高考数学选择题填空题限时训练----选择题填空题第三次练习

合集下载

高考数学选择、填空题专项训练(共40套)[附答案]之欧阳语创编

高考数学选择、填空题专项训练(共40套)[附答案]之欧阳语创编

三基小题训练一时间:2021.03.01创作:欧阳语一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数y =2x +1的图象是( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D.65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交 9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( )A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x2的系数为()A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率()A.小B.大C.相等D.大小不能确定12.如右图,A、B、C、D是某煤矿的四个采煤点,l是公路,图中所标线段为道路,ABQP、BCRQ、CDSR近似于正方形.已知A、B、C、D四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P、Q、R、S中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在()A.P点B.Q点C.R点D.S点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y2=2x上到直线x-y+3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R上的偶函数f(x)满足f(x+1)+f(x)=1,且当x∈[1,2]时,f(x)=2-x,则f(8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15.21 三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量外,与向量OA 共线的向量共有()A .2个B . 3个C .6个D . 7个 2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )EFDOCBAA .21B . 1C . 2D . 43.若(3a 2-312a )n 展开式中含有常数项,则正整数n 的最小值是()A .4B .5C . 6D . 8 4.从5名演员中选3人参加表演,其中甲在乙前表演的概率为()A .203 B .103 C .201 D .1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是()A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为()A.(a ,-b )B.(-a ,b )C.(b ,-a )D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T 8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ;(2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是()A.(-∞,4)B.(-4,4] C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较()A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于A.6162-B.6162+C.4132+D.3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上.13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为。

高考数学选择、填空题专项训练(共40套)[附答案]之欧阳家百创编

高考数学选择、填空题专项训练(共40套)[附答案]之欧阳家百创编

三基小题训练一欧阳家百(2021.03.07)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D.65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交 9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( )A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l是公路,图中所标线段为道路,ABQP、BCRQ、CDSR近似于正方形.已知A、B、C、D四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P、Q、R、S中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在()A.P点B.Q点C.R点D.S点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y2=2x上到直线x-y+3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R上的偶函数f(x)满足f(x+1)+f(x)=1,且当x∈[1,2]时,f(x)=2-x,则f(8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________.答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15.21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有()A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A .21B . 1C . 2D . 43.若(3a 2-312a )n 展开式中含有常数项,则正整数n 的最小值是()A .4B .5C . 6D . 84.从5名演员中选3人参加表演,其中甲在乙前表演的概率为()A .203 B .103 C .201 D .1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是()A.(3,0) B.(2,0) C.(1,0) D.(-1,0) 6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为()A.(a ,-b )B.(-a ,b )C.(b ,-a )D.(-b ,-a ) 7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠TEF D O C B A8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A .36种B .48种C .72种D .96种 9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ;(2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是()A.(-∞,4)B.(-4,4] C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较()A .2只笔贵B .3本书贵C .二者相同D .无法确定 12.若α是锐角,sin(α-6π)=31,则cos α的值等于A.6162- B.6162+ C.4132+ D.3132- 二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上.13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为。

打卡第三天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)解析版

打卡第三天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)解析版

【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)新高考真题限时训练打卡第三天一、单选题(本题共6小题,每小题5分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(2020·海南·高考真题)设集合A ={2,3,5,7},B ={1,2,3,5,8},则A B ⋂=()A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C【分析】根据集合交集的运算可直接得到结果.【详解】因为A{2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B = 故选:C【点睛】本题考查的是集合交集的运算,较简单.2.(2020·海南·高考真题)()()12i 2i ++=()A .45i +B .5iC .5i-D .23i+【答案】B【分析】直接计算出答案即可.【详解】()()212i 2i 2i 4i 2i 5i ++=+++=故选:B【点睛】本题考查的是复数的计算,较简单.3.(2020·海南·高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A .2种B .3种C .6种D .8种【答案】C【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【详解】第一步,将3名学生分成两个组,有12323C C =种分法第二步,将2组学生安排到2个村,有222A =种安排方法所以,不同的安排方法共有326⨯=种故选:C 【点睛】解答本类问题时一般采取先组后排的策略.4.(2019·全国·高考真题)设α,β为两个平面,则//αβ的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.5.(2020·山东·统考高考真题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范围是()A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A【分析】首先根据题中所给的条件,结合正六边形的特征,得到AP 在AB 方向上的投影的取值范围是(1,3)-,利用向量数量积的定义式,求得结果.【详解】AB的模为2,根据正六边形的特征,可以得到AP 在AB方向上的投影的取值范围是(1,3)-,结合向量数量积的定义式,可知AP AB ⋅ 等于AB 的模与AP 在AB方向上的投影的乘积,所以AP AB ⋅的取值范围是()2,6-,故选:A.【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.6.(2019·全国·高考真题)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③【答案】C【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案.【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴ 为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x \的最大值为2,故④正确.综上所述,①④正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .二、多选题(本题共2小题,每小题5分,共10分。

高考数学:专题七 第二讲 数形结合思想配套限时规范训练

高考数学:专题七 第二讲 数形结合思想配套限时规范训练

第二讲 数形结合思想一、选择题1.定义在R 上的偶函数y =f (x )满足f (x +2)=f (x ),当x ∈[3,4]时,f (x )=x -2,则( )A .f ⎝⎛⎭sin 12<f ⎝⎛⎭⎫cos 12 B .f ⎝⎛⎭⎫sin π3>f ⎝⎛⎭⎫cos π3C .f (sin 1)<f (cos 1)D .f ⎝⎛⎭sin 32>f ⎝⎛⎭⎫cos 322.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 C.115D.37163.已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )·cos x <0的解集是( )A.⎝⎛⎭⎫-3,-π2∪(0,1)∪⎝⎛⎭⎫π2,3 B.⎝⎛⎭⎫-π2,-1∪(0,1)∪⎝⎛⎭⎫π2,3 C .(-3,-1)∪(0,1)∪(1,3)D.⎝⎛⎭⎫-3,-π2∪(0,1)∪(1,3) 4.函数f (x )=(12)x -sin x 在区间[0,2π]上的零点个数为( ) A .1B .2C .3D .4 5.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( ) A .a <b <c B .a <c <b C .b <c <aD .b <a <c6.(2011·大纲全国)已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1B .2 C. 2D.227.不等式x 2-log a x <0在x ∈(0,12)时恒成立,则a 的取值范围是 ( )A .0<a <1 B.116a <1C .a >1D .0<a ≤1168.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f x -f -x x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1) 二、填空题9.若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________. 10.设不等式组⎩⎪⎨⎪⎧2x +y -6≤0x +y -3≥0y ≤2表示的平面区域为M ,若函数y =a x(a >0,a ≠1)的图象经过区域M ,则a 的取值范围是__________.11.在平面直角坐标系xOy 中,设椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2c ,以点O 为圆心,a 为半径作圆M .若过点P (a2c,0)作圆M 的两条切线互相垂直,则该椭圆的离心率为__________.12.若不等式9-x 2≤k (x +2)-2的解集为区间[a ,b ],且b -a =2,则k =________. 三、解答题13.设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实根α、β.(1)求实数a 的取值范围; (2)求α+β的值.14.已知P是直线3x+4y+8=0上的动点,PA、PB是圆x2+y2-2x-2y+1=0的两条切线,A、B是切点,C是圆心,求四边形PACB面积的最小值.答案1.C 2.A 3.B 4.B 5.D 6.C 7.B 8.D 9.a >110.(0,1)∪(1,2] 11.2212. 213.解 方法一(1)设x =cos θ,y =sin θ,则由题设知,直线l :3x +y +a =0与圆x 2+y 2=1有两个不同的交点A (cos α,sin α)和B (cos β,sin β).所以原点O 到直线l 的距离小于半径1,即d =||0+0+a 32+12=|a |2<1,∴-2<a <2.又∵α、β∈(0,2π),且α≠β. ∴直线l 不过点(1,0),即3+a ≠0.∴a≠-3,即a ∈(-2,-3)∪(-3,2).(2)如图,不妨设∠xOA =α,∠xOB =-β,作OH ⊥AB ,垂足为H ,则∠BOH =α-β2.∵OH ⊥AB ,∴k AB ·k OH =-1.∴tanα+β2=33.又∵α+β2∈(0,2π), ∴α+β=π3或α+β=7π3.方法二(1)原方程可化为sin (θ+π3=-a2,作出函数y =sin (x +π3)(x ∈(0,2π))的图象.由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎪⎨⎪⎧-1<-a2<1-a 2≠32即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈⎝ ⎛⎭⎪⎫-1,32时,直线y =-a 2与三角函数y =sin(x+π3)的图象交于C 、D 两点,它们中点的横坐标为7π6,∴α+β2=7π6,∴α+β=7π3. 当-2<a <-3,即-a 2∈⎝ ⎛⎭⎪⎫32,1时,直线y =-a 2与三角函数y =sin(x +π3)的图象有两交点A 、B ,由对称性知,α+β2=π6,∴α+β=π3,综上所述,α+β=π3或α+β=7π3.14.解 方法一 从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形PAC 的面积S Rt△PAC =12|PA |·|AC |=12|PA |越来越大,从而S四边形PACB也越来越大;当点P 从左上、右下两个方向向中间运动时,S四边形PACB变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线时,S四边形PACB应有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3,从而|PA |=|PC |2-|AC |2=2 2.∴(S 四边形PACB )min =2×12×|PA |×|AC |=2 2.方法二 利用等价转化的思想,设点P 坐标为(x ,y ), 则|PC |=x -12+y -12,由勾股定理及|AC |=1,得|PA |=|PC |2-|AC |2=x -12+y -12-1, 从而S 四边形PACB =2S △PAC =2·12|PA |·|AC |=|PA |=x -12+y -12-1,从而欲求S 四边形PACB 的最小值,只需求|PA |的最小值,只需求|PC |2=(x -1)2+(y -1)2的最小值,即定点C (1,1)与直线上动点P (x ,y )距离的平方的最小值,它也就是点C (1,1)到直线3x +4y +8=0的距离的平方,这个最小值d 2=⎝ ⎛⎭|3×1+4×1+8|32+422=9, ∴(S 四边形PACB )min =9-1=2 2.方法三 利用函数思想,将方法二中S 四边形PACB =x -12+y -12-1中的y 由3x+4y+8=0中解出,代入化为关于x的一元二次函数,进而用配方法求最值,也可得(S四边形PACB)min=2 2.。

