数字图像处理论文

合集下载

图像处理本科毕业论文.doc

图像处理本科毕业论文.doc

摘要本文以VC++6.0做为编程语言,对图像降噪技术进行研究。

本文通过介绍位图的基本操作以及在图像中加入椒盐噪声的操作,从而进一步引出几种降噪方法。

本文分别介绍“均值滤波”、“中值滤波”以及“傅里叶降噪”和“小波降噪”四种算法,实现图像降噪。

详细介绍了其基本原理、实现方法以及具体算法,并对降噪效果加以比较与分析。

“均值滤波”把每个像素都用周围的8个像素来做均值操作,可以平滑图像,速度快,算法简单。

“中值滤波”是常用的非线性滤波方法,也是图像处理技术中最常用的预处理技术。

同时在“低通滤波”及“小波降噪”中分别引入“快速傅里叶变换”和“Mallat 算法”,使得其取得更快速的计算,有效地解决了其计算量太大,运算时间过长的弊端,从而达到更好的综合降噪效果。

关键词:图像降噪;滤波;傅里叶降噪;小波降噪AbstractTaking VC++6.0 as the programming language, this paper is a study about image noise reduction technology. Furthermore, introducing several noise reducing measures through the introduction of the basic processing and the operation to put the salt and pepper noise into the image.The paper introduces Averaging Filter, Median Filter,Fourier Lowpass Filtering and Wavelet Filter to achieve image noise reducing. Here we introduce the basic principles, implement methods, detailed arithmetic, and make comparison and analysis the noise reducing effects.Averaging Filter operates every pixel by using 8 pixels meanly. It can make the images smoothing, fast and easy to calculate. Median Filter Fourier is a common nonlinear filtering way and also common preprocessing technique when processing images. Introducing FFT and Mallat Algorithm separately into Lowpass Filtering and Wavelet Filter, and then we can make faster calculating and solve the massive calculating more efficiently. Therefore, we can have a more effective noise reducing.Keywords:Image Noise Reduction;Filter;Fourier Filter;Wavelet filter毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

数字图像处理系统毕业论文

数字图像处理系统毕业论文

数字图像处理系统毕业论文基于ARM的嵌入式数字图像处理系统设计摘要简述了数字图像处理的应用以及一些基本原理。

使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。

该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。

应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。

整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。

在此基础上还会对系统进行不断地完善。

关键词:linnux 嵌入式图像处理边缘检测AbstractThis paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve.Keywords:linux embedded system image processing edge detection目录第一章绪论 (1)1.1 数字图像处理概述 (1)1.2 数字图像处理现状分析 (5)1.3 本文章节简介 (8)第二章图像处理理论 (8)2.1 图像信息的基本知识 (8)2.1.1 视觉研究与图像处理的关系 (8)2.1.2 图像数字化 (10)2.1.3 图像的噪声分析 (10)2.1.4 图像质量评价 (11)2.1.5 彩色图像基本知识 (11)2.2 图像变换 (12)2.2.1 离散傅里叶变换 (13)2.2.2 离散沃尔什-哈达玛变换(DWT-DHT) (20)2.2.3 离散余弦变换(DCT) (21)2.2.4 离散图像变换的一般表达式 (23)2.3 图像压缩编码 (24)2.3.1 图像编码的基本概念 (24)2.4 图像增强和复原 (24)2.4.1 灰度变换 (24)2.4.2 图像的同态增晰 (26)2.4.3 图像的锐化 (27)2.5 图像分割 (27)2.5.1 简单边缘检测算子 (27)2.6 图像描述和图像识别 (28)第三章需求分析 (28)3.1 系统需求分析 (28)3.2 可行性分析 (28)3.3 系统功能分析 (29)第四章概要设计 (29)4.1 图像采集 (30)4.2 图像存储 (30)4.3 图像处理(image processing) (31)4.4 图像显示 (31)4.5 网络通讯 (32)第五章详细设计 (32)5.1 Linux嵌入式系统的构建 (32)5.1.1 启动引导程序的移植 (32)5.1.2 Linux内核移植 (33)5.1.3 根文件系统的移植 (33)5.2 图像处理功能的实现 (33)5.2.1 彩色图像的灰度化 (34)5.2.2 灰度图的直方图均衡化增强 (34)5.2.3 图像二值化 (35)5.2.4 边缘检测 (35)第六章调试与维护 (36)附录 A (36)参考文献 (43)致谢 (44)第一章绪论1.1 数字图像处理概述数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

数字图像处理相关论文

数字图像处理相关论文

数字图像处理相关论文“数字图像处理”是一门利用计算机解决图像处理的学科。

并且,现代多媒体计算机中又广泛采用了数字图像处理技术。

下面是店铺给大家推荐的数字图像处理相关论文,希望大家喜欢!数字图像处理相关论文篇一浅谈“数字图像处理”课程教学改革实践摘要:数字图像处理技术是一种发展迅速且应用广泛的新兴技术,就“数字图像处理”课程的特点,从教学内容、教学手段和方法、教学理论和实践等方面进行改革与实践,增强了学生的实践创新能力,提高了教学质量,收到良好的教学效果。

关键词:数字图像处理;教学手段;实践作者简介:刘忠艳(1975-),女,黑龙江依安人,黑龙江科技学院计算机与信息工程学院,副教授;周波(1963-),男,黑龙江绥化人,黑龙江科技学院计算机与信息工程学院,教授。

(黑龙江哈尔滨 150027)一、“数字图像处理”概述数字图像处理技术是集微电子学、光学、应用数学和计算机科学等学科的一门综合性边缘技术。

[1,2]是当今信息社会中发展迅速且应用广泛的新兴科学技术。

数字图像处理技术广泛应用到通信、计算机、交通运输、军事、医学和经济等各个领域,在各个领域发挥着越来越重要的作用。

随着计算机技术的迅速发展,图像处理的技术和理论不断完善和丰富,新的理论、技术也不断涌现,并逐渐进行应用。

面对这样一门理论与实际紧密结合的课程,在学习过程中,学生常常会遇到很多问题,既为数字图像处理技术应用的广泛前景所吸引,也时常对课程的抽象理论感到苦恼,渐渐失去学习兴趣。

