植物的矿质营养
植物的矿质营养
植物的矿质营养1. 引言植物的生长和发育需要多种营养物质,其中矿质营养在植物的生命活动中起着至关重要的作用。
矿质营养是指植物从土壤中吸收的无机物质,包括常见的氮、磷、钾等元素,以及微量元素如锌、铜、锰等。
本文将重点介绍植物的矿质营养的种类、功能以及影响因素等内容。
2. 植物的矿质营养种类植物的矿质营养主要包括宏量元素和微量元素两大类。
2.1 宏量元素宏量元素是植物需要吸收的主要无机元素,它们以百分之几的质量存在于植物体内。
常见的宏量元素有氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)和硫(S)等。
•氮素(N):植物体内氨基酸、DNA、RNA等生物大分子的组成成分,是植物生长发育的基础元素。
•磷素(P):是ATP(三磷酸腺苷)等能量转化过程中的重要组成元素,同时也是细胞质膜、DNA和RNA等的构成成分。
•钾素(K):促进植物的光合作用、调控植物的水分平衡和营养转运,对提高植物的抗病性和抗逆性具有重要作用。
•钙素(Ca):调节细胞的渗透平衡,影响细胞的生长分裂和细胞壁的合成,同时也参与信号传导。
•镁素(Mg):是叶绿素的组成部分,对光合作用和能量转化过程具有重要影响。
•硫素(S):是蛋白质、蛋白质酶、维生素B1和维生素B6等的组成成分,参与植物的生命活动。
2.2 微量元素微量元素是植物体内含量较低的无机元素,但对植物的生长发育同样至关重要。
常见的微量元素有铁(Fe)、锌(Zn)、锰(Mn)、铜(Cu)、钼(Mo)和镍(Ni)等。
•铁(Fe):是光合作用和呼吸作用中的重要催化剂,参与植物体内的电子转运和能量转化过程。
•锌(Zn):是植物体内多种酶的重要成分,参与DNA和蛋白质的合成过程。
•锰(Mn):是植物体内氧气释放过程的关键酶的组成成分。
•铜(Cu):参与咖啡因合成、植物生长和光合作用等多种重要生理过程。
•钼(Mo):是植物体内硝化细菌和固氮细菌的酶的辅助因子,参与氮代谢过程。
•镍(Ni):催化植物体内亚硝酸盐的还原过程。
第三章矿质营养
第三章矿质营养
7. 硅
◇ 吸收形式:单硅酸〔Si (OH)4〕。 ◇ 硅多集中在表皮细胞内,使细胞壁硅质化,增强
了植物对病虫害的抵抗力和抗倒伏的能力。 ◇ Si对生殖器官的形成有促进作用,如对穗数、小穗
◇ 有益元素或有利元素 有些元素并非植物必需的,但能促进某
些植物的生长发育,这些元素称为有益元素或有利元素,常见的有钠、 硅、钴、硒、钒等,如Si对水稻、Al对茶树等。
●稀土元素 指元素周期表中原子序数在57~71的镧系元素及
其化学性质与镧系元素相近的钪和钇。植物体内普遍含有稀土元素,稀 土元素对植物的生长发育有良好的作用,如低浓度稀土元素可以促进种 子萌发和幼苗生长。
第三章矿质营养
●下图:当细胞外的某一离子浓度比细胞内的该离子浓度
高时,质膜上的离子通道被激活,通道门打开,离子将顺
着跨质膜的电化学势梯度进入细胞内。
离 子 通 道 运 输 离 子 的 模 式 图
第三章矿质营养
(二)载体运输
载体运输学说认为,质膜上有各种载体蛋白,属于 内在蛋白,它有选择地与质膜一侧的分子或离子结合, 形成载体—物质复合物。通过载体蛋白构象的变化,透 过质膜,把分子或离子释放到质膜的另一侧。
的物理、化学、微生物条件的改善而产生的间接效果。
即:不可缺少性,不可替代性,直接功能性。
第三章矿质营养
根据上述标准,现已确定植物必需的矿质元素 (包括氮)有14种,它们是:
氮(N) 磷(P) 钾(K) 钙(Ca) 镁(Mg) 硫(S) 铁(Fe) 铜(Cu) 锌(Zn) 锰(Mn) 硼(B) 钼(Mo) 氯(CI) 镍(Ni)
第十四章植物的矿质营养
3、胞饮作用
胞饮作用:物质吸 附在质膜上,然后 通过膜的内折将物 质及液体转移到细 胞内的攫取物质及 液体的过程。 它为各种盐类和大 分子物质的吸收提 供可能,但它不是 矿质元素的主要吸 收方式。
第三节 植物根系对矿质元素的吸收
一、根系吸收矿质元素的部位
根系所需的矿质元素,主要依靠根部从 土壤中吸收,吸收矿质元素主要区域是 根冠、分生区和根毛区。
链中的重要电子载体。缺铁时,由幼叶脉间失绿黄化,但叶脉 仍为绿色;严重时整个新叶变为黄白色。
2、硼 ①促进糖分在植物体内的运输。②与植物生殖有关,促进
花粉萌发和花粉管生长 。 缺硼时, 甘蓝型油菜“花而不实”, 蕃茄“脐腐病” 。
白 菜 缺 铁 蕃茄缺硼
3、锰 在光合作用方面,水的裂解需要锰参与。 缺锰时,叶绿体结构会破坏、解体。叶脉间 失绿,有坏死斑点。 4、锌 色氨酸合成酶的组分,催化吲哚与丝氨酸 成色氨酸。缺锌玉米“花白叶病”,果树 “小叶病”。
