数学 2.4.2等比数列的基本性质及其应用教学设计 新人教A版必修5

合集下载

人教A版数学必修五 §2.4《等比数列》教案【精品教案】.doc

人教A版数学必修五 §2.4《等比数列》教案【精品教案】.doc
..a”+「b”+]一39;
它是一个与n无关的常数,所以{a”也}是一个以q心为公比的等比数列 拓展探究:
对于例4中的等比数列{a”}与{b”},数列{他}也一定是等比数列吗?
b”
探究:设数列{ a” }与lbn}的公比分别为厲和0 ,令c”二他,则 一b”
c_a“+i

II•讲授新课
1.等比中项:如果在a与“中间插入一个数
G,使a, G,b
成等比数列,那么称这个数G为a与〃的等比中项.
即G=± Jab
(&,b同号)
如果在a与b中间插入一个数G,使a, G,"成等比数列,则
G
=—=>G2=ab
a G=±\[ab ,
a
G
河北武中•宏达教育集团教师课时教案
教 学 过 程 及 方 法
结论:2.等比数列的性质:若m+n=p+k,则aman=apak在等比数列中,m+n=p+q,am,an,ap,ak有什么关系呢? 山定义得:勺”=%/"7an=axqn~{ap=a{qp~xak= a, •qk~'
am 'an =ai Q,ap'ak =ai Q则aman =aPak
学生分析回 答
c”+i--—
b”+i
.启=/分=(如L)(如1)=鱼,所以,数列{5l}也一定是等
C”an/anbnq2bn
/Un
比数列。
课本P59的练习4
已知数列{a”}是等比数列,
(1)tzf=(z,a7是否成立?a;=叩9成立吗?为什么?
(2)a:=〉1)是否成立?你据此能得到什么结论?
a;=an_kan+k(n>k>0)是否成立?你又能得到什么结论?

高中数学 2.4 等比数列教案1 新人教A版必修5

高中数学 2.4 等比数列教案1 新人教A版必修5

2.4等比数列教学目标知识与技能目标:1.等比数列的定义;2.等比数列的通项公式.过程与能力目标:1.明确等比数列的定义;2.掌握等比数列的通项公式,会解决知道n a ,1a ,q ,n 中的三个,求另一个的问题. 情感态度与价值观通过生活中的大量实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力通过对有关实际问题的解决,体现数学与实际生活的密切联系,激发学生学习的兴趣.教学重点:1.等比数列概念的理解与掌握;2.等比数列的通项公式的推导及应用. 教学难点:等差数列"等比"的理解、把握和应用.教学过程学生自学:(1)阅读课本P48页-P49页上部分内容。

(2)思考数列1,2,3,4的共同特点是什么?二、新课 (抽生回答)共同特点:从第二项起,第一项与前一项的比都等于同一个常数.1.等比数列的定义:一般地,若一个数列从第二项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列.这个常数叫等比数列的公比,用字母q 表示(q ≠0),即:1-n na a =q (q ≠0).思考:(1)等比数列中有为0的项吗? (2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)常数列都是等比数列吗? (抽生回答,相互补充,直至完整)(1)“从第二项起”与“前一项”之比为常数q ; {n a }成等比数列⇔n n a a 1+=q (+∈N n ,q ≠0.)(2) 隐含:任一项00≠≠q a n 且(3) q= 1时,{an}为常数数列. (4).既是等差又是等比数列的数列:非零常数列.2.等比数列的通项公式1:)0,(111均不为q a q a a n n -⋅= 观察法:由等比数列的定义,有:q a a 12=;21123)(q a q q a q a a ===; 312134)(q a q q a q a a ===;… …)0(1111≠⋅==--q a q a q a a n n n ,. 迭乘法:由等比数列的定义,有:q a a =12;q a a =23;q a a =34;…;q a a n n =-1所以11342312--=⋅⋅nnn qaaaaaaaa,即)0(111≠⋅=-qaqaa nn,3.等比数列的通项公式2:)0(≠⋅=-qaqaammnmn,三、例题讲解例1.一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项. 例2.求下列各等比数列的通项公式:例3.已知数列{an}满足12,111+==+nnaaa,(1)求证数列{an+1}是等比数列;(2)求{an}的通项公式。

【高中教育】高中数学 2.4 等比数列教案2 新人教A版必修5.doc

【高中教育】高中数学 2.4 等比数列教案2 新人教A版必修5.doc

2.4等比数列教学目标知识与技能目标:等比中项的概念;掌握"判断数列是否为等比数列"常用的方法;进一步熟练掌握等比数列的通项公式、性质及应用.过程与能力目标:明确等比中项的概念;进一步熟练掌握等比数列的通项公式、1.通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值.教学重点;等比数列的通项公式、性质及应用.教学难点:灵活应用等比数列的定义及性质解决一些相关问题. 教学过程 一、复习1.等比数列的定义. 2. 等比数列的通项公式:)0,(111≠⋅=-q a q a a n n ,)0,(≠⋅=-q a q a a m m n m n ,)0,(≠=B A AB a n n3.{an }成等比数列⇔)0,( 1≠∈=++q N n q a a n n4.求下面等比数列的通项公式:(1)5,-15,45,……;(2)1.2,2.4,4.8,……; 二、新课:思考:类比等差中项的概念,你能说出什么是等比中项吗?1.等比中项:如果在a 与b 中间插入一个数G ,使a, G ,b 成等比数列,那么称这个数G 为a 与b 的等比中项. 即G=±ab (a,b 同号) ,则ab G ab G G ba G ±=⇒=⇒=2,反之,若G 2=ab,则G ba G =,即a,G,b ∴a,G,b 成等比数列⇔G 2=ab (a ·b ≠0)例1.三个数成等比数列,它的和为14,它们的积为64,求这三个数. 解:设m,G,n 为所求的三个数, 有已知得m+n+ G =14,64=⋅⋅G n m , ,2mn G =,4643=⇒=∴G G⎩⎨⎧=⋅=+∴,16,10n m n m ⎩⎨⎧==⎩⎨⎧==∴.8,2,2,8n m n m 或 ∴这三个数为8,4,2或2,4,8.解法二:设所求三个数分别为,,,aq a q a则,4,643=∴=a a 又,14=++aq a q a 14444=++∴q q 解得,21,2==q q 或 ∴这三个数为8,4,2或2,4,8.生思考第53页练习第4题,猜测并推广,得 等比数列的性质:若m+n=p+k ,则kp n m a a a a =证明:由定义得:11n 11 --==n m m q a a q a a11k 11 --⋅==k p p q a a q a a221-+=⋅n m n m q a a a ,221-+=⋅k p k p q a a a则kp n m a a a a =例2. 已知{na }是等比数列,且252,0645342=++>a a a a a a a n , 求53a a +.解: ∵{na }是等比数列,∴ 2a 4a +23a 5a +4a 6a =(3a +5a )2=25,又na >0, ∴3a +5a =5;3.判断等比数列的常用方法:定义法,中项法,通项公式法 例3.已知{}{}n n b a ,是项数相同的等比数列,求证{}n n b a ⋅是等比数列. 证明:设数列{}n a 的首项是1a ,公比为1q ;{}n b 的首项为1b ,公比为2q ,那么数列{}n n b a ⋅的第n 项与第n+1项分别n n nnn n q q b a q q b a q b q a q b q a )()(2111121112111121111与即为与---⋅⋅⋅⋅⋅⋅.)()(2112111211111q q q q b a q q b a b a b a n n n n n n ==⋅⋅-++它是一个与n 无关的常数,所以{}n n b a ⋅是一个以q1q2为公比的等比数列.思考;(1){an }是等比数列,C 是不为0的常数,数列{}n ca 是等比数列吗?试证明。

高中数学 2.4.2 等比数列的性质课件 新人教A版必修5

高中数学 2.4.2 等比数列的性质课件 新人教A版必修5

6-2log 8 = 0,
= 2,

= 11.
2 + 3log 8 = m.
故存在常数 c=2,使得对任意 n∈N*,an+logcbn 恒为常数 11.
第二十一页,共30页。
问题
(wèntí)导

课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
KETANG HEZUO TANJIU
当堂(dānɡ
tánɡ)检测
三个数或四个数成等比数列的设元技巧:

(1)若三个数成等比数列,可设三个数为 a,aq,aq2 或,a,aq;
(2)若四个数成等比数列,可设 a,aq,aq2,aq3;若四个数均为正(负)数,

可设 3 , ,aq,aq3.

