八年级数学第十六章二次根式教学设计
(完整版)新人教版八年级数学下册第16章二次根式教案
课题:16.1二次根式1 课型:新授 一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)自学导航(课前预习)(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。
(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)合作交流(小组互助) (1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 ,4a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
八年级数学下册第十六章《二次根式》教案
做二次根式,“”称为二次根号。
例题:当x 是怎样的实数时,2+x在实数范围内有意义?解:要使2+x在实数范围有意义,必须x+2≥0,∴x≥-2.∴当x≥-2时,2+x在实数范围内有意义。
当x 是怎样的实数时,2x在实数范围内有意义?3x呢?三、课堂练习及巩固练习1 指出下列哪些是二次根式?(1)5;(2)3-;(3)321;(4)21+x;(5))2(2≥-aa;(6)ba-(a<b)。
练习2 二次根式和算术平方根有什么关系?(二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式)练习3 a 取何值时,下列根式有意义?(1)1+a;(2)112-a;(3)21-a().解:(1)由a+1≥0,得a≥-1;(2)由1-2a>0,得a<1 2;(3)由21-a()≥0,得a为任何实数.师活动、学生活动、设计意图、技术应用等)一、复习导入(1)什么是二次根式,它有哪些性质?(2)二次根式52x有意义,则x 。
当a>0 时,a表示a 的算术平方根,因此a>0;当a =0 时,a表示0的算术平方根,因此a=0;这就是说,a(a≥0)是一个非负数。
二、探究新知探究:根据算术平方根的意义填空,并说出得到结论的依据。
把上述计算结论推广到一般,并用字母表示:2=a a()(a≥0)思考:你能说说依据吗?例题:计算下列各式:215.();(2)225()探究:填空把得到的结论推广到一般,并用含字母的22224213= == =()()()()________二次根式表示:2=a a (a ≥0)思考:你能说说依据吗? 计算下列各式:(1)16 ;(2)25-()回顾我们学过的式子,如5,a,a+b,-ab,这些式子有哪些共同特征?(1)含有表示数的字母; (2)用基本运算符号连接数或表示数的字母。
用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来得到的式子叫代数式。
三、课堂练习及巩固练习1 计算(1)218() ;(2) 20();(3)2748();(4)235();(5)9;(6)24-();练习2 对于性质 ,逆向思考可得: , 请根据这一结论完成填空:(1)22=();(2)23=( ) 练习3 根据性质2=a a (a ≥0),可得255-=()你认为当a <0时,2=a ___,并说明理由:练习4 性质 和 有什么区别和联系?师活动、学生活动、设计意图、技术应用等)一、创设情境,导入新课现有一块长7.5 dm、宽5 dm的木板,能否采用如图所示的方式,在这块木板上截出两个面积分别是8 dm2和18 dm2的正方形木板?能截出两块正方形木板的条件是什么?能用数学式子表示吗?818+能否进一步计算?这是一种什么运算?能,两个二次根式的加法运算。
八年级数学二次根式教学设计6篇
八年级数学二次根式教学设计6篇二次根式的混合运算(1)教学目的:会进行二次根式的加减、乘混合运算。
重点:二次根式的加减乘混合运算。
难点:运算法则的综合运用。
关键:掌握混合运算顺序和步骤。
教学过程:复习提问:1.叙述二次根式加减法的两个步骤。
2.填空:当a≥0,b≥0时,;3.叙述单项式乘以多项式运算顺序;4.叙述多项式乘以多项式的运算法则。
二次根式的乘法:(a≥0,b≥0)二次根式的除法:(a≥0,b>0)新课:形如的式子,表示什么?a需要满足什么条件?根据平方根的定义,当a≥0时,表示a的算术平方根,是一个非负数,它的平方等于a;当a16.1第一课时二次根式的概念教学目标:1、解决实际问题,体会学习二次根式是实际的需要。
2、通过二次根式概念的学习,经历观察、概括的思维过程,理解二次根式的概念。
3、通过二次根式概念的建立,理解二次根式中被开方数中字母的取值范围。
教学重点:二次根式概念的理解。
教学难点:二次根式概念的理解。
教学方法:自主学习问题启发相结合。
教学手段:多媒体课件、学案。
教学过程:一、复习1、式子(﹣3)2中,-3叫2叫2、求数4,5,10,49,0的平方根和算术平方根,4的立方根是3、-4有没有算术平方根?我们已经学习了平方根和算术平方根的定义,引进了一个新的符号word/media/image1_1.png。
今天我们学习一个和前面的算术平方根有关的知识:二次根式2、探究定义1、观察:完成课本第二页“思考”的内容。
观察word/media/image2_1.png,word/media/image3_1.png,word/media/image4_1.png,word/media/image5_1.png这些式子在形式上有什么共同特点?2、思考:(1)都含有word/media/image1_1.png(2)被开方数都是非负数(S表示面积,h是高度。
)。
3、归纳:二次根式的定义形如word/media/image6_1.png(a≥0)的式子叫作二次根式,根号下的数叫作被开方数。
二次根式教案(优秀8篇)
本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
最新八年级数学下册第十六章二次根式教案