高考数学:专题一第四讲 基本初等函数及函数的应用配套限时规范训练

高考数学:专题一第四讲 基本初等函数及函数的应用配套限时规范训练

第四讲 基本初等函数及函数的应用(推荐时间:50分钟)一、选择题1.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为( ) A.13B.23C .1D .22.如果函数f (x )=ax 2+bx +c (a >0)对任意实数t 都有f (2+t )=f (2-t ),那么( )A .f (1)< f (2)< f (4)B .f (2)< f (1)< f (4)C .f (2)< f (4)< f (1)D .f (4)< f (2)< f (1) 3.已知函数f (x )=⎩⎪⎨⎪⎧log 21-x ,x ≤0,f x -1+1,x >0,则f (2 013)等于( ) A .2 010 B .2 011 C .2 012D .2 0134.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x, x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫19的值为( ) A .4B.14 C .-4D .-145.若函数f (x )=若f (a )>f (-a ),则实数a 的取值范围是 ( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知函数f (x )=⎩⎪⎨⎪⎧12x,x ≥4f x +1,x <4,则f (2+log 23)的值为( )A.124 B.112 C.16D.137.已知函数f (x )=x 2-2x +3在闭区间[0,m ]上的最大值为3,最小值为2,则m 的取值范围为( )A .[1,+∞)B .[0,2]C .(-∞,-2]D .[1,2]8.(2011·天津)对实数a和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1] 二、填空题9.(2011·陕西)则f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x,x ≤0,则f (f (-2))=____________.10.(2011·江苏)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.11.方程2-x +x 2=3的实数解的个数为________.12.(2011·湖北)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震的最大振幅的________倍. 三、解答题13.(2011·上海)已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0.(1)若ab >0,判断函数f (x )的单调性;(2)若ab <0,求f (x +1)>f (x )时x 的取值范围.14.已知函数f (x )=x 3,g (x )=x +x .求函数h (x )=f (x )-g (x )的零点个数,并说明理由.答案1.B 2.B 3.D 4.B 5.C 6.A 7.D 8.B 9.-210.-3411.212.6 10 00013.解 (1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2,则f (x 1)-f (x 2)=a (2x 1-2x 2)+b (3x 1-3x 2). ∵2x 1<2x 2,a >0⇒a (2x 1-2x2)<0, 3x 1<3x 2,b >0⇒b (3x 1-3x2)<0,∴f (x 1)-f (x 2)<0,函数f (x )在R 上是增函数. 当a <0,b <0时,同理,函数f (x )在R 上是减函数. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0,当a <0,b >0时,⎝⎛⎭⎫32x >-a 2b ,则x >log 1.5⎝⎛⎭⎫-a2b ;当a >0,b <0时,⎝⎛⎭⎫32x <-a 2b ,则x <log 1.5⎝⎛⎭⎫-a2b .14.解 由题意知,x ∈[0,+∞),h (x )=x 3-x -x ,h (0)=0,且h (1)=-1<0,h (2)=6-2>0,则x =0为h (x )的一个零点,且h (x )在(1,2)内有零点.因此,h (x )至少有两个零点.方法一 h ′(x )=3x 2-1-12x 21-,记φ(x )=3x 2-1-12x 21-,则φ′(x )=6x +14x 23-.当x ∈(0,+∞)时,φ′(x )>0,因此φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.又因为φ(1)>0,φ(33)<0,则φ(x )在(33,1)内有零点,所以φ(x )在(0,+∞)内有且只有一个零点.记此零点为x 1,则当x ∈(0,x 1)时,φ(x )<φ(x 1)=0;当x ∈(x 1,+∞)时,φ(x )>φ(x 1)=0.所以当x ∈(0,x 1)时,h (x )单调递减,而h (0)=0,则h (x )在(0,x 1]内无零点; 当x ∈(x 1,+∞)时,h (x )单调递增,则h (x )在(x 1,+∞)内至多只有一个零点,从而h (x )在(0,+∞)内至多只有一个零点.综上所述,h (x )有且只有两个零点.方法二 由h (x )=x (x 2-1-x -12),记φ(x )=x 2-1-x -12,则φ′(x )=2x +12x 23-.当x ∈(0,+∞)时,φ′(x )>0,从而φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.因此h (x )在(0,+∞)内也至多只有一个零点. 综上所述,h (x )有且只有两个零点.。

高考数学:专题七 第一讲 函数与方程思想配套限时规范训练

高考数学:专题七 第一讲 函数与方程思想配套限时规范训练
2.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程logax+logay=3,这时a的取值的集合为()
A.{a|1<a≤2}B.{a|a≥2}
C.{a|2≤a≤3}D.{2,3}
3.(2012·浙江)设a>0,b>0,则下列命题正确的是()
A.若2a+2a=2b+3b,则a>b
所以x1x2+y1y2=0,而y1y2=x1x2-(x1+x2)+1,
所以2x1x2-(x1+x2)+1=0.
由即(a2+b2)x2-2a2x+a2(1-b2)=0.
又直线与椭圆相交于两点,所以Δ=(-2a2)2-4(a2+b2)·a2(1-b2)>0,整理得a2b2(a2+b2-1)>0,即a2+b2>1.
12.若数列{an}的通项公式为an=×n-3×n+n(其中n∈N*),且该数列中最大的项为am,则m=______.
三、解答题
13.已知直线y=-x+1与椭圆+=1(a>b>0)相交于A,B两点,且OA⊥OB(O为坐标原点),若椭圆的离心率e∈,求a的最大值.
14.(2012·山东)已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
A.B.2C.4D.8
6.定义在R上的偶函数f(x)在[0,+∞)上递增,f=0,则满足f(logx)>0的x的取值范围是()
A.(0,+∞)B.(0,)∪(2,+∞)
C.(0,)∪(,2)D.
7.设函数f(x)=x3+sinx,若0≤θ≤时,f(mcosθ)+f(1-m)>0恒成立,则实数m的取值范围是()
A.(0,1)B.(-∞,0)
C.(-∞,1)D.

高三数学 选择题填空题训练(含解析)

高三数学 选择题填空题训练(含解析)

