问题的能力.7.A解析:A 【分析】先对函数()xf x xe =和()ln a xg x x=求导,根据两曲线在1x =处的切线平行,由导数的几何意义求出a ,得到函数()()()ln xh x f x g x e x ==,对其求导,利用导数的方法判定单调性,确定其在()0,∞+上的最值,即可确定函数零点个数. 【详解】∵()xf x xe =,∴()()1xf x x e '=+,又()ln a x g x x =,∴()2ln a a xg x x -'=, 由题设知,()()01f g '=',即()02ln1101a a e -+=,∴1a =,则()()()ln ln xx xh x f x g x xe e x x==⋅=, ∴()()ln 1ln xx xx x ee h x e x x x+=='+,0x >, 令()ln 1m x x x =+,0x >,则()ln 1m x x '=+, 当10,e x ⎛⎫∈ ⎪⎝⎭时,()0m x '<,即函数()ln 1m x x x =+单调递减; 当1,x e⎛⎫∈+∞ ⎪⎝⎭时,()0m x '>,即函数()ln 1m x x x =+单调递增;∴在()0,∞+上()m x 的最小值为1110m e e⎛⎫=-> ⎪⎝⎭, ∴()0m x >,则()0h x '>,∴()h x 在()0,∞+上单调递增,且()10h =.()h x 在()0,∞+上有唯一零点,故选:A . 【点睛】 思路点睛:利用导数的方法判定函数零点个数时,一般需要先对函数求导,利用导数的方法判定函数单调性,确定函数极值和最值,即可确定函数零点个数.(有时也需要利用数形结合的方法进行判断)8.C解析:C 【分析】构造函数()()3x x g x e f x e =⋅--,解不等式()0g x >即可,对()g x 求导得()[()()1]0x g x e f x f x ''=+->,可得()g x 在R 上单调递增,且(0)0g =,根据单调性可得0x >,即得正确答案. 【详解】令()()3x x g x e f x e =⋅--,则()()()[()()1]0x x x x g x e f x e f x e e f x f x '''=⋅+⋅-=+->, 所以()g x 在R 上单调递增, 又因为00(0)(0)30g e f e =⋅--=, 所以()0>g x ⇒0x >,即不等式的解集是(0)+∞,, 故选:C 【点睛】关键点点睛:本题的关键点是构造函数()()3x x g x e f x e =⋅--,所要解的不等式等价于 ()0g x >,且(0)0g =,所以()()0g x g >,因此需要对()g x 求导判断单调性即可. 9.B解析:B【分析】利用函数()f x 的对称性排除A 选项;然后分0a >和0a <两种情况讨论,利用导数分析函数()f x 的单调性,结合()0f 的符号可得出合适的选项.【详解】()3f x ax bx c =++,则()3f x ax bx c -=--+,()()2f x f x c ∴+-=,所以,函数()f x 的图象关于点()0,c 对称,排除A 选项;()3f x ax bx c =++,则()23f x ax b '=+,当0a >,x →+∞时,()0f x '>,函数()f x 单调递增,又0ac <,()00f c ∴=<,排除D 选项;当0a <,x →+∞时,()0f x '<,函数()f x 单调递减,又0ac <,()00f c ∴=>,排除C 选项.故选:B .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;(2)从函数的值域,判断图象的上下位置.(3)从函数的单调性,判断图象的变化趋势;(4)从函数的奇偶性,判断图象的对称性;(5)函数的特征点,排除不合要求的图象.10.A解析:A【分析】由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到()f x 的单调性,结合函数的单调性即可求得a 的取值范围.【详解】由导函数的图象知:()2,0x ∈-时,()0f x '<,()0,x ∈+∞时,()0f x '>, 所以()f x 在()2,0-上单调递减,在()0,∞+上单调递增,因为()211f a +≤,()21f -=,()41f =,所以2214a -<+<,可得:3322a -<<, 故选:A.【点睛】本题主要考查了利用导函数的符号判断原函数的单调性,以及利用函数的单调性解不等式,属于中档题.11.D解析:D【分析】构造新函数2()()x g x e f x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解.【详解】令2()()x g x e f x =,则2()[2()()]x g x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D .【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.12.B解析:B【分析】根据条件构造函数2()()g x x f x =,求函数的导数,判断函数的单调性,将不等式进行转化求解.【详解】由题意,设2()()g x x f x =,则2'()2()()[2()'()]g x xf x x f x x f x xf x =+=+, 因为当0x >时,有2()'()0f x xf x +>,所以当0x >时,'()0g x >,所以函数2()()g x x f x =在(0,)+∞上为增函数,因为(1)0f -=,又函数()f x 是偶函数,所以(1)(1)0f f =-=,所以(1)0g =,而当()0>g x 时,可得1x >,而()0>g x 时,有()0f x >,根据偶函数图象的对称性,可知()0f x >的解集为()(),11,-∞-⋃+∞,故选B.【点睛】该题考查的是与导数相关的构造新函数的问题,涉及到的知识点有函数的求导公式,应用导数研究函数的单调性,解相应的不等式,属于中档题目.二、填空题13.①②④【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③【详解】x≤0时f(x)=2xexf′(x)=2(1+x )ex 故f′(﹣2)=①正确;且f(解析:①②④【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③.【详解】x ≤0时,f (x )=2xe x ,f ′(x )=2(1+x )e x ,故f ′(﹣2)=22e-,①正确; 且f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增,故x ≤0时,f (x )有最小值f (﹣1)=2e-, x >0时,f (x )=2122x x -+在(0,1)上单调递减,在(1,+∞)上单调递增,故x >0时,f (x )有最小值f (1)=122e ->- 故f (x )有最小值2e-,②④正确;令20x x e ⋅=得0x =,令21202x x -+=得22x =,故该函数图象与x 轴有3个交点,③错误;故答案为:①②④【点睛】本题考查导数的几何意义,考查利用导数判断函数的单调性、求函数的最值一定注意定义域.14.①②④【分析】首先对函数的奇偶性进行判断得出①正确;利用导数研究函数的单调性求得函数的值域判断②正确;利用导数研究函数的单调性进行变形得到③是错误的数形结合思想可以判断④是正确的【详解】因为所以所以解析:①②④【分析】首先对函数的奇偶性进行判断得出①正确;利用导数研究函数的单调性,求得函数的值域,判断②正确;利用导数研究函数sin ()x g x x=的单调性,进行变形得到③是错误的,数形结合思想可以判断④是正确的.【详解】因为()cos sin f x x x x =-, 所以()()cos()sin()cos sin ()f x x x x x x x f x -=----=-+=-,所以()f x 为奇函数,所以函数()f x 的图象关于原点对称,所以①正确;因为'()cos sin cos sin f x x x x x x x =--=-,因为(0,)x π∈,所以'()0f x <,所以()f x 在(0,)π上单调递减,所以()()(0)0f f x f ππ-=<<=,所以()0f x π-<<,所以②正确; 令sin ()x g x x=,2cos sin '()x x x g x x -=, 由②可知,()f x 在(0,)π上单调递减,所以)'(0g x <, 所以()g x 在(0,)π上单调递减,若120x x π<<<,所以1212sin sin x x x x >, 即1122sin sin x x x x <,所以③错误; 若sin ax x bx <<对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,相当于sin y x =在0,2π⎛⎫ ⎪⎝⎭上落在直线y ax =的上方,落在直线y bx =的下方,结合图形,可知a 的最大值为连接(0,0),(,1)2π的直线的斜率,即2π,b 的最小值为曲线sin y x =在(0,0)处的切线的斜率,即0'|1x y ==,所以④正确;故正确答案为:①②④.【点睛】方法点睛:该题属于选择性填空题,解决此类问题的方法:(1)利用函数的奇偶性判断函数图象的对称性;(2)利用导数研究函数的单调性,从而求得其值域;(3)转化不等式,构造新函数,求导解决问题;(4)数形结合,找出范围.15.【分析】由对恒成立可知只要小于的最小值所以构造函数利用导数求出从而得然后利用区间长度比求出概率即可【详解】设则当时;当时在递减在递增∴∴当时对恒成立故所求概率为故答案为:【点睛】此题考查的是几何概型解析:13【分析】 由x e a x >对()0,x ∈+∞恒成立,可知只要a 小于x e x的最小值,所以构造函数()xe f x x=,利用导数求出()()min 1f x f e ==,从而得()0,a e ∈,然后利用区间长度比求出概率即可.【详解】设()x e f x x =,则()()'21x e x f x x -=,0x >.当01x <<时,()'0f x <;当1x >时,()'0f x >,()f x 在()0,1递减,在()1,+∞递增∴()()min 1f x f e ==,∴当a e <时,xe a x>对()0,x ∈+∞恒成立.故所求概率为1303e e =-. 故答案为:13【点睛】此题考查的是几何概型,不等式恒成立问题,属于基础题. 16.【分析】转化条件得设求导后求出函数的最小值令即可得解【详解】由题意得由于时故设则由于所以当时单调递减;当时单调递增于是所以即故实数的取值范围是故答案为:【点睛】本题考查了利用导数解决不等式恒成立问题 解析:(]0,e【分析】转化条件得()min 0f x '≥,设()()g x f x '=,求导后求出函数()g x 的最小值()min g x ,令()min 0g x ≥即可得解.【详解】由题意得()2ln 2x f x a x '=-. 由于0x >时,()0f x '≥,故()min 0f x '≥.设()()g x f x '=,则()(2x x x a g x x x+-'==. 由于0x >,所以当(x ∈时,()0g x '<,()g x 单调递减;当)x ∈+∞时,()0g x '>,()g x 单调递增. 于是()()()min min ln 1ln 022a a f x g x g a a '===-=-≥,所以ln 1a ≤即0a e <≤,故实数a 的取值范围是(]0,e .故答案为:(]0,e【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.17.【分析】由条件转化为换元令由导数确定函数的值域即可求解【详解】设且设那么恒成立所以是单调递减函数当时当时函数单调递增当函数单调递减所以在时取得最大值即解得:故答案为:【点睛】本题主要考查了利用导数研 解析:(),0-∞【分析】 由条件转化为11ln y y m x x ⎛⎫=-⋅ ⎪⎝⎭,换元0y t x=>,令()()1ln g t t t =-,由导数确定函数的值域即可求解.【详解】()()ln ln x m x y y x =--,()()ln ln 11ln x y y x y y m x x x --⎛⎫==-⋅ ⎪⎝⎭ 设0y t x =>且1t ≠, 设()()1ln g t t t =-,那么()()11ln 1ln 1g t t t t t t'=-+-⋅=-+-, ()221110t g t t t t+''=--=-<恒成立, 所以()g t '是单调递减函数,当1t =时,()10g '=,当()0,1t ∈时,()0g t '>,函数单调递增,当()1,t ∈+∞,()0g t '<,函数单调递减,所以()g t 在1t =时,取得最大值,()10g =,即10m <, 解得:0m <,故答案为:(),0-∞【点睛】本题主要考查了利用导数研究函数的单调性、最值,考查了变形运算能力,属于中档题. 18.【分析】直接求导再判断函数单调性进而求出极值即可【详解】因为令解得或当时单调递增;当时单调递减;当时单调递增所以极大值极小值则故答案为:【点睛】本题考查函数的导数的应用函数的极值以及求法考查分析问题【分析】直接求导,再判断函数单调性,进而求出极值即可.【详解】因为()sin (0)f x x x π'=-<<,令()0f x '=,解得3x π=或23x π=, 当(0,)3x π∈时,()0f x '>,()f x 单调递增; 当(,)33x π2π∈时,()0f x '<,()f x 单调递减; 当2(,)3x ππ∈时,()0f x '>,()f x 单调递增,所以极大值()cos 333M f πππ==+=极小值222()cos 333N f πππ==+=则M N +==,. 【点睛】 本题考查函数的导数的应用,函数的极值以及求法,考查分析问题解决问题的能力,是中档题.19.【分析】令先判断函数g(x)的奇偶性和单调性得到在R 上恒成立再利用导数分析解答即得解【详解】因为当时有不等式成立所以令所以函数g(x)在(0+∞)上单调递增由题得所以函数g(x)是奇函数所以函数在R解析:2【分析】令2()(),g x x f x =先判断函数g(x)的奇偶性和单调性,得到e x ax >在R 上恒成立,再利用导数分析解答即得解.【详解】因为当0x >时,有不等式()()22x f x xf x '>-成立, 所以()()22+20,[()]0x f x xf x x f x ''>∴>, 令2()(),g x x f x =所以函数g(x)在(0,+∞)上单调递增,由题得22()()()g(x),g x x f x x f x -=-=-=-所以函数g(x)是奇函数,所以函数在R 上单调递增.因为对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,所以()()222,()()e x x x x e f e a x f ax g e g ax ax >∴>∴>,, 因为a >0,所以当x≤0时,显然成立.当x >0时,()(0)xe a h x x x<=>, 所以2(1)()xx e h x x-'=,所以函数h (x)在(0,1)单调递减,在(1,+∞)单调递增. 所以min ()(1)h x h e ==,所以a <e,所以正整数a 的最大值为2.故答案为2【点睛】本题主要考查函数的奇偶性及其应用,考查函数单调性的判断及其应用,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.属于中档题.20.3【分析】求导数取导数为0计算代入原函数计算极大值得到答案【详解】函数的极大值为由题意知:当时有极大值所以故答案为3【点睛】本题考查了函数的极大值意在考查学生的计算能力解析:3【分析】求导数,取导数为0,计算x =.【详解】函数31()3f x x ax =-的极大值为 2()f x x a '=- 由题意知:0,a x >⇒=当x =(f =所以3a =故答案为3【点睛】本题考查了函数的极大值,意在考查学生的计算能力.三、解答题21.(1)单调递增区间为(]0,1,单调递减区间为[1,)+∞;(2)证明见解析.【分析】(1)先求出函数的定义域,再对函数求导,然后分别令0f x 和0f x ,解不等式可求出函数的单调区间;(2)22()2ln 11ln 12222x x f x x x x x e x e x--+-<⇔+-<,即()3(1ln )221(01)x x x e x x x -<-++<<,然后构造函数()(1ln )(01)g x x x x =-<<和()3()221x h x e x x =-++,利用导数分别求出()()11g x g <=,()1h x >,从而可得结论【详解】(1)当1a =时,2()1ln f x x x x =++-,定义域为(0,)+∞, ∴1(1)(21)()12x x f x x x x --+'=+-=, 令0f x ,得01x <<;令0f x ,得1x >,∴()f x 的单调递增区间为(]0,1,单调递减区间为[1,)+∞.(2)当0a =时,()1ln f x x =+, ∴22()2ln 11ln 12222x x f x x x x x e x e x--+-<⇔+-<, 即()3(1ln )221(01)x x x e x x x -<-++<<,令()(1ln )(01)g x x x x =-<<,∴()ln 0g x x '=->,∴()g x 在0,1上单调递增,∴()()11g x g <=.令()3()221x h x e x x =-++(01x <<),∴()32()2623x h x e x x x '=--++, 令32()2623x x x x ϕ=--++,∴2()6122x x x ϕ'=--+在0,1上递减,又(0)20ϕ'=>,(1)160ϕ'=-<,∴0(0,1)x ∃∈使()00x ϕ'=,且()00,x x ∈时,()0x ϕ'>,()ϕx 递增, ()0,1x x ∈时,()0x ϕ'<,()ϕx 递减,而(0)30ϕ=>,(1)30ϕ=-<,∴1(0,1)x ∃∈使()10x ϕ=,即()10h x '=,()10,x x ∈时()0h x '>,()h x 单调递增,()1,1x x ∈时()0h x '<,()h x 单调递减, 而(0)1h =,(1)h e =,∴()1h x >恒成立,∴()()g x h x <,即()3(1ln )221(01)x x x ex x x -<-++<<, 即2()2ln 122x f x x x e x-+-<. 【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区间,利用导数求函数的最值,第2问解题的关键是把2()2ln 122x f x x x e x-+-<等价转化为()3(1ln )221(01)x x x e x x x -<-++<<,然后构造函数()(1ln )(01)g x x x x =-<<,()3()221x h x e x x =-++,分别求出两个函数的最值即可,考查数学转化思想,属于中档题22.(1)()110e x y ---=;(2)01a ≤≤.【分析】(1)设切点坐标,求出导数及切线方程,把()0,1-代入切线方程可得0x ,然后再求出切线方程;(2)求出导函数,对a 进行讨论并判断函数的单调性,利用函数的最小值可得答案.【详解】(1)当1a =时,点()0,1-不在函数图象上,()1xf x e '=-, 设切点为()000, x x e ax a --,则切线方程为()()()0000x y e ax a f x x x '---=-, 因为过点()0,1-,所以0000()111x xe x e x --++=--, 解得01x =,因此所求的直线方程为()110e x y ---=.(2)()x f x e a '=-,当0a ≤时,()'0f x >,所以在R 上单调递增,其中0a =,()0xf x e =>,符合题意, 当0a <时,取110a x a-=<,()1110x f x e =-<,不符合题意; 当0a >时,()()n 0,,l x a f x '∈-∞<,所以()f x 在(),ln a -∞上单调递减,()()ln ,,0x a f x '∈+∞>,所以()f x 在()ln ,a +∞上单调递增,所以()()ln f x f a ≥,要使()0f x ≥,只需()ln 0f a ≥,()ln ln ln 0a f a e a a a =--≥,解得01a <≤;综上所述,01a ≤≤.【点睛】本题考查求函数过一点的切线方程和求参数问题,对于求切线的问题时需要讨论此点是否是切点;对于求参数问题,有时可采用对原函数进行求导讨论其单调性和最值方法求解,也可以采用对参数实行分离的方法,构造新函数并求新函数的值域可得解.23.(1)()f x 在()2,1a -∞-上单调递减,在()21,a -+∞上单调递增;(2)(][),11,-∞-+∞.【分析】(1)先求导并解得()0f x '=的根,再判断根附近导数值的正负,即得单调性;(2)先判断极小值即最小值,再结合()210f a =>可知()min 0f x ≤,解不等式即得结果.【详解】解:(1)()()21x f x x a e '=-+,定义域为R , 由()0f x '=,得21x a =-,当21x a <-时,()0f x '<;当21x a >-时,()0f x '>,故()f x 在()2,1a -∞-上单调递减,在()21,a -+∞上单调递增; (2)由(1)知()f x 在21x a =-处取得极小值,也是最小值,则()()221min 11a f x f a e -=-=-,因为()f x 存在零点,且()210f a =>,故只需()21min 10a f x e -=-≤,即2101a e e -≥=,故210a -≥,解得1a ≤-或1a ≥,所以a 的取值范围为(][),11,-∞-+∞. 【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.24.(1)3211()8333f x x x x -=++;(2)极大值为(2)7f =,无极小值;最小值为1(0)3f =. 【分析】(1)求出导数,根据题意有(1)123(2)440f a b f a b =++=⎧⎨=++=''⎩,解出,a b 代入解析式即可; (2)根据导数求出函数的单调区间,判定函数在区间[]0,3上的单调性,根据极值定义求出函数的极值,比较端点函数值即可解出最小值.【详解】解:(1)函数()f x 求导得2()2f x x ax b '=++因为函数()f x 在点()()1,1f 处的切线斜率为3,且2x =时()y f x =有极值 所以(1)123(2)440f a b f a b =++=⎧⎨=++=''⎩解得38a b =-⎧⎨=⎩所以函数()f x 的解析式为3211()8333f x x x x -=++ (2)由(1)可知2()68(2)(4)f x x x x x '=-+=--所以当2x <或4x >时,()0,()f x f x '>单调递增;当24x <<时,()0f x '<,()f x 单调递减,则函数()f x 在[]0,3上有极大值为(2)7f =,无极小值 又因为119(0),(3),33f f == 所以(0)(3)f f < 则函数()f x 在[]0,3上的最小值为1(0)3f =. 【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.25.(1)322ln 20x y ---=;(2)(22,e e ⎤⎦. 【分析】(1)求出导函数,令()3f x '=求得切点坐标后可得切线方程;(2)求导函数()'f x ,确定()f x 在定义域内只有一个极值点,因此这个极值点必在区间1e e ⎛⎫ ⎪⎝⎭,上,然后得函数在1,e e ⎡⎤⎢⎥⎣⎦上的极小值,由极小值小于0,区间两个端点处函数值大于或等于0可得结论.【详解】由已知函数()f x 定义域是(0,)+∞,(1)2()2ln f x x x =-,22(1)(1)()2x x f x x x x'+-=-=,由2()23f x x x'=-=解得2x =(12x =-舍去), 又()422ln 2f =-,所以切线方程为(42ln 2)3(2)y x --=-,即322ln 20x y ---=;(2)222()2x x a x a f x x x x x⎛ -⎝⎭⎝⎭'=-==, 易知()f x()f x有两个零点,则1e e <<,即2222a e e<<,此时在1e ⎛ ⎝上()0f x '<,()f x递减,在e ⎫⎪⎪⎭上()0f x '>,()f x 递增, ()f x在x =2a f a =-,所以22111ln 0()ln 002f a e e e f e e a e a f a ⎧⎛⎫⎪=-≥ ⎪⎪⎝⎭⎪=-≥⎨⎪⎪=-<⎪⎩解得22e a e <≤.综上a 的范围是(22,e e ⎤⎦. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的零点问题.函数在某个区间上的零点,解题时先从大处入手,由导数确定函数的极值点,利用单调区间上的零点最多只有一个,因此函数的极值点必在给定区间内,从而缩小参数的a 范围,在此范围内计算()f x 的单调性与极值,结合零点存在定理可得结论.26.(1)10,a e ⎛⎫∈ ⎪⎝⎭;(2)(i )证明见解析;(ii )证明见解析.【分析】(1)函数()ln f x x ax =-有两个不同的零点,等价于ln x a x =在(0,)+∞上有两个不同的实根,记ln ()x g x x=,对函数求导判断单调性,可得实数a 的取值范围; (2)(i )将()1212,x x x x <代入方程并参变分离,利用分析法可知,需证明111ln 20x x x e -+>,构造()ln 2,(1,)h x x x x e x e =-+∈,求导判断单调性与最值即可证明不等式成立;(ii )设()()()21ln 11x x x x x ϕ-=->+,对函数求导判断单调性可得:()()21ln 011x x x x ->>>+,由1122ln ln x ax x ax =⎧⎨=⎩,两式作差可得2121ln x x a x x =-,利用证得的不等式进行放缩,可得不等式成立.【详解】(1)函数()ln f x x ax =-有两个不同的零点()1212,x x x x <,变量分离得ln x a x=在(0,)+∞上有两个不同的实根,记ln ()x g x x =,则21ln ()x g x x -'= 当(0,)x e ∈时,()0,()'>g x g x 单调递增; 当(,)x e ∈+∞时,()0,()g x g x '<单调递减.且0x →时,()g x →-∞;x →+∞时,()0g x → 故10,a e ⎛⎫∈ ⎪⎝⎭.(2)(i )因为12,x x 是ln x ax =的两根,由(1)可知121x e x <<<,且1122ln ln x ax x ax =⎧⎨=⎩(只涉及变量1x ,故只用11ln x ax =),所以11ln x a x =要证211111111120ln 20x ax ax x e x x x e a<⇔->⇔-+>⇔-+> 构造函数()ln 2,(1,)h x x x x e x e =-+∈,则()ln 10h x x '=-<,()h x 在()1,e 上递减 所以()()0>=h x h e ,原不等式成立.(ii )解析1:放缩设()()()21ln 11x x x x x ϕ-=->+,则()()()()222114011x x x x x x ϕ-'=-=>++恒成立, ()x ϕ∴在()1,+∞单调递增,()()10x ϕϕ>=,即()()21ln 011x x x x ->>>+ 由1122ln ln x ax x ax =⎧⎨=⎩,可得221211221212112121ln ln ln 121x x x x x x a x x x x x x x x x x ⎛⎫- ⎪-⎝⎭==>⋅=---++,从而212x x a >-,则21112x x x a ->->212x x ->>11ae a ⇔>⇔<,证毕! 解析2:对数平均不等式 由对数平均不等式2112211ln ln 2x x x x a x x -+=<-,所以122x x a+>,由(i)可知1x <,所以212x x a >->21x x -=,即212x x -=,只需证:a > 下同解法1.【点睛】方法点睛:本题考查导数研究函数的单调性与零点问题,考查导数证明不等式,设函数()y f x =在[],a b 上连续,在(),a b 上可导,则:1.若()0f x '>,则()y f x =在[],a b 上单调递增;2.若()0f x '<,则()y f x =在[],a b 上单调递减.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》检测题(含答案解析)

(常考题)北师大版高中数学选修1-1第四章《导数应用》检测题(含答案解析)

一、选择题1.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定2.已知函数2()sin f x x x x =+,,22x ππ⎛⎫∈- ⎪⎝⎭,则下列式子成立的是( ) A .13(1)22f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭ B .13(1)22f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭C .13(1)22f f f ⎛⎫⎛⎫<<-⎪ ⎪⎝⎭⎝⎭D .31(1)22f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭3.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞B .()2e ,+∞C .()20,eD .()0,e4.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( ) A .1-B .0C .1D .25.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f6.已知函数()f x 的定义域为[)2-+∞,,部分对应值如下表;()f x '为()f x 的导函数,函数()y f x '=的图象如下图所示.若实数a 满足()211f a +≤,则a 的取值范围是( ) x2- 0 4()f x11-1A .33,22⎛⎫- ⎪⎝⎭B .13,22⎛⎫- ⎪⎝⎭C .33,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤-⎢⎥⎣⎦7.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( ) A .12B .132-C .132+D .238.已知对任意实数x 都有()()2xf x f x e '-=,()01f =-,若()()1f x k x >-恒成立,则k 的取值范围是( ) A .()1,+∞B .323,42e ⎛⎫ ⎪⎝⎭C .()121,4eD .()321,4e9.函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( ) A .[13]B .[1,)+∞C .(13]D .(1,)+∞10.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+11.若函数(1),()21,x x e x af x x x a⎧-+=⎨-->⎩有最大值,则实数a 的取值范围是( )A .211[,)22e --+∞ B .21[,)2e -+∞ C .[2-,)+∞D .211(2,]22e --- 12.已知函数()ln f x ax x =-,若()0f x ≥对一切(0,)x ∈+∞恒成立,则a 的取值范围是( ) A .(0,)+∞B .1[,)e+∞C .[1,)+∞D .[),e +∞二、填空题13.已知定义在R 上的函数()f x 满足()11f =,且对于任意的x ,1()2f x '<恒成立,则不等式()22lg 1lg 22x f x <+的解集为________.14.已知函数2()ln 3mf x x x x x=+-+.若函数()f x 在[1,2]上单调递减,则实数m 的最小值为________.15.已知函数()()()x f x e x b b R =-∈.若存在1,22x ⎡∈⎤⎢⎥⎣⎦,使得()()0f x xf x '+>,则实数b 的取值范围是____.16.函数2()ln f x x ax x =-在2(,2)e上不单调,则实数a 的取值范围是_____. 17.若函数()()32111562f x x mx n x =-++-+是[]0,1上的单调增函数,其中0m ≥,0n ≥,则()()2268m n +++的最小值为________.18.已知函数()f x 定义在R 上的函数,若2()()0x f x e f x --=,当0x ≤时,()()0f x f x '+<,则不等式21()(1)x f x e f x -≥-的解集为__________19.若函数()ln f x ax x =-在区间()0,1上是减函数,则实数a 的取值范围是________. 20.已知函数()xf x e x =-,()22g x x mx =-,若对任意1x ∈R ,存在[]21,2x ∈,满足()()12f x g x ≥,则实数m 的取值范围为______.三、解答题21.已知函数()()22646x x e f x x x -=++.(1)求函数()f x 的单调区间,并求()f x 的最值; (2)已知[)0,1a ∈,()()()2322202x e a x x g x x x-++=>.①证明:()g x 有最小值;②设()g x 的最小值为()h a ,求函数()h a 的值域. 22.已知函数()ln 1ln f x x x x x =+--.(Ⅰ)设函数()y f x =在1x =和x e =处的切线交直线1y =于,M N 两点,求||MN ; (Ⅱ)设()0f x 为函数()y f x =的最小值,求证:()0102f x -<<. 23.已知函数()(0)xaxf x a e =≠. (1)当1a =时,求函数()y f x =在[0,2]上的最大值和最小值;(2)求函数()f x 的单调区间. 24.已知函数2()ln (0)f x x a x a =->.(1)若2a =,求曲线()y f x =的斜率等于3的切线方程;(2)若()y f x =在区间1,e e ⎡⎤⎢⎥⎣⎦上恰有两个零点,求a 的取值范围.25.已知函数()ln f x kx x =-(k ∈R ).(1)若函数()f x 在()()1,1f 处的切线与x 轴平行,求函数()f x 的单调区间; (2)讨论函数()f x 的零点个数. 26.已知函数32113f xx ax ,0a >. (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积;(2)是否存在实数a ,使得()f x 在[]0,2上的最小值为56?若存在,求出a 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增, ()f x 的最小值是()1f 1=,故1a =,()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x xx g x x e xe x x+=+--=-',令()1xh x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->, 故存在0(0,1)x ∈使得()0h x =即001x x e=,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.2.B解析:B 【分析】由奇偶性的定义得到函数()f x 为偶函数,求导数得到函数()f x 在(0,)2π上为增函数,则函数在(,0)2π-上为减函数.结合单调性和奇偶性即可判断出答案.【详解】函数2()sin f x x x x =+, 22x ππ⎛⎫∈- ⎪⎝⎭,,定义域关于原点对称,且()()()()()22sin sin f x x x x x x x f x -=-+--=+=.所以函数()f x 为偶函数,所以()()11f f -= 又当0,2x π⎛⎫∈ ⎪⎝⎭时,()2sin cos 0f x x x x x '=++>. ()f x ∴在0,2π⎛⎫ ⎪⎝⎭上为增函数,则()f x 在,02π⎛⎫- ⎪⎝⎭上为减函数.13π1222<<<,所以()13122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 则()13122f f f ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】关键点睛:本题考查利用函数的奇偶性和单调性比较函数值大小,解答本题的关键是先得出函数为偶函数,再由0,2x π⎛⎫∈ ⎪⎝⎭时,()2sin cos 0f x x x x x '=++>利用单数判断出单调性,属于中档题.3.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.4.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0.故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212lnx kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.5.A解析:A 【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>. ∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -.故选:A . 【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题.6.A解析:A 【分析】由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到()f x 的单调性,结合函数的单调性即可求得a 的取值范围. 【详解】由导函数的图象知:()2,0x ∈-时,()0f x '<,()0,x ∈+∞时,()0f x '>, 所以()f x 在()2,0-上单调递减,在()0,∞+上单调递增, 因为()211f a +≤,()21f -=,()41f =, 所以2214a -<+<, 可得:3322a -<<,故选:A. 【点睛】本题主要考查了利用导函数的符号判断原函数的单调性,以及利用函数的单调性解不等式,属于中档题.7.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<,则2661y p p '=-+-6(p p =--- 则函数y在单调递减,在单调递增,故函数在36p =+处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.8.D解析:D 【分析】由导数的运算求出()f x ,然后用分离参数法得出1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-,再设(21)()1x e x h x x -=-,求出()h x 在1x >时最小值,在1x <时的最大值,从而可得k 的范围. 【详解】因为()()2xf x f x e '-=,所以()()2x f x f x e '-=,即()2x f x e '⎡⎤=⎢⎥⎣⎦,所以()2x f x x c e =+(c 为常数),()(2)x f x e x c =+,由(0)1f c ==-,()(21)x f x e x =-,不等式()()1f x k x >-为(21)(1)xe x k x ->-,1x =时,不等式为0e >,成立,1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-, 设(21)()1x e x h x x -=-,则2(23)()(1)x xe x h x x -'=-, 当312x <<或01x <<时,()0h x '<,当32x >或0x <时,()0h x '>,所以()h x 在(0,1)和31,2⎛⎫⎪⎝⎭上是减函数,在3,2⎛⎫+∞ ⎪⎝⎭和(,0)-∞上是增函数,1x >时,()h x 在32x =时取得极小值也最小值32342h e ⎛⎫= ⎪⎝⎭,由(21)1x e x k x -<-恒成立得324k e <,1x <时,()h x 在0x =时取得极大值也是最大值(0)1h =,由(21)1xe x k x ->-恒成立得1k >,综上有3214k e <<. 故选:D . 【点睛】本题考查导数的运算,考查用导数研究不等式恒成立问题,用分离参数法转化为求函数的最值是解题关键,解题时注意分类讨论思想的应用.9.A解析:A 【分析】求导得()3(1)(1)f x x x =+-',从而知函数()f x 的单调性,再结合(0)0f =,f (1)2=,即可得解 【详解】.3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减.函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)0f f ==,f (1)2=,13m ∴≤≤故选:A. 【点睛】本题考查利用导数研究函数的最值问题,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.10.A解析:A 【分析】设()()2xxF x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x xF x e f x e =-,则[]()()()2()()2x x x xF x e f x e f x e ef x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦,所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-,故(3)2(2)2ef f e +<+. 故选:A. 【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.11.A解析:A 【分析】由x a >时,()21f x x =--递减,且无最大值,可得x a 时,()f x 取得最大值M ,且21M a --,求出x a 时,()f x 的导数和单调区间、极大值,讨论2a <-,判断单调性,可得最大值,解不等式判断无解,则2a -,求出最大值,解不等式即可得到所求a 的范围. 【详解】解:由x a >时,()21f x x =--递减,可得()21f x a <--,无最大值,函数(1),()21,x x e x af x x x a ⎧-+=⎨-->⎩有最大值,可得x a 时,()f x 取得最大值M ,且21M a --,由()(1)xf x x e =-+的导数为()(2)xf x x e '=-+,可得2x >-时,()0f x '<,()f x 递减;2x <-时,()0f x '>,()f x 递增. 即有()f x 在2x =-处取得极大值,且为最大值2e -.若2a <-,则()f x 在(-∞,]a 递增,可得()()f x f a (1)aa e =-+,由题意可得(1)21a a e a -+≥--,即得(1)210aa e a +--≤, 令(1))1(2aa e g a a +--=,则()(2)20ag a a e '=+-<,(2)a <-, 则()g a 在(),2-∞-递减,可得2(2)0()3g a g e ->-=-+>,则不等式(1)210aa e a +--≤无实数解.故2a -,此时在2x =-处()f x 取得最大值,为2e --,故221e a ----, 解得21122a e --, 综上可得,a 的范围是211[22e--,)+∞. 故选:A. 【点睛】本题考查了分段函数的最值问题,考查转化思想,以及分类讨论思想方法,注意运用导数,求出单调区间和极值、最值,考查化简整理的运算能力,属于中档题.12.B解析:B 【分析】()ln 0f x ax x =-≥对一切(0,)x ∈+∞恒成立,即ln xa x≥对一切(0,)x ∈+∞恒成立,设()ln g xx x=,求出()g x 的导数,进而求出其最大值,得到答案. 【详解】 ()ln 0f x ax x =-≥对一切(0,)x ∈+∞恒成立,即ln xa x≥对一切(0,)x ∈+∞恒成立 设()ln g x x x=,则()21ln 'xg x x -=由()21ln '0x g x x -=>,则0x e <<,由()21ln '0xg x x-=<,则x e > 所以()g x 在()0e ,上单调递增,在()+∞e ,上单调递减.当x e =时, ()g x 有最大值()1g e e= 所以1a e≥ 故选:B 【点睛】本题考查恒成立求参数问题,考查分离参数法的应用,属于中档题.二、填空题13.【分析】由构造单调递减函数利用其单调性求解【详解】设则是上的减函数且不等式即为所以得解得或原不等式的解集为故答案为:【点睛】利用导数研究函数的单调性构造函数比较大小属于难题联系已知条件和结论构造辅助解析:10,10,10.【分析】 由()12f x '<,构造单调递减函数()()12h x f x x =-,利用其单调性求解.【详解】()()11,022f x f x <∴-''<,设()()12h x f x x =-, 则()()102h x f x ''=-<, ()h x ∴是R 上的减函数,且()()111111222h f =-=-=, 不等式()22lg 1lg 22x f x <+,即为()22lg 1lg 22x f x -<,所以()()2lg 1h x h <,得2lg 1x >,解得10x >或110x, ∴原不等式的解集为10,10,10.故答案为:10,10,10.【点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题,联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.14.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数解析:6 【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值. 【详解】21()23mf x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+, 令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥ 当[1,2]x ∈时,()2661g x x x '=-+单调增,()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6 【点睛】关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.15.【详解】解答:∵f(x)=ex(x−b)∴f′(x)=ex(x−b+1)若存在x ∈2使得f(x)+xf′(x)>0则若存在x ∈2使得ex(x−b)+xex(x−b+1)>0即存在x ∈2使得b<成立令解析:83b <【详解】 解答: ∵f(x)=e x (x−b), ∴f′(x)=e x (x−b+1), 若存在x ∈[12,2],使得f(x)+xf′(x)>0, 则若存在x ∈[12,2],使得e x (x−b)+xe x (x−b+1)>0, 即存在x ∈[12,2],使得b<221x x x ++ 成立,令()221,,212x x g x x x +⎡⎤=∈⎢⎥+⎣⎦, 则()()222201x x g x x ++'=>+ ,g(x)在1,22⎡⎤⎢⎥⎣⎦递增,∴g(x)最大值=g(2)=83, 则实数b 的取值范围是83b <16.【分析】求得函数的导函数根据在区间上有极值求得的取值范围【详解】令得由于分离常数得构造函数所以在上递减在上递增下证:构造函数当时①而即所以所以由①可得所以当时单调递增由于所以当时故也即由于所以所以的 解析:4(2,)ln 21+ 【分析】求得函数()f x 的导函数()'f x ,根据()f x 在区间2(,2)e上有极值,求得a 的取值范围. 【详解】()()'21ln 2ln f x x a x x a x a =-+=--,令'0f x得2ln 0x a x a --=,由于222,ln ln ln 2,ln 2ln 1ln 2x x x e e e<<<<<+<, 分离常数a 得21ln xa x=+.构造函数()21ln x h x x =+,()()'22ln 1ln x h x x =+,所以()h x 在2,1e ⎛⎫ ⎪⎝⎭上递减,在()1,2上递增,()()()424444,12,22ln 2ln 2ln 21ln 21ln eeh h h e e e e⎛⎫======⎪+⎝⎭+. 下证22e e >:构造函数()22xg x x =-,()'2ln 22xg x =-,当2x ≥时,22ln 222ln 22x -≥-①,而1ln 2ln 2e =<=<,即1ln 212<<,所以222ln 24<<,所以由①可得22ln 222ln 220x -≥->.所以当2x ≥时,()g x 单调递增.由于()20g =,所以当2x >时,()()20g x g >=,故()0g e >,也即22022e e e e ->⇒>.由于()22ln 2ln 2eee e >⇒>,所以()22h h e ⎛⎫<⎪⎝⎭. 所以a 的取值范围是4(2,)ln 21+ 故答案为:4(2,)ln 21+ 【点睛】本小题主要考查利用导数研究函数的单调性,属于中档题.17.49【分析】求出函数的导数根据函数的单调性得到关于的不等式组根据两点间的距离公式求出其最小值即可【详解】若在上递增则故满足条件的平面区域如图示:的几何意义表示和阴影部分的点的距离故到阴影部分的最小值解析:49 【分析】求出函数的导数,根据函数的单调性得到关于m ,n 的不等式组,根据两点间的距离公式求出其最小值即可. 【详解】21()(1)2f x x mx n '=-++-,若()f x 在[0,1]上递增, 则(0)10f n '=-,()11102m n f =-++-', 故满足条件001102m n n m n ⎧⎪⎪⎪⎨⎪⎪-+⎪⎩的平面区域如图示:22(6)(8)m n -+-的几何意义表示(6,8)和阴影部分的点的距离,故(6,8)到阴影部分的最小值是自(6,8)向1n =作垂线, 故垂线段是7,故22(6)(8)m n -+-的最小值是49, 故答案为:49. 【点睛】本题考查了函数的单调性问题,考查导数的应用以及简单的线性规划问题,考查了数学运算能力和数形结合思想.18.【分析】令根据题中条件得到为偶函数;对其求导根据题中条件判定在上单调递减;则在上单调递增;化所求不等式为求解即可得出结果【详解】令则因为所以即所以函数为偶函数;又当时所以即函数在上单调递减;则在上单解析:12x x ⎧⎫≥⎨⎬⎩⎭【分析】令()()xg x f x e =,根据题中条件,得到()g x 为偶函数;对其求导,根据题中条件,判定()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增;化所求不等式为1x x ≥-,求解,即可得出结果.【详解】令()()xg x f x e =,则()()xg x f x e --=-,因为2()()0xf x ef x --=,所以()()x x f x e f x e -=-,即()()g x g x =-,所以函数()g x 为偶函数;又()[]()()()()x x xg x f x e f x e f x f x e '''=+=+,当0x ≤时,()()0f x f x '+<,所以()[]()()0xg x f x f x e ''=+<,即函数()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增; 又不等式21()(1)x f x ef x -≥-可化为1()(1)x x f x e f x e -≥-,即()()1g x g x ≥-,所以只需1x x ≥-,则()221x x ≥-,解得12x ≥. 故答案为:12x x ⎧⎫≥⎨⎬⎩⎭. 【点睛】本题主要考查由函数单调性与奇偶性解不等式,考查导数的方法判定函数单调性,涉及绝对值不等式的解法,属于常考题型.19.【分析】求出函数的导数问题转化为在区间恒成立求出的范围即可【详解】若函数区间上为减函数则在区间恒成立即因为所以所以故答案为:【点睛】本题主要考查了利用导数研究函数的单调性函数的单调性的性质属于中档题解析:(],1-∞【分析】求出函数的导数,问题转化为10a x-在区间(0,1)恒成立,求出a 的范围即可. 【详解】()f x ax lnx =-,(0)x >, 1()f x a x∴'=-,若函数()f x ax lnx =-区间(0,1)上为减函数, 则10a x-在区间(0,1)恒成立, 即1()min a x ,因为(0,1)x ∈, 所以min11x ⎛⎫>⎪⎝⎭, 所以1a ≤.故答案为:(-∞,1]. 【点睛】本题主要考查了利用导数研究函数的单调性,函数的单调性的性质,属于中档题.20.【分析】首先对进行求导利用导数研究函数的最值问题根据题意对任意存在使只要的最小值大于等于在指定区间上有解【详解】由得当时当时∴在上单调递减在上单调递增∴在上有解在上有解函数在上单调增故答案为:【点睛 解析:[)0,+∞【分析】首先对()f x 进行求导,利用导数研究函数()f x 的最值问题,根据题意对任意1x R ∈,存在[]21,2x ∈,使12()()f x g x ,只要()f x 的最小值大于等于()g x 在指定区间上有解 . 【详解】由()xf x e x =-,得()1xf x e '=-,当()1,0x ∈-时,()0f x '<,当()0,1x ∈时,()0f x '>, ∴()f x 在()1,0-上单调递减,在()0,1上单调递增, ∴()()min 01f x f ==()1g x ≤在[]1,2上有解,21212x mx m x x -≤⇔≥-在[]1,2上有解,函数1y x x =-在[]1,2上单调增,1101min y ∴=-=,20,0m m ≥≥.故答案为: [)0,+∞ 【点睛】不等恒成立与能成立的等价转换:任意1x A ∈,存在2x B ∈,使()()12min min ()()f x g x f x g x ⇔≥ 任意1x A ∈,任意2x B ∈,使()()12min max ()()f x g x f x g x ⇔= 存在1x A ∈,存在2x B ∈,使()()12max min ()()f x g x f x g x ⇔⇔三、解答题21.(1)单调递减区间为(),0-∞,单调递增区间为()0,+∞,最小值为1-,无最大值;(2)①证明见解析;②31627e ⎛⎤⎥⎝⎦,.【分析】(1)对()f x 求导,由()0f x '>可得单调递增区间,由()0f x '<可得单调递减区间,比较极值即可得最值; 【详解】(1)()f x 的定义域为R()()()()()()()2322222446262424646x x xx e x x x e x x e f x xx xx ⎡⎤-++--+⎣⎦==++++'当(),0x ∈-∞时,()0f x '<,()f x 在(),0-∞单调递减, 当()0,+x ∈∞时,()0f x '>,()f x 在()0,+∞单调递增, 所以()f x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞,()()min 01f x f ==-,()f x 最小值为()()min 01f x f ==-,无最大值.(2)①()()()()()()()22244242646464626=22462x x x e a x x x x x x x e g a f x a x x x x x x -+++++++⎡⎤-==++⎡⎤⎢⎥⎣⎦++⎣⎦'令()()x f x a ϕ=+,()0,+x ∈∞ ,由(1)知,()x ϕ单调递增,()010a ϕ=-<,()30a ϕ=≥所以存在唯一的(]00,3x ∈,使得()00x ϕ=,即()0020026046xx e a x x -+=++当00x x <<时,()0x ϕ<,()g x 单调递减; 当0x x >时,()0x ϕ>,()g x 单调递增 故()()()00200min 032000222246x x e a x x e g x g x x x x -++===++, 所以()g x 有最小值得证②令()020046x e h a x x =++,()00,3x ∈,()()22222204646xxx x e e x x x x '++⎡⎤=>⎢⎥++⎣⎦++,所以()h a 单增, 所以,由()00,3x ∈,得()0033222001= < =6040646343627x e e e e h a x x =≤+⨯++++⨯+因为246xe x x ++单调递增,对任意31627e λ⎛⎤∈ ⎥⎝⎦,,存在唯一的()00,3x ∈,()[)00,1a f x =-∈,使得()h a λ=,所以()h a 的值域为31627e ⎛⎤ ⎥⎝⎦,综上:当[)0, 1a ∈,函数()g x 最小值为()h a ,函数()h a 的值域为31627e ⎛⎤⎥⎝⎦,【点睛】利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.22.(Ⅰ)2||1e MN e =-;(Ⅱ)证明见解析.【分析】(Ⅰ)求出导函数,得切线方程,然后求得交点,M N 坐标后可得线段长MN ;(Ⅱ)由零点存在定理得()'f x 存在一个零点0(1,2)x ∈,并求出最小值0()f x ,利用0()0f x '=化简0()f x 后根据0(1,2)x ∈可证上得结论.【详解】解:(Ⅰ)函数()f x 的导函数为11()1ln 1ln f x x x x x'=+--=-. 所以1(1)1,()1f f e e''=-=-.又因为(1)0,()0f f e ==, 因此()y f x =在1x =和x e =处的切线方程分别为1y x =-+和1()e y x e e-=-. 令1y =,可得M 和N 的坐标分别为(0,1)和2,11e e ⎛⎫ ⎪-⎝⎭,故2||1e MN e =-.(Ⅱ)因为1()ln f x x x'=-在(0,)+∞上单调递增,而1(1)10,(2)ln 202f f ''=-<=->, 所以必然存在0(1,2)x ∈,满足()00f x '=,且当()00,x x ∈)时()0f x '<,当()0,x x ∈+∞时()0f x '>. 即()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,当0x x =时,()f x 取得最小值()00000ln 1ln f x x x x x =+--. 由()00f x '=可得001ln x x =,所以()00012f x x x ⎛⎫=-+ ⎪⎝⎭. 当0(1,2)x ∈时,00152,2x x ⎛⎫+∈ ⎪⎝⎭,所以()0102f x -<<. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数求函数的最值.求最值时在极值点0x 不能直接求出时,对极值点(最值点)0x 进行定性分析:确定其取值范围,利用注意0()0f x '=得出0x 满足的性质,代入0()f x 化简表达式后再求解.23.(1)最大值为1e,最小值分别为0;(2)答案见解析. 【分析】(1)当1a =时,()xxf x e =,对其求导,利用导函数得符号判断()y f x =在[0,2]上的单调性,即可求得最值; (2)对()f x 求导可得()1()xa x f x e-'=,讨论0a >和0a <,由()0f x '>可得单调递增区间,由()0f x '<,可得单调递减区间. 【详解】(1)当1a =时,()x x f x e =,所以21()x xx x e xe xf x e e--'==.令()0f x '=,得1x =.当01x ≤<时,()0f x '>;当12x <≤时,()0f x '<.所以()y f x =在()0,1单调递增,在()1,2单调递减,所以当1x =时,()f x 取最大值1(1)f e =. 又因为(0)0f =,22(2)f e =,所以函数()x x f x e =的最大值和最小值分别为1e ,0. (2)因为()1()xa x f x e -'=. 当0a >时,由()0f x '>,得1x <;由()0f x '<,得1x >, 此时函数()x x f x e=的单调递增区间为(,1)-∞,单调递减区间为(1,)+∞; 当0a <时,由()0f x '>,得1x >;由()0f x '<,得1x <. 此时函数()x x f x e=的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞ 综上所述: 当0a >时,函数()xx f x e =的单调递增区间为(,1)-∞,单调递减区间为(1,)+∞; 当0a <时,函数()x x f x e=的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞. 【点睛】 方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数在区间[],a b 上单调递增或递减,则()f a 与()f b 一个为最大值,另一个为最小值;(2)若函数在区间[],a b 内有极值,则要先求出函数在[],a b 上的极值,再与()f a ,()f b 比较,最大的为最大值,最小的为最小值;(3)函数()f x 在区间(),a b 上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.24.(1)322ln 20x y ---=;(2)(22,e e ⎤⎦. 【分析】(1)求出导函数,令()3f x '=求得切点坐标后可得切线方程;(2)求导函数()'f x ,确定()f x 在定义域内只有一个极值点,因此这个极值点必在区间1e e ⎛⎫ ⎪⎝⎭,上,然后得函数在1,e e ⎡⎤⎢⎥⎣⎦上的极小值,由极小值小于0,区间两个端点处函数值大于或等于0可得结论.【详解】由已知函数()f x 定义域是(0,)+∞,(1)2()2ln f x x x =-,22(1)(1)()2x x f x x x x'+-=-=, 由2()23f x x x'=-=解得2x =(12x =-舍去), 又()422ln 2f =-,所以切线方程为(42ln 2)3(2)y x --=-,即322ln 20x y ---=;(2)222()2x x a x a f x x x x x⎛-+ -⎝⎭⎝⎭'=-==, 易知()f x()f x有两个零点,则1e e <<,即2222a e e<<,此时在1e ⎛ ⎝上()0f x '<,()f x递减,在e ⎫⎪⎪⎭上()0f x '>,()f x 递增, ()f x在x =时取得极小值2a f a =-,所以22111ln 0()ln 002f a e e e f e e a e a f a ⎧⎛⎫⎪=-≥ ⎪⎪⎝⎭⎪=-≥⎨⎪⎪=-<⎪⎩解得22e a e <≤.综上a 的范围是(22,e e ⎤⎦. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的零点问题.函数在某个区间上的零点,解题时先从大处入手,由导数确定函数的极值点,利用单调区间上的零点最多只有一个,因此函数的极值点必在给定区间内,从而缩小参数的a 范围,在此范围内计算()f x 的单调性与极值,结合零点存在定理可得结论.25.(1)函数()f x 的单调递增区间是()1,+∞,单调递减区间是()0,1;(2)当1k e >时,函数()f x 没有零点;当1k e =或0k ≤时,函数()f x 有1个零点;当1k e<<0时,函数()f x 有2个零点.【分析】(1)由题得()10f '=,进而得1k =,再根据导数求解单调区间即可;(2)根据题意将问题转化为函数()ln g x x =与y kx =的交点个数问题,再讨论过原点的函数()ln g x x =的切线方程的斜率,进而求解.【详解】解:(1)因为函数()f x 在()()1,1f 处的切线与x 轴平行,()1'f x k x =-, 所以()10f '=,即10k -=,求得1k =,所以()ln f x x x =-,()111x f x x x-'=-=(0x >), 令()'0f x >,则1x >;令()'0f x <,则01x <<,∴函数()f x 的单调递增区间是()1,+∞,单调递减区间是()0,1.(2)函数()f x 的零点个数可等价于函数()ln g x x =与y kx =的交点个数.设()00,P x y 是函数()ln g x x =上的一点,由()ln g x x =得,()1g x x'=, ∴()g x 在点()00,P x y 处的切线方程为()0001ln y x x x x -=-, 令0x y ==则0x e =,∴过原点所作的函数()ln g x x =的切线方程为1y x e =, 故由图可知,故当1k e >时,函数()f x 没有零点; 当1k e=或0k ≤时,函数()f x 有1个零点; 当1k e <<0时,函数()f x 有2个零点. 【点睛】本题第二问解题的关键在于根据题意将问题转化为函数()ln g x x =与y kx =的交点个数问题,再讨论过原点的函数()ln g x x =的切线方程的斜率,数形结合即可求解.考查化归转化思想和运算求解能力,是中档题.26.(1)89;(2)存在,12a =. 【分析】(1)由1a =,求导()22f x x x '=-,利用导数的几何意义求得曲线()y f x =在点()()1,1f 处的切线方程,再求得切线的x 轴、y 轴上的截距,代入三角形的面积公式求解. (2)求导()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =,然后分022a <<,22a ≥,由()f x 在[]0,2上的最小值为56求解. 【详解】(1)当1a =时,()32113f x x x =-+,()22f x x x '=-, 所以()11f '=-,又()113f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()113y x -=--, 即3340x y +-=,直线3340x y +-=在x 轴、y 轴上的截距均为43, 所以三角形的面积为14482339S =⨯⨯=. (2)()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =.当022a <<,即01a <<时,当[]0,2x a ∈时,()0f x '≤,()f x 单调递减;当[]2,2x a ∈时.()0f x '≥,()f x 单调递增.则()()33min 8524136f x f a a a ==-+=,解得12a =, 当22a ≥,即1a ≥时,当[]0,2x ∈时,()0f x '≤,()f x 单调递减,则()()min 8524136f x f a ==-+=,解得17124a =<,舍去. 综上:存在12a =,使得()f x 在[]0,2上的最小值为56. 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.(2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数.。