课 题:16.1 二次根式《二次根式的概念及其运用》 1知识与技能:a ≥0)的意义解答具体题目. 过程与方法:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.教学重点:a ≥0)的式子叫做二次根式的概念 教学难点:a ≥0)”解决具体问题. 教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法、2、阅读的方法、3、分组讨论法 4、练习法 教学过程一、课堂导入:问题1:.(1)当x 是怎样的实数时,2-x 在实数范围内有意义? 二、合作探究:a ≥0)•的式子叫做二次根式,”称为二次根号.议一议:1.-1有算术平方根吗?0的算术平方根是多少?当a<0例11xx>0)、1x y+(x ≥0,y•≥0).x>0)(x ≥0,y ≥0);不、1x1x y +.例2.当x在实数范围内有意义? 解:由3x-1≥0,得:x ≥13 当x ≥13在实数范围内有意义. 三、交流展示:例3.当x11x+在实数范围内有意义?解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-32由②得:x≠-1当x≥-32且x≠-111x+在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)四、归纳小结1a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.五、当堂训练:一、选择题1.下列式子中,是二次根式的是()2.下列式子中,不是二次根式的是()A.B C D.x2.A B C D.1 x3.已知一个正方形的面积是5,那么它的边长是()15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.2.有意义的未知数x有()个.A.0 B.1 C.2 D.无数,板书设计:二次根式《二次根式的概念及其运用》问题1 议一议:例1 例2例3 学生板演例4 归纳小结教学反思:课题: 16.1 二次根式(2) 2知识与技能:a≥02=a(a≥0),并利用它们进行计算和化简.过程与方法:a≥0)是一个非负2=a(a≥0);最后运用结论严谨解题.情感与价值:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.a≥0)是一个非负数;2=a(a≥0)及其运用.教学难点:a≥0)是一个非负数;•2=a(a≥0).教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法教学过程一、课堂导入:问题1.什么叫二次根式?2.当a≥0a<0时,老师点评(略).二、合作探究:a≥0)是一个什么数呢做一做:根据算术平方根的意义填空:2=_______;2=_______;2=______;)2=_______;2=______;)2=_______;)2=_______.例1、计算1.22.()23.24.(2)2解:2 =32,(2 =32·)2=32·5=45,2=56,)274.三、交流展示:例1、计算下列各式的值:2 )2 (4)2 )2 ()222- 例2、 计算1.2(x ≥0) 2.2 3.2 解:(1)因为x ≥0,所以x+1>02=x+1(2)∵a 2≥02=a 2 (3)∵a 2+2a+1=(a+1)2又∵(a+1)2≥0,∴a 2+2a+1≥0 2+2a+1 例3、在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3 四、归纳小结1a ≥0)是一个非负数2.2=a (a ≥0);反之:a=2(a ≥0). 五、当堂训练:一、选择题1式的个数是( ). A .4 B .3 C .2 D .12.数a 没有算术平方根,则a 的取值范围是( ).A a>0 B a ≥0 C a<0 D a=0 二、填空题1.(2=________.2_______数. 三、综合提高题1.计算 、 3.=0,求x y 的值.2.把下列非负数写成一个数的平方的形式: 4.在实数范围内分解下列因式:(1)5 (2)3.4 (3)16(4)x (x ≥0) (1)x 2-2 (2)x 4-9 3x 2-5 板书设计: 二次根式《2》问题1 议一议: 例1 例2例3 学生板演 归纳小结教学反思:课题: 16.1 二次根式(3) 3知识与技能:(a≥0)并利用它进行计算和化简.过程与方法:(a≥0),并利用结论解决具体问题.情感与价值:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.a(a≥0).教学重难点:探究结论.关键:讲清a≥0a才成立.教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法教学过程一、课堂导入:问题1a≥0)的式子叫做二次根式;2a≥0)是一个非负数;3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.二、合作探究:议一议填空:=_.(老师点评):根据算术平方根的意义,我们可以得到:=0.01=11023=037.例1、化简(1(2(3(4解:(1(2(3(4三、交流展示:例2、填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0,即使a>a所以a不存在;当a<0时,,即使-a>a,a<0综上,a<0例3、当x>2.四、归纳小结(a≥0)及其运用,同时理解当a<0a的应用拓展.五、当堂训练:一、选择题1的值是().A.0 B.23C.423D.以上都不对2.a≥0是().ABCD.二、填空题1.=___.2m的最小值是__.三、综合提高题1.若│1995-a│,求a-19952的值.2 若-3≤x≤2时,试化简│x-2│3.若,则a的取值范围是4.若△ABC的三边长为a,b,c,其中a和b满足,则c的取值范围是板书设计:二次根式《3》问题1 议一议:例1 例2例3 学生板演归纳小结教学反思:2=+aa9622=+-+-bba课题: 16.2 二次根式的乘除(1) 4知识与技能:a≥0,b≥0)a≥0,b≥0),并利用它们进行计算和化简过程与方法:(a≥0,b≥0)并运用它进行计算;•a≥0,b≥0)并用它解题和化简.情感与价值:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.a≥0,b≥0)a≥0,b≥0)及运用.教学难点:a≥0,b≥0).教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法教学过程一、课堂导入:问题1.填空(1;(2=__.(3.老师点评(纠正学生练习中的错误)二、合作探究:议一议:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为:反过来:例1.