白菜缺锰
第二节
植物细胞对矿质元素的吸收
一、细胞吸收溶质的方式
离子通道:由细胞膜上的蛋白构成的供离子跨膜的 孔道。通道孔径大小和孔内电荷密度等使得通道对 离子运输有一定选择性,即一种通道只允许某一种 离子通过。根据对运送离子的选择性,离子通道有 K+通道、Cl-通道.Ca2-通道等。 载体:也叫载体蛋白。细胞膜上的蛋白,可选择性 地与质膜一侧的分子或离子结合,形成载体-离子 复合物,通过载体蛋白构象的变化,把分子或离子 运送到质膜的另一侧。载体运输既可以顺电化学势 梯度进行跨膜运输,也可以逆电化学势梯度进行。
3、单盐毒害与离子拮抗、离子协同作用 单盐毒害: 如果把植物培养在单一盐类的溶液中,不久 便出现毒害植物的现象,这种现象称为单盐毒害。 如:海生植物+纯NaCl 不久就死去 海生植物+海水(NaCl含量很高) 生活的很好 离子拮抗: 在发生单盐毒害的溶液中,再加入少量其它 盐类,即能减弱和消除单盐毒害现象,这种作用 叫拮抗作用。同价金属离子间不能产生颉抗作用。
植物的矿质营养
2.2 载体运输carrier transport 质膜上的一类内在蛋白— 载体蛋白,可以选择性的与质膜一侧的分子或离子结合, 形成载体—分子(或离子)复合物。再通过载体蛋白构象的 变化, 透过质膜,把分子或离子释放到质膜的另一侧。 可以顺电化学梯度进行(被动运输),也可以逆电化学梯度 进行(主动运输) 。有三种类型: 单向运输载体uniport carrier 同向运输器symporter 反向运输器antiporter
植物体内氨的同化包括谷氨酰胺合成酶、谷氨酸合成酶、 谷氨酸脱氢酶、氨基互换作用等途径。
1.2.1 谷氨酰胺合成酶途径 在谷氨酰胺合成酶glutamine synthetase, GS的作用下,以Mg2+、Mn2+、或Mo2+作为辅 酶因子,使铵与谷氨酸结合,形成谷氨酰胺。
COOH
HC NH2 GS ATP COOH HC NH2 CH2 细胞质 根细胞的 H2O 质体 叶片细胞 的叶绿体
和溶液中的矿质元素类似,这种吸收也要通过一系 列的离子交换过程来完成。 3. 影响根部吸收矿质元素的条件
3.1 温度 在一定范围内,土壤温度升高会使矿质元素的 吸收速率升高。 3.2 通气状况
3.3 溶液浓度 3.4 氢离子浓度
4. 植物体地上部分对矿质元素的吸收—根外营养
植物体地上部分吸收矿物质的过程,称为根外营养。 地上部分吸收矿物质的的器官主要要是叶片,所以也称为 叶片营养foliar nutrition 。营养物质可以通过气孔和角质 层进入叶内,以后者为主。 营养元素进入叶片的数量与叶片的内外因素有关。
为什么会称为生电质子泵?
质子浓度梯度
膜电位梯度 电化学势梯度 质子泵的作用机制
上述质子泵的工作过程,是一种利用能量(来自ATP 水解) 逆着电化学梯度转运H+的过程,因此是一个主动运 输过程。 质子泵活动的结果,产生了跨膜的电化学势梯度, 这种电化学梯度又促进了细胞对矿质元素的吸收,矿质元 素以这种方式进入细胞,也是一种间接利用能量的方式, 因此,我们将质子泵的运输过程成为初级主动运输,后者 称为次级主动运输。
必修部分 第三章 第五节 植物的矿质营养
土壤 中吸收的元素。
2.植物必需的矿质元素 (1)概念:对植物正常的生命活动不可缺少的矿质元素。
某一种矿质元素是不是植物生活所必需的,可通过
溶液培养法 进行验证。 (2)种类(14种): 大量矿质元素: N、P、S、K、Ca、Mg (6种)。 微量矿质元素: Fe、Mn、B、Zn、Cu、Mo、Cl、Ni (8
种)。
3.溶液培养法 (1)应用:用于探究某种矿质元素是否为植物 必需 的矿 质元素。
(2)原理:如果除去某一种矿质元素后,植物的生长发
育 不正常 ,而补充这种矿质元素后,植物的生长发 育 又恢复正常 ,则该元素为植物必需的矿质元素。 (3)过程:在 人工配制 的营养液中,除去或加入某一种 矿质元素,然后观察植物在营养液中的 生长发育状况。
后植株生长发育状况
[解题指导] 选 D 确定某种矿质元素是否是植物的必
需元素,通过溶液培养法来研究。就是在人工配制的 营养液中,除去或加入某一种矿质元素,然后观察植 物在营养液中的生长发育状况:如果除去某一种矿质 元素后,植物的生长发育仍然正常,就说明这种矿质
元素不是植物必需的矿质元素;如果除去某一种矿质
如 Fe、Ca 等
四、合理施肥 不同植物对各种必需的矿质元素的需要量 不同 ,
同一植物在不同的生长发育时期,对各种必需的矿质元