高三数学 选择题填空题训练(含解析)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上).1. 设集合{2,04,},{2,}n A x x n n B x x n n ==<<∈==∈Z Z ,则AB 为A. {1,2,4,8,16}B. {1,2,4,8}C. {2,4,8}D. {2,4}2. 关于复数2(1)1i z i+=-,下列说法中正确的是A. 在复平面内复数z 对应的点在第一象限B. 复数z 的共轭复数1z i =-C. 若复数1z z b =+()b ∈R 为纯虚数,则1b =D. 设,a b 为复数z 的实部和虚部,则点(,)a b 在以原点为圆心,半径为1的圆上3. 下列函数一定是偶函数的是A. cos(sin )y x =B. sin cos y x x =C. ln(sin )y x =D. sin xy e=4. 已知等比数列}{n a 的前n 项和为n S ,且满足8417S S =,则公比q = A.12 B. 12± C. 2 D. 2± 5. 执行如图所示程序框图,输出的x 值为A. 11B. 13C. 15D. 46.二项式5的展开式中常数项为A. 5B. 10C.20-D. 407. 设函数()|sin(2)|3f x x π=+,则下列关于函数()f x 的说法中正确的是A. ()f x 是偶函数B. ()f x 最小正周期为πC. ()f x 图象关于点(,0)6π-对称 D. ()f x 在区间7[,]312ππ上是增函数 8. 某几何体的三视图如图所示,则这个几何体的体积为 A. 4B.203C. 263D. 89. 如图,平面内有三个向量,,OA OB OC ,其中OA 与OB 的夹角为120︒,OA 与OC 的夹角为30︒,且3||2,||,||232OA OB OC ===(,)OC OA OB λμλμ=+∈R ,则A. 4,2λμ==B. 83,32λμ==C. 42,3λμ==D. 34,23λμ==10. 若数列{}n a 满足规律:123212......n n a a a a a -><><><,则称数列{}n a 为余弦数列,现将1,2,3,4,5排列成一个余弦数列的排法种数为 A. 12B. 14C. 16D. 1811. 已知双曲线12222=-by a x (0,0)a b >>以及双曲线22221y x a b -=(0,0)a b >>的渐近线将第一象限三等分,则双曲线12222=-by a x的离心率为A. 2C. 212. 已知空间4个球,它们的半径分别为2, 2, 3, 3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为A.711B.611 C. 511 D. 411第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13. 设,x y 满足约束条件00+2y y x x y a ⎧⎪⎨⎪-⎩≥≤≤,若目标函数3x y +的最大值为6,则a=______.14. 函数y =(1,1)-处的切线与x 轴所围成区域的面积为________. 15. 给出下列5种说法:①在频率分布直方图中,众数左边和右边的直方图的面积相等;②标准差越小, 样本数据的波动也越小;③回归分析就是研究两个相关事件的独立性;④在回归分 析中,预报变量是由解释变量和随机误差共同确定的;⑤相关指数2R 是用来刻画回 归效果的,2R 的值越大,说明残差平方和越小,回归模型的拟合效果越好.其中说法正确的是____________(请将正确说法的序号写在横线上).16. 函数()f x ()x ∈R 满足(1)1f =,1()2f x '<,则不等式221()22x f x <+的解集为______.一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合侧视图AB C O题目要求的,请将正确选项填涂在答题卡上).1. 不等式组36020x y x y -+⎧⎨-+<⎩≥表示的平面区域是2. 已知复数z a bi =+(,0)a b R ab ∈≠且,且(12)z i -为实数,则a b= A. 3B. 2C.12D.133. 已知3cos 5α=,则2cos 2sin αα+的值为 A. 925 B. 1825C. 2325D. 34254. 执行如图所示的程序框图,若输出的5k =,则输入的整数p 的最大值为A. 7B. 15C. 31D. 635. 已知,,a b c 是平面向量,下列命题中真命题的个数是① ()()⋅⋅⋅⋅a b c =a b c② ||||||⋅= a b a b ③ 22||()+=+a b a b ④ ⋅⋅⇒=a b =b c a cA. 1B. 2C. 3D. 46. 已知函数()sin cosf x x a x =+的图像关于直线53x π=对称,则实数a 的值为A. B. 3- D.27. 一个棱长都为a 的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为A. 273a πB. 22a πC. 2114a πD. 243a π8. 已知数列{}n a 满足10a =,11n n a a +=+,则13a =A. 143B. 156C. 168D. 1959. 在Excel 中产生[0,1]区间上均匀随机数的函数为“rand ( )”,在用计算机模拟估计函数x y sin =的图像、直线2π=x 和x 轴在区间[0,]2π上部分围成的图形面积时,随机点11(,)a b 与该区域内的点),(b a 的坐标变换公式为A. 11,2a ab b π=+= B. 112(0.5),2(0.5)a a b b =-=-C. [0,],[0,1]2a b π∈∈D. 11,2a a b b π==10. 已知抛物线28y x =的焦点为F ,直线(2)y k x =-与此抛物线相交于,P Q 两点,则11||||FP FQ += A. 12B. 1C. 2D. 411. 如图所示是一个几何体的三视图,则该几何体的体积为A. 162π+B. 82π+C. 16π+D. 8π+12. 已知两条直线1l y a =:和21821l y a =+: (其中0a >),1l 与函数4log y x =的图像从左至右相交于点A ,B ,2l 与函数4log y x =的图像从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为,m n .当a 变化时,nm的最小值为 A. 4B. 16C. 112D. 102第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13.1)x dx =⎰____________.14. 用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数字夹在两个奇数字之间的四位数的个数为_____________.15. 双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 和2F ,左、右顶点分别为1A 和2A ,过焦点2F 与x 轴垂直的直线和双曲线的一个交点为P ,若1PA 是12F F 和12A F 的等比中项,则该双曲线的离心率为 .16. 设集合224{(,)|(3)(4)}5A x y x y =-+-=,2216{(,)|(3)(4)}5B x y x y =-+-=, {(,)|2|3||4|}C x y x y λ=-+-=,若()A B C ≠∅,则实数λ的取值范围是____________.简答与提示:【试题解析】C 由题可知{2,4,8}A =,{}B =偶数,因此 {2,4,8}A B =, 故选C.1. . 【试题解析】C 由题可知2(1)2111i iz i i i+===-+--,若z b +()b ∈R 为纯虚数, 则1b =,故选C.2. 【试题解析】A 由偶函数定义可知,函数cos(sin )y x =中,x 的定义域关于原点 对称且cos(sin())cos(sin )x x-=,故选A.3. 【试题解析】D 由题可知1q ≠,则818484414(1)11117(1)11a q S q qq a q S qq---===+=---,得 416q =,因此2q =±,故选D.4. 【试题解析】B 由程序框图可知:02x =,13x =,25x =,36x =,47x =,59x =,610x =,711x =,813x =而后输出x 值为13,故选B. 5. 【试题解析】D 由题可知,展开式中的常数项为2325(40C =,故选D.6. 【试题解析】D 由三角函数的性质可知:()|sin(2)|3f x x π=+的单调区间232k x k ππππ≤+≤+,则26212k k x ππππ-≤≤+()k ∈Z ,当1k =时, 7[,]312x ππ∈,故选D.7.【试题解析】B 由三视图可知,该几何体可分为一个三棱锥和一个四棱锥,则12111202242223323V V V =+=⨯⨯⨯+⨯⨯⨯⨯=,故选B. 8. 【命题意图】 【试题解析】C 设与,OA OB 同方向的单位向量分别为,ab ,依题意有42OCa b =+,又2OA a =,32OB b =,则423OC OA OB =+,所以42,3λμ==. 故选C.9. 【命题意图】 【试题解析】C ①将3,4,5排在中间和两侧,再用1,2插两缝共323212A A =种;②将2,4,5排列,则结果必为21435;将2,5,4排列,则结果必为21534;将4,5,2排列,则结果必为43512; 将5,4,2排列,则结果必为53412. 故选C. 10. 【命题意图】 【试题解析】A由题可知,双曲线渐近线的倾角为30︒或60︒,则bk ==或.则2c e a ====或3,故选A. 11. 【命题意图】本小题通过具体的立体几何考查学生的空间想象能力与运算求解能力,着重考查几何体中点线面的关系问题,是一道较难的试题. 【试题解析】B 由题意可知,12,A A 为半径为2的球的 球心,12,B B 为半径为3的球的球心,则124A A =, 126B B =,取12A A 的中点C ,12B B 的中点D ,则 DC =r ,则OC ==,解得611r =.故选B.二、填空题(本大题包括4小题,每小题5分,共20分) 13. 214.1315. ②④⑤16. (,1)(1,)x ∈-∞-+∞简答与提示:12. 【命题意图】本小题通过线性规划问题考查学生的运算求解能力,是一道基本题.【试题解析】由题意可知,3z x y =+取最大值6时,直线 36y x =-+过点(2,0),则点(2,0)必在线性规划区域内,且 可以使一条斜率为3-的直线经过该点时取最大值,因此点 (2,0)为区域最右侧的点,故直线0+2x y a -=必经过点(2,0), 因此2a =.13. 【命题意图】本小题通过积分问题考查学生的运算求解能力,着重考查积分在曲边图形面积求取上的应用,是一道中档难度试题.【试题解析】由y ='y =112x y =-'=-,即切线方程为11(1)2y x -=-+, 即为1122y x =-+,将y =2x y =-,将1122y x =-+改写成12x y =- 因此1232100111[(12)()]()|11333S y y dy y y y =---=-+=-+=⎰. 14. 【命题意】本小题通过统计学基本定义问题考查学生的统计学的思想,是一道中档难度的综合试题. 【试题解析】由统计学的相关定义可知,②④⑤的说法正确.15. 【命题意图】本小题以导数与函数图像的基本关系为载体,考查数形结合的数学思想,是一道较难综合试题.O2B 1B 2A 1CD【试题解析】利用换元法,将2x 换元成t ,则原式化为1()22t f t <+, 当1t =时,()1f t =,且1122t +=,又由1()2f t '<, 可知当1t >时,1()22t f t <+;当1t <时,1()22t f t >+. 故1()22t f t <+的解集为1t >,即21x >,因此(,1)(1,)x ∈-∞-+∞.一、选择题(本大题包括12小题,每小题5分,共60分)1.B 2 .C 3. A 4. B 5.A 6.B 7.A 8.C 9.D 10.A 11.B 12.C 简答与提示:1. 【命题意图】.【试题解析】B 360x y -+≥表示直线360x y -+=以及该直线下方的区域,20x y -+<表示直线20x y -+=的上方区域,故选B.2. 【命题意图】.【试题解析】C 由(12)z i ⋅-为实数,且0z ≠,所以可知(12)z k i =+,0k ≠,则122a kb k ==,故选C. 3. 【命题意图】.【试题解析】A 由3cos 5α=,得22229cos 2sin 2cos 11cos cos 25ααααα+=-+-==,故选A.4. 【命题意图】.【试题解析】B 由程序框图可知:①0S =,1k =;②1S =,2k =;③3S =,3k =;④7S =,4k =;⑤15S =,5k =. 第⑤步后k 输出,此时15S P =≥,则P 的最大值为15,故选B.5. 【命题意图】本小题主要考查平面向量的定义与基本性质,特别是对平面向量运算律的全面考查,另外本题也对考生的分析判断能力进行考查.【试题解析】A 由平面向量的基础知识可知①②④均不正确,只有③正确, 故选A.6. 【命题意图】【试题解析】B 由函数()sin cos f x x a x =+的图像关于直线53x π=对称,可知5()3f π=a =. 故选B.7. 【命题意图】【试题解析】A 如图:设1O 、2O 为棱柱两底面的中心,球心O 为12O O 的中点. 又直三棱柱的棱长为a ,可知112OO a =,13AO a =,所以2222211712a R OA OO AO ==+=,因此该直三棱柱外接球的表面积为2227744123a S R a πππ==⨯=,故选A.8. 【命题意图】【试题解析】C由11n n a a +=+,可知211111)n n a a ++=++=,1=,故数列是公差为1的等差数列,1213=,则13168a =. 故选C. 9. 【命题意图】【试题解析】D. 由于[0,]2a π∈, [0,1]b ∈,而1[0,1]a ∈,1[0,1]b ∈,所以坐标变换公式为12a a π=,1b b =. 故选D.10. 【命题意图】求.【试题解析】A设11(,)P x y ,22(,)Q x y ,由题意可知,1||2PF x =+,2||2QF x =+,则1212121241111||||222()4x x FP FQ x x x x x x +++=+=+++++, 联立直线与抛物线方程消去y 得,2222(48)40k x k x k -++=,可知124x x =,故121212121244111||||2()42()82x x x x FP FQ x x x x x x +++++===+++++. 故选A. 11. 【命题意图】【试题解析】B 由图可知该几何体是由两个相同的半圆柱与一个长方体拼接而成,因此21241282V ππ=⨯⨯+⨯⨯=+. 故选B.12. 【命题意图】【试题解析】C 设(,),(,),(,),(,)A A B B C C D D A x y B x y C x y D x y ,则4a A x -=,4aB x =,18214a C x -+=,18214a D x +=,则182118214444aa aa n m+--+-=-,分子与分母同乘以18214a a ++ 可得18362212142a a a a n m++++==,又363622*********a a a a +=++-≥=++,当且仅当216a +=,即52a =时,“=”成立,所以n m的最小值为112. 故选C.二、填空题(本大题包括4小题,每小题5分,共20分)13.7614. 816. [4]5简答与提示:13. 【命题意图】【试题解析】113122221217()()32326x x dx x x +=+=+=⎰. 14. 【命题意图】【试题解析】2122228A C A ⋅⋅=种.15. 【命题意图】【试题解析】由题意可知211212||||||PA F F A F =⨯,即222()()2()b a c c a c a++=+, 经化简可得22a b =,则c e a ====16. 【命题意图】本小题主要考查曲线与方程的实际应用问题,对学生数形结合与分类讨论思想的应用作出较高要求.【试题解析】由题可知,集合A 表示圆224(3)(4)5x y -+-=上点的集合,集合B表示圆2216(3)(4)5x y -+-=上点的集合,集合C 表示曲线O A DO 1O 22|3||4|-+-=上点的集合,此三集合所表示的曲线的中心都在(3,4)处,集合A、B表示x yλ圆,集合C则表示菱形,可以将圆与菱形的中心同时平移至原点,如图所示,可求得λ的取值范围是4].。

高三数学填空选择专项训练(3)

高三数学填空选择专项训练(3)

高三数学填空选择专项训练(3)一、选择题:每小题5分,共60分.1.直线032=+-y x 的倾斜角所在的区间是( B )A .)4,0(πB .)2,4(ππ C .)43,2(ππD .),43(ππ 2.不等式0)12(|1|≥-+x x 的解集为( C )A .}21|{≥x xB .}211|{≥-≤x x x 或 C .}211|{≥-=x x x 或 D .}211|{≤≤-x x3.锐角ααααtan ,41cos sin 则满足=⋅的值为( C )A .32-B .3C .32±D .32+4.若双曲线1922=-m y x 的渐近线l 方程为x y 35±=,则双曲线焦点F 到渐近线l 的距离( C ) A .2B .14C .5D .25 5.)]211()511)(411)(311([lim +----∞→n n n 等于( D ) A .0B .32C .1D .26.已知二面角βα--l 的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是 ( C ) A .b ∥α,c ∥βB .b ∥α,c ⊥βC .b ⊥α,c ⊥βD .b ⊥α,c ∥β7.设F 1,F 2是双曲线1422=-y x 的两个焦点,点P 在双曲线上,且21PF ⋅=0,则 ||||21PF PF ⋅的值等于 ( A ) A .2B .22C .4D .88.已知函数)(1x f y -=的图象过(1,0),则)121(-=x f y 的反函数的图象一定过点( A ) A .(1,2) B .(2,1) C .(0,2) D .(2,0) 9.运算机是将信息转换成二进制进行处理的,所谓二进制即“逢二进一”,如(1101)2表示=1=二进制的数,将它转换成十进制数的形式是1×23+1×22+0×21+1×20=13,那么将二进制数216)111(位转换成十进制数是( B ) A.217-2 B.216-1 C.216-2 D.215-110.(理)从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( B ) A .小 B .大 C .相等 D .大小不能确定 (文)已知直线1+=kx y 与曲线b ax x y ++=3切于点(1,3),则b 的值为( A ) A .3B .-3C .5D .-511.(理)如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公 路,图中所标线段为道路, ABQP 、BCRQ 、CDSR 近似 于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之 比约为5:1:2:3,运煤的费用与运煤的路程、所运煤的重量 都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( B ) A .P 点 B .Q 点 C .R 点 D .S 点(文)一位老师让两位学生运算数,,x y z 的算术平均数,学生甲如此求:先求x 与y 的平 均数,再求那个平均值与z 的平均值,学生乙的算法是:先求,,x y z 的和,再求那个和除 以3的商,假如学生甲和乙求出的数据分别为S 和T ,且x y z >>,则S 和T 的大小关系 是( B )A .T S =B .T S <C .D .不确定 12.函数)1(-=x f y 的图象如右图所示,它在R 上单调递减.现有如下结论: ①1)0(>f ; ②1)21(<f ;③0)1(1=-f;④0)21(1>-f其中正确结论的个数是( C ) A .1 B .2 C .3 D .4二、填空题:本大题共有4小题,每小题4分,共16分.把答案填在题中横线上. 13.(理)设(1)()3,(,)i a i bi a b R +-=+∈,则a b +=_____3_______。