计算:(1(23(4解:(1(2(3(4例2 化简(1(2(3(4解:(1×4=12(2×9=36 (3×10=90 (4三、交流展示:(1)计算:①②(2) 化简:; ;例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4=(a ≥0,b ≥0a ≥0,b ≥0)运用. 五、当堂训练:一、选择题1.,•那么此直角三角形斜边长是( ).A . B .cm C .9cm D .27cm2.化简 ). A C . D .3=)A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-1二、填空题:1.2.自由落体的公式为S=12gt 2(g 为重力加速度,它的值为10m/s 2),若物体下落的高度为720m ,则下落的时间是_________.三、综合提高题: 1.计算 比校大小(1)32与23 (2)65-与56- 2、计算(1)b a 4332⨯ (2)183125⨯ (3)52)23()32(22⨯+板书设计: 二次根式的乘除(1)问题1 议一议: 例1 例2例3 学生板演 归纳小结教学反思:课题:16.2 二次根式的乘除(2) 5知识与技能:a≥0,b>0a≥0,b>0)及利用它运算.过程与方法:利用具体数据,发现规律,归纳出除法规定,逆向思维写出逆向等式情感与价值:通过学习培养学生利用规定计算和化简的科学精神,观察、分析问题能力.教学重点:a≥0,b>0)a≥0,b>0)及计算和化简.教学难点:发现规律,归纳出二次根式的除法规定.教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法教学过程一、课堂导入:问题1.写出二次根式的乘法规定及逆向等式.2.填空(1;(2;(3=___;二、合作探究:议一议:根据以上计算,你能发现什么规律:例1.计算:(1(2(3(4解:12==×(3=、(4例2.化简:(1(2(3(4解:1=283ba=3=三、交流展示:例3.=,且x 为偶数,求(1+x 解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩ ∴6<x ≤9 ∵x 为偶数∴x=8∴原式=(1+x(1+x (1+x∴当x=8时,原式的值. 四、归纳小结a ≥0,b>0a ≥0,b>0)及其运用.五、当堂训练:一、选择题1的结果( ). A .27.27C23==5== 数学上将这种把分母的根号去掉的过程称作“分母有理化”果是( ). A .2 B .6 C .13D二、填空题 1.分母有理化:(1)=__;(3)2.已知x=3,y=4,z=5_______.三、综合提高题 1.计算(1·(m>0,n>0)(2)(a>0) 板书设计: 二次根式的乘除(1)问题1 议一议: 例1 例2例3 学生板演 归纳小结教学反思:课 题: 16.2 二次根式的乘除(3) 6 知识与技能: 理解最简二次根式,并运用它把不是最简二次根式的化成最简二次根式. 过程与方法:通过计算或化简提炼出最简二次根式的概念,并根据它的特点检验结果 情感与价值:通过学习培养学生计算和化简的科学精神,观察、分析、发现问题的能力. 教学重点:1、最简二次根式的运用.教学难点:2、会判断这个二次根式是否是最简二次根式.教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法 2、阅读的方法3、分组讨论法 4、练习法教学过程一、课堂导入 :问题 1.计算(1(2,(32.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h 1km ,h 2km ,•那么它们的传播半径的比是__.写出二次根式的乘法规定及逆向等式.二、合作探究: 议一议 :根据以上计算,你能发现什么规律:二次根式有如下两个特点: 1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式. 学生分组讨论,老师点评:不是.例1.(1); (2); (3) 例2.填空、1、一个等腰三角形的周长为腰长为,则底边的长度为___________. 2、一张面积为72cm 的正方形纸片的边长为__________;cm三、交流展示:例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=-,=...从计算结果中找出规律,并利用这一规律计算+)的值.解:原式=……)=-1)+1)=2002-1=2001四、归纳小结:本节课应掌握:最简二次根式的概念及其运用.五、当堂训练: 一、选择题1(y>0)化为最简二次根式( ).A (y>0)B y>0)C (y>0)D .以上都不对2.把(a-1)中根号外的(a-1)移入根号内得( ).A B C . D .3)A .-3 B .C .-3.二、填空题:1.(x ≥0)2._________. 三、综合提高题1、若x 、y 为实数,且2.解方程(1)=-(2)3x -3=x 3 3、已知,0)35(332=-++-b a ,求ab 的值。
人教版2019八年级(下册)数学第十六章二次根式整章教案
第十六章二次根式16.1 二次根式(1)一、教学目标:认知:1、根据算术平方根的意义了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
能力:先提出问题,让学生探讨、分析问题,师生共同归纳得出概念。
情感:经过探索二次根式的重要结论,发展学生观察、发现问题的能力及研究问题的严谨性。
二、教学重难点:教学重点:理解二次根式的概念教学难点:明确二次根式有意义的条件,并运用其解决具体问题。
三、教学法:1.教法:五环节教学法2.学法:自学与小组合作学习相结合的方法四、教学具准备:教学课件五、教学过程:(一)复习引入:1、已知一个正数x,满足x2 = a,x是a的________, 记为______, a一定是_______数。
2、(1) 4的算术平方根为_______ ,用式子表示为 __________;(2) 16的算术平方根是_______,用式子表示为 __________;(3) 0 的算术平方根是_______;(4)正数a的算术平方根为_______,(5)-7_______算术平方根。
归纳:_______和_______都有算术平方根;_______没有算术平方根(二)出示学习目标:1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
(三)探索新知、提出问题思考:用带有根号的式子填空1、面积为3的正方形的边长是_______,面积为S的正方形的边长是_______。