为了激发学生的学习兴趣,提高教学质量,对该课程进行教学改革,势在必行。

经过两年半的教学改革与实践,取得了一定的教学效果。

二、教学改革措施为了提高“数字图像处理”课程的教学质量,激发学生学习本课程的兴趣,对本门课程进行改革,采取以下措施:1.整合教学内容随着计算机技术的迅速发展,数字图像处理技术也得到快速发展。

近几年来,有很多新的应用点和研究涌现出来,在“数字图像处理”课程中加入新技术的介绍,对于学生了解国际的研究和应用热点,尽快地投入相应的研究与应用中去大有益处。

数字图象处理的主要研究方向与应用论文

数字图象处理的主要研究方向与应用论文

数字图象处理的主要研究方向与应用论文0 引言计算机数字图像处理技术覆盖范围广,学科交叉性强,涵盖了计算机科学与技术、数学科学、光物理学等多个领域,在环境、生物医学、农牧业、国防军事、多媒体等方面都有着十分广泛的应用。

在计算机技术发展的推动下,以及离散数学等理论的完善中,计算机数字图像处理技术得到了进一步的发展。

1 数字图像处理技术的发展概况图像处理技术最早应用于提高图像质量,将低质量的图像经过改善处理,输出高质量的图像。

上世纪 20 年代,第一次应用于从英国到美国海底电缆传输图片的质量提高。

数字图像处理成为一门学科是在上世纪 60 年代。

1962 年,计算机图形这一术语被首次提出,将计算机图形学作为一门独立学科开始了研究。

计算机图形涉及到数字化转换、几何平移变形、实物模型构建、色彩调度、色彩转换以及曲线运用等多个方面,所以计算机图形学是一门具备研究性的领域。

在计算机科学中,计算机数字图像处理是一个相对年轻的学科,涉及范围极其广泛,比如图形交互技术、图形硬件、科学计算可视化、虚拟现实等等。

2 数字图象处理的主要研究方向(1)图像变换。

图像变换包括图像的拉伸、收缩、旋转、扭曲等。

图像的变换一般不直接在空间域中进行,而是进行变换域处理,即对空间域处理的变换。

包括傅里叶变换、沃尔什- 阿达玛变换等,这种处理方式降低了计算工作量,而且处理更加有效。

(2)图像编码。

图像编码是利用编码技术对图像进行压缩的一种方法,通过压缩算法,在尽可能保证图像不失真的情况下减少图像的比特数,降低图像的存储占用空间,方便图像的传输、处理等。

在图像压缩技术中,最重要的就是编码算法,常见的编码算法包括预测编码、变换域编码等。

(3)图像增强及复原技术。

图像增强及复原技术是数字图像处理技术的最原始目的。

通过图像增强及复原,可以提高图像的清晰度,增强图像的质量。

比如对图像的高频分量进行强化,突出物体的轮廓细节,或者对图像的低频分量进行强化,降低图像噪声等。

数字图像处理论文

数字图像处理论文

数字图像处理论文数字图像处理在计算机视觉和图像分析领域中扮演着重要角色。

随着数字图像处理算法的不断发展和改进,对于图像的处理和分析有了更深入的理解。

本篇论文主要介绍了数字图像处理的一些基础概念、方法和应用。

首先,数字图像处理是基于计算机的图像处理技术,旨在改善图像的质量、增强图像的特征以及从图像中提取有用的信息。

数字图像处理的基本步骤包括图像获取、预处理、特征提取和图像重建等。

在图像获取的阶段,通过传感器或数码相机等设备获取图像的原始数据。

在预处理的阶段,对图像进行去噪、平滑和增加对比度等操作,以消除图像中的噪声和提高图像的视觉效果。

在特征提取的阶段,根据图像的特定特征,如边缘、纹理和颜色等,进行特征的提取和描述。

在图像重建的阶段,利用图像处理算法对图像进行重建和恢复。

常见的图像处理算法包括滤波、变换和编码等。

滤波算法主要用于图像平滑和去噪,如均值滤波、中值滤波和高斯滤波等。

变换算法主要用于提取图像的频域特征,如傅里叶变换和小波变换等。

编码算法主要用于图像的压缩和存储,如JPEG、PNG和GIF等。

除了基本的图像处理方法,数字图像处理还有许多应用领域。

其中之一是医学图像处理,包括医学图像的分割、配准和识别等。

另一个应用是遥感图像处理,用于地理信息系统和环境监测等领域。

此外,数字图像处理还在安全和认证、图像检索和图像合成等领域发挥重要作用。

总之,数字图像处理是一门研究如何使用计算机技术对图像进行处理和分析的学科。

通过了解数字图像处理的基本概念、方法和应用,可以更好地理解图像的特性和结构,提高图像处理的效果和精度,并在各个领域中发挥重要作用。

数字图像处理技术的探究论文_数字图像处理课程论文

数字图像处理技术的探究论文_数字图像处理课程论文

数字图像处理技术的探究论文_数字图像处理课程论文数字图像处理技术的探究论文篇一《数字图像处理技术的探究》【摘要】目前,图像处理技术得到较好的发展,本文以数字图像处理技术为研究对象,对其发展与应用现状进行简述,并对此技术的优缺点以及制约因素进行系统的分析,概述了此项技术在日后发展中的应用范围。