高考数学选择、填空题专项训练(共40套)[附答案] (1)

高考数学选择、填空题专项训练(共40套)[附答案] (1)

高考数学选择、填空题专项训练(共40套)[附答案] (1)三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( ) A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34. 已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β5. 函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________.答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21 三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种EF DOC BA9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

2023年高考数学选填限时训练 巩固小卷12份 带解析(解题达人选填)

2023年高考数学选填限时训练 巩固小卷12份 带解析(解题达人选填)
14. 已知函数 f(x)=-ex+ex2(e 是 自 然 对数的 底数),则曲线 y=f(x)在 x=1 处的切线方程是
y ex e .
15. 已知直线 Ax+By+C=0(其中 A2+B2=C2,C≠0)与圆 x2+y2=6 交于 M,N 两点,O 是坐标原点,则|MN|
= 25 ;

10 .(本题第一空 2 分,第二空 3 分)
建议用时:55 分钟
满分:80 分
一、选 择 题 :本题共8 小题,每小题 5 分,共40 分. 在每小题 给出的四个选项中,只有一个项是符合题目要求 的.
1. 设集合 A={x|x2-3x-4>0},B={x|x>2},则 A∪B=( B)
A. {x|x>4}
B. {x|x>2 或 x<-1}
C. {x|x>4 或 x<-1}
m 球的体积之比为 m,圆柱的表面积与球的表面积之比为 n,若 f(x)=(
x3-
1
)8,则(ACD)
n
x
A. f(x)的展开式中的常数项是 28
B. f(x)的展开式中的各项系数之和为 256
C. f(x)的展开式中的二项式系数最大值是 70
D. f(i)=0,其中 i 为虚数单位
三 、填 空 题 :本题共4 小题,每小题 5 分,共 20 分. 13. 写出一个与向量 a=(2,1)共线的向量: (4,2)(答案不唯一) .
且其余两个整数至少有一个比“水仙四妹”小的概率是( D )
3
1
A.
B.
20
4
3 C.
10
9 D.
20
8.
x2 双曲线 C:
a2
-y2=1(a>0)的右焦点为 F,点 P 为 C 的一条渐近线上的点,O 为坐标原点,若|PO|=|PF|,则 S△OPF 的最小值为

高考数学选择、填空题专项训练(共40套)[附答案]之欧阳家百创编

高考数学选择、填空题专项训练(共40套)[附答案]之欧阳家百创编

三基小题训练一欧阳家百(2021.03.07)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D.65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交 9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( )A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l是公路,图中所标线段为道路,ABQP、BCRQ、CDSR近似于正方形.已知A、B、C、D四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P、Q、R、S中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在()A.P点B.Q点C.R点D.S点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y2=2x上到直线x-y+3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R上的偶函数f(x)满足f(x+1)+f(x)=1,且当x∈[1,2]时,f(x)=2-x,则f(8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________.答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15.21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有()A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A .21B . 1C . 2D . 43.若(3a 2-312a )n 展开式中含有常数项,则正整数n 的最小值是()A .4B .5C . 6D . 84.从5名演员中选3人参加表演,其中甲在乙前表演的概率为()A .203 B .103 C .201 D .1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是()A.(3,0) B.(2,0) C.(1,0) D.(-1,0) 6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为()A.(a ,-b )B.(-a ,b )C.(b ,-a )D.(-b ,-a ) 7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠TEF D O C B A8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A .36种B .48种C .72种D .96种 9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ;(2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是()A.(-∞,4)B.(-4,4] C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较()A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于A.6162- B.6162+ C.4132+ D.3132- 二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上.13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为。

高考数学选择题填空题练习带答案

高考数学选择题填空题练习带答案

限时训练(四)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内表示复数-i 12i )(的点位于().A.第一象限B.第二象限C.第三象限D.第四象限 2.对任意等比数列a n }{,下列说法一定正确的是(). A. a a a ,,139成等比数列 B. a a a ,,236成等比数列 C. a a a ,,248成等比数列 D. a a a ,,369成等比数列 3.下列函数中,最小正周期为π且图像关于原点对称的函数是(). A. ⎝⎭ ⎪=+⎛⎫y x 2cos 2π B.⎝⎭⎪=+⎛⎫y x 2sin 2πC.=+y x x sin 2cos 2D.=+y x x sin cos4.已知向量a b c ===k ,3,1,4,2,1)()()(,且a b c -⊥23)(,则实数=k (). A. -29 B. 0 C. 3 D. 2155.执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是(). A .>s 21 B. >s 53 C. >s 107 D.>s 546.已知命题p :对R ∀∈x ,总有>x 20;q :“>x 1”是“>x 2”的充分不必要条件.则下列命题为真命题的是().A. ∧p qB. ⌝∧⌝p qC. ⌝∧p qD. ∧⌝p q 7.某几何体的三视图如图所示,则该几何体的表面积为().A. 54B. 60C. 66D. 728.设F F ,12分别为双曲线-=>>a ba b x y 10,02222)(的左、右焦点,双曲线上存在一点P使得1k+k ∙s=s 开始结束=1s =9,k k 输出1k=k-否是4523正视图左视图俯视图121293,4PF PF b PF PF ab +=⋅=,则该双曲线的离心率为().A.43 B. 53 C. 94D. 3 9.如图所示,在矩形ABCD 中,点A 在x 轴上,点B 的坐标为()1,0,且点C 与点D 在函数()1,011,02x x f x x x +⎧⎪=⎨-+<⎪⎩ 的图像上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于(). A .16 B .14 C .38 D .1210. 在ABC △中,π4B =,则sin sin A C ⋅的最大值是(). A .124+ B .34 C .22D .224+11.已知点()2,3A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为(). A .12 B .23 C .34 D .4312.设函数()()e 21xf x x ax a =--+,其中1a <,若存在唯一的整数0x 使得()00f x <,则a 的取值范围是(). A.3,12e ⎡⎫-⎪⎢⎣⎭ B.33,2e 4⎡⎫-⎪⎢⎣⎭ C.33,2e 4⎡⎫⎪⎢⎣⎭ D.3,12e ⎡⎫⎪⎢⎣⎭二、填空题:本大题共四小题,每小题5分,共20分.把答案填在题中的横线上.13.设全集{}{}{}110,1,2,3,5,8,1,3,5,7,9U n n A B =∈==N ,则()U A B = ______. 14.函数()()22log log2f x x x =⋅的最小值为_________.15.设点()0,1M x ,若在圆O :221x y +=上存在点N ,使得30OMN ∠= ,则0x 的取 值范围是.y xDCO BA16.如图所示,在正方体1111ABCD A B C D 中,点E 是边BC 的中点.点P 在直线1BD (除B ,1D 两点)上运动的过程中,平面DEP 可能经过的该正方体的顶点是(写出满足条件的所有顶点).EABCDA 1B 1C 1D1限时训练(四)答案部分一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ADACCDBBBDDD二、填空题13.{}7,9 14. 14-15.3,3⎡⎤-⎣⎦ 16.11,,A B D解析部分1. 解析由()2i 12i i 2i 2i -=-=+,复数对应的点在第一象限.故选A .2. 解析因为{}n a 是等比数列,所以()()*10n na q q n a +=≠∈N , 则369,,a a a 成等比数列.故选D . 3.解析对于选项A :πcos 2sin 22y x x ⎛⎫=+=- ⎪⎝⎭, 函数的最小正周期为π且图像关于原点对称; 对于选项B :πsin 2cos22y x x ⎛⎫=+=⎪⎝⎭, 函数的最小正周期为π且图像关于y 轴对称; 对于选项C :πsin 2cos22sin 24y x x x ⎛⎫=+=+ ⎪⎝⎭,函数的最小正周期为π,但其图像不关于原点对称; 对于选项D :πsin cos 2sin 4y x x x ⎛⎫=+=+ ⎪⎝⎭,函数的最小正周期为2π,且图像不关于原点对称.故选A . 4.解析由()23-⊥a b c ,且(),3k =a ,()1,4=b ,()2,1c =, 得()22360k --=,解得3k =.故选C.5.解析程序框图的执行过程如下:1,9s k ==;9,810s k ==;988,710910s k =⨯==;877,610810s k =⨯==,循环结束. 故可填入的条件为710s >.故选C. 6.解析p 是真命题,q 为假命题,故p ⌝为假命题,q ⌝为真命题.从而p q ∧为假,p q ⌝∧⌝为假,p q ⌝∧为假,p q ∧⌝为真.故选D.7. 解析该几何体的直观图如图所示,易知该几何体的表面积是由两个直角三角形,两个直角梯形和一个矩形组成的. 则其表面积()()25525411343535602222S +⨯+⨯=⨯⨯+⨯⨯+++⨯=.故选B.8.解析设1PF m =,2PF n =,依题意不妨设0m n >>.于是3294m n b m n a mn ab ⎧⎪+=⎪-=⎨⎪⎪=⎩,所以9432m n m nmn +-=⋅⋅,得3m n =或13m n =-(舍).所以a n =,43b n =,53c n =,故53c e a ==.故选B. 9. 解析依题意,()1,2C ,()2,2D -,326ABCD S =⨯=矩形,133122S =⨯⨯=阴影,则点取阴影部2543分的概率等于312=64.故选B.10. 解析在ABC △中,π4B =,则3π4A C +=,因此3π22sin sin sin sin sin cos sin 422A C A A A A A ⎛⎫⎛⎫⋅=⋅-=+= ⎪⎪ ⎪⎝⎭⎝⎭()22sin cos sin 2A A A +=211cos222π1sin 2sin 22222242A A A ⎡⎤-⎛⎫⎛⎫+=-+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦1π2sin 2244A ⎛⎫-+ ⎪⎝⎭,3π04A <<.当ππ242A -=,即3π8A =时,sin sin A C ⋅取得最大值224+.故选D.11. 解析依题意,抛物线()220y px p =>的准线方程为2x =-,所以22p-=-,得4p =,因此抛物线的方程为28y x =. 设过点()2,3A -的直线方程为()32y k x -=+,联立直线方程与抛物线方程,得()2328y k x y x⎧-=+⎪⎨=⎪⎩, 消x 建立关于y 的一元二次方程得2328y y k ⎛⎫-=+ ⎪⎝⎭,即2816240ky y k -++=,()64416240k k ∆=-+=,得22320k k +-=,解得12k =或2-(舍). 因此直线与抛物线相切于点()8,8B ,则直线BF 的斜率43k =.故选D. 12.解析设()()e21xg x x =-,()h x ax a =-,可转化成存在唯一的整数0x ,使得()()g x h x <. 因为()()'e21xg x x =+,所以当12x <-时,()'0g x <,()g x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减;当12x >-时,()'0g x >,()g x 在1,2⎛⎫-+∞ ⎪⎝⎭上单调递增. 因为当0x =时,()01g =-,()01h a =->-,所以()()00g h <. 又因为存在唯一的整数0x ,使得()()g x h x <,所以()()()()1111g h g h ⎧⎪⎨--⎪⎩ ,即e 032ea ⎧⎪⎨--⎪⎩ ,解得32e a .又因为1a <,所以312ea < .故选D .13.解析{}4,6,7,9,10U A = ,(){}{}{}4,6,7,9,101,3,5,7,97,9U A B == . 14.解析()()222log log2log f x x x =⋅+=()221log 22log 2x x += ()222log log x x +.令2log t x =∈R ,则2,y t t t =+∈R ,函数的最小值为14-.因此函数的最小值为14-. 15.解析解法一:依题意,若圆22:1O x y +=上存在点N ,使得30OMN ∠=,如图所示.因为OMN OMN '∠∠ ,所以30OMN '∠ ,因此1sin 2ON OMN OM ''∠=,即112OM , 得2OM ,故2014x + ,解得033x - . 所以0x 的取值范围是3,3⎡⎤-⎣⎦.1Oyxy=e x (2x-1)y=ax-a解法二:在OMN △中,由30OMN ∠=,据正弦定理得sin 30sin ON OMONM=∠, 即sin 2sin sin 30ONMOM ONM ∠==∠. 又()0,150ONM ∠∈,所以02OM < ,得2012x + ,解得033x - . 所以的取值范围是3,3⎡⎤-⎣⎦.16.解析依题意,平面DEP 可能经过正方体的顶点是1A ,1B ,D .因为平面1A DE 与直线1BD 相交,平面1B DE 与直线1BD 相交.且1//BD 平面1C DE .N 'NM O yx。