高中数学(北师大版,选修11):第四章+导数应用(课件+同步练习+章末归纳总结+综合检测,10份)第

高中数学(北师大版,选修11):第四章+导数应用(课件+同步练习+章末归纳总结+综合检测,10份)第

第四章 §2 2.2 第1课时一、选择题1.(2014·营口三中期中)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx 在x =1处有极值,则a +b 等于( )A .2B .3C .6 D.9[答案] C[解析] f ′(x )=12x 2-2ax -2b ,由条件知x =1是方程f ′(x )=0的实数根,∴a +b =6. 2.函数f (x )=x (1-x 2)在[0,1]上的最大值为( ) A.239B.229C.329D.38 [答案] A[解析] f ′(x )=1-3x 2=0,得x =33∈[0,1], ∵f ⎝⎛⎭⎫33=239,f (0)=f (1)=0. ∴f (x )max =239. 3.(2014·河南淇县一中模拟)设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( ) A .a >-3 B .a <-3 C .a >-13D .a <-13[答案] B[解析] y ′=a e ax +3,由条件知,方程a e ax +3=0有大于零的实数根,∴0<-3a <1,∴a <-3.4.函数y =x -sin x ,x ∈⎣⎡⎦⎤π2,π的最大值是( ) A .π-1 B.π2-1 C .π D .π+1 [答案] C[解析] f ′(x )=1-cos x ≥0, ∴f (x )在⎣⎡⎦⎤π2,π上为增函数,∴f (x )的最大值为f (π)=π-sinπ=π,故选C.5.(2014·北京东城区联考)如图是函数y =f (x )的导函数f ′(x )的图像,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在(1,3)上f (x )是减函数C .在(4,5)上f (x )是增函数D .当x =4时,f (x )取极大值 [答案] C[解析] 由导函数y =f ′(x )的图像知,f (x )在(-2,1)上先减后增,在(1,3)上先增后减,在(4,5)上单调递增,x =4是f (x )的极小值点,故A 、B 、D 错误,选C.6.(2014·河北冀州中学期中)已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( )A .(-1,2)B .(-∞,-3)∪(6,+∞)C .(-3,6)D .(-∞,-1)∪(2,+∞)[答案] B[解析] f ′(x )=3x 2+2ax +a +6,由条件知,方程f ′(x )=0有两不等实根,∴Δ=4a 2-12(a +6)>0,∴a <-3或a >6,故选B. 二、填空题7.(2014·福建安溪一中、养正中学联考)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. [答案] 4x -y -3=0[解析] y ′|x =1=(3ln x +4)|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0.8.(2014·河北冀州中学期中)若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________. [答案] [-1,1][解析] f ′(x )=1+a cos x ,由条件知f ′(x )≥0在R 上恒成立,∴1+a cos x ≥0,a =0时显然成立;a >0时,∵-1a ≤cos x 恒成立,∴-1a ≤-1,∴a ≤1,∴0<a ≤1;a <0时,∵-1a ≥cos x 恒成立,∴-1a ≥1,∴a ≥-1,即-1≤a <0,综上知-1≤a ≤1.9.(2014·三亚市一中月考)曲线y =x2x -1在点(1,1)处的切线为l ,则l 上的点到圆x 2+y 2+4x +3=0上的点的最近距离是________.[答案] 22-1 [解析] y ′|x =1=-1(2x -1)2|x =1=-1,∴切线方程为y -1=-(x -1),即x +y -2=0,圆心(-2,0)到直线的距离d =22,圆的半径r =1,∴所求最近距离为22-1. 三、解答题10.(2014·淄博市临淄中学学分认定考试)已知函数f (x )=x 3+ax 2+bx +5,曲线y =f (x )在点P (1,f (1))处的切线方程为y =3x +1.(1)求a 、b 的值;(2)求y =f (x )在[-3,1]上的最大值. [答案] (1)a =2,b =-4 (2)13[解析] (1)依题意可知点P (1,f (1))为切点,代入切线方程y =3x +1可得,f (1)=3×1+1=4, ∴f (1)=1+a +b +5=4,即a +b =-2,又由f (x )=x 3+ax 2+bx +5得,f ′(x )=3x 2+2ax +b , 而由切线方程y =3x +1的斜率可知f ′(1)=3, ∴3+2a +b =3,即2a +b =0,由⎩⎪⎨⎪⎧ a +b =-2,2a +b =0.解得⎩⎪⎨⎪⎧a =2,b =-4,∴a =2,b =-4.(2)由(1)知f (x )=x 3+2x 2-4x +5, f ′(x )=3x 2+4x -4=(3x -2)(x +2), 令f ′(x )=0,得x =23或x =-2.当x 变化时,f (x ),f ′(x )的变化情况如下表:∴f (x )的极大值为f (-2)=13,极小值为f (23)=9527,又f (-3)=8,f (1)=4, ∴f (x )在[-3,1]上的最大值为13.一、选择题11.函数y =2x 3-3x 2-12x +5在[-2,1]上的最大值、最小值分别是( ) A .12;-8 B .1;-8 C .12;-15 D .5;-16[答案] A[解析] y ′=6x 2-6x -12,由y ′=0⇒x =-1或x =2(舍去).x =-2时y =1,x =-1时y =12,x =1时y =-8.∴y max =12,y min =-8.故选A.12.(2014·开滦二中期中)若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(0,12)[答案] D[解析] f ′(x )=3x 2-6b ,∵f (x )在(0,1)内有极小值,∴在(0,1)内存在点x 0,使得在(0,x 0)内f ′(x )<0,在(x 0,1)内f ′(x )>0,由f ′(x )=0得,x 2=2b >0,∴⎩⎨⎧b >02b <1,∴0<b <12.13.(2014·枣庄市期中)若1、3为函数f (x )=13x 3+bx 2+cx (b ,c ∈R )的两个极值点,则曲线y =f (x )在点(-1,f (-1))处的切线的斜率为( )A .8B .6C .4 D.0[答案] A[解析] f ′(x )=x 2+2bx +c ,由条件知,1,3是方程f ′(x )=0的两个实根,∴b =-2,c =3,∴f ′(-1)=8,故选A.14.(2014·安徽程集中学期中)已知函数f (x )(x ∈R )满足f ′(x )>f (x ),则( ) A .f (2)<e 2f (0) B .f (2)≤e 2f (0) C .f (2)=e 2f (0) D .f (2)>e 2f (0) [答案] D[分析] 所给四个选项实质是比较f (2)与e 2f (0)的大小,即比较f (2)e 2与f (0)e 0的大小,故构造函数F (x )=f (x )ex 解决. [解析] 设F (x )=f (x )e x ,则F ′(x )=f ′(x )-f (x )e x >0,∴F (x )在R 上为增函数,故F (2)>F (0), ∴f (2)e 2>f (0)e 0, 即f (2)>e 2f (0). 二、填空题15.若函数f (x )=x 2+a x +1在x =1处取得极值,则a =________.[答案] 3[解析] 考查分式函数求导法则、极值点的性质. f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a(x +1)2,f ′(1)=0⇒1+2-a4=0⇒a =3.16.(2014·衡阳六校联考)在区间[-a ,a ](a >0)内图像不间断的函数f (x )满足f (-x )-f (x )=0,函数g (x )=e x ·f (x ),且g (0)·g (a )<0,又当0<x <a 时,有f ′(x )+f (x )>0,则函数f (x )在区间[-a ,a ]内零点的个数是________.[答案] 2[解析] ∵f (-x )-f (x )=0,∴f (x )为偶函数, ∵g (x )=e x ·f (x ),∴g ′(x )=e x [f ′(x )+f (x )]>0, ∴g (x )在[0,a ]上为单调增函数, 又∵g (0)·g (a )<0,∴函数g (x )=e x ·f (x )在[0,a ]上只有一个零点, 又∵e x ≠0,∴f (x )在[0,a ]上有且仅有一个零点,∵f (x )是偶函数,且f (0)≠0,∴f (x )在[-a ,a ]上有且仅有两个零点. 三、解答题17.已知f (x )=ax 3+bx 2-2x +c ,在x =-2时有极大值6,在x =1时有极小值.(1)求a 、b 、c 的值;(2)求出f (x )在区间[-3,3]上的最大值和最小值. [答案] (1)a =13,b =12,c =83 (2)最大值616,最小值32[解析] (1)f ′(x )=3ax 2+2bx -2, 由已知得⎩⎪⎨⎪⎧f ′(-2)=12a -4b -2=0f ′(1)=3a +2b -2=0f (-2)=-8a +4b +4+c =6,解得a =13,b =12,c =83.(2)由(1)知f (x )=13x 3+12x 2-2x +83,f ′(x )=x 2+x -2,令f ′(x )=0,得x 1=-2,x 2=1. 当x 变化时,f ′(x )、f (x )的变化情况如下表:由上表可知,当x =3时,f (x )取得最大值616,当x =1时,f (x )取得最小值32.18.(2014·唐山市二模)已知函数f (x )=x 2-ln x -ax ,a ∈R . (1)当a =1时,求f (x )的最小值; (2)若f (x )>x ,求a 的取值范围. [答案] (1)0 (2)(-∞,0)[解析] (1)当a =1时,f (x )=x 2-ln x -x ,f ′(x )=(2x +1)(x -1)x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. ∵f (x )的极小值为f (1)=0, 又∵f (x )的定义域为(0,+∞), ∴f (x )的最小值为f (1)=0.(2)f (x )>x ,即f (x )-x =x 2-ln x -(a +1)x >0. 由于x >0,所以f (x )>x 等价于x -ln xx>a +1.令g (x )=x -ln xx ,则g ′(x )=x 2-1+ln x x 2.当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0. g (x )有最小值g (1)=1.故a +1<1,a 的取值范围是(-∞,0).。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试(包含答案解析)(1)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试(包含答案解析)(1)

一、选择题1.已知函数2()sin f x x x x =+,,22x ππ⎛⎫∈- ⎪⎝⎭,则下列式子成立的是( ) A .13(1)22f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭ B .13(1)22f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭ C .13(1)22f f f ⎛⎫⎛⎫<<-⎪ ⎪⎝⎭⎝⎭D .31(1)22f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭2.将一个边长为a 的正方形铁片的四角截去四个边长相等的小正方形,做成一个无盖方盒.若该方盒的体积为2,则a 的最小值为( )A .1B .2C .3D .3.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( ) A .(0)(0)-∞+∞,, B .(0)(3)-∞⋃+∞,, C .(0)+∞,D .(3)+∞,4.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞B .()2e ,+∞C .()20,eD .()0,e5.对于正数k ,定义函数:()()()(),,f x f x kg x k f x k⎧≤⎪=⎨>⎪⎩.若对函数()ln 22f x x x =-+,有()()g x f x =恒成立,则( )A .k 的最大值为1ln2+B .k 的最小值为1ln2+C .k 的最大值为ln 2D .k 的最小值为ln 26.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( )A .12B .126-C .126+ D .237.已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( )A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫--⎪⎝⎭8.已知函数31()sin xx f x x x e e=-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是( )A .1[,1]2- B .1[1,]2-C .1(,1][,)2-∞-⋃+∞D .1(,][1,)2-∞-⋃+∞9.函数()f x =的值域是( )A .⎡⎢⎣⎦B .⎫∞⎪⎪⎝⎭C .(D .)+∞10.若曲线()11xmy e x x =+<-+上存在两条垂直于y 轴的切线,则m 的取值范围是( ) A .34,1e ⎛⎫⎪⎝⎭B .34,e ⎛⎫-∞ ⎪⎝⎭C .340,e ⎛⎫ ⎪⎝⎭D .341,e ⎛⎫- ⎪⎝⎭11.()f x 是R 上的偶函数,当()0,x ∈+∞时,()()0xf x f x '->,且()30f =,则不等式()0f x x>的解集为( ) A .()3,+∞B .()(),33,-∞-+∞C .()()3,03,-⋃+∞D .()()3,00,3-12.若函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,则a 的取值范围为( ) A .21,e ⎛⎫--⎪⎝⎭ B .2{1},e ⎡⎫-⋃-+∞⎪⎢⎣⎭ C .2,e ⎡⎫-+∞⎪⎢⎣⎭D .2{1},0e ⎡⎫-⋃-⎪⎢⎣⎭二、填空题13.若函数()22ln 2f x x x a =++-在()1,e 上有零点,则实数a 的取值范围为______.14.若函数()()()()21222xf x a x e ax ax a R ⎡⎤=---+∈⎢⎥⎣⎦在1,12⎛⎫⎪⎝⎭上有最大值,则a 的取值范围是___________.15.定义在R 上的函数()f x 满足:()()22f x f x x -+=,且当0x ≤时,()2f x x '<,则不等式()()25510f x x x f +-+≥的解集为______.16.已知函数()()3211f x ax bx a b x =++++-在1x x =处取得极小值,在2x x =处取得极大值,且12102x x <-<<<,则321a b -+的取值范围是______.17.已知函数()()()x f x e x b b R =-∈.若存在1,22x ⎡∈⎤⎢⎥⎣⎦,使得()()0f x xf x '+>,则实数b 的取值范围是____.18.已知函数()321f x x x =++,若对于x R ∀∈不等式()21xf ax e a -+≤恒成立,则实数a 的取值范围为:____________.19.已知函数()xe f x mx x=-(e 为自然对数的底数),若()0f x <在0,上有解,则实数m 的取值范围是______.20.过点(2,0)且与曲线y =1x相切的直线的方程为________ 三、解答题21.已知函数22()1ln f x x ax a x =++-. (1)当1a =时,求()f x 的单调区间; (2)若0a =,且(0,1)x ∈,求证:2()2ln 122x f x x x e x-+-<.22.已知函数()2ln f x x a x =+.(1)当2a =-时,求函数()f x 在点()()11f ,处的切线方程; (2)若()()2g x f x x=+在[1,+)∞上是单调增函数,求实数a 的取值范围. 23.(1)证明下列不等式:1x e x ≥+;(2)求函数32()39f x x x x =--的极值.24.已知函数()()ln 2xf x e x =-+.(1)求()f x 在()()0,0f 处的切线方程; (2)求证:()0f x >.25.已知函数2()ln 24()f x a x x x a =+-∈R . (1)若2x =是()f x 的极值点,求()f x 的单调区间; (2)求()()g x f x ax =-在区间[1,]e 上的最小值()h a . 26.已知函数32113f xx ax ,0a >. (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积;(2)是否存在实数a ,使得()f x 在[]0,2上的最小值为56?若存在,求出a 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由奇偶性的定义得到函数()f x 为偶函数,求导数得到函数()f x 在(0,)2π上为增函数,则函数在(,0)2π-上为减函数.结合单调性和奇偶性即可判断出答案.【详解】函数2()sin f x x x x =+, 22x ππ⎛⎫∈- ⎪⎝⎭,,定义域关于原点对称,且()()()()()22sin sin f x x x x x x x f x -=-+--=+=.所以函数()f x 为偶函数,所以()()11f f -= 又当0,2x π⎛⎫∈ ⎪⎝⎭时,()2sin cos 0f x x x x x '=++>. ()f x ∴在0,2π⎛⎫ ⎪⎝⎭上为增函数,则()f x 在,02π⎛⎫- ⎪⎝⎭上为减函数.13π1222<<<,所以()13122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 则()13122f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】关键点睛:本题考查利用函数的奇偶性和单调性比较函数值大小,解答本题的关键是先得出函数为偶函数,再由0,2x π⎛⎫∈ ⎪⎝⎭时,()2sin cos 0f x x x x x '=++>利用单数判断出单调性,属于中档题.2.C解析:C 【分析】设出小正方形的边长,表示出方盒的体积,然后求导,判断出单调性,然后求解最大值即可. 【详解】设截去的小正方形边长为x ,则方盒高为x ,底边长为2a x -,所以()22,0,2a V a x x x ⎛⎫=-⋅∈ ⎪⎝⎭,则()224(2)(2)(6)V a x x a x x a x a '=-+-=--,令0V '=,得2a x =(舍) 或6a x =,当06ax <<时,0V '>,单调递增;当62a a x <<时,0V '<,单调递减;由题意,则23max 2263627a a a a V V a ⎛⎫⎛⎫==-⋅=≥ ⎪ ⎪⎝⎭⎝⎭,则3a ≥,故a 的最小值为3. 故选:C. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.3.C解析:C 【分析】构造函数()()3xxg x e f x e =⋅--,解不等式()0g x >即可,对()g x 求导得()[()()1]0x g x e f x f x ''=+->,可得()g x 在R 上单调递增,且(0)0g =,根据单调性可得0x >,即得正确答案. 【详解】令()()3x xg x e f x e =⋅--,则()()()[()()1]0xxxxg x e f x e f x e e f x f x '''=⋅+⋅-=+->, 所以()g x 在R 上单调递增, 又因为0(0)(0)30g e f e =⋅--=, 所以()0>g x ⇒0x >,即不等式的解集是(0)+∞,, 故选:C 【点睛】关键点点睛:本题的关键点是构造函数()()3xxg x e f x e =⋅--,所要解的不等式等价于()0g x >,且(0)0g =,所以()()0g x g >,因此需要对()g x 求导判断单调性即可. 4.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.5.B解析:B 【分析】利用导数求出函数()f x 的最大值,由函数()g x 的定义结合()()g x f x =恒成立可知()f x k ≤,由此可得出k 的取值范围,进而可得出合适的选项.【详解】对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩,且()()g x f x =恒成立,则()f x k ≤.函数()ln 22f x x x =-+的定义域为()0,∞+,且()111xf x x x-'=-=. 当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当1x >时,()0f x '<,此时,函数()f x 单调递减. 所以,()()max 11ln 2f x f ==+,1ln 2k ∴≥+. 因此,k 的最小值为1ln2+. 故选:B. 【点睛】解决导数中的新定义的问题,要紧扣新定义的本质,将问题转化为导数相关的问题,本题将问题转为不等式()k f x ≥恒成立,从而将问题转化为求函数()f x 的最大值.6.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<,则2661y p p '=-+-336()(66p p -+=--- 则函数y在33(0,),(,1)66-+单调递减,在33(,66-+单调递增,故函数在p =处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.7.B解析:B 【分析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解.【详解】 已知函数321()13f x x ax x =+++, 则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.8.B解析:B 【分析】利用函数的奇偶性将函数转化为f (M )≤f (N )的形式,再利用单调性脱去对应法则f ,转化为一般的二次不等式求解即可. 【详解】由于()31sin xx f x x x e e=-+-,,则f (﹣x )=﹣x 3sin x ++e ﹣x ﹣e x =﹣f (x ),故函数f (x )为奇函数.故原不等式f (a ﹣1)+f (2a 2)≤0,可转化为f (2a 2)≤﹣f (a ﹣1)=f (1﹣a ),即f (2a 2)≤f (1﹣a );又f '(x )=3x 2﹣cosx+e x +e ﹣x ,由于e x +e ﹣x ≥2,故e x +e ﹣x ﹣cosx>0, 所以f '(x )=3x 2﹣cosx+e x +e ﹣x ≥0恒成立,故函数f (x )单调递增,则由f (2a 2)≤f (1﹣a )可得,2a 2≤1﹣a ,即2a 2+a ﹣1≤0, 解得112a -≤≤, 故选B . 【点睛】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题.9.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域. 【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤,()f x '==当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max()322f x ==-+(1)(1)0f f -==,所以()f x 的值域是⎡⎢⎣⎦. 故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.10.C解析:C 【分析】先求出原函数的导函数,令0y '=,得到2(1)x m x e =+,然后将问题转化为2(1)x m x e =+在(,1)-∞-上有两个不同的解,再构造函数2()(1)(1)x f x x e x =+<-,求出()f x 的取值范围,即可得到m 的取值范围. 【详解】由(1)1xm y e x x =+<-+,得2(1)xm y e x '=-+,令0y '=,则2(1)x m x e =+,曲线(1)1xmy e x x =+<-+存在两条垂直于y 轴的切线, 2(1)x m x e ∴=+在(,1)-∞-上有两个不同的解.令2()(1)x f x x e =+,则22()2(1)(1)(43)x x x f x x e x e x x e '=+++=++.∴当3x <-时,()0f x '>,当31x -<<-时,()0f x '<,()f x ∴在(,3)-∞-上单调递增,在(3,1)--上单调递减, ∴34()(3)max f x f e =-=, 又当3x <-时,()0f x >,(1)0f -=.m ∴的取值范围为34(0,)e.故选:C . 【点睛】本题考查了利用导数研究曲线上某点处切线斜率,训练了利用导数研究函数的单调性、零点,考查数学转化思想方法,属中档题.11.C解析:C 【分析】 构造函数()()f xg x x=,求导,利用()g x 的单调性和奇偶性解不等式. 【详解】设()()f xg x x=(0x ≠), 则()()()2xf x f x g x x'-'=, ∵当()0,x ∈+∞时,()()0xf x f x '->, ∴()0g x '>,即()g x 在()0,∞+上单调递增, 又()f x 是R 上的偶函数, ∴()()()()f x f x g x g x x x--==-=--, 即()g x 是()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上单调递增, ∵()30f =, ∴()()()33303f g g -=-=-=. 而不等式()0f x x>等价于()0g x >,∴30x -<<或3x >. 故选:C. 【点睛】本题主要考查函数的单调性与奇偶性的应用,利用条件构造函数,然后利用导数研究函数的单调性是解决本题的关键,属于中档题.12.B解析:B 【分析】先对函数求导,可得当10x -<<时,()0f x '<;当0x >时,()0f x '>,从而得min ()(0)1f x f a ==--,而x →+∞时,()f x →+∞,所以要函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,只要满足10a --=或20a e--,从而可求出a 的取值范围 【详解】()x f x xe '=,当10x -<<时,()0f x '<;当0x >时,()0f x '>.从而min ()(0)1f x f a ==--,又2(1)f a e-=--,且x →+∞时,()f x →+∞, ∴10a --=或20a e--,即1a =-或2a e-. 故选:B 【点睛】此题考查由导数解决函数零点问题,考查转化思想和计算能力,属于中档题二、填空题13.【分析】令得构造函数并求值域可得答案【详解】由则令因为在上都递减所以在上是单调递减函数且可得故答案为:【点睛】方法点睛:本题考查由函数零点求参数问题解答时要先将函数的零点问题转化为方程有根的问题进而 解析:21e a -<<【分析】 令0f x 得222ln a x x =--,构造函数2()22ln (0)g x x x x =-->并求值域可得答案. 【详解】由()22ln 20f x x x a =++-=,则222ln a x x =--,令2()22ln (0)g x x x x =-->,因为222ln ,y x y x =-=-在()1,e 上都递减,所以()g x 在()1,e 上是单调递减函数,且()()(1)g e g x g <<, 可得21e a -<<. 故答案为:21e a -<<. 【点睛】方法点睛:本题考查由函数零点求参数问题,解答时要先将函数的零点问题转化为方程有根的问题,进而分离参数,再运用函数思想将问题转化为研究函数图象的性质和最大最小值的问题,考查了分析问题解决问题的能力.14.【分析】先通过有根在上求得参数范围再验证其左右的导数符号以保证取得极大值即得结果【详解】依题意在开区间上函数有最大值即说明在上有极大值故在上有根易见导函数的一个根故有根且在上故即故此时有两个根要使为解析:)【分析】先通过()0f x '=有根在1,12⎛⎫⎪⎝⎭上求得参数范围,再验证其左右的导数符号,以保证取得极大值,即得结果. 【详解】依题意,在开区间1,12⎛⎫ ⎪⎝⎭上,函数()f x 有最大值,即说明()f x 在1,12⎛⎫⎪⎝⎭上有极大值,故()()()()()()21210x xf x a x e ax a a x e a '⎡⎤=---+=---=⎣⎦在1,12⎛⎫ ⎪⎝⎭上有根, 易见,导函数的一个根11,12x ⎛⎫=∉ ⎪⎝⎭,故0x e a -=有根,且在1,12⎛⎫⎪⎝⎭上,故10,ln ,12a x a ⎛⎫>=∈⎪⎝⎭,即ln ln ln a e <e a <<, 此时()()()()210xf x a x e a '=---=有两个根,要使ln x a =为极大值点,则需(),ln x a ∈-∞时,()0f x '>,()ln ,1x a ∈时,()0f x '<,故20a ->,即2a <.综上,a 的取值范围是).故答案为:).【点睛】 易错点点睛:()00f x '=是0x x =为极值点的必要条件,利用其求得参数值(或范围)后必须验证()f x '在0x x =左右的符号,也进而能确定0x x =是极大值点还是极小值点,这是这类题的易错点.15.【分析】令问题转化为根据函数的单调性求出不等式的解集即可【详解】因为所以令则所以为奇函数又因为当时所以在上单调递减即在上单调递减而不等式所以所以故答案为:【点睛】构造辅助函数是高中数学中一种常用的方解析:5,2⎛⎤-∞ ⎥⎝⎦【分析】令()()2g x f x x =-,问题转化为()()5g x x g -≥,根据函数的单调性求出不等式的解集即可. 【详解】因为()()22f x f x x -+=,所以()()()220f x x f x x ---+-=,令()()2g x f x x =-,则()()0g x g x -+=,所以()g x 为奇函数.又因为当0x ≤时,()()20g x f x x ''=-<, 所以()g x 在(],0-∞上单调递减, 即()g x 在R 上单调递减.而不等式()()()()()()()2225510555f x f x x f x x f x x g x g x +≥-+⇔-≥---⇔≥-,所以5x x ≤-,所以52x ≤. 故答案为:5,2⎛⎤-∞ ⎥⎝⎦【点睛】构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.16.【分析】求导数利用导函数的图象开口向下且得的约束条件根据据线性规划求出目标函数的最值即可求得的取值范围【详解】由所以由函数在处取得极小值在处取得极大值所以是的两个根且导函数的图象开口向下由得即化简得 解析:(,1)-∞【分析】求导数,利用导函数()()2321f x ax bx a b '=+-++的图象开口向下且12102x x <-<<<,得a ,b 的约束条件,根据据线性规划求出目标函数的最值,即可求得321a b -+的取值范围. 【详解】由()()3211f x ax bx a b x =++++-,所以()()2321f x ax bx a b '=+-++,由函数()f x 在1x x =处取得极小值,在2x x =处取得极大值,所以1x ,2x 是()0f x '=的两个根,且导函数()()2321f x ax bx a b '=+-++的图象开口向下,由12102x x <-<<<,得()()()100020f f f ⎧-'''<⎪>⎨⎪<⎩,即 ()()()32101012410a b a b a b a b a b ⎧--++<⎪-++>⎨⎪+-++<⎩, 化简得23101011310a b a b a b --<⎧⎪++<⎨⎪+-<⎩, 满足条件的约束条件的可行域如图阴影部分所示:令321z a b =-+,则当直线321z a b =-+,经过点A 时,z 取得最大值,联立方程 231010a b a b --=⎧⎨++=⎩,可得点A 的坐标为23,55⎛⎫-- ⎪⎝⎭,所以3211a b -+<,所以321a b -+的取值范围是(,1)-∞. 故答案为:(,1)-∞. 【点睛】本题考查函数的极值以及不等式求解函数的最值,同时考查了学生的转化思想,考查分析问题解决问题的能力.17.【详解】解答:∵f(x)=ex(x−b)∴f′(x)=ex(x−b+1)若存在x ∈2使得f(x)+xf′(x)>0则若存在x ∈2使得ex(x−b)+xex(x−b+1)>0即存在x ∈2使得b<成立令解析:83b <【详解】 解答: ∵f(x)=e x (x−b), ∴f′(x)=e x (x−b+1), 若存在x ∈[12,2],使得f(x)+xf′(x)>0, 则若存在x ∈[12,2],使得e x (x−b)+xe x (x−b+1)>0, 即存在x ∈[12,2],使得b<221x x x ++ 成立,令()221,,212x x g x x x +⎡⎤=∈⎢⎥+⎣⎦, 则()()222201x x g x x ++'=>+ ,g(x)在1,22⎡⎤⎢⎥⎣⎦递增,∴g(x)最大值=g(2)=83, 则实数b 的取值范围是83b <18.【分析】根据在R 上递增结合将不等式恒成立转化为恒成立然后分和两种情况利用导数法求解【详解】因为所以成立所以在R 上递增又成立所以恒成立即恒成立当时转化为恒成立令当时单调递减当时单调递增所以当时求得最小解析:10a e≤≤【分析】根据()f x 在R 上递增,结合()01f =,将x R ∀∈不等式()21xf ax e a -+≤恒成立,转化为()2xa x e +≤ ,x R ∀∈恒成立,然后分20x +≤和20x +>两种情况,利用导数法求解. 【详解】因为()321f x x x =++,所以()2320f x x '=+>成立,所以()f x 在R 上递增,又()()01,21xf f ax e a =-+≤x R ∀∈成立,所以20x ax e a -+≤,x R ∀∈ 恒成立,即()2xa x e +≤,x R ∀∈恒成立, 当20x +>时,转化为2xe a x ≤+恒成立,令()2xg x e x =+,()()()212x x e g x x +'=+,当21x -<<-时,()0g x '<,()g x 单调递减, 当1x >-时,()0g x '>,()g x 单调递增, 所以当1x =-时,()g x 求得最小值min 1()(1)g x g e=-=, 所以1a e≤,当20x +≤时,转化为2xe a x ≥+恒成立,(),(,2)a g x x ≥∈-∞-上恒成立,(,2)x ∈-∞-时,()0,()g x g x '<单调递减,又(,2),()0x g x ∈-∞-<,所以0a ≥不等式恒成立, 综上:实数a 的取值范围为10a e≤≤ 故答案为:10a e≤≤ 【点睛】本题主要考查导数与函数的单调性,导数与不等式恒成立,还考查了转化化归的思想,分类讨论思想和运算求解的能力,属于中档题.19.【分析】由题意得存在使得即设问题转化为在上的最小值对求导后易得到在上单调递减在上单调递增于是从而得解【详解】解:因为在上有解所以存在使得即设问题转化为在上的最小值当时则在上单调递减当时则在上单调递增解析:2,4e ⎛⎫+∞ ⎪⎝⎭【分析】由题意得,存在(0,)x ∈+∞,使得0x e mx x -<,即2x e m x >,设2()xe g x x =,(0,)x ∈+∞,问题转化为()g x 在(0,)+∞上的最小值,对()g x 求导后,易得到()g x 在(0,2)上单调递减,在(2,)+∞上单调递增,于是min ()(2)g x g =,从而得解【详解】解:因为()0f x <在0,上有解,所以存在(0,)x ∈+∞,使得0x e mx x -<,即2xe m x>,设2()xe g x x =,(0,)x ∈+∞,问题转化为()g x 在(0,)+∞上的最小值,'3(2)()x e x g x x-=, 当02x <<时,'()0g x <,则()g x 在(0,2)上单调递减,当2x >时,'()0g x >,则()g x 在(2,)+∞上单调递增,所以2min()(2)4e g x g ==,所以24e m >,故答案为:2,4e ⎛⎫+∞ ⎪⎝⎭【点睛】此题考查利用导数研究函数的存在性问题,将问题转化为函数的最值问题是解此题的关键,考查转化思想和计算能力,属于中档题20.【解析】试题分析:设切点为所以切点为由点可知直线方程为考点:1直线方程;2导数的几何意义解析:20x y +-=. 【解析】试题分析:设切点为()0000220000111,2y x y y y x x x x -∴==-'∴-=-,所以切点为()1,1,由点()2,0可知直线方程为20x y +-= 考点:1.直线方程;2.导数的几何意义三、解答题21.(1)单调递增区间为(]0,1,单调递减区间为[1,)+∞;(2)证明见解析. 【分析】(1)先求出函数的定义域,再对函数求导,然后分别令0f x 和0f x ,解不等式可求出函数的单调区间; (2)22()2ln 11ln 12222x xf x x x x x e x e x--+-<⇔+-<,即()3(1ln )221(01)x x x e x x x -<-++<<,然后构造函数()(1ln )(01)g x x x x =-<<和()3()221x h x e x x =-++,利用导数分别求出()()11g x g <=,()1h x >,从而可得结论【详解】(1)当1a =时,2()1ln f x x x x =++-,定义域为(0,)+∞,∴1(1)(21)()12x x f x x x x--+'=+-=, 令0fx ,得01x <<;令0f x ,得1x >,∴()f x 的单调递增区间为(]0,1,单调递减区间为[1,)+∞. (2)当0a =时,()1ln f x x =+, ∴22()2ln 11ln 12222x xf x x x x x e x e x--+-<⇔+-<, 即()3(1ln )221(01)xx x exx x -<-++<<,令()(1ln )(01)g x x x x =-<<,∴()ln 0g x x '=->,∴()g x 在0,1上单调递增,∴()()11g x g <=.令()3()221xh x ex x =-++(01x <<),∴()32()2623xh x e x x x '=--++,令32()2623x x x x ϕ=--++,∴2()6122x x x ϕ'=--+在0,1上递减, 又(0)20ϕ'=>,(1)160ϕ'=-<,∴0(0,1)x ∃∈使()00x ϕ'=,且()00,x x ∈时,()0x ϕ'>,()ϕx 递增,()0,1x x ∈时,()0x ϕ'<,()ϕx 递减,而(0)30ϕ=>,(1)30ϕ=-<, ∴1(0,1)x ∃∈使()10x ϕ=,即()10h x '=,()10,x x ∈时()0h x '>,()h x 单调递增,()1,1x x ∈时()0h x '<,()h x 单调递减,而(0)1h =,(1)h e =,∴()1h x >恒成立,∴()()g x h x <,即()3(1ln )221(01)x x x e x x x -<-++<<,即2()2ln 122xf x x x e x-+-<. 【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区间,利用导数求函数的最值,第2问解题的关键是把2()2ln 122xf x x x e x-+-<等价转化为()3(1ln )221(01)x x x e x x x -<-++<<,然后构造函数()(1ln )(01)g x x x x =-<<,()3()221x h x e x x =-++,分别求出两个函数的最值即可,考查数学转化思想,属于中档题22.(1)1y =;(2)0a ≥. 【分析】(1)利用导数的几何意义可求得结果; (2)转化为()0g x '≥,即222a x x≥-在[1,+)∞上恒成立,再构造函数求出最大值即可得解. 【详解】(1)当2a =-时,()22f x x lnx =-,定义域为(0,)+∞,2222()2x f x x xx -'=-=,所以函数()f x 在点()()11f ,处的切线的斜率为2212(1)01f ⨯-'==,又(1)1201f =-⨯=,所以函数()f x 在点()()11f ,处的切线方程为1y = (2)因为()()2g x f x x=+22ln x a x x =++在[1,+)∞上是单调增函数,所以322222()2a x ax g x x x x x+-'=-+=0≥在[1,+)∞上恒成立, 即222a x x≥-在[1,+)∞上恒成立, 因为222y x x =-在[1,+)∞上为单调递减函数,所以当1x =时,222y x x=-取得最大值0,所以0a ≥. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤; 23.(1)证明见解析;(2)极大值为5,极小值为27-. 【分析】(1)设()1x f x e x =--,则'()1x f x e =-,由'()0f x =得0x =,分析函数的单调性,可求得函数的最值,不等式可得证;(2)对函数求导,求出函数()y f x =的极值点,分析函数的单调性,可求得函数的极值. 【详解】解:(1)证明:设()1x f x e x =--,则'()1x f x e =-,由'()0f x =得0x =, 所以当0x <时,'()0f x <,当0x >时,'()0f x >,所以()f x 在(),0-∞单调递减,在()0,∞+单调递增,所以()(0)0f x f ≥=,即10x e x --≥,所以1x e x ≥+;(2)32()39f x x x x =--2()3693(1)(3)f x x x x x ==+'---,令()0f x '=,得1x =-或3x =,则所以当时函数取极大值为,当时函数取极小值为;【点睛】关键点点睛:本题考查利用导数证明不等式和求函数在定区间上的极值,关键在于构造函数,分析其导函数的符号,得出原函数的单调性. 24.(1)11ln 22y x =+-;(2)证明见解析. 【分析】(1)求出()f x 的导函数,由()0k f '=,可得答案.(2)求出()f x 的导函数,讨论出函数()f x 的单调性,得出其最小值,可证明. 【详解】(1)解:1()2xf x e x '=-+, 当0x =时,()102k f '==, 又()01ln 2f =-,所以切线方程为()11ln 22y x --=,即11ln 22y x =+-. (2)解:1()2xf x e x '=-+在区间()2,-+∞上单调递增, 又()10f '-<,()00f '>,故()0f x '=在区间()2,-+∞上有唯一实根0x ,且()01,0x ∈-, 当()02,x x ∈-时,()0f x '<;当()0,x x ∈+∞时,()0f x '>, 从而当0x x =时,()f x 取得最小值.由()00f x '=,得0012x e x =+,()00ln 2x x +=-, 故()()2000011()022x f x f x x x x +≥=+=>++. 【点睛】本题考查求函数在某点出的切线方程和利用导数证明不等式.解答本题的关键是由1()2x f x e x '=-+在区间()2,-+∞上单调递增,得出()0f x '=在区间()2,-+∞上有唯一实根0x ,从而得出()f x 的单调区,即()()20000011()22x f x f x x x x +≥=+=++,属于中档题.25.(1)单调递减区间为()0,2,单调递增区间为(2,)+∞; (2)222,41()ln ,4448(1)24,4a a a h a a a a a e e a e e a e--≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩. 【分析】(1)根据(2)0f '=,求出8a =-,再根据导数与函数单调性的关系即可求解.(2)求出(4)(1)()x a x g x x --'=,令()0g x '=,解得4a x =或1x =,讨论14a ≤、14a e <<或4a e ≥,判断函数在区间[1,]e 上的单调性,根据单调性即可求出函数的最值. 【详解】 解:(1)()f x 的定义域为(0,)+∞,244()44a x x a f x x x x-+'=+-=. 因为2x =是()f x 的极值点,所以168(2)02a f -+'==,解得8a =-, 所以24484(2)(1)()x x x x f x x x---+'==, 当2x >时,()0f x '>;当02x <<时,()0f x '<,所以()f x 的单调递减区间为()0,2,单调递增区间为(2,)+∞.(2)2()ln 24g x a x x ax x =+--,则(4)(1)()44a x a x g x x a x x--'=+--=, 令()0g x '=,得4a x =或1x =. ①当14a ≤,即4a ≤时,()g x 在[]1,e 上为增函数,()()12h a g a ==--; ②当14a e <<,即44a e <<时,()g x 在1,4a ⎡⎫⎪⎢⎣⎭上单调递减,在,e 4a ⎛⎤ ⎥⎝⎦上单调递增, 所以21()ln 448a a h a g a a a ⎛⎫==--⎪⎝⎭; ③当4a e ≥,即4a e ≥时,()g x 在[1,]e 上为减函数, 所以2()()(1)24h a g e e a e e ==-+-.综上所述,222,41()ln ,4448(1)24,4a a a h a a a a a e e a e e a e--≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩. 【点睛】关键点点睛:本题考查了利用导数求函数的单调区间、求函数的最值,解题的关键是确定函数在区间[1,]e 上的单调性,考查了分类讨论的思想以及运算求解能力.26.(1)89;(2)存在,12a =. 【分析】(1)由1a =,求导()22f x x x '=-,利用导数的几何意义求得曲线()y f x =在点()()1,1f 处的切线方程,再求得切线的x 轴、y 轴上的截距,代入三角形的面积公式求解. (2)求导()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =,然后分022a <<,22a ≥,由()f x 在[]0,2上的最小值为56求解. 【详解】(1)当1a =时,()32113f x x x =-+,()22f x x x '=-, 所以()11f '=-,又()113f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()113y x -=--, 即3340x y +-=,直线3340x y +-=在x 轴、y 轴上的截距均为43, 所以三角形的面积为14482339S =⨯⨯=. (2)()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =.当022a <<,即01a <<时,当[]0,2x a ∈时,()0f x '≤,()f x 单调递减;当[]2,2x a ∈时.()0f x '≥,()f x 单调递增.则()()33min 8524136f x f a a a ==-+=,解得12a =, 当22a ≥,即1a ≥时,当[]0,2x ∈时,()0f x '≤,()f x 单调递减,则()()min 8524136f x f a ==-+=,解得17124a =<,舍去. 综上:存在12a =,使得()f x 在[]0,2上的最小值为56. 【点睛】 方法点睛:(1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.(2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数.。