2、一个长方形的围栏,长是宽的2倍,面积为130平方米,则它的宽为_______米。
3、一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为_______.很明显:所得的结果都表示一些正数的算术平方根。
像这样一些非负数的算术平方根的式子,我们就把它称二次根式。
一般地,我们把形如a(a≥0)的式子叫做二次根式(学生举例巩固)(四)议一议1、-1有算术平方根吗?2、0的算术平方根是多少?3、当a<0时,有意义吗?点评:1、表示非负数a 的算术平方根。
人教版八年级数学下册 第十六章 二次根式 教学设计及教学反思
第十六章二次根式16.1二次根式第1课时学习目标【知识与技能】是一个非负数.【过程与方法】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法,进而体验成功的喜悦,并通过合作学习增进终身学习的信念.教学重难点0的基本性质【教学难点】经历知识产生的过程,探索新知识.课前准备无教学过程一、情境导入,初步认识问题(1)一个长方形的围栏,长是宽的3倍,面积为39m2,则它的宽为_______m;(2)面积为S的正方形的边长为_______;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2,如果用含h的式子表示t,则t=.______【教学说明】设置上述问题的目的是让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密.教师提出问题后,让学生独立思考,然后相互交流,获得对二次根式的感性认识.二、思考探究,获取新知思考的式子,这些式子有什么特点?【教学说明】教师提出问题,同学生一道分析,体会这些式子的特征,从而引出二次根式的定义.二次根式:一般地,a≥0)形式的式子称为二次根式,其中”称为二次根号.针对上述定义,教师可强调以下几点:(1a必须是大于等于0的数或式子,否则它就没有意义了;(2,是一个整数,但4仍应称为一个二次根式;(3)当a≥0表示a的算术平方根,而一个非负数的算术平方根必然也是非负0(a≥0)三、典例精析,掌握新知例1 下列各式中,一定是二次根式的有_______分析:判断二次根式应关注两点:(1;(2)被开方数必须是非负数.因而在所给出四个式子中,只有②③中的式子同时符合两个要求,故应填②③.例2 当x为何值时,下列各式在实数范围内有意义.解:(1)中,由x-2≥0,得x≥2;(2)中,由得2≤x≤3;(3)中,由2x-1>0,得x>1/2.【教学说明】对于例3,教师应引导学生分析题目特征,抓住解决问题的突破口,选择中a≥0及a≥0的双重非负性特征.四、运用新知,深化理解1.填空题:(1)形如_______的式子叫二次根式;(2)负数算术平方根________(填“有”或者“没有”)2.当a是怎样的实数时,下列各式在实数范围内有意义:【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,你获得哪些解决二次根式问题的方法?你还有哪些问题?请与同伴交流.【教学说明】学生相互交流,回顾知识,反思问题,共同发展提高.课后作业1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.教学反思1.教师创设情境,给出实例.学生积极主动探索,教师引导与启发,师生互动.体现教师的组织者、引导者与合作者地位.2.注意知识之间的衔接,在温故知新的过程中引导出新知,讲练结合旨在巩固学生对新知的理解.16.1二次根式第2课时学习目标【知识与技能】≥0)2a(a≥0),并利理解并掌握二次根式的性质,正确区分=a(a用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.教学重难点【教学重点】2a=a(a≥0)2a(a≥0)及其应用.【教学难点】用探究的方法探索2a=a(a≥02a(a≥0)的结论.课前准备无教学过程一、情境导入,初步认识试一试:请根据算术平方根填空,猜一猜:通过对上述问题的思考,你能猜想出2a(a≥0)的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:2a=a(a≥0).进一步地,引导学生探究新的问题.探究(1)填空:(2)通过(1a≥0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.(a≥0).最后,教师给出代数式的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1 计算:(1)2;(2)( 2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.四、运用新知,深化理解【教学说明】以上1~3题可试着让学生自主完成,第4题稍有难度,教师适时点拨.(2)进行化简.然后再根据x>2的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.∵x>2,∴x-2>0,1-2x<0.3.(1)原式=5-5+1=1(2)原式=7+49×2/7=7+14=21(2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符号.五、师生互动,课堂小结1.本节知识可这样归纳:2.通过这节课的学习,你有哪些收获和体会?与同伴交流.课后作业1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.教学反思1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生在交流中体会成功.3.几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.16.2 二次根式的乘除第1课时学习目标【知识与技能】a≥0,b≥0)a≥0,b≥0),并能运用它们进行化简计算.【过程与方法】经历探索二次根式乘法法则的过程,发展观察、归纳猜想、验证等能力.【情感态度】培养学生主动探索知识的能力以及分析问题和解决问题的能力,增强学好数学的信心. 教学重难点【教学重点】a≥0,b≥0)(a≥0,b≥0).【教学难点】a≥0,b≥0).课前准备无教学过程一、情境导入,初步认识问题1 计算下列各式,观察计算结果,你发现什么规律?问题2用你发现的规律填空,并用计算器进行验算.【教学说明】问题1通过被开方数都是完全平方数,让学生容易获取结果,发现规律.