2021年新高考数学选择填空专项练习题(附答案解析)

2021年新高考数学选择填空专项练习题(附答案解析)

2021年新高考数学选择填空专项练习题一、选择题1.已知集合A ={2,3,4},集合B ={m ,m +2},若A ∩B ={2},则m =( ) A .0 B .1 C .2D .4A [因为A ∩B ={2},所以m =2或m +2=2.当m =2时,A ∩B ={2,4},不符合题意;当m +2=2时,m =0.故选A.]2.若复数z 满足(1+i)z =|3+4i|,则z 的虚部为( ) A .5 B.52 C .-52D .-5B [由(1+i)z =|3+4i|=32+42=5,得z =51+i =5(1-i )(1+i )(1-i )=52-52i , ∴z =52+52i ,其虚部为52.故选B.]3.已知a =(1,2),b =(m ,m +3),c =(m -2,-1),若a ∥b ,则b ·c =( ) A .-7 B .-3 C .3D .7B [由a ∥b ,得2m -(m +3)=0,则m =3,b =(3,6),c =(1,-1),所以b·c =-3.故选B.]4.已知集合M ={x |x <2},N ={x |x 2-x <0},则下列正确的是( ) A .M ∪N =R B .M ∪∁R N =R C .N ∪∁R M =RD .M ∩N =MB [因为N ={x |x 2-x <0}={x |0<x <1},所以∁R N ={x |x ≤0或x ≥1},所以M ∪∁R N =R.故选B.]5.设a ∈R ,i 为虚数单位.若复数z =a -2+(a +1)i 是纯虚数,则复数a -3i 2-i 在复平面上对应的点的坐标为( )A.⎝ ⎛⎭⎪⎫15,-85 B.⎝ ⎛⎭⎪⎫-75,-45C.⎝ ⎛⎭⎪⎫-45,75D.⎝ ⎛⎭⎪⎫75,-45 D [因为复数z =a -2+(a +1)i 是纯虚数,所以a -2=0,解得a =2,所以复数a -3i 2-i =2-3i 2-i =75-45i ,所以复数a -3i 2-i 在复平面上对应的点的坐标为⎝ ⎛⎭⎪⎫75,-45.故选D.]6.(2019·泸州二诊)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =3,AC =4,则BC→在CA →方向上的投影是( ) A .4 B .-4 C .3D .-3B [在△ABC 中,∵|AB→+AC →|=|AB →-AC →|,∴AB →2+2AB →·AC →+AC →2=AB →2-2AB →·AC →+AC →2, ∴AB →·AC →=0, ∴AB→⊥AC →. 又AB =3,AC =4,∴BC →在CA →方向上的投影是|BC →|·cos 〈BC →,CA →〉=|BC →|·cos(π-∠ACB )=-|BC →|·cos ∠ACB =-|AC→|=-4.如图所示,故选B.] 7.(2019·北京高考)设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB→+AC →|>|BC →|”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件C [若|AB →+AC →|>|BC →|,则|AB →+AC →|2>|BC →|2,AB →2+AC →2+2AB →·AC →>|BC →|2,∵点A ,B ,C 不共线,∴线段AB ,BC ,AC 构成一个△ABC ,设内角A ,B ,C 对应的边分别为a ,b ,c ,则由平面向量的数量积公式及余弦定理可知,AB→2+AC →2+2AB →·AC →>|BC →|2,即c 2+b 2+2bc ·cos A >c 2+b 2-2bc ·cos A ,∴cos A >0,又A ,B ,C 三点不共线,故AB →与AC →的夹角为锐角.反之,易得当AB →与AC →的夹角为锐角时,|AB→+AC →|>|BC →|,∴“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的充分必要条件,故选C.]8.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为30°,若向弦图内随机抛掷500颗米粒(大小忽略不计,取3≈1.732),则落在小正方形(阴影)内的米粒数大约为( )A .134B .67C .200D .250B [设大正方形的边长为2x ,则小正方形的边长为3x -x ,向弦图内随机抛掷500颗米粒(大小忽略不计),设落在小正方形(阴影)内的米粒数大约为a ,则a 500=(3x -x )2(2x )2,解得a =500×⎝ ⎛⎭⎪⎫4-234≈67.故选B.] 9.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A .3 B .5 C .7D .9C [由x +y =(x +1)+y -1=[(x +1)+y ]·1-1=[(x +1)+y ]·2⎝ ⎛⎭⎪⎫1x +1+1y -1 =2⎝ ⎛⎭⎪⎫2+y x +1+x +1y -1≥3+4y x +1·x +1y=7. 当且仅当x =3 ,y =4时取得最小值7.故选C.]10.[新题型:多选题]若b <a <0,则下列结论正确的是( ) A .a 2<b 2 B .ab <b 2 C.1a <1bD .|a |+|b |>|a +b |ABC [A 项,∵b <a <0,∴a 2-b 2=(a -b )(a +b )<0,故A 正确, B 项,∵b <a <0,∴ab -b 2=b (a -b )<0,故B 正确,C 项,∵b <a <0,两边同除以ab ,可得1a <1b ,故C 正确, D 项,|a |+|b |=|a +b |,故D 错误,故选ABC.]11.(2019·上饶市二模)多项式⎝ ⎛⎭⎪⎫a x +x 3⎝ ⎛⎭⎪⎫x -2x 6的展开式中各项系数的和为3,则该展开式中x 3的系数是( )A .-184B .-84C .-40D .320A [∵⎝ ⎛⎭⎪⎫a x +x 3⎝ ⎛⎭⎪⎫x -2x 6的展开式中各项系数和为3,令x =1,得(1+a )(1-2)6=3,解得a =2.又⎝ ⎛⎭⎪⎫2x +x 3⎝ ⎛⎭⎪⎫x -2x 6=2x ⎝ ⎛⎭⎪⎫x -2x 6+x 3⎝ ⎛⎭⎪⎫x -2x 6, ⎝ ⎛⎭⎪⎫x -2x 6的展开式中含x 4的项的系数为C 16(-2)1=-12,常数项为C 36(-2)3=-160,∴⎝ ⎛⎭⎪⎫2x +x 3⎝ ⎛⎭⎪⎫x -2x 6的展开式中x 3项的系数是2×(-12)+1×(-160)=-184.故选A.]12.(2019·潮州模拟)若A 、B 、C 、D 、E 五位同学站成一排照相,则A 、B 两位同学至少有一人站在两端的概率是( )A.15B.310C.710D.35C [五名同学站成一排照相,共有A 55=120种排法. A 、B 两位同学都不站在两端的排法有A 23A 33=36种,∴A 、B 两位同学至少有一人站在两端的概率为P=1-36120=84120=710.故选C.]二、填空题13.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9·(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.1或-3 [令x =0,得a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得a 0-a 1+a 2-a 3+…-a 9=m 9,所以(2+m )9m 9=39,即m 2+2m =3,解得m =1或-3.]14.(2019·滨州模拟)若关于x 的不等式x 2+mx +2>0在区间[1,2]上有解,则实数m 的取值范围为________.(-3,+∞) [x ∈[1,2]时,不等式x 2+mx +2>0可化为m >-x -2x , 设f (x )=-x -2x ,x ∈[1,2],则f (x )在[1,2]内的最小值为f (1)=f (2)=-3,∴关于x 的不等式x 2+mx +2>0在区间[1,2]上有解, 实数m 的取值范围是m >-3.]15.有甲、乙、丙、丁四位同学竞选班长,其中只有一位当选.甲说:“乙或丙当选.”乙说:“甲、丙都未当选.”丙说:“我当选了.”丁说:“乙当选了.”若四位同学中只有两人说的是真话,则当选的同学是________.丙 [若甲当选,则四人都说假话,不符合题意;若乙当选,则甲、乙、丁都说真话,丙说假话,不符合题意;若丙当选,则甲、丙都说真话,乙、丁都说假话,符合题意;若丁当选,则甲、丙、丁都说假话,乙说真话,不符合题意.综上,当选的同学是丙.]16.(2019·怀化一模)已知正方形ABCD 的边长为2,P 为平面ABCD 内一点,则(P A →+PB →)·(PC→+PD →)的最小值为________. -4 [由题意,以A 为坐标原点,AB 方向为x 轴,AD 方向为y 轴,建立平面直角坐标系,如图.因为正方形ABCD 的边长为2,所以A (0,0),B (2,0),C (2,2),D (0,2),设P (x ,y ),则P A →=(-x ,-y ),PB→=(2-x ,-y ),PC→=(2-x,2-y ),PD →=(-x,2-y ), 所以P A →+PB →=(2-2x ,-2y ), PC→+PD →=(2-2x,4-2y ), 因此(P A →+PB →)·(PC→+PD →)=4(1-x )2-4y (2-y )=4(x -1)2+4(y -1)2-4≥-4,当且仅当x=y=1时,取最小值.]。

高考数学练习题限时训练(34)

高考数学练习题限时训练(34)