素的需要量 也不同 。合理施肥就是指根据植物 的 需肥规律 ,适时地, 适量 地施肥,以便使植物茁壮 成长,并且获得 少肥高效 的结果。
1.作为植物必需的矿质元素应符合三个标准
脱分化 即:离体植物组织 愈
根、芽→植物体 伤组织
再分化
比较
无土栽培 植物组织培养 植株生长应满足 原理 必需的全部矿质 植物细胞全能性 元素的供应 培养基要求非常严格 只需在培养液中 ①必须灭菌 加入植物生长所 ②除含植物生长必需的矿质元素外,还 培养 必需的矿质元素 必须加入有机添加物,如:氨基酸、维 液成 即可(矿质元素 生素、蔗糖等③必须加入植物激素,如 分 应根据植物需求 生长素、细胞分裂素等,诱导愈伤组织 量,按一定比例 形成,诱导生芽与诱导生根时对生长素 配制而成) 和细胞分裂素的配比要求严格
植物的矿质营养
光照能促进硝酸盐还原过程
①光下植物通过光合作用合成的糖流出叶绿体后,经糖 酵解产生NADH而用于NO3- 还原。 ②光能促进底物对NR的诱导,在一定范围内,NR活力随光 强的增加而升高,光下生长的植物体内NR水平要比暗中生 长的高得多。
③光合作用光反应中形成的NADPH和还原型铁氧还蛋白 (Fd)可转化成NADH为硝酸还原提供还原力。
易发生在具有相同理化性质(如化合价和离子半径)的离子 之间,可能与竞争同种离子载体有关。如 NH4+对K+,Mn2+、 Ca2+对Mg2+,K+ 、 Rb+对136Cs+,Cl-对NO3-,SO42-对 SeO42-等都有抑制效应。
2.离子协助作用 即一种离子的存在能促进植物对另一种离子的吸收。
这种作用经常发生在阴、阳离子间。
图2-10 水稻和番茄养分吸收的差异
表示试验结束时培养液中各 种养分浓度占开始试验时%
图2-11 小麦根在盐类溶液中的生长情况
A. NaCl+ KCl+ CaCl2; B. NaCl+CaCl2 C. CaCl2; D. NaCl
(三)单盐毒害与离子对抗
1.单盐毒害
任何植物,假若培养在单一盐溶液中,不久即呈现不正常状态, 最后死亡。这种现象称为单盐毒害(toxicity of single salt)。
四、增强肥效的措施
1、改善施肥方式 如深层施肥,根外施肥
2.平衡施肥
按J.V.Liebig的最小养分律(Law of minimum nutrient), 作物产量是受最小养分所支配。因为各种矿质元素的生理作用是 互相联系、相互影响的,如果土壤中某一必需元素不足,即使其 它养分都充足,作物产量也难以提高。
2.植物的矿质营养
12.钼 钼是以钼酸盐( MoO42-、HMoO4-)的形式进入植物体内。钼离子(Mo4+~Mo6+ )是硝酸 还原酶的金属成分,起着电子传递作用。钼又是固氮酶中钼铁蛋白的组成成分,在 固氮过程中起作用。所以,钼的生理功能突出表现在氮代谢方面。钼对花生、大豆 等豆科植物的增产作用显著。缺钼时,老叶叶脉间缺绿,坏死。而在花椰菜缺钼时, 形成鞭尾状叶,叶皱卷甚至死亡,不开花或花早落。 13.氯 氯离子(CI-)在光合作用水裂解过程中起着活化剂的作用,促进氧的释放。根和叶的 细胞分裂需要氯。缺氯时植株叶小,叶尖干枯、黄化,最终坏死;根生长慢,根尖粗。 14.镍 镍在植物体内主要以Ni2+的形式存在。镍是脲酶的金属成分,脲酶的作用是催化尿 素水解成CO2和NH4+。镍也是氢化酶的成分之一,它在生物固氮中产生氢气起作用。 缺镍时,叶尖积累较多的脲,出现坏死现象。
二、植物必需矿质元素的确定
Arnon和Stout ( 1939 )提出植物的必需元素必须符合下列3条标准: ①完成植物整个。生长周期不可缺少的; ②在植物体内的功能是不能被其他元素代替的,植物缺乏该元素时 会植表现专一的症状, 并且只有补充这种元素症状才会消失; ③这种元素对植物体内所起的作用是直接的,而不是通过改变土壤 理化性质、微生物生长条件等原因所产生的间接作用。 上3条标准目前看来是基本正确的,因此普遍为人们所接受。
10.锌 锌离子(Zn2+ )是乙醇脱氢酶、谷氨酸脱氢酶和碳酸酐酶等的组成成分 之一。缺锌植物失去合成色氨酸的能力,而色氨酸是吲哚乙酸的前身, 因此缺锌植物的吲哚乙酸含量低。锌是叶绿素生物合成的必需元素。 锌不足时,植株茎部节间短,莲座状,叶小且变形,叶缺绿。吉林和 云南等省玉米“花白叶病”,华北地区果树“小叶病”等都是缺锌的缘故。 11.铜 铜是某些氧化酶(例如抗坏血酸氧化酶、酪氨酸酶等)的组成成分,可以 影响氧化还原过程。铜又存在于叶绿体的质体蓝素中,后者是光合作 用电子传递体系的一员。缺铜时,叶黑绿,其中有坏死点,先从嫩叶 叶尖起,后沿叶缘扩展到叶基部,叶也会卷皱或畸形。缺铜过甚时, 叶脱落。