新北师大版高中数学选修1-1第四章《导数应用》测试(含答案解析)

新北师大版高中数学选修1-1第四章《导数应用》测试(含答案解析)

一、选择题1.已知函数23()2ln (0)xf x x x a a=-+>,若函数()f x 在[]1,2上单调递减,则a 的取值范围是( ) A .2,5⎡⎫+∞⎪⎢⎣⎭B .20,5⎛⎤ ⎥⎝⎦C .(0,1]D .[1,)+∞2.已知函数21()ln 2f x x x a =--,若0x ∃>,()0f x ≥,则a 的取值范围是( ) A .1,2⎛⎤-∞- ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .(],e -∞3.已知函数()()ln 1x xf x x e e -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是( ) A .()(),11,-∞-+∞B .()2,1--C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭D .()(),21,-∞-⋃+∞4.已知函数()2sin x m f x x +=-在30,4π⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数m 的取值范围是( ) A .3,44ππ⎫⎡--⎪⎢⎣⎭ B .3,44ππ⎛⎤⎥⎝⎦ C .,42ππ⎛⎫⎪⎝⎭ D .,24ππ⎛⎫-- ⎪⎝⎭ 5.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( )A .4B .C .D .66.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( )A .(0)(0)-∞+∞,, B .(0)(3)-∞⋃+∞,, C .(0)+∞,D .(3)+∞,7.对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩.若对函数()ln22f x x x =-+,有()()g x f x =恒成立,则( )A .k 的最大值为1ln 2+B .k 的最小值为1ln 2+C .k 的最大值为ln 2D .k 的最小值为ln 28.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( )A .12B .132- C .132+ D .239.已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( ) A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫--⎪⎝⎭10.函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( ) A .[1,3]B .[1,)+∞C .(1,3]D .(1,)+∞11.已知函数()()()22ln 0f x a e x xa =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,则a =( ) A .eB .1e 2- C .1 D .2ee - 12.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有2()()0f x xf x '+>,且(1)0f -=,则使得()0f x >成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-二、填空题13.已知()y f x =是定义在R 上的奇函数,()20f -=,且当0x >时()()20f x xf x x '-<,则不等式()()2110x f x -->的解集是______. 14.已知()f x 满足()()431f f =-=,()f x '为其导函数,且导函数()y f x '=的图象如图所示,则()1f x <的解集是_________.15.若函数()()32f x x ax a R =--∈在(),0-∞内有且只有一个零点,则()f x 在[]1,2-上的最小值为______.16.已知函数()()()x f x e x b b R =-∈.若存在1,22x ⎡∈⎤⎢⎥⎣⎦,使得()()0f x xf x '+>,则实数b 的取值范围是____.17.若∃01,22x ⎡⎤∈⎢⎥⎣⎦,使得2002+10x x λ<-成立是假命题,则实数λ的取值范围是________. 18.已知函数()31=4f x x 图像上有动点()11,A x y ,函数()2g x x =-图像上有动点()22,B x y .若A B 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至AB 、两点的纵坐标值再次相等,且始终满足212x x -=,则在此运动过程中A B 、两点的距离AB 的取值范围是______.19.已知函数()321f x x x =++,若对于x R ∀∈不等式()21xf ax e a -+≤恒成立,则实数a 的取值范围为:____________.20.已知函数f (x )=2,(,0],(0,)x x x e x +∈-∞⎧⎨∈+∞⎩,若存在x 1,x 2(x 2>x 1)满足f (x 1)=f(x 2),则x 2﹣2x 1的取值范围为_____. 三、解答题21.已知函数()ln ()=+∈f x x x ax a R . (Ⅰ)当0a =,求()f x 的最小值;(Ⅱ)若函数()()ln g x f x x =+在区间[1,)+∞上为增函数,求实数a 的取值范围; 22.已知函数()3f x x x =-.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 的单调区间. 23.设函数()(1)ln(1)f x x x x =-++(1)若方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,求t 的取值范围; (2)证明:当0m n >>时,(1)(1)n m m n +<+. 24.已知函数()ex af x x =+,其中a R ∈,e 是自然对数的底数. (1)当1a =-时,求函数()f x 在区间[)0,+∞上的零点个数; (2)若()2f x >对任意的实数x 恒成立,求a 的取值范围. 25.已知函数()1ln f x x x =--. (1)求证:()0f x ≥;(2)求证:对于任意正整数n ,2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.26.已知函数()()ln 2xf x e x =-+.(1)求()f x 在()()0,0f 处的切线方程; (2)求证:()0f x >.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出()'f x 由()0f x '≤得314x a x ≤-,令1()4g x x x=-,判断出()g x 的单调性并利用单调性可得()g x 的最小值可得答案. 【详解】31()4(0)f x x x a x'=-+>,因为函数()f x 在[]1,2上单调递减, 所以3140x a x -+≤,即314x a x≤-, 令1()4g x x x =-,由于114,y x y x ==-在[]1,2都是增函数, 所以1()4g x x x=-在[]1,2单调递增,所以()(1)3g x g ≤=, 所以33a≤,又0a >,解得1a ≥. 故选:D. 【点睛】本题考查了利用函数的单调性求参数的范围问题,关键点是令1()4g x x x=-并求出最小值,考查了学生分析问题、解决问题的能力.2.A解析:A 【分析】 由()f x 得21ln 2a x x ≤-,设21()ln 2g x x x =-,利用导数求()g x 的最大值可得答案. 【详解】由21()ln 2f x x x a =--,得21ln 2a x x ≤-.设21()ln 2g x x x =-,则211()x g x x x x-'=-=.令()0g x '>,得01x <<;令()0g x '<,得1x >, 则()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而1()(1)2g x g ≤=-, 故12a ≤-. 故选:A. 【点睛】本题考查了能成立求参数的问题,关键点是构造函数利用导数求最值,考查了分析问题、解决问题的能力.3.D解析:D 【分析】先判断函数的奇偶性和单调性,从而可得关于x 的不等式,求出其解后可得正确的选项. 【详解】()f x 的定义域为()(),11,-∞-+∞,且()()()ln 1x x f x x e e f x --=--++=,又当1x >时,()()ln 1xxf x x e e -=-++,()11001x x f x e e e x e-'=+->+->-,故()f x 在()1,+∞为增函数, 故()()12f x f x +<即为11211112121x xx x x x ⎧<+<⎪+-+⎨⎪-⎩或或,解得2x <-或1x >,故选:D. 【点睛】方法点睛:解函数不等式,往往需要考虑函数的奇偶性和单调性,前者依据定义,后者可利用导数,注意定义域的要求.4.A解析:A 【分析】()0f x =有两解变形为m e =设()g x =单调性、极值,结合()g x 的大致图象可得结论. 【详解】由()2sin x m f x x +=-得m e =()g x =2(cos sin )()xx x g x e-'=,易知当04x π<<时,()0g x '>,()g x 递增,当344x ππ<<时,()0g x '<,()g x 递减,(0)0g =,414g e ππ⎛⎫= ⎪⎝⎭,34314g e ππ⎛⎫=⎪⎝⎭,如图是()g x 的大致图象, 由2sin mxx e e =有两解得34411m e e eππ≤<,所以344m ππ-≤<-. 故选:A .【点睛】关键点点睛:本题考查函数的零点问题,解题关键是转化.函数的零点转化为方程的解,再用分离参数变形为2m x x e e =,问题转化为2()xx g x e=的图象与直线my e =有两个交点,利用导数研究函数()g x 的单调性、极值后可得.5.B解析:B 【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围.【详解】由题意可得()160f x x a x'=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞恒成立 因为166x x +≥16x x =即66x =时取最小值 所以26a ≤ 故选:B 【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.6.C解析:C 【分析】构造函数()()3x x g x e f x e =⋅--,解不等式()0g x >即可,对()g x 求导得()[()()1]0x g x e f x f x ''=+->,可得()g x 在R 上单调递增,且(0)0g =,根据单调性可得0x >,即得正确答案. 【详解】令()()3x x g x e f x e =⋅--,则()()()[()()1]0x x x x g x e f x e f x e e f x f x '''=⋅+⋅-=+->, 所以()g x 在R 上单调递增, 又因为00(0)(0)30g e f e =⋅--=, 所以()0>g x ⇒0x >,即不等式的解集是(0)+∞,, 故选:C 【点睛】关键点点睛:本题的关键点是构造函数()()3x x g x e f x e =⋅--,所要解的不等式等价于()0g x >,且(0)0g =,所以()()0g x g >,因此需要对()g x 求导判断单调性即可. 7.B解析:B 【分析】利用导数求出函数()f x 的最大值,由函数()g x 的定义结合()()g x f x =恒成立可知()f x k ≤,由此可得出k 的取值范围,进而可得出合适的选项.【详解】对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩,且()()g x f x =恒成立,则()f x k ≤.函数()ln22f x x x =-+的定义域为()0,∞+,且()111xf x x x-'=-=. 当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当1x >时,()0f x '<,此时,函数()f x 单调递减. 所以,()()max 11ln 2f x f ==+,1ln 2k ∴≥+. 因此,k 的最小值为1ln 2+.故选:B. 【点睛】解决导数中的新定义的问题,要紧扣新定义的本质,将问题转化为导数相关的问题,本题将问题转为不等式()k f x ≥恒成立,从而将问题转化为求函数()f x 的最大值.8.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<, 则2661y p p '=-+-6(p p =--- 则函数y在单调递减,在单调递增,故函数在36p =+处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.9.B解析:B 【分析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解.【详解】已知函数321()13f x x ax x =+++,则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a-≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.10.A解析:A 【分析】求导得()3(1)(1)f x x x =+-',从而知函数()f x 的单调性,再结合(0)0f =,f (1)2=,即可得解【详解】 .3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减. 函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)(3)0f f ==,f (1)2=,13m ∴≤.故选:A. 【点睛】本题考查利用导数研究函数的最值问题,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.11.D解析:D 【分析】求得导函数()'f x ,确定()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的单调性,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域,从而可得题中平面区域面积,解之可得a . 【详解】解:()()2222a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e⎡⎤⎢⎥⎣⎦上的值域为()22,a e e a ⎡⎤+⎣⎦, 因为所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,所以()221211a e e e e ⎛⎫---=-⎪⎝⎭, 解得2ea e =-, 故选:D . 【点睛】本题考查用导数求函数的值域,解题方法是求出导函数,用导数确定函数的单调性,求得值域区间,然后可计算出题设平面区域面积,得出结论.12.B解析:B 【分析】根据条件构造函数2()()g x x f x =,求函数的导数,判断函数的单调性,将不等式进行转化求解. 【详解】由题意,设2()()g x x f x =,则2'()2()()[2()'()]g x xf x x f x x f x xf x =+=+, 因为当0x >时,有2()'()0f x xf x +>, 所以当0x >时,'()0g x >,所以函数2()()g x x f x =在(0,)+∞上为增函数,因为(1)0f -=,又函数()f x 是偶函数,所以(1)(1)0f f =-=,所以(1)0g =,而当()0>g x 时,可得1x >,而()0>g x 时,有()0f x >, 根据偶函数图象的对称性,可知()0f x >的解集为()(),11,-∞-⋃+∞,故选B. 【点睛】该题考查的是与导数相关的构造新函数的问题,涉及到的知识点有函数的求导公式,应用导数研究函数的单调性,解相应的不等式,属于中档题目.二、填空题13.【分析】设则为偶函数由则在是上单调递增在是上单调递减设即求解分和两种情况解不等式和【详解】设由当时即所以在是上单调递增为奇函数则为偶函数在是上单调递减即()设当时即由为奇函数则所以由在是上单调递增所 解析:()()1,13,-+∞【分析】 设()()f x g x x =,则()g x 为偶函数,由()()()2xf x f x g x x'-'=, 则()g x 在()0+∞,是上单调递增,()g x 在()0-∞,是上单调递减,设1x t -=,即求解()0f t >,分0t >和0t <两种情况解不等式()0g t >和()0g t <.【详解】 设()()f x g x x =,由()()()2xf x f x g x x'-'= 当0x >时()()20f x xf x x'-<,即()0g x '>,所以()g x 在()0+∞,是上单调递增. ()y f x =为奇函数,则()()f x g x x=为偶函数,()g x 在()0-∞,是上单调递减 ()()2110x f x -->,即()10f x ->(1x ≠)设1x t -=,当0t >时,()0f t >,即()()0f t g t t=> 由()20f -=,()y f x =为奇函数,则()20f =,所以()20g =由()g x 在()0+∞,是上单调递增,()0g t >,所以2t >,即12x ->,所以3x > 当0t <时,()0f t >,即()()0f t g t t=< 由()20f -=,则()20g -=,根据()g x 在()0-∞,是上单调递减 所以当()0g t <时,则20t -<<,即210x -<-<,所以11x -<< 综上所述:不等式()()2110x f x -->的解集是:()()1,13,-+∞故答案为:()()1,13,-+∞【点睛】关键点睛:本题考查构造函数讨论单调性解不等式,解答本题的关键是构造函数()()f x g x x =,由()()()2xf x f x g x x'-'=结合条件和奇偶性得出其单调性, 属于中档题. 14.【分析】利用导数分析函数的单调性分和两种情况解不等式由此可得出原不等式的解集【详解】由函数的图象可知当时此时函数单调递减;当时此时函数单调递增因为当时由可得;当时由可得综上所述不等式的解集时故答案为 解析:()3,4-【分析】利用导数分析函数()f x 的单调性,分0x ≤和0x >两种情况解不等式()1f x <,由此可得出原不等式的解集. 【详解】由函数()y f x '=的图象可知,当0x <时,()0f x '<,此时函数()f x 单调递减; 当0x >时,()0f x '>,此时函数()f x 单调递增.因为()()431f f =-=,当0x ≤时,由()()13f x f <=-,可得30x -<≤; 当0x >时,由()()14f x f <=,可得04x <<. 综上所述,不等式()1f x <的解集时()3,4-.故答案为:()3,4-. 【点睛】思路点睛:根据函数单调性求解函数不等式的思路如下: (1)先分析出函数在指定区间上的单调性;(2)根据函数单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式 ,从而求解出不等式的解集.15.【分析】利用导数分析函数在区间上的单调性根据该函数在区间上有且只有一个零点求得参数的值进而利用导数可求得函数在区间上的最小值【详解】则①当时对任意的恒成立此时函数在区间上单调递增且不合乎题意;②当时 解析:4-【分析】利用导数分析函数()y f x =在区间(),0-∞上的单调性,根据该函数在区间(),0-∞上有且只有一个零点求得参数a 的值,进而利用导数可求得函数()y f x =在区间[]1,2-上的最小值. 【详解】()32f x x ax =--,则()23f x x a '=-.①当0a ≤时,对任意的(),0x ∈-∞,()0f x '>恒成立,此时,函数()y f x =在区间(),0-∞上单调递增,且()()020f x f <=-<,不合乎题意;②当0a >时,令()230f x x a '=-=,可得x =x =当x <()0f x '>,此时函数()y f x =单调递增;当0x <<时,()0f x '<,此时函数()y f x =单调递减.所以,()max20f x f ⎛=== ⎝,解得3a =,()332f x x x ∴=--. ()()()233311f x x x x '=-=-+,当11x -<<时,()0f x '<,此时函数()y f x =单调递减; 当12x <<时,()0f x '>,此时函数()y f x =单调递增.因此,函数()y f x =在1x =处取得极小值,亦即最小值,故()()min 14f x f ==-. 故答案为:4-. 【点睛】本题考查利用导数求解函数在区间上的最值,同时也考查了利用导数研究函数的零点,考查计算能力,属于中等题.16.【详解】解答:∵f(x)=ex(x−b)∴f′(x)=ex(x−b+1)若存在x ∈2使得f(x)+xf′(x)>0则若存在x ∈2使得ex(x−b)+xex(x−b+1)>0即存在x ∈2使得b<成立令解析:83b <【详解】 解答: ∵f(x)=e x (x−b), ∴f′(x)=e x (x−b+1), 若存在x ∈[12,2],使得f(x)+xf′(x)>0, 则若存在x ∈[12,2],使得e x (x−b)+xe x (x−b+1)>0, 即存在x ∈[12,2],使得b<221x x x ++ 成立, 令()221,,212x x g x x x +⎡⎤=∈⎢⎥+⎣⎦,则()()222201x x g x x ++'=>+ ,g(x)在1,22⎡⎤⎢⎥⎣⎦递增,∴g(x)最大值=g(2)=83, 则实数b 的取值范围是83b <17.【分析】将命题转化为使得恒成立是真命题令函数对其求导讨论导函数取正负的区间得出所构造的函数的单调性从而求出最值利用不等式恒成立的思想得出实数λ的取值范围【详解】因为∃使得成立是假命题所以使得恒成立是解析:(-∞【分析】将命题转化为1,22x ⎡⎤∀∈⎢⎥⎣⎦,使得12+x x λ≤恒成立是真命题,令函数()12+f x x x =,对其求导,讨论导函数取正负的区间,得出所构造的函数的单调性,从而求出最值,利用不等式恒成立的思想,得出实数λ的取值范围. 【详解】因为∃01,22x ⎡⎤∈⎢⎥⎣⎦,使得2002+10x x λ<-成立是假命题,所以1,22x ⎡⎤∀∈⎢⎥⎣⎦,使得22+10x x λ≥-恒成立是真命题,即1,22x ⎡⎤∀∈⎢⎥⎣⎦,使得12+x x λ≤恒成立是真命题,令()12+f x x x=,则()'212f x x =- ,当1,22x ⎛∈ ⎝⎭时,()'0f x <,函数()f x 在1,22⎛⎝⎭上单调递减,当2x ⎫∈⎪⎪⎝⎭时,()'>0f x ,函数()f x 在2⎫⎪⎪⎝⎭上单调递增,所以()f x f ≥=⎝⎭λ≤故答案为:(-∞.【点睛】本题考查全称命题和特称命题的关系,运用参变分离的方法求参数的范围,属于中档题.18.【分析】根据题意求出从初始位置出发至两点的纵坐标值再次相等时对应的的取值进而求得的取值范围用两点距离公式表示进而表示成关于的函数用导数的观点求的取值范围即可【详解】解:因为动点在函数图像上动点在函数解析:2⎡⎢⎣⎦【分析】根据题意求出AB 、从初始位置出发至A B 、两点的纵坐标值再次相等时对应的1x 的取值,进而求得1x 的取值范围,用两点距离公式表示AB ,进而表示成关于1x 的函数,用导数的观点求AB 的取值范围即可. 【详解】解:因为动点()11,A x y 在函数()31=4f x x 图像上,动点()22,B x y 在函数函数()2g x x =-图像上,所以311221,24y x y x ==-. 由题知:10x ≥,22x ≥,212x x =+.由当AB 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B 、两点的纵坐标值再次相等时,得312124x x =-,所以31114x x =,解得10x =或12x =±. 所以,当AB 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B 、两点的纵坐标值再次相等时12x =.102x ∴≤≤,AB ∴==[]10,2x =∈设[]21,0,4x t t =∈,则[]0,4AB t =∈. 设()[]2321111,0,44162g t t t t t t t ⎛⎫=-=-+∈ ⎪⎝⎭,则()23116g t t t ='-+,由0g t 得4t =或43t =. 40,3t ⎡⎤∴∈⎢⎥⎣⎦时,()0g t '>,g t 单调递增;4,43t ⎡⎤∈⎢⎥⎣⎦时,()0g t '<,g t 单调递减; 34t ∴=时,()max 43g t g ⎛⎫= ⎪⎝⎭,此时maxAB===;t=时,()()min00g t g==,此时,min2AB===.AB⎡∴∈⎢⎣⎦.故答案为:⎡⎢⎣⎦.【点睛】本题主要考查用导数求最值,考查学生用导数解决问题的能力,属于中档题.19.【分析】根据在R上递增结合将不等式恒成立转化为恒成立然后分和两种情况利用导数法求解【详解】因为所以成立所以在R上递增又成立所以恒成立即恒成立当时转化为恒成立令当时单调递减当时单调递增所以当时求得最小解析:10ae≤≤【分析】根据()f x在R上递增,结合()01f=,将x R∀∈不等式()21xf ax e a-+≤恒成立,转化为()2xa x e+≤,x R∀∈恒成立,然后分20x+≤和20x+>两种情况,利用导数法求解.【详解】因为()321f x x x=++,所以()2320f x x'=+>成立,所以()f x在R上递增,又()()01,21xf f ax e a=-+≤x R∀∈成立,所以20xax e a-+≤,x R∀∈恒成立,即()2xa x e+≤,x R∀∈恒成立,当20x+>时,转化为2xeax≤+恒成立,令()2xg xex=+,()()()212x xegxx+'=+,当21x-<<-时,()0g x'<,()g x单调递减,当1x>-时,()0g x'>,()g x单调递增,所以当1x=-时,()g x求得最小值min1()(1)g x ge=-=,所以1a e≤, 当20x +≤时,转化为2xe a x ≥+恒成立,(),(,2)a g x x ≥∈-∞-上恒成立, (,2)x ∈-∞-时,()0,()g x g x '<单调递减,又(,2),()0x g x ∈-∞-<,所以0a ≥不等式恒成立, 综上:实数a 的取值范围为10a e≤≤ 故答案为:10a e≤≤ 【点睛】本题主要考查导数与函数的单调性,导数与不等式恒成立,还考查了转化化归的思想,分类讨论思想和运算求解的能力,属于中档题.20.ln22)【分析】用表示出得出关于的函数根据的范围判断函数单调性得出值域即可【详解】显然由题意可知故由可得故设则在上单调递减又故答案为:【点睛】本题主要考查利用导数研究函数的单调性和最值意在考查学生解析:[ln 2,2) 【分析】用2x 表示出1x ,得出212x x -关于2x 的函数2()g x ,根据2x 的范围,判断函数单调性得出值域即可. 【详解】显然10x ,20x >,由题意可知212x x e +=,故212x x e =-,2212224x x x x e ∴-=-+,由2121x x e +=>可得110x -<,故2120x e -<-,202x ln ∴<, 设()24(02)x g x x e x ln =-+<,则()120x g x e '=-<,()g x ∴在(0,2]ln 上单调递减, 又(0)2g =,(2)2g ln ln =, 2()2ln g x ∴<.故答案为:[2ln ,2). 【点睛】本题主要考查利用导数研究函数的单调性和最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)11()f e e=-;(2)2a ≥- 【分析】(1)对函数求导,令'()ln 1=0=+f x x ,讨论函数的单调性即可求出结果.(2)由()g x 在区间[1,)+∞单调递增,可得'()0≥g x 在[1,)+∞恒成立,分离参数可得:1ln (1)+≥-+x a x,构造函数即可求出结果. 【详解】(1)()ln 1,'()ln 1=+=+f x x x f x x 令'()ln 1=0=+f x x ,解得1=x e当x 变化时,(),()f x f x '的变化情况如下:所以min ()()f x f ee ==-(2)1'()ln 1=+++g x x a x, ()g x 在区间[1,)+∞单调递增,所以'()0≥g x 在[1,)+∞恒成立,即1ln (1)+≥-+x a x在[1,)+∞恒成立 设221111()ln ,'()0-=+∴=-=>x h x x h x x x x x 1()ln ∴=+h x x x[1,)+∞单调递增,min ()=(1)=1h x h 只需1(1)≥-+a 即可,解得2a ≥- 【点睛】方法点睛:()g x 在区间[1,)+∞单调递增'()0⇔≥g x 在[1,)+∞恒成立,分离参数,构造函数是常用方法.本题考查了运算求解能力和逻辑推理能力,属于中档题目..22.(1)220x y --=;(2)函数()f x 的单调增区间为,⎛-∞ ⎝⎭,⎫∞⎪⎪⎝⎭,单调减区间为⎛ ⎝⎭.【分析】(1)求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)解方程()0f x '=,列表分析()f x '的符号变化,由此可得出函数()f x 的单调递增区间和递减区间. 【详解】(1)由()3f x x x =-,得()231f x x '=-,所以()12f '=,又()10f =,所以曲线()y f x =在点()()1,1f 处的切线方程为:()21y x =-,即220x y --=.(2)令()2310f x x '=-=,得x =, x 、()f x '、()f x 在R 上的情况如下:所以函数()f x 的单调增区间为,⎛-∞ ⎝⎭,3⎛⎫∞ ⎪ ⎪⎝⎭,单调减区间为⎛ ⎝⎭. 【点睛】方法点睛:利用导数求解函数单调区间的基本步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间;解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间. 23.(1)11ln 2,022⎡⎫-+⎪⎢⎣⎭;(2)证明见解析. 【分析】(1)方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,等价于函数()f x 在区间1,12⎡⎤-⎢⎥⎣⎦上的图像与直线y t =有两个交点,所以利用导数求出()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减,再比较出(1)f 和12f ⎛⎫ ⎪⎝⎭的大小即可得答案;(2)由0m n >>,要证(1)(1)n m m n +<+,只需证ln(1)ln(1)n m m n +<+,只需证ln(1)ln(1)m n m n ++<,构造函数ln(1)(),(0)x g x x x+=>,然后利用导数证明()g x 是减函数即可 【详解】解:(1)由()(1)ln(1)f x x x x =-++,定义域为()1,-+∞,()ln(1)f x x '=-+,()ln(1)00f x x x '=-+=⇒=,当102x -≤<时,()()0,f x f x '>单调递增, 当01x <≤时,()()0,f x f x '<单调递减, 则()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减, 又111(0)0,(1)1ln 4,()ln 2222f f f ==--=-+, 135(1)()ln 20,222∴--=-<f f 1(1)2f f ⎛⎫∴< ⎪⎝⎭∴ 当11ln 2,022⎡⎫∈-+⎪⎢⎣⎭t 时,方程()f x t =有两解. (2)∵ 0m n >>.∴ 要证:(1)(1)n m m n +<+,只需证ln(1)ln(1)n m m n +<+, 只需证:ln(1)ln(1)m n m n ++<. 设ln(1)(),(0)x g x x x+=>, 则22ln(1)(1)ln(1)1()(1)xx x x x x g x x x x -+-+++=+'=. 由(1)知()(1)ln(1)f x x x x =-++在(0,)+∞单调递减, 又()00=f ,∴ (1)ln(1)0x x x -++<, 即()g x 是减函数,而m n >. ∴ ()()g m g n <,故原不等式成立. 【点睛】关键点点睛:此题考查导数的应用,考查利用导数证明不等式,考查数学转化思想,解题的关键是把(1)(1)n m m n +<+,转化为ln(1)ln(1)m n m n ++<,再构造函数,再利用导数判断此函数为减函数即可,属于中档题24.(1)有1个零点;(2)(,)e +∞.【分析】(1)求导得到函数的单调性,再利用零点存在性定理得解;(2)分离参变量,不等式恒成立转化为求函数的最值得解.【详解】(1)当1a =-时,()1e x f x x =-, 则()110ex f x =+>', ∴()f x 在[)0,+∞上单调递增,又(0)10f =-<,1(1)10ef =->, 故0(0,1)x ∃∈,使得()00f x =,∴函数()f x 在区间[0,)+∞上有1个零点;(2)若()2f x >对任意的实数x 恒成立,即e (2)x a x >-恒成立,令()e (2)x g x x =-,则()e (1)x g x x '=-,令()0g x '>,得1x <;令()0g x '<,得1x >.∴()g x 在(,1)-∞上递增,在(1,)+∞上递减,∴max [()](1)e g x g ==,∴a 的取值范围为(e,)+∞.【点睛】方法点睛:不等式恒成立问题解决思路:一般参变量分离、转化为最值问题.25.(1)证明见解析;(2)证明见解析.【分析】(1)求导根据导数()0f x '>,()0f x '<求出最小值()10f =进而有()0f x ≥成立 (2)有(1)得ln 1≤-x x ,令112n x =+得11ln 122n n ⎛⎫+< ⎪⎝⎭,不等式通项可加性相加,根据等比数列求和化简即可证明.【详解】解:(1)由题意得()111x f x x x-'=-= 当1x >时()0f x '>,()f x 单调增当01x <<时()0f x '<,()f x 单调减所以()f x 的最小值为()10f =,所以()()01x f f ≥=即()0f x ≥成立(2)由(1)知ln 1≤-x x 令112n x =+得11ln 122n n ⎛⎫+< ⎪⎝⎭ 所以2212111111ln 1ln 1ln 1222222n ⎛⎫⎛⎫⎛⎫+++++<++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111221111212n n ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎝⎭==-< ⎪⎝⎭- 即22111ln 1111ln 222e ⎛⎫⎛⎫⎛⎫⎛⎫+⋅++<= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 【点睛】已知不等式证明问题常用的方法:(1)证明()min f x a ≥或()max f x a ≤;(3)构造两个函数()()f x g x <,证明()min max ()f x g x <26.(1)11ln 22y x =+-;(2)证明见解析. 【分析】(1)求出()f x 的导函数,由()0k f '=,可得答案.(2)求出()f x 的导函数,讨论出函数()f x 的单调性,得出其最小值,可证明.【详解】(1)解:1()2x f x e x '=-+, 当0x =时,()102k f '==, 又()01ln 2f =-,所以切线方程为()11ln 22y x --=,即11ln 22y x =+-.(2)解:1()2x f x e x '=-+在区间()2,-+∞上单调递增, 又()10f '-<,()00f '>,故()0f x '=在区间()2,-+∞上有唯一实根0x ,且()01,0x ∈-,当()02,x x ∈-时,()0f x '<;当()0,x x ∈+∞时,()0f x '>,从而当0x x =时,()f x 取得最小值.由()00f x '=,得0012x e x =+,()00ln 2x x +=-, 故()()20000011()022x f x f x x x x +≥=+=>++. 【点睛】本题考查求函数在某点出的切线方程和利用导数证明不等式.解答本题的关键是由1()2x f x e x '=-+在区间()2,-+∞上单调递增,得出()0f x '=在区间()2,-+∞上有唯一实根0x ,从而得出()f x 的单调区,即()()20000011()22x f x f x x x x +≥=+=++,属于中档题.。

新北师大版高中数学选修1-1第四章《导数应用》测试卷(含答案解析)(1)

新北师大版高中数学选修1-1第四章《导数应用》测试卷(含答案解析)(1)