通过问题2的验证加深对规律的认识,为本节学习作好铺垫.上述两个问题均应由学生自主完成,相互交流,感受新知.二、思考探究,获取新知选几名学生口述所发现的规律,然后师生共同归纳:一般地,对二次根式的乘法规定:.【教学说明】对上述二次根式的乘法公式,教学时应引导学生关注其后面的附加条件a≥0,b≥0.三、典例精析,掌握新知【教学说明】让学生自主探究,独立完成,加深对二次根式乘法运算和化简方法的理解.教师巡视,对有困难的同学适时给予指导,最后可选派四名学生上黑板完成解答,师生共同评析,巩固所学新知识.【教学说明】在学生探索本题解答过程中,教师可补充说明,在本章中,如果没有特别说明,所有的字母都表示正数.四、运用新知,深化理解4.一个矩形的长和宽分别是10cm和22cm,求这个矩形的面积.5.一个底面为30cm×30cm的长方体容器中装满了水.现将一部分水倒入一个底面为正方形,高为10cm的铁桶中.当铁桶装满水时,容器内水面下降了20cm.铁桶的底面边长是多少厘米?【教学说明】学生自主完成,教师巡视,对学生解题过程中出现的问题及时予以指正,帮助学生加深理解,对优秀者应予以表扬鼓舞,让学生体验成功的快乐.【答案】1.A2.(1)原式五、师生互动,课堂小结通过这节课的学习你有哪些收获和体会?谈谈你的想法,并与同伴相互交流.课后作业1.布置作业:从教材“习题16.2”中选取.2.完成练习册中本课时练习.教学反思1.创设情境,给出实例.学生积极主动探索,教师引导启发,按照由特殊到一般的规律,降低学生理解的难度.2.二次根式乘法法则的形成过程中,由学生大胆猜测,经过思考、分析、讨论的过程,让学生在交流中体会成功.3.前面的讲练能帮助学生理解二次根式乘法法则,培养学生利用概念解题的能力.16.2 二次根式的乘除第2课时学习目标【知识与技能】a≥0,b>0(a≥0,b>0),能用它们进行化简计算,能将二次根式化为最简二次根式.【过程与方法】通过具体实例的探究活动,发现二次根式除法的规律,归纳出二次根式除法法则及其逆向等式,能用它们进行化简计算.【情感态度】让学生在独立思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,增强合作交流意识和能力.教学重难点【教学重点】a≥0,b>0(a≥0,b>0)的理解和应用.【教学难点】探索二次根式的除法法则.课前准备无教学过程一、情境导入,初步认识问题1 计算下列各式,观察计算结果,你能发现其中的规律吗?问题2 用你发现的规律填空,并用计算器进行验算:【教学说明】让学生自主探究,感受二次根式除法运算中所蕴含的规律性特征,获得二次根式相除的感性认识,导入新课.二、思考探究,获取新知想一想通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你.师生共同回顾思考,总结出二次根式a≥0,b>0a≥0,b>0)【教学说明】在师生共同探索出上述二次根式的除法公式后,教师应引导学的类似错误.三、典例精析,掌握新知【教学说明】教师给出例题后,让学生独立作业,同时分别选派四名同学上黑板演算.教师巡视,对学生演算过程中的失误及时予以指正,最后师生共同评析,让学生加深对二次根式除法的理解和掌握,并保留每道题的最后结果.议一议观察上述各题的最后结果,它们有什么特点?在学生相互交流过程中可感受到所有结果中的二次根式有如下两个特征:(1)被开方数中不含分母(或分母中不含二次根式);(2)被开方数中不含能开得尽方的因数或因式.我们把具有上述两个条件的二次根式,叫做最简二次根式.小练习:1.下列二次根式中,是最简二次根式的有_______(填序号).【教学说明】感受二次根式乘除在数学问题和实际生活中的应用,体会二次根式的乘除法在二次根式的化简中的重要作用.四、运用新知,深化理解【教学说明】让学生自主完成,加深对已学知识的复习,并检查对新学知识的掌握情况,对学生的困惑,教师应及时予以指导,并进行必要的反思.五、师生互动,课堂小结师生共同回顾:a≥0,b>0a≥0,b>0)及其应用;(1【教学说明】教师应让学生自由交流,总结本节课的知识要点,同时进行自我反思,提高认知,加深对所学知识的理解.课后作业1.布置作业:从教材“习题16.2”中选取.2.完成练习册中本课时练习.教学反思1.创设情境,复习二次根式的乘积,旨在类比学习二次根式的除法,培养学生继续探究的兴趣.2.二次根式除法的学习过程,按照由特殊到一般的规律,由学生经历思考、讨论、分析的过程,让学生大胆猜测,使学生在交流中体会成功.16.3 二次根式的加减第1课时学习目标【知识与技能】会进行二次根式的加减运算,利用二次根式的加减法解决生活实际问题.【过程与方法】经历由实际问题引入数学问题的过程,提高学生的抽象概括能力,进而掌握二次根式的加减运算方法.【情感态度】培养学生认真观察、思考的习惯,锻炼严谨细致、一丝不苟的科学精神.教学重难点【教学重点】二次根式的加减法运算方法.【教学难点】二次根式的加减法的实际应用.课前准备无教学过程一、情境导入,初步认识问题现有一块长7.5dm,宽5dm的木板,能否采用如图所示的方式,在这块木板上截出两个面积分别是8dm2和18dm2的正方形木板?【教学说明】可借助多媒体(或幻灯片)展示木板,尝试截取两个正方形木块,并引导学生思考.解决问题的关键在哪里?如何解决?激发学生的学习兴趣和求知欲望.二、思考探究,获取新知让学生相互讨论,共同探究,寻求解决问题的方案.与此同时,教师可设置如下问题帮助学生进行理解和分析:1.两个正方形木块的边长分别是多少?2.最大正方形木板的边长与原长方形木板的宽5dm的大小如何?3.两个正方形木板的边长之和与长方形木板的长7.5dm的大小关系如何?你认为用什么办法来得出结论的?4.谈谈你获得结论的过程中的想法,你有哪些新的认识?在学生充分交流,二次根式的和,我们可以这样来计算:【教学说明】本环节教师要放手让学生自主探究,自主发现问题,并尝试解决问题,并能总结规律,形成认知.同时,教师应关注学生的完成情况,能否正确进行二次根式的化简,能否运用分配律将二次根式合并.【归纳结论】二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.三、典例精析,掌握新知【教学说明】以上两例,应让学生先独立完成,并分别选派两名中等成绩同学上黑板进行演算.教师巡视,了解全班学生的掌握情况,并对有困难的同学及时予以点拨,帮助他们加深对新知的理解.最后,师生共同评析黑板上的作业,教师还可适时将巡视中发现的问题展示给全班同学,达到理解新知的目的.