通过对数字图像处理技术的分析,让我们更深入的了解此项技术,为日后的研究提供一定的理论基础。

【关键词】数字图像处理技术发展就图像处理技术而言,可分为模拟图像与数字图像处理两大类。

数字图像处理技术在发展的过程中,涉及多门学科,其中包括生物学、计算机、信息科学等。

因此,数理与边缘学科与图像处理技术的关系越来越密切。

在最近几年中,数字图像处理技术逐步趋于完善,在遥感、人工智能等多个领域中被广泛使用,并促进相关学科得到较好的发展。

1数字图像处理技术的发展与应用在上世纪六十年代,随着VLS与计算机的发展产生了数字图像处理技术,并不断完善、成熟的一项新技术。

不管是在理论还是实际方面,都取得了较好的进步。

在早期,图像处理主要是为了使图片的质量更加完善。

输入图像的质量较低,而输出图片的质量较高,通常采用复原、压缩等方式进行处理。

此项技术首次应用成功是在美国的喷气推进实验室中。

此后,在航空领域中得到很好的应用,促进了此门学科的发展。

除此之外,数字图像处理技术在医学上也得到了很好的应用。

自上世纪七十年代中期之后,计算机与智能化得到很好的发展,也促进了图像处理技术的进步。

人们开始研究怎样通过计算机,对图像进行系统的解释,这被称作计算机视觉或图像理解。

上世纪几十年代,数字图像处理技术得到大力发展。

截止目前,此项技术在医疗设备、地理信息系统等多个领域中被广泛使用。

2数字图像处理技术的特点2.1优点(1)再现性较好。

数字图像处理技术不会因为各种变换操作而造成图片出现质量退化的现象,始终确保图像可以真实的再现。

(2)处理精度高。

根据当前技术,基本上能够把一副模拟的图像通过数字化做各种二维数组,与图像数字化设备能力有直接的关系。

数字图像处理结课论文

数字图像处理结课论文

数字图像处理结课作业--数字图像频域增强方法及在matlab中的实现学生姓名:学号:学院:理学院班级:电科班指导教师:摘要:图像增强的目的是使处理后的图像更适合于具体的应用,即指按一定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息,使之改善图像质量,加强图像判读和识别效果的处理技术。

从总体上可以分为两大类:空域增强和频域增强。

频域处理时将原定义空间中的图像以某种形式转换到其他空间中,利用该空间的特有性质方便的进行图像处理。

而空域增强是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。

空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。

本文主要从空域展开图像增强技术,重点阐明数字图像增强处理的基本方法,介绍几种空域图像增强方法。

关键词:图像增强 MATLAB 空域增强锐化空间滤波平滑空间滤波目录:1、何为数字图像处理及MATLAB的历史2、空间域图像增强技术研究的目的和意义3、空间域的增强3.1 背景知识3.2 空间域滤波和频域滤波之间的对应关系3.3 锐化滤波3.4 平滑滤波4、结论1、何为数字图像处理及MATLAB的历史数字图像处理(digital image processing),就是利用数字计算机或者其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。

例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等。

总的来说,数字图像处理包括运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。

目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。

MATLAB是由美国Math Works公司推出的软件产品。

MATLAB是“Matric Laboratory”的缩写,意及“矩阵实验室”。

2024年数字图像处理论文doc

2024年数字图像处理论文doc

2024年数字图像处理论文doc标题:2024年数字图像处理论文doc一、引言随着技术的不断发展,数字图像处理在各个领域中的应用越来越广泛。

本文旨在探讨2024年数字图像处理领域的发展趋势,以及相关算法和技术的应用。

通过对数字图像处理的研究,希望能够为相关领域的发展提供一定的参考和帮助。

二、数字图像处理的基本原理数字图像处理是一种利用计算机对图像进行加工、处理和分析的技术。

数字图像处理的基本原理是将图像转换为数字信号,然后利用计算机对数字信号进行处理和分析。

数字图像处理技术包括图像增强、图像变换、图像滤波、图像恢复、图像分析等。

三、数字图像处理的应用范围数字图像处理技术的应用范围非常广泛,包括医学影像、安防监控、智能交通、工业生产、环境监测等领域。

随着技术的不断发展,数字图像处理的应用范围将会更加广泛。

四、数字图像处理的热点问题和研究方向目前,数字图像处理的热点问题和研究方向包括深度学习、人工智能、虚拟现实等。

其中,深度学习在数字图像处理中的应用已经得到了广泛的认可,其在图像识别、目标检测、人脸识别等方面的应用已经取得了显著的成果。

此外,人工智能在数字图像处理中的应用也在不断发展,包括机器学习、神经网络等。

虚拟现实技术在数字图像处理中的应用也在逐渐增加,其在虚拟现实游戏、电影制作等方面的应用已经得到了广泛的应用。

五、数字图像处理的发展趋势和未来前景随着技术的不断发展,数字图像处理的应用范围将会更加广泛。

未来,数字图像处理技术将会更加智能化、自动化和人性化,其在各个领域中的应用将会更加深入。

同时,数字图像处理技术也将会面临更多的挑战和机遇,包括如何提高图像处理的精度和速度、如何解决图像处理中的隐私和安全问题等。

六、总结本文对2024年数字图像处理领域的发展趋势进行了探讨,并介绍了相关算法和技术的应用。

数字图像处理技术已经成为各个领域中不可或缺的一部分,其未来的发展前景非常广阔。

希望本文能够对相关领域的发展提供一定的参考和帮助。

数字图像处理技术论文

数字图像处理技术论文

数字图像处理技术论文数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。

下面是店铺整理的数字图像处理技术论文,希望你能从中得到感悟!数字图像处理技术论文篇一数字图像处理技术研究[摘要]数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。

图像处理科学与技术已经成了工程学、计算机科学、通信科学、信息科学、军事、公安、医学等众多学科学习和研究的对象。

本文从数字图像处理的基本概念,研究内容为出发点,重点探讨了数字图像复原技术,最后介绍了数字图像处理系统,但由于数字图像处理技术领域内容极其广泛,与其他很多学科都有着千丝万缕的联系,所以对这项技术的研究还需要人类的进一步努力。