一、选择题1.已知函数()()2ex x f x x =∈R ,若关于方程()()210f x tf x t -+-=恰好有4个不相等的实根,则实数t 的取值范围为( )A .()24,22,e e ⎛⎫⋃⎪⎝⎭ B .24,1e ⎛⎫⎪⎝⎭C .24,e e ⎛⎫⎪⎝⎭D .241,1e ⎛⎫+ ⎪⎝⎭2.对任意0x >,若不等式2e ln e xa x ax x++≥恒成立(e 为自然对数的底数),则正实数a 的取值范围是( )A .(0,e]B .2(0,e ]C .2[,e]eD .22[,e ]e3.已知函数()f x 定义域为R ,其导函数为f x ,且()()30f x f x '->在R 上恒成立,则下列不等式定成立的是( ) A .()()310f e f <B .()()210f e f < C .()()310f e f >D .()()210f e f >4.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .5.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( ) A .34B .16C .24D .176.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π7.已知函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围为( ) A .34a ≤-B .1a ≤-C .1a ≤D .01a ≤≤8.已知函数()13log xf x e x =-,给出下列两个命题:命题:p 若01x ≥,则()03f x ≥;命题[)0:1,q x ∃∈+∞,()03f x =.则下列叙述错误的是( )A .p 是假命题B .p 的否命题是:若01x <,则()03f x <C .[):1,q x ⌝∀∈+∞,()3f x ≠D .q ⌝是真命题9.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+10.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为( )A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞11.已知函数()221,0 2,k xf x xx k x⎧⎛⎫-<⎪ ⎪=⎝⎭⎨⎪-≥⎩,若函数()()()g x f x f x=-+有且只有四个不同的零点,则实数k的取值范围为()A.k0<B.0k>C.27k<D.27k>12.已知函数()()()2122xxf x m e m R=+++∈有两个极值点,则实数m的取值范围为()A.1e⎡⎤-⎢⎥⎣⎦,B.111e⎛⎫---⎪⎝⎭,C.1e⎛⎫-∞-⎪⎝⎭,D.()0+∞,二、填空题13.已知函数2()ln3mf x x x xx=+-+.若函数()f x在[1,2]上单调递减,则实数m的最小值为________.14.已知函数()f x与()f x'的图象如图所示,则函数()()xf xg xe=的单调递减区间为___________.15.若函数()ln1f x x x=+的图象总在直线y ax=的上方,则实数a的取值范围是______.16.已知函数()cos sinf x x x x=-,下列结论中,①函数()f x的图象关于原点对称;②当(0,)xπ∈时,()0f xπ-<<;③若120x xπ<<<,则1122sinsinx xx x>;④若sinax x bx<<对于0,2xπ⎛⎫∀∈ ⎪⎝⎭恒成立,则a的最大值为2π,b的最小值为1.所有正确结论的序号为______.17.已知函数()f x对定义域内R内的任意x都有()()4f x f x=-,且当2x≠,其导数()f x '满足()()2xf x f x ''<,若()30f =,则不等式()0xf x >的解集为__________.18.若a 是区间[]0,3e 上任意选取的一个实数,则x ea x>对()0,x ∈+∞恒成立的概率为______.19.函数31()3f x x ax =-的极大值为23,则实数a =__________.20.已知随机变量X 的分布列为:X 1 1k +P3k e -31k e--随机变量X 的数学期望为E X ,则满足E X k <的最大正整数k 的值是_____. (参考数据:ln 20.6931≈,ln 3 1.0986≈,ln 5 1.6094≈)三、解答题21.已知函数()ln ()=+∈f x x x ax a R . (Ⅰ)当0a =,求()f x 的最小值;(Ⅱ)若函数()()ln g x f x x =+在区间[1,)+∞上为增函数,求实数a 的取值范围; 22.已知函数()(2)(0)x f x ae x a =-≠. (1)求()f x 的单调区间;(2)若函数2()()2g x f x x x =+-有两个极值点,求实数a 的取值范围.23.如图所示,某风景区在一个直径AB 为200m 的半圆形花园中设计一条观光路线,在点A 与圆弧上一点C 之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C 到点B 设计为沿圆弧BC 的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)(1)设BAC θ∠=(弧度),将绿化带总长度()S θ表示为θ的函数; (2)试确定θ的值,使得绿化带总长度最大. 24.已知函数()e xaf x x =+,其中a R ∈,e 是自然对数的底数. (1)当1a =-时,求函数()f x 在区间[)0,+∞上的零点个数; (2)若()2f x >对任意的实数x 恒成立,求a 的取值范围.25.已知函数()()22ln f x x t x t x =++-.(1)若3x =是()f x 的极值点,求()f x 的极大值;(2)若()ln 1xg x e t x =+-,求实数t 的范围,使得()()f x g x ≤恒成立.26.已知函数()ln 2f x x x x =-. (1)求函数()f x 的最小值;(2)求函数()()g x f x x e =+-的单调区间;(3)若函数()()h x f x mx =-在[)1,x ∈+∞单调递增,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求得()f x 的导数,可得单调区间和极值,作出()f x 的图象,将方程()()210f x tf x t -+-=因式分解为()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,则()1f x =或()1f x t =-,从而()1f x t =-有3个实数根,即函数()y f x =与1y t =-有3个交点,数形结合即可得到1t -的取值范围,从而得解; 【详解】解:函数2()x x f x e=的导数为22()xx x f x e -'=, 当02x <<时,()0f x '>,()f x 递增;当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e <, 作出()y f x =的图象如下所示,因为()()210fx tf x t -+-=恰好有4个不相等的实根,所以()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,解得()1f x =或()1f x t =-,当()1f x =时,有1个实数解,所以()1f x t =-应有3个实数根,即函数()y f x =与1y t =-有3个交点, 所以2401t e <-<,即2411t e<<+ 故选:D 【点睛】本题考查方程的根的个数问题解法,考查数形结合思想方法,以及导数的运用:求单调区间和极值,考查运算能力.2.B解析:B 【分析】将不等式化简并换元,构造函数2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,对函数求导,判断导函数零点与区间端点的关系,分类讨论得出函数的单调性和最小值,代入求解可得正实数a 的取值范围. 【详解】22e e e ln e ln e 0x x x a x ax a x x x ++≥⇔-+≥,令e x t x=(由e e x x ≥可知e t ≥), 则2ln e 0t a t -+≥,设2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,易得()1(e)a t af t t t t-'=-=≥, ①当0e a <≤时,()0f t '≥,所以此时()(e)y f t t =≥是增函数,故2min ()(e)e e 0f t f a ==-+≥,解得2e e a ≤+,又0e a <≤,所以0e a <≤;②当e a >时,则()y f t =在[,)e a 上递减,在(,)a +∞上递增,故min ()()f t f a =,min ()0()0f t f a ≥⇔≥,所以2ln e 0a a a -+≥,设2()ln e (e)g a a a a a =-+>,故()0g a ≥即可,而()ln (e)g a a a '=->,显然()0g a '<,即()y g a =在(e,)+∞上递减,又2(e )0g =,而()0g a ≥,所以2()(e )g a g ≥,所以2e a ≤,又e a >,因此2e e a <≤.综上所述,0e a <≤或2e e a <≤,即2(0,e ]a ∈. 故选:B 【点睛】方法点睛:本题考查不等式的恒成立问题,考查导数在单调性和最值中的应用,考查分类讨论思想,关于恒成立问题的几种常见解法总结如下: 1.参变分离法,将不等式恒成立问题转化为函数求最值问题;2.主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;3.分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;4.数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解.3.A解析:A 【分析】 构造函数()()3xf xg x e =,由()()30f x f x '->得0g x ,进而判断函数()g x 的单调性,判断各选项不等式. 【详解】()()3x f x g x e=,则()()()()()()3323333x x x x f x e f x e f x f x g x e e ⋅--==''', 因为()()30f x f x '->在R 上恒成立, 所以0g x在R 上恒成立,故()g x 在R 上单调递减, 所以()()10g g <,即()()3010f f e e<,即()()310f e f <, 故选:A. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.4.A解析:A 【分析】利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减; 当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.5.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值. 【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34, 故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.6.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r =代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=,底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r rππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S rππ-'=<可得02r <<, 所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.7.B解析:B 【分析】 由函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,知'0y ≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,分离参数,求最值得答案.【详解】 因为函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增, 所以22'20a x x ay x x x --=--=≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以222(1)1a x x x ≤-=--在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以1a ≤-, 故选:B. 【点睛】方法点睛:该题考查的是有关根据函数在给定区间上单调增求你参数的取值范围的问题,解题方法如下:(1)利用函数在给定区间上单调递增,得到其导数大于等于零在给定区间上恒成立; (2)求导;(3)分离参数,求最小值,得结果.8.D解析:D 【分析】分析函数()13log xf x e x =-为增函数,若01x ≥,求出[)1,x ∈+∞时函数的值域,结合命题间的基本关系即可得答案. 【详解】由函数的解析式可得函数的定义域为: ()0,∞+,且导函数()10ln 3xf x e x '+=>, 则函数单调递增,结合()1131log 1e f e =-=, 可得当1≥x 时,函数的值域为[),e +∞.据此可知p 是假命题, q 是真命题, q ⌝是假命题. 结合全称命题与特称命题的关系可得:p 的否命题是:若01x <,则()03f x <.[):1,q x ⌝∀∈+∞,()3f x ≠故选:D 【点睛】本题通过考查函数的单调性和极值来考查命题间的基本关系,属于中档型综合题.9.A【分析】设()()2x x F x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x x F x e f x e =-,则[]()()()2()()2x x x xF x e f x e f x e ef x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦,所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-, 故(3)2(2)2ef f e +<+. 故选:A. 【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.10.B解析:B 【分析】 构造函数()()f xg x x=,易知()g x 在()0,∞+上单调递增,由()f x 是定义在R 上的偶函数可推出()g x 是定义在()(),00,-∞⋃+∞上的奇函数,故()g x 在(),0-∞上也单调递增,且()()220g g =-=.而不等式()0xf x <的解可等价于即()0g x <的解,从而得解. 【详解】解:设()()f x g x x =,0x ≠,则()()()'2xf x f x g x x-'=, ∵当0x >时,有()()'xf x f x >恒成立,∴当0x >时,()0g x '>,()g x 在()0,∞+上单调递增,∵()f x 是定义在R 上的偶函数, ∴()()()()f x f x g x g x x x--===---,即()g x 是定义在()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上也单调递增. 又()20f =,∴()()2202f g ==,∴()20g -=. 不等式()0xf x <的解可等价于即()0g x <的解, ∴02x <<或2x <-, ∴不等式的解集为()(),20,2-∞-.【点睛】本题主要考查函数奇偶性的应用,考查函数的单调性,利用了构造思想,导函数的运用,属于中档题.11.D解析:D 【分析】表示出函数()g x ,分0k =,k 0<及0k =讨论,易知当0k =及k 0<时均不合题意,而观察解析式可知,问题可化为22()(0)kg x x k x x=+->有且仅有两个不同的零点,故利用导数研究函数()g x 在(0,)+∞上的最小值小于0即可. 【详解】解:依题意,222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩,当0k =时,原函数有且只有一个零点,不合题意,故0k ≠;观察解析式,易知函数()g x 为偶函数,则函数()g x 有且仅有四个不同的零点,可转化为22()(0)kg x x k x x=+->有且仅有两个不同的零点, 当k 0<时,函数()g x 在(0,)+∞上递增,最多一个零点,不合题意;当0k >时,322()()x k g x x -'=,0x >,令()0g x '>,解得13x k >,令()0g x '<,解得130x k <<, 故函数()g x 在13(0,)k 上递减,在13(k ,)+∞上递增, 要使()g x 在(0,)+∞上有且仅有两个不同的零点, 则1233132()()0min k g x g k k k k==+-<,解得27k >.故选:D . 【点睛】本题考查函数零点与方程根的关系以及利用导数研究函数的单调性,最值等,考查分类讨论思想以及运算求解能力,属于中档题.12.B解析:B 【分析】求导()()1xf x x m e '=++,将问题转化为()()1xf x x m e '=++有两个不同的零点,也即是关于x 的方程1x xm e --=有两个不同的解,构造函数()xx g x e =,求导()1xxg x e -'=,分析导函数取得正负的区间,从而得函数()g x 的单调性和最值,从而可得选项.【详解】函数()f x 的定义域为R ,()()'1x fx x m e =++,因为函数()f x 有两个极值点,所以()()1xf x x m e '=++有两个不同的零点, 故关于x 的方程1x xm e--=有两个不同的解, 令()x x g x e =,则()1x xg x e-'=,当(,1)x ∈-∞时, ()0g x '>,当(1,+)x ∈∞时,()0g x '<,所以函数()g x 在区间(,1)-∞上单调递增,在区间(1,+∞)上单调递减, 又当x →-∞时,()g x →-∞;当x →+∞时,()0g x →, 且0,()0x g x >>()11g e=,故101m e <--<,即111m e--<<-. 故选:B. 【点睛】本题考查运用导函数研究函数的单调性、最值、极值,关键在于构造合适的函数,参变分离的方法的运用,属于中档题.二、填空题13.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数解析:6 【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值. 【详解】21()23mf x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+, 令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥当[1,2]x ∈时,()2661g x x x '=-+单调增,()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6 【点睛】关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.14.【分析】利用图象得出不等式的解集再利用导数可求得函数的单调递减区间【详解】由图象可知不等式的解集为由可得解得因此函数的单调递减区间为故答案为:【点睛】思路点睛:利用导数求函数单调区间的步骤:(1)求解析:()0,1、()4,+∞ 【分析】利用图象得出不等式()()0f x f x '-<的解集,再利用导数可求得函数()()x f x g x e=的单调递减区间. 【详解】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,()()x f x g x e =,()()()()()()()2x x x x f x e f x e f x f x g x e e ''-⋅'-==', 由()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞.因此,函数()()x f x g x e=的单调递减区间为()0,1、()4,+∞. 故答案为:()0,1、()4,+∞. 【点睛】思路点睛:利用导数求函数单调区间的步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间; (4)解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.15.【分析】根据图象关系利用分离变量法将问题转化为恒成立问题令利用导数可求得则【详解】图象总在上方恒成立定义域为恒成立令当时;当时在上单调递减在上单调递增即实数的取值范围为故答案为:【点睛】结论点睛:分 解析:(),1-∞【分析】根据图象关系,利用分离变量法将问题转化为1ln a x x<+恒成立问题,令()()1ln 0g x x x x=+>,利用导数可求得()()min 1g x g =,则()1a g <. 【详解】()f x 图象总在y ax =上方,ln 1x x ax ∴+>恒成立,()f x 定义域为()0,∞+,1ln a x x∴<+恒成立,令()()1ln 0g x x x x =+>,()22111x g x x x x-'∴=-=,当()0,1x ∈时,()0g x '<;当()1,x ∈+∞时,()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()min 11g x g ∴==,1a ∴<,即实数a 的取值范围为(),1-∞.故答案为:(),1-∞. 【点睛】结论点睛:分离变量法是处理恒成立问题的基本方法,若()a f x ≤恒成立,则()min a f x ≤;若()a f x ≥恒成立,则()max a f x ≥.16.①②④【分析】首先对函数的奇偶性进行判断得出①正确;利用导数研究函数的单调性求得函数的值域判断②正确;利用导数研究函数的单调性进行变形得到③是错误的数形结合思想可以判断④是正确的【详解】因为所以所以解析:①②④ 【分析】首先对函数的奇偶性进行判断得出①正确;利用导数研究函数的单调性,求得函数的值域,判断②正确;利用导数研究函数sin ()xg x x=的单调性,进行变形得到③是错误的,数形结合思想可以判断④是正确的. 【详解】因为()cos sin f x x x x =-,所以()()cos()sin()cos sin ()f x x x x x x x f x -=----=-+=-, 所以()f x 为奇函数,所以函数()f x 的图象关于原点对称,所以①正确; 因为'()cos sin cos sin f x x x x x x x =--=-, 因为(0,)x π∈,所以'()0f x <, 所以()f x 在(0,)π上单调递减,所以()()(0)0f f x f ππ-=<<=,所以()0f x π-<<,所以②正确;令sin ()x g x x=,2cos sin '()x x xg x x -=, 由②可知,()f x 在(0,)π上单调递减,所以)'(0g x <,所以()g x 在(0,)π上单调递减, 若120x x π<<<,所以1212sin sin x x x x >, 即1122sin sin x x x x <,所以③错误; 若sin ax x bx <<对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,相当于sin y x =在0,2π⎛⎫ ⎪⎝⎭上落在直线y ax=的上方,落在直线y bx =的下方, 结合图形,可知a 的最大值为连接(0,0),(,1)2π的直线的斜率,即2π,b 的最小值为曲线sin y x =在(0,0)处的切线的斜率,即0'|1x y ==,所以④正确;故正确答案为:①②④. 【点睛】方法点睛:该题属于选择性填空题,解决此类问题的方法: (1)利用函数的奇偶性判断函数图象的对称性; (2)利用导数研究函数的单调性,从而求得其值域; (3)转化不等式,构造新函数,求导解决问题; (4)数形结合,找出范围.17.【分析】由可得对称轴是由可得从而得出判断的单调区间再结合即可得不等式的解集【详解】因为函数对定义域内内的任意都有所以对称轴是因为满足即所以当时单调递增当时单调递减又因为所以时时时当与同号时所以的解集 解析:()(),01,3-∞⋃【分析】由()()4f x f x =-,可得()f x 对称轴是2x =,由()()2xf x f x ''<可得()()20x f x '-<,从而得出判断()f x 的单调区间,再结合()30f =,即可得不等式()0xf x >的解集.【详解】因为函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-, 所以()f x 对称轴是2x =,因为()f x '满足()()2xf x f x ''<,即()()20x f x '-<,所以当2x <时()0f x '>,()f x 单调递增, 当2x >时()0f x '<,()f x 单调递减, 又因为()()130f f ==,所以1x <时,()0f x <,13,x <<时,()0f x >,3x >时,()0f x <, 当x 与()f x 同号时,()0xf x >, 所以()0xf x >的解集为:()(),01,3-∞⋃, 故答案为:()(),01,3-∞⋃ 【点睛】本题主要考查了函数的对称性和单调性,导数的符号决定原函数的单调性,根据单调性解不等式,属于中档题.18.【分析】由对恒成立可知只要小于的最小值所以构造函数利用导数求出从而得然后利用区间长度比求出概率即可【详解】设则当时;当时在递减在递增∴∴当时对恒成立故所求概率为故答案为:【点睛】此题考查的是几何概型解析:13【分析】由x e a x >对()0,x ∈+∞恒成立,可知只要a 小于xe x的最小值,所以构造函数()xe f x x=,利用导数求出()()min 1f x f e ==,从而得()0,a e ∈,然后利用区间长度比求出概率即可. 【详解】设()x e f x x =,则()()'21x e x f x x-=,0x >.当01x <<时,()'0f x <;当1x >时,()'0f x >,()f x 在()0,1递减,在()1,+∞递增∴()()min 1f x f e ==,∴当a e <时,xe a x>对()0,x ∈+∞恒成立.故所求概率为1303e e =-. 故答案为:13【点睛】此题考查的是几何概型,不等式恒成立问题,属于基础题.19.3【分析】求导数取导数为0计算代入原函数计算极大值得到答案【详解】函数的极大值为由题意知:当时有极大值所以故答案为3【点睛】本题考查了函数的极大值意在考查学生的计算能力解析:3【分析】求导数,取导数为0,计算x =. 【详解】函数31()3f x x ax =-的极大值为 2()f x x a '=- 由题意知:0,a x >⇒=当x =(f =所以3a = 故答案为3 【点睛】本题考查了函数的极大值,意在考查学生的计算能力.20.【分析】根据期望的定义先得到将不等式化为构造函数利用导数的方法判断其单调性计算即可得出结果【详解】由题意所以可化为即其中显然成立;两边同时取以为底的对数得令则当时即函数单调递增;当时即函数单调递减; 解析:4【分析】根据期望的定义,先得到()31kE X ke k -=-++,将不等式()E X k <化为ln 3kk >,构造函数()ln ,03kf k k k =->,利用导数的方法判断其单调性,计算()4f ,()5f ,即可得出结果. 【详解】 由题意,()()333111k k k E X ek e ke k ---⎛⎫=++-=-++ ⎪⎝⎭,所以()E X k <可化为310kke --+<,即3kk e >,其中0k >显然成立; 两边同时取以e 为底的对数,得ln 3k k >, 令()ln ,03k f k k k =->,则()11333k f k k k-'=-=, 当()0,3k ∈时,()303k f k k -'=>,即函数()ln 3kf k k =-单调递增; 当()3,k ∈+∞时,()303k f k k -'=<,即函数()ln 3kf k k =-单调递减; 因此()()max 33ln 3ln 3103f k f ==-=->, 又()444ln 42ln 2 1.3862 1.3333033f =-≈-=->,()55ln 5 1.6094 1.666603f =-≈-<, 因此满足ln 3kk >的最大正整数k 的值是4, 即满足()E X k <的最大正整数k 的值是4. 故答案为:4. 【点睛】本题主要考查导数的方法研究不等式能成立的问题,涉及离散型随机变量的期望,属于常考题型.三、解答题21.(1)11()f e e=-;(2)2a ≥- 【分析】(1)对函数求导,令'()ln 1=0=+f x x ,讨论函数的单调性即可求出结果.(2)由()g x 在区间[1,)+∞单调递增,可得'()0≥g x 在[1,)+∞恒成立,分离参数可得:1ln (1)+≥-+x a x,构造函数即可求出结果. 【详解】(1)()ln 1,'()ln 1=+=+f x x x f x x 令'()ln 1=0=+f x x ,解得1=x e当x 变化时,(),()f x f x '的变化情况如下:所以min ()()f x f ee ==-(2)1'()ln 1=+++g x x a x, ()g x 在区间[1,)+∞单调递增,所以'()0≥g x 在[1,)+∞恒成立,即1ln (1)+≥-+x a x在[1,)+∞恒成立 设221111()ln ,'()0-=+∴=-=>x h x x h x x x x x1()ln ∴=+h x x x[1,)+∞单调递增,min ()=(1)=1h x h 只需1(1)≥-+a 即可,解得2a ≥- 【点睛】方法点睛:()g x 在区间[1,)+∞单调递增'()0⇔≥g x 在[1,)+∞恒成立,分离参数,构造函数是常用方法.本题考查了运算求解能力和逻辑推理能力,属于中档题目.. 22.(1)答案见解析;(2)22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)先对函数求导,然后分0a >和0a <两种情况,解不等式()0f x '<,()0f x '>,可求出函数的单调区间;(2)函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,然后分0a >和0a <两种情况讨论即可得答案 【详解】(1)()(1)x f x ae x '=-,若0a >,由()0f x '<,得1x <;由()0f x '>,得1,()x f x >∴的递减区间为(,1)-∞,递增区间为(1,)+∞.若0a <,由()0f x '<,得1x >;由()0f x '>,得1,()x f x <∴的递减区间为(1,)+∞,递增区间为(,1)-∞.(2)22()()2(2)2x g x f x x x ae x x x =+-=-+-,()()(1)22(1)2x x g x ae x x x ae '=-+-=-+.2()(2)2x g x ae x x x ∴=-+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,当1x =时,1(1)20h ae =+≠,即2a e≠-. ∴①当0a >时,()20x h x ae =+>,此时无零点; ②当0a <且2a e≠-时,2()0,()h x ae h x '=<∴为减函数. 又2ln 2ln 20a h ae a ⎛⎫- ⎪⎝⎭⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭,∴总存在唯一实数2ln a ⎛⎫- ⎪⎝⎭,使()0h x =.综上,()g x 有两个极值点实数a 的取值范围22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间,考查导数与极值,第2问解题的关键是将函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,从而分情况讨论即可,考查数学转化思想,属于中档题 23.(1)()400cos 200S θθθ=+,0,2πθ⎛⎫∈ ⎪⎝⎭;(2)6πθ=. 【分析】(1)在直角三角形ABC 中,100AB =,BAC θ∠=,可得AC 的长.由于22BOC BAC θ∠=∠=,可得弧BC 的长;(2)利用导数求()s θ最大值可得答案.【详解】(1)如图,连结OC ,BC ,在直角三角形ABC 中,CAB θ∠=,200AB =(m ),所以200cos AC θ=(m ), 由于22COB CAB θ∠=∠=,所以弧BC 的长为1002200θθ⨯=(m ),所以()2200cos 200400cos 200S θθθθθ=⨯+=+(m ),0,2πθ⎛⎫∈ ⎪⎝⎭,(2)由(1)得()400cos 200S θθθ=+0,2πθ⎛⎫∈ ⎪⎝⎭, 所以()()2002sin 1S θθ'=-+,0,2πθ⎛⎫∈ ⎪⎝⎭, 当06πθ<<时,()0S θ'>,当6πθ=时,()0S θ'=,当62ππθ<<时,()0S θ'<, 所以()S θ在0,6π⎛⎫ ⎪⎝⎭上单调递增,在,62ππ⎛⎫ ⎪⎝⎭上单调递减, 当6πθ=时,()S θ有最大值100400cos 20020036663S ππππ⎛⎫=+⨯= ⎪⎝⎭, 所以当6πθ=时,绿化带总长度最大.【点睛】 本题考查解实际问题的应用,关键正确理解题意,正确列出等量关系或函数关系式,考查了分析问题、解决问题的能力.24.(1)有1个零点;(2)(,)e +∞.【分析】(1)求导得到函数的单调性,再利用零点存在性定理得解;(2)分离参变量,不等式恒成立转化为求函数的最值得解.【详解】(1)当1a =-时,()1e x f x x =-, 则()110e xf x =+>', ∴()f x 在[)0,+∞上单调递增,又(0)10f =-<,1(1)10ef =->, 故0(0,1)x ∃∈,使得()00f x =,∴函数()f x 在区间[0,)+∞上有1个零点;(2)若()2f x >对任意的实数x 恒成立,即e (2)x a x >-恒成立,令()e (2)x g x x =-,则()e (1)x g x x '=-,令()0g x '>,得1x <;令()0g x '<,得1x >.∴()g x 在(,1)-∞上递增,在(1,)+∞上递减,∴max [()](1)e g x g ==,∴a 的取值范围为(e,)+∞.【点睛】方法点睛:不等式恒成立问题解决思路:一般参变量分离、转化为最值问题.25.(1)7-;(2)t e ≥-.【分析】(1)先对函数求导,结合极值存在的条件可求t ,然后结合导数可研究函数的单调性,进而可求极大值;(2)由已知代入可得,221x e x x t x-+--≤在0x >时恒成立,构造函数()221x e x x h x x-+-=,结合导数及函数的性质可求. 【详解】解:(1)()22t f x x t x '=--+,0x >,由题意可得,()23403f t '=-=,解可得6t =,∴()()()213628x x f x x x x--'=-+=, 所以,当3x >,01x <<时 ,()0f x '>,函数单调递增,当13x <<时,()0f x '<,函数单调递减,故当1x =时,函数取得极大值()17f =-;(2)由()()f x g x ≤得()22ln ln 1xx t x t x e t x -++≤+-在0x >时恒成立可得,221x e x x t x -+--≤在0x >时恒成立,2min21x e x x t x ⎛⎫-+--≤ ⎪⎝⎭ 令()221x e x x h x x-+-=, 则()()()()()()2222222211111x x x x e x x e x x x e x e x x h x x x x -+--+------+'===, 令()1x F x e x =--,所以()'1x F x e =-,令()'0F x =,提0x =, 所以当0x >,()'0F x >,函数单调递增,当0x <时,()'0F x <,函数单调递减, 故当0x =时,函数取得最小值()00F =,又0x >,所以10x e x -->,所以()h x 在()0,1上单调递减,在()1,+∞上单调递增,所以()()min 1h x h e ==,可得()min t h x e -≤=,所以t e ≥-.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.26.(1)e -;(2)单调递减区间为()0,1,单调递增区间为()1,+∞;(3)1m ≤-.【分析】(1)求导可得()ln 1f x x '=-,令'()0f x =得x e =,分别讨论()0,x e ∈和(),x e ∈+∞时导函数的正负,可得()f x 的单调性,即可求得最小值;(2)求导可得()ln g x x e =-',由'()0g x =得1x =,分别讨论()0,1x ∈和()1,x ∈+∞时导函数的正负,可得()g x 单调区间;(3)所求等价于()()h x f x mx =-在[)1,x ∈+∞单调递增,即ln 1m x ≤-恒成立,根据x 的范围,即可求得ln 1x -的最小值,即可得答案.【详解】(1)函数()f x 的定义域为()0,∞+,()ln 1f x x '=-,由'()0f x =得x e =,所以当()0,x e ∈时,'()0f x <,()f x 单调递减,当(),x e ∈+∞时,'()0f x >,()f x 单调递增,所以函数()f x 的最小值为()f e e =-;(2)()ln g x x x x ex =--,()ln g x x '=,由'()0g x =得1x =,所以当()0,1x ∈时,'()0g x <,()g x 单调递减,当()1,x ∈+∞时,'()0g x >,()g x 单调递增,所以()g x 的单调递减区间为()0,1,单调递增区间为()1,+∞;(3)()ln 1h x x m '=--,因为函数()()h x f x mx =-在[)1,x ∈+∞单调递增, 所以()ln 10h x x m =--≥'在[)1,x ∈+∞恒成立,即ln 1m x ≤-,因为[)1,x ∈+∞,所以min (ln 1)ln111x -=-=-,所以1m ≤-;【点睛】解题的关键是熟练掌握利用导数求解函数的单调区间、极值(最值)的方法,并灵活应用,在已知单调区间求参数时,可转化为恒成立问题,若()m t x <,需要min ()m t x <,若()m t x >,需max ()m t x >,考查计算化简的能力,属中档题.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(答案解析)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(答案解析)

一、选择题1.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定2.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞B .()(),11,-∞-+∞C .()(),10,1-∞-⋃D .()()1,01,-⋃+∞3.已知函数3213()32f x x x c =++有3个不同的零点,则c 的取值范围是( ) A .9,02⎛⎫- ⎪⎝⎭ B .4,(0,)3⎫⎛-∞-⋃+∞ ⎪⎝⎭C .4,03⎛⎫-⎪⎝⎭ D .9,(0,)2⎫⎛-∞-⋃+∞ ⎪⎝⎭4.已知函数ln ,0()(2),0x xx f x x x e x ⎧>⎪=⎨⎪+≤⎩,若函数()()g x f x a =-仅有一个零点,则实数a的取值范围为( ). A .(2,)+∞B .31(2,),e ⎛⎫+∞⋃-∞-⎪⎝⎭C .311,2,e e⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭D .31,e ⎛⎫-∞-⎪⎝⎭5.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π6.下列不可能是函数()()()xx f x xee Z αα-=-∈的图象的是( )A .B .C .D .7.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞B .()2e ,+∞C .()20,eD .()0,e8.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( ) A .12B .1326-C .1326+ D .239.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+10.函数()327f x x kx x =+-在区间[]1,1-上单调递减,则实数k 的取值范围是( ) A .(],2-∞-B .[]22-,C .[)2,-+∞D .[)2,+∞11.已知函数()()()2122x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( )A .10e ⎡⎤-⎢⎥⎣⎦,B .111e⎛⎫--- ⎪⎝⎭,C .1e ⎛⎫-∞- ⎪⎝⎭,D .()0+∞,12.已知函数()xx f x e e ax -=-+(a 为常数)有两个不同极值点,则实数a 的取值范围是( ) A .[)1,+∞B .[)2,+∞C .()2,+∞D .()1,+∞二、填空题13.已知定义在R 上的函数()f x 满足()11f =,且对于任意的x ,1()2f x '<恒成立,则不等式()22lg 1lg 22x f x <+的解集为________.14.已知函数2()ln 3mf x x x x x=+-+.若函数()f x 在[1,2]上单调递减,则实数m 的最小值为________.15.已知函数()f x 与()f x '的图象如图所示,则函数()()x f x g x e=的单调递减区间为___________.16.已知定义在R 上的函数()f x 关于y 轴对称,其导函数为()f x '. 当0x ≥时,()()1xf x f x '>-. 若对任意x ∈R ,不等式()()0x x x e f e e ax axf ax -+->恒成立,则正整数a 的最大值为_____.17.已知函数3223,01()21,1x x m x f x mx x ⎧-+≤≤=⎨-+>⎩,若函数()f x 的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为________.18.已知正项等比数列{}n a 的前n 项和为n S ,若361,,S S 成等差数列,则9326S S S -的最大值为________19.设函数f (x )在R 上存在导数f '(x ),当x ∈(0,+∞)时,f '(x )<x .且对任意x ∈R ,有f (x )=x 2﹣f (﹣x ),若f (1﹣t )﹣f (t )12≥-t ,则实数t 的取值范围是_____. 20.若函数()()32111562f x x mx n x =-++-+是[]0,1上的单调增函数,其中0m ≥,0n ≥,则()()2268m n +++的最小值为________. 三、解答题21.已知函数()(2)(0)x f x ae x a =-≠. (1)求()f x 的单调区间;(2)若函数2()()2g x f x x x =+-有两个极值点,求实数a 的取值范围.22.如图一边长为10cm 的正方形硬纸板,四角各截去一个大小相同的小正方形,然后折起,可以做成一个无盖长方体手工作品.所得作品的体积V (单位:cm 2)是关于截去的小正方形的边长x (单位:cm )的函数.(1)写出体积V 关于x 的函数表达式()f x .(2)截去的小正方形的边长为多少时,作品的体积最大?最大体积是多少? 23.已知函数()3f x x x =-.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 的单调区间. 24.已知函数()ln 1f x x =+.(1)直线20l x y -+=:,求曲线()y f x =上的点到直线l 的最短距离; (2)若曲线21()(1)()(03)2g x x a x f x x =-++<<存在两个不同的点,使得在这两点处的切线都与x 轴平行,求实数a 的取值范围.25.已知函数()()2xf x e ax a R =-∈.(1)若12a =,求函数()f x 的单调区间 (2)当[]2,3x ∈时,()0f x ≥恒成立,求实数a 的取值范围. 26.已知函数()1ln f x x x =--. (1)求证:()0f x ≥;(2)求证:对于任意正整数n ,2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增, ()f x 的最小值是()1f 1=,故1a =,()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x xx g x x e xe x x+=+--=-',令()1xh x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->, 故存在0(0,1)x ∈使得()0h x =即001x x e=,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.2.C解析:C 【分析】 构造函数()()f xg x x=,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()0g x x ⎧<⎨<⎩,解这两个不等式组即可得解.构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--, 所以,函数()()f xg x x=为偶函数. 当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数, 由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.3.A解析:A 【分析】求出三次函数的导数,根据导函数正负情况分析单调性和极值,图象要与x 轴三个交点,据此得出取值范围. 【详解】由条件得2()3(3)f x x x x x '=+=+, 令()0f x '>,可得解集为(,3)(0,)-∞-⋃+∞ 令()0f x '<,可得解集为(3,0)-则()f x 在(,3)-∞-和(0,)+∞上单调递增,在(3,0)-上单调递减,又9(3)2f c -=+,(0)f c =,要使()f x 有3个不同的零点,则902c c <<+,所以902c -<<.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.4.C解析:C 【分析】转化为()y f x =的图象与直线y a =仅有一个交点,利用导数得到函数的性质,根据函数的性质作出函数的图象,根据图象可得解. 【详解】当0x >时,ln ()x fx x=,21ln ()x x x f x x ⋅-'=21ln xx -=, 当0x e <<时,()'f x 0>,当x e >时,()0f x '<,所以()f x 在(0,)e 上递增,在(,)e +∞上递减,所以()f x 在x e =处取得极大值为1()f e e=,当0x ≤时,()(2)x f x x e =+,()(2)(3)x x xf x e x e x e '=++=+,当3x <-时,()0f x '<,当3x >-时,()0f x '>, 所以()f x 在(,3)-∞-上递减,在(3,0]-上递增,所以()f x 在3x =-处取得极小值为331(3)f e e--=-=-,又(0)2f =, 因为函数()()g x f x a =-仅有一个零点,所以()y f x =的图象与直线y a =仅有一个交点,作出函数()f x 的图象,如图:由图可知:12a e <≤或31a e<-. 故实数a 的取值范围为311,2,e e ⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭.故选:C方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.5.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r=代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=, 底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r=圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r r ππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S r ππ-'=<可得02r <<,所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.6.B解析:B 【分析】 由函数()()xx f x xee α-=-,分0a =, a 为正整数,a 为正偶数,a 为正奇数,a 为负整数分析其定义域,奇偶性和单调性判断. 【详解】当0α=时,()xxf x e e -=-其定义域为{}|0x x ≠,关于原点对称,又()()()xx x x f x ee e ef x ---=-=--=-,所以()f x 是奇函数,且单调递增,没有选项符合题意;当α为正整数时,()()xx f x x ee α-=-的定义域为R ,图象经过原点,当0x >时, ()()11()())(x x x x x xf x x e e e e x e e x x x ααααα-----'⎡⎤⎡⎤==-+++⎣⎦+⎣-⎦,因为0,0xxx x e ee e --->+>,所以()0f x '>,则()f x 递增,又存在0M >,当x M >时,随着x 的增大,()'f x 的变化率越来越大, 若α为正偶数,则()f x 是奇函数,此时C 选项符合题意; 若α为正奇数,则()f x 是偶函数,此时A 选项符合题意; 当α为负整数时,()()xx f x xee α-=-的定义域为{}|0x x ≠,当α为负奇数,()()()()xx f x x e e f x α--=--=,()f x 为{}|0x x ≠上的偶函数,无选项符合;当α为负偶数时且4α≤-时,()()()()xx f x x ee f x α--=--=-,()f x 为{}|0x x ≠上的奇函数,当0x >时,()()211(())x x x x f x x e e x x x x x e e x ααααααα----+⎛⎫+--+ ⎪-⎝'⎡⎤=+=⎦⎭⎣, 令()2,0x x S x e x x αα-+=+>-, 则()()()()()2222222xxxxx x S x e x x e ααααα---+-'=-=-⨯--,令(),0x x x x αϕ->=,则()01xx ϕ'<=, 故(),0xx x x αϕ->=为减函数,而()00ϕα=->,()()()23ln ln 2ln t t t αααϕ---+=+=-,其中2t =≥,令()232ln ,2u t t t t t =+-≥,则()()2223,2t t u t t t+-'=≥,则()()22232+440tt +-≤⨯-<,故()232ln ,2u t t t t t =+-≥为减函数,所以()2ln 240u t ≤-<,()()ln 0ϕα-<,所以存在()00x ∈+∞,,使得当()00,x x ∈时,()0x ϕ>即()0S x '<, 当()0,x x ∈+∞时,()0x ϕ<即()0S x '>, 故()S x 在()00,x 为减函数,在()0,x +∞为增函数,因为()00S =,故()00S x <,而当x a >-时,()0S x >, 故存在()10,x ∈+∞,使得当()10,x x ∈时,()0S x <即()0f x '<, 当()1,x x ∈+∞时,()0S x >即()0f x '>,所以()f x 在()10,x 上为减函数,在()1,x +∞为增函数, 又当0x >时,()0f x >恒成立,故D 选项符合题意. 对任意的整数α,当α为非负整数时,()f x 在0x =处有定义,且()f x '在0x =不间断,故B 不符合题意,当α为负整数时,()f x 在0x =处没有定义,故B 不符合题意, 故选:B. 【点睛】方法点睛:对于知式选图问题的解法:1、从函数的定义域,判断函数图象的左右位置,从函数的值域判断图象的上下位置;2、从函数的单调性,判断函数图象的变换趋势;3、从函数的奇偶性,判断函数图象的对称性;4、从函数的周期性,判断函数图象图的循环往复;5、从函数的特殊点,排除不和要求的图象;7.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.8.C【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<,则2661y p p '=-+-336()(66p p -+=---则函数y 在单调递减,在单调递增,故函数在p =处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.9.A解析:A 【分析】设()()2xxF x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x xF x e f x e =-,则[]()()()2()()2x x x xF x e f x e f x e ef x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦,所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-,故(3)2(2)2ef f e +<+. 故选:A. 【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.10.B解析:B由题意得出()0f x '≤对于任意的[]1,1x ∈-恒成立,由此得出()()1010f f ⎧-≤⎪⎨≤''⎪⎩,进而可求得实数k 的取值范围. 【详解】()327f x x kx x =+-,()2327f x x kx '∴=+-,由题意可知,不等式()0f x '≤对于任意的[]1,1x ∈-恒成立,所以,()()12401240f k f k ⎧-='--≤⎪⎨='-≤⎪⎩,解得22k -≤≤.因此,实数k 的取值范围是[]22-,. 故选:B. 【点睛】本题考查利用函数在区间上的单调性求参数,一般转化为导数不等式在区间上恒成立,考查运算求解能力,属于中等题.11.B解析:B 【分析】求导()()1xf x x m e '=++,将问题转化为()()1xf x x m e '=++有两个不同的零点,也即是关于x 的方程1x xm e --=有两个不同的解,构造函数()xx g x e=,求导()1x xg x e-'=,分析导函数取得正负的区间,从而得函数()g x 的单调性和最值,从而可得选项.【详解】函数()f x 的定义域为R ,()()'1x fx x m e =++,因为函数()f x 有两个极值点,所以()()1xf x x m e '=++有两个不同的零点, 故关于x 的方程1x xm e--=有两个不同的解, 令()x x g x e =,则()1xxg x e-'=,当(,1)x ∈-∞时, ()0g x '>,当(1,+)x ∈∞时,()0g x '<,所以函数()g x 在区间(,1)-∞上单调递增,在区间(1,+∞)上单调递减, 又当x →-∞时,()g x →-∞;当x →+∞时,()0g x →, 且0,()0x g x >>()11g e=,故101m e <--<,即111m e --<<-. 故选:B. 【点睛】本题考查运用导函数研究函数的单调性、最值、极值,关键在于构造合适的函数,参变分离的方法的运用,属于中档题.12.C解析:C 【分析】由导数与极值的关系知可转化为方程()0f x '=在R 上有两个不等根,结合函数的性质可求. 【详解】函数有两个不同极值点,()0x x f x e e a -'∴=--+=有2个不等的实数根,即x x a e e -=+有2个不等的实数根, 令()xxg x e e-=+,则()xxg x e e '-=-在R 上单调递增且(0)0g '=,当0?x <时 ()0,()g x g x '<单调递减,当0 x >时,()0,()'>g x g x 单调递增, 所以函数有极小值也是最小值(0)2g =,又当x →-∞时,()g x →+∞,x →+∞,()g x →+∞, 所以2a >即可, 故选:C 【点睛】本题主要考查了利用导数研究函数的单调性、极值、最值,转化思想,属于中档题.二、填空题13.【分析】由构造单调递减函数利用其单调性求解【详解】设则是上的减函数且不等式即为所以得解得或原不等式的解集为故答案为:【点睛】利用导数研究函数的单调性构造函数比较大小属于难题联系已知条件和结论构造辅助解析:10,10,10.【分析】 由()12f x '<,构造单调递减函数()()12h x f x x =-,利用其单调性求解.【详解】()()11,022f x f x <∴-''<,设()()12h x f x x =-, 则()()102h x f x ''=-<, ()h x ∴是R 上的减函数,且()()111111222h f =-=-=, 不等式()22lg 1lg 22x f x <+,即为()22lg 1lg 22x f x -<,所以()()2lg 1h x h <,得2lg 1x >,解得10x >或110x, ∴原不等式的解集为10,10,10.故答案为:10,10,10.【点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题,联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.14.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数解析:6 【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值. 【详解】21()23mf x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+, 令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥ 当[1,2]x ∈时,()2661g x x x '=-+单调增,()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6 【点睛】关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.15.【分析】利用图象得出不等式的解集再利用导数可求得函数的单调递减区间【详解】由图象可知不等式的解集为由可得解得因此函数的单调递减区间为故答案为:【点睛】思路点睛:利用导数求函数单调区间的步骤:(1)求解析:()0,1、()4,+∞ 【分析】利用图象得出不等式()()0f x f x '-<的解集,再利用导数可求得函数()()xf xg x e =的单调递减区间. 【详解】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,()()x f x g x e =,()()()()()()()2x x x x f x e f x e f x f x g x e e ''-⋅'-==', 由()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞.因此,函数()()x f x g x e=的单调递减区间为()0,1、()4,+∞. 故答案为:()0,1、()4,+∞. 【点睛】思路点睛:利用导数求函数单调区间的步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间; (4)解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.16.2【分析】令利用可得在单调递增不等式恒成立等价于即当时分离参数可得可求出正整数的最大值为2再检验当时对于不等式恒成立即可求解【详解】因为定义在上的函数关于轴对称所以函数为上的偶函数令则因为当时即所以解析:2 【分析】令()()g x xf x x =-,利用()()1xf x f x '>-可得()g x 在[)0,+∞单调递增,不等式()()0x x x e f e e ax axf ax -+->恒成立等价于()()x g e g ax >,即e x ax >,当0x >时,分离参数可得()xe a h x x<=,可求出正整数a 的最大值为2,再检验当2a =时,对于0x <,不等式恒成立,即可求解. 【详解】因为定义在R 上的函数()f x 关于y 轴对称, 所以函数()f x 为R 上的偶函数,令()()g x xf x x =-,则()()()1g x f x xf x ''=+-,因为当0x ≥时,()()1xf x f x '>-,即()()()10g x f x xf x ''=+->, 所以()g x 在[)0,+∞单调递增, 不等式()()0xx xe f e eax axf ax -+->恒成立,即()()xx xe f eeaxf ax ax ->-,即()()x g e g ax >,所以e x ax >,当0x >时,()xe a h x x <=,则()()21x e x h x x-'=, 可得()h x 在()0,1单调递减,在()1,+∞单调递增, 所以()()min 1h x h e ==, 所以a e <,此时最大的正整数a 为2,2a =对于0x <时,e x ax >恒成立,综上所述:正整数a 的最大值为2, 故答案为:2 【点睛】关键点点睛:本题的关键点是构造函数()()g x xf x x =-,利用导数判断出()g x 在[)0,+∞单调递增,不等式恒成立即()()x g e g ax >,利用单调性可得e x ax >,再分类参数求最值.17.【分析】利用导数求得在区间上的单调性和最值对分成三种情况进行分类讨论由此求得的取值范围【详解】当时所以在区间上递减最大值为最小值为当时在区间上没有零点在区间上递增而所以在区间上没有零点所以不符合题意解析:1(0,)2【分析】利用导数求得()f x 在区间[]0,1上的单调性和最值,对m 分成0,0,0m m m <=>三种情况进行分类讨论,由此求得m 的取值范围.【详解】当01x ≤≤时,()()'26661fx x x x x =-=-,所以()f x 在区间[]0,1上递减,最大值为()0f m =,最小值为()11f m =-.当0m <时,()f x 在区间[]0,1上没有零点,在区间()1,+∞上递增, 而2110m -⨯+>,所以()f x 在区间()1,+∞上没有零点.所以0m <不符合题意.当0m =时,3223,01()1,1x x x f x x ⎧-≤≤=⎨>⎩,所以()f x 在区间[)0,+∞上有唯一零点()00f =,所以0m =不符合题意.当0m >时,()f x 在区间[]0,1和区间()1,+∞上递减,要使()f x 的图象与x 轴有且只有两个不同的交点,则需0102110m m m >⎧⎪-≤⎨⎪-⨯+>⎩,解得102m <<.综上所述,m 的取值范围是10,2⎛⎫ ⎪⎝⎭. 故答案为:1(0,)2【点睛】本小题主要考查利用导数研究函数的零点,考查分类讨论的数学思想方法,属于中档题.18.【分析】设正项等比数列的公比为由等比数列前n 项和公式结合等差数列的性质可得由等比数列的性质可得进而可得令结合导数即可得的最大值即可得解【详解】设正项等比数列的公比为因为成等差数列当时不合题意;当时即解析:3-【分析】设正项等比数列{}n a 的公比为q ,由等比数列前n 项和公式结合等差数列的性质可得()12311qa q -=-,由等比数列的性质可得932663S S S S q -=,进而可得()393233611q q S S S q--=+,令30t q =>,()()11t tt t f -=+,结合导数即可得()f t 的最大值,即可得解.【详解】设正项等比数列{}n a 的公比为q ,0q >, 因为361,,S S 成等差数列,当1q =时,362S S =,不合题意;当1q ≠时,3621S S =+即()()3611112111a q a q qq=----+⋅,化简得()12311qaq -=-,又()33465139698qS S a a a q a a a S =++⋅⋅⋅+=++⋅⋅⋅+=-,所以()()()()()3932236666612333333611111111q q S S S q q S S S q q q q q a qq q q---=====-+-⋅---, 设30t q =>,()()11t tt t f -=+,则()()()()()()22221212111t t t t t t f t t t -+----+'==++, 令()0f t '=可得110t =<,210t =>, 所以()f t在()1上单调递增,在)1,+∞上单调递减,所以())max 1213f t f ⎡⎤===-⎣⎦所以9326S S S -的最大值为3-. 故答案为:3-. 【点睛】本题考查了等比数列、等差数列的综合应用,考查了换元法及利用导数求函数最值的应用,属于中档题.19.+∞)【分析】构造函数可得即是奇函数由时可得进而根据奇函数及可知在R 上是减函数再根据可得则即可求解【详解】令因为则所以所以是奇函数易知所以因为当时所以所以在上单调递减所以在R 上是减函数所以因为所以即解析:[12,+∞) 【分析】构造函数()()212g x f x x =-,可得()()0g x g x -+=,即()g x 是奇函数,由()0,x ∈+∞时,()f x x '<可得()()0g x f x x ''=-<,进而根据奇函数及()00g =可知()g x 在R 上是减函数,再根据()()112f t f t t --≥-可得()()1g t g t -≥,则1t t -≤,即可求解. 【详解】 令()()212g x f x x =-, 因为()()2f x x f x =--,则()()2f x f x x +-=,所以()()()()()()22211022g x g x f x x f x x f x f x x -+=--+-=-+-=, 所以()g x 是奇函数,易知()00f =,所以()00g =,因为当()0,x ∈+∞时,()f x x '<,所以()()0g x f x x ''=-<, 所以()g x 在()0,∞+上单调递减,所以()g x 在R 上是减函数, 所以()()()()()()()221111111222g t g t f t t f t t f t f t t --=----+=--+-, 因为()()112f t f t t --≥-,所以()()10g t g t --≥,即()()1g t g t -≥, 所以1t t -≤,即12t ≥, 所以1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 故答案为:1,2⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查构造函数法利用导函数判断函数单调性,考查利用函数单调性比较大小,考查函数的奇偶性的应用.20.49【分析】求出函数的导数根据函数的单调性得到关于的不等式组根据两点间的距离公式求出其最小值即可【详解】若在上递增则故满足条件的平面区域如图示:的几何意义表示和阴影部分的点的距离故到阴影部分的最小值解析:49 【分析】求出函数的导数,根据函数的单调性得到关于m ,n 的不等式组,根据两点间的距离公式求出其最小值即可. 【详解】21()(1)2f x x mx n '=-++-,若()f x 在[0,1]上递增, 则(0)10f n '=-,()11102m n f =-++-', 故满足条件001102m n n m n ⎧⎪⎪⎪⎨⎪⎪-+⎪⎩的平面区域如图示:22(6)(8)m n -+-的几何意义表示(6,8)和阴影部分的点的距离,故(6,8)到阴影部分的最小值是自(6,8)向1n =作垂线, 故垂线段是7,故22(6)(8)m n -+-的最小值是49, 故答案为:49. 【点睛】本题考查了函数的单调性问题,考查导数的应用以及简单的线性规划问题,考查了数学运算能力和数形结合思想.三、解答题21.(1)答案见解析;(2)22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)先对函数求导,然后分0a >和0a <两种情况,解不等式()0f x '<,()0f x '>,可求出函数的单调区间;(2)函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,然后分0a >和0a <两种情况讨论即可得答案 【详解】(1)()(1)xf x ae x '=-,若0a >,由()0f x '<,得1x <;由()0f x '>,得1,()x f x >∴的递减区间为(,1)-∞,递增区间为(1,)+∞.若0a <,由()0f x '<,得1x >;由()0f x '>,得1,()x f x <∴的递减区间为(1,)+∞,递增区间为(,1)-∞.(2)22()()2(2)2x g x f x x x ae x x x =+-=-+-,()()(1)22(1)2x x g x ae x x x ae '=-+-=-+.2()(2)2x g x ae x x x ∴=-+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,当1x =时,1(1)20h ae =+≠,即2a e≠-. ∴①当0a >时,()20x h x ae =+>,此时无零点; ②当0a <且2a e≠-时,2()0,()h x ae h x '=<∴为减函数. 又2ln 2ln 20a h ae a ⎛⎫- ⎪⎝⎭⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭,∴总存在唯一实数2ln a ⎛⎫- ⎪⎝⎭,使()0h x =.综上,()g x 有两个极值点实数a 的取值范围22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间,考查导数与极值,第2问解题的关键是将函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,从而分情况讨论即可,考查数学转化思想,属于中档题 22.(1)()()2102V f x x x ==-⋅,()0,5x ∈;(2)小正方形的边长为53cm 时,作品的体积最大,最大体积是200027cm 3. 【分析】(1)根据长方体的体积公式可得答案; (2)利用导数求()f x 单调区间及极值可得答案. 【详解】(1)由题意可得()()2102V f x x x ==-⋅,()0,5x ∈.(2)()()()()24320254355f x x x x x '=-+=--,令()0f x '=得53x =,5x =,∴53x =时,()f x 的最大值为52000327f ⎛⎫= ⎪⎝⎭, 截去的小正方形的边长为53cm 时,作品的体积最大,最大体积是()3200027cm . 【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.23.(1)220x y --=;(2)函数()f x 的单调增区间为,3⎛⎫-∞- ⎪ ⎪⎝⎭,⎫∞⎪⎪⎝⎭,单调减区间为33⎛⎫- ⎪ ⎪⎝⎭.【分析】(1)求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)解方程()0f x '=,列表分析()f x '的符号变化,由此可得出函数()f x 的单调递增区间和递减区间. 【详解】(1)由()3f x x x =-,得()231f x x '=-,所以()12f '=,又()10f =,所以曲线()y f x =在点()()1,1f 处的切线方程为:()21y x =-,即220x y --=.(2)令()2310f x x '=-=,得3x =±,x 、()f x '、()f x 在R 上的情况如下:所以函数()f x 的单调增区间为,⎛-∞ ⎝⎭,⎫∞⎪⎪⎝⎭,单调减区间为⎛ ⎝⎭. 【点睛】方法点睛:利用导数求解函数单调区间的基本步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间;解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间. 24.(1;(2)7(1,)3. 【分析】(1)可得与l 平行且与()y f x =相切的切线的切点到直线距离最短,求出切点即可得出;(2)求出()g x 的导数,题目等价于2(1)10x a x -++=在()0,3上有两个不同的根,则列出式子即可求出. 【详解】解:(1)设曲线()y f x =上的点()00,A x y 到直线l 的距离最短,则在点A 的切线与l 平行,001()1f x x ='=,∴01x =,求得01y =, ∴在点A 的切线方程为y x =, ∴点A 到直线l= (2)由题意得21()(1)ln 1(03)2g x x a x x x =-+++<<, ∴21(1)1()(1)x a x g x x a x x-++'=-++=,∵曲线()y g x =上存在两个不同的点,使得在这两点处的切线都与x 轴平行, ∴关于x 的方程()0g x '=,即2(1)10x a x -++=在()0,3上有两个不同的根, 设2()(1)1h x x a x =-++,则()()()()21400101032393110a h a h a ⎧∆=+->⎪=>⎪⎪⎨+<<⎪⎪=-++>⎪⎩,解得713<<a , ∴实数a 的取值范围是7(1,)3. 【点睛】本题考查利用导数解决方程的根的问题,解题的关键是将题目等价为2(1)10x a x -++=在()0,3上有两个不同的根.25.(1)函数()xf x e x =-的单调递增区间为()0,∞+;单调递减区间为(),0-∞;(2)2,4e ⎛⎤-∞ ⎥⎝⎦. 【分析】 (1)当12a =时,()xf x e x =-,利用导数可求得函数()f x 的单调递增区间和递减区间;(2)由参变量分离法得出min2x e a x ⎛⎫≤ ⎪⎝⎭,利用导数求出函数()xe g x x =在区间[]2,3上的最小值,由此可得出实数a 的取值范围. 【详解】 (1)当12a =时,()x f x e x =-,()1xf x e '=-, 令()0f x '=,得0x =.令()0f x '>,得0x >:令()0f x '<,得0x <.所以函数()xf x e x =-的单调递增区间为()0,∞+,单调递减区间为(),0-∞;(2)()202xxe f x e ax a x =-≥⇔≤对任意的[]2,3x ∈恒成立,即min2x e a x ⎛⎫≤ ⎪⎝⎭,设()xe g x x =﹐则()()21x e x g x x-'=,显然当[]2,3x ∈时()0g x '>恒成立. ()g x ∴在[]2,3单调递增,()n2mi ()22g x g e ∴==,22224e e a a ∴≤⇒≤,所以2,4 e a ⎛⎤∈-∞ ⎥⎝⎦. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥. 26.(1)证明见解析;(2)证明见解析. 【分析】(1)求导根据导数()0f x '>,()0f x '<求出最小值()10f =进而有()0f x ≥成立 (2)有(1)得ln 1≤-x x ,令112nx =+得11ln 122n n ⎛⎫+< ⎪⎝⎭,不等式通项可加性相加,根据等比数列求和化简即可证明. 【详解】解:(1)由题意得()111x f x x x-'=-= 当1x >时()0f x '>,()f x 单调增 当01x <<时()0f x '<,()f x 单调减 所以()f x 的最小值为()10f =, 所以()()01x f f ≥=即()0f x ≥成立 (2)由(1)知ln 1≤-x x 令112nx =+得11ln 122n n ⎛⎫+< ⎪⎝⎭ 所以2212111111ln 1ln 1ln 1222222n ⎛⎫⎛⎫⎛⎫+++++<++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111221111212nn ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎝⎭==-< ⎪⎝⎭-即22111ln 1111ln 222e ⎛⎫⎛⎫⎛⎫⎛⎫+⋅++<= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭【点睛】已知不等式证明问题常用的方法: (1)证明()min f x a ≥或()max f x a ≤;(3)构造两个函数()()f x g x <,证明()min max ()f x g x <。