限时训练(三十四)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}220,*A x x x x =--+∈N …,集合{}2,3B =,则AB 等于( ).(A ){}2 (B ){}1,2,3 (C ){}1,0,1,2,3- (D ){}0,1,2,3(2)已知i 是虚数单位,若复数z 满足i 1i z =-+,则复数z 的实部与虚部的和是( ). (A )0 (B )1 (C )2(D )3(3)已知向量()sin 2,1α=a ,()sin ,1α=b ,若a b ,则锐角α为( ).(A )30︒(B )60︒ (C )45︒(D )75︒(4)在“双11”促销活动中,某网店对11月11日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为42万元,则9时到11时的销售额为( ).(A )9万元 (B )18万元 (C )24万元(D )30万元(5)运行如图所示的程序框图,输出的S 值为( ). (A )0 (B ) 12-(C )1- (D )32-(6)某几何体的三视图如图所示,则它的体积为( ).(A )283π-(B )83π- (C )82-π(D )32π(7)已知双曲线()222210,0y x a b a b-=>>,点()4,2-在它的一条渐近线上,则离心率等于( ). (A(B(C(D(8)函数()()sin f x x ωϕ=+(其中2ϕπ<)的图像如图所示,为了得到()sin f x x ω=的图像,只需把()y f x =的图像上所有点( )个单位长度.(A )向右平移6π (B )向右平移12π (C )向左平移6π (D )向左平移12π(9)已知等比数列{}n a 的各项都为正数,且3a ,512a ,4a 成等差数列,则3546a a a a ++的值是( ). (A(B(C(D俯视图左视图主视图(10)函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭的图像的大致形状是( ).(11)四面体ABCD 的四个顶点都在球O 的表面上,AB ⊥平面BCD ,BCD △是边长为3的等边三角形.若2AB=,则球O 的表面积为( )(A )8π (B ) 12π (C ) 16π (D )32π(12)已知定义在()0,+∞上的函数()f x 满足()()()()e 2ln 1xxf x x f x x x x'+-=+-,则下列一定正确的是( )(A )()1412f ⎛⎫<⎪⎝⎭(B )()()42e 1f f < (C )()()4e 293f f > (D )()321e 1622f f ⎛⎫> ⎪⎝⎭二、填空题:本题共4小题,每小题5分.(13)()()511x x +-展开式中含3x 项的系数为 .(14)实数x ,y 满足10301x y x y x --⎧⎪+-⎨⎪⎩………,则目标函数2z x y =-的最大值为 .(15)已知点()0,0O ,()1,0M ,且圆()()()222:540C x y r r -+-=>上存在两个点P ,使得PO =,则r 的范围是 .(16)在数列中{}n a ,它的前n 项和()1*n n S na n =-∈N ,则数列{}n a 的前n 项和n S 为 .古今中外有学问的人,有成就的人,总是十分注意积累的。

高考数学选择题填空题练习带答案

高考数学选择题填空题练习带答案

高考数学选择题、填空题限时训练文科(九)一、 选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有 一项是符合题目要求的.1.已知集合 =-=A x x x B 20,0,1,22}{}{,则 =A B ( ).A.0}{B.0,1}{C.0,2}{D.0,1,2}{ 2.下列函数中,定义域是R 且为增函数的是( ).A.=-y xe B.=y x 3C.=y x lnD.=y x 3.已知向量a =2,4)(,b =-1,1)(,则a b -=2( ). A.5,7)( B.5,9)( C.3,7)( D.3,9)(4.如图所示的程序框图表示求算式“⨯⨯⨯⨯235917”之值,则判断框内不能填入().A. k 17B. k 23C. k 28D. k 335.设a n }{是公比为q 的等比数列,则“<<q 01”是“a n }{”为递减数列的(). A.充分且不必要条件 B.必要且不充分条件 C.充分必要条件 D.既不充分也不必要条件否是S输出1k-2k=kS×S=结束开始2k=,1S=6.已知函数=-xf x x log 62)(,在下列区间中,包含f x )(零点的区间是(). A.0,1)( B.1,2)( C.2,4)( D.+∞4,)(7.已知圆-+-=C x y :34122)()(和两点-A m ,0)(,>B m m ,00)()(,若圆C 上存在点P ,使得 ∠=APB 90,则m 的最大值为().A.7B.6C.5D.48.某堆雪在融化过程中,其体积V (单位:m 3)与融化时间t (单位:h )近似满足函数关系:⎝⎭ ⎪=-⎛⎫V t H t 101013)((H 为常数),其图像如图所示.记此堆雪从融化开始到结束的平均融化速度为v m /h 3)(.那么瞬时融化速度等于v m /h 3)(的时刻是图中的(). A. t 1 B. t 2 C. t 3 D. t 4二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中的横线上. 9.复数+-2i12i的虚部为__________. 10.设双曲线C 的两个焦点为-2,0)(,2,0)(,一个顶点是1,0)(,则C 的方程为_________.11.某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.tVO 1t t t 4t10012.某市电信宽带私人用户月收费标准如下表:假定每月初可以和电信部门约定上网方案. 方案 类别 基本费用 超时费用 甲 包月制70元乙 有限包月制(限60小时) 50元 0.05元/分钟(无上限) 丙有限包月制(限30小时)30元0.05元/分钟(无上限)若某用户每月上网时间为66小时,应选择__________方案最合算.13.若x ,y 满足11010y x y x y ⎧⎪--⎨⎪+-⎩,则3z x y =+的最小值为.14.如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点P 到直线1CC 的距离的最小值为.俯视图侧(左)视图正(主)视图11122PABCDA 1B 1C 1D 1限时训练(九)文科参考答案与解析一、选择题题号 1 2 3 4 5 6 7 8 答案CBADDCBC二、填空题9.1-10. 221x y -=11.2212.乙13. 114.255解析部分1.解析由已知{}02A x x x =或 ,又{}0,1,2B =,所以{}0,2A B = .故选C.2.解析e xy -=在R 上单调递减;ln y x =定义域为()0,+∞;y x =在(),0-∞上单调递减.故选B.3.解析()()()24,81,15,7-=--=a b .故选A.4.解析由程序框图的要求可模拟算法如下表:步骤 判断 S S k =⨯ 21k k =-1 是 12⨯3 2 是 123⨯⨯ 5 3 是 1235⨯⨯⨯ 94 是 12359⨯⨯⨯⨯ 175 是 1235917⨯⨯⨯⨯⨯336否输出235917S =⨯⨯⨯⨯综合选项知,若33k 时,第6步还需进行123591733S =⨯⨯⨯⨯⨯⨯的运算,故判断框内不能填33k .故选D.5.解析若01q <<,如12a =-,12q =,则21a =-,312a =-,414a =-,则{}n a 为递增数列,故01q <<不是{}n a 为递减数列的充分条件;若{}n a 为递减数列,如1-,2-,4-,8-,则11a =-,()20,1q =∉.故01q <<不是{}n a 为递减数列的必要条件.综上,“01q <<”是“{}n a 为递减数列”的既不充分也不必要条件.故选D. 6.解析解法一(图像法):由题意,函数16y x=与22log y x =的图像交点P 的横坐标,即为函数()f x 的零点.如图所示,函数16y x=在()0,+∞上单调递减,且132y x ==, 1342y x ==,函数22log y x =在()0,+∞上单调递增,且2132y x =<=, 223log 4242y x ==>=.故()2,4P x ∈.故选C.解法二:因为函数()f x 在()0,+∞上单调递减,且()220f =>,()1402f =-<,所以函数()f x 在区间()2,4上有唯一零点.故选C. 7.解析设点P 的坐标为(),x y ,则P 点在以AB 为直径的圆上,即P 点的轨迹方程为()2220x y m y +=≠.如图所示,若圆()()22:341C x y -+-=上存在点P ,使得90APB ∠= ,则圆222x y m +=与圆C 一定有公共点.此时m 的取值范围为[]4,6.故m 的最大值为6.故选B.x P Oy x41324321OyxCm 48.分析本题重点考查了导数的物理意义与几何意义.解析如图所示,曲线()y v t =与y 轴的交点为A ,与x 轴交点为B .依题意,若此堆雪从融化开始到结束的平均融化速度v 等于瞬时融化速度,则表示曲线()y v t =上的某一点处的导数值等于AB 所在直线的斜率.据图知()3AB v t k '=.故选C.9.解析因为()()()()12i 2i 12i 225i i 2i 2i 2i 41-----===-++-+,所以复数12i2i-+的虚部为1-. 10.解析由题意知,2c =,1a =,则221b c a =-=.又焦点在x 轴上,故双曲线C 的方程为221x y -=.11.解析由三视图可知,原三棱锥如图所示,且PA ⊥平面ABC ,90ABC ∠= ,2PA AC ==,所以22PC =,由俯视图和左视图知,2AB BC ==,则6PB =.故最长的棱长为22.12.解析由题意知,若选择甲方案.则用户上网费用固定为70元;若选择乙方案,则超时费用为0.0560618⨯⨯=元,该用户上网费用合计68元;若选择丙方案,则超时费用为0.056036108⨯⨯=元,该用户上网费用合计138元. 综上,该用户应选择乙方案.13.解析由题意可知,不等式组11010y x y x y ⎧⎪--⎨⎪+-⎩所对应的平面区域为如图所示的阴影部分.且,()0,1A ,()1,0B ,()2,1C .则直线30x y z +-=过点()0,1A 时,z 有最小值为1.C 2,1()B 1,0()A0,1()y=1x+y-1=0y=-3x+zx-y-1=0Oyx14.分析点P 到直线1CC 的距离的最小值为异面直线1ED 与1CC 的公垂线.解析连接DE ,过点P 作DE 的垂线于点P ',连接CP ',因为平面1DD E ⊥平面ABCD ,且平面1D DE 平面ABCD DE =,又PP DE '⊥,PP '⊂平面1DD E ,所以PP '⊥平面ABCD ,故PP CP ''⊥,又1CP CC '⊥,因此点P 到1CC 的距离为CP '.若点P 到直线1CC 的距离最小,则CP DE '⊥,此时255CP '=.因此点P 到直线1CC 的距离的最小值为255.P'PED 1DB 1A 1C 1ABC。

(完整版)高三数学选择、填空题专项训练(共40套)[附答案]

(完整版)高三数学选择、填空题专项训练(共40套)[附答案]

三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( ) A.6556 B.-6556 C.-6516 D. 6516 3.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34. 函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2 B.22 C.4 D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒)12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒) 12 12.4 12.8 13 12.2 12.8 12.3 12.5三基小题训练二1.如图,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA 外,与向量 OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( ) A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( )A.(3,0)B.(2,0)C.(1,0)D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( )A.(a ,-b )B.(-a ,b )C.(b ,-a )D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠TEF DO C B A8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ;(2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132- 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________. 14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