第 2 课时
等比数列的性质
第一页,共30页。
目标(mùbiāo)
导航
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
预习(yùxí)
引导
学习目
记住等比数列的常见性质,并会用这些性质解答一些简单的等比数

列问题.
重点难
重点:等比数列的性质及应用;

难点:对等比数列性质的理解.
已知条件进行推理,从而得出结论.
第十八页,共30页。
问题(wèntí)
导学
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂(dānɡ
tánɡ)检测

【数学】2.4《等比数列》教案(新人教A版必修5)(2课时)

【数学】2.4《等比数列》教案(新人教A版必修5)(2课时)

知识改变命运,学习成就未来欢迎各位老师踊跃投稿,稿酬丰厚邮箱:zxjkw@第 1 页共 5 页课题: §2.4等比数列授课类型:新授课(第1课时)●教学目标知识与技能:掌握等比数列的定义;理解等比数列的通项公式及推导;过程与方法:通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系。

情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。

●教学重点等比数列的定义及通项公式●教学难点灵活应用定义式及通项公式解决相关问题●教学过程Ⅰ.课题导入复习:等差数列的定义:n a -1n a =d ,(n ≥2,n ∈N )等差数列是一类特殊的数列,在现实生活中,除了等差数列,我们还会遇到下面一类特殊的数列。

课本P41页的4个例子:①1,2,4,8,16,,②1,12,14,18,116,,③1,20,220,320,420,,④10000 1.0198,210000 1.0198,310000 1.0198,410000 1.0198,510000 1.0198,,,观察:请同学们仔细观察一下,看看以上①、②、③、④四个数列有什么共同特征?共同特点:从第二项起,第一项与前一项的比都等于同一个常数。

Ⅱ.讲授新课1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1n na a =q (q ≠0)1“从第二项起”与“前一项”之比为常数(q) {n a }成等比数列n n a a 1=q (Nn ,q ≠0)。

新人教A版数学必修5课件:2.4 第二课时 等比数列的性质及应用

新人教A版数学必修5课件:2.4 第二课时 等比数列的性质及应用

(2)求证{an+1-2an}是等比数列;
(2)证明:法一 由(1)知 an+1-2an=(Sn+2n+1)-(Sn+2n)=2n+1-2n=2n, 所以 an+2-2an+1=(Sn+1+2n+2)-(Sn+1+2n+1)=2n+1,所以 an2 2an1 =2,
an1 2an 所以数列{an+1-2an}是首项为 a2-2a1=2,公比为 2 的等比数列. 法二 由 Sn=2an-2n 得 Sn+1=2an+1-2n+1, 所以 Sn+1-Sn=an+1=2an+1-2n+1-2an+2n, 即 an+1-2an=2n, 同理得 Sn+2-Sn+1=an+2=2an+2-2n+2-2an+1+2n+1,即 an+2-2an+1=2n+1,所以 an2 2an1 =2,
解:法一 设这四个数依次为 a-d,a,a+d, (a d )2 (a≠0), a
由条件得
a a

(a d)2 d
a (a d ) 12,

16,
解得
a d

4, 4,

a d

9, 6.
所以当 a=4,d=4 时,所求四个数分别为 0,4,8,16;
质,am·an=ak·al= at2 (m,n,k,l,t∈N*)的关键是发现各项的序号之间满足关系 m+n=k+l=2t,它们往往涉及其中的四项或三项,注意不要和等差数列相应的性质 相混淆.

高中数学 2-4-2等比数列的性质课件 新人教A版必修5

高中数学 2-4-2等比数列的性质课件 新人教A版必修5

1 1 ∴{bn}是首项为 a-4,公比为2的等比数列.
在公差不为零的等差数列{an}和等比数列{bn}中, 已知 a1 =1,且 a1=b1,a2=b2,a8=b3. (1)求数列{an}的公差 d 和数列{bn}的公比 q; (2)是否存在常数 a, b 使得对一切正整数 n, 都有 an=logabn +b 成立?若存在,求出 a 和 b;若不存在,说明理由.
1 bn+1 2n 1d 1 ∴ = = , bn 1 2 2nd

∴数列{bn}是等比数列.
[辨析]
①在解方程变形过程中,不可在方程两边同时约
去含未知量的因式, 错解中, 由 d2=a1d 约去 d 得出 d=a1 是错 bn+1 误的, ②在判定{bn}是等比数列, 做除法 b 时, 应先说明 bn≠0. n
等比数列的综合应用
1 设 数 列 {an} 的 首 项 a1 = a≠ 4 , 且 an + 1 =
n为偶数 . n为奇数
1 记 bn=a2n-1-4,n=1,2,3,„„. (1)求 a2、a3; (2)判断数列{bn}是否为等比数列,并证明你的结论.
[解析]
1 1 1 1 1 (1)a2=a1+4=a+4,a3=2a2=2a+8.
(8){an}是有穷等比数列,则与首末两项等距离的两项积相 等,且等于首末两项之积.即:a1an=a2 an-1 =a3 an-2 =„= ak an-k+1 .
(9)若数列{an}是各项均为正数、公比为 q 的等比数列,则 数列{lg an}是公差为 lgq 的等差数列.
重点难点展示
重点:等比数列的性质. 难点:灵活运用等比数列的性质解决一些实际问题.
[正解]
∵lga1,lga2,lga4 成等差数列,