北师大版高中数学选修1-1第四章+导数应用+本章练测.docx

北师大版高中数学选修1-1第四章+导数应用+本章练测.docx

高中数学学习材料唐玲出品第四章 导数应用(北师大版选修1-1)建议用时 实际用时满分 实际得分120分钟一、选择题(每小题6分)1. 下列说法正确的是 ( )A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值 2.函数()323922y x x x x =---<<有( )A .极大值5,极小值-27B .极大值5,极小值11C .极大值5,无极小值D .极小值-27,无极大值 3.函数xx y 142+=的单调递增区间是( ) A .),0(+∞ B .)1,(-∞C .),21(+∞ D .),1(+∞4.函数xxy ln =的最大值为( ) A.1e -B.eC.2eD.3105.函数在区间[0,3]上的最大值与最小值分别是( ) A.5,-15 B.5,-4 C.-4,-15 D.5,-166.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内的极小值点有( )A.1个B.2个C.3个D.4个7.已知函数f(x)=12x 3-x 2-72x ,则f(-a 2)与f(-1)的大小关系为( )A .f(-a 2)f(-1)B .f(-a 2)f(-1)C .f(-a 2)f(-1)D .f(-a 2)与f(-1)的大小关系不确定 8.函数的极值情况是( )A .有极大值2,极小值-2B .有极大值1,极小值-1C .无极大值,但有极小值-2D .有极大值2,无极小值二、填空题(本题共4小题,每小题5分,共16分)9.已知函数既存在极大值又存在极小值,则实数的取值范围是 . 10.函数xx x f -⋅=e)(的单调递增区间是 .11.函数的极值点为 .12.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,则该长方体的长、宽、高各为 时,其体积最大. 13.函数y =x +2cos x 在[0,]上取得最大值时,x 的值为三、解答题(共76分)14.(15分)一艘轮船在航行中每小时的燃料费和它的速度的立方成正比,已知在速度为每小时10千米时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每千米的费用总和最小?15.(14分)已知c bx ax x f ++=24)( 的图象经过点(0,1),且在1x =处的切线方程是2y x =-.(1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间.16.(14分)已知函数c bx x ax x f -+=44ln )((x >0)在x = 1处取得极值-3-c ,其中c b a ,,为常数.(1)试确定b a ,的值(2)讨论函数)(x f 的单调区间;(3)若对任意x >0,不等式22)(c x f -≥恒成立,求c 的取值范围.17.(16分)已知函数2()ln (0).f x x ax x a =-->(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为-2,求a 的值以及切线方程; (2)若()f x 是单调函数,求a 的取值范围.18.(16分)已知函数f (x )=a ln x ++1.(1)当a =-时,求f (x )在区间[,e]上的最值; (2)讨论函数f (x )的单调性.19.(16分)已知函数()2a f x x x=+,()ln g x x x =+,其中0a >.(1)若1x =是函数()()()hx f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1e x x ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围一、 选择题1.D 解析:函数的极值与最值没有必然联系. 2.C 解析:令'23690,1yx x x =--==-得,或3当时,不满足题意,故舍去.当x 在(-2,2)上变化时,的变化情况如下表:x(-2,-1)-1(-1,2)+-y5由上表可知,函数y 有极大值5,无极小值.3.C 解析:令3'322181180,810,.2x y x x x x x -=-=>->>即得 4.A 解析:令'''22(ln )ln 1ln 0, e.x x x x xy x x x -⋅-====得当x 变化时,随x 的变化情况如下表:x(0,e)e(e ,+∞)+ 0-y由上表可知,函数y 在x=e 时取得最大值,最大值. 5.A 解析:由, 得. 令,得当变化时,,f(x)的变化情况如下表:(0,2)2(2,3)3- 0 +f(x) 5 -15-4所以函数的最大值与最小值分别是5,-15.6.A 解析:若处取得极小值点,则,在的左侧,在的右侧.据此可知,f(x)在开区间(a,b)内的极小值点有1个.7.A 解析:由题意可得.由=12(3x -7)(x +1)=0,得x =-1或x =73.当时,为增函数; 当时,为减函数; 当x>时,为增函数.所以f(-1)是函数f(x)在(-∞,0]上的最大值.又因为-a 2≤0,故f(-a 2)≤ f(-1). 8.A 解析:函数的定义域为,因为,所以 解得.当或时,;当或时,<0,所以当时函数有极大值;当时函数有极小值2.故选A . 二、填空题9. 解析:因为函数f(x)=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,所以方程有两个不同的实数根. 由得m 的取值范围为.10. 解析:∵ ()e exx x f x x -=⋅=∴,21e e ()e x xx x f x ⋅-⋅'=()0,1x >∴<. ∴ 函数xx x f -⋅=e)(的单调递增区间是.11. 解析:函数的定义域为(0,+∞),.令,得.当时,,当时,,所以当时函数取得极大值,为函数的极大值点.12.2 cm,1 cm, cm 解析:设长方体的宽为x cm ,则长为2x cm ,高为181293(3)(c m)0422xh x x -==-⎛⎫ ⎪⎝⎭<<. 故长方体的体积为223393()2(3)(96(c m )(0).22V x x x x x x =-=-)<<从而).1(181818)(2x x x x x V -=-='令0)(='x V ,解得x =0(舍去)或x =1,因此x =1. 当0<x <1时,0)(>'x V ;当1<x <32时,0)(<'x V , 故在x =1处()V x 取得极大值,并且这个极大值就是()V x 的最大值. 从而体积最大时长方体的长为2 cm ,宽为1 cm ,高为32cm. 13.f( 解析:y ′=1-2sin x ,令1-2sin x =0,得sin x =.∵ x ∈[0,],∴ x =.当x ∈[0,)时,y ′>0;当x ∈[,]时,y ′≤0,∴ f ().二、解答题14.解:设轮船速度为x 千米/时(x >0),每小时的燃料费用为Q 元,则Q=kx 3.由6=k ×103可得,所以,∴ 轮船行驶中每千米的费用总和, .令y ′=0得x=20.当x ∈(0,20)时,y ′<0,此时函数单调递减; 当x ∈(20,+∞)时,y ′>0,此时函数单调递增. ∴ 当x=20时,y 取得最小值.因此当轮船以20千米/时的速度航行时,能使行驶每千米的费用总和最小,为元.15.解:(1)因为c bx ax x f ++=24)(的图象经过点(0,1),所以1c =. ①'3'()42,(1)421f x ax bx k f a b =+==+=. ②由题意得切点为(1,1)-,则c bx ax x f ++=24)(的图象经过点(1,1)-,得. ③ 联立①②③得 所以(2)令得 当x 变化时, x-+-+由上表可知,函数的单调递增区间为16.解:(1)由题意知(1)3f c =--,因此3b c c -=--,从而3b =-.又对()f x 求导得3431()4ln 4f x ax x ax bx x'=+⨯+3(4ln 4)x a x a b =++. 由题意(1)0f '=,因此40a b +=,解得12a =.(2)由(1)知3()48ln f x x x '=(0x >),令()0f x '=,解得1x =. 当01x <<时,()0f x '<,此时()f x 为减函数;当1x >时,()0f x '>,此时()f x 为增函数.因此()f x 的单调递减区间为(01),,而()f x 的单调递增区间为(1)+,∞.(3)由(2)知,()f x 在1x =处取得极小值(1)3f c =--,此极小值也是最小值, 要使2()2f x c -≥(0x >)恒成立,只需232c c ---≥.即2230c c --≥,从而(23)(1)0c c -+≥,解得32c ≥或1c -≤. 所以c 的取值范围为3(1]2⎡⎫-∞-+∞⎪⎢⎣⎭,,. 17.解:(1)由题设,f '(1)=-2a =-2,所以a =1,此时f(1)=0,切线方程为y =-2(x -1),即2x +y -2=0. (2),令=1-8a . 当a ≥18时,≤0,f '(x)≤0,f(x)在(0,+∞)上单调递减. 当0<a <18时,>0,方程+1=0有两个不相等的正根, 不妨设,则当时,f '(x)<0,当时,f '(x)>0, 这时f(x)不是单调函数.综上,a 的取值范围是[18,+). 18.解:(1)当a =-时,f (x )=-ln x ++1,∴ f ′(x )=+=.∵ f (x )的定义域为(0,+∞),∴ 由f ′(x )=0,得x =1.∴ f (x )在区间[,e]上的最值只可能在f (1), f (),f (e)取到,而f (1)=,f ()=+,f (e)=+, ∴ =f (e)=+,=f (1)=. (2)f ′(x )=,x ∈(0,+∞).①当a +1≤0,即a ≤-1时,f ′(x )<0,∴ f (x )在(0,+∞)上单调递减; ②当a ≥0时,f ′(x )>0,∴ f (x )在(0,+∞)上单调递增; ③当-1<a <0时,由f ′(x )>0,得>,∴ x >或x <-(舍去), ∴ f (x )在(,+∞)上单调递增,在(0,)上单调递减. 综上,当a ≥0时,f (x )在(0,+∞)上单调递增;当-1<a <0时,f (x )在(,+∞)上单调递增,在(0,)上单调递减; 当a ≤-1时,f (x )在(0,+∞)上单调递减.19.解:(1)方法1:∵ ()22ln a h x x x x =++,其定义域为()0 +∞,,∴ ()2212a h x x x'=-+. ∵1x =是函数()hx 的极值点,∴ ()10h '=,即230a -=.∵ 0a >,∴ 3a =.经检验当3a =时,1x =是函数()h x 的极值点,∴ 3a =.方法2:∵ ()22ln a h x x x x =++,其定义域为()0+∞,,∴ ()2212a h x x x '=-+. 令()0h x '=,即22120a x x-+=,整理,得2220x x a +-=.∵ △2180a =+>,∴ ()0h x '=的两个实根为211184a x --+=(舍去),221184a x -++=, 当x 变化时,()hx ,()h x '的变化情况如下表:x()20,x2x()2,x +∞()h x '-+()h x 单调递减 极小值 单调递增依题意,211814a -++=,即23a =,∵ 0a >,∴ 3a =.(2)对任意的[]12,1e x x ∈,都有()1f x ≥()2g x 成立等价于对任意的[]12,1e x x ∈,都有()min f x ⎡⎤⎣⎦≥()max g x ⎡⎤⎣⎦. 当x ∈[1,e ]时,()110g x x'=+>.∴ 函数()ln g x x x =+在[]1e ,上是增函数.∴ ()()maxe e 1g x g ==+⎡⎤⎣⎦.∵ ()()()2221x a x a a f x x x +-'=-=,且[]1,e x ∈,0a >.① 01a <<且x ∈[1,e ]时,()()()20x a x a f x x +-'=>,∴ 函数()2a f x x x=+在[1,e ]上是增函数,∴ ()()2min 11f x f a ==+⎡⎤⎣⎦.由21a +≥e 1+,得a ≥e .又01a <<,∴a 不合题意. ②当1≤a ≤e 时, 若1≤x <a ,则()()()20x a x a f x x +-'=<,若a <x ≤e ,则()()()20x a x a f x x +-'=>.∴ 函数()2a f x x x=+在[)1,a 上是减函数,在(]e a ,上是增函数.∴ ()()min 2f x f a a ==⎡⎤⎣⎦. 由2a ≥e 1+,得a ≥e 12+.又1≤a ≤e ,∴e 12+≤a ≤e .③当e a >且x ∈[1,e ]时,()()()20x a x a f x x +-'=<,∴ 函数()2a f x x x =+在[]1e ,上是减函数.∴ ()()2min e e e a f x f ==+⎡⎤⎣⎦.由2e ea +≥e 1+,得a ≥e ,又e a >,∴ e a >.综上所述,a 的取值范围为e 1,2+⎡⎫+∞⎪⎢⎣⎭。

北师大版高中数学选修1-1第四章《导数应用》测试题(有答案解析)

北师大版高中数学选修1-1第四章《导数应用》测试题(有答案解析)

一、选择题1.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定2.已知函数2()sin f x x x x =+,,22x ππ⎛⎫∈- ⎪⎝⎭,则下列式子成立的是( ) A .13(1)22f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭ B .13(1)22f f f ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭C .13(1)22f f f ⎛⎫⎛⎫<<- ⎪ ⎪⎝⎭⎝⎭D .31(1)22f f f ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭3.已知函数()2()x xf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<4.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π5.已知函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围为( ) A .34a ≤-B .1a ≤-C .1a ≤D .01a ≤≤6.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点7.已知函数()f x (x ∈R )满足()34f =,且()f x 的导函数()1f x '<,则不等式()221f x x -<的解集为( )A .()2,2-B .()(),22,-∞-+∞C .(3,3D .((),33,-∞-+∞8.已知函数2()f x x m =+与函数1()ln3g x x x =--,1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A .5ln )4[2,2+ B .5[2ln 2,ln 2)4-+ C .5(ln 2,2ln 2)4+-D .(]2ln2,2-9.函数()2xf x ae x =+在R 上有两个零点1x ,2x ,且212x x ≥,则实数a 的最小值为( ) A .ln 22-B .ln 2-C .2e-D .ln 210.若函数()xx f x ax e e -=+-在R 上单调递减,则实数a 的取值范围为( )A .2a ≤B .1a ≤C .1a ≥D .2a ≥11.已知函数()2x f x =,2()g x x ax =+(其中a R ∈).对于不相等的实数12,x x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-.现有如下命题:(1)对于任意不相等的实数12,x x ,都有0m >;(2)对于任意的a 及任意不相等的实数12,x x ,都有0n >;(3)对于任意的a ,存在不相等的实数12,x x ,使得m n =;(4)对于任意的a ,存在不相等的实数12,x x ,使得m n =-.其中真命题的个数有( ) A .3个B .2个C .1个D .0个12.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2xf x e ->的解集是( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0-∞二、填空题13.函数()()ln 2x f x x=,关于x 的不等式()0f x k ->只有两个整数解,则实数k 的取值范围是_________14.已知函数2()ln 3m f x x x x x=+-+.若函数()f x 在[1,2]上单调递减,则实数m 的最小值为________.15.定义在R 上的函数()f x 满足:()()22f x f x x -+=,且当0x ≤时,()2f x x '<,则不等式()()25510f x x x f +-+≥的解集为______.16.已知函数,0()(1),0x lnx x f x e x x >⎧=⎨+⎩,若函数()()()F x f x c c R =-∈恰有3个零点,则实数c 的取值范围是________.17.如图,两条距离为4的直线都与y 轴平行,它们与抛物线()22014y px p =-<<和圆()2249x y -+=分别交于A ,B 和C ,D ,且抛物线的准线与圆相切,则22AB CD ⋅的最大值为______.18.已知三次函数()y f x =的图象如图所示,则函数()f x 的解析式是_______.19.已知函数()()()2ln f x x x x x a a R =+-∈,若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使得()()f x xf x '>成立,则实数a 的取值范围是______________. 20.过点(2,0)且与曲线y =1x相切的直线的方程为________ 三、解答题21.已知函数32()392f x x x x =-++-.(1)求函数()y f x =的图象在点()()1,1f 处的切线方程; (2)求()f x 的单调区间.22.已知函数()()331f x x ax a R =--∈.(1)当1a =时,求函数()f x 的极大值; (2)讨论函数()f x 的单调性. 23.已知函数()2ln f x x a x =+.(1)当2a =-时,求函数()f x 在点()()11f ,处的切线方程; (2)若()()2g x f x x=+在[1,+)∞上是单调增函数,求实数a 的取值范围. 24.已知函数()1ln =--f x x x . (1)证明:()f x 存在唯一的零点; (2)当0x >时,证明:ln x e x x >>.25.已知函数21()ln (1)12f x a x x a x =+-++. (I )当0a =时,求曲线()y f x =在点(2,(2))f 处的切线方程; (Ⅱ)若函数()f x 在1x =处取得极小值,求实数a 的取值范围. 26.设函数2()cos ,()sin a f x x x g x x=+=. (1)当[0,]x π∈时,判断()f x 的单调性; (2)若当,62x ππ⎡⎤∈⎢⎥⎣⎦时,不等式()()0f x g x -恒成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增,()f x 的最小值是()1f 1=,故1a =, ()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x x x g x x e xe x x+=+--=-', 令()1x h x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->,故存在0(0,1)x ∈使得()0h x =即001xx e =,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.2.B解析:B 【分析】由奇偶性的定义得到函数()f x 为偶函数,求导数得到函数()f x 在(0,)2π上为增函数,则函数在(,0)2π-上为减函数.结合单调性和奇偶性即可判断出答案.【详解】函数2()sin f x x x x =+, 22x ππ⎛⎫∈- ⎪⎝⎭,,定义域关于原点对称,且()()()()()22sin sin f x x x x x x x f x -=-+--=+=.所以函数()f x 为偶函数,所以()()11f f -= 又当0,2x π⎛⎫∈ ⎪⎝⎭时,()2sin cos 0f x x x x x '=++>. ()f x ∴在0,2π⎛⎫ ⎪⎝⎭上为增函数,则()f x 在,02π⎛⎫- ⎪⎝⎭上为减函数.13π1222<<<,所以()13122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 则()13122f f f ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】关键点睛:本题考查利用函数的奇偶性和单调性比较函数值大小,解答本题的关键是先得出函数为偶函数,再由0,2x π⎛⎫∈ ⎪⎝⎭时,()2sin cos 0f x x x x x '=++>利用单数判断出单调性,属于中档题.3.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx x x f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符; 如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A 【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.4.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r =代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=,底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+,322324324r S r r rππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S rππ-'=<可得02r <<, 所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.5.B解析:B 【分析】 由函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,知'0y ≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,分离参数,求最值得答案. 【详解】 因为函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增, 所以22'20a x x ay x x x --=--=≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以222(1)1a x x x ≤-=--在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立, 所以1a ≤-, 故选:B. 【点睛】方法点睛:该题考查的是有关根据函数在给定区间上单调增求你参数的取值范围的问题,解题方法如下:(1)利用函数在给定区间上单调递增,得到其导数大于等于零在给定区间上恒成立; (2)求导;(3)分离参数,求最小值,得结果.6.C解析:C 【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误. 【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确; 对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误.故选:C. 【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.7.B解析:B 【分析】构造函数()()g x f x x =-,求导后可证得()g x 在R 上单调递减,将原不等式可转化为()()()221133f x x f ---<-,即()()213g x g -<,再利用函数单调性的定义求解.【详解】令()()g x f x x =-,则()()10g x f x ''=-<, 所以()g x 在R 上单调递减.因为不等式()221f x x -<可等价于()()()221133f x x f ---<-,即()()213g x g -<,所以213x ->, 解得2x >或2x <-, 故选:B. 【点睛】本题主要考查函数的单调性与导数以及利用函数的单调性解不等式,还考查了运算求解的能力,属于中档题.8.A解析:A 【分析】将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,令()()()h x f x g x =+,将问题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定区间端点值和最值,由此构造不等式求得结果. 【详解】()f x 与()g x 在1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,()()f x g x ∴=-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,即221ln3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤⎢⎥⎣⎦上恰有两个不同的解, 令()2ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x---+'=+-==, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当()1,2x ∈时,()0h x '>,()h x ∴在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,又15ln 224h m ⎛⎫=--+ ⎪⎝⎭,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22⎡⎤⎢⎥⎣⎦上恰有两个零点,则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢⎣⎭.故选:A . 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.9.B解析:B 【分析】函数()2xf x ae x =+,变形为2x x a e =-,令()2xxg x e =-,利用导数求函数的最值,可得20a e-<<,结合212x x ≥,可得212x x =时,a 取得最小值,再把1x ,2x 代入20x ae x +=,求解1x ,再代入112xae x =-,即可求得a 的最小值【详解】函数()2xf x ae x =+,变形为2x x a e =-,令()2x x g x e =-,得()()21x x g x e-'=, 当(),1x ∈-∞时,0g x ,当()1,∈+∞x 时,0g x ,可得1x =时,函数()g x 取得最小值2e-. 又当x →-∞时,()g x →+∞,当x →+∞时,()0g x <, 且函数()2xf x ae x =+在R 上有两个零点1x ,2x ,得20a e-<<. 由212x x ≥,可得212x x =时,a 取得最小值. 由112xae x =-,222x aex =-,得1214x ae x =-,∴12x e =,解得1ln 2x =.代入112x ae x =-,解得ln 2a =-.∴a 的最小值为ln 2-. 故选:B. 【点睛】此题考查利用导数研究函数的单调性与最值,考查化归与转化的数学思想,考查计算能力,属于中档题10.A解析:A 【分析】 由()xx f x ax e e -=+-在R 上单调递减,可得:导函数()0x x f x a e e -'=--≤在R 上恒成立,参变分离后,求最值即可的解.【详解】 由()xx f x ax ee -=+-在R 上单调递减,可得:导函数()0x x f x a e e -'=--≤在R 上恒成立, 因为0x e >,参变分离可得:min (+)xxa e e -≤,+2x x e e -≥= 2a ≤故选:A 【点睛】本题考查了利用函数单调性求参数范围,考查了恒成立思想和基本不等式的应用,属于中档题.11.B解析:B 【分析】运用指数函数的单调性,即可判断(1);由二次函数的单调性,即可判断(2); 通过函数2()2x h x x ax =+-,求出导数判断单调性,即可判断(3); 通过函数2()2x h x x ax =++,求出导数判断单调性,即可判断(4). 【详解】解:对于(1),由于21>,由指数函数的单调性可得()f x 在R 上递增,即有0m >,则(1)正确;对于(2),由二次函数的单调性可得()g x 在(,)2a -∞-递减,在(2a-,)+∞递增,则0n >不恒成立,则(2)错误;对于(3),由m n =,可得1212()()()()f x f x g x g x -=-,即为1122()()()()g x f x g x f x -=-,考查函数2()2x h x x ax =+-,()222x h x x a ln '=+-, 当a →-∞,()h x '小于0,()h x 单调递减,则(3)错误;对于(4),由m n =-,可得1212()()[()()]f x f x g x g x -=--,考查函数2()2x h x x ax =++,()222x h x x a ln '=++,对于任意的a ,()h x '不恒大于0或小于0,则(4)正确. 故选:B . 【点睛】本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键,属于中档题.12.D解析:D 【分析】构造新函数2()()x g x e f x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解. 【详解】令2()()x g x e f x =,则2()[2()()]x g x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D . 【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.二、填空题13.【分析】利用导数分析函数的单调性与极值数形结合可得出实数的取值范围【详解】函数的定义域为令可得列表如下:极大值所以函数的极大值为且如下图所示:要使得关于的不等式只有两个解析:ln6,ln2 3⎡⎫⎪⎢⎣⎭【分析】利用导数分析函数()f x的单调性与极值,数形结合可得出实数k的取值范围.【详解】函数()()ln2xf xx=的定义域为()0,∞+,()()21ln2xf xx-'=,令()0f x'=,可得2ex=,列表如下:x0,2e⎛⎫⎪⎝⎭2e,2e⎛⎫+∞⎪⎝⎭()f x'+0-()f x极大值所以,函数()f x的极大值为22fe e⎛⎫==⎪⎝⎭,()1,22e∈,且()()12ln2f f==,()ln633f=,如下图所示:要使得关于x的不等式()0f x k->只有两个整数解,则ln6ln23k≤<.因此,实数k的取值范围是ln6,ln23⎡⎫⎪⎢⎣⎭.故答案为:ln 6,ln 23⎡⎫⎪⎢⎣⎭. 【点睛】关键点点睛:本题考查利用不等式的整数解的个数求参数的取值范围,解题的关键在于利用导数分析函数的单调性与极值,然后在同一直角坐标系中画出函数的图象,利用数形结合的方法求解.14.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数解析:6 【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值. 【详解】21()23mf x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+, 令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥ 当[1,2]x ∈时,()2661g x x x '=-+单调增,()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6 【点睛】关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.15.【分析】令问题转化为根据函数的单调性求出不等式的解集即可【详解】因为所以令则所以为奇函数又因为当时所以在上单调递减即在上单调递减而不等式所以所以故答案为:【点睛】构造辅助函数是高中数学中一种常用的方解析:5,2⎛⎤-∞ ⎥⎝⎦【分析】令()()2g x f x x =-,问题转化为()()5g x x g -≥,根据函数的单调性求出不等式的解集即可. 【详解】因为()()22f x f x x -+=,所以()()()220f x x f x x ---+-=,令()()2g x f x x =-,则()()0g x g x -+=,所以()g x 为奇函数.又因为当0x ≤时,()()20g x f x x ''=-<, 所以()g x 在(],0-∞上单调递减, 即()g x 在R 上单调递减.而不等式()()()()()()()2225510555f x f x x f x x f x x g x g x +≥-+⇔-≥---⇔≥-,所以5x x ≤-,所以52x ≤. 故答案为:5,2⎛⎤-∞ ⎥⎝⎦ 【点睛】构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.16.【分析】利用导数判断出函数的单调区间作出函数的图象数形结合即可得解;【详解】解:当时函数单调递增;当时则时且时时故当时在上单调递减在上单调递增在处取极小值极小值为;作出函数的图象如图:函数恰有3个零解析:()2,0e --【分析】利用导数判断出函数()f x 的单调区间,作出函数()f x 的图象,数形结合即可得解; 【详解】解:当0x >时,函数()f x lnx =单调递增;当0x 时,()(1)x f x e x =+,则()(2)0x f x e x '=+=时,2x =-,且2x <-时,()0f x '<,20x -<时,()0f x '>,故当0x 时,()f x 在(,2)-∞-上单调递减,在(2,0)-上单调递增,()f x 在2x =-处取极小值,极小值为2(2)f e --=-; 作出函数()f x 的图象如图:函数()()()F x f x c c R =-∈恰有3个零点,等价于函数()f x 与y c =的图象有且仅有3个零点,由图可知,20e c --<<,故答案为:()2,0e --.【点睛】本题考查函数零点与方程根的关系,涉及利用导数判断函数单调性,数形结合思想等,属于中档题.17.【分析】先设直线的方程为再利用直线与圆锥曲线的位置关系将用表示再利用导数求函数的最值即可得解【详解】解:由抛物线的准线与圆相切得或7又∴设直线的方程为则直线的方程为则设令得;令得即函数在为增函数在为 解析:3843【分析】先设直线AB 的方程为()03x t t =-<<,再利用直线与圆锥曲线的位置关系将AB CD ⋅用t 表示,再利用导数求函数的最值即可得解. 【详解】解:由抛物线的准线与圆相切得12p=或7,又014p <<,∴2p =. 设直线AB 的方程为()03x t t =-<<,则直线CD 的方程为4x t =-, 则())2224298903AB CD t t t t t ⋅=-=-<<.设()()()2903f t t tt =-<<,()2'93f t t=-,令()'0f t >,得03t <<()'0f t <33t <<.即函数()f t 在(3为增函数,在)3,3为减函数,故()max363f t f ==22AB CD ⋅的最大值为28633843⨯=故答案为:3843 【点睛】本题考查了利用导数求函数的最值,重点考查了运算能力,属中档题.18.【分析】待定系数法:设利用图象上点坐标代入与联立求解可得【详解】设由题知:由图象知解得故答案为:【点睛】求函数解析式的四种方法:配凑法换元法待定系数法解方程组法解题时根据具体条件对应方法求解析式 解析:32()232f x x x【分析】待定系数法:设32()f x ax bx cx d =+++,利用图象上点坐标代入,与(0)(1)=0f f ''= 联立求解可得. 【详解】设32()f x ax bx cx d =+++,2()32f x ax bx c '=++ 由题知:(0)2(1)1f f ,== ,由图象知(0)(1)=0f f ''=2++103+20d a b c d c a b c =⎧⎪+=⎪∴⎨=⎪⎪+=⎩ 解得2302a b c d =⎧⎪=-⎪⎨=⎪⎪=⎩32()232f x x x故答案为:32()232f x x x【点睛】求函数解析式的四种方法:配凑法、换元法、待定系数法、解方程组法,解题时根据具体条件对应方法求解析式.19.【分析】求得导函数后代入不等式则可将不等式化为根据能成立的思想可得利用基本不等式可求得最小值进而得到结果【详解】即为整理得到即使得成立(当且仅当即时取等号)即实数的取值范围为故答案为:【点睛】本题考解析:)+∞【分析】求得导函数后,代入不等式则可将不等式化为12a x x>+,根据能成立的思想可得min 12a x x ⎛⎫>+ ⎪⎝⎭,利用基本不等式可求得最小值,进而得到结果.【详解】()()()2ln 12f x x x a x x a '=++-+-,()()f x xf x '∴>即为()()()222ln ln 2x x x x a x x x x x a x x a +->++-+-,整理得到22210x ax -+<,即1,22x ⎡⎤∃∈⎢⎥⎣⎦,使得221122x a x x x +>=+成立,12x x +≥=12x x =,即x =时取等号),a ∴>, 即实数a 的取值范围为)+∞.故答案为:)+∞.【点睛】本题考查利用导数解决能成立的问题,关键是能够通过分离变量的方式将问题转化为变量和函数最值之间大小关系的比较问题,进而通过求解函数最值得到结果.20.【解析】试题分析:设切点为所以切点为由点可知直线方程为考点:1直线方程;2导数的几何意义解析:20x y +-=. 【解析】试题分析:设切点为()0000220000111,2y x y y y x x x x -∴==-'∴-=-,所以切点为()1,1,由点()2,0可知直线方程为20x y +-= 考点:1.直线方程;2.导数的几何意义三、解答题21.(1)1230x y --=;(2)单调递减区间为(,1)-∞-和(3,)+∞,单调递增区间为()1,3-.【分析】(1)求出导函数()'f x ,然后计算导数得斜率,从而得切线方程; (2)由()0f x '>得增区间,()0f x '<得减区间. 【详解】解:(1)∵32()392f x x x x =-++-, ∴2()369f x x x '=-++, ∴()112f '=. 又∵()19f =,∴函数()y f x =的图象在点()()1,1f 处的切线方程为912(1)y x -=-, 即1230x y --=.(2)由(1),得2()3693(1)(3)f x x x x x '=-++=-+-,令()0f x '=,解得1x =-或3x =; 当()0f x '<时,1x <-或3x >; 当()0f x '>时,13x .∴()f x 的单调递减区间为(,1)-∞-和(3,)+∞,单调递增区间为()1,3-. 【点睛】关键点点睛:本题考查导数的几何意义,考查求函数的单调区间.解题方法是求出导函数()'f x ,计算0()f x '得切线斜率,由点斜式写出切线方程并整理成一般式.而求单调区间只要解不等式()0f x '>即得增区间,解不等式()0f x '<即得减区间. 22.(1)极大值为1;(2)答案见解析. 【分析】(1)利用导数分析函数()f x 的单调性,由此可求得函数()f x 的极大值;(2)求得()233f x x a '=-,分0a ≤、0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调区间. 【详解】(1)当1a =时,()331f x x x =--,该函数的定义域为R ,且233fxx ,令()0f x '>,得1x <-或1x >;令()0f x '<,得11x -<<,()f x ∴在(),1-∞-,()1,+∞上递增,在()1,1-上递减,故()f x 的极大值为()11f -=;(2)()()22333f x x a x a '=-=-.①当0a ≤时,()0f x '≥在R 上恒成立,()f x ∴在R 上单调递增;②当0a >时,令()0f x '>,得x <x >令()0f x '<,得x <<所以,函数()f x 在(,-∞,)+∞上单调递增,在(上单调递减.【点睛】方法点睛:利用导数求解函数单调区间的基本步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间;解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间. 23.(1)1y =;(2)0a ≥. 【分析】(1)利用导数的几何意义可求得结果; (2)转化为()0g x '≥,即222a x x≥-在[1,+)∞上恒成立,再构造函数求出最大值即可得解. 【详解】(1)当2a =-时,()22f x x lnx =-,定义域为(0,)+∞,2222()2x f x x xx -'=-=,所以函数()f x 在点()()11f ,处的切线的斜率为2212(1)01f ⨯-'==,又(1)1201f =-⨯=,所以函数()f x 在点()()11f ,处的切线方程为1y = (2)因为()()2g x f x x=+22ln x a x x =++在[1,+)∞上是单调增函数,所以322222()2a x ax g x x x x x+-'=-+=0≥在[1,+)∞上恒成立, 即222a x x≥-在[1,+)∞上恒成立,因为222y x x =-在[1,+)∞上为单调递减函数,所以当1x =时,222y x x=-取得最大值0, 所以0a ≥. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤; 24.(1)证明见解析;(2)证明见解析. 【分析】(1)对()f x 求导,利用导数判断()f x 的单调性,求出()f x 的极值或最值,即可求证;(2)构造函数()xg x e x =-,求导利用单调性证明()0xg x e x =->,再由(1)可知()1ln 0f x x x =--≥即1ln x x ≥+可得ln x x >,进而可证明0x >时, ln x e x x >>.【详解】(1)()1ln =--f x x x 的定义域为()0,∞+,1()1f x x'=-当01x <<时,1()10f x x '=-<,当1x >时,1()10'=->f x x, 所以()f x 在()0,1单调递减,在()1,+∞单调递增, 所以1x =时()f x 最小为(1)11ln10f =--=, 所以()f x 存在唯一的零点1x =,(2)令()xg x e x =-,则()1x g x e '=-,当0x >时,()10xg x e '=->,()x g x e x =-在()0,∞+单调递增,所以()()0001g x g e >=-=,即10x e x ->>,即0x e x ->,所以x e x >,由(1)知()1ln =--f x x x 在()0,1单调递减,在()1,+∞单调递增, 所以()f x 最小为(1)11ln10f =--=,所以()1ln 0f x x x =--≥即1ln x x ≥+,所以ln x x >, 综上所述:当0x >时,ln x e x x >>. 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.25.(I )1y x =-;(Ⅱ)1a <. 【分析】(Ⅰ)当0a =时,利用导数的几何意义求切线方程;(Ⅱ)首先求函数的导数,2(1)()10a x a x af x x a x x'-++=+--==时,11x =和2x a =,并讨论a 与0,1的大小关系,求实数a 的取值范围.【详解】(I )当0a =时,21()12f x x x =-+. 所以()1f x x '=-, 所以(2)1k f '==, 因为21(2)22112f =⨯-+=. 所以切线方程为1y x =-. (Ⅱ)函数()f x 的定义域为(0,)+∞.因为21()ln (1)12f x a x x a x =+-++ 所以2(1)()1a x a x a f x x a x x'-++=+--=. 令()0f x '=,即2(1)0x a x a -++=,解得1x =或x a =.(1)当0a 时,当x 变化时,(),()f x f x '的变化状态如下表:所以当时,取得极小值.所以0a 成立.(2)当01a <<时,当x 变化时,(),()f x f x '的变化状态如下表:所以当时,取得极小值所以01a <<成立.(3)当1a =时,()0f x '在(0,)+∞上恒成立,所以函数()f x 在(0,)+∞上单调递增,没有板小值,不成立.(4)当1a >时,当x 变化时,(),()f x f x '的变化状态如下表:所以1a >不成立.综上所述,1a <.【点睛】关键点点睛:本题考查根据极值点求a 的取值范围,本题容易求出导函数的零点1和a ,但需讨论a 的范围,这是易错的地方,容易讨论不全面,需注意.26.(1)()f x 单调递增;(2)24aπ. 【分析】(1)求导()'2sin f x x x =-,得出导函数的符号,从而可得函数()f x 单调性.(2)由已知将问题转化为不等式sin ()a x f x ⋅恒成立,令()sin ()k x x f x =⋅,求导''()cos ()sin ()k x x f x x f x =⋅+⋅,分析导函数的符号,得出()k x 单调递增,求得()k x 的最大值,由恒等式的思想可得出a 的取值范围.【详解】解:(1)()'2sin f x x x =-,令()2sin h x x x =-,当[0,]x π∈时,'()2cos 0h x x =->,所以当[0,]x π∈时,()2sin h x x x =-单调递增;所以()(0)0h x h =,即()0f x ',所以()f x 单调递增. (2)因为当,62x ππ⎡⎤∈⎢⎥⎣⎦时,不等式()()0f x g x -恒成立, 所以当,62x ππ⎡⎤∈⎢⎥⎣⎦时,不等式sin ()a x f x ⋅恒成立, 令()sin ()k x x f x =⋅,所以''()cos ()sin ()k x x f x x f x =⋅+⋅,因为当,62x ππ⎡⎤∈⎢⎥⎣⎦时,'cos 0,()0,sin 0,()0x f x x f x >>>>,所以'()0k x >,所以()k x 单调递增,所以2()24k x k ππ⎛⎫≤= ⎪⎝⎭,所以24a π≥. 【点睛】方法点睛:对于不等式恒成立问题,常常采用:()f x a >对一切x I ∈恒成立,等价于min ()f x a >;()f x α<对一切x I ∈恒成立,等价于max ()f x α<.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(答案解析)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(答案解析)