[关键词]数字图像处理技术数字图像处理主要研究中图分类号:IP391.41 文献标识码:A 文章编号:1009-914X(2015)05-0280-011 引言“图”是物体透射光或反射光的分布,“像”是人的视觉系统对图的接收在大脑中形成的印象或认识。

前者是客观存在的,而后者为人的感觉,图像应是两者的结合。

图像处理就是对图像信息进行加工处理,以满足人的视觉心理和实际应用的要求。

人类获取外界信息有视觉、听觉、触觉、嗅觉、味觉等多种方法,但绝大部分(约80%)是来自视觉所接受的图像信息,即所谓“百闻不如一见”。

因此,图像处理技术的广泛研究和应用是必然的趋势。

2 图像数字化2.1 基本概念一幅黑白静止平面图像(如照片)中各点的灰度值可用其位置坐标(x,y)的函数f(x,y)来描述。

显然f(x,y)是二维连续函数,有无穷多个取值。

这种用连续函数表示的图像无法用计算机进行处理,也无法在各种数字系统中传输或存贮,必须将代表图像的连续(模拟)信号转变为离散(数字)信号。

这样的变换过程,称其为图像数字化。

图像数字化的内容包括两个方面:取样和量化。

2.2 取样点数和量化级数的选取假定一幅图像取M×N个样点,对样点值进行Q级分档取整。

图像处理毕业论文

图像处理毕业论文

图像处理毕业论文图像处理毕业论文图像处理是计算机科学与技术领域中的一个重要研究方向,随着数字图像的广泛应用,图像处理技术的发展也愈发迅猛。

作为一名即将毕业的学生,我选择了图像处理作为我的毕业论文课题,旨在探索图像处理技术在实际应用中的潜力和挑战。

首先,我将介绍图像处理的基本概念和原理。

图像处理是指对数字图像进行各种算法和方法的处理,以获得更好的图像质量或实现特定的目标。

其中,图像增强、图像分割、图像压缩等是图像处理的基本任务。

图像增强通过改善图像的亮度、对比度和清晰度等方面,使图像更加清晰可见。

图像分割则是将图像划分为不同的区域或物体,以便进一步分析和处理。

而图像压缩则是通过减少图像的数据量,以实现存储和传输的效率提升。

接下来,我将探讨图像处理技术在实际应用中的一些典型案例。

首先是医学影像的图像处理应用。

医学影像是一种重要的诊断工具,通过对医学影像进行图像处理,可以提取出更多的有用信息,辅助医生进行疾病诊断和治疗。

例如,通过图像分割技术可以将医学影像中的肿瘤区域分割出来,帮助医生进行肿瘤的定位和评估。

此外,图像处理技术还可以应用于安防领域,通过对监控摄像头拍摄的图像进行实时分析和处理,实现人脸识别、行为检测等功能,提高安防系统的效率和准确性。

在研究中,我将重点关注图像增强和图像分割这两个方面。

在图像增强方面,我将探索不同的算法和方法,如直方图均衡化、自适应增强等,以提高图像的可视性和质量。

在图像分割方面,我将研究基于区域的分割方法和基于边缘的分割方法,比较它们的优缺点,并根据实际应用需求选择合适的方法。

此外,我还将尝试将深度学习技术应用于图像处理中。

深度学习是近年来兴起的一种机器学习方法,通过构建多层神经网络模型,可以实现对大规模数据的高效处理和分析。

在图像处理中,深度学习可以应用于图像分类、目标检测等任务,通过训练模型,使其具备自动学习和识别图像特征的能力。

我将尝试使用深度学习技术对图像进行分类和识别,以提高图像处理的准确性和效率。

计算机图像处理论文范文

计算机图像处理论文范文

计算机图像处理论文范文计算机图像处理技术在社会生产生活的许多方面都得到了较为广泛的应用,下面是小编为大家整理的计算机图像处理论文,希望对大家有帮助。

浅析计算机图像处理技术作者:未知摘要随着市场经济的不断发展,计算机图像处理技术在社会生产生活的许多方面都得到了较为广泛的应用。

计算机图像处理技术,主要是指计算机对图像信息以及数据信息的进行处理的技术。

本文将对计算机图像处理技术的概念进行分析,了解其在社会生产生活各方面的应用,并对其发展趋势进行研究和探讨。

【关键词】计算机技术图像处理应用技术分析研究计算机图像处理技术在社会生产生活的许多领域都有着较为广泛的应用,提高着相关活动的效率,便利着社会的生产生活。

在工业、农业、建筑业以及广告传媒等行业,计算机图像处理技术都发挥着重要的作用,具有广阔的发展前景,推动着生产效率与人们生活水平的提升。

1 计算机图像处理技术的概念与内容计算机图像处理技术,主要是能够通过计算机的图像处理能力及数据运算处理能力,对需要处理的图像信息进行数据处理,使其能够通过图像成像等方式达到使用目的。

计算机图像处理技术在早期主要应用于航天事业中,通过成像数据处理技术服务航天使用需求。

计算机图像处理技术能够将图像信息数字化,对图像进行加强、修复、分析和编码等。

计算机图像处理技术也能够通过实现对图像信息的几何转换、建立工程的设计图样、以及图像的色彩变化达到使用目的。

在现今的社会活动中,计算机图像处理技术应用于计算机技术教育、计算机动画设计、计算机广告传媒等领域,在工农业生产中也得到了较为广泛的应用,促进着相关行业的进步与发展。