高中数学 2.4.2等比数列的基本性质及其应用教学设计

高中数学 2.4.2等比数列的基本性质及其应用教学设计

2.4.2 等比数列的基本性质及其应用从容说课这节课师生将进一步探究等比数列的知识,以教材练习中提供的问题作为基本材料,认识等比数列的一些基本性质及内在的联系,理解并掌握一些常见结论,进一步能用来解决一些实际问题.通过一些问题的探究与解决,渗透重要的数学思想方法.如类比思想、归纳思想、数形结合思想、算法思想、方程思想以及一般到特殊的思想方法等.教学中以师生合作探究为主要形式,充分调动学生的学习积极性.教学重点1.探究等比数列更多的性质;2.解决生活实际中的等比数列的问题.教学难点渗透重要的数学思想.教具准备多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解等比数列更多的性质;2.能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中;3.能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题.二、过程与方法1.继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学;2.对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程;3.当好学生学习的合作者的角色.三、情感态度与价值观1.通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值.教学过程导入新课师 教材中第59页练习第3题、第4题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下.生 由学习小组汇报探究结果. 师 对各组的汇报给予评价.师 出示多媒体幻灯片一:第3题、第4题详细解答: 第3题解答:(1)将数列{a n }的前k 项去掉,剩余的数列为a k+1,a k+2,….令b i =a k+i ,i=1,2,…, 则数列a k+1,a k+2,…,可视为b 1,b 2,…. 因为q a a b b ik i k i i ==++++11 (i≥1),所以,{b n }是等比数列,即a k+1,a k+2,…是等比数列. (2){a n }中每隔10项取出一项组成的数列是a 1,a 11,a 21,…,则109101101121111......q a a a a a a k k =====-+ (k≥1). 所以数列a 1,a 11,a 21,…是以a 1为首项,q 10为公比的等比数列.猜想:在数列{a n }中每隔m(m 是一个正整数)取出一项,组成一个新数列,这个数列是以a 1为首项、q m为公比的等比数列.◇本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法. 第4题解答:(1)设{a n }的公比是q ,则a 52=(a 1q 4)2=a 12q 8,而a 3·a 7=a 1q 2·a 1q 6=a 12q 8, 所以a 52=a 3·a 7. 同理,a 52=a 1·a 9.(2)用上面的方法不难证明a n 2=a n -1·a n +1(n >1).由此得出,a n 是a n -1和a n +1的等比中项,同理可证a n 2=a n -k ·a n +k (n >k >0).a n 是a n -k 和a n +k 的等比中项(n >k >0).师 和等差数列一样,等比数列中蕴涵着许多的性质,如果我们想知道的更多,就要对它作进一步的探究.推进新课[合作探究] 师 出示投影胶片1例题1 (教材P 61B 组第3题)就任一等差数列{a n },计算a 7+a 10,a 8+a 9和a 10+a 40,a 20+a 30,你发现了什么一般规律,能把你发现的规律用一般化的推广吗?从等差数列和函数之间的联系的角度来分析这个问题.在等比数列中会有怎样的类似结论?师 注意题目中“就任一等差数列{a n }”,你打算用一个什么样的等差数列来计算? 生 用等差数列1,2,3,…师 很好,这个数列最便于计算,那么发现了什么样的一般规律呢? 生 在等差数列{a n }中,若k+s=p+q(k,s,p,q∈N *),则a k +a s =a p +a q .师 题目要我们“从等差数列与函数之间的联系的角度来分析这个问题”,如何做? 生 思考、讨论、交流.师 出示多媒体课件一:等差数列与函数之间的联系. [教师精讲]师 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{a n }的图象,可以看出qsa a p k a a q s p k ==,, 根据等式的性质,有1=++=++qp sk a a a a q p s k .所以a k +a s =a p +a q .师 在等比数列中会有怎样的类似结论?生 猜想对于等比数列{a n },类似的性质为:k+s=p+t(k,s,p,t∈N *),则a k ·a s =a p ·a t .师 让学生给出上述猜想的证明. 证明:设等比数列{a n }公比为q , 则有a k ·a s =a 1q k-1·a 1q s-1=a 12·qk+s-2,a p ·a t =a 1q p-1·a 1q t-1=a 12·q p+t-2.因为k+s=p+t, 所以有a k ·a s =a p ·a t .师 指出:经过上述猜想和证明的过程,已经得到了等比数列的一个新的性质. 即等比数列{a n }中,若k+s=p+t(k,s,p,t∈N *),则有a k ·a s =a p ·a t . 师 下面有两个结论:(1)与首末两项等距离的两项之积等于首末两项的积; (2)与某一项距离相等的两项之积等于这一项的平方. 你能将这两个结论与上述性质联系起来吗? 生 思考、列式、合作交流,得到:结论(1)就是上述性质中1+n =(1+t)+(n -t)时的情形; 结论(2)就是上述性质中k+k=(k+t)+(k-t)时的情形. 师 引导学生思考,得出上述联系,并给予肯定的评价. 师 上述性质有着广泛的应用. 师 出示投影胶片2:例题2例题2(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18; (2)在等比数列{b n }中,b 4=3,求该数列前七项之积; (3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8.例题2 三个小题由师生合作交流完成,充分让学生思考,展示将问题与所学的性质联系到一起的思维过程. 解答:(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18. 解:∵a 1a 18=a 9a 10,∴a 18=51001109 a a a =20. (2)在等比数列{b n }中,b 4=3,求该数列前七项之积. 解:b 1b 2b 3b 4b 5b 6b 7=(b 1b 7)(b 2b 6)(b 3b 5)b 4.∵b 42=b 1b 7=b 2b 6=b 3b 5,∴前七项之积(32)3×3=37=2 187. (3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8. 解:.∵a 5是a 2与a 8的等比中项,∴542=a 8×(-2). ∴a 8=-1 458.另解:a 8=a 5q 3=a 5·2545425-⨯=a a =-1 458. [合作探究]师 判断一个数列是否成等比数列的方法:1、定义法;2、中项法;3、通项公式法. 例题3:已知{a n }{b n }是两个项数相同的等比数列,仿照下表中的例子填写表格.从中你能得出什么结论?证明你的结论. a n b n a n ·b n 判断{a n ·b n }是否是等比数列例n )32(3⨯ -5×2n -11)34(10-⨯-n是自选1 自选2师 请同学们自己完成上面的表.师 根据这个表格,我们可以得到什么样的结论?如何证明?生 得到:如果{a n }、{b n }是两个项数相同的等比数列,那么{a n ·b n }也是等比数列. 证明如下:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项与第n +1项分别为a 1pn -1b 1q n -1与a 1p n b 1q n ,因为pq q b p a q b p a b a b a n n nn n n n n ==•--++11111111,它是一个与n 无关的常数,所以{a n ·b n }是一个以pq 为公比的等比数列. [教师精讲]除了上面的证法外,我们还可以考虑如下证明思路: 证法二:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项、第n -1项与第n +1项(n >1,n ∈N *)分别为a 1p n -1b 1q n -1、a 1pn -2b 1q n -2与a 1p n b 1q n ,因为(a n b n )2=(a 1pn -1b 1q n -1)2=(a 1b 1)2(pq) 2(n -1),(a n -1·b n -1)(a n +1·b n +1)=(a 1p n -2b 1q n -2)(a 1p nb 1q n)=(a 1b 1)2(pq)2(n -1),即有(a n b n )2=(a n -1·b n -1)(a n +1·b n +1)(n >1,n ∈N *), 所以{a n ·b n }是一个等比数列.师 根据对等比数列的认识,我们还可以直接对数列的通项公式考察:证法三:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的通项公式为a nb n =a 1p n -1b 1q n -1=(a 1b 1)(pq) n -1,设c n =a n b n ,则c n =(a 1b 1)(p q)n -1,所以{a n ·b n }是一个等比数列.课堂小结本节学习了如下内容:1.等比数列的性质的探究.2.证明等比数列的常用方法.布置作业课本第60页习题2.4 A 组第3题、B 组第1题.板书设计等比数列的基本性质及其应用例 1 例2 例 3习题详解(课本第60页习题2.4)A 组1.(1)a 7=a 4·q 3=27×(-3)3=-729. (2)设等比数列{a n }的公比是q(q≠0),⎪⎩⎪⎨⎧=-=-⇔⎩⎨⎧=-=-②①.6)1(,15)1(61521412415q q a q a a a a a ②÷①,整理得6q 2-15q+6=0, 解方程得q=2或21=q . 由a 4-a 2=6,得a 3(q-q -1)=6, ③所以,当q=2时,由③得,a 3=4当21=q 时,由③得a 3=-4. 2.设n 年后,需退耕a n ,则{a n }是一个等比数列,其中a 1=8,q=0.1.那么2005年需退耕a 5=a 1(1+q)5=8(1+0.1)5=13(万公顷).3.若{a n }是各项均为正数的等比数列,则首项a 1和公比q 都是正数, 由a n =a 1qn -1,得121121111)(---===n n n n q a qa qa a ,所以数列{a n }是以a 1为首项,21=q 为公比的等比数列. 4.这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm,再对折后厚度为0.05×22mm ,再对折后厚度为0.05×23mm ,设a 0=0.05,对折n 次后报纸的厚度为a n ,则{a n }是一个等比数列,公比q=2,对折50次后,报纸的厚度为a 50=a 0q 50=0.05×250≈5.63×1013=5.63×1010 (m).这时报纸的厚度已经超过地球和月球之间的平均距离(约3.84×108m),所以能够在地球和月球之间建一座桥.5.设年平均增长率为q ,a 1=105,n 年后空气质量为良的天数为a n ,则{a n }是一个等比数列,由a 3=240,得a 3=a 1(1+q)2=105(1+q)2=240,解得q=105240-1≈0.51. 6.由已知条件,知2b a A +=,G=ab,且2)(222b a ab b a ab b a G A -=-+=-+=-≥0,所以有A ≥G,等号成立的条件是a =b .而a ,b 是互异正数,所以一定有A >G. 7.(1)±2 (2)±ab (a 2+b 2) 8.略B 组1.证明略2.(1)设生物死亡时,体内每克组织中的碳14的含量为1,每年的衰变率为q ,n 年后的残留量为a n ,则{a n }是一个等比数列,由碳14的半衰期为5 730,则a n =a 1q5 730=q5 730=21,解得57301)21(=q ≈0.999 879.(2)设动物约在距今n 年前死亡,由a n =0.6,得a n =a 1q n=0.999 879n=0.6, 解得n ≈4 221,所以动物约在距今4 221年前死亡. 3.略备课资料备用例题1.已知无穷数列5010,5110,5210 ,…, 5110-n ,….求证:(1)这个数列成等比数列;(2)这个数列中的任一项是它后面第五项的101; (3)这个数列的任意两项的积仍在这个数列中.证明:(1)101101010154511===-+--n n n n a a (常数),∴该数列成等比数列. (2)101101010154515===-+-+n n n n a a ,即:5101+=n n a a . (3)a p a q =525151101010-+--=q p q p ,∵p,q∈N ,∴p+q≥2.∴p+q -1≥1且(p+q-1)∈N .∴5210-+q p ∈⎭⎬⎫⎩⎨⎧-5110n (第p+q-1项).2.设a ,b ,c,d 均为非零实数,(a 2+b 2)d 2-2b (a +c)d +b 2+c 2=0, 求证:a ,b ,c 成等比数列且公比为d .证法一:关于d 的二次方程(a 2+b 2)d 2-2b (a +c)d +b 2+c 2=0有实根, ∴Δ=4b 2(a +c)2-4(a 2+b 2)(b 2+c 2)≥0.∴-4(b 2-a c)2≥0.∴-(b 2-a c)2≥0. 则必有:b 2-a c=0,即b 2=a c ,∴a ,b ,c 成等比数列. 设公比为q ,则b =a q,c=a q 2代入 (a 2+a 2q 2)d 2-2a q(a +a q 2)d +a 2q 2+a 2q 4=0. ∵(q 2+1)a 2≠0,∴d 2-2q d +q 2=0,即d =q≠0. 证法二:∵(a 2+b 2)d 2-2b (a +c)d +b 2+c 2=0, ∴(a 2d 2-2abd +b 2)+(b 2d 2-2b c d +c 2)=0. ∴(ad -b )2+(bd -c)2=0.∴ad =b ,且bd =c. ∵a ,b ,c,d 非零,∴d bca b ==d .∴a ,b ,c 成等比数列且公比为d .。