一、选择题1.已知1a e =,ln33b =,ln 44c =,则a 、b 、c 的大小关系为( )A .b c a <<B .c b a <<C .c a b <<D .a c b <<2.已知函数21()ln 2f x x x a =--,若0x ∃>,()0f x ≥,则a 的取值范围是( ) A .1,2⎛⎤-∞- ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .(],e -∞ 3.已知函数()2()x xf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<4.若函数()3221f x x x mx =+++在()-∞+∞,内单调递增,则m 的取值范围是( ) A .43m ≥B .43m >C .43m ≤D .43<m 5.设函数()ln 2e f x x mx n x =--+.若不等式()0f x ≤对()0,x ∈+∞恒成立,则nm 的最大值为( ) A .4e B .2eC .eD .2e6.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( ) A .34B .16C .24D .177.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π8.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( ) A .1-B .0C .1D .29.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f10.已知对任意实数x 都有()()2xf x f x e '-=,()01f =-,若()()1f x k x >-恒成立,则k 的取值范围是( ) A .()1,+∞B .323,42e ⎛⎫ ⎪⎝⎭C .()121,4eD .()321,4e11.函数()212x f x x -=+的值域是( ) A .30,3⎡⎤⎢⎥⎣⎦B .33⎛⎫∞ ⎪ ⎪⎝⎭,+ C .()0,3D .)3,⎡+∞⎣12.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 二、填空题13.已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______.14.已知()f x 满足()()431f f =-=,()f x '为其导函数,且导函数()y f x '=的图象如图所示,则()1f x <的解集是_________.15.已知函数)(f x 的定义域为R ,且)(12f -=.若对任意x ∈R ,)(2f x '>,则)(24f x x >+的解集为______.16.若函数()231xf x e x mx =+-+在(],3-∞上单调递减,则实数m 的取值范围为______. 17.函数21f xx x 的极大值为_________.18.已知函数()x f x e alnx =-+2在[]1,4上单调递增,则a 的取值范围是__. 19.已知函数()2cos sin 2f x x x =+,则()f x 的最小值是______. 20.已知成立, 则实数a 的取值范围是 .三、解答题21.已知函数1()ln1xf x x+=-. (1)求证:当(0,1)x ∈时,3()2()3x f x x >+;(2)设实数k 使得3()()3x f x k x >+对(0,1)x ∈恒成立,求k 的最大值.22.函数()cos x f x e x =. (1)求()f x 的单调区间;(2)当0x ≥时,不等式22()(2)x x f x e e ax ≤'-恒成立,求实数a 的取值范围.23.如图所示,某风景区在一个直径AB 为200m 的半圆形花园中设计一条观光路线,在点A 与圆弧上一点C 之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C 到点B 设计为沿圆弧BC 的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)(1)设BAC θ∠=(弧度),将绿化带总长度()S θ表示为θ的函数; (2)试确定θ的值,使得绿化带总长度最大. 24.已知函数2()22ln (,)f x x mx x m m n R =+-+∈. (1)若直线2y mx =与曲线()y f x =相切,求m 的值;(2)若函数()()4ln g x f x x =+有两个不同的极值点()1212,x x x x <,求()211g x x x +的取值范围.25.设函数()(1)ln(1)f x x x x =-++ (1)若方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,求t 的取值范围; (2)证明:当0m n >>时,(1)(1)n mm n +<+.26.已知f (x )=ax -ln x ,x ∈(0,e ],g (x )=ln xx,x ∈(0,e ],其中e 是自然常数,a R ∈. (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在正实数a ,使()f x 的最小值是3?若存在,求出a 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 构造函数()ln xf x x=,利用导数分析函数()f x 在区间[),e +∞上的单调性,由此可得出a 、b 、c 的大小关系.【详解】 构造函数()ln x f x x =,则()21ln xf x x -'=, 当x e ≥时,()0f x '≤,所以,函数()f x 在区间[),e +∞上为减函数,34e <<,则()()()34>>f e f f ,即a b c >>.故选:B. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.数值比较多的比较大小问题也也可以利用两种方法的综合应用.2.A解析:A 【分析】由()f x 得21ln 2a x x ≤-,设21()ln 2g x x x =-,利用导数求()g x 的最大值可得答案. 【详解】 由21()ln 2f x x x a =--,得21ln 2a x x ≤-.设21()ln 2g x x x =-,则211()x g x x x x-'=-=.令()0g x '>,得01x <<;令()0g x '<,得1x >, 则()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而1()(1)2g x g ≤=-, 故12a ≤-. 故选:A. 【点睛】本题考查了能成立求参数的问题,关键点是构造函数利用导数求最值,考查了分析问题、解决问题的能力.3.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx x x f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符; 如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.4.A解析:A 【分析】由于()f x 在R 上递增得()0f x '≥恒成立,利用参数分离求得参数范围. 【详解】因为()f x 在R 上递增得()0f x '≥恒成立,则()2340f x x x m '=++≥所以234m x x ≥--在R 上恒成立,令()234g x x x =--,则()max m g x ≥因为()g x 为二次函数且图像的对称轴为23x =-,所以()max 2433g x g ⎛⎫=-= ⎪⎝⎭ 故43m ≥故选:A 【点睛】方法点晴:本题利用导数与单调性的关系转化为恒成立问题,结合参数分离法求得参数范围.5.D解析:D 【分析】 由题意可得ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭,根据它们的图象,结合的导数的几何意义,以及射线的性质,即可得到所求的最大值. 【详解】由不等式()0f x ≤对()0,x ∈+∞恒成立, 即为ln 20e x mx n x --+≤,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,由()210eg x x x'=+>, 可得()g x 在()0,∞+上递增,且()0g e =,当0x →时,()g x →-∞;x →+∞,()g x →+∞, 作出()y g x =的图象,再设()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭, 可得()h x 表示过,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点), 要求nm 的最大值,且满足不等式恒成立,可得2n m的最大值, 由于点,02n m ⎛⎫⎪⎝⎭在x 轴上移动, 只需找到合适的0m >,且()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,如图所示:此时2n e m =,即nm 的最大值为2e . 故选:D 【点睛】关键点点睛:本题考查不等式恒成立问题的解法,解题的关键是将问题转化为()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,注意运用转化思想和数形结合思想,考查了导数的应用,求切线的斜率与单调性,考查了运算能力和推理能力.6.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值.【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34, 故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.7.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r=代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=, 底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r r ππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S r ππ-'=<可得02r <<,所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.8.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0.故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212lnx kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.9.A解析:A 【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -.故选:A . 【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题.10.D解析:D 【分析】由导数的运算求出()f x ,然后用分离参数法得出1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-,再设(21)()1x e x h x x -=-,求出()h x 在1x >时最小值,在1x <时的最大值,从而可得k 的范围. 【详解】因为()()2xf x f x e '-=,所以()()2x f x f x e '-=,即()2x f x e '⎡⎤=⎢⎥⎣⎦,所以()2x f x x c e =+(c 为常数),()(2)x f x e x c =+,由(0)1f c ==-,()(21)x f x e x =-,不等式()()1f x k x >-为(21)(1)xe x k x ->-,1x =时,不等式为0e >,成立,1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-, 设(21)()1x e x h x x -=-,则2(23)()(1)x xe x h x x -'=-,当312x <<或01x <<时,()0h x '<,当32x >或0x <时,()0h x '>,所以()h x 在(0,1)和31,2⎛⎫⎪⎝⎭上是减函数,在3,2⎛⎫+∞ ⎪⎝⎭和(,0)-∞上是增函数,1x >时,()h x 在32x =时取得极小值也最小值32342h e ⎛⎫= ⎪⎝⎭,由(21)1x e x k x -<-恒成立得324k e <,1x <时,()h x 在0x =时取得极大值也是最大值(0)1h =,由(21)1xe x k x ->-恒成立得1k >,综上有3214k e <<. 故选:D .【点睛】本题考查导数的运算,考查用导数研究不等式恒成立问题,用分离参数法转化为求函数的最值是解题关键,解题时注意分类讨论思想的应用.11.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域. 【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤,()f x '==当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max()322f x ==-+(1)(1)0f f -==, 所以()f x的值域是0,3⎡⎢⎣⎦.故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.12.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x123a--=,x2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值, ∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;二、填空题13.【分析】由得根据的范围得利用导数得可得令将化为关于的二次函数根据二次函数知识可求得结果【详解】因为所以所以因为所以当时由得由得所以在上递减在上递增所以在处取得最小值所以所以令则所以所以当时取得最小值解析:24,0e ⎡⎤-⎣⎦【分析】由()()12f x f x =得2124x e x e x =-,根据1x 的范围得224x e e x ≤,利用导数得22x e e x ≥,可得224x e e e x ≤≤,令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识可求得结果. 【详解】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤,当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭, 令22x e t x =,则4e t e ≤≤,所以()12x f x 24t et =-()2224t e e =--,所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦. 故答案为:24,0e ⎡⎤-⎣⎦ 【点睛】关键点点睛:令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识求解是解题关键.14.【分析】利用导数分析函数的单调性分和两种情况解不等式由此可得出原不等式的解集【详解】由函数的图象可知当时此时函数单调递减;当时此时函数单调递增因为当时由可得;当时由可得综上所述不等式的解集时故答案为 解析:()3,4-【分析】利用导数分析函数()f x 的单调性,分0x ≤和0x >两种情况解不等式()1f x <,由此可得出原不等式的解集. 【详解】由函数()y f x '=的图象可知,当0x <时,()0f x '<,此时函数()f x 单调递减; 当0x >时,()0f x '>,此时函数()f x 单调递增.因为()()431f f =-=,当0x ≤时,由()()13f x f <=-,可得30x -<≤; 当0x >时,由()()14f x f <=,可得04x <<. 综上所述,不等式()1f x <的解集时()3,4-.故答案为:()3,4-.【点睛】思路点睛:根据函数单调性求解函数不等式的思路如下: (1)先分析出函数在指定区间上的单调性;(2)根据函数单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式 ,从而求解出不等式的解集.15.【分析】构造函数利用导数研究函数的单调性即可得结论【详解】设则因为对任意所以所以对任意是单调递增函数因为所以由可得则的解集故答案为:【点睛】本题主要考查不等式的求解利用条件构造函数利用导数研究函数的 解析:)(1,-+∞【分析】构造函数)(()24g x f x x =--,利用导数研究函数的单调性即可得结论. 【详解】设)(()24g x f x x =--,则)(()2g x f x ='-', 因为对任意x ∈R ,)(2f x '>,所以()0g x '>, 所以对任意x ∈R , ()g x 是单调递增函数,因为)(12f -=,所以)((1)124440g f -=-+-=-=, 由()()10g x g >-=,可得1x >-, 则)(24f x x >+的解集()1,-+∞. 故答案为:()1,-+∞. 【点睛】本题主要考查不等式的求解,利用条件构造函数、利用导数研究函数的单调性是解决本题的关键.16.【分析】根据函数在上单调递减由恒成立求解【详解】因为函数在上单调递减所以恒成立;令在上单调递增所以实数的取值范围为故答案为:【点睛】方法点睛:恒成立问题的解法:(1)若在区间D 上有最值则;;(2)若解析:)336,e ⎡++∞⎣【分析】根据函数()231xf x e x mx =+-+在(],3-∞上单调递减,由()0f x '≤,(],3x ∈-∞恒成立求解. 【详解】()320x f x e x m '=+-≤,因为函数()231xf x e x mx =+-+在(],3-∞上单调递减,所以32x e x m +≤,(],3x ∈-∞恒成立;令32x y e x =+在(],3-∞上单调递增,3max 36y e =+,所以实数m 的取值范围为)336,e ⎡++∞⎣. 故答案为:)336,e ⎡++∞⎣ 【点睛】方法点睛:恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.17.【分析】利用导数研究函数的单调性由此可求得该函数的极大值【详解】定义域为令可得或当或时此时函数单调递增;当时此时函数单调递减所以函数在处取得极大值且极大值为故答案为:【点睛】本题考查利用导数求解函数 解析:427【分析】利用导数研究函数21f x x x 的单调性,由此可求得该函数的极大值.【详解】()()21f x x x =-,定义域为R ,()()()()()2121311f x x x x x x '=-+-=--.令()0f x '=,可得13x =或1x =. 当13x <或1x >时,()0f x '>,此时,函数21f x x x 单调递增;当113x <<时,()0f x '<,此时,函数21f x x x 单调递减.所以,函数21f xx x 在13x =处取得极大值,且极大值为21114133327f ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭. 故答案为:427. 【点睛】本题考查利用导数求解函数的极值,考查计算能力,属于中等题.18.【分析】由函数在区间上单调递增即在上恒成立即在上恒成立设利用导数求得的单调性与最小值即可求解【详解】由题意函数则因为函数在区间上单调递增即在上恒成立即在上恒成立设则所以当时所以为单调递增函数所以函数解析:a e ≤【分析】由函数()f x 在区间[]1,4上单调递增,即()0xaf x e x'=-≥在[]1,4上恒成立,即x a xe ≤在[]1,4上恒成立,设()xg x xe =,利用导数求得()g x 的单调性与最小值,即可求解. 【详解】由题意,函数()2xf x e alnx =-+,则()xa f x e x '=-, 因为函数()f x 在区间[]1,4上单调递增,即()0xa f x e x'=-≥在[]1,4上恒成立,即x a xe ≤在[]1,4上恒成立,设()xg x xe =,则()(1)x x xe xe e g x x ='=++,所以当[]1,4x ∈时,()(1)0xg x e x '=+≥,所以()g x 为单调递增函数,所以函数()xg x xe =的最小值为()1g e =,所以a e ≤.【点睛】本题主要考查了利用函数的单调性求参数问题,其中解答中把函数的转化为不等式的恒成立问题,利用导数求得新函数的单调性与最值是解答的关键,着重考查了推理与运算能力,属于基础题.19.【分析】由解析式可分析得到的一个周期为则只需考虑在上的值域即可利用导函数求得其最值即可【详解】由题的一个周期为故只需考虑在上的值域令解得或可得此时或或所以的最小值只能在点或或和边界点中取到因为所以的解析: 【分析】由解析式可分析得到()f x 的一个周期为2T π=,则只需考虑()f x 在[)0,2π上的值域即可,利用导函数求得其最值即可. 【详解】由题,()f x 的一个周期为2T π=, 故只需考虑()f x 在[)0,2π上的值域,()()()()22sin 2cos 22sin 212sin 22sin 1sin 1f x x x x x x x '=-+=-+-=--+,令()0f x '=,解得1sin 2x =或sin 1x =-, 可得此时6x π=或56π或π,所以()2cos sin 2f x x x =+的最小值只能在点6x π=或56π或π和边界点0x =中取到, 因为3362f π⎛⎫=⎪⎝⎭,53362f π⎛⎫=- ⎪⎝⎭,()2f π=-,()02f =, 所以()f x 的最小值为332-, 故答案为:332- 【点睛】本题考查导数的运算,考查利用导函数求最值,考查运算能力.20.【详解】当时当时时有最小值因为所以考点:函数的单调性 解析:【详解】,当时,,当时,()0,1f x x '>∴=-时,有最小值()1f -.因为()max g x a =, 所以.考点:函数的单调性.三、解答题21.(1)证明见详解;(2)2 【分析】(1)构造新函数利用函数的单调性证明命题成立.(2)对k 进行讨论,利用新函数的单调性求参数k 的取值范围. 【详解】(1)证明:()()1()lnln 1ln 11xf x x x x+==+---, ()2112111f x x x x '=+=+-- 令()3()2()3x g x f x x =-+,则()()()4222211x g x f x x x ''=-+=-,因为()()001g x x '><<,所以()g x 在()0,1上单调递增, 所以()()00g x g >=,()0,1x ∈,即当()0,1x ∈时,3()2()3x f x x >+.(2)由(1)可知,当k 2≤时,3()()3x f x k x >+对(0,1)x ∈恒成立,当2k >时,令()3()()3x h x f x k x =-+,则()()2222()(1)1kx k h x f x k x x--''=-+=-,所以当0x <<()0h x '<,因此()h x 在区间⎛ ⎝上单调递减,当0x <<()()00h x h <=, 即3()()3x f x k x <+,所以当2k >时,3()()3x f x k x >+并非对(0,1)x ∈恒成立,综上可知,k 的最大值为2. 【点睛】关键点点睛:本题考查了构造新函数,利用导数判断函数的单调性,证明不等式,利用导数研究不等式恒成立,解题的关键是由(1)确定当k 2≤时,3()()3x f x k x >+对(0,1)x ∈恒成立,考查了运算求解能力.22.(1)()f x 的单调递增区间为:32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;(2)(,2]-∞. 【分析】(1)求导函数,计算()0f x '≥和()0f x '≤即可得单调区间;(2)将()()cos sin x f x e x x '=-代入不等式化简得2sin cos ()20xxx x h x e ax e-=+-≥恒成立,通过求导数讨论单调性并求得最值,从而求的实数a 的取值范围. 【详解】(1)由题可得()cos sin (cos sin )cos 4x x xx f x e x e x e x x x π⎛⎫'=-=-=+ ⎪⎝⎭令()cos 04x f x x π⎛⎫=+ ⎪⎝⎭',得22()242k x k k πππππ-++∈Z ,∴322()44k x k k Z ππππ-+∈,∴()f x 的单调递增区间为32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z . 同理,令()0f x '≤,得()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 综上所述:()f x 的单调递增区间为:32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z , ()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z .(2)由()()cos sin x f x e x x '=-,得2cos sin 2x xx xe ax e--≥, 即2sin cos 20xxx x e ax e-+-. 设2sin cos ()2x x x x h x e ax e -=+-,则()22cos 22xxx h x e a e'=+-. 设()()x h x ϕ=',则344()x xe x x e πϕ⎛⎫-+ ⎪⎝⎭='. 当[0,)x ∈+∞时,344x e ≥,4x π⎛⎫+≤ ⎪⎝⎭()0x ϕ'≥. 所以()x ϕ即()h x '在[0,)+∞上单调递增, 则()()042h x h a ''≥=-.若2a ≤,则()()0420h x h a ''≥=-≥, 所以()h x 在[0,)+∞上单调递增. 所以()()00h x h ≥=恒成立,符合题意.若2a >,则()0420h a '=-<,必存在正实数0x , 满足:当()00,x x ∈时,()0h x '<,()h x 单调递减, 此时()()00h x h <=,不符合题意.综上所述,a 的取值范围是(,2]-∞. 【点晴】方法点晴:将不等式恒成立问题转化为最值问题来求解,通过求导讨论单调性求得最值,从而解决相关问题.23.(1)()400cos 200S θθθ=+,0,2πθ⎛⎫∈ ⎪⎝⎭;(2)6πθ=.【分析】(1)在直角三角形ABC 中,100AB =,BAC θ∠=,可得AC 的长.由于22BOC BAC θ∠=∠=,可得弧BC 的长; (2)利用导数求()s θ最大值可得答案.【详解】(1)如图,连结OC ,BC ,在直角三角形ABC 中,CAB θ∠=,200AB =(m ), 所以200cos AC θ=(m ),由于22COB CAB θ∠=∠=,所以弧BC 的长为1002200θθ⨯=(m ), 所以()2200cos 200400cos 200S θθθθθ=⨯+=+(m ),0,2πθ⎛⎫∈ ⎪⎝⎭,(2)由(1)得()400cos 200S θθθ=+0,2πθ⎛⎫∈ ⎪⎝⎭,所以()()2002sin 1S θθ'=-+,0,2πθ⎛⎫∈ ⎪⎝⎭, 当06πθ<<时,()0S θ'>,当6πθ=时,()0S θ'=,当62ππθ<<时,()0S θ'<, 所以()S θ在0,6π⎛⎫ ⎪⎝⎭上单调递增,在,62ππ⎛⎫⎪⎝⎭上单调递减,当6πθ=时,()S θ有最大值100400cos 20020036663S ππππ⎛⎫=+⨯=⎪⎝⎭, 所以当6πθ=时,绿化带总长度最大.【点睛】本题考查解实际问题的应用,关键正确理解题意,正确列出等量关系或函数关系式,考查了分析问题、解决问题的能力. 24.(1)1m =-;(2)(,4)-∞-. 【分析】(1)求出导函数()'f x ,由导数的几何意义可求得m 值:设切点00(,)x y ,0()2f x m '=,及切点在切线上又在函数图象上可得;(2)求出()'g x ,()0g x '=的两解为12,x x ,由韦达定理得1212221,1,x x m x x m x x ⎛⎫+=-==-+ ⎪⎝⎭,可得21>x ,这样()211g x x x +可表示为2x 的函数,再由导数可求得其范围. 【详解】(1)由题意知(0,)x ∈+∞,2()22f x x m x'=+-,设直线2y mx =与曲线()y f x =相切于点()00,x y 所以()()0000022f x m y f x y mx '⎧=⎪=⎨⎪=⎩,,,整理得201x =,得01,1x m ==-;(2)2()22ln g x x mx x m =+++,所以()2212()22x mx g x x m x x'++=++=, 所以12,x x ,是方程210x mx ++=的两个根, 所以1212221,1,x x m x x m x x ⎛⎫+=-==-+ ⎪⎝⎭,因为120x x <<,所以21>x ,所以()22122211222ln 1g x x x mx x m x x x +++++=()3322222222ln 1x x x x x x =---+>,令()()()()3222222222222222ln 1,32ln h x x x x x x x h x x x x '=---+>=-+-,()ln p x x x =-,则11()1x p x x x-'=-=,1x >时,()0p x '<,()p x 递减,所以()(1)10p x p <=-<,所以220ln x x <-,所以()()220h x h x '<,在(1,)x ∈+∞上单调递减,()2(1)4h x h <=-,从而()211g x x x +的取值范围为(,4)-∞-. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的取值范围.解题关键是对多变量函数()211g x x x +进行消元,转化为一元函数,然后利用导数求得其取值范围.根据是12,x x 是方程()0g x '=的两根,由韦达定理建立三个变量之间的关系. 25.(1)11ln 2,022⎡⎫-+⎪⎢⎣⎭;(2)证明见解析. 【分析】(1)方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,等价于函数()f x 在区间1,12⎡⎤-⎢⎥⎣⎦上的图像与直线y t =有两个交点,所以利用导数求出()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减,再比较出(1)f 和12f ⎛⎫ ⎪⎝⎭的大小即可得答案;(2)由0m n >>,要证(1)(1)n mm n +<+,只需证ln(1)ln(1)n m m n +<+,只需证ln(1)ln(1)m n m n ++<,构造函数ln(1)(),(0)x g x x x +=>,然后利用导数证明()g x 是减函数即可 【详解】解:(1)由()(1)ln(1)f x x x x =-++,定义域为()1,-+∞,()ln(1)f x x '=-+,()ln(1)00f x x x '=-+=⇒=,当102x -≤<时,()()0,f x f x '>单调递增, 当01x <≤时,()()0,f x f x '<单调递减, 则()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减,又111(0)0,(1)1ln 4,()ln 2222f f f ==--=-+, 135(1)()ln 20,222∴--=-<f f 1(1)2f f ⎛⎫∴< ⎪⎝⎭∴ 当11ln 2,022⎡⎫∈-+⎪⎢⎣⎭t 时,方程()f x t =有两解. (2)∵ 0m n >>.∴ 要证:(1)(1)n m m n +<+,只需证ln(1)ln(1)n m m n +<+, 只需证:ln(1)ln(1)m n m n++<.设ln(1)(),(0)x g x x x+=>, 则22ln(1)(1)ln(1)1()(1)xx x x x x g x x x x -+-+++=+'=. 由(1)知()(1)ln(1)f x x x x =-++在(0,)+∞单调递减, 又()00=f ,∴ (1)ln(1)0x x x -++<, 即()g x 是减函数,而m n >. ∴ ()()g m g n <,故原不等式成立. 【点睛】关键点点睛:此题考查导数的应用,考查利用导数证明不等式,考查数学转化思想,解题的关键是把(1)(1)n mm n +<+,转化为ln(1)ln(1)m n m n++<,再构造函数,再利用导数判断此函数为减函数即可,属于中档题26.(1)当01x <<时,()f x 单调递减;当1x e <≤时,()f x 单调递增;最小值1;(2)证明见解析;(3)存在,2a e =. 【分析】(1)根据f (x )=x -ln x ,求导得11()1x f x x x'-=-=,分别令f ′(x )<0,f ′(x )>0求解单调性和极值.(2)要证 f (x )>g (x )+12,即证[f (x )]min -[g (x )]max >12,由(1)知f (x )在(0,e ]上的最小值为1,再利用导数法求得[g (x )]max 即可.(3)假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e ])有最小值3,求导11()ax f x a x x'-=-=,分0<1a <e ,1a ≥e 讨论求解.【详解】(1)因为f (x )=x -ln x , 所以11()1x f x x x'-=-=, 所以当0<x <1时,f ′(x )<0,此时f (x )单调递减; 当1<x ≤e 时,f ′(x )>0时,此时f (x )单调递增. ∴f (x )的极小值为f (1)=1. (2)∵f (x )的极小值为1,∴f (x )在(0,e ]上的最小值为1,即[f (x )]min =1. 又g ′(x )=21ln x x -,∴当0<x<e时,g′(x)>0,g(x)在(0,e]上单调递增.∴[g(x)]max=g(e)=112e<,∴[f(x)]min-[g(x)]max>12,∴在(1)的条件下,f(x)>g(x)+12.(3)假设存在正实数a,使f(x)=ax-ln x(x∈(0,e])有最小值3,则11 ()axf x ax x'-=-=.①当0<1a<e时,f(x)在(0,1a)上单调递减,在(1a,e]上单调递增,[f(x)]min=f(1a)=1+ln a=3,a=e2,满足条件;②当1a≥e时,f(x)在(0,e]上单调递减,[f(x)]min=f(e)=a e-1=3,a=4e(舍去),所以,此时f(x)无最小值.综上,存在实数a=e2,使得当x∈(0,e]时f(x)有最小值3.【点睛】方法点睛:不等式问题.(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.。

高中数学 第四章 导数应用单元测试1 北师大版选修11

高中数学 第四章 导数应用单元测试1 北师大版选修11

第四章 导数应用(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.使函数f (x )=x +2cos x 在[0,π2]上取最大值的x 为( )A .0 B.π4C.π3D.π2解析:选B.f ′(x )=1-2sin x ,∴f (x )在[0,π4]上单调递增,[π4,π2]上单调递减,∴选B.2.定义在R 上的函数f (x )的图像如图所示,则关于x 的不等式xf ′(x )<0的解集为( )A .(-2,-1)∪(1,2)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(0,1)D .(-∞,-2)∪(2,+∞) 解析:选C.当x ∈(-∞,-1)∪(1,+∞)时, f ′(x )>0,又xf ′(x )<0, ∴x ∈(-∞,-1).当x ∈(-1,1)时,f ′(x )<0, 又xf ′(x )<0,∴x ∈(0,1).综上可知解集为(-∞,-1)∪(0,1).故选C.3.函数f (x )=x -a x 在x ∈[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .3 D .4 解析:选D.依题意得,当x ∈[1,4]时,f ′(x )=1-a2x≤0,即a ≥2x 恒成立.注意到x ∈[1,4]时,y =2x 的最大值是24=4,因此,实数a 的最小值为4,选D.4.f ′(x )是f (x )的导函数,若f ′(x )的图像如图所示,则f (x )的图像可能是( )解析:选C.由导函数的图像可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <x 1时,f ′(x )<0,即函数f (x )为减函数;当x >x 1时,f ′(x )>0,即函数f (x )为增函数.观察选项易知C 正确.5.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .0≤a <1 B .0<a <1C .-1<a <1D .0<a <12解析:选B.f ′(x )=3x 2-3a =3(x 2-a ),当a ≤0时,f (x )在(0,1)上单调递增,无最值,排除A 、C ,当a >0时,令f ′(x )=0得x =-a (舍),x =a ,由题意知0<a <1.∴0<a <1.故选B.6.已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k(k =1,2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值解析:选C.当k =1时,f (x )=(e x -1)(x -1),则f ′(x )=e x (x -1)+(e x -1)=e xx -1,所以f ′(1)=e -1≠0,所以f (1)不是极值.当k =2时,f (x )=(e x -1)(x -1)2,则f ′(x )=e x (x -1)2+2(e x -1)(x -1)=e x (x 2-1)-2(x -1)=(x -1)[e x(x +1)-2], 所以f ′(1)=0,且当x >1时,f ′(x )>0;在x =1附近的左侧,f ′(x )<0,所以f (1)是极小值.7.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值为( )A .-13B .-15C .10D .15解析:选A.f ′(x )=-3x 2+2ax ,由题意f ′(2)=-12+4a =0,∴a =3.∴f ′(x )=-3x 2+6x ,其对称轴x =1,开口向下,当n ∈[-1,1]时,f ′(n )最小=f ′(-1)=-9,令f ′(x )=-3x (x -2)=0,则x =0或x =2,当x ∈(-1,0)时,f ′(x )<0,当x ∈(0,1)时,f ′(x )>0, ∴当m ∈[-1,1]时,f (m )最小=f (0)=-4, 故f (m )+f ′(n )的最小值为-13.8.如果圆柱轴截面的周长l 为定值,则体积的最大值为( )A .(l 6)3πB .(l3)3πC .(l4)3πD.14(l 4)3π 解析:选A.设圆柱的底面半径为r ,高为h ,体积为V ,则4r +2h =l ,∴h =l -4r2,V=πr 2h =l2πr 2-2πr 3(0<r <l4).则V ′=l πr -6πr 2,令V ′=0,得r =0或r =l6,而r >0,∴r =l 6是其唯一的极值点.当r =l 6时,V 取得最大值,最大值为(l6)3π,故选A. 9. 函数f (x )=ax m (1-x )n在区间[0,1]上的图像如图所示,则m ,n 的值可能是( )A .m =1,n =1B .m =1,n =2C .m =2,n =1D .m =3,n =1解析:选B.观察图像易知,a >0,f (x )在[0,1]上先增后减,但在⎣⎢⎡⎦⎥⎤0,12上有增有减且不对称.对于选项A ,m =1,n =1时,f (x )=ax (1-x )是二次函数,图像应关于直线x =12对称,不符合题意.对于选项B ,m =1,n =2时,f (x )=ax (1-x )2=a (x 3-2x 2+x ),f ′(x )=a (3x 2-4x +1)=a (x -1)(3x -1),令f ′(x )≥0,得x ≥1或x ≤13,∴f (x )在⎣⎢⎡⎦⎥⎤0,13上单调递增,符合题意. 对于选项C ,m =2,n =1时,f (x )=ax 2(1-x )=a (x 2-x 3),f ′(x )=a (2x -3x 2)=ax (2-3x ),令f ′(x )≥0,得0≤x ≤23,∴f (x )在⎣⎢⎡⎦⎥⎤0,23上单调递增,不符合题意. 对于选项D ,m =3,n =1时,f (x )=ax 3(1-x )=a (x 3-x 4),f ′(x )=a (3x 2-4x 3)=ax 2(3-4x ),令f ′(x )≥0,得0≤x ≤34,∴f (x )在⎣⎢⎡⎦⎥⎤0,34上单调递增,不符合题意. 10.已知函数f(x)=|x e x |,关于x 的方程f 2(x)+tf(x)+1=0(t∈R )有四个不等实数根,则t 的取值范围为( )A .(e 2+1e ,+∞)B .(2,e 2+1e )C .(-e 2+1e ,-2)D .(-∞,-e 2+1e)解析:选D.设g (x )=x e x ,g ′(x )=e x(1+x ),当x >-1时,g ′(x )>0,g (x )单调递增,当x <-1时,g ′(x )<0,g (x )单调递减,且x →-∞,g (x )→0.g (x )最小=g (-1)=-1e,g (0)=0,∴f (x )=|x e x |的图像如图,由题意知,f (x )有两个不等正值使方程成立.设为a ,b (a <b ),则a ∈(0,1e ),b >1e.由根与系数的关系⎩⎪⎨⎪⎧Δ=t 2-4>0-t =a +b >01=ab,∴-t =a +b =a +1a 在(0,1e )递减,a +1a >e +1e ,故t <-(e +1e),即t 的取值范围为(-∞,-e 2+1e).所以选D.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上) 11.两车在十字路口相遇后,又沿不同方向继续行驶,已知A 车向北行驶速度为30 km/h ,B 车向东行驶速度为40 km/h ,那么A 、B 两车间直线距离的增加速度是________ km/h.解析:设A 、B 两车的行驶时间为t 小时,则A 、B 两车间的直线距离s =(30t )2+(40t )2=50t (km).∵s ′(t )=50,∴A 、B 两车间直线距离的增加速度为50km/h. 答案:5012.一个边长为12 cm 的正方形铁片,铁片的四角截去四个边长都为x 的小正方形,然后做成一个无盖方盒,要使方盒的容积最大,x 的值应为________.解析:V =4x (6-x )2=4(x 3-12x 2+36x )(0<x <6),V ′=12(x 2-8x +12),令V ′=0得x 2-8x +12=0,解得x =2或x =6(舍).答案:2 cm13.已知函数f (x )=x 2ln x ,则函数f (x )的单调减区间是________.解析:f ′(x )=2x ln x +x 2·1x =x (2ln x +1)(x >0),令f ′(x )<0得,0<x <e -12.∴f (x )的单调减区间是(0,e -12).答案:(0,e -12)(写成(0,e -12]也正确)14.已知m ∈[1,6],n ∈[1,6],则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是________.解析:y ′=2mx 2-n ,由题意知2mx 2-n ≥0在[1,+∞)上恒成立,∴x ∈(-∞,-n 2m )或x ∈⎝ ⎛⎭⎪⎫n 2m ,+∞,故需n 2m ≤1,即n ≤2m .如图,P =5×5-12×4×25×5=2125.答案:212515.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =________. 解析:f (x )=4x +a x≥24x ·a x =4a (x >0,a >0),当且仅当4x =a x,即x =a2时等号成立,此时f (x )取得最小值4a .又由已知x =3时,f (x )min =4a ,∴a2=3,即a =36.答案:36三、解答题(本大题共5小题,共55分.解答应写出文字说明,证明过程或演算步骤)16.(本小题满分10分)已知f (x )=ax 3+bx 2+c 的图像经过点(0,1),且在x =1处的切线方程是y =x .(1)求y =f (x )的解析式;(2)求y =f (x )的单调递增区间.解:(1)f (x )=ax 3+bx 2+c 的图像经过点(0,1),则c =1, f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1.切点为(1,1),则f (x )=ax 3+bx 2+c 的图像经过点(1,1),所以a +b +c =1解得a =1,b =-1即f (x )=x 3-x 2+1.(2)f ′(x )=3x 2-2x >0得x <0或x >23.单调递增区间为(-∞,0),(23,+∞).17.(本小题满分10分)已知函数f (x )=ax 3+(a -1)x 2+27(a -2)x +b 的图像关于原点成中心对称,求f (x )在区间[-4,5]上的最值.解:∵函数f (x )的图像关于原点成中心对称,则f (x )是奇函数,所以a =1,b =0.于是f (x )=x 3-27x ,f ′(x )=3x 2-27.∴当x ∈(-3,3)时,f ′(x )<0;当x ∈(-4,-3)和(3,5)时,f ′(x )>0. 又∵函数f (x )在[-4,5]上是连续函数.∴f (x )在(-3,3)上是单调递减函数,在(-4,-3)和(3,5)上是单调递增函数. ∴f (x )的最大值是f (-3)=54,f (x )的最小值是f (3)=-54. 18.(本小题满分10分)已知函数f (x )=x -1-ln x 对任意x ∈(0,+∞),f (x )+2≥bx 恒成立,求实数b 的取值范围.解:依题意对任意x ∈(0,+∞),f (x )+2≥bx 恒成立 等价于x -1-ln x +2≥bx 在(0,+∞)上恒成立.可得b ≤1+1x -ln xx在(0,+∞)上恒成立,令g (x )=1+1x -ln x x,g ′(x )=ln x -2x 2,令g ′(x )=0,得x =e 2.∴函数y =g (x )的最小值为g (e 2)=1-e 2,根据题意b 的取值范围为{b |b ≤1-1e2}.19.(本小题满分12分)已知函数f (x )=x 2e -x. (1)求f (x )的极小值和极大值;(2)当曲线y =f (x )的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 解:(1)f (x )的定义域为(-∞,+∞), f ′(x )=-e -x x (x -2).①当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )<0; 当x ∈(0,2)时,f ′(x )>0.所以f (x )在(-∞,0),(2,+∞)上单调递减,在(0,2)上单调递增.故当x =0时,f (x )取得极小值,极小值为f (0)=0;当x =2时,f (x )取得极大值,极大值为f (2)=4e -2.(2)设切点为(t ,f (t )),则l 的方程为y =f ′(t )(x -t )+f (t ). 所以l 在x 轴上的截距为m (t )=t -f (t )f ′(t )=t +t t -2=t -2+2t -2+3.由已知和①得t ∈(-∞,0)∪(2,+∞).令h (x )=x +2x(x ≠0),则当x ∈(0,+∞)时,h (x )的取值范围为[22,+∞);当x ∈(-∞,-2)时,h (x )的取值范围是(-∞,-3).所以当t ∈(-∞,0)∪(2,+∞)时,m (t )的取值范围是(-∞,0)∪[22+3,+∞). 综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[22+3,+∞).20.(本小题满分13分)已知函数f (x )=e x,x ∈R .(1)若直线y =kx +1与f (x )的反函数的图像相切,求实数k 的值;(2)设x >0,讨论曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数.解:(1)f (x )的反函数为g (x )=ln x .设直线y =kx +1与g (x )=ln x 的图像在P (x 0,y 0)处相切,则有y 0=kx 0+1=ln x 0,k =g ′(x 0)=1x 0,解得x 0=e 2,k =e -2,所以k =e -2.(2)当x >0,m >0时,曲线y =f (x )与曲线y =mx 2(m >0)的公共点个数即方程f (x )=mx2根的个数.由f (x )=mx 2⇒m =e xx 2,令ν(x )=e xx 2⇒ν′(x )=x e x(x -2)x4, 则ν(x )在(0,2)上单调递减,这时ν(x )∈(ν(2),+∞); ν(2)是y =ν(x )的极小值,也是最小值.所以对曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数,讨论如下:当m ∈⎝ ⎛⎭⎪⎫0,e 24时,有0个公共点; 当m =e24时,有1个公共点;当m ∈⎝ ⎛⎭⎪⎫e 24,+∞时有2个公共点. 综上所述,当x >0时,若0<m <e 24,曲线y =f (x )与y =mx 2没有公共点;若m =e 24,曲线y =f (x )与y =mx 2有一个公共点;若m >e24,曲线y =f (x )与y =mx 2有两个公共点.。