2021年高考数学一轮复习 排列组合限时训练

2021年高考数学一轮复习 排列组合限时训练

2021年高考数学一轮复习 排列组合限时训练一、选择题(共19小题)1、有四个不同的球全部放入4个不同的盒子内,恰有两个盒子不放球的不同放法是( )A 、60B 、72C 、120D 、842、A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边(A ,B 可以不相邻),那么不同的排法共有( )A 、24种B 、60种C 、90种D 、120种3、从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法共有( )A 、C 102A 84种B 、C 91A 95种 C 、C 81A 95种D 、C 81A 85种4、从﹣3,﹣2,﹣1,0,1,2,3,4这8个数中任选3个不同的数组成二次函数y=ax 2+bx+c 的系数a ,b ,c ,则可确定坐标原点在抛物线内部的抛物线有( )A 、72条B 、96条C 、128条D 、144条5、某高三学生希望报名参加某6所高校中的3所学校的自主招生考试,由于其中两所学校的考试时间相同,因此该学生不能同时报考这两所学校,则该学生不同的报考方法种数是( )A 、16B 、24C 、36D 、486、5个人站成一排,若甲乙两人之间恰有1人,则不同站法有( )A 、18种B 、24种C 、36种D 、48种7、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()A、A33B、4A33 C、A55﹣A32A33D、A22A33+A21A31A338、从4位男教师和3位女教师中选出3位教师,派往郊区3所学校支教,每校1人.要求这3位教师中男、女教师都要有,则不同的选派方案共有()A、210种B、186种C、180种D、90种9、A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法共有()A、60种B、48种C、36种D、24种10、某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A、12B、16C、24D、3211、毕业之际,2名教师与4名学生站成一排合影留念,则2名教师之间恰好站有2名学生的不同站法种数为()A、48B、72C、144D、28812、某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲乙同时参加,则他们发言时不能相邻.那么不同的发言顺序种数为()A、360B、520C、600D、72013、甲、乙、丙3人承担6项新产品的设计任务,甲承担其中1项,乙承担其中2项,丙承担其中3项.则不同的承担方式的种数共有()A、C61C52C33B、C61+C52+C33 C、A61A52A33D、A61+A52+A3314、某人上10级台阶.他一步可能跨1级台阶,称为一阶步;也可能跨2级台阶,称为二阶步;最多能跨3级台阶,称为三阶步.若他总共跨了6步,而且任何相邻两步均不同阶,则此人所有可能的不同过程的种数为()A、6B、8C、10D、1215、用4种不同的颜色为一个固定位置的正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法数是()A、24B、48C、72D、9616、将4个不同的小球放入编号为1,2,3,4的四个盒子中,恰好有一个空盒的方法数为()A、96B、144C、244D、57617、某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四位同学分别给出下列四个结果:①C62;②C63+2C64+C65+C66;③26﹣7;④A62.其中正确的结论是()A、仅有①B、仅有②C、②和③D、仅有③18、A,B,C,D,E五人并排站成一排,A,B两人都不能站在两端的排法有()A、6种B、24种C、36种D、120种19、从编号为,1,2,3,4,5,6,的六的小球中任取4个,放在标号为A,B,C,D的四个盒子里,每盒一球,且2号球不能放在B盒中,4号球不能放在D号盒中,则不同的放法种()A、96B、180C、252D、280二、填空题(共11小题)20、将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个不同场馆服务,不同的分配方案有_________ 种(用数字作答).21、用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有_________ 个(用数字作答)22、有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有_________ 种(用数字作答).23、某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_________ 种.(用数字作答).24、10个相同的小球分给3个人,每人至少2个,有_________ 种分法.25、要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为_________ .(以数字作答)26、某校安排6个班到3个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有_________ 种.27、某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有_________ 种.28、5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1,2号中至少有1名新队员的排法有_________ 种.(以数作答)29、从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有_________ 种.30、xx年上海世博会某国将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该国展出这5件作品不同的方案有_________ 种.(用数字作答)答案:DBCDA CCCDC CCAAD BCCC90;324;432;96;15;288;540;1320;48;100;2431551 7B3F 笿38249 9569 镩20473 4FF9 俹 ?29319 7287 犇 S23 )F26809 68B9 梹28872 70C8 烈。

高考数学客观题限时训练习题及参考答案(十一套)

高考数学客观题限时训练习题及参考答案(十一套)

高考数学客观题限时训练习题(十一套)高考数学客观题限时训练一班级 姓名 学号 记分1、已知集合{}{}|12,|35A x a x a B x x =-≤≤+=<<,则能使A B ⊇成立的实数a 的取值范围是( )A .{}|34a a <≤B .{}|34a a <<C .{}|34a a ≤≤D .∅ 2、等比数列{}n a 中,0n a >且21431,9a a a a =-=-,则45a a +等于( ) A .16 B .27 C .36 D .27- 3、不等式2103x x -≤的解集为( )A .{|2x x ≤≤ B .{}|25x x -≤≤ C .{}|25x x ≤≤ D .{}5x x ≤ 4、曲线24y x =关于直线2x =对称的曲线方程是( )A .2164y x =-B .284y x =-C .248y x =-D .2416y x =-5、已知()321233y x bx b x =++++是R 上的单调增函数,则b 的范围( )A .1b <-或2b >B .1b ≤-或2b ≥C .12b -<<D .12b -≤≤6、直线l 是双曲线()222210,0x y a b a b-=>>的右准线,以原点为圆心且过双曲线的焦点的圆被直线l 分成弧长为21∶的两段圆弧,则该双曲线的离心率是( )A B C D7、空间四点A B C D 、、、,若直线,,AB CD AC BD AD BC ⊥⊥⊥同时成立,则A B C D 、、、四点的位置关系是( )A .一定共面B .一定不共面C .不一定共面D .这样的四点不存在8、()f x 是定义在R 上的奇函数,它的最小正周期为T ,则2T f ⎛⎫- ⎪⎝⎭的值为( )A .0B .2TC .TD .2T-9、已知实数x y 、满足22326x y +=,则2x y +的最大值为( ) A .4 BC. D10、函数222x y e -=的图象大致是( )选择题答案栏11、直线20x y m ++=按向量()1,2a =--平移后与圆22:240C x y x y ++-=相切,则实数m 的值为____________.12、在()()10211x x x ++-的展开式中,4x 项的系数是_______________.13、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有____________14、函数()f x =是奇函数的充要条件是____________ABCD15、260100x y x x y +-≤⎧⎪+≥⎨⎪-≤⎩,z mx y =+取得最大值的最优解有无数个,则m 等于16、在下列四个命题中,①函数2cos sin y x x =+的最小值是1-。