2 计算机图像处理技术在实际中的应用分析2.1 计算机图像处理技术在农业生产加工中的应用计算机图像处理技术在农业农产品的加工收获方面,有着极为广泛的应用。

通过计算机图像处理技术的应用,能够经过图像技术处理,实现对农业农产品的自动采摘与加工,使农业生产活动趋于高效,避免人力的过度投入,使人力使用成本得到控制。

数字图像处理中的数学方法探讨

数字图像处理中的数学方法探讨

数字图像处理中的数学方法探讨在当今的科技时代,数字图像处理已经成为了一个至关重要的领域,广泛应用于医学、航天、安防、娱乐等众多行业。

而在数字图像处理的背后,数学方法扮演着不可或缺的角色,为实现各种复杂的图像处理任务提供了坚实的理论基础和有效的工具。

要理解数字图像处理中的数学方法,首先得明白图像在计算机中的表示方式。

图像本质上是由一个个像素组成的矩阵,每个像素都有其特定的颜色和亮度值。

而这些数值正是数学处理的对象。

线性代数在数字图像处理中应用广泛。

比如,图像的变换,像是旋转、缩放和平移,都可以通过矩阵运算来实现。

以图像旋转为例,我们可以通过构建一个合适的旋转矩阵,然后将图像像素的坐标与这个矩阵相乘,就能得到旋转后的像素位置,从而实现图像的旋转效果。

概率论与统计学也发挥着重要作用。

在图像去噪方面,我们常常会遇到噪声干扰图像质量的问题。

通过对噪声的概率分布进行分析,我们可以采用诸如均值滤波、中值滤波等方法来降低噪声的影响。

均值滤波就是计算像素邻域内的平均值来替代当前像素值,假设某个像素及其邻域像素值分别为 10、20、15、18、22,那么经过均值滤波后,该像素的值就变为(10 + 20 + 15 + 18 + 22) / 5 = 17。

中值滤波则是取邻域像素值的中值作为当前像素的值,比如上述例子中,中值就是 18,经过中值滤波后,该像素值就变为 18。

微积分在图像边缘检测中有着关键的应用。

边缘是图像中灰度值发生急剧变化的区域,通过对图像的灰度函数进行求导,可以检测到这些边缘。

例如,常用的 Sobel 算子和 Canny 算子就是基于微积分的原理来实现边缘检测的。

Sobel 算子通过计算水平和垂直方向的梯度来确定边缘的强度和方向。

傅里叶变换在数字图像处理中也是一种强大的工具。

它可以将图像从空间域转换到频率域,使我们能够更方便地分析图像的频率特征。

比如,在图像压缩中,通过对高频和低频成分的分析,可以去除一些不太重要的高频信息,从而实现图像的压缩存储。

数字图像处理毕业论文

数字图像处理毕业论文

目录摘要ﻩ错误!未定义书签。

Abstractﻩ错误!未定义书签。

第1章绪论ﻩ错误!未定义书签。

1.1自动识别课题背景ﻩ错误!未定义书签。

1.2机器视觉ﻩ错误!未定义书签。

1.2.1 机器视觉的发展概况 ...................... 错误!未定义书签。

1.2.2 机器视觉与图像处理 ...................... 错误!未定义书签。

1.3 图像处理与识别技术 ·························错误!未定义书签。

1.4 图像处理与识别系统ﻩ错误!未定义书签。

1.4.1关于计算机图像处理系统 ............ 错误!未定义书签。

1.4.2图像处理与识别系统的构成ﻩ错误!未定义书签。

1.5斑马线自动识别系统课题研究内容······错误!未定义书签。

第2章图像处理与识别及图像理解 ............ 错误!未定义书签。

2.1二值图像分析ﻩ错误!未定义书签。

2.1.1 阈值运算ﻩ错误!未定义书签。

2.2 图像区域分析ﻩ错误!未定义书签。

2.2.1区域与边缘ﻩ错误!未定义书签。

2.3 图像处理与识别及图像理解所研究的内容··错误!未定义书签。

2.3.1 图像处理技术 ..................................... 错误!未定义书签。

2.3.2 图像识别技术 ....................................... 错误!未定义书签。

2.3.3 图像理解ﻩ错误!未定义书签。

2.4 图像处理与识别及图像理解的关系ﻩ错误!未定义书签。

photoshop图像处理技术论文

photoshop图像处理技术论文

photoshop图像处理技术论文有些网友觉得photoshop图像处理技术的论文难写,可能是因为没有思路。

所以小编为大家带来了photoshop图像处理技术论文的相关的例文,希望能帮到大家!photoshop图像处理技术论文篇一摘要:图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。

本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。

关键字:图像处理发展技术应用1.概述1.1图像的概念图像包含了它所表达的物体的描述信息。

我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。

视像等。

1.2图像处理技术图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。

图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。

1.3优点分析1.再现性好。

数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。

2.处理精度高。

按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。

现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。

3.适用面宽。

图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。

从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。

即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。

数字图像处理相关论文(2)

数字图像处理相关论文(2)

数字图像处理相关论文(2)数字图像处理相关论文篇二《现代数字信号处理课程的教学改革与实践》摘要:针对现代数字信号处理的课程特点,开展课程的教学改革与实践,建立基于MATLAB实现的教学示例,并应用于课堂与实践教学,有助于提高教学质量,培养学生的研究能力和创新能力,且促进课程由传统课堂教学向研究型教学转化。

关键词:现代数字信号处理;教学;MATLAB;教学示例中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)06-0093-02随着计算机和微处理器技术的迅速发展,学科间的交叉与融合,数字信号处理技术得到了飞速发展,出现了以现代滤波器技术、现代谱分析理论、智能信息处理方法等为标志的现代数字信号处理理论及技术,并广泛应用于现代通信、新型雷达、精确遥测、医疗等众多领域。

目前,现代数字信号处理课程主要面向研究生层次学生开设。

由于该课程的理论性和实践性都很强,且其基本原理和方法已广泛应用于各领域,因此教师教好和学生学好该课程都很重要。

一、课程特点及传统教学中存在的困难现代数字信号处理课程具有数学理论推导较多、内容广泛、概念抽象等特点。

由于工科研究生的数学理论水平普遍不高,同时课程的学时有限,若教学方法不当,学生一方面在学习过程中常感到枯燥乏味,难以理解和掌握;另一方面易造成学生畏惧学习的心理,失去学习兴趣。