高中数学人教A版必修5课件:2.4.2等比数列的性质及应用(34张)

高中数学人教A版必修5课件:2.4.2等比数列的性质及应用(34张)

2 2 a 162 6 法三:因为{an}为等比数列,所以 a2· a10=a2 , a = 6 10 以 q4=81, 所以 a10=a1q9=a1q· q8=2×812=13 122. a6 162 4 法二:因为 q =a = 2 =81, 2 所以 a10=a6q4=162×81=13 122.
方法归纳, 等比数列常用性质 (1)若 m+n=p+q(m,n,p,q∈N*), 则 am· an=ap· aq. 特例:若 m+n=2p(m,n,p∈N*),则 am· an=a2 p. an (2)a =qn-m(m,n∈N*). m (3)在等比数列{an}中,每隔 k 项取出一项,取出的项,按原 来顺序组成新数列,该数列仍然是等比数列. (4) 数列{an} 为等比数列,则数列 {λan}(λ 为不等于 0 的常 1 数)a 仍然成等比数列. n
(4)若 m,p,n(m,n,p∈N*)成等差数列,则 am,ap,an 成 等比数列; 1 (5)数列{λan}(λ≠0),a ,{a2 n}都是等比数列,且公比分别 n 1 是 q,q,q2. an (6)若{bn}是公比为 p 的等比数列,则{anbn}与b 也都是等 n q 比数列,公比分别为 pq 和p.
【课标要求】 1.掌握等比数列的几个基本性质,能够运用这些性质解决等 比数列中的有关问题. 2. 能够综合运用等比数列的性质和通项公式解决等比数列 中的计算问题. 3.能够运用已学的等比数列知识解决一些实际应用问题.
自主学习 |新知预习|
基础认识
等比数列常见性质 若{an}是等比数列,公比是 q,则 (1)an=a1qn-1=a2qn-2=„=amqn-m(n>m); (2)对称性:a1an=a2an-1=a3an-2=„=aman-m+1(n>m); (3)若 k+l=m+n=2p(k,l,m,n,p∈N*),则 ak· al=am· an =a2 p;

高中数学 2.4.2等比数列的性质 新人教A版必修5

高中数学 2.4.2等比数列的性质 新人教A版必修5

19
【解】 设所求之数为a-d,a,a+d,则由题设,得 a-d+a+a+d=15, a+32=a-d+1a+d+9, 解此方程组得ad= =52, , 或ad= =5-,10. (舍去) ∴所求三数为3,5,7.
精选版ppt
20
规律技巧 此类问题一般设成等差数列的数为未知数,然 后利用等比数列知识建立等式求解.另外,对本题若设所求三数 为a,b,c,则列出三个方程求解,运算过程将很复杂.因此, 在计算过程中,设的未知数个数应尽可能少.
5
课前热身 等比数列的常用性质. 由通项公式an=a1qn-1易推得: (1)在等比数列中,任两项之间的关系an=amqn-m(m,n∈ N*). (2)在有穷等比数列中,与首末两项“等距离”的两项积 相等.即有 a1·an=a2·an-1=a3·an-2=….
精选版ppt
6
(3)若m,n,p,k∈N*,且m+n=p+k,则有am·an=ap·ak. 其中am,an,ap,ak是数列中的项.特别地,若m+n=2p,则 有am·an=a2p.
精选版ppt
8
(2)数列{λan}(λ为不等于0的常数)仍是公比为q的等比数列; 若{bn}是公比为q′的等比数列,则数列{anbn}是公比为 qq′的等比数列; 数列{a1n}是公比为1q的等比数列; 数列{|an|}是公比为|q|的等比数列. (3)在数列{an}中每隔k(k∈N*)项取出一项,按原来顺序组成 新数列,则新数列仍为等比数列且公比为qk+1.
(4)在等比数列{an}中,an≠0,当公比q>0时,an>0或 an<0;当q<0时,anan+1<0,称为摆动数列(正、负项相间隔).
精选版ppt
7
名师讲解 等比数列还有如下性质