高三数学 选择题填空题训练(含解析)-人教版高三全册数学试题

高三数学 选择题填空题训练(含解析)-人教版高三全册数学试题

高三数学 选择题填空题训练(含解析)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上).1. 设集合{2,04,},{2,}n A x x n n B x x n n ==<<∈==∈Z Z ,则AB 为A.{1,2,4,8,16}B.{1,2,4,8}C. {2,4,8}D.{2,4}2. 关于复数2(1)1i z i+=-,下列说法中正确的是A. 在复平面内复数z 对应的点在第一象限B. 复数z 的共轭复数1z i =-C. 若复数1z z b =+()b ∈R 为纯虚数,则1b =D. 设,a b 为复数z 的实部和虚部,则点(,)a b 在以原点为圆心,半径为1的圆上3. 下列函数一定是偶函数的是A. cos(sin )y x =B. sin cos y x x =C. ln(sin )y x =D. sin xy e=4. 已知等比数列}{n a 的前n 项和为n S ,且满足8417S S =,则公比q = A.12 B. 12± C.2 D. 2±5. 执行如图所示程序框图,输出的x 值为A.11B. 13C.15D. 46.二项式5的展开式中常数项为A. 5B.10C.20-D. 407. 设函数()|sin(2)|3f x x π=+,则下列关于函数()f x 的说法中正确的是A. ()f x 是偶函数B. ()f x 最小正周期为πC. ()f x 图象关于点(,0)6π-对称 D. ()f x 在区间7[,]312ππ上是增函数 8. 某几何体的三视图如图所示,则这个几何体的体积为A.4B.203C.263D.89. 如图,平面内有三个向量,,OA OB OC ,其中OA 与OB 的夹角为120︒,OA 与OC 的夹角为30︒,且3||2,||,||232OA OB OC ===(,)OC OA OB λμλμ=+∈R ,则A. 4,2λμ==B. 83,32λμ==C. 42,3λμ==D. 34,23λμ==10. 若数列{}n a 满足规律:123212......n n a a a a a -><><><,则称数列{}n a 为余弦数列,现将1,2,3,4,5排列成一个余弦数列的排法种数为 A. 12B. 14C. 16D. 1811. 已知双曲线12222=-by a x (0,0)a b >>以及双曲线22221y x a b -=(0,0)a b >>的渐近线将第一象限三等分,则双曲线12222=-by a x 的离心率为A. 2C. 212. 已知空间4个球,它们的半径分别为2, 2, 3, 3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为A.711B. 611 C. 511D. 411第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13. 设,x y 满足约束条件00+2y y x x y a ⎧⎪⎨⎪-⎩≥≤≤,若目标函数3x y +的最大值为6,则a=______.14. 函数y =(1,1)-处的切线与x 轴所围成区域的面积为________. 15. 给出下列5种说法:①在频率分布直方图中,众数左边和右边的直方图的面积相等;②标准差越小, 样本数据的波动也越小;③回归分析就是研究两个相关事件的独立性;④在回归分 析中,预报变量是由解释变量和随机误差共同确定的;⑤相关指数2R 是用来刻画回 归效果的,2R 的值越大,说明残差平方和越小,回归模型的拟合效果越好.其中说法正确的是____________(请将正确说法的序号写在横线上).16. 函数()f x ()x ∈R 满足(1)1f =,1()2f x '<,则不等式221()22x f x <+的解集为______.一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上).1. 不等式组36020x y x y -+⎧⎨-+<⎩≥表示的平面区域是侧视图俯视图AB C O2. 已知复数z a bi =+(,0)a b R ab ∈≠且,且(12)z i -为实数,则a b= A. 3B. 2C.12D.133. 已知3cos 5α=,则2cos 2sin αα+的值为 A. 925 B. 1825C. 2325D. 34254. 执行如图所示的程序框图,若输出的5k =,则输入的整数p 的最大值为A. 7B. 15C. 31D. 635. 已知,,a b c 是平面向量,下列命题中真命题的个数是① ()()⋅⋅⋅⋅a b c =a b c② ||||||⋅= a b a b③ 22||()+=+a b a b ④ ⋅⋅⇒=a b =b c a c A. 1B. 2C. 3D. 46. 已知函数()sin cos fx x a x =+的图像关于直线53xπ=对称,则实数a 的值为A.B. D.27. 一个棱长都为a 的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为A. 273a πB. 22a πC. 2114a πD. 243a π8. 已知数列{}n a 满足10a =,11n n a a +=+,则13a =A. 143B. 156C. 168D. 1959. 在Excel 中产生[0,1]区间上均匀随机数的函数为“rand ( )”,在用计算机模拟估计函数x y sin =的图像、直线2π=x 和x 轴在区间[0,]2π上部分围成的图形面积时,随机点11(,)a b 与该区域内的点),(b a 的坐标变换公式为 A. 11,2a ab b π=+= B. 112(0.5),2(0.5)a a b b =-=-C. [0,],[0,1]2a b π∈∈D. 11,2a a b b π== 10. 已知抛物线28y x =的焦点为F ,直线(2)y k x =-与此抛物线相交于,P Q 两点,则11||||FP FQ += A. 12B. 1C. 2D. 411. 如图所示是一个几何体的三视图,则该几何体的体积为A. 162π+B. 82π+C. 16π+D. 8π+12. 已知两条直线1l y a =:和21821l y a =+: (其中0a >),1l 与函数4log y x =的图像从左至右相交于点A ,B ,2l 与函数4log y x =的图像从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为,m n .当a 变化时,nm的最小值为 A. 4B. 16C. 112D. 102第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13.1)x dx =⎰____________.14. 用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数字夹在两个奇数字之间的四位数的个数为_____________.15. 双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 和2F ,左、右顶点分别为1A 和2A ,过焦点2F 与x 轴垂直的直线和双曲线的一个交点为P ,若1PA 是12F F 和12A F 的等比中项,则该双曲线的离心率为.16. 设集合224{(,)|(3)(4)}5A x y x y =-+-=,2216{(,)|(3)(4)}5B x y x y =-+-=, {(,)|2|3||4|}C x y x y λ=-+-=,若()A B C ≠∅,则实数λ的取值X 围是____________.正视图侧视图俯视图简答与提示:【试题解析】C 由题可知{2,4,8}A =,{}B =偶数,因此 {2,4,8}A B =, 故选C.1. . 【试题解析】C 由题可知2(1)2111i iz i i i+===-+--,若z b +()b ∈R 为纯虚数, 则1b =,故选C.2. 【试题解析】A 由偶函数定义可知,函数cos(sin )y x =中,x 的定义域关于原点 对称且cos(sin())cos(sin )x x -=,故选A.3. 【试题解析】D 由题可知1q ≠,则818484414(1)11117(1)11a q S q qq a q S qq---===+=---,得 416q =,因此2q =±,故选D.4. 【试题解析】B 由程序框图可知:02x =,13x =,25x =,36x =,47x =,59x =,610x =,711x =,813x =而后输出x 值为13,故选B.5. 【试题解析】D 由题可知,展开式中的常数项为2325(40C =,故选D.6. 【试题解析】D 由三角函数的性质可知:()|sin(2)|3f x x π=+的单调区间232k x k ππππ≤+≤+,则26212k k x ππππ-≤≤+()k ∈Z ,当1k =时, 7[,]312x ππ∈,故选D.7.【试题解析】B 由三视图可知,该几何体可分为一个三棱锥和一个四棱锥,则12111202242223323V V V =+=⨯⨯⨯+⨯⨯⨯⨯=,故选B. 8. 【命题意图】【试题解析】C设与,OA OB 同方向的单位向量分别为,ab ,依题意有42OC a b =+,又2OA a =,32OB b =,则423OC OA OB =+,所以42,3λμ==. 故选C.9. 【命题意图】【试题解析】C ①将3,4,5排在中间和两侧,再用1,2插两缝共323212A A =种; ②将2,4,5排列,则结果必为21435; 将2,5,4排列,则结果必为21534; 将4,5,2排列,则结果必为43512; 将5,4,2排列,则结果必为53412. 故选C. 10. 【命题意图】【试题解析】A由题可知,双曲线渐近线的倾角为30︒或60︒,则bk a ==或.则2c e a ====,故选A. 11. 【命题意图】本小题通过具体的立体几何考查学生的空间想象能力与运算求解能力,着重考查几何体中点线面的关系问题,是一道较难的试题.【试题解析】B 由题意可知,12,A A 为半径为2的球的 球心,12,B B 为半径为3的球的球心,则124A A =, 126B B =,取12A A 的中点C ,12B B 的中点D ,则DC =r ,则OC ==611r =. 故选B.二、填空题(本大题包括4小题,每小题5分,共20分) 13. 214.1315.②④⑤16. (,1)(1,)x ∈-∞-+∞简答与提示:12. 【命题意图】本小题通过线性规划问题考查学生的运算求解能力,是一道基本题.【试题解析】由题意可知,3z x y =+取最大值6时,直线 36y x =-+过点(2,0),则点(2,0)必在线性规划区域内,且 可以使一条斜率为3-的直线经过该点时取最大值,因此点(2,0)为区域最右侧的点,故直线0+2x y a -=必经过点(2,0),因此2a =.13. 【命题意图】本小题通过积分问题考查学生的运算求解能力,着重考查积分在曲边图形面积求取上的应用,是一道中档难度试题.【试题解析】由y ='y =,112x y =-'=-,即切线方程为11(1)2y x -=-+, 即为1122y x =-+,将y =2x y =-,将1122y x =-+改写成12x y =- 因此1232100111[(12)()]()|11333S y y dy y y y =---=-+=-+=⎰. 14. 【命题意】本小题通过统计学基本定义问题考查学生的统计学的思想,是一道中档难度的综合试题.【试题解析】由统计学的相关定义可知,②④⑤的说法正确.15. 【命题意图】本小题以导数与函数图像的基本关系为载体,考查数形结合的数学思想,是一道较难综合试题.【试题解析】利用换元法,将2x 换元成t ,则原式化为1()22t f t <+, 当1t=时,()1f t =,且1122t +=,又由1()2f t '<, 可知当1t >时,1()22t f t <+;当1t <时,1()22t f t >+. 故1()22t f t <+的解集为1t >,即21x >,因此(,1)(1,)x ∈-∞-+∞.一、选择题(本大题包括12小题,每小题5分,共60分)1.B 2 .C 3. A 4. B 5.A 6.B 7.A 8.C 9.D 10.A 11.B 12.COA 2B 1B 2A 1CD简答与提示:1. 【命题意图】.【试题解析】B 360x y -+≥表示直线360x y -+=以及该直线下方的区域,20x y -+<表示直线20x y -+=的上方区域,故选B.2. 【命题意图】.【试题解析】C 由(12)z i ⋅-为实数,且0z ≠,所以可知(12)z k i =+,0k ≠,则122a kb k ==,故选C. 3. 【命题意图】.【试题解析】A 由3cos 5α=,得22229cos 2sin 2cos 11cos cos 25ααααα+=-+-==,故选A. 4. 【命题意图】.【试题解析】B 由程序框图可知:①0S =,1k =;②1S =,2k =;③3S =,3k =;④7S =,4k =;⑤15S =,5k =. 第⑤步后k 输出,此时15S P =≥,则P 的最大值为15,故选B.5. 【命题意图】本小题主要考查平面向量的定义与基本性质,特别是对平面向量运算律的全面考查,另外本题也对考生的分析判断能力进行考查.【试题解析】A 由平面向量的基础知识可知①②④均不正确,只有③正确, 故选A. 6. 【命题意图】【试题解析】B由函数()sin cos f x x a x =+的图像关于直线53x π=对称,可知5()3f π=a =. 故选B.7. 【命题意图】【试题解析】A 如图:设1O 、2O 为棱柱两底面的中心,球心O 为12O O 的中点. 又直三棱柱的棱长为a ,可知112OO a =,1AO =,所以2222211712a R OA OO AO ==+=,因此该直三棱柱外接球的表面积为2227744123a S R a πππ==⨯=,故选A.8. 【命题意图】【试题解析】C由11n n a a +=+,可知211111)n n a a ++=++=,1=,故数列是公差为1的等差数列,1213==,则13168a =. 故选C. 9. 【命题意图】【试题解析】D. 由于[0,]2a π∈, [0,1]b ∈,而1[0,1]a ∈,1[0,1]b ∈,所以坐标变换公式为12a a π=,1b b =. 故选D.10. 【命题意图】求.【试题解析】A设11(,)P x y ,22(,)Q x y ,由题意可知,1||2PF x =+,2||2QF x =+,则1212121241111||||222()4x x FP FQ x x x x x x +++=+=+++++, 联立直线与抛物线方程消去y 得,2222(48)40k x k x k -++=,可知124x x =,故121212121244111||||2()42()82x x x x FP FQ x x x x x x +++++===+++++. 故选A. 11. 【命题意图】【试题解析】B 由图可知该几何体是由两个相同的半圆柱与一个长方体拼接而成,因此21241282V ππ=⨯⨯+⨯⨯=+. 故选B.12. 【命题意图】【试题解析】C 设(,),(,),(,),(,)A A B B C C D D A x y B x y C x y D x y ,则4a A x -=,4aB x =,18214a C x -+=,18214a D x +=,则182118214444aa aa n m+--+-=-,分子与分母同乘以18214a a ++ 可得183********a a a a nm++++==,又363622*********a a a a +=++-≥=++,当且仅当216a +=,即52a =时,“=”成立,所以n m的最小值为112. 故选C.二、填空题(本大题包括4小题,每小题5分,共20分)13.7614. 816. 4] 简答与提示:13. 【命题意图】【试题解析】113122221217()()32326x x dx x x +=+=+=⎰. 14. 【命题意图】【试题解析】2122228A C A ⋅⋅=种.15. 【命题意图】【试题解析】由题意可知211212||||||PA F F A F =⨯,即222()()2()b a c c a c a++=+, 经化简可得22a b =,则c e a ====. 16. 【命题意图】本小题主要考查曲线与方程的实际应用问题,对学生数形结合与分类讨论思想的应用作出较高要求.【试题解析】由题可知,集合A 表示圆224(3)(4)5x y -+-=上点的集合,集合B 表示圆2216(3)(4)5x y -+-=上点的集合,集合C 表示曲线2|3||4|x y λ-+-=上点的集合,此三集合所表示的曲线的中心都在(3,4)处,集合、表示圆,集合C 则表示菱形,可以将圆与菱形的中心同时平移至原点,如图所示,可求得λ的取值X围是[4]5.OADO 1O 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选择填空题专题训练(三)
考试时间45分钟
一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)下列函数中,反函数是其自身的函数为( )
(A)[)+∞∈=,0,)(2x x x f (B )),(,)(3+∞-∞∈=x x x f
(C)),(,e )(+∞-∞∈=x x f x (D)),0(,1)(+∞∈=x x
x f (2)设l,m,n 均为直线,其中m,n 在平面α内,“l ⊥α”是“l ⊥m 且l ⊥n ”的
(A )充分不必要条件 (B )必要不充分条件
(C)充分必要条件 (D )既不充分也不必要条件
(3)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是
(A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1
(4)若a 为实数,
i ai 212++=-2i ,则a 等于 (A )2
(B )-2 (C )22 (D )-22
(5)若{}8222<≤Z ∈=-x x A ,{}1log |R 2>∈=x x B ,则)(C R B A ⋂的元素个数为 (A )0 (B )1 (C )2 (D )3
(6)函数)3π2sin(3)(-
=x x f 的图象为C ①图象C 关于直线π12
11=x 对称; ②函数)(x f 在区间)12
π5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3
π个单位长度可以得到图象C . (A )0 (B )1 (C )2 (D )3
(7)如果点P 在平面区域⎪⎩
⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P 的最小值为
(A )15- (B )15
4- (C )122- (D )12-
(8)半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为 (A ))33arccos(- (B ))3
6arccos(- (C ))31arccos(-(D ))41arccos(- (9)如图,1F 和2F 分别是双曲线)0,0(122
22>>=-b a b
y a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为
(A )3 (B )5 (C )25 (D )31+
(10)以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率)(σμξ<-P 等于
(A ))(σμφ+-)(σμφ-
(B ))1()1(--φφ (C ))1(σμ
φ-
(D ))(2σμφ+ (11)定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为
(A )0 (B )1 (C )3 (D )5
二、填空题:本大共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.
(12)若(2x 3+x 1
)n 的展开式中含有常数项,则最小的正整数n 等于 .
(13)在四面体O-ABC 中,D OC OB AB ,,,c b a ===为BC 的中点,E 为AD 的中点,则OE = (用a ,b ,c 表示).
(14)如图,抛物线y =-x 2+1与x 轴的正半轴交于点A ,将线段OA 的n 等分点从左至右依次记为P 1,P 2,…,P n -1,过这些分点分别作x 轴的垂线,与抛物线的交点依次为Q 1,Q 2,…,Q n -1,从而得到n -1个直角三角形△Q 1OP 1, △Q 2P 1P 2,…, △Q n -1P n -1P n -1,当n →∞时,这些三角形的面积之和的极限为 .
(15)在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号..
). ①矩形;
②不是矩形的平行四边形;
③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;
④每个面都是等边三角形的四面体;
⑤每个面都是直角三角形的四面体.。

相关文档
最新文档