13 植物的矿质营养
本章内容
一、植物必需矿质元素及生理作用 ➢ (一)植物必需元素的条件及确定方法 ➢ (二)植物必需元素的生理作用及缺素症
二、植物细胞对矿质元素的吸收运输利用 ➢ (一) 植物细胞对矿质元素的吸收 ➢ (二)植物根系对矿质元素的吸收 ➢ (三)植物地上部分对矿质元素的吸收 ➢ (四) 矿质元素在植物体内的运输 ➢ (五) 矿质元素在植物体内的利用和再利用
缺磷:分蘖分枝减少,幼芽、幼叶生长停滞,茎、根纤细, 植株矮小;叶子呈现不正常的暗绿色或紫红色。症状首先在 下部老叶出现,并逐渐向上发展。
磷过多:影响硅的吸收,易产生缺 Zn 症。
缓冲液:NaH2PO4、Na2HPO4
白菜 缺磷
玉米 缺磷
油菜 缺磷
大麦 缺磷
3. 钾
生理作用:① 很多酶的活化剂,是40多种酶的辅助因子;② 调 节水分代谢。K+在细胞中是构成渗透势的重要成分。调节气孔开 闭、蒸腾;③ 促进能量代谢。作为H+的对应离子,向膜内外转移, 参与光合磷酸化、氧化磷酸化。
白菜 缺锰
铁:缺铁时,由幼叶脉间失绿黄化,但叶脉仍为绿色;严重时整个新 叶变为黄白色。
硼:缺硼时, 甘蓝型油菜“花而不实”,甜菜“心腐病” 锰:叶片脉间失绿,有坏死斑点。 锌:色氨酸合成酶的组分,催化吲哚与丝氨酸成色氨酸。玉米“花白
叶病”,果树“小叶病”。
柑桔缺 Zn小叶 症伴脉 间失绿
缺锌时,IAA合成受阻,植株矮小。果树“小叶病”由缺 锌所致。缺锌玉米易得“花白叶病”,
植株缺氮:植物生长矮小,分枝、分蘖少,叶片小而薄;叶片发黄发 生早衰,且由下部叶片开始逐渐向上。
苹果缺氮
马铃薯缺氮
菜豆缺氮
缺N
CK
第二章植物的矿质营养
矿质代谢过程:
吸收、转运、同化
1
第一节 植物必需的矿质元素
一 、植物体内的元素 (一)元素组成
植物 105℃ 材料 烘干
水分
95—5%
干物质 600℃
5—95% 充分燃烧
有机物 90%
灰分 10%
挥发
CHON
残留
灰分——植物体充分燃烧后,有机物中
的C、H、O、N、部分S挥发掉,剩下的 不能挥发的灰白色残渣为灰分。
35
跨膜电化学势差激活离子通道
电化学势差=电势差 + 化学势差
电势差 :膜两侧离子电荷不同所致 化学势差:膜两侧离子浓度不同所致
特点:
*离子顺着电化学势差从高向低通过孔道扩散, 平衡时膜内外离子电化学势相等,为被动运输。
*开放式离子通道运输速度为107~108个/S *已知离子通道:K+、Cl-、Ca++ 、NO3-
必需元素的作用:
细胞结构物质组分和代谢产物N、P、S 生命活动的调节者,参与酶活动(钾、镁) 起电化学作用,即离子浓度的平衡、电荷中和、
电子传递、氧化还原等(钾、铁、氯) 作为细胞信号转导的第二信使(钙)
氮 (占干重1~2%)
生理功能:是蛋白质、核酸、磷脂、叶绿
素、激素、维生素等的组分,称生命元 素
灰分元素——构成灰分的元素,包括
金属元素及部分 P、S 非金属元素。因 其直接或间接来自土壤矿质,又称矿质 元素。
3
植物矿质元素分类
1、根据含量划分
大量元素(n ×10-2%以上) C、H、O、N、P、K、
Mg﹑Ca﹑S、 Si
微量元素(n ×10-3%-n ×10-5%)
植物的矿质营养
小麦缺Cu叶片失水变白
硼 Boron (B)
1、生理作用:
第二章 植物的矿质营养
第ቤተ መጻሕፍቲ ባይዱ节 第二节 第三节 第四节 第五节 第六节
植物必需的矿质元素 植物细胞对矿质元素的吸收 植物体对矿质元素的吸收 矿物质在植物体内的运输和分布 植物对氮、硫、磷的同化 合理施肥的生理基础
第一节 植物必需的矿质元素
矿质营养(mineral nutrition): 植物对矿物质的吸收,转运和同化,通称矿质营养。
2、缺锰症状:
缺锰时植物不能形成叶绿素,叶脉间失绿褪色,但叶脉仍 保持绿色,此为缺锰与缺铁的主要区别。 新叶脉间缺绿,有坏死小斑点(褐或黄)。
大麦新叶有褐色小斑点
缺锰黄瓜叶片脉间失绿
苹果树缺锰 新叶脉间失 绿褪色, 有坏死小斑点
葡萄叶脉间失绿,果实成熟不一
图 观察草莓 叶片的缺素症 状:缺 K、P、 Fe、Zn、Ca、 Cu或 Mn ,同 时也显示了矿 物质充足的叶 片作为对照
一、植物体内的元素:
水分 10-95%
植物体:
干物质 5-90%
有机物:90%(可燃)
无机物:10%(灰分)
2 植物中灰分的含量:
水生植物1%;中生植物5~15%;盐生植物可高达 45%。
3 矿质元素的种类及数量:已发现70多种
二. 植物的必需元素(Essential elements)
1.标准: 1) 缺乏该元素,植物的生长发育受到影响,不能完成生活史.