例3 如图,实验中学计划在校园内修建一个正方形的花坛,在花坛中央还要修一个正方形的小喷水池,设计者需要考虑有关的周长,如果小喷水池的面积为8m2,花坛的绿化面积为10m2,则花坛的外周与小喷水池的周长一共是多少米?分析:利用正方形的面积公式求出边长,再根据周长公式即可得解..【教学说明】本例展示了二次根式的加减在实际问题中的应用,在实际教学过程中,教师应引导学生进行合理分析,理清解题思路与步骤,再让学生自主完成解答过程.最后教师可以给出示范性解题过程,也可以用幻灯片展示学生的优秀作业及有代表性问题作业,让学生通过观察与反思,加深对知识的理解.四、运用新知,深化理解1.下列计算是否正确?为什么?5.先化简,再求值:【教学说明】学生自主完成上面前3个题,教师巡视,后两个题稍难,教师适当予以点拨.【答案】1.(1)不正确,两边不相等;(2)不正确,两边不相等;(3)正确.2.①和④;五、师生互动,课堂小结师生共同回顾本节主要知识点及需要注意的问题.(1)知识要点:二次根式加减的一般思路,①不是最简二次根式的,应化成最简二次根式;②相同的二次根式一定要进行合并.(2)需注意的问题:①应能将化简的二次根式化简后再进行计算,不要出是最后结果的类似错误;②相同的二次根式合并时,只需把它们的系数相加减,根式不变,不相同的二次根式不能进行加减,防止出现=(3-2))的错误.课后作业1.布置作业:从教材“习题16.3”中选取.2.完成练习册中本课时练习.教学反思1.创设情境,给出实例.由学生主动参与,经过思考、讨论、分析的过程,老师加以启发和引导,类比得出二次根式的加减运算法则.2.三个例题,旨在帮助学生理解二次根式的加减运算.尤其是例2,要按照两个步骤进行计算,培养了学生利用概念、法则进行计算和化简的严谨态度和科学精神,此外,例3还展示了二次根式的加减在实际问题中的应用.16.3 二次根式的加减第2课时学习目标【知识与技能】1.会进行二次根式的乘、除、加、减混合运算;2.能用多项式的乘法公式进行二次根式的化简计算.【过程与方法】通过具体问题进一步体会有理数运算、二次根式的运算以及整式的运算之间的联系,掌握二次根式混合运算方法.【情感态度】通过多项式乘除法则及乘法公式在二次根式运算中的应用,体验迁移、化归思想,使学生进一步形成符号感,提高数学应用意识.教学重难点【教学重点】二次根式的混合运算.【教学难点】多项式的乘除法则及乘法公式在二次根式运算中的应用方法.课前准备无教学过程一、情境导入,初步认识问题我们知道:(x+y)·xy=x·xy+y·xy=x2y+xy2,(2x2y+3xy2)÷xy=2x2y÷xy+3xy2÷xy=2x+3y,(x+y)(x-y)=x2-y2及(x+y)2=x2+2xy+y2,……试问:如果上述各式中的x,y分别代表着一个二次根式,我们会有哪些新的收获呢?【教学说明】引入上述关于多项式的乘除算式及乘法公式,进而提出新的问题的目的在于暗示二次根式的运算与多项式的运算之间的联系,激发学生的求知欲望和探究意识. 二、思考探究,获取新知探究1由(x+y)·z=x·z+y·z=xz+yz,你能求出的值吗?你是怎样做的?探究2由,你能求出的值吗?由此你有何发现?类似地,请解决以下几个小题.【教学说明】让全班同学共同参与探究,相互交流,在类比的过程中尝试给出问题的答案.教师巡视,予以点拨,肯定学生的成绩,并引导学生完善对二次根式混合运算的初步认识,最后师生共同给出问题的结果.【归纳结论】1.二次根式的混合运算与整式的运算方法完全相同,即先算乘方,再算乘除,最后算加减,有括号先算括号.2.在二次根式的运算中,多项式的乘法法则和乘法公式仍然适用.三、典例精析,掌握新知例1 计算下列各题:分析:对算式的结构进行观察分析,运用二次根式加、减、乘、除的法则进行运算,需注意乘法公式(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2的灵活运用.解:(1)原式=()÷=(÷÷;例2 已知,,求下列代数式的值.(1)x2+2xy+y2;(2)x2-y2.分析:由条件易知x-y=2,而需求代数式中的(1)可化为(x+y)2,(2)可化为(x+y)(x-y),因而整体代入更简洁些,当然直接代入求值也是可行的,只不过要复杂多了.解:∵,,∴x-y=2.(1)原式=(x+y)2=()2=12;(2)原式=(x+y)·(x-y)×【教学说明】第1题可让学生自主完成,并选派三名代表上黑板进行演算.教师巡视,了解学生对二次根式混合运算的掌握情况,及时予以帮助,帮助学生更好地掌握新知识.最后全班同学分析三位代表的解答过程及结果,深化理解.第2题仍可让学生先自主探究,如果大部分学生选用直接代入求值时,教师仍应肯定他们的成绩,但需展示本例的最佳解题思路,达到融会贯通的目的.四、运用新知,深化理解3.(1)若,,求a2b-ab2的值;(2)若-1,求x2+2x+2011的值.【教学说明】第1、2两题可让学生自主完成,然后相互交流,教师根据反馈情况,及时查漏补缺,优化课堂教学.第3题即可让学生尝试解决,也可由师生共同分析,形成解题思路后再由学生自主完善解题过程.3.(1)由,a·b=1得a2b-ab2=ab(a-b)=1×;(2)∵,∴,两边平方,得x2+2x+1=2.∴x2+2x=1.故x2+2x+2011=1+2011=2012.五、师生互动,课堂小结通过这节课的学习,你有哪些收获?你还有哪些疑惑?谈谈你的看法,并与同伴交流.【教学说明】教师以设问的形式和学生一道回顾本节主要知识及所涉及到的解题方法、技巧和数学思想方法,既是对知识的一次梳理,也是一次必要的提炼升华,完善认知.课后作业1.布置作业:从教材“习题16.3”中选取.2.完成练习册中本课时练习.教学反思1.情境引入,复习整式运算的知识,旨在迁移到利用乘法公式进行含二次根式式子的运算,培养学生继续探究的兴趣.2.例题的设计,旨在帮助学生理解乘法公式在二次根式运算中的应用.。
人教版八年级数学下册第十六章二次根式教案1全