高中数学 2.4等比数列教案(3) 新人教A版必修5 教案

高中数学 2.4等比数列教案(3) 新人教A版必修5 教案

等比数列(一)教学设计教材分析:等比数列是一种特殊的数列,它有着非常广泛的实际应用:如存款利息、购房贷款、资产折旧等一些计算问题.教材将等比数列安排在等差数列之后,有承前启后的作用.一方面与等差数列有密切联系,另一方面为进一步学习数列求和等有关内容做好准备.设计理念:长期以来的课堂教学太过于重视结论,轻视过程.为了应付考试,为了使公式定理应用达到所谓“熟能生巧”,教学中不惜花大量的时间采用题海战术来进行强化.在概念公式的教学中往往采用的所谓“掐头去尾烧中段”的方法,到头来把学生强化成只会套用公式的解题机器,这样的学生面对新问题就束手无策.数学是思维的体操,是培养学生分析问题,解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能再让教学脱离学生的内心感受,必须让学生有追求过程的体验.基于以上原因,在设计本节课时,我考虑的不是简单地告诉学生等比数列的定义及其通项公式,而是将内容按照“问题情境——学生活动——数学建构——数学运用——回顾反思”的顺序展开,通过列举生活中的大量实例,给出等比数列的实际背景,让学生自己去发现,去探索其意义,公式.从发现等比数列定义及通项公式的过程中让学生体会到:有些看似陌生的知识并不都是高不可攀的事情,通过我们的努力,也可以做一些看似数学家才能完成的事.在这个过程中,学生在课堂上的主体地位得到充分发挥,极大地激发了学生的学习兴趣,也提高了他们提出问题,解决问题的能力,培养了他们的创新能力,这正是新课程所倡导的教学理念.教学目标:A.知识目标:理解等比数列的概念,推导并掌握通项公式.B.能力目标:(1)通过公式的探索,发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力.(2)通过通项公式的探求过程,培养学生用不完全归纳法去发现并解决问题的能力.C.情感目标:(1)公式的发现反映了普遍性寓于特征性之中,从而使学生受到辨证唯物主义思想的熏陶.(2)通过对等比数列概念的归纳,进一步培养学生严密的思维习惯以及实事求是的科学态度.(3)培养学生勇于探索、善于猜想的学习态度,调动学生主动参与课堂教学的积极性,增强学生学好数学的心理体验,产生热爱数学的情感.教学重点、难点:等比数列的定义、通项公式的推导;通项公式的初步应用.教学方法:发现式教学法,类比分析法.教学多媒体选择:电脑.教学过程:一、问题情境首先请同学们看以下几个事例:(电脑显示)情境1:国王奖赏国际象棋发明者的事例,发明者要求:在第1个方格放1颗麦粒,在第2个方格上放2颗麦粒,在第3个方格上放4颗麦粒,在第4个方格上放8颗麦粒,依此类推,直到第64个方格子.国王能否满足他的要求呢?情境2:“一尺之棰,日取其半,万世不竭.”情境3:某轿车的售价约36万元,年折旧率约为10%(就是说这辆车每年减少它的价值的10%),那么该车从购买当年算起,逐年的价格依次为多少?问题1:上述例子可以转化为什么样的数学问题?问题2:上述例子有何共同特点?二、学生活动通过观察、联想,发现:1、上述例子可以与数列联系起来.(有了等差数列的学习作基础)2、得到以下3个数列:①1,2, 22,…,263②1,12,14,…,12n⎛⎫⎪⎝⎭,…③36,36×0.9,36×092,…,36×09n,…通过讨论,得到这些情境的共同特点是从第二项起,每一项与它前面一项的比都相等(等于同一个常数). 三、数学建构1、问题:①②③这样的数列和等差数列一样是一类重要的数列,谁能试着给这样的数列取个名字? (学生通过联想、尝试得出最恰当的命名)等比数列2、归纳总结,形成等比数列的概念.一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比.(引导学生经过类比等差数列的定义得出)3、对等比数列概念深化理解问题1:上述三例的公比分别为多少? 问题2:你能举一个公比小于0的等比数列吗?问题3:等比数列与等差数列在定义上有许多密切关系,那么有没有这样的数列,它既是等差数列又是等比数列呢?问题4:形如a ,a ,a ,…(R a ∈)的数列既是等差数列,又是等比数列对吗? (对问题4,学生作短暂的讨论)(1)形如a ,a ,a ,…的数列一定是等差数列,但未必是等比数列.当a =0时,数列的每一项均为0,不能作比,因此不是等比数列;当a ≠0时,此数列 为等比数列.(2)等比数列的各项均不为0,且公比也不为0.4、问题:刚才我们得到了等比数列的概念,是用文字语言来表达的,但是在使用时往往需要符号化,下面试将等比数列定义的内容用数学表达式写出. (提示可类比等差数列,由学生活动得出)(1)对于数列{}n a ,若1n na q a +=(*∈N n ,q 为常数 ),则称这个数列为等比数列,常数q 叫做等比数列的公比.(2){}n a 是等比数列⇔1n na q a +=(*∈N n ,q 为常数 ),此式可来证明一个数列是否为等比数列.5、探索问题: 在学习等差数列时,我们可以用公差d ,项数n 以及首项1a 表示数列的任一项,也就是可以表示它的通项公式n a ,那么在等比数列{}n a 中,要表示该数列,需先确定几个条件?怎样用这些条件来表示这个等比数列的每一项?(启发引导,类比等差数列,让学生大胆尝试,讨论回答)(1)知道等比数列的首项和公比就可以求出这个等比数列的任何一项. (2)学生1:∵21a a q =,()23211a a q a q q a q ===, ()234311a a q a q q a q ===,……∴11n n a a q -=.(3)学生2:∵1n n a q a +=,∴1n n a q a -=,12n n a q a --=,…,32a q a =,21aq a =. 将各式相乘便有11n na q a -=,∴11n n a a q -=(*∈N n ,2≥n ), 当1n =时,11n n a a q -=两边均为1a 即等式也成立,说明上式当*n N ∈时都成立.教师点评:(1)寻找通项即寻找项的一般规律,常可先看特殊项,写出几项,再归纳出一般结论,这是探索数列问题常用的一种方法,叫不完全归纳法,但这种方法得出的通项公式还不够严谨,须对其进行证明.(2)方法2就是对方法1得到的结论的一种证明,叫做叠乘法.与推导等差数列通项公式用到的叠加法类似,都必须注意对第一项是否成立进行补充说明.6、问题延伸:对于这个通项公式,我们可以从哪几个方面去认识它呢?(这不是第一次遇到这类公式,在讲等差数列时已讨论过,学生应该知道从什么角度去认识公式)学生类比等差数列得:(1)可以从函数观点去认识,把通项看成n 的解析式. (2)还可以从方程观点去认识,把通项看成一个方程. 师生共同小结:(1)当1q =时, 1a a n =,点(),n n a 在直线y=1a 上.当1q ≠时, 函数图象类似于指数函数图象,但它的图象是由一些孤立的点组成.(2)从方程的观点去考虑,方程中有四个量,在n a ,1a ,q 和n 中只要知 道其中三个便可求第四个,请学生举例编题(应能编出四类问题). 四、数学运用 1、例题例1 判断下列数列是否是等比数列?(电脑显示)①11111,,,,24816--; ②1,2,4,8,16,20; ③1,1,1,1,1;④-1,-2,-4,-8,-16;⑤数列{}n a 的通项公式为.)31(21--=n n a解 据数列的定义可知:数列①③④⑤都是等比数列,②不是等比数列.讨论:1、对于等比数列{}n a ,若q >1,则{}n a 一定是递增数列;若0<q <1,则{}n a 一定是递减数列,对吗?(学生例举反例④⑤,判断此结论不正确)2、你能知道等比数列何时为递增数列, 何时为递减数列吗?引导学生从函数的角度去讨论通项公式,结合复合函数的单调性研究,得到:当q >1, 1a >0或0<q <1,1a <0时, {}n a 是递增数列;当q >1, 1a <0或0<q <1, 1a >0时, {}n a 是递减数列;当q =1时,{}n a 是常数列;当q <0时,{}n a 是摆动数列.例2 在等比数列{}n a 中,已知3a =20,1206=a ,求n a .解 设等比数列的公比为q ,则⎩⎨⎧==160205121q a q a ,解得 ⎩⎨⎧==251q a .故11125--⨯==n n n q a a . 反思 这种类型的题目主要是方程思想的应用,应用过程主要是三个步骤:设、列、求. 2、练习:教科书第50页第1(1)、(3),2,3题. 五、回顾小结1、本节课研究了等比数列的概念,得到了其通项公式;2、在研究内容与方法上要与等差数列相类比,把握它们的区别和联系;3、用函数与方程的思想认识通项公式,并加以应用;4、在发现等比数列的定义及其通项公式过程中用了观察,归纳,猜想等数学方法,体现了由特殊到一般的数学思想;在判断数列是否是等比数列及将等比数列与函数图象联系时体现了数学中的分类讨论思想.(小结可先由学生叙述,教师进行补充和整理,小结的目的一方面让学生再次回顾本节课的活动过程、重点、难点所在;另一方面,更是对探索过程的再认识,对数学思想方法的升华,对思维的反思,可为学生以后解决问题提供经验和教训.)为突出与等差数列的对比,可让学生自己填写下表.六、课外作业教科书第48页练习第1题、第3题,第52页习题2.3第1题、第2题(1)、第3题.课后思考:对照等差数列,试猜想等比数列的一些相应性质. 七、板书设计八、教学反思对本节课的教学实践与效果进行总结和反思,我认为有以下几点值得探索与反思.1、等比数列是在等差数列之后介绍的,学生对等差数列的研究内容和研究方法已有了一定的了解.因此在教学方法上突出了类比思想的使用,为学生创造好使用的条件,引导学生自己研究等比数列相关内容如定义、表示方法、通项公式.这样从学生的最近发展区出发,不仅符合学生的认知规律,而且充分发挥了学生的主体作用.2、在教学过程中,尽可能“指着走”(在教师的启发与点拨下,学生自主展开),而不是“抱着走”.如:对于等比数列的通项公式应从哪几方面去认识?我只是指出这一研究方向,点拨一下方法(类比等差数列),让学生去联想,去探究,去归纳,去总结;在从方程的观点去认识通项公式时,我让学生自己编题,这样既达到了考查的目的,又发挥了其主观能动性.不过,“教师怎样才能真正成为学生的组织者、引导者、合作者?”,“怎样才能真正做到关注学生的需要,让学生自己也能成为教学的生长点?”这些问题还需值得继续深入思考和探索.3、在进行教学总结时,我指导学生进行规律性知识(等比数列的定义、通项公式)与方法论知识(不完全归纳法、类比法)的归纳总结,通过“多面互动”,让学生自主建构,在动态中生成,从而达到培养学生概括能力的目的.。