第二章 植物的矿质营养
干物质5~90%
燃烧
无机物10%
小部分氮
挥发部分
灰分元素
大部分硫 全部的磷 全部的金属元素
二、植物必需的矿质元素
1 确定必需元素的方法 a.溶液培养法:溶液培养法 亦称水培法,是在含有全 部或部分营养元素的溶 液中培养植物的方法; b.砂基培养法:是在洗净的 石英砂或玻璃球等基质 中加入营养液来培养植 物的方法。
蛋白
二、离子通道
细胞膜中由通道蛋白构成的孔道,控 制离子通过细胞膜
三、载体运输途径
载体是一类跨膜运输的内在蛋白。在跨膜区不 形成孔道结构 1.单向运输载体(顺化学梯度转运): 能够催化分子或离子单方向地跨质膜运输。 2 同向运输器 3 逆向运输器
同 向 与 逆 向 运输
膜外
膜内
四、离子泵
膜内在蛋白 ATP酶:ATP磷酸水解酶
• H+-ATP酶,Ca2+-ATP酶,H+-焦磷酸酶
五、胞饮作用
胞饮作用是细胞通过膜的内折从外界直接摄 取物质进入细胞的过程。
小结 植物体对矿质元素的吸收
一、根部对溶液中矿质元素的吸收 1 离子通过交换吸附在根部细胞的表面 (H+和HCO3-) 细胞吸附的离子具有可以 2 离子进入根的内部: 交换的性质。 共质体途径和质外体途径 3 离子进入导管: a.被动扩散 b.主动运输
细胞膜的立体结构
糖
基本成分:蛋白质(外在蛋白和内 在蛋白)、脂类和糖
细胞膜溶质转运途径的示意图
膜外
膜内
细胞吸收矿质营养的途径
扩散:O2、CO2等气体及其它脂溶性物质的过膜方 式,从高浓度一侧向低浓度一侧的扩散,不消耗能 量 通道运输(通道蛋白) 转运蛋白 载体运输 (载体蛋白) 泵运输 胞饮作用
第二章植物的矿质营养
3、起电化学作用。如渗透调节、胶体稳定和电荷中和等。
4、参与物质和能量的代谢过程。如是ATP、ADP、FAD、 FMN、GTP、NADH2、NADPH2、HSCoA组分。 (二)各种必需元素的生理作用
1、氮 根系吸收的氮主要是无机态氮:NH4&脂的主要成分:这三者又是原生 质、细胞核和生物膜的重要组成部分。氮也称生命元素。
缺磷:会影响细胞分裂,使分蘖减少,幼芽、幼叶生长停滞, 根、茎纤细,植株矮小,花果脱落,成熟延迟。缺磷时蛋白 质合成下降,糖的运输受阻,从而使营养器官中糖的含量相 对提高,利于花青素的形成,因而茎、叶会呈不正常的紫红 或暗绿色。磷在体内易移动,病症从老叶开始。
磷过多:叶出现小枯斑,为磷酸钙沉淀所致;磷过多还会阻碍 植物对硅的吸收,水稻得病;与锌结合,减少锌的有效性, 而易引起植物缺锌。
第二节 植物细胞对离子的吸收
一、被动吸收
被动吸收:是指细胞不需要 代谢能,而是依化学势或电化 学势梯度吸收分子或离子的现象。
有两种方式:
(一)简单扩散:是指疏水性分子或离子沿着化学势或电化学 势梯度向细胞内转移的过程。 扩散动力:
1)亲脂性物质:为膜两侧的化学势梯度。其扩散速度除与化 学势梯度有关外,还与扩散分子颗粒的大小及脂溶性程度有 关。自然颗粒小、脂溶性大的分子易透过膜。
2、时当磷磷,进吸主入收要根H以P部OH,422P-磷居O大4多-和部,H分当P会O土4转2壤-形变P为式H<有被7时机植,磷物吸化吸收合收H物。2P如土O磷壤4-较脂PH多、〉。核7 苷酸、核酸等。
植物生理学2 矿质营养
植物对矿质元素的吸收、转运和同化,称为植 物的矿质营养(mineral nutrition)。
矿质元素(mineral element):植物燃烧后以氧化物形态 存在于灰分中的元素,又称灰分元素。 氮不是矿质元素,但由于也是植物从土壤中吸收的所以也归 入矿质元素来讨论。 植物体内各种矿质元素的含量因植物种类、器官、年龄、 生境条件而有很大差异。 老龄植株和细胞比幼龄的灰分含量高。 干燥、通气、盐分含量高的土壤中长的植物灰分含量高。 植物种类:禾本科植物:硅较多;十字花科:硫较多;豆 科:钙和硫较多;马铃薯:钾多;海藻:碘和溴多。
逆着浓 度梯度
②载体蛋白(carrier protein)
又称为载体(carrier)、传递体(transport)、透过酶 (permease,penetrase)、运输酶(transport enzyme)。载体蛋白通过构象变化,将被运物质转至膜的 另一侧.