现代数字信号处理同时是一门以算法为核心,实践性很强的课程,其算法的应用实现主要基于计算机的数值计算。

如果教师采用传统的教学方式,主要讲授基础理论和算法的推导,学生则主要利用大量的公式、算法及推导进行学习和解题,而忽视让学生采用计算机动手设计、调试和分析课程中大量的、应用性较强的内容,会使得学生感觉该课程是一门数学理论课,不利于他们深层次理解数学概念中所蕴含的物理和工程意义,从而造成课后实践受到很大限制,不利于学生以后从事有关信号处理领域的研究工作。

因此,如何提高学生学习的兴趣和主动性,增强他们对知识的理解和掌握,培养学生综合应用所学知识解决实际问题的实践能力是本课程教学所要解决的关键问题。

数字图像处理论文--彩色图像灰度化

数字图像处理论文--彩色图像灰度化

数字图像处理论文--彩色图像灰度化彩色图像灰度化摘要图像灰度化是指只含亮度信息, 不含色彩信息的图像,广泛应用于图像模式识别、图像分割、图像增强等数字图像处理的各个领域。

本次设计通过加权平均法、平均值法和最大值法这三种方法方法,实现了彩色图像的灰度化处理(目的、结果),并对它们进行了对比分析,在加深对数字图像处理课本知识理解的基础上,学会运用已学的知识设计彩色图像灰度化的处理方法并对结果进行分析(意义)。

关键词:加权平均法;平均值法;最大值法;彩色图像;灰度化正文1.引言:数字图像处理就是采用一定的算法对数字图像进行处理,以获得人眼视觉或者某种接受系统所需要的图像处理过程。

图像处理的基础是数字,主要任务是进行各种算法设计和算法实现。

目前,图像处理技术已经在许多不同的应用领域中得到重视,并取得了巨大成就。

根据应用领域要求的不同,数字图像处理技术可以分为许多分支技术。

重要的分支技术有:图像变换。

图像阵列很大时,若直接在空域中处理,计算量将很大。

为此,通常采用各种图像变换方法,如傅立叶变换、沃尔什变换、离散余弦变换、小波变换等间接处理技术,将空域处理转换到变换域处理,这样可以有效地减少计算量,提高处理性能。

图像增强与复原。

主要目的是增强图像中的有用信心,削弱干扰和噪声,使图像更加清晰,或者将其转换为更适合人或机器分析的形式。

图像增强并不是要求真实地反映原始图像,而图像复原则要求尽量消除或减少获取图像过程中所产生的某些退化,使图像能够反映原始图像的真实面貌。

图像压缩编码。

在满足一定保真度条件下,对图像信息进行编码,可以压缩图像信息量,简化图像的边式,从而大大压缩图像描述的数据量,以便存储和传输;图像压缩在不同应用背景下可以采用不失真压缩和失真压缩。

图像分割。

图像分割是数字图像处理中的关键技术之一,是为了将图像中有意义的特征提取出来。

它是进一步进行图像识别、分析和理解的基础。

图像的有意义特征包括图像的边缘、区域等。

基于matlab数字图像增强处理论文1

基于matlab数字图像增强处理论文1

摘要数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。

数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。

数字图像处理技术已经在各个领域上都有了比较广泛的应用。

图像处理的信息量很大,对处理速度的要求也比较高。

MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。

本文介绍了MATLAB 语言的特点,基于MATLAB的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法。

主要论述了利用MATLAB实现图像增强、二值图像分析等图像处理。

关键词:MATLAB,数字图像处理,图像增强,二值图像AbstractDigital image processing is an emerging technology, with the development of computer hardware, real-time digital image processing has become possible due to digital image processing algorithms to appear, making it faster and faster processing speed, better for People services .Digital image processing is used by some algorithms computer graphics image processing technology. Digital image processing technology has been in various areas have a relatively wide range of applications. Image processing large amount of information on the processing speed requirement is relatively high. MATLAB powerful computing and graphics display capabilities, so that image processing becomes more simple and intuitive. This paper introduces characteristics of MATLAB language and this MATLAB-based digital image processing environment, describes how to use the MATLAB Image Processing Toolbox for its digital image processing, and through some examples to illustrate the use of MATLAB Image Processing Toolbox for image processing method. Mainly discusses the use of MATLAB for image enhancement,2-numeric image and other image processing technologies.Key words:MATLAB, digital image processing, image enhancement,2-numeric image目录摘要 (I)1绪论 ................................. 错误!未定义书签。

数字图像处理技术的方法及发展方向论文

数字图像处理技术的方法及发展方向论文

数字图像处理技术的方法及发展方向论文数字图像处理技术的方法及发展方向论文数字图像处处理(Digital Image Processing)是将图像信号转换成数字信号并利用计算机对其进行处理。

早期的数字图像处理的目的是提高图像的视觉效果。

目前已广泛应用于科学研究、工农业生产、医学工程、航空航天、军事、文化产业等众多领域。

1 数字图像处理技术概要1.1数字图像处理技术的概念在图像处理技术中,低级处理涉及初级技术,如噪声降低、对比度处理和锐化处理。

中级处理涉及分割、缩减对目标像素群的定义,以便于对不同像素或像素群的识别及计算机计算处理。

高级处理是算法对图像分析中被识别像素群的总体分析结果,以及运算与视觉效果相关的分析函数等处理技术。

在应用数学理论时,将图像定义为二维函数 f(x,y),x 和 y 为空间坐标 , 在任意一组空间坐标 f(x,y)的幅值 f 称为图像在该坐标位置的强度或灰度 .当 x,y 和幅值 f 是离散的、有限的数值时,称该坐标位置是由有限的元素组成的,每一个像素都有一个特定的位置和幅值。