高中数学 第二章 数列 2.4 等比数列 第二课时 等比数列的性质学案(含解析)新人教A版必修5-新

高中数学 第二章 数列 2.4 等比数列 第二课时 等比数列的性质学案(含解析)新人教A版必修5-新

第二课时 等比数列的性质等比数列性质的应用[例1] (1)在等比数列{a n }中,若a 7+a 8+a 9+a 10=8,a 8a 9=-8,则1a 7+1a 8+1a 9+1a 10=________.(2)已知数列{a n }是等比数列,a 3+a 7=20,a 1a 9=64,求a 11的值.[解] (1)因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝ ⎛⎭⎪⎫-98=-53. (2)∵{a n }为等比数列, ∴a 1·a 9=a 3·a 7=64. 又∵a 3+a 7=20,∴a 3,a 7是方程t 2-20t +64=0的两个根. ∵t 1=4,t 2=16,∴a 3=4,a 7=16或a 3=16,a 7=4. ①当a 3=4,a 7=16时,a 7a 3=q 4=4,此时a 11=a 3q 8=4×42=64. ②当a 3=16,a 7=4时,a 7a 3=q 4=14,此时a 11=a 3q 8=16×⎝ ⎛⎭⎪⎫142=1. [答案] (1) -53[类题通法] 等比数列常用性质(1)若m +n =p +q (m ,n ,p ,q ∈N *), 则a m ·a n =a p ·a q .特例:若m +n =2p (m ,n ,p ∈N *),则a m ·a n =a 2p . (2)a n a m=qn -m(m ,n ∈N *).(3)在等比数列{a n }中,每隔k 项取出一项,取出的项,按原来顺序组成新数列,该数列仍然是等比数列.(4)数列{a n }为等比数列,则数列{λa n }(λ为不等于0的常数)和⎩⎨⎧⎭⎬⎫1a n 仍然成等比数列.[活学活用]1.在等比数列{a n }中,若a 2=2,a 6=12,则a 10=________. 解析:法一:设{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1q =2,a 1q 5=12,解得q 4=6,∴a 10=a 1q 9=a 1q ·(q 4)2=2×36=72. 法二:∵{a n }是等比数列, ∴a 26=a 2·a 10,于是a 10=a 26a 2=1222=1442=72.答案:722.在等比数列{a n }中,若a 7=-2,则此数列的前13项之积等于________. 解析:由于{a n }是等比数列,∴a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 27, ∴a 1a 2a 3…a 13=()a 276·a 7=a 137,而a 7=-2,∴a 1a 2a 3…a 13=(-2)13=-213. 答案:-213灵活设元求解等比数列[例2] 已知三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数. [解] 法一:设三个数依次为a ,aq ,aq 2,由题意知⎩⎪⎨⎪⎧a ·aq ·aq 2=27,a 2+a 2q 2+a 2q 4=91,∴⎩⎪⎨⎪⎧aq 3=27,a 21+q 2+q 4=91,即⎩⎪⎨⎪⎧aq =3,a 21+q 2+q 4=91,解得q 21+q 2+q 4=991, 得9q 4-82q 2+9=0,即得q 2=9或q 2=19,∴q =±3或q =±13.若q =3,则a 1=1; 若q =-3,则a 1=-1; 若q =13,则a 1=9;若q =-13,则a 1=-9.故这三个数为1,3,9,或-1,3,-9,或9,3,1,或-9,3,-1. 法二:设这三个数分别为a q,a ,aq .⎩⎪⎨⎪⎧aq·a ·aq =27,a 2q 2+a 2+a 2q 2=91⇒⎩⎪⎨⎪⎧a =3,a 2⎝ ⎛⎭⎪⎫1q2+1+q 2=91,得9q 4-82q 2+9=0,即得q 2=19或q 2=9,∴q =±13或q =±3.故这三个数为1,3,9,或-1,3,-9,或9,3,1,或-9,3,-1. [类题通法]三个数或四个数成等比数列的设元技巧(1)若三个数成等比数列,可设三个数为a ,aq ,aq 2或a q,a ,aq .(2)若四个数成等比数列,可设为a ,aq ,aq 2,aq 3;若四个数均为正(负)数,可设为a q3,a q,aq ,aq 3. [活学活用]在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或1712B .4或1712C .4D .1712解析:选B 设插入的第一个数为a ,则插入的另一个数为a 22.由a ,a 22,20成等差数列得2×a 22=a +20.∴a 2-a -20=0,解得a =-4或a =5. 当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=1712.等比数列的实际应用[例3] 年2月起,每月生产总值比上一个月增长m %,那么到2017年8月底该厂的生产总值为多少万元?[解] 设从2015年1月开始,第n 个月该厂的生产总值是a n 万元,则a n +1=a n +a n m %, ∴a n +1a n=1+m %. ∴数列{a n }是首项a 1=a ,公比q =1+m %的等比数列. ∴a n =a (1+m %)n -1.∴2016年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).[类题通法]数列实际应用题常与现实生活和生产实际中的具体事件相联系,建立数学模型是解决这类问题的核心,常用的方法有:①构造等差、等比数列的模型,然后用数列的通项公式或求和公式解;②通过归纳得到结论,再用数列知识求解.[活学活用](安徽高考)如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一:直接递推归纳:等腰直角三角形ABC 中,斜边BC =22, 所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝⎛⎭⎪⎫226=14. 法二:求通项:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n,故a 7=2×⎝ ⎛⎭⎪⎫226=14. 答案:143.等差数列和等比数列的性质对比等差数列和等比数列从文字看,只是一字之差,但定义和性质相差甚远,下面对两类数列的性质作一比对,若等差数列{a n }的公差为d ,等比数列{b n }的公比为q .【性质1】 等差数列{a n },当d =0时,数列为常数列,当d >0时,数列为递增数列;当d <0时,数列为递减数列.等比数列{b n },当q >1,b 1>0或0<q <1,b 1<0时,数列{b n }是递增数列;当q >1,b 1<0或0<q <1,b 1>0时,数列{b n }是递减数列;当q =1时,数列{b n }是常数列.[例1] 设{a n }是首项大于零的等比数列,且a 1<a 2<a 3,则数列{a n }是________数列.(填“递增”“递减”或“摆动”)[解析] 设数列{a n }的公比为q (q ≠0),因为a 1<a 2<a 3,所以a 1<a 1q <a 1q 2,解得q >1,且a 1>0,所以数列{a n }是递增数列.[答案] 递增【性质2】 等差数列{a n }满足a n =a m +(n -m )·d (m ,n ∈N *),等比数列{b n }满足b n =b m ·q n -m (m ,n ∈N *).(当m =1时,上述式子为通项公式)[例2] 已知{a n }为等差数列,且a 3=-6,a 6=0,则{a n }的通项公式为________. [解析] ∵a 6=a 3+3d ,则0=-6+3d ,得d =2, ∴a n =a 3+(n -3)d =-6+(n -3)×2=2n -12. [答案] a n =2n -12【性质3】 若m +n =p +q (m ,n ,p ,q ∈N *),等差数列{a n }满足a m +a n =a p +a q ,特别地,若数列{a n }是有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首末两项之和,即a 1+a n =a 2+a n -1=…=a i +1+a n -i =…(n ∈N *).等比数列{b n }满足b m b n =b p b q ,特别地,数列{b n }是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项之积,即b 1·b n =b 2·b n -1=b 3·b n -2=…=b m ·b n -m +1.[例3] (1)等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .105(2)在等比数列{a n }中,若a 2·a 8=36,a 3+a 7=15,则公比q 值的个数可能为( ) A .1 B .2 C .3D .4[解析] (1)S 19=19a 1+a 192=19a 3+a 172=19×102=95.(2)∵a 2·a 8=a 3·a 7,∴由⎩⎪⎨⎪⎧a 3·a 7=36,a 3+a 7=15,解得a 3=3,a 7=12,或a 3=12,a 7=3. 若a 3=3,a 7=12,则有12=3×q 4, ∴q 4=4,∴q 2=2,q =± 2.若a 3=12,a 7=3,则有3=12×q 4, ∴q 4=14,q 2=12,q =±22.∴q 的值可能有4个. 答案:(1)B (2)D【性质4】 在等差(比)数列中,每隔k 项取出一项,按原来的顺序排列,所得新数列仍为等差(比)数列,公差为(k +1)d (公比为q k +1),若两个数列分别成等差(比)数列,则两数列对应项和(积)构成等差(比)数列.[例4] 在1和16之间插入三个正数a ,b ,c 使1,a ,b ,c,16成等比数列,求a +b +c 的值.[解] ∵1,a ,b ,c,16成等比数列, ∴1,b,16为等比数列.∴b =4.∴1,a ,b 也成等比数列,b ,c,16也成等比数列. ∴a =2,c =8.∴a +b +c =2+4+8=14.[随堂即时演练]1.将公比为q 的等比数列{a n }依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列( )A .是公比为q 的等比数列B .是公比为q 2的等比数列 C .是公比为q 3的等比数列 D .不一定是等比数列解析:选B 由于a n a n +1a n -1a n =a n a n -1·a n +1a n=q ·q =q 2,n ≥2且n ∈N *, ∴{a n a n +1}是以q 2为公比的等比数列,故选B.2.若1,a 1,a 2,4成等差数列;1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为( ) A .-12B.12 C .±12D.14解析:选A ∵1,a 1,a 2,4成等差数列,∴3(a 2-a 1)=4-1, ∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q , 则b 22=1×4=4,且b 2=1×q 2>0, ∴b 2=2,∴a 1-a 2b 2=-a 2-a 1b 2=-12. 