载体被动传递模型 离子通道模型
如何区分溶质是经离子通道还是经
一、生物膜(biomembrane)
或叫细胞膜(cell membrane) : 指由脂类和 蛋白质组成的具有一定结构 和生理功能的胞内所有被膜 的总称。 质膜(plasma membrane): 原生质的外膜 内膜(endomembrane):细 胞器的膜。 (一) 膜的特性和化学成分 选择性透过膜。对水的透 性最大,可以自由通过;越 易溶解于脂质的物质,透性 越大。所以膜一定是由亲水 性物质和脂类物质组成。
子层和镶嵌的蛋白质组成,磷脂分子的亲水性头部 位于膜的表面,疏水性尾部在膜的内部。
内在蛋白 细胞骨架的单纤维
外在蛋白
膜蛋白包括两种: 膜外在蛋白(extrinsic protein):与膜的外表 面相连的蛋白质,称为亦 称周围蛋白(peripheral protein); 膜内在蛋白(intrinsic protein):镶嵌在磷脂 之间,甚至穿透膜的内在 表面,也称螯合蛋白 (integral protein)。
植物的矿质营养
植物的矿质营养1、植物的矿质营养:是指植物对矿质元素的吸收、运输和利用。
2、矿质元素:一般指除了C、H、O以外,主要由根系从土壤中吸收的元素。
植物必需的矿质元素有13种.其中大量元素7种N、S、P、Ca、Mg、K(Mg是合成叶绿素所必需的一种矿质元素)巧记:丹留人盖美家。
Fe、Mn、B、Zn、Cu、Mo、Cl属于微量元素,巧记:铁门碰醒铜母(驴)。
3、交换吸附:根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附。
4、选择吸收:指植物对外界环境中各种离子的吸收所具有的选择性。
它表现为植物吸收的离子与溶液中的离子数量不成比例。
5、合理施肥:根据植物的需肥规律,适时地施肥,适量地施肥。
语句:1、根对矿质元素的吸收①吸收的状态:离子状态②吸收的部位:根尖成熟区表皮细胞。
③、细胞吸收矿质元素离子可以分为两个过程:一是根细胞表面的阴、阳离子与土壤溶液中的离子进行交换吸附;二是离子被主动运输进入根细胞内部,根进行离子的交换需要的HCO-和H+是根细胞呼吸作用产生的CO2与水结合后理解成的,根细胞主动运输吸收离子要消耗能量。
④影响根对矿质元素吸收的因素:a、呼吸作用:为交换吸附提供HCO-和H+,为主动运输供能,因此生产上需要疏松土壤;b、载体的种类是决定是否吸收某种离子,载体的数量是决定吸收某种离子的多少,因此,根对吸收离子有选择性。
氧气和温度(影响酶的活性)都能影响呼吸作用。
2、植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。
①吸收部位:都为成熟区表皮细胞。
②吸收方式:根对水分的吸收---渗透吸水,根对矿质元素的吸收----主动运输。
③、所需条件:根对水分的吸收----半透膜和半透膜两侧的浓度差,根对矿质元素的吸收----能量和载体。
④联系:矿质离子在土壤中溶于水,进入植物体后,随水运到各个器官,植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。
3、矿质元素的运输和利用:①运输:随水分的运输到达植物体的各部分。
植物生理学第二章植物的矿质营养
第二章植物的矿质营养一、 名词解释1. 矿质营养 4•微量元素 7. 可再利用元素 10.载体蛋白 13.反向运输器二、 填空题2. 必需元素5.水培法 8. 易化扩散 11.转运蛋白 14.同向运输器1 .植物细胞中钙主要分布在 ______ 中。
2 .土壤溶液的pH 对于植物根系吸收盐分有显著影响。
一般来说,降低易于吸收 ______ 。
3 .生产上所谓肥料三要素是指 _____ 、 ____ 和 _____ 三种营养兀素。
4 .参与光合作用水光解反应的矿质元素是—、—和 _____________5. _____________________________________ 在植物体内促进糖运输的矿质元素是 、 和 6 .离子跨膜转移是由膜两侧的 _____ 梯度和 _____ 梯度共同决定的。
7 .促进植物授粉、受精作用的矿质兀素是 ________ 。
8.驱动离子跨膜主动转运的能量形式是 __________ 和 _________ 。
9 .植物必需元素的确定是通过 ________ 法才得以解决的。
10. _______________________________ 华北地区果树的小叶病是因为缺 元素的缘故。
11. _______________________________ 缺氮的生理病症首先出现在 叶上。
12. _______________________________ 缺钙的生理病症首先出现在 叶上。
13. _______________________________ 根部吸收的矿质元素主要通过 向上运输的。
14. __________________________________ 一般作物的营养最大效率期是 时期。