人教版八年级数学下册教案16.1二次根式【教学目标】1.根据算术平方根的意义了解二次根式的概念;知道被开方数必须是非负数的理由;2.能用二次根式表示实际问题中的数量和数量关系.【教学重点】从算术平方根的意义出发理解二次根式的概念.【教学过程】一.创设情境提出问题1.电视塔越高,从塔顶发射的电磁波传得越远,从而能收看到电视节目的区域越广,电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r=,其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、h2 km,你能化简这个式子吗?式子公式中r=中的表示什么意义?2.问题:(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(1)中式子你是怎么得到?得到的两个式子有什么不同?(2)一个长方形围栏,长是宽的2 倍,面积为130m 2,则它的宽为______m .(2)中得到的式子有什么意义?(3)一个物体从高处自由落下,落到地面所用的时间 t (单位:s )与开始落下的高度h (单位:m )满足关系 h =5t 2,如果用含有h 的式子表示 t ,则 _____ (3)中当h 的值分别为0,10,15,20,25时,得到的结果分别是什么?表示的数怎样变化?二.合作探究 形成知识上面问题中,得到的结果分别是: (1)这些式子分别表示什么意义? (2)这些式子有什么共同特征?分别表示3,S ,65,5h的算术平方根这些式子的共同特征是:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根. (3)根据你的理解,请写出二次根式的定义.把形如 用来表示一个非负数的算术平方根的式子,叫做二次根式.我们把形如a≥0)•的式子叫做二次根式,称为二次根号.三.初步应用巩固知识练习2二次根式和算术平方根有什么关系?二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式.例2当x 是怎样的实数时,2x在实数范围内有意义?3x呢?答案:(1)a为任何实数;(2) a =1.总结:被开方数不小于零.四.比较辨别探索性质五.综合应用深化提高六.课堂小结七.回顾总结反思提升我们以前学习过的整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?四.作业:教科书第5页第1,3,5,6,7,10题.五.教后反思16.2 第一课时二次根式乘法教学内容二次根式的乘法课时数 1学科数学年级八年级班级教学目标理解a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0),并利用它们进行计算和化简教学重点掌握和应用二次根式的乘法法则和积的算术平方根的性质。
人教版数学八年级下册16章《二次根式》单元整体教学设计
(五)总结归纳
在总结归纳环节,我将引导学生回顾本节课所学内容,总结二次根式的性质、化简方法和运算规则。
1.回顾总结:请学生回顾本节课所学的内容,总结二次根式的性质、化简方法和运算规则。
2.归纳提升:引导学生发现数学规律,提高数学思维能力。
3.反馈评价:教师对学生的学习情况进行反馈,给予鼓励和指导,激发学生的学习动力。
-学会化简二次根式,包括分解质因数、提取平方因子等方法,使二次根式达到最简形式。
2.学会解决实际问题中涉及二次根式的计算,如长度、面积和体积的计算等。
-能够将实际问题转化为数学问题,建立二次根式相关的数学模型。
-运用二次根式的运算方法解决实际问题,培养将数学知识应用于实际生活的能力。
3.了解二次根式在几何图形中的应用,如勾股定理等。
4.运算讲解:详细讲解二次根式的乘除法运算规则,通过例题使学生熟练掌握运算方法。
(三)学生小组讨论
在小组讨论环节,我将组织学生进行合作学习,共同探讨二次根式的性质、化简和运算规则。
1.分组讨论:将学生分成若干小组,每组选一个组长,负责组织讨论。
2.讨论主题:每组针对二次根式的性质、化简方法和运算规则进行讨论,探讨解决实际问题的方法。
3.拓展应用:
-探究题:让学生自主探索二次根式在几何图形中的其他应用,如圆的面积、体积计算等,并撰写探究报告。
-研究性学习:小组合作,选择一个与二次根式相关的研究主题,如二次根式在建筑、工程中的应用,进行深入研究,并制作PPT进行课堂分享。
-数学阅读:推荐阅读相关数学历史资料,了解二次根式的历史背景和发展过程,拓宽学生的数学视野。
五、作业布置
为了巩固学生对二次根式的理解和应用,作业布置将包括基础巩固、能力提升和拓展应用三个层次,确保学生在课后能够自主复习、巩固所学知识,并提高解决问题的能力。
人教版八年级数学下册第16章二次根式(教案)一
-教学难点2举例:对比\(\sqrt{8}\)和\(\sqrt{6}\),解释为什么\(\sqrt{8}\)可以化简为\(2\sqrt{2}\),因为8是2的平方的倍数,而6则不是任何整数的平方的倍数,因此不能化简。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是形如√a(a≥0)的表达式,它是表示非负数平方根的一种数学表达方式,对于解决实际问题和某些数学问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了二次根式在几何中的应用,例如计算非整数边长的正方形面积。
三、教学难点与重点
1.教学重点
-二次根式的概念:强调根号下的数必须是非负数,以及二次根式的书写规范。
-二次根式的性质:掌握二次根式的非负性、乘除法运算法则,如\(\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}\)。
-二次根式的化简:学会将二次根式化简至最简形式,如\(\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}\)。
3.增强学生数学建模素养,培养学生运用二次根式解决实际问题的能力,如对二次根式的估算,使学生能够将数学知识应用于生活实际。
4.培养学生直观想象能力,通过二次根式的图形表示,使学生能够形象地理解二次根式的概念及其运算规律,提高数学思维品质。
5.培养学生数学抽象素养,使学生能够从具体的二次根式实例中抽象出一般性规律,形成数学的一般概念。
沪科版数学八年级下册16.1《二次根式》教学设计1
沪科版数学八年级下册16.1《二次根式》教学设计1一. 教材分析《二次根式》是沪科版数学八年级下册第16章的第一节内容。
本节内容主要介绍二次根式的概念、性质和运算。
二次根式在数学中占有重要的地位,它是学习更高阶数学的基础。
本节内容的教学目标是使学生理解二次根式的概念,掌握二次根式的性质,能进行二次根式的运算。
二. 学情分析学生在学习本节内容前,已经学习了实数、有理数、无理数等基础知识,对数学中的运算有一定的理解。
但二次根式作为一个新的概念,对学生来说还是较为抽象,需要通过实例和练习来理解和掌握。
三. 教学目标1.了解二次根式的概念,能正确识别二次根式。
2.掌握二次根式的性质,能进行二次根式的运算。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.二次根式的概念和性质。
2.二次根式的运算方法。