高中数学 第四章 导数应用综合检测 北师大版选修11

高中数学 第四章 导数应用综合检测 北师大版选修11

【课堂新坐标】(教师用书)2013-2014学年高中数学 第四章 导数应用综合检测 北师大版选修1-1(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设函数y =f (x )在(a ,b )上可导,则f (x )在(a ,b )上为增函数是f ′(x )>0的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】 若f (x )在(a ,b )上为增函数,则f ′(x )≥0. 【答案】 B2. 若函数f (x )=x 3-3x -a 在区间[0,3]上的最大值、最小值分别是m ,n ,则m -n 的值为( )A .2B .4C .18D .20【解析】 令f ′(x )=3x 2-3=0, ∴x =1(x =-1舍去).∵f (0)=-a ,f (1)=-2-a ,f (3)=18-a , ∴f (1)<f (0)<f (3). ∴m =18-a ,n =-2-a , ∴m -n =(18-a )-(-2-a )=20. 【答案】 D3. 一质点的运动方程为s =20+12gt 2(g =9.8 m/s 2),则t =3秒时的瞬时速度为( )A .20 m/sB .49.4 m/sC .29.4 m/sD .64.1 m/s【解析】 ∵s ′(t )=gt , ∴s ′(3)=3g =3×9.8=29.4. 【答案】 C4. 已知函数y =(x +1)2(x -1),则x =-1是函数的( ) A .极大值点 B .极小值点 C .最大值点D .最小值点【解析】 ∵y =x 3+x 2-x -1, ∴y ′=3x 2+2x -1=(3x -1)(x +1), 当x <-1时,y ′>0.当-1<x <13时,y ′<0.∴x =-1是函数的极大值点. 【答案】 A5. 函数f (x )=2x 2-ln x 的递增区间是( ) A .(0,12)B .(0,24) C .(12,+∞)D .(-12,0),(0,12)【解析】 f ′(x )=4x -1x =4x 2-1x(x >0),令f ′(x )>0,得x >12.∴f (x )的单调递增区间为(12,+∞).【答案】 C6. 已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x 都有f (x )≥0,则f (1)f ′(0)的最小值为( )A .3 B.52 C .2D.32【解析】 f ′(x )=2ax +b , ∵f ′(0)>0,∴b >0. ∵f (x )≥0, ∴a >0,b 2-4ac ≤0, 即b 2≤4ac .∴c >0. ∴f (1)f ′(0)=a +b +c b =a +c b +1≥2acb+1≥2,即所求的最小值为2.【答案】 C7. 已知函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在(-∞,+∞)上是增函数,则( )A .m ≤2或m ≥4B .-4≤m ≤-2C .2≤m ≤4D .以上皆不正确【解析】 f ′(x )=x 2-2(4m -1)x +(15m 2-2m -7)≥0恒成立,所以4(4m -1)2-4(15m 2-2m -7)≤0恒成立, 所以64m 2-32m +4-60m 2+8m +28≤0, 4m 2-24m +32≤0, 所以2≤m ≤4. 【答案】 C8. 如图是函数f (x )=x 3+bx 2+cx +d 的大致图像,则x 21+x 22等于( )图1A.23B.43C.83D .4【解析】 由图像可知,函数f (x )的图像过点(0,0),(1,0),(2,0), ∴f (x )=x (x -1)(x -2)=x 3-3x 2+2x . ∴f ′(x )=3x 2-6x +2. ∵x 1,x 2是极值点,∴x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根. ∴x 1+x 2=2,x 1x 2=23.∴x 21+x 22=(x 1+x 2)2-2x 1x 2=83.【答案】 C9. (2012·全国高考)已知函数y =x 3-3x +c 的图像与x 轴恰有两个公共点,则c =( )A .-2或2B .-9或3C .-1或1D .-3或1【解析】 ∵f ′(x )=3x 2-3=3(x -1)(x +1), ∴当x =1或-1时取极值. 又∵函数图像与x 轴有两个交点, ∴f (1)=0或f (-1)=0,解得c =2或-2.【答案】 A10. (2013·课标全国卷Ⅱ)若存在正数x 使2x(x -a )<1成立,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)【解析】 令f (x )=x -12x ,∴f ′(x )=1+2-xln 2>0.∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1,∴a 的取值范围为(-1,+∞),故选D. 【答案】 D二、填空题(本大题共4小题,每小题5分,共20分) 11. 函数y =4x 2+1x的单调递增区间是________.【解析】 ∵y ′=8x -1x 2=8x 3-1x 2>0,∴x >12.即函数的单调增区间为(12,+∞).【答案】 (12,+∞)12. 已知函数f (x )=12x 4-2x 3+3m (x ∈R ),若f (x )+9≥0恒成立,则实数m 的取值范围为________.【解析】 f ′(x )=2x 3-6x 2=2x 2(x -3). ∵x >3时f ′(x )>0,x <3时,f ′(x )<0, ∴x =3时f (x )取到极小值,也是最小值. ∴f (3)+9≥0,即12×34-2×33+3m +9≥0,即m ≥32. 【答案】 [32,+∞)13. 已知f (x )=2ax -1x2,x ∈(0,1],若f (x )在(0,1]上是增函数,则a 的取值范围为________.【解析】 f ′(x )=2a +2x3,∵f (x )在(0,1]上单调递增,∴f ′(x )≥0,即a ≥-1x3在(0,1]上恒成立,而g (x )=-1x3在(0,1]上单调递增,∴g (x )max =g (1)=-1, ∴a ≥-1. 【答案】 a ≥-114. 已知a ,b 是实数,函数f (x )=x 3+ax ,g (x )=x 2+bx ,f ′(x )和g ′(x )分别是f (x )和g (x )的导函数,若f ′(x )g ′(x )≥0在区间I 上恒成立,则称f (x )和g (x )在区间I上单调性一致.设a >0.若f (x )和g (x )在区间[-1,+∞)上单调性一致,则b 的取值范围为________. 【解析】 f ′(x )=3x 2+a ,g ′(x )=2x +b . 由题意知f ′(x )g ′(x )≥0在[-1,+∞)上恒成立. 因为a >0,故3x 2+a >0,进而2x +b ≥0,即b ≥-2x 在[-1,+∞)上恒成立,所以b ≥2.因此b 的取值范围是[2,+∞).【答案】 [2,+∞)三、解答题(本大题共4小题,共50分,解答应写出文字说明,证明过程或演算步骤) 15. (12分)已知函数f (x )=x 3+ax 2+b (a ∈R ,b ∈R ).若a >0,且f (x )的极大值为5,极小值为1,求f (x )的解析式.【解】 ∵f (x )=x 3+ax 2+b , ∴f ′(x )=3x 2+2ax .令f ′(x )=0,得x =0或x =-2a 3.又∵a >0,∴-2a3<0.∴当x <-2a3或x >0时,f ′(x )>0;当-2a3<x <0时,f ′(x )<0.∴f (x )在(-∞,-2a3)和(0,+∞)上是增函数,在(-2a3,0)上是减函数.∴f (-2a3)是f (x )的极大值,f (0)是f (x )的极小值,即f (-2a 3)=(-2a 3)3+a (-2a 3)2+b =5;f (0)=b =1,解得a =3,b =1.∴所求的函数解析式是f (x )=x 3+3x 2+1.16. (12分)某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 【解】 (1)设需新建n 个桥墩,则(n +1)x =m ,即n =mx-1,所以y =f (x )=256n +(n +1)(2+x )x =256⎝ ⎛⎭⎪⎫m x -1+mx(2+x )x =256m x+m x +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12mx -12=m2x 2(x 32-512).令f ′(x )=0, 得x 32=512, 所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数;当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数,所以f (x )在x =64处取得最小值,此时n =m x -1=64064-1=9. 故需新建9个桥墩才能使y 最小.17. (12分)(2012·邯郸高二期末)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1处都取到极值.(1)求a ,b 的值及函数f (x )的单调区间;(2)若对x ∈[-1,2]不等式f (x )<c 2恒成立,求c 的取值范围. 【解】 (1)∵f (x )=x 3+ax 2+bx +c , ∴f ′(x )=3x 2+2ax +b .由f ′⎝ ⎛⎭⎪⎫-23=129-43a +b =0,f ′(1)=3+2a +b =0,得a =-12,b =-2,∴f ′(x )=3x 2-x -2=(3x +2)(x -1).当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,-23和(1,+∞),单调递减区间为⎝ ⎛⎭⎪⎫-23,1. (2)f (x )=x 3-12x 2-2x +c ,x ∈[-1,2],当x =-23时,f (x )=2227+c 为极大值,而f (2)=2+c ,所以f (2)=2+c 为最大值. 要使f (x )<c 2(x ∈[-1,2])恒成立, 只需f (x )max <c 2即可,∴2+c <c 2,解得c <-1或c >2, ∴c ∈(-∞,-1)∪(2,+∞).18. (14分)(2012·安徽高考)设定义在(0,+∞)上的函数f (x )=ax +1ax+b (a >0).(1)求f (x )的最小值;(2)若曲线y =f (x )在点(1,f (1))处的切线方程为y =32x ,求a ,b 的值.【解】 (1)f ′(x )=a -1ax 2=a 2x 2-1ax 2,x >0,a >0.当0<x <1a 时,f ′(x )<0,所以函数f (x )在区间(0,1a )上是减函数;当x >1a时,f ′(x )>0,所以函数f (x )在区间(1a,+∞)上是增函数.所以f (x )的最小值是f (1a )=a ×1a +1a ×1a+b =2+b .(2)曲线y =f (x )在点(1,f (1))处的切线的斜率k =f ′(1)=a -1a =32,解得a =2或a=-12(舍去),所以f (x )=2x +12x +b ,则f (1)=2+12+b =52+b .又切点(1,f (1))在直线y =32x 上,则有f (1)=32,所以52+b =32,解得b =-1.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(包含答案解析)(2)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(包含答案解析)(2)

一、选择题1.已知,a b ∈R ,若函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>,则下列结论可能成立的是( ). A .0ae b >>B .0ae b >>C .0b ae >>D .0ae b >>2.已知函数32()22sin 524x f x x x π⎛⎫=++++ ⎪⎝⎭,且()22(34)12f t t f t -+-+<,则实数t 的取值范围是( ) A .(1,4) B .(,1)(4,)-∞⋃+∞ C .(4,1)-D .(,4)(1,)-∞-+∞3.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( ) A .4B .26C .27D .64.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .5.已知函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围为( ) A .34a ≤-B .1a ≤-C .1a ≤D .01a ≤≤6.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞B .()2e ,+∞C .()20,eD .()0,e7.已知函数()()22,02ln ,0x x f x a x x x x -⎧<⎪=⎨++>⎪⎩,若恰有3个互不相同的实数1x ,2x ,3x ,使得()()()1232221232f x f x f x x x x ===,则实数a 的取值范围为( ) A .1a e>-B .10a e-<< C .0a ≥ D .0a ≥或1a e=-8.已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( )A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫--⎪⎝⎭9.已知函数()13log xf x e x =-,给出下列两个命题:命题:p 若01x ≥,则()03f x ≥;命题[)0:1,q x ∃∈+∞,()03f x =.则下列叙述错误的是( )A .p 是假命题B .p 的否命题是:若01x <,则()03f x <C .[):1,q x ⌝∀∈+∞,()3f x ≠D .q ⌝是真命题10.函数()327f x x kx x =+-在区间[]1,1-上单调递减,则实数k 的取值范围是( )A .(],2-∞-B .[]22-,C .[)2,-+∞D .[)2,+∞11.若函数()()11xf x e a x =--+在(0,1)上不单调,则a 的取值范围是( ) A .()2,1e +B .[]2,1e +C .(][),21,e -∞⋃++∞D .()(),21,e -∞⋃++∞12.已知函数()()()22ln 0f x a e x xa =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,则a =( ) A .eB .1e 2- C .1 D .2e e - 二、填空题13.定义在R 上的函数()f x 满足:()()22f x f x x -+=,且当0x ≤时,()2f x x '<,则不等式()()25510f x x x f +-+≥的解集为______.14.已知函数()()3211f x ax bx a b x =++++-在1x x =处取得极小值,在2x x =处取得极大值,且12102x x <-<<<,则321a b -+的取值范围是______. 15.已知函数,0()(1),0xlnx x f x e x x >⎧=⎨+⎩,若函数()()()F x f x c c R =-∈恰有3个零点,则实数c 的取值范围是________. 16.已知函数21()ln 2f x x x =+,函数()f x 在[1,]e 上的最大值为__________. 17.已知函数()f x 定义在R 上的函数,若2()()0x f x e f x --=,当0x ≤时,()()0f x f x '+<,则不等式21()(1)x f x e f x -≥-的解集为__________18.已知函数()y f x =在R 上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为()f x ',当0x >时,有不等式()()22x f x xf x '>-成立,若对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,则正整数a 的最大值为_______.19.若函数()ln f x ax x =-在区间()0,1上是减函数,则实数a 的取值范围是________. 20.已知函数()xf x e x =-,()22g x x mx =-,若对任意1x ∈R ,存在[]21,2x ∈,满足()()12f x g x ≥,则实数m 的取值范围为______.三、解答题21.已知函数1()ln1xf x x+=-. (1)求证:当(0,1)x ∈时,3()2()3x f x x >+;(2)设实数k 使得3()()3x f x k x >+对(0,1)x ∈恒成立,求k 的最大值.22.已知函数()(2)(0)x f x ae x a =-≠. (1)求()f x 的单调区间;(2)若函数2()()2g x f x x x =+-有两个极值点,求实数a 的取值范围.23.已知函数()x ax f x e=. (1)当1a =时,判断函数()f x 的单调性; (2)若0a >,函数()()212g x f x x x =+-只有1个零点,求实数a 的取值范围. 24.已知函数()(0)x axf x a e=≠. (1)当1a =时,求函数()y f x =在[0,2]上的最大值和最小值;(2)求函数()f x 的单调区间. 25.已知函数32113f xx ax ,0a >. (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积;(2)是否存在实数a ,使得()f x 在[]0,2上的最小值为56?若存在,求出a 的值;若不存在,说明理由.26.设函数33,().()2,x x x af x a R x x a⎧-=∈⎨->⎩ (1)若0a =,则()f x 的最大值为;(2)若()f x 无最大值,则求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意将问题转化为方程xb e a x=在0,上有两个实数根,进而令()(),0,xe g x x x=∈+∞,再研究函数()g x 的单调性得0b e a >>,进而分0a >和0a <讨论即可得答案. 【详解】解:当0a =时,函数()f x 只有一个零点,故0a ≠,因为函数()e =-xf x a bx 存在两个零点1x ,2x ,且210x x >>所以方程xb e a x=在0,上有两个不相等的实数根.令()(),0,x e g x x x =∈+∞,()()21'x x e g x x -=, 所以当()1,∈+∞x 时()'0g x >,()0,1∈x 时()'0g x <,故函数()(),0,xe g x x x=∈+∞在1,上单调递增,在0,1上单调递减;所以()()min 1g x g e ==,所以0be a>>, 当0a >时,0b ae >>,当0a <时,0b ae <<. 故选:D. 【点睛】本题考查利用导数研究函数零点问题,解题的关键在于将问题转化为方程xb e a x=在0,上有两个不相等实数根,进而令()g x 研究函数的单调性即可.考查运算求解能力与化归转化思想,是中档题.2.A解析:A【分析】先利用二倍角公式和诱导公式化简函数,构造()()6g x f x =-为R 上单调递增的奇函数,再转化不等式为()22(34)g t t g t -<-,利用单调性解不等式即得结果. 【详解】解:33()26cos 2sin 62f x x x x x x x π⎛⎫=++-+=+++⎪⎝⎭令3()()62sin g x f x x x x =-=++,则2()32cos 0g x x x '=++>,()()g x g x -=-, 故()g x 在R 上单调递增,且()g x 为奇函数.不等式()22(34)12f t t f t -+-+<,即()226(34)60f t t f t --+-+-<, 即()22(34)0g t t g t -+-+<,则()22(34)g t t g t -<- 故2234t t t -<-,即2540t t -+<,所以14t <<.故选:A. 【点睛】 方法点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.3.B解析:B 【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围.【详解】由题意可得()160f x x a x'=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞恒成立因为16x x +≥16x x =即6x =时取最小值所以a ≤ 故选:B 【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.4.A解析:A 【分析】利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减;当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.5.B解析:B 【分析】 由函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,知'0y ≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,分离参数,求最值得答案. 【详解】因为函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,所以22'20a x x ay x x x--=--=≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以222(1)1a x x x ≤-=--在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以1a ≤-, 故选:B. 【点睛】方法点睛:该题考查的是有关根据函数在给定区间上单调增求你参数的取值范围的问题,解题方法如下:(1)利用函数在给定区间上单调递增,得到其导数大于等于零在给定区间上恒成立; (2)求导;(3)分离参数,求最小值,得结果.6.B解析:B【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.7.D解析:D 【分析】根据题意,令()()221,02ln 2,0x x f x x g x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩,得到函数()()2f xg x x =与直线2y =共有三个不同的交点;根据导数的方法,分别判断0x <和0x >时,函数的单调性,以及最值,结合题中条件,即可得出结果. 【详解】因为()()22,02ln ,0x x f x a x x x x -⎧<⎪=⎨++>⎪⎩,令()()221,02ln 2,0x x f x x g x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩, 由题意,函数()()2f x g x x=与直线2y =共有三个不同的交点; 当0x <时,()212x g x x =⋅,则()()()()222232222ln 222ln 22222x x x x x x x x xx g x x x x '-⋅⋅+⋅+'==-=-⋅⋅⋅,由()3ln 2202x x g x x +'=-=⋅解得222log ln 2x e =-=-; 所以()2,2log x e ∈-∞-时,()0g x '<,即函数()212x g x x =⋅单调递减; ()22log ,0x e ∈-时,()0g x '>,即函数()212x g x x =⋅单调递增; 所以()()()()222222min 2log 2212log 2422log 4log ee e g x g e e e -=-==<<⋅-,又2121122122g -⎛⎫-==> ⎪⎝⎭⎛⎫⋅- ⎪⎝⎭,()()271128724927g --==>⋅-, 所以()212x g x x =⋅与直线2y =有且仅有两个不同的交点; 当0x >时,()ln 2xg x a x =++,则()21ln x g x x-'=, 由()21ln 0xg x x-'==得x e =, 所以当()0,x e ∈时,()0g x '>,则函数()ln 2xg x a x=++单调递增; 当(),x e ∈+∞时,()0g x '<,则函数()ln 2xg x a x=++单调递减; 所以()()max 12g x g e a e==++, 又当1≥x 时,()ln 22xg x a a x=++≥+;当01x <<时,()2g x a <+; 当x e ≥时,()ln 22xg x a a x=++>+, 所以为使()ln 2xg x a x=++与直线2y =只有一个交点, 只需122a e ++=或22a +≥,即1a e=-或0a ≥. 故选:D. 【点睛】本题主要考查由方程根的个数求参数,转化为函数交点个数问题求解即可,属于常考题型.8.B解析:B 【分析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解.【详解】 已知函数321()13f x x ax x =+++, 则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.9.D解析:D 【分析】分析函数()13log xf x e x =-为增函数,若01x ≥,求出[)1,x ∈+∞时函数的值域,结合命题间的基本关系即可得答案. 【详解】由函数的解析式可得函数的定义域为: ()0,∞+, 且导函数()10ln 3xf x e x '+=>, 则函数单调递增,结合()1131log 1e f e =-=, 可得当1≥x 时,函数的值域为[),e +∞.据此可知p 是假命题, q 是真命题, q ⌝是假命题. 结合全称命题与特称命题的关系可得:p 的否命题是:若01x <,则()03f x <.[):1,q x ⌝∀∈+∞,()3f x ≠故选:D 【点睛】本题通过考查函数的单调性和极值来考查命题间的基本关系,属于中档型综合题.10.B解析:B 【分析】由题意得出()0f x '≤对于任意的[]1,1x ∈-恒成立,由此得出()()1010f f ⎧-≤⎪⎨≤''⎪⎩,进而可求得实数k 的取值范围. 【详解】()327f x x kx x =+-,()2327f x x kx '∴=+-,由题意可知,不等式()0f x '≤对于任意的[]1,1x ∈-恒成立,所以,()()12401240f k f k ⎧-='--≤⎪⎨='-≤⎪⎩,解得22k -≤≤.因此,实数k 的取值范围是[]22-,. 故选:B. 【点睛】本题考查利用函数在区间上的单调性求参数,一般转化为导数不等式在区间上恒成立,考查运算求解能力,属于中等题.11.A解析:A 【分析】求导得()1xf x e a '=-+,原问题可转化为()'f x 在(0,1)上有变号零点,由于()'f x 单调递增,只需满足()()010f f ''<,解之即可. 【详解】 解:()(1)1x f x e a x =--+,()1x f x e a '∴=-+,若()f x 在(0,1)上不单调,则()'f x 在(0,1)上有变号零点,又()f x '单调递增,()()010f f ''∴<,即(11)(1)0a e a -+-+<,解得21a e <<+.a ∴的取值范围是(2,e +1).故选:A . 【点睛】本题考查利用导数研究函数的单调性、零点存在定理,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.12.D解析:D 【分析】求得导函数()'f x ,确定()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的单调性,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域,从而可得题中平面区域面积,解之可得a . 【详解】解:()()2222a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为()22,a e e a ⎡⎤+⎣⎦, 因为所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-, 所以()221211a e e e e ⎛⎫---=- ⎪⎝⎭,解得2ea e =-, 故选:D . 【点睛】本题考查用导数求函数的值域,解题方法是求出导函数,用导数确定函数的单调性,求得值域区间,然后可计算出题设平面区域面积,得出结论.二、填空题13.【分析】令问题转化为根据函数的单调性求出不等式的解集即可【详解】因为所以令则所以为奇函数又因为当时所以在上单调递减即在上单调递减而不等式所以所以故答案为:【点睛】构造辅助函数是高中数学中一种常用的方解析:5,2⎛⎤-∞ ⎥⎝⎦ 【分析】令()()2g x f x x =-,问题转化为()()5g x x g -≥,根据函数的单调性求出不等式的解集即可. 【详解】因为()()22f x f x x -+=,所以()()()220f x x f x x ---+-=,令()()2g x f x x =-,则()()0g x g x -+=,所以()g x 为奇函数.又因为当0x ≤时,()()20g x f x x ''=-<, 所以()g x 在(],0-∞上单调递减, 即()g x 在R 上单调递减.而不等式()()()()()()()2225510555f x f x x f x x f x x g x g x +≥-+⇔-≥---⇔≥-,所以5x x ≤-,所以52x ≤. 故答案为:5,2⎛⎤-∞ ⎥⎝⎦【点睛】构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.14.【分析】求导数利用导函数的图象开口向下且得的约束条件根据据线性规划求出目标函数的最值即可求得的取值范围【详解】由所以由函数在处取得极小值在处取得极大值所以是的两个根且导函数的图象开口向下由得即化简得 解析:(,1)-∞【分析】求导数,利用导函数()()2321f x ax bx a b '=+-++的图象开口向下且12102x x <-<<<,得a ,b 的约束条件,根据据线性规划求出目标函数的最值,即可求得321a b -+的取值范围. 【详解】由()()3211f x ax bx a b x =++++-,所以()()2321f x ax bx a b '=+-++,由函数()f x 在1x x =处取得极小值,在2x x =处取得极大值,所以1x ,2x 是()0f x '=的两个根,且导函数()()2321f x ax bx a b '=+-++的图象开口向下,由12102x x <-<<<,得()()()100020f f f ⎧-'''<⎪>⎨⎪<⎩,即 ()()()32101012410a b a b a b a b a b ⎧--++<⎪-++>⎨⎪+-++<⎩, 化简得23101011310a b a b a b --<⎧⎪++<⎨⎪+-<⎩,满足条件的约束条件的可行域如图阴影部分所示:令321z a b =-+,则当直线321z a b =-+,经过点A 时,z 取得最大值,联立方程 231010a b a b --=⎧⎨++=⎩,可得点A 的坐标为23,55⎛⎫-- ⎪⎝⎭,所以3211a b -+<,所以321a b -+的取值范围是(,1)-∞.故答案为:(,1)-∞. 【点睛】本题考查函数的极值以及不等式求解函数的最值,同时考查了学生的转化思想,考查分析问题解决问题的能力.15.【分析】利用导数判断出函数的单调区间作出函数的图象数形结合即可得解;【详解】解:当时函数单调递增;当时则时且时时故当时在上单调递减在上单调递增在处取极小值极小值为;作出函数的图象如图:函数恰有3个零解析:()2,0e --【分析】利用导数判断出函数()f x 的单调区间,作出函数()f x 的图象,数形结合即可得解; 【详解】解:当0x >时,函数()f x lnx =单调递增;当0x 时,()(1)xf x e x =+,则()(2)0x f x e x '=+=时,2x =-,且2x <-时,()0f x '<,20x -<时,()0f x '>,故当0x 时,()f x 在(,2)-∞-上单调递减,在(2,0)-上单调递增,()f x 在2x =-处取极小值,极小值为2(2)f e --=-;作出函数()f x 的图象如图:函数()()()F x f x c c R =-∈恰有3个零点,等价于函数()f x 与y c =的图象有且仅有3个零点,由图可知,20e c --<<, 故答案为:()2,0e --. 【点睛】本题考查函数零点与方程根的关系,涉及利用导数判断函数单调性,数形结合思想等,属于中档题.16.【分析】根据求导函数根据在上单调性求解【详解】因为函数所以所以在上单调递增所以函数在上的最大值为故答案为:【点睛】本题主要考查导数法求函数的最值还考查了运算求解的能力属于中档题解析:212e +【分析】 根据21()ln 2f x x x =+,求导函数,根据()f x 在[1,]e 上单调性求解. 【详解】 因为函数21()ln 2f x x x =+, 所以1()0f x x x'=+>, 所以()f x 在[1,]e 上单调递增,所以函数()f x 在[1,]e 上的最大值为2()()12e f x f e ==+.故答案为:212e +【点睛】本题主要考查导数法求函数的最值,还考查了运算求解的能力,属于中档题.17.【分析】令根据题中条件得到为偶函数;对其求导根据题中条件判定在上单调递减;则在上单调递增;化所求不等式为求解即可得出结果【详解】令则因为所以即所以函数为偶函数;又当时所以即函数在上单调递减;则在上单解析:12x x ⎧⎫≥⎨⎬⎩⎭【分析】令()()xg x f x e =,根据题中条件,得到()g x 为偶函数;对其求导,根据题中条件,判定()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增;化所求不等式为1x x ≥-,求解,即可得出结果.【详解】令()()xg x f x e =,则()()xg x f x e --=-,因为2()()0xf x ef x --=,所以()()x x f x e f x e -=-,即()()g x g x =-,所以函数()g x 为偶函数;又()[]()()()()xxxg x f x e f x e f x f x e '''=+=+,当0x ≤时,()()0f x f x '+<,所以()[]()()0xg x f x f x e ''=+<,即函数()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增; 又不等式21()(1)x f x ef x -≥-可化为1()(1)x x f x e f x e -≥-,即()()1g x g x ≥-,所以只需1x x ≥-,则()221x x ≥-,解得12x ≥. 故答案为:12x x ⎧⎫≥⎨⎬⎩⎭. 【点睛】本题主要考查由函数单调性与奇偶性解不等式,考查导数的方法判定函数单调性,涉及绝对值不等式的解法,属于常考题型.18.【分析】令先判断函数g(x)的奇偶性和单调性得到在R 上恒成立再利用导数分析解答即得解【详解】因为当时有不等式成立所以令所以函数g(x)在(0+∞)上单调递增由题得所以函数g(x)是奇函数所以函数在R 解析:2【分析】令2()(),g x x f x =先判断函数g(x)的奇偶性和单调性,得到e x ax >在R 上恒成立,再利用导数分析解答即得解. 【详解】因为当0x >时,有不等式()()22x f x xf x '>-成立,所以()()22+20,[()]0x f x xf x x f x ''>∴>,令2()(),g x x f x =所以函数g(x)在(0,+∞)上单调递增, 由题得22()()()g(x),g x x f x x f x -=-=-=- 所以函数g(x)是奇函数,所以函数在R 上单调递增. 因为对x R ∀∈,不等式()()2220xxe f e a x f ax ->恒成立,所以()()222,()()e xxxxe f ea x f ax g e g ax ax >∴>∴>,,因为a >0,所以当x≤0时,显然成立.当x >0时,()(0)xe a h x x x<=>,所以2(1)()xx e h x x -'=,所以函数h (x)在(0,1)单调递减,在(1,+∞)单调递增.所以min ()(1)h x h e ==, 所以a <e,所以正整数a 的最大值为2. 故答案为2 【点睛】本题主要考查函数的奇偶性及其应用,考查函数单调性的判断及其应用,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.属于中档题.19.【分析】求出函数的导数问题转化为在区间恒成立求出的范围即可【详解】若函数区间上为减函数则在区间恒成立即因为所以所以故答案为:【点睛】本题主要考查了利用导数研究函数的单调性函数的单调性的性质属于中档题解析:(],1-∞【分析】求出函数的导数,问题转化为10a x-在区间(0,1)恒成立,求出a 的范围即可. 【详解】()f x ax lnx =-,(0)x >, 1()f x a x∴'=-,若函数()f x ax lnx =-区间(0,1)上为减函数, 则10a x-在区间(0,1)恒成立, 即1()min a x ,因为(0,1)x ∈,所以min11x ⎛⎫> ⎪⎝⎭,所以1a ≤.故答案为:(-∞,1]. 【点睛】本题主要考查了利用导数研究函数的单调性,函数的单调性的性质,属于中档题.20.【分析】首先对进行求导利用导数研究函数的最值问题根据题意对任意存在使只要的最小值大于等于在指定区间上有解【详解】由得当时当时∴在上单调递减在上单调递增∴在上有解在上有解函数在上单调增故答案为:【点睛 解析:[)0,+∞【分析】首先对()f x 进行求导,利用导数研究函数()f x 的最值问题,根据题意对任意1x R ∈,存在[]21,2x ∈,使12()()f x g x ,只要()f x 的最小值大于等于()g x 在指定区间上有解 . 【详解】由()xf x e x =-,得()1xf x e '=-,当()1,0x ∈-时,()0f x '<,当()0,1x ∈时,()0f x '>, ∴()f x 在()1,0-上单调递减,在()0,1上单调递增, ∴()()min 01f x f ==()1g x ≤在[]1,2上有解,21212x mx m x x -≤⇔≥-在[]1,2上有解,函数1y x x =-在[]1,2上单调增,1101min y ∴=-=,20,0m m ≥≥.故答案为: [)0,+∞ 【点睛】不等恒成立与能成立的等价转换:任意1x A ∈,存在2x B ∈,使()()12min min ()()f x g x f x g x ⇔≥ 任意1x A ∈,任意2x B ∈,使()()12min max ()()f x g x f x g x ⇔= 存在1x A ∈,存在2x B ∈,使()()12max min ()()f x g x f x g x ⇔⇔三、解答题21.(1)证明见详解;(2)2 【分析】(1)构造新函数利用函数的单调性证明命题成立.(2)对k 进行讨论,利用新函数的单调性求参数k 的取值范围. 【详解】(1)证明:()()1()lnln 1ln 11xf x x x x+==+---, ()2112111f x x x x '=+=+-- 令()3()2()3x g x f x x =-+,则()()()4222211x g x f x x x''=-+=-, 因为()()001g x x '><<,所以()g x 在()0,1上单调递增, 所以()()00g x g >=,()0,1x ∈,即当()0,1x ∈时,3()2()3x f x x >+.(2)由(1)可知,当k 2≤时,3()()3x f x k x >+对(0,1)x ∈恒成立,当2k >时,令()3()()3x h x f x k x =-+,则()()2222()(1)1kx k h x f x k x x--''=-+=-,所以当0x <<()0h x '<,因此()h x 在区间⎛ ⎝上单调递减,当0x <<()()00h x h <=, 即3()()3x f x k x <+,所以当2k >时,3()()3x f x k x >+并非对(0,1)x ∈恒成立,综上可知,k 的最大值为2. 【点睛】关键点点睛:本题考查了构造新函数,利用导数判断函数的单调性,证明不等式,利用导数研究不等式恒成立,解题的关键是由(1)确定当k 2≤时,3()()3x f x k x >+对(0,1)x ∈恒成立,考查了运算求解能力.22.(1)答案见解析;(2)22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭.【分析】(1)先对函数求导,然后分0a >和0a <两种情况,解不等式()0f x '<,()0f x '>,可求出函数的单调区间;(2)函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,然后分0a >和0a <两种情况讨论即可得答案 【详解】(1)()(1)xf x ae x '=-,若0a >,由()0f x '<,得1x <;由()0f x '>,得1,()x f x >∴的递减区间为(,1)-∞,递增区间为(1,)+∞.若0a <,由()0f x '<,得1x >;由()0f x '>,得1,()x f x <∴的递减区间为(1,)+∞,递增区间为(,1)-∞.(2)22()()2(2)2x g x f x x x ae x x x =+-=-+-,()()(1)22(1)2x x g x ae x x x ae '=-+-=-+. 2()(2)2x g x ae x x x ∴=-+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,当1x =时,1(1)20h ae =+≠,即2a e≠-. ∴①当0a >时,()20x h x ae =+>,此时无零点; ②当0a <且2a e≠-时,2()0,()h x ae h x '=<∴为减函数. 又2ln 2ln 20a h ae a ⎛⎫- ⎪⎝⎭⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭,∴总存在唯一实数2ln a ⎛⎫- ⎪⎝⎭,使()0h x =.综上,()g x 有两个极值点实数a 的取值范围22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【点睛】关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间,考查导数与极值,第2问解题的关键是将函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,从而分情况讨论即可,考查数学转化思想,属于中档题 23.(1)当1a =时,函数()f x 在区间(),1-∞上单调递增;在区间1,上单调递减;(2)当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞ ⎪⎝⎭. 【分析】(1)先对函数求导,然后分别由0f x 和0f x 可求出函数的增区间和减区间; (2)由0g x ,得1x =,或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论,当ln 1a =可得()g x 只有1个零点,当ln 1a <时,求出()g x 的单调区间,然后讨论其零点,当ln 1a >时,求出()g x 的单调区间,然后讨论其零点,从而可求出实数a 的取值范围【详解】解:(1)当1a =时,()x x f x e =,定义域为R , 所以()1xx f x e -'=. 当1x <时,0f x ,函数()f x 单调递增; 当1x >时,0f x ,函数()f x 单调递减.综上所述,当1a =时,函数()f x 在区间(),1-∞上单调递增;在区间1,上单调递减.(2)因为0a >,函数()212x ax g x e x x =+-, 所以()()()111x x x a x e a g x x x e e -⎛⎫-'=+-=- ⎪⎝⎭. 当0g x 时,得1x =,或ln x a =.①若ln 1a =,即a e =,则0g x 恒成立,函数()g x 在R 上单调递增,因为()00g =,所以函数()g x 只有1个零点.②若ln 1a <,即0a e <<,当ln x a <时,0g x ,函数()g x 单调递增;当ln 1a x <<时,0g x,函数()g x 单调递减; 当1x >时,0g x ,函数()g x 单调递增.(Ⅰ)当ln 0a <,即01a <<时,()()()ln 001g a g g >=>,又因为()2220a g e=>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意.(Ⅱ)当ln 0a =,即1a =时,()()()ln 001g a g g ==>,又因为()2220g e=>,所以函数()g x 在区间1,2上有1个零点,故函数()g x 在R 上至少有2个零点,不符合题意.(Ⅲ)当ln 0a >,即1a e <<时,()()()ln 001g a g g >=>,若函数()g x 只有1个零点,需()1102a e g =->, 解得2e a e <<. ③若ln 1a >,即a e >, 当1x <时,0g x ,函数()g x 单调递增;当1ln x a <<时,0g x ,函数()g x 单调递减;当ln x a >时,0g x ,函数()g x 单调递增.所以()()100g g >=,()21ln ln 02g a a => 所以函数()g x 在R 上只有1个零点.综上所述,当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞ ⎪⎝⎭. 【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区间和求函数的零点,第二问解题的关键是由0g x 求得1x =或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论函数的单调性,从而由零点的情况求出参数的取值范围,属于中档题24.(1)最大值为1e ,最小值分别为0;(2)答案见解析. 【分析】(1)当1a =时,()x x f x e =,对其求导,利用导函数得符号判断()y f x =在[0,2]上的单调性,即可求得最值;(2)对()f x 求导可得()1()x a x f x e-'=,讨论0a >和0a <,由()0f x '>可得单调递增区间,由()0f x '<,可得单调递减区间.【详解】(1)当1a =时,()x x f x e =,所以21()x x x x e xe x f x e e--'==. 令()0f x '=,得1x =.当01x ≤<时,()0f x '>;当12x <≤时,()0f x '<.所以()y f x =在()0,1单调递增,在()1,2单调递减,所以当1x =时,()f x 取最大值1(1)f e =. 又因为(0)0f =,22(2)f e =,所以函数()x x f x e =的最大值和最小值分别为1e ,0. (2)因为()1()x a x f x e-'=. 当0a >时,由()0f x '>,得1x <;由()0f x '<,得1x >, 此时函数()x x f x e=的单调递增区间为(,1)-∞,单调递减区间为(1,)+∞; 当0a <时,由()0f x '>,得1x >;由()0f x '<,得1x <. 此时函数()x x f x e =的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞ 综上所述:当0a >时,函数()x x f x e =的单调递增区间为(,1)-∞,单调递减区间为(1,)+∞; 当0a <时,函数()x x f x e =的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞. 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数在区间[],a b 上单调递增或递减,则()f a 与()f b 一个为最大值,另一个为最小值;(2)若函数在区间[],a b 内有极值,则要先求出函数在[],a b 上的极值,再与()f a ,()f b 比较,最大的为最大值,最小的为最小值;(3)函数()f x 在区间(),a b 上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.25.(1)89;(2)存在,12a =. 【分析】(1)由1a =,求导()22f x x x '=-,利用导数的几何意义求得曲线()y f x =在点()()1,1f 处的切线方程,再求得切线的x 轴、y 轴上的截距,代入三角形的面积公式求解. (2)求导()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =,然后分022a <<,22a ≥,由()f x 在[]0,2上的最小值为56求解. 【详解】(1)当1a =时,()32113f x x x =-+,()22f x x x '=-,所以()11f '=-,又()113f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()113y x -=--, 即3340x y +-=,直线3340x y +-=在x 轴、y 轴上的截距均为43, 所以三角形的面积为14482339S =⨯⨯=. (2)()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =.当022a <<,即01a <<时,当[]0,2x a ∈时,()0f x '≤,()f x 单调递减;当[]2,2x a ∈时.()0f x '≥,()f x 单调递增.则()()33min 8524136f x f a a a ==-+=,解得12a =, 当22a ≥,即1a ≥时,当[]0,2x ∈时,()0f x '≤,()f x 单调递减,则()()min 8524136f x f a ==-+=,解得17124a =<,舍去. 综上:存在12a =,使得()f x 在[]0,2上的最小值为56. 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.(2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数. 26.(1)2;(2)(,1)-∞-.【分析】(1)将0a =代入,求出函数的导数,分析函数的单调性可得当1x =-时,()f x 有最大值2; (2)若()f x 无最大值,则3123a a a a ≤-⎧⎨->-⎩或312322a a a a a >-⎧⎪->-⎨⎪->⎩,解得可得答案. 【详解】(1)若0a =,33,0()2,0x x x f x x x ⎧-=⎨->⎩,所以233,0()2,0x x f x x ⎧-=⎨->⎩', 当1x <-时,()0f x '>,此时函数为单调递增函数,当1x >-时,()0f x '<,此时函数为单调递减函数,故当1x =-时()f x 有最大值为2 .(2)233,()2,x x a f x x a⎧-=⎨->'⎩,令()0f x '=,则1x =±,若()f x 无最大值,则 3123a a a a ≤-⎧⎨->-⎩ ① 或312322a a a a a >-⎧⎪->-⎨⎪->⎩②, 由①得(,1)a ∈-∞-,由②得无解,所以(,1)a ∈-∞-.故答案为:2;(,1)-∞-.【点睛】分段函数在高考中的常见题型有:已知分段函数求值、已知分段函数求值域、已知分段函数求不等式解集、已知分段函数求参数取值范围等,分段函数问题要注意分类讨论,涉及分段函数的单调性、奇偶性、周期性等问题,要善于利用数形结合的思想解决问题.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(含答案解析)(3)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(含答案解析)(3)