15 .植物地上部分对矿质元素吸收的主要器官是 __________16. _______________________________ 植物体内可再利用的元素中以 ________________ 和 最典型;不可再利用的元素中以 ______________ 最典型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《植物的矿质营养》教案
教学目标
一、知识方面
1、使学生理解矿质元素的概念,了解植物必需的矿质元素的种类和来源
2、使学生理解根对矿质元素离子的吸收过程及其与植物根细胞呼吸作用之间的密切关系
3、使学生理解根吸收矿质元素离子与根吸水的联系和区别
4、使学生了解矿质元素在植物体内的存在形式、运输方式和利用特点
5、使学生了解合理施肥、无土栽培原理和实用。
二、能力方面
通过引导学生分析根对矿质元素离子的吸收过程与呼吸作用的关系以及分析影响根吸收矿质离子的环境因素,训练学生分析实验和实际问题的能力。
三、情感、态度、价值观方面
通过在教学中介绍合理施肥、无土栽培原理和实用,增加学生学以致用的意识;培养学生关注科学、技术在现代农业生产中的应用,对学生进行生命科学价值观的教育。
【教学重点】植物必需的矿质元素及其种类;根对矿质元素离子的吸收过程。
【教学难点】根对矿质元素离子的吸收和对水分的吸收是两个相对独立的过程。
【课时安排】实验、授课一共两课时。
【教学手段】挂图、多媒体课件、实验
【教学过程】
1、引言
课前指导生物小组的同学用完全培养液和缺素培养液培养出一些植物体,以便课上展示给学生,引发他们对矿质元素对植物生活的作用的思考,以此引入本节内容。
也可以从分析植物体内化学物质的元素组成入手引入课题。
例如,植物体内的物质中,蛋白质通常含有N,S、叶绿素含有Mg,核酸含有P,但植物体通过光合作用可从二氧化碳获得C和O,通过根的吸水中获得H和O。
以此引导学生分析出植物体内含有的元素种类与植物吸收的元素种类之间的矛盾,从而很自然地引入植物还可从土壤吸收矿质元素这一事实。
也可以从根的渗透吸水直接引入,因为学生都知道土壤溶液中还溶解有各种矿质元素离子,这时可引发学生思考:溶于水的这些矿质元素离子是否是和水一起被吸收的?从而引入矿质元素离子的吸收。
2、矿质元素的概念
和根对水分的吸收情况一样,学生在初中已学过有关无机盐吸收有关的初步知识,因此,教师可提出一些问题,以了解学生对矿质代谢的理解程度,找出学生对矿质代谢理解上的偏差和不足,从而进行有针对性的教学。
比如,教师可提出以下问题:
①植物收矿质元素离子的主要器官是什么?
②植物矿质元素离子的主要部位是什么?
③矿质元素在植物体主要以什么存在?
④植物体运输水和矿质元素离子的通道是什么?知道这些通道在植物体的哪个部位吗?
⑤矿质元素离子在植物体内都可以参与哪些生理功能?
⑥植物体内矿质元素离子是如何散失的?等等。
在讨论了上述问题的基础上,引导学生分析矿质元素的概念、必需元素的概念、植物体内哪些元素是大量元素、哪些元素是微量元素。
可把学生讨论的重点放在“如何确定某种元素是植物必需的矿质元素的方法?”鼓励学生提出自己的观点和设计方案,以便渗透研究方法,对于激发学生学习兴趣,丰富学生研究问题的思路有重要作用。
3、根对矿质元素离子的吸收过程,是本节教学的重点,也是难点
(1)根细胞对矿质元素的交换吸附
这是根细胞吸收矿质元素离子的第一步
可先让学生做《根对矿质元素离子的离子交换吸附》实验,在实验过程中或实验结束后,教师通过下面的问题串引发学生对交换吸附的思考和理解:
①通过《观察根对矿质元素离子的交换吸附现象》的实验,如何理解设置对照实验的重要性。
《观察根对矿质元素离子的交换吸附现象》实验是一个简单的单因子对照实验。
在单因子对照实验中,有一个非常重要的要求,即,除了要研究的那个因素设置为可变外,其它所有条件都尽量保证一致。
在该实验中,可变的因子只一个,即染色后的根放入的溶液不同,一个是氯化钙溶液(为实验组),另一个蒸馏水(为对照组),除了这个因素不一样外,该实验要求其它因素都尽量要保证一样,如根发育的时期、剪取的根的条数,剪取的根的长度,染色的时间,两种溶液的体积,等待的时间等等,这个实验虽然很简单,但学生对它包含的对照思想一定要重视并理解。
②为什么亚甲基蓝可使根细胞染成蓝色?
③为什么实验后蒸馏水与其中的根都没有发生颜色上的变化?
④为什么实验后氯化钙溶液变成浅蓝色,而根的蓝色褪去了一些?
⑤为什么在实验中要选择生长旺盛的根来做实验?
⑥为什么要选择亚甲基蓝这种活体染色剂,如果换成别的能杀死细胞的染色剂的话,这个实验的结果是否不受影响?
学生在讨论这些问题时,教师可根据需要适当做一些知识和方法上的提示,最终使学生明白矿质元素离子交换的原理,然后可就上述实验做进一步讨论:
①在这个实验一共进行了几次矿质元素离子的交换吸附?
本实验过程中实际涉及两次交换吸附,第一次是在染色过程中,亚甲基蓝阳离子与根细胞表面的氢离子交换;第二次是根细胞表面的亚甲基蓝阳离子与氯化钙溶液的钙离子交换;
②本实验的对照组是哪一组?
本实验中用蒸馏水作对照的原因是蒸馏水中基本不含可供交换的离子。
③在这个实验中,与亚甲基蓝阳离子发生过交换的离子有哪些?等等。
(2)吸附在根细胞表面的离子通过主动运输进入细胞内
可让学生回忆主动运输所需要的条件,即需要ATP和膜上有相应的载体蛋白;进而讨论:① “为什么矿质元素离子具有选择性?”