1.2数字图像处理技术的发展数字图像处理技术最早出现于 20 世纪中期,图像处理的目的是提高图像的呈现质量。

图像处理的是视效较低的图像,要求输出尽可能提高效果后的图像。

主要采用噪声减弱、灰度变换、几何校正等方法进行处理,并考虑了明暗效果和对比度等诸多因素,由计算机进行更为复杂的图像处理。

20 世纪初期,图像处理技术首次应用于提升通讯传输后的图像质量提升。

到20 世纪中期,计算机发展到了一定的技术水平后,数字图像处理才广泛应用于各种高质图像需求的领域。

计算机对飞行器发回的天体照片进行图像处理,收到明显的效果。

进而不断地推广和发展,数字图像处理形成了较为完备的学科体系。

目前,各个应用领域对数字图像处理技术提出更高的需求,促进了这一学科体系向更高的技术方向发展。

特别是在像素群的理解与识别处理方面,已经由二维图像处理发展到三维模型化的定义方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)滤波:首先对图像f(x,y)进行平滑滤波,其滤波函数根据人类视觉特性选为高斯函数,即:
其中,G(x,y)是一个圆对称函数,其平滑的作用是可通过 来控制的。将图像 G(x,y)与f(x,y) 进行卷积,可以得到一个平滑的图像,即:
G(x,y)=f(x,y)*G(x,y) (9)
(2)增强:对平滑图像g(x,y) 进行拉普拉斯运算,即:
T0=S0/n0 (3)
T1=S1/n1 (4)
TT=(T0+T1)/2 (5)
1
TT为第一次迭代阈值,把TT的值赋给T,不断的重复1.2.1和1.2.2的步骤。迭代终止的条件满足
w=|T-TT|<α(6)
α值的确定根据不同图像的特征可以进行实际的调整。本文图像检测边缘α取0.5。下图1-1用迭代阈值对图像进行分割后的结果
h(x,y)=▽²(f(x,y)*G(x,y))(10)
(3)检测:边缘检测判据是二阶导数的零交叉点(即h(x,y)=0的点)并对应一阶导数的较大峰值。这种方法的特点是图像首先与高斯滤波器进行卷积,这样既平滑了图像又降低了噪声,孤立的噪声点和较小的结构组织将被滤除。但是由于平滑会造成图像边缘的延伸,因此边缘检测器只考虑那些具有局部梯度最大值的点为边缘点。由于噪声点( 灰度与周围点相差很大的点) 对边沿检测有一定的影响,所以效果更好的边沿检测器是高斯拉普拉斯( LOG) 算子。它把高斯平滑滤波器和拉普拉斯锐化滤波器结合了起来,先平滑掉噪声,再进行边沿检测,所以效果会更好。常用的 LOG 算子是5 ×5 的模板,如下2-3图所示:
数学形态学处理方法比起其它空间域或频率域图像处理和分析的方法具有一些明显的优势。利用形态学算法可以有效滤除噪声,同时保留图像中的原有信息,突出图像的几何特征便于进一步分析图像。该方法以形态结构元素为基础,在形态学中,结构元素是最基本最重要的概念,其在形态变换中的作用相当于信号处理中的“滤波窗口”,该方法的基本思想是用具有一定形态的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的。因此,结构元素的选择对于我们能否有效提取图像的有关信息至关重要。数学形态学的应用可以简化图像数据,保持它们的基本形态特征,并除去不相干的结构。
T=(Zmax+Zmin)/2(1)
1.2.2
统计图像中像素的个数,以当前的阈值T为分界值来统计。小于于阈值T的像素个数为n0,大于阈值T的像素个数为n1,图像像素的像素值用SUM来表示:
SUM=S0+S1(2)
其中S0为N0像素的像素值,S1为n1像素的像素值。
设新的迭代阈值为TT,为了确定TT我们不妨取像素的平均值,T0和T1分别为各个像素段的像素平均值。
此次提出的基于迭代阈值的边缘提取,在传统边缘检测的基础上,首先对图像进行处理,然后迭代出最佳阈值再进行边缘检测。同时设置了迭代阈值终止的准则,根据图像的不同需求和图像的特征可以进行不同的设定,满足实时边缘检的需求。
1
对灰度图像的阈值分割就是先确定一个处于图像灰度取值范围之中的灰度阈值,然后将图像中各个像素的灰度值都与这个阈值相比较,并根据比较结果将对应的像素(分割)划为两类:像素的灰度值大于阈值的为一类,像素的灰度值小于阈值的为另一类(灰度值等于阈值的像素可归入这两类之一)。这两类像素一般分属图像中的两类区域,所以对像素根据阈值分类达到了区域分割的目的。图像中的目标区域与背景区域的灰度或平均灰度是不同的,而目标区域和背景区域内部灰度相关性很强,这时我们可以以灰度的均一性作为依据进行分割。
3.1.1
形态学中的膨胀和腐蚀运算都是建立在集合的基础上进行和差运算所得到的。同时,膨胀与腐蚀运算也是形态学中最基本的运算,对于所有形态学变换来说都可以用这两种运算组合实现。用B(x)代表结构元素,对待处理图像I的每一点x,膨胀和腐蚀的定义为:
膨胀:
腐蚀:
用B(x)对I进行膨胀的结果就是把结构元素平移后使B与I的交集非空的点构成的集合。而腐蚀运算与膨胀运算相反,结果是把结构元素平移后使B包含于I的点构成的集合。
2.1
索贝尔算子是一种一阶微分算子.它利用像素邻近区域的梯度值来计算一个像素的梯度,然后根据一定的阈值来取舍,得到图像中的边缘。该算法如下:
1)用3*3的高斯滤波器对图像滤波;
2)对图像中等每个像素,用下面的公式计算其梯度大小M
M=sqrt(sx*sx+sy*sy)(7)
其中sx与sy是用下面的卷积模板来计算的
Sobel算子引入了加权局部平均,不仅能检测图像边缘而且能进一步抑制噪声影响,但它得到的边缘较粗。Sobel算子很容易在空间上实现,是边缘检测算子中最常用的算子之一,通常对灰度渐变的图像处理得较好。