3.在等比数列{a n }中,a 888=3,a 891=81,则公比q =________. 解析:∵a 891=a 888q 891-888=a 888q 3,∴q 3=a 891a 888=813=27. ∴q =3. 答案:34.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________. 解析:∵a 6a 10=a 28,a 3a 5=a 24, ∴a 24+a 28=41, 又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49. ∵数列各项都是正数, ∴a 4+a 8=7. 答案:75.已知数列{a n }为等比数列.(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ; (2)若a 3a 5=18,a 4a 8=72,求公比q . 解:(1)∵a 1a 2a 3=a 32=216,∴a 2=6, ∴a 1a 3=36.又∵a 1+a 3=21-a 2=15,∴a 1,a 3是方程x 2-15x +36=0的两根3和12. 当a 1=3时,q =a 2a 1=2,a n =3·2n -1;当a 1=12时,q =12,a n =12·⎝ ⎛⎭⎪⎫12n -1.(2)∵a 4a 8=a 3q ·a 5q 3=a 3a 5q 4=18q 4=72,∴q 4=4,∴q =± 2.[课时达标检测]一、选择题1.(重庆高考)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0, 因此a 3,a 6,a 9一定成等比数列,选D.2.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( ) A .35 B .63 C .21 3D .±21 3解析:选B ∵{a n }是等比数列, ∴a 4,a 6,a 8成等比数列, ∴a 26=a 4·a 8,即a 8=2127=63.3.在等比数列{a n }中,a 1=1,a 10=3,则a 2a 3a 4a 5a 6a 7a 8a 9等于( ) A .81 B .27327 C .3D .243解析:选A 因为数列{a n }是等比数列,且a 1=1,a 10=3,所以a 2a 3a 4a 5a 6a 7a 8a 9=(a 2a 9)·(a 3a 8)·(a 4a 7)·(a 5a 6)=(a 1a 10)4=34=81.故选A. 4.设数列{a n }为等比数列,则下面四个数列: ①{a 3n };②{pa n }(p 为非零常数);③{a n ·a n +1}; ④{a n +a n +1}.其中是等比数列的有( ) A .1个 B .2个 C .3个D .4个解析:选D ①∵a 3n +1a 3n =⎝ ⎛⎭⎪⎫a n +1a n 3=q 3,∴{a 3n}是等比数列;②∵pa n +1pa n =a n +1a n=q ,∴{pa n }是等比数列;③∵a n ·a n +1a n -1·a n =a n +1a n -1=q 2,∴{a n ·a n +1}是等比数列;④∵a n +a n +1a n -1+a n =q a n -1+a na n -1+a n=q ,∴{a n +a n +1}是等比数列.5.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.二、填空题6.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.解析:∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0, ∵b 7=a 7≠0, ∴b 7=a 7=4. ∴b 6b 8=b 27=16. 答案:167.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048(平方厘米). 答案:2 0488.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则a 20a 10=________. 解析:∵{a n }是等比数列, ∴a 7·a 11=a 4·a 14=6, 又a 4+a 14=5, ∴⎩⎪⎨⎪⎧a 4=2,a 14=3或⎩⎪⎨⎪⎧a 4=3,a 14=2.∵a 14a 4=q 10,∴q 10=23或q 10=32. 而a 20a 10=q 10,∴a 20a 10=23或a 20a 10=32. 答案:23或32三、解答题9.在83和272之间插入三个数,使这五个数成等比数列,求插入的这三个数的乘积. 解:法一:设这个等比数列为{a n },公比为q ,则a 1=83,a 5=272=a 1q 4=83q 4, ∴q 4=8116,q 2=94. ∴a 2·a 3·a 4=a 1q ·a 1q 2·a 1q 3=a 31·q 6=⎝ ⎛⎭⎪⎫833×⎝ ⎛⎭⎪⎫943=63=216. 法二:设这个等比数列为{a n },公比为q ,则a 1=83, a 5=272,由题意知a 1,a 3,a 5也成等比数列且a 3>0,∴a 23=83×272=36,∴a 3=6, ∴a 2·a 3·a 4=a 23·a 3=a 33=216.10.始于2007年初的美国次贷危机,至2008年中期,已经演变为全球金融危机.受此影响,国际原油价格从2008年7月每桶最高的147美元开始大幅下跌,9月跌至每桶97美元.你能求出国际原油价格7月到9月之间平均每月下降的百分比吗?若按此计算,到什么时间跌至谷底(即每桶34美元)?解:设每月平均下降的百分比为x ,则每月的价格构成了等比数列{a n },记a 1=147(7月份价格),则8月份价格a 2=a 1(1-x )=147(1-x ),9月份价格a 3=a 2(1-x )=147(1-x )2.∴147(1-x )2=97,解得x ≈18.8%.设a n =34,则34=147·(1-18.8%)n -1,解得n =8.即从2008年7月算起第8个月,也就是2009年2月国际原油价格将跌至34美元每桶.11.从盛满a (a >1)升纯酒精的容器里倒出1升,然后添满水摇匀,再倒出1升混合溶液后又用水添满摇匀,如此继续下去,问:第n 次操作后溶液的浓度是多少?当a =2时,至少应倒几次后才能使酒精的浓度低于10%?解:设开始时溶液的浓度为1,操作一次后溶液浓度a 1=1-1a .设操作n 次后溶液的浓度为a n ,则操作(n +1)次后溶液的浓度为a n +1=a n ⎝ ⎛⎭⎪⎫1-1a . ∴{a n }是以a 1=1-1a 为首项,q =1-1a为公比的等比数列, ∴a n =a 1q n -1=⎝ ⎛⎭⎪⎫1-1a n , 即第n 次操作后酒精的浓度是⎝ ⎛⎭⎪⎫1-1a n . 当a =2时,由a n =⎝ ⎛⎭⎪⎫12n <110(n ∈N *),解得n ≥4. 故至少应操作4次后才能使酒精的浓度小于10%.12.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且前后两数的和是16,中间两数的和是12.求这四个数.解:法一:设这四个数依次为a -d ,a ,a +d ,a +d 2a, 由条件得⎩⎪⎨⎪⎧ a -d +a +d 2a =16,a +a +d =12.解得⎩⎪⎨⎪⎧ a =4,d =4,或⎩⎪⎨⎪⎧ a =9,d =-6.所以当a =4,d =4时,所求四个数为0,4,8,16;当a =9,d =-6时,所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1.法二:设这四个数依次为2a q -a ,a q,a ,aq (a ≠0), 由条件得⎩⎪⎨⎪⎧ 2a q -a +aq =16,a q +a =12.解得⎩⎪⎨⎪⎧ q =2,a =8,或⎩⎪⎨⎪⎧ q =13,a =3.所以当q =2,a =8时,所求四个数为0,4,8,16;当q =13,a =3时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.法三:设这四个数依次为x ,y,12-y,16-x ,由已知得⎩⎪⎨⎪⎧ 2y =x +12-y ,12-y 2=y 16-x . 解得⎩⎪⎨⎪⎧ x =0,y =4,或⎩⎪⎨⎪⎧ x =15,y =9.故所求四个数为0,4,8,16或15,9,3,1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4.2 等比数列的基本性质及其应用从容说课这节课师生将进一步探究等比数列的知识,以教材练习中提供的问题作为基本材料,认识等比数列的一些基本性质及内在的联系,理解并掌握一些常见结论,进一步能用来解决一些实际问题.通过一些问题的探究与解决,渗透重要的数学思想方法.如类比思想、归纳思想、数形结合思想、算法思想、方程思想以及一般到特殊的思想方法等教学中以师生合作探究为主要形式,充分调动学生的学习积极性教学重点1.探究等比数列更多的性质2.解决生活实际中的等比数列的问题教学难点渗透重要的数学思想教具准备多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解等比数列更多的性质2.能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中3.能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题二、过程与方法1.继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学2.对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程3.当好学生学习的合作者的角色三、情感态度与价值观1.通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力2.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值教学过程导入新课师 教材中第59页练习第3题、第4题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下生 由学习小组汇报探究结果 师 对各组的汇报给予评价师 出示多媒体幻灯片一:第3题、第4题详细解答: 第3题解答:(1)将数列{a n }的前k 项去掉,剩余的数列为a k+1,a k+2,….令b i =a k+i则数列a k+1,a k+2,…,可视为b 1,b 2,因为q a a b b ik i k i i ==++++11 (i≥1),所以,{b n }是等比数列,即a k+1,a k+2,…是等比数列 (2){a n }中每隔10项取出一项组成的数列是a 1,a 11,a 21,…,则109101101121111......q a a a a a a k k =====-+所以数列a 1,a 11,a 21,…是以a 1为首项,q 10为公比的等比数列猜想:在数列{a n }中每隔m(m 是一个正整数)取出一项,组成一个新数列,这个数列是以a 1为首项、q m为公比的等比数列◇本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法第4题解答:(1)设{a n }的公比是q ,则a 52=(a 1q 4)2=a 12q 8而a 3·a 7=a 1q 2·a 1q 6=a 12q 8所以a 52=a 3·a 7.