或“为什么同种植物对同一溶液中的不同离子或同一盐分中的阴阳离子的吸收量不同?” 或“为什么不同种植物对同一种矿质离子的吸收量不同?”
植物对矿质元素有选择吸收的原因是什么呢?根吸收矿质元素离子是一个主动运输过程,而主动运输是需要蛋白载体的,因此,根细胞膜上如果有某种离子的载体,这个细胞就可
以吸收这种离子,而且该离子的载体越多,一定范围内,根细胞对这种离子的吸收也就越多。
理解了这点后,学生就可以解释下面的现象,即硝酸钠溶液水解后是中性的,为什么常施用这种氮肥后土壤会呈碱性?学生在化学课已学过,硝酸钠是强酸强碱盐,硝酸钠水溶液水解后呈中性,但为什么土壤长期使用这种氮肥后土壤会碱化,即pH升高呢?同学可从根细胞膜上的载体去分析:我们已学过,根细胞在进行离子交换吸附时,硝酸根阴离子与碳酸氢根离子相交换,钠离子与氢离子相交换。
氮元素是植物体生长所必须的,而钠元素在植物体含量甚微,可以想见,植物根细胞膜上运输含氮离子的载体数量要远远超过运输钠离子的载体数量,因此根细胞吸收的硝酸根离子多,而吸收的钠离子数量少,即硝酸根离子与碳酸氢根的交换量大,结果土壤中的碳酸氢根量就大于氢离子,从而使土壤碱化。
有了上面的基础,学生还可以分析下面两个例子:
(1)硝酸氨溶液水解后是酸性的,为什么常施用这种氮肥后土壤溶液pH不会发生很明显的变化?
(2)硫酸氨溶液水解后是酸性的,为什么常施用这种氮肥后土壤会呈酸性?
②“当外界溶液中某种矿质元素离子的浓度足够大时,为什么矿质元素离子吸收速率达到一定程度后就不再升高了?”
③“为什么矿质元素的吸收与植物细胞的呼吸作用有密切的联系。
?”
(3)根对矿质元素离子和水分的吸收是两个相对独立的过程,是教学的难点
学生讨论下面的问题:
①引导学生对课文中讲述的有关用菜豆做的实验等实例进行分析和讨论。
②增加不同植物在同一营养液中吸收矿质元素离子数量的差异的讨论。
③增加农业生产实践上中耕松上、除草、保墒外、通气起什么作用的讨论。
④离子的吸收为什么有载体饱和效应,例如根细胞中K+或其他矿质元素离子的浓度已高于土壤溶液中的浓度、但是,植物的很仍然吸收这些必需的矿质元素离子。
可以引导学生对这一现象进行讨论,使学生明白植物的吸水量与离子吸收量不呈正相关。
⑤呼吸抑制剂为什么能抑制离子吸收,却不抑制水的吸收
⑥植物对离子的吸收速率远比吸水慢
3、矿质元素的运输和利用
(1)矿质元素的运输
引导学生讨论:
①矿质元素进入根毛以后如何最终进入导管和矿质元素如何被利用?
②为什么说根对矿质元素离子和水分的吸收是两个相对独立的过程?
或有的同学认为蒸腾作用是吸收矿质元素的动力,同时也是运输矿质元素的动力?学生认为这个说法对吗?
通过分析蒸腾作用的过程,引导学生得到下面的结论:
蒸腾作用是植物体的根吸收水分和运输水分的动力。
通过分析矿质元素吸收过程,学生应该已经知道,植物的根细胞吸收矿质元素与两方面条件有关,
其一,根细胞对矿质元素的吸收与其呼吸作用密切相关,尤其是有氧呼吸,因为呼吸作用为根细胞进行离子交换吸附提供了可供交换的离子,即碳酸氢根离子和氢离子;同时根细胞呼吸作用过程中合成的ATP又为吸附在根细胞表面的矿质离子进入根细胞的主动运输过程提供了能量。
所以说,水分的吸收其动力是蒸腾作用,而矿质元素吸收的动力则不是蒸腾作用。
其二,由于根吸收矿质元素离子是一个主动运输过程,而主动运输是需要蛋白载体和能量的,因此,根细胞膜上运输矿质元素的载体及其数量就起着重要的作用,这点一会儿还会谈到。
通过分析矿质元素运输过程,让学生知道,矿质元素是与水一起由植物体的导管运输的,其动力为植物的蒸腾作用。
因此说,水分和矿质元素运输的动力都是植物的蒸腾作用。
因此说,植物吸收水分和吸收矿质元素是两个相对独立的过程,虽然二者是一起被运输出,而二者的吸收方式独立。
综上可知,认为蒸腾作用是吸收矿质元素的动力,同时也是运输矿质元素的动力,这种说法是不正确的,因为认为蒸腾作用是运输矿质元素的动力,而与矿质元素的吸收无关,即植物运输水分和运输矿质元素是一个同一过程;而植物吸收水和植物吸收矿质元素离子不是同一过程,因此蒸腾作用能促进水的吸收和运输,也能促进矿质元素的运输的道理,但不能促进矿质元素离子的吸收。
如果有时间的话的,教师可引导学用表解的形式总结根细胞吸水与根细胞吸收矿质元素离子的异同。