2.2
一种利用图像强度二阶导数的零交叉点来求边缘点的算法,对噪声十分敏感,所以在边缘增强前滤除噪声。为此,马尔(Marr)和希尔得勒斯(Hildreth)根据人类视觉特性提出了一种边缘检测的方法,该方法将高斯滤波和拉普拉斯检测算子结合在一起进行边缘检测的方法,故称为Log(Laplacian of Gassian)算法。也称之为拉普拉斯高斯算法。该算法的主要思路和步骤如下:
摘要
随着计算机技术的发展,计算机图像处理与分析技术在临床诊断和治疗中起着越来越重要的作用。对医学细胞显微图像分割与识别方法的研究成为当今图像分析领域的前沿课题。在医学研究和临床诊断中,尤其在缺少专家的情况下对医学细胞图像的分割与识别具有十分重要的意义。医学领域中的图像处理技术的应用受到了广泛关注,应用图像处理技术对医学图像进行分割、识别、定量分析成为了临床辅助诊断和医学研究的重要工具。图像分割作为图像处理中的一项关键技术,自上世纪70年代起一直受到人们的高度重视,也是医学图像处理中的一个研究热点。利用图像分割技术对细胞图像进行分割,提取精确的细胞轮廓,是下一步进行细胞形态分析和定量计算的基础。
1.2
迭代式阈值选取的基本思路是:首先根据图像中物体的灰度分布情况,选取一个近似阈值作为初始阈值,然后进行分割产生子图像,并根据子图像的特征选取新的阈值,再用新的阈值分割图像。经过一定次数的循环,使错误分割的图像像素达到最少,然后通过分割图像和修改阈值的迭代过程获得认可的最佳阈值。
1.2.1
在迭代阈值前首先选取初始阈值,初始阈值的确定是根据灰度图像的灰度值来确定的。灰度图像中最大像素的值为Zmax,最小像素值的为Zmin,初始阈值T即为:
-2
-4
-4
-4
-2
-4
0
8
0
-4
-4
8
24
9
-4
-4
0
8
0
-4
-2
-4
-4
-4
-2
图2-3高斯—拉普拉斯算子
图2-4为Log(Laplacian of Gassian)算子处理过的图像。
图2-4 Log算子处理过的图像
2.3
Prewitt算子是一种一阶微分算子的边缘检测,利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作用。其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。Prewitt算子有两个卷积计算核,如图2-5所示,卷积的方法和Sobel算子的方法相似。
为了解决传统的人工定义阈值和检测算子在边缘检测方面的不足,提出了基于迭代最佳阈值分割的边缘检测,并据此进行图像的边缘提取。这种方法不仅大大降低了算法的复杂度,提供最佳阈值,同时也能保证边缘提取的精确度,消除图像噪声对边缘提取的影响。通过对迭代阈值的应用,利用边缘检测算子对图像进行边缘检测,并和现有的方法进行对比。
sx =[-1 0 1;-2 0 2;-1 0 1] sy=[1 2 1;0 0 0;-1 -2 -1]
3)根据阈值和像素的灰度作取舍,即对图像中的每个像素,如果其梯度小于阈值,则将其梯度设为零。
下面图2-1为细胞图像原始图,图2-2是用Sobel算子对原始图的边缘检测结果
图2-1细胞图像原始图图2-2用Sobel算子边缘检测图
膨胀在数学形态学中的作用是把图像周围的背景点合并到物体中。如果两个物体之间距离较近,那么膨胀运算可能会使这两个物体连通在一起,所以膨胀对填补图像分割后物体中的空洞很有用。腐蚀的作用是消除物体边界点,它可以把小于结构元素的点去除,如果两个物体之间有细小的连通,当结构元素的选取足够大时,通过腐蚀可以将两个物体分开。
-1
0
1
-1
0
1
-10Leabharlann 1111
0
0
0
-1
-1
-1
图2-5 Prewitt算子模板
Prewitt算子定义为:
SP=(d2x+d2y)1/2(11)
Prewitt算子通常对灰度的图像处理较好。图2-6用Prewitt边缘检测算子对细胞图像进行边缘检测的结果图像。
图2-6用Prewitt算子处理后的图像
3
3.1
形态学的初始理论是以二值图像为基础的,二值图像的灰度值只能取两个值,“0”或“1”,因而图像与结构元素之间的运算可以等价为简单的逻辑运算,即“与运算”、“或运算”、“非运算”等。二值形态学运算处理的对象是集合,一般设A为图像集合,B为结构元素,数学形态学运算是用B对A操作。选取的结构元素大小和形状均会在不同程度上影响处理结果。剩下的问题就是如何选取适当的结构元素以及如何利用结构元素对图像进行操作。为此,数学形态学定义了两种基本对偶运算,称为膨胀与腐蚀运算。还有一对对偶运算起着非常重要的作用,即开运算和闭运算。
关键词:图像分割;边缘检测;迭代;最佳阈值
基于MATLAB的医学细胞显微图像分割与边缘检测
引言
图像边缘是图像最基本的特征,边缘在图像分析中起着重要的作用。所谓边缘是指图像局部特性的不连续性,例如,灰度级的突变,颜色的突变,纹理结构的突变等。边缘检测在图像处理和计算机视觉中占有特殊的位置,它是底层视觉处理中最重要的环节之一,也是实现基于边界的图像分割的基础。传统的边缘检测算子一般都是基于一阶导数和二阶导数的边缘检测算子,如Robert交叉算子、Sobel算子、Prewitt算子、Canny算子和Laplacian算子[1]等,这些算子都是局部的梯度算子,对噪声非常敏感,所以在处理实际问题的时候处理的图像效果往往并不理想。边缘检测[2]过程中容易产生虚假边界并且定位的精度也不是很高,所以往往对不同的图像往往需要选择不同的参数,实际操作起来比较麻烦。虽然基于形态学的边缘检测易于实现,但是只适合噪声较小的图像。
相关文档
最新文档