同理,a 52=a 1·a 9(2)用上面的方法不难证明a n 2=a n -1·a n +1(n >1).由此得出,a n 是a n -1和a n +1的等比中项,同理可证a n 2=a n -k ·a n +k (n >k >0).a n 是a n -k 和a n +k 的等比中项(n >k >师 和等差数列一样,等比数列中蕴涵着许多的性质,如果我们想知道的更多,就要对它作进一步的探究推进新课[合作探究] 师 出示投影胶片1例题1 (教材P 61B 组第3题)就任一等差数列{a n },计算a 7+a 10,a 8+a 9和a 10+a 40,a 20+a 30,你发现了什么一般规律,能把你发现的规律用一般化的推广吗?从等差数列和函数之间的联系的角度来分析这个问题.在等比数列中会有怎样的类似结论?师 注意题目中“就任一等差数列{a n }”,你打算用一个什么样的等差数列来计算? 生 用等差数列1,2,3,师 很好,这个数列最便于计算,那么发现了什么样的一般规律呢? 生 在等差数列{a n }中,若k+s=p+q(k,s,p,q∈N *),则a k +a s =a p +a q师 题目要我们“从等差数列与函数之间的联系的角度来分析这个问题”,如何做?生 思考、讨论、交流师 出示多媒体课件一:等差数列与函数之间的联系[教师精讲]师 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{a n }的图象,可以看出qs a a p k a a q s p k ==,根据等式的性质,有1=++=++qp sk a a a a q p s k所以a k +a s =a p +a q师 在等比数列中会有怎样的类似结论?生 猜想对于等比数列{a n },类似的性质为:k+s=p+t(k,s,p,t∈N *),则a k ·a s =a p ·a t师 让学生给出上述猜想的证明证明:设等比数列{a n }公比为q , 则有a k ·a s =a 1q k-1·a 1q s-1=a 12·qk+s-2a p ·a t =a 1q p-1·a 1q t-1=a 12·q p+t-2因为所以有a k ·a s =a p ·a t师 指出:经过上述猜想和证明的过程,已经得到了等比数列的一个新的性质即等比数列{a n }中,若k+s=p+t(k,s,p,t∈N *),则有a k ·a s =a p ·a t师 下面有两个结论:(1)与首末两项等距离的两项之积等于首末两项的积; (2)与某一项距离相等的两项之积等于这一项的平方你能将这两个结论与上述性质联系起来吗?生 思考、列式、合作交流,得到:结论(1)就是上述性质中1+n =(1+t)+(n -t)时的情形; 结论(2)就是上述性质中k+k=(k+t)+(k-t)时的情形 师 引导学生思考,得出上述联系,并给予肯定的评价 师 上述性质有着广泛的应用师 出示投影胶片2:例题2例题(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18(2)在等比数列{b n }中,b 4=3,求该数列前七项之积; (3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8.例题2 三个小题由师生合作交流完成,充分让学生思考,展示将问题与所学的性质联系到一起的思维过程解答:(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18解:∵a 1a 18=a 9a 10,∴a 18=51001109=a a a(2)在等比数列{b n }中,b 4=3,求该数列前七项之积解:b 1b 2b 3b 4b 5b 6b 7=(b 1b 7)(b 2b 6)(b 3b 5)b 4∵b 42=b 1b 7=b 2b 6=b 3b 5,∴前七项之积(32)3×3=37(3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8解:.∵a 5是a 2与a 8的等比中项,∴542=a 8×(-∴a 8=-另解:a 8=a 5q 3=a 5·2545425-⨯=a a =-[合作探究]师 判断一个数列是否成等比数列的方法:1、定义法;2、中项法;3、通项公式法例题3:已知{a n }{b n }是两个项数相同的等比数列,仿照下表中的例子填写表格.从中你能得出什么结论?证明你的结论师 请同学们自己完成上面的表师 根据这个表格,我们可以得到什么样的结论?如何证明?生 得到:如果{a n }、{b n }是两个项数相同的等比数列,那么{a n ·b n }也是等比数列证明如下:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项与第n +1项分别为a 1pn -1b 1q n -1与a 1p n b 1q n ,因为pq qb p a q b p a b a b a n n nn n n n n ==∙--++11111111它是一个与n 无关的常数,所以{a n ·b n }是一个以pq 为公比的等比数列[教师精讲]除了上面的证法外,我们还可以考虑如下证明思路: 证法二:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项、第n -1项与第n +1项(n >1,n ∈N *)分别为a 1p n -1b 1q n -1、a 1pn -2b 1q n -2与a 1p n b 1q n ,因为(a n b n )2=(a 1pn -1b 1q n -1)2=(a 1b 1)2(pq) 2(n -1)(a n -1·b n -1)(a n +1·b n +1)=(a 1p n -2b 1q n -2)(a 1p nb 1q n)=(a 1b 1)2(pq)2(n -1)即有(a n b n )2=(a n -1·b n -1)(a n +1·b n +1)(n >1,n ∈N *所以{a n ·b n }是一个等比数列师 根据对等比数列的认识,我们还可以直接对数列的通项公式考察:证法三:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的通项公式为a nb n =a 1p n -1b 1q n -1=(a 1b 1)(pq) n -1设c n =a n b n ,则c n =(a 1b 1)(pq)n -1所以{a n ·b n }是一个等比数列课堂小结本节学习了如下内容: 1.等比数列的性质的探究2.证明等比数列的常用方法布置作业课本第60页习题2.4 A 组第3题、B 组第1题板书设计习题详解(课本第60页习题2.4)组1.(1)a 7=a 4·q 3=27×(-3)3=-(2)设等比数列{a n }的公比是⎪⎩⎪⎨⎧=-=-⇔⎩⎨⎧=-=-②①.6)1(,15)1(61521412415q q a q aa a a a ②÷①,整理得6q 2- 解方程得q=2或21=q由a 4-a 2=6,得a 3(q-q -1)=6,所以,当q=2时,由③得,a 3=4当21=q 时,由③得a 3=-2.设n 年后,需退耕a n ,则{a n }是一个等比数列,其中a 1=8,q=0.1.那么2005年需退耕a 5=a 1(1+q)5=8(1+0.1)5=13(万公顷3.若{a n }是各项均为正数的等比数列,则首项a 1和公比q 都是正数, 由a n =a 1qn -1,得121121111)(---===n n n n q a qa q a a ,所以数列{a n }是以a 1为首项,21=q 为公比的等比数列4.这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm,再对折后厚度为0.05×22mm ,再对折后厚度为0.05×23mm ,设a 0=0.05,对折n 次后报纸的厚度为a n ,则{a n }是一个等比数列,公比q=2,对折50次后,报纸的厚度为a50=a 0q 50=0.05×250≈5.63×1013=5.63×1010这时报纸的厚度已经超过地球和月球之间的平均距离(约3.84×108m),所以能够在地球和月球之间建一座桥5.设年平均增长率为q ,a 1=105,n 年后空气质量为良的天数为a n ,则{a n }是一个等比数列,由a 3=240,得a 3=a 1(1+q)2=105(1+q)2=240,解得q=105240-6.由已知条件,知2b a A +=,G=ab,且2)(222b a ab b a ab b a G A -=-+=-+=-≥0, 所以有A ≥G,等号成立的条件是a =b .而a ,b 是互异正数,所以一定有A >7.(1)±2 (2)±ab (a 2+b 28.略组1.证明略2.(1)设生物死亡时,体内每克组织中的碳14的含量为1,每年的衰变率为q ,n 年后的残留量为a n ,则{a n }是一个等比数列,由碳14的半衰期为5 730,则a n =a 1q5 730=q5 730=21,解得57301)21(=q(2)设动物约在距今n 年前死亡,由a n =0.6,得a n =a 1q n=0.999 879n解得n ≈4 221,所以动物约在距今4 221年前死亡3.略备课资料备用例题1.已知无穷数列5010,5110,5210 ,…, 5110-n求证:(1)这个数列成等比数列;(2)这个数列中的任一项是它后面第五项的101; (3)这个数列的任意两项的积仍在这个数列中证明:(1)101101010154511===-+--n n n n a a (常数),∴该数列成等比数列(2)101101010154515===-+-+n n n n a a ,即:5101+=n n aa(3)a p a q =525151101010-+--=q p q p ,∵p,q∈N,∴p+q -1≥1且(p+q-1)∈N .∴5210-+q p ∈⎭⎬⎫⎩⎨⎧-5110n (第p+q-1项2.设a ,b ,c,d 均为非零实数,(a 2+b 2)d 2-2b (a +c)d +b 2+c2求证:a ,b ,c 成等比数列且公比为d证法一:关于d 的二次方程(a 2+b 2)d 2-2b (a +c)d +b 2+c 2=0有实根, ∴Δ=4b 2(a +c)2-4(a 2+b 2)(b 2+c 2)≥0.∴-4(b 2-a c)2≥0.∴-(b 2-a c)2则必有:b 2-a c=0,即b 2=a c ,∴a ,b ,c成等比数列设公比为q ,则b =a q,c=a q 2代入 (a 2+a 2q 2)d 2-2a q(a +a q 2)d +a 2q 2+a 2q4∵(q 2+1)a 2≠0,∴d 2-2q d +q 2=0,即d 证法二:∵(a 2+b 2)d 2-2b (a +c)d +b 2+c2∴(a 2d 2-2abd +b 2)+(b 2d 2-2b c d +c2∴(ad -b )2+(bd -c)2=0.∴ad =b ,且bd∵a ,b ,c,d 非零,∴d bca b ==d .∴a ,b ,c 成等比数列且公比为d。

相关文档
最新文档