一、选择题1.定义在R 上的偶函数()f x 的导函数为(),f x '若对任意的0x >的实数,都有:()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的取值范围为( )A .{}1xx ≠±∣ B .(-1,1) C .()(),11,-∞-+∞D .(-1,0)()0,1⋃2.已知函数()()ln 1xxf x x e e -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是( ) A .()(),11,-∞-+∞B .()2,1--C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭D .()(),21,-∞-⋃+∞3.已知函数3213()32f x x x c =++有3个不同的零点,则c 的取值范围是( ) A .9,02⎛⎫- ⎪⎝⎭ B .4,(0,)3⎫⎛-∞-⋃+∞ ⎪⎝⎭C .4,03⎛⎫-⎪⎝⎭ D .9,(0,)2⎫⎛-∞-⋃+∞ ⎪⎝⎭4.已知函数ln ,0()(2),0x xx f x x x e x ⎧>⎪=⎨⎪+≤⎩,若函数()()g x f x a =-仅有一个零点,则实数a的取值范围为( ). A .(2,)+∞B .31(2,),e ⎛⎫+∞⋃-∞- ⎪⎝⎭C .311,2,e e⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭D .31,e ⎛⎫-∞-⎪⎝⎭5.设函数()f x 为偶函数,且当0x ≥时,()cos x f x e x =-,则不等式(21)(2)0f x f x --->的解集为( )A .(1,1)-B .(,3)-∞-C .(3,)-+∞D .(1,)(,1)+∞⋃-∞-6.已知函数4213(),42f x x x mx n =-++其中m ,n 为正整数,若函数()f x 有极大值,则m 的值为( ) A .1B .2C .3D .47.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞B .()2e ,+∞C .()20,eD .()0,e8.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( ) A .1- B .0 C .1 D .29.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 10.若曲线()11xmy e x x =+<-+上存在两条垂直于y 轴的切线,则m 的取值范围是( ) A .34,1e ⎛⎫⎪⎝⎭B .34,e ⎛⎫-∞ ⎪⎝⎭C .340,e ⎛⎫ ⎪⎝⎭D .341,e ⎛⎫- ⎪⎝⎭11.对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是( )A .34f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭B .()2cos113f f π⎛⎫⋅⎪⎝⎭>C .()14f f π⎛⎫⋅⎪⎝⎭D .426f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭< 12.已知函数2()f x x m =+与函数1()ln3g x x x =--,1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A .5ln )4[2,2+ B .5[2ln 2,ln 2)4-+ C .5(ln 2,2ln 2)4+-D .(]2ln2,2-二、填空题13.若直线l 与曲线C 满足下列两个条件:(1)直线l 在点()00,P x y 处与曲线C 相切;(2)曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线l :0y =在点()0,0P 处“切过”曲线C :3y x =. ②直线l :1x =-在点()1,0P -处“切过”曲线C :()21y x =+.③直线l :y x =在点()0,0P 处“切过”曲线C :sin y x =. ④直线l :1y x =+在点()0,1P 处“切过”曲线C :x y e =. ⑤直线l :1y x =-在点()1,0P 处“切过”曲线C :ln y x =. 14.函数()y f x =的导函数的图像如图所示,给出下列判断:①函数()y f x =在区间(3)5,内单调递增; ②函数()y f x =在区间1(3)2-,内单调递减; ③函数()y f x =在区间(22)-,内单调递增; ④当12x =-时,函数()y f x =有极大值;⑤当2x =时,函数()y f x =有极大值; 则上述判断中正确的是________.15.已知()f x 满足()()431f f =-=,()f x '为其导函数,且导函数()y f x '=的图象如图所示,则()1f x <的解集是_________.16.设函数f (x )在R 上存在导数f '(x ),当x ∈(0,+∞)时,f '(x )<x .且对任意x ∈R ,有f (x )=x 2﹣f (﹣x ),若f (1﹣t )﹣f (t )12≥-t ,则实数t 的取值范围是_____. 17.已知函数()()()3ln 06x f x a x x x a =-->,当0x >时,()0f x '≥(()f x '为函数()f x 的导函数),则实数a 的取值范围为______.18.若函数()()20xf x ae xa =-≠仅有1个零点,则实数a 的取值范围是______.19.已知函数()(ln )f x x x ax =-有且仅有一个极值点,则实数a 的取值范围是_____. 20.已知函数()()31f x x ax b =---,x ∈R ,其中a 、b ∈R ,若()f x 存在极值点0x ,且()()10f x f x =,其中10x x ≠,则102x x +=_______.三、解答题21.已知函数21()ln 2x f x x x -=-.(1)求()f x 的单调区间; (2)设()*ln 1,1,2,k k a n k n n ⎫⎛=+∈=⋅⋅⋅ ⎪⎝⎭N ,在(1)的条件下,求证:123214n n a a a a ++++⋅⋅⋅+<()*n ∈N . 22.已知函数()ln f x x x e =--. (1)求函数()f x 的单调区间;(2)若关于x 的不等式()xe f x mx ⋅在(0,)+∞上恒成立,求实数m 的取值范围.23.“既要金山银山,又要绿水青山”.滨江风景区在一个直径AB 为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆弧上的一点C (不同于A ,B 两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点C 到点B 设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设BAC θ∠= (弧度),将绿化带总长度表示为θ的函数()S θ;(2)试确定θ的值,使得绿化带总长度最大.(弧度公式:l r α=⋅,其中α为弧所对的圆心角)24.已知e 是自然对数的底数,函数()122x f x eax -=-,其中a R ∈.(1)当1a =时,若()()g x f x '=,求()g x 的单调区间; (2)若()f x 在R 上恰有三个零点,求a 的取值范围. 25.已知函数())ln f x a x x a =∈R . (1)当1a =-时,求()f x 的单调区间; (2)求()f x 在[1,4]上的最小值.26.已知函数()322233f x x x =-+. (1)求曲线()y f x =在1x =处的切线方程; (2)求()f x 在[]2,1-上的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围. 【详解】当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-< 设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<-即()()1g x g < 即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞, 故选:C 【点睛】关键点点睛:主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题.2.D解析:D 【分析】先判断函数的奇偶性和单调性,从而可得关于x 的不等式,求出其解后可得正确的选项. 【详解】()f x 的定义域为()(),11,-∞-+∞,且()()()ln 1x x f x x e e f x --=--++=,又当1x >时,()()ln 1xxf x x e e -=-++,()11001x x f x e e e x e-'=+->+->-,故()f x 在()1,+∞为增函数, 故()()12f x f x +<即为11211112121x xx x x x ⎧<+<⎪+-+⎨⎪-⎩或或,解得2x <-或1x >,故选:D. 【点睛】方法点睛:解函数不等式,往往需要考虑函数的奇偶性和单调性,前者依据定义,后者可利用导数,注意定义域的要求.3.A解析:A 【分析】求出三次函数的导数,根据导函数正负情况分析单调性和极值,图象要与x 轴三个交点,据此得出取值范围. 【详解】由条件得2()3(3)f x x x x x '=+=+, 令()0f x '>,可得解集为(,3)(0,)-∞-⋃+∞ 令()0f x '<,可得解集为(3,0)-则()f x 在(,3)-∞-和(0,)+∞上单调递增,在(3,0)-上单调递减,又9(3)2f c -=+,(0)f c =,要使()f x 有3个不同的零点,则902c c <<+,所以902c -<<. 故选:A 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.4.C解析:C 【分析】转化为()y f x =的图象与直线y a =仅有一个交点,利用导数得到函数的性质,根据函数的性质作出函数的图象,根据图象可得解. 【详解】当0x >时,ln ()x f xx=,21ln ()x x x f x x ⋅-'=21ln xx -=, 当0x e <<时,()'f x 0>,当x e >时,()0f x '<,所以()f x 在(0,)e 上递增,在(,)e +∞上递减,所以()f x 在x e =处取得极大值为1()f e e=,当0x ≤时,()(2)x f x x e =+,()(2)(3)x x xf x e x e x e '=++=+,当3x <-时,()0f x '<,当3x >-时,()0f x '>, 所以()f x 在(,3)-∞-上递减,在(3,0]-上递增,所以()f x 在3x =-处取得极小值为331(3)f e e--=-=-,又(0)2f =, 因为函数()()g x f x a =-仅有一个零点,所以()y f x =的图象与直线y a =仅有一个交点,作出函数()f x 的图象,如图:由图可知:12a e <≤或31a e<-. 故实数a 的取值范围为311,2,e e ⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭. 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.5.D解析:D 【分析】利用导数判断函数在[)0,+∞的单调性,然后根据奇偶性判断()f x 在(],0-∞的单调性,再利用单调性与奇偶性结合求解不等式. 【详解】当0x ≥时,()cos x f x e x =-,所以()sin xf x e x '=+,因为0x ≥,所以1x e ≥,即()1sin 0f x x '≥+≥,所以函数()f x 在[)0,+∞上单调递增,又因为函数()f x 为R 上的偶函数,所以函数()f x 在(],0-∞上单调递减,在[)0,+∞上单调递增,则不等式(21)(2)0f x f x --->,等价于212x x ->-,所以1x <-或1x >.故选:D. 【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若()f x 为偶函数,则()()()f x f x f x -==. 6.A解析:A 【分析】对()f x 进行求导得3()3f x x x m '=-+,构造新函数3()3,h x x x m x R =-+∈,利用导数研究函数()h x 的单调性,结合题意,可知函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,求解不等式且结合m ,n 为正整数,即可得出结果.【详解】 由题可知,4213()42f x x x mx n =-++()x R ∈, 则3()3f x x x m '=-+,设3()3,h x x x m x R =-+∈,则2()33h x x '=-,令2()330h x x '=-=,解得:121,1x x =-=,则当1x <-或1x >时,()0h x '>;当11x -<<时,()0h x '<,所以()h x 在区间()(),1,1,-∞-+∞上单调递增;在区间()1,1-上单调递减, 又因为函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,即()()120120h m h m ⎧-=+>⎪⎨=-<⎪⎩,解得:22m -<<,而m ,n 为正整数,所以m 的值为1.故选:A. 【点睛】关键点点睛:本题考查利用导数研究函数的单调性和极值,从而求参数值,构造新函数且利用导数求出单调区间是解题的关键,考查转化思想和运用能力.7.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.8.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0.故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212lnx kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.9.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x1=,x2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值, ∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值; 10.C解析:C 【分析】先求出原函数的导函数,令0y '=,得到2(1)x m x e =+,然后将问题转化为2(1)x m x e =+在(,1)-∞-上有两个不同的解,再构造函数2()(1)(1)x f x x e x =+<-,求出()f x 的取值范围,即可得到m 的取值范围. 【详解】由(1)1xm y e x x =+<-+,得2(1)xm y e x '=-+,令0y '=,则2(1)x m x e =+,曲线(1)1xmy e x x =+<-+存在两条垂直于y 轴的切线, 2(1)x m x e ∴=+在(,1)-∞-上有两个不同的解.令2()(1)x f x x e =+,则22()2(1)(1)(43)x x x f x x e x e x x e '=+++=++.∴当3x <-时,()0f x '>,当31x -<<-时,()0f x '<,()f x ∴在(,3)-∞-上单调递增,在(3,1)--上单调递减, ∴34()(3)max f x f e =-=, 又当3x <-时,()0f x >,(1)0f -=.m ∴的取值范围为34(0,)e.故选:C . 【点睛】本题考查了利用导数研究曲线上某点处切线斜率,训练了利用导数研究函数的单调性、零点,考查数学转化思想方法,属中档题.11.D解析:D 【分析】构造函数()()cos g x f x x =,对其求导后利用已知条件得到()g x 的单调性,将选项中的角代入函数()g x 中,利用单调性化简,并判断正误,由此得出选项. 【详解】解:构造函数()()cos g x f x x =,则()()()cos sin g x x f x x f x ='⋅⋅'-, ∵()()sin cos x f x x f x ⋅⋅'<,∴()()()cos sin 0g x x f x x f x =⋅-⋅''>, 即()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上为增函数,由43g g <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即cos cos 4433f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<1423f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,故A 正确;()13g g 由<π⎛⎫⎪⎝⎭,即()1cos1cos 33f f ππ⎛⎫ ⎪⎝⎭<,即()2cos113f f π⎛⎫⋅ ⎪⎝⎭>,故B 正确;()14g g π⎛⎫⎪⎝⎭由<,即()cos 1cos144f f <ππ⎛⎫ ⎪⎝⎭,即()1cos124f f π⎛⎫⎪⎝⎭<,故C 正确;由64g g ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,即cos cos 6644f fππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即2624f f <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即64f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<, 故错误的是D .故选D .【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有()f x ,也含有其导数()f x '的不等式,根据不等式的结构,构造出相应的函数.如已知是()()0xf x f x -<',可构造()()f x g x x=,可得()()()20xf x f x g x x'-='<.12.A解析:A 【分析】将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,令()()()h x f x g x =+,将问题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定区间端点值和最值,由此构造不等式求得结果. 【详解】()f x 与()g x 在1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,()()f x g x ∴=-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,即221ln3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤⎢⎥⎣⎦上恰有两个不同的解, 令()2ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x---+'=+-==,∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当()1,2x ∈时,()0h x '>,()h x ∴在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,又15ln 224h m ⎛⎫=--+⎪⎝⎭,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22⎡⎤⎢⎥⎣⎦上恰有两个零点,则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢⎣⎭.故选:A . 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.二、填空题13.①③【分析】根据直线在点处切过曲线的定义对5个函数逐个判断可得答案【详解】对于①由得所以则直线:是曲线:在点处的的切线又当时当时满足曲线在附近位于直线的两侧故直线:在点处切过曲线:故①正确;对于②由解析:①③ 【分析】根据直线l 在点P 处“切过”曲线C 的定义,对5个函数逐个判断可得答案. 【详解】对于①,由3y x =,得23y x '=,所以0|0x y ='=,则直线l :0y =是曲线C :3y x =在点()0,0P 处的的切线,又当0x >时,0y >,当0x <时,0y <,满足曲线C 在P 附近位于直线l 的两侧,故直线l :0y =在点()0,0P 处“切过”曲线C :3y x =,故①正确;对于②,由()21y x =+,得2(1)y x '=+,所以1|0x y =-'=,而直线l :1x =-的斜率不存在,在点()1,0P -处与曲线C :()21y x =+不相切,故②不正确;对于③,由sin y x =,得cos y x '=,所以0|1x y ='=,则直线l :y x =是曲线C :sin y x =在点()0,0P 处的切线,令sin y x x =-,则1cos y x '=-,当02x π-<<时,0y '>,函数sin y x x =-递增,所以当02x π-<<时,0sin 0y x <-=,当02x π<<时,0y '>,函数sin y x x =-递增,所以当02x π<<时,0sin 00y >-=,所以当02x π-<<时,sin x x <,当02x π<<时,sin x x >,所以曲线C 在P 附近位于直线l 的两侧,故直线l :y x =在点()0,0P 处“切过”曲线C :sin y x =,故③正确;对于④,由x y e =,得e x y '=,所以0|1x y ='=,则曲线C :xy e =在点()0,1P 处的切线方程为10y x -=-,即1y x =+,令()1xg x e x =--,则()1xg x e '=-,当0x >时,()0g x '>,函数()g x 递增,当0x <时,()0g x '<,函数()g x 递减,则当0x =时,函数()g x 取得极小值,同时也是最小值(0)0g =,则()0g x ≥,即1x e x ≥+,则曲线C :xy e =不在切线l :1y x =+的两侧,故④不正确;对于⑤,由ln y x =,得1y x'=,所以|11y x '==,所以曲线C :ln y x =在点()1,0P 处的切线方程为01y x -=-,即1y x =-,令()1ln g x x x =--,则1()1g x x'=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,函数()g x 取得极小值,也是最小值,所以()(1)0g x g ≥=,所以曲线C :ln y x =不在切线l :1y x =-的两侧,故⑤不正确.故答案为:①③ 【点睛】关键点点睛:对直线l 在点P 处“切过”曲线C 的定义正确理解是解题关键.14.③⑤【分析】根据导函数图像得出导数正负根据导数正负判定单调区间根据左正右负和左负有正判定极值【详解】解:对于①当时单调递减当时单调递增所以①错;对于②当时单调递增当时单调递减所以②错;对于③当时单调解析:③⑤ 【分析】根据导函数图像得出导数正负,根据导数正负判定单调区间,根据左正右负和左负有正判定极值. 【详解】解:对于①,当(34)x ∈,时()0f x '<,()f x 单调递减, 当(4,5)x ∈时()0f x '>,()f x 单调递增,所以①错;对于②,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,所以②错; 对于③,当(22)x ∈-,时()0f x '>,()f x 单调递增,所以③对; 对于④,当(22)x ∈-,时()0f x '>,()f x 单调递增,故当12x =-时()f x 不是极大值,所以④错;对于⑤,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,故2x =时函数()y f x =取得极大值,所以⑤对.故答案为:③⑤. 【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.15.【分析】利用导数分析函数的单调性分和两种情况解不等式由此可得出原不等式的解集【详解】由函数的图象可知当时此时函数单调递减;当时此时函数单调递增因为当时由可得;当时由可得综上所述不等式的解集时故答案为 解析:()3,4-【分析】利用导数分析函数()f x 的单调性,分0x ≤和0x >两种情况解不等式()1f x <,由此可得出原不等式的解集. 【详解】由函数()y f x '=的图象可知,当0x <时,()0f x '<,此时函数()f x 单调递减; 当0x >时,()0f x '>,此时函数()f x 单调递增.因为()()431f f =-=,当0x ≤时,由()()13f x f <=-,可得30x -<≤; 当0x >时,由()()14f x f <=,可得04x <<. 综上所述,不等式()1f x <的解集时()3,4-.故答案为:()3,4-. 【点睛】思路点睛:根据函数单调性求解函数不等式的思路如下: (1)先分析出函数在指定区间上的单调性;(2)根据函数单调性将函数值的关系转变为自变量之间的关系,并注意定义域;(3)求解关于自变量的不等式 ,从而求解出不等式的解集.16.+∞)【分析】构造函数可得即是奇函数由时可得进而根据奇函数及可知在R 上是减函数再根据可得则即可求解【详解】令因为则所以所以是奇函数易知所以因为当时所以所以在上单调递减所以在R 上是减函数所以因为所以即解析:[12,+∞) 【分析】构造函数()()212g x f x x =-,可得()()0g x g x -+=,即()g x 是奇函数,由()0,x ∈+∞时,()f x x '<可得()()0g x f x x ''=-<,进而根据奇函数及()00g =可知()g x 在R 上是减函数,再根据()()112f t f t t --≥-可得()()1g t g t -≥,则1t t -≤,即可求解. 【详解】 令()()212g x f x x =-, 因为()()2f x x f x =--,则()()2f x f x x +-=, 所以()()()()()()22211022g x g x f x x f x x f x f x x -+=--+-=-+-=, 所以()g x 是奇函数,易知()00f =,所以()00g =,因为当()0,x ∈+∞时,()f x x '<,所以()()0g x f x x ''=-<, 所以()g x 在()0,∞+上单调递减,所以()g x 在R 上是减函数, 所以()()()()()()()221111111222g t g t f t t f t t f t f t t --=----+=--+-, 因为()()112f t f t t --≥-,所以()()10g t g t --≥,即()()1g t g t -≥, 所以1t t -≤,即12t ≥, 所以1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 故答案为:1,2⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查构造函数法利用导函数判断函数单调性,考查利用函数单调性比较大小,考查函数的奇偶性的应用.17.【分析】转化条件得设求导后求出函数的最小值令即可得解【详解】由题意得由于时故设则由于所以当时单调递减;当时单调递增于是所以即故实数的取值范围是故答案为:【点睛】本题考查了利用导数解决不等式恒成立问题 解析:(]0,e【分析】转化条件得()min 0f x '≥,设()()g x f x '=,求导后求出函数()g x 的最小值()min g x ,令()min 0g x ≥即可得解. 【详解】由题意得()2ln 2x f x a x '=-.由于0x >时,()0f x '≥,故()min 0f x '≥.设()()g x f x '=,则()(2x x x a g x x x+-'==. 由于0x >,所以当(x ∈时,()0g x '<,()g x 单调递减;当)x ∈+∞时,()0g x '>,()g x 单调递增.于是()()()min min 1ln 022a af xg x ga a '===-=-≥, 所以ln 1a ≤即0a e <≤,故实数a 的取值范围是(]0,e . 故答案为:(]0,e 【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.18.(或)【分析】令分离常数构造函数利用导数研究的单调性和极值结合与有一个交点求得的取值范围【详解】解:方程可化为令有当时;当或时所以函数的增区间为减区间为可得处取得极小值0处取得极大值画出的图象和直线解析:24a e >(或24(,)e +∞) 【分析】令()0f x = 分离常数2x x a e=,构造函数2()x x g x e =,利用导数研究()g x 的单调性和极值,结合y a = 与()g x 有一个交点,求得a 的取值范围.【详解】解:方程()0f x = 可化为2x x a e=,令2()x x g x e =,有(2)()xx x g x e -'=, 当02x <<时,()0g x '>;当0x <或2x >时,()0g x '<,所以函数()g x 的增区间为(0,2),减区间为(,0)-∞,(2,)+∞, 可得0x = 处()g x 取得极小值 0,2x = 处取得极大值24e, 画出()y g x = 的图象和直线y a =,可得当24a e>时,()y g x = 和y a = 的图象有 1 个交点. 故答案为:24,e ⎛⎫+∞ ⎪⎝⎭. 【点睛】本小题主要考查利用导数研究函数的零点,考查利用导数研究函数的单调性、极值,考查化归与转化的数学思想方法,属于中档题.19.【分析】根据题意可得只有一个解只有一个解与只有一个交点求导数分析单调性及当时;当时画出函数的草图及可得的取值范围再检验是否符合题意即可得出答案【详解】解:因为函数有且仅有一个极值点所以只有一个解即只 解析:(,0]-∞【分析】根据题意可得()210f x lnx ax '=-+=只有一个解12lnx a x+⇒=只有一个解2y a ⇒=与1()lnx y g x x+==只有一个交点,求导数()g x ',分析单调性,及当0x →时,()g x →-∞;当x →+∞时,()0g x →,画出函数()g x 的草图,及可得a 的取值范围,再检验是否符合题意,即可得出答案. 【详解】解:因为函数()(ln )f x x x ax =-有且仅有一个极值点,所以1()ln ln 210f x x ax x a x ax x ⎛⎫'=-+-=-+= ⎪⎝⎭只有一个解, 即ln 12x a x+=,只有一个解, 即2y a =与ln 1()x y g x x+==只有一个交点, 因为2ln ()xg x x-'=, 当(0,1)x ∈时,()0g x '>,函数()g x 单调递增,当(1,)x ∈+∞时,()0g x '<,函数()g x 单调递减, 所以max ()(1)1g x g ==,当0x →时,()g x →-∞;当x →+∞时,()0g x →, 画出函数()g x 的草图如下:结合图象可得21a =或20a ≤, 解得12a =或0a ≤, 当12a =时,21()ln 2f x x x x =-, 所以()1ln f x x x '=+-,令()1ln h x x x =+-,所以1()1h x x'=-, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以()(1)0h x h ≤=,所以()1ln 0f x x x '=+-≤恒成立, 所以()f x 在(0,)+∞上单调递减, 所以函数()f x 没有极值点. 所以实数a 的取值范围是(,0]-∞. 故答案为:(,0]-∞ 【点睛】本题考查利用导数分析极值,解题关键是转化思想的应用,属于中档题.20.【分析】根据得出再根据利用作差因式分解可得出的值【详解】由题意可得则即即故答案为:【点睛】本题考查利用极值点求代数式的值主要考查因式分解考查计算能力属于中等题 解析:3【分析】根据()00f x '=得出()2031a x =-,再根据()()10f x f x =利用作差因式分解可得出102x x +的值.【详解】()()31f x x ax b =---,()()231f x x a '∴=--,由题意可得()()200310f x x a '=--=,则()2031a x =-,10x x ≠,100x x ∴-≠,()()10f x f x =,()()33110011x ax b x ax b ∴---=---,()()()33101011x x a x x ∴---=-,()()()()()()22101100101111x x x x x x a x x ⎡⎤∴--+--+-=-⎣⎦,()()()()()22211000111131x x x x a x ∴-+--+-==-,()()()()221100111210x x x x ∴-+----=,()()()()1010111210x x x x ∴---⋅-+-=⎡⎤⎡⎤⎣⎦⎣⎦,即()()1010230x x x x -+-=,10230x x ∴+-=,即1023x x +=.故答案为:3. 【点睛】本题考查利用极值点求代数式的值,主要考查因式分解,考查计算能力,属于中等题.三、解答题21.(1)()f x 单调递增区间为(0,)+∞,无递减区;(2)证明见解析. 【分析】(1)求导数()'f x ,由()0f x '>确定增区间,由()0f x '<得减区间;(2)由(1)得1x >时,()0f x >,即11ln ()2x x x<-,令1,1,2,,k x k n n =+=,代入后得n 个不等式,相加后可得证明题设结论. 【详解】(1)解:函数()f x 的定义域为(0,)+∞由21()ln 2x f x x x -=-,得()ln 1f x x x '=--令1()ln 1()1g x x x g x x'=--⇒=-()0(1,)()0(0,1)g x x g x x ''>⇒∈+∞<⇒∈即()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故()(1)0f x f '''≥=,于是()f x 单调递增区间为(0,)+∞,无递减区(2)证明:由(1)可知()f x 在(0,)+∞上单调递增函数,又(1)0f =,∴当1x >时,()0f x >,11ln 2x x x ⎫⎛∴<- ⎪⎝⎭1ln 112k k k n k k a n n n k +-⎫⎫⎛⎛∴=+<+- ⎪ ⎪+⎝⎝⎭⎭1(1,2,)2kk k n n n k ⎫⎛=+=⋅⋅⋅ ⎪+⎝⎭123112122111n n n a a a a n n n n n n ⎫⎛∴+++⋅⋅⋅+<++⋅⋅⋅++++⋅⋅⋅+ ⎪+++⎝⎭1121221n n n n ++⋅⋅⋅+++⋅⋅⋅+⎫⎛=+ ⎪+⎝⎭(1)(1)12122214n n n n n n n ++⎫⎛⎪ +=+=⎪+⎪⎝⎭于是()*123214n n a a a a n ++++⋅⋅⋅+<∈N 得证. 【点睛】关键点点睛:本题考查用导数求单调区间,用导数证明数列不等式.这类问题的解决,通常后一小题需要用到前一小题(或前面所有)的结论,通过变形,赋值等手段进行证明求解.如本题第(1)小题函数单调性得出不等式11ln ()2x x x<-,只要在此不等式中对x 赋值1,1,2,,kx k n n=+=,n 个不等式相加即可.22.(1)函数()f x 的单调递增区间为(1,)+∞,递减区间为(0,1);(2)(1,e e -⎤-∞-⎦.【分析】(1)解不等式()0f x '>与()0f x '<即可得单调区间; (2)先分离参数再利用导数研究函数最值即可得结果. 【详解】(1)依题意11(0,),()1x x f x x x'-∈+∞=-=, 令()0f x '>,解得1x >,令()0f x '<,解得01x <<,故函数()f x 的单调递增区间为(1,)+∞,递减区间为(0,1);(2)因为0x >,故不等式化为(ln )x x x e e m x --⋅,令(ln )()xx x e e h x x--⋅=,故min [()]m h x ,因为2(1)(ln 1)()xx x x e h x e x ---+'=,令11()ln 1,()1x x x x e x x xϕϕ'-=--+=-=,由(1)可知,当(0,1)x ∈时,()0x ϕ'>,当(1,)x ∈+∞时,()0x ϕ'<,又221130,(1)20,()0e e e e e ϕϕϕ⎛⎫=--<=->=⎪⎝⎭, 所以()ϕx 在(0,1)上存在唯一零点0x ,在(1,)+∞上存在唯一零点x e =,当00x x <<时,()0()0x h x ϕ'<<,,当01x x <<时,()0()0x h x ϕ'>>,,当1x e <<时,()0()0x h x ϕ'><,,当x e >时,()0,()0x h x ϕ'<>,所以函数()h x 在()00,x 和(1,)e 上为减函数,在()0,1x 和(,)e +∞上为增函数, 所以min [()]h x 是()0h x 与()h e 中的较小者,而1()e h e e -=-,因为()000ln 10x x x e ϕ=--+=,故010x e x e +-=, 故()()00100ln x x e x x e e h x e e x x ---=⋅=-=-,故1e m e --,综上所述,实数m 的取值范围为(1,e e -⎤-∞-⎦.【点晴】参变分离利用导数求解函数最值是解参数范围的关键. 23.(1)()200cos 100,0,2S πθθθθ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)6πθ=.【分析】(1)在直角三角形ABC 中,求出AC ,在扇形COB 中利用弧长公式求出弧BC 的长度,则可得函数()S θ; (2)利用导数可求得结果. 【详解】(1)如图,连接,BC OC ,在直角三角形ABC 中,100,,AB BAC θ=∠= 所以100cos ,AC θ=由于22,BOC BAC θ∠=∠= 则弧BC 的长为250100,l r αθθ=⋅=⋅=()22100cos 100200cos 100,0,2S AC l πθθθθθθ⎛⎫⎛⎫∴=+=⨯+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)由(1)可知()200sin 100S θθ'=-+, 令()0,S θ'= 得1sin 2θ=,因为(0,)2πθ∈所以6πθ=,当0,,()0,()6S S πθθθ'⎛⎫∈> ⎪⎝⎭单调递增,当,,()0,()62S S ππθθθ'⎛⎫∈< ⎪⎝⎭单调递减,所以当6πθ=时,使得绿化带总长度()S θ最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键.24.(1)()g x 的单调递减区间为(,1)-∞,单调递增区间为(1,)+∞;(2)2e ⎛⎫+∞ ⎪⎝⎭,. 【分析】(1)当1a =时()122x f x ex -=-,先对()f x 求导得()g x 的解析式,再对()g x 求导,由()0g x '<得单间区间,由()0g x '>得单增区间; (2)由题意可得方程()1202x f x eax --==有三个不等的实根,等价于方程122x e a x-=有三个不等的实根,即y a =与122()(0)x eh x x x-=≠两个函数图象有三个不同的交点,对()h x 求导判断其单调性,作出其图象,数形结合即可求解.【详解】(1)当1a =时,1()22x f x e x -'=-, 令()()g x f x '=,则1()22x g x e -'=-,当1x <时()0g x '<,()g x 在(,1)-∞上单调递减; 当1x >时()0g x '>,()g x 在(1,)+∞上单调递增.所以()g x 的单调递减区间为(,1)-∞,单调递增区间为(1,)+∞;(2)2(0)0f e=≠,0x ∴≠, 所以若()f x 在R 上恰有三个零点等价于()1202x f x eax --==有三个不等的实根,等价于方程122x e a x -=有三个不等的实根, 设122()(0)x e h x x x-=≠, 则y a =与122()(0)x eh x x x-=≠两个函数图象有三个不同的交点, 因为1211432222(2)()x x x e x e x e x h x x x---⋅-⋅-'== 令()0h x '=,得2x =,且(2)2eh =当()x ∈∞-,0时,()0h x '>,()h x 单调递增且()()0,h x ∈+∞,当()0,2x ∈时,()0h x '<,()h x 单调递减且()+2e h x ⎛⎫∈∞ ⎪⎝⎭,, 当()0,x ∈+∞时,()0h x '>,()h x 单调递增且()+2e h x ⎛⎫∈∞ ⎪⎝⎭,作出其图象如图所示:当2x =时,2122(2)22e eh -==, 由图知当2ea >时,y a =与()y h x =的图象有三个交点, 即()f x 有三个不同的零点,所以a 的取值范围是2e ⎛⎫+∞ ⎪⎝⎭,. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.25.(1)单调递增区间为(4,)+∞;单调递减区间为(0,4);(2)min2ln 22,11()2ln(2)2,1211,2a a f x a a a a a ⎧⎪+≤-⎪⎪=---<<-⎨⎪⎪≥-⎪⎩.【分析】(1)当1a =-时,2()2f x x'=,进而得4x >时,()0f x '>, 04x <<时,()0f x '<,进而得函数的单调区间;(2)()f x '=,故分1a ≤-,112a -<<-,12a ≥-三种情况讨论即可得答案.【详解】解:(1)()f x 的定义域为(0,)+∞, 当1a =-时,1()f x x '=-= 当4x >时,()0f x '>,则()f x 的单调递增区间为(4,)+∞; 当04x <<时,()0f x '<,则()f x 的单调递减区间为(0,4). (2)2()2a af x x x'== 当1a ≤-时,()0,()f x f x '≤在[1,4]上单调递减, 此时,()min (4)2ln 22f x f a ==+ 当12a ≥-时,()0,()f x f x '≥在[1,4]上单调递增, 此时,()min (1)1f x f == 当112a -<<-时,若214x a <<,则()0,()f x f x '<单调递减; 若244a x <<,则()0,()f x f x '>单调递增此时,()()22min ()4ln 42ln(2)2f x f a a a a a a ==+=--.综上所述:min2ln 22,11()2ln(2)2,1211,2a a f x a a a a a ⎧⎪+≤-⎪⎪=---<<-⎨⎪⎪≥-⎪⎩【点睛】本题考查利用导数求解函数的最小值问题,考查分类讨论思想和运算求解能力,其中第二问解题的关键在于求导得2()2af x x'=,进而分1a ≤-,112a -<<-,12a ≥-三种情况讨论求解,是中档题.26.(1)63110x y +-=;(2)最大值为3,最小值为313-. 【分析】(1)先对函数求导,根据导数的几何意义,求出曲线在1x =处的切线斜率,进而可得切线方程;(2)对函数求导,根据导数的方法判定函数单调性,求出函数在给定区间的极值以及端点值,比较大小,即可得出结果. 【详解】 (1)因为()322233f x x x =-+, 所以()224f x x x '=-,()2512333f =-+=, 则曲线()y f x =在1x =处的切线斜率为()1242f '=-=-, 所以曲线()y f x =在1x =处的切线方程为:()5213y x -=--,即63110x y +-=; (2)因为()()22422f x x x x x '=-=-,当()2,0x ∈-时,()()220f x x x '=->,即()f x 单调递增; 当()0,1x ∈时,()()220f x x x '=-<,即()f x 单调递减; 所以()()max 03f x f ==; 又()163183323f =--+=--,()2512333f =-+=, 则()()min 3213f x f =-=-, 即()f x 在[]2,1-上的最大值为3,最小值为313-. 【点睛】 思路点睛:导数的方法求函数在给定区间的最值时,一般需要先对函数求导,利用导数的方法判定函数在给定区间的单调性,得出极值,结合端点值进行比较,即可求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.使函数f (x )=x +2cos x 在[0,π2]上取最大值的x 为( )A .0 B.π4C.π3D.π2解析:选B.f ′(x )=1-2sin x ,∴f (x )在[0,π4]上单调递增,[π4,π2]上单调递减,∴选B.2.定义在R 上的函数f (x )的图像如图所示,则关于x 的不等式xf ′(x )<0的解集为( )A .(-2,-1)∪(1,2)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(0,1)D .(-∞,-2)∪(2,+∞) 解析:选C.当x ∈(-∞,-1)∪(1,+∞)时, f ′(x )>0,又xf ′(x )<0, ∴x ∈(-∞,-1).当x ∈(-1,1)时,f ′(x )<0, 又xf ′(x )<0,∴x ∈(0,1).综上可知解集为(-∞,-1)∪(0,1).故选C.3.函数f (x )=x -a x 在x ∈[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .3 D .4解析:选D.依题意得,当x ∈[1,4]时,f ′(x )=1-a2x ≤0,即a ≥2x 恒成立.注意到x ∈[1,4]时,y =2x 的最大值是24=4,因此,实数a 的最小值为4,选D.4.f ′(x )是f (x )的导函数,若f ′(x )的图像如图所示,则f (x )的图像可能是( )解析:选C.由导函数的图像可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <x 1时,f ′(x )<0,即函数f (x )为减函数;当x >x 1时,f ′(x )>0,即函数f (x )为增函数.观察选项易知C 正确.5.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .0≤a <1 B .0<a <1C .-1<a <1D .0<a <12解析:选B.f ′(x )=3x 2-3a =3(x 2-a ),当a ≤0时,f (x )在(0,1)上单调递增,无最值,排除A 、C ,当a >0时,令f ′(x )=0得x =-a (舍),x =a ,由题意知0<a <1.∴0<a <1.故选B.6.已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值解析:选C.当k =1时,f (x )=(e x -1)(x -1),则f ′(x )=e x (x -1)+(e x -1)=e x x -1,所以f ′(1)=e -1≠0,所以f (1)不是极值.当k =2时,f (x )=(e x -1)(x -1)2,则f ′(x )=e x (x -1)2+2(e x -1)(x -1)=e x (x 2-1)-2(x -1)=(x -1)[e x (x +1)-2],所以f ′(1)=0,且当x >1时,f ′(x )>0;在x =1附近的左侧,f ′(x )<0,所以f (1)是极小值. 7.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值为( )A .-13B .-15C .10D .15解析:选A.f ′(x )=-3x 2+2ax ,由题意f ′(2)=-12+4a =0,∴a =3.∴f ′(x )=-3x 2+6x ,其对称轴x =1,开口向下,当n ∈[-1,1]时,f ′(n )最小=f ′(-1)=-9,令f ′(x )=-3x (x -2)=0,则x =0或x =2,当x ∈(-1,0)时,f ′(x )<0,当x ∈(0,1)时,f ′(x )>0, ∴当m ∈[-1,1]时,f (m )最小=f (0)=-4, 故f (m )+f ′(n )的最小值为-13.8.如果圆柱轴截面的周长l 为定值,则体积的最大值为( )A .(l 6)3πB .(l 3)3πC .(l 4)3π D.14(l 4)3π解析:选A.设圆柱的底面半径为r ,高为h ,体积为V ,则4r +2h =l ,∴h =l -4r 2,V=πr 2h =l 2πr 2-2πr 3(0<r <l 4).则V ′=l πr -6πr 2,令V ′=0,得r =0或r =l 6,而r >0,∴r =l6是其唯一的极值点.当r =l 6时,V 取得最大值,最大值为(l6)3π,故选A.9. 函数f (x )=ax m (1-x )n 在区间[0,1]上的图像如图所示,则m ,n 的值可能是( )A .m =1,n =1B .m =1,n =2C .m =2,n =1D .m =3,n =1解析:选B.观察图像易知,a >0,f (x )在[0,1]上先增后减,但在⎣⎡⎦⎤0,12上有增有减且不对称.对于选项A ,m =1,n =1时,f (x )=ax (1-x )是二次函数,图像应关于直线x =12对称,不符合题意.对于选项B ,m =1,n =2时,f (x )=ax (1-x )2=a (x 3-2x 2+x ),f ′(x )=a (3x 2-4x +1)=a (x -1)(3x -1),令f ′(x )≥0,得x ≥1或x ≤13,∴f (x )在⎣⎡⎦⎤0,13上单调递增,符合题意. 对于选项C ,m =2,n =1时,f (x )=ax 2(1-x )=a (x 2-x 3),f ′(x )=a (2x -3x 2)=ax (2-3x ),令f ′(x )≥0,得0≤x ≤23,∴f (x )在⎣⎡⎦⎤0,23上单调递增,不符合题意. 对于选项D ,m =3,n =1时,f (x )=ax 3(1-x )=a (x 3-x 4),f ′(x )=a (3x 2-4x 3)=ax 2(3-4x ),令f ′(x )≥0,得0≤x ≤34,∴f (x )在⎣⎡⎦⎤0,34上单调递增,不符合题意. 10.已知函数f(x)=|x e x |,关于x 的方程f 2(x)+tf(x)+1=0(t ∈R )有四个不等实数根,则t 的取值范围为( )A .(e 2+1e ,+∞)B .(2,e 2+1e )C .(-e 2+1e ,-2)D .(-∞,-e 2+1e)解析:选D.设g (x )=x e x ,g ′(x )=e x (1+x ),当x >-1时,g ′(x )>0,g (x )单调递增, 当x <-1时,g ′(x )<0,g (x )单调递减,且x →-∞,g (x )→0.g (x )最小=g (-1)=-1e,g (0)=0,∴f (x )=|x e x |的图像如图,由题意知,f (x )有两个不等正值使方程成立.设为a ,b (a <b ),则a ∈(0,1e ),b >1e.由根与系数的关系⎩⎪⎨⎪⎧Δ=t 2-4>0-t =a +b >01=ab,∴-t =a +b =a +1a 在(0,1e )递减,a +1a >e +1e ,故t <-(e +1e ),即t 的取值范围为(-∞,-e 2+1e).所以选D.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上) 11.两车在十字路口相遇后,又沿不同方向继续行驶,已知A 车向北行驶速度为30 km/h ,B 车向东行驶速度为40 km/h ,那么A 、B 两车间直线距离的增加速度是________ km/h.解析:设A 、B 两车的行驶时间为t 小时,则A 、B 两车间的直线距离s =(30t )2+(40t )2=50t (km).∵s ′(t )=50,∴A 、B 两车间直线距离的增加速度为50km/h.答案:5012.一个边长为12 cm 的正方形铁片,铁片的四角截去四个边长都为x 的小正方形,然后做成一个无盖方盒,要使方盒的容积最大,x 的值应为________.解析:V =4x (6-x )2=4(x 3-12x 2+36x )(0<x <6),V ′=12(x 2-8x +12),令V ′=0得x 2-8x+12=0,解得x =2或x =6(舍).答案:2 cm13.已知函数f (x )=x 2ln x ,则函数f (x )的单调减区间是________.解析:f ′(x )=2x ln x +x 2·1x =x (2ln x +1)(x >0),令f ′(x )<0得,0<x <e -12.∴f (x )的单调减区间是(0,e -12).答案:(0,e -12)(写成(0,e -12]也正确)14.已知m ∈[1,6],n ∈[1,6],则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是________.解析:y ′=2mx 2-n ,由题意知2mx 2-n ≥0在[1,+∞)上恒成立, ∴x ∈(-∞,-n2m )或x ∈⎝⎛⎭⎫ n 2m ,+∞,故需n2m≤1,即n ≤2m .如图,P =5×5-12×4×25×5=2125. 答案:212515.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.解析:f (x )=4x +a x ≥24x ·a x =4a (x >0,a >0),当且仅当4x =a x ,即x =a2时等号成立,此时f (x )取得最小值4a .又由已知x =3时,f (x )min =4a ,∴a2=3,即a =36. 答案:36三、解答题(本大题共5小题,共55分.解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分10分)已知f (x )=ax 3+bx 2+c 的图像经过点(0,1),且在x =1处的切线方程是y =x .(1)求y =f (x )的解析式;(2)求y =f (x )的单调递增区间.解:(1)f (x )=ax 3+bx 2+c 的图像经过点(0,1),则c =1, f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1.切点为(1,1),则f (x )=ax 3+bx 2+c 的图像经过点(1,1), 所以a +b +c =1解得a =1,b =-1即f (x )=x 3-x 2+1.(2)f ′(x )=3x 2-2x >0得x <0或x >23.单调递增区间为(-∞,0),(23,+∞).17.(本小题满分10分)已知函数f (x )=ax 3+(a -1)x 2+27(a -2)x +b 的图像关于原点成中心对称,求f (x )在区间[-4,5]上的最值.解:∵函数f (x )的图像关于原点成中心对称,则f (x )是奇函数,所以a =1,b =0.于是f (x )=x 3-27x ,f ′(x )=3x 2-27.∴当x ∈(-3,3)时,f ′(x )<0;当x ∈(-4,-3)和(3,5)时,f ′(x )>0. 又∵函数f (x )在[-4,5]上是连续函数.∴f (x )在(-3,3)上是单调递减函数,在(-4,-3)和(3,5)上是单调递增函数. ∴f (x )的最大值是f (-3)=54,f (x )的最小值是f (3)=-54.18.(本小题满分10分)已知函数f (x )=x -1-ln x 对任意x ∈(0,+∞),f (x )+2≥bx 恒成立,求实数b 的取值范围.解:依题意对任意x ∈(0,+∞),f (x )+2≥bx 恒成立 等价于x -1-ln x +2≥bx 在(0,+∞)上恒成立.可得b ≤1+1x -ln xx 在(0,+∞)上恒成立,令g (x )=1+1x -ln xx ,g ′(x )=ln x -2x 2,令g ′(x )=0,得x =e 2. 列表如下:∴函数y =g (x )的最小值为g (e 2)=1-1e 2,根据题意b 的取值范围为{b |b ≤1-1e2}.19.(本小题满分12分)已知函数f (x )=x 2e -x . (1)求f (x )的极小值和极大值;(2)当曲线y =f (x )的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.解:(1)f (x )的定义域为(-∞,+∞), f ′(x )=-e -x x (x -2).①当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )<0; 当x ∈(0,2)时,f ′(x )>0.所以f (x )在(-∞,0),(2,+∞)上单调递减,在(0,2)上单调递增.故当x =0时,f (x )取得极小值,极小值为f (0)=0;当x =2时,f (x )取得极大值,极大值为f (2)=4e -2.(2)设切点为(t ,f (t )),则l 的方程为y =f ′(t )(x -t )+f (t ). 所以l 在x 轴上的截距为m (t )=t -f (t )f ′(t )=t +t t -2=t -2+2t -2+3.由已知和①得t ∈(-∞,0)∪(2,+∞).令h (x )=x +2x (x ≠0),则当x ∈(0,+∞)时,h (x )的取值范围为[22,+∞);当x ∈(-∞,-2)时,h (x )的取值范围是(-∞,-3).所以当t ∈(-∞,0)∪(2,+∞)时,m (t )的取值范围是(-∞,0)∪[22+3,+∞). 综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[22+3,+∞). 20.(本小题满分13分)已知函数f (x )=e x ,x ∈R .(1)若直线y =kx +1与f (x )的反函数的图像相切,求实数k 的值; (2)设x >0,讨论曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数.解:(1)f (x )的反函数为g (x )=ln x .设直线y =kx +1与g (x )=ln x 的图像在P (x 0,y 0)处相切,则有y 0=kx 0+1=ln x 0,k =g ′(x 0)=1x 0,解得x 0=e 2,k =e -2,所以k =e -2.(2)当x >0,m >0时,曲线y =f (x )与曲线y =mx 2(m >0)的公共点个数即方程f (x )=mx 2根的个数.由f (x )=mx 2⇒m =e x x 2,令ν(x )=e x x 2⇒ν′(x )=x e x (x -2)x 4,则ν(x )在(0,2)上单调递减,这时ν(x )∈(ν(2),+∞);ν(2)是y =ν(x )的极小值,也是最小值.所以对曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数,讨论如下: 当m ∈⎝⎛⎭⎫0,e 24时,有0个公共点; 当m =e 24时,有1个公共点;当m ∈⎝⎛⎭⎫e 24,+∞时有2个公共点.综上所述,当x >0时,若0<m <e 24,曲线y =f (x )与y =mx 2没有公共点;若m =e 24,曲线y =f (x )与y =mx 2有一个公共点;若m >e24,曲线y =f (x )与y =mx 2有两个公共点.。

相关文档
最新文档