五. 教学方法1.采用实例教学法,通过具体的例子来引导学生理解和掌握二次根式的概念和性质。
2.采用归纳法,让学生通过自主探究和合作交流,总结出二次根式的性质和运算方法。
3.采用练习法,通过大量的练习来巩固学生的知识和提高解题能力。
六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。
2.准备教学工具,如黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念,如“一个正方形的对角线长为8,求正方形的面积。
”让学生思考如何解决这个问题,从而引出二次根式。
2.呈现(10分钟)讲解二次根式的概念和性质,通过PPT展示相关的例子和性质,让学生理解和掌握二次根式。
3.操练(10分钟)让学生进行二次根式的运算练习,如化简二次根式、求二次根式的值等。
教师及时批改和讲解,帮助学生掌握二次根式的运算方法。
4.巩固(10分钟)通过一些综合性的练习题,让学生运用所学的知识和方法解决问题,巩固二次根式的理解和运用。
5.拓展(10分钟)讲解二次根式的一些应用,如在几何、物理等学科中的应用,让学生了解二次根式的实际意义和价值。
最新人教版数学八年级下册第十六章---二次根式教案(全章)
第十六章—二次根式一、二次根式1.概念:一般的,形如√a(a≥0)的式子叫做二次根式。
二次根式应满足两个条件,即含有二次根号且被开方数大于或等于0.注意:二次根式√a的被开方数a可以是数,也可以是式子,单笔与满足a≥0。
2.性质:性质:2|a|.例题:1.当x是怎样的实数时,√x−2在实数范围内有意义?2.当a是怎样的实数时,下列各式在实数范围内有意义?(1)√a−1(2)√2a+3;(3)√−a(4)√5−a3.计算(1)(√)2(2)(2√)2(3)(4)2(4)(2)2(5)22(6)21.0(7)26(8)23二、二次根式的乘除1.二次根式的乘法(1)法则:√ab =√a.√b(a≥0, b≥0)注意:a,b可以是一个具体的数,也可以是含字母的代数式。
(2)拓展:二次根式的乘法法则可以推广到多个二次根式相乘,即√a.√b.√c =√abc(a≥0, b≥0,c≥0)。
(3)误区警示:二次根式相乘的结果要化简成最简的二次根式或整式。
(4)最简二次根式:A.定义:一般的,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式叫最简二次根式。
B.识别一个二次根式是否是最简二次根式,主要依据两点:○1被开方数中的因数是整数,因式是整式;○2被开方数中不含能开的尽方的因数或因式。
例题:1.计算.(1)3×5(2)√1×√(3)√×√73(4)√16×81(5)√4a2b3(6)√×√(7)√3×√12(8)√4×√6(9)√5×√6(10)√288 ×√172 (11)√3 ×√6 (12)18×21(13)25×51 (14)16×41 (15)18×91 2.化简.(1)√8 (2)√12 (3)√18(4)√20 (5)√24 (6)√28(7)√32 (8)√36 (9)√40(10)√42 (11)√44 (12)√(13)√48 (14)√50 (15)√90(16)√108 (17)√112 (18)√120(19)√(20)√ (21)√(22)√160 (23)√225 (24)√180(25)√200 (26)√144 (27)√2.二次根式的除法 (1)法则:b aba(a ≥0, b ≥0),相反√a b =√a √b (a ≥0, b ≥0)也成立。
人教版八年级数学下册第十六章二次根式集体备课优秀教学案例
二、教学目标
(一)知识与技能
1.理解二次根式的定义,掌握二次根式的性质,能够正确进行二次根式的运算。
3.组织学生进行自我评价、同伴评价,培养学生的评价能力和自我认知能力。
(五)作业小结
1.布置具有针对性、层次性的作业,让学生在课后巩固所学知识,提高学生的实践能力。
2.教师及时批改作业,给予学生反馈,帮助学生纠正错误,提高学生的学习效果。
3.教师根据作业情况,调整教学策略,为下一节课的教学做好准备。
3.小组合作:组织学生进行小组讨论,共同探究二次根式的性质。教师在小组合作过程中关注学生的个体差异,给予每个学生充分的指导和关爱,确保每个学生都能在小组合作中得到有效的学习和提升。这种教学方式培养了学生的团队协作能力和沟通能力。
4.反思与评价:教师引导学生对学习过程进行反思,让学生认识到自己在学习二次根式中的优点和不足。通过反思与评价,学生能够感受到数学学习的乐趣,激发学习数学的积极性,培养自主学习的能力。
3.设计具有挑战性和实际意义的课题,让学生在小组合作中,运用二次根式解决实际问题,提高学生的实践能力。
(四)总结归纳
1.教师引导学生对学习过程进行反思,让学生认识到自己在学习二次根式中的优点和不足,培养学生自主学习的能力。
2.教师对学生的学习成果进行评价,关注学生的个体差异,给予每个学生充分的肯定和鼓励,提高学生的自信心。
(二)问题导向
1.设计具有挑战性和启发性的问题,引导学生独立思考,激发学生学习二次根式的兴趣。
人教版八年级数学下册第十六章二次根式(教案)
1.培养学生的数学抽ห้องสมุดไป่ตู้能力,使其理解二次根式的概念,并能运用性质进行化简和运算;
2.培养学生的逻辑推理能力,通过分析二次根式的性质和法则,进行合理推理,解决相关数学问题;
3.提高学生的数学建模素养,能够将二次根式应用于实际问题,建立数学模型,并解决问题;
4.培养学生的数学运算能力,熟练掌握二次根式的乘除法法则和加减法法则,准确进行计算;
首先,对于二次根式的运算法则,特别是分母有理化这一部分,学生们普遍感到困惑。我意识到,在讲解这个难点时,需要更加细致地分解步骤,多举几个不同类型的例子,让学生们逐步掌握解题技巧。同时,在课后应该布置一些针对性的练习题,帮助他们巩固这一知识点。
其次,在小组讨论环节,我发现有些学生在讨论中不够积极,可能是因为他们对二次根式的应用还不够自信。今后,我需要更多地鼓励这些学生参与讨论,提供一些更具体的指导,帮助他们建立起自信心。
我也注意到,实践活动对于加深学生对二次根式的理解非常有效。学生们在实际操作中能够更好地理解二次根式的意义和用途。因此,我计划在未来的教学中,增加更多类似的实践活动,让数学学习变得更加生动有趣。
另外,我发现学生们在解决问题的过程中,有时会忽略最简二次根式的判断。这说明我需要在教学中加强对这一部分的强调,通过对比不同形式的二次根式,让学生们明白何为最简形式。
5.培养学生的直观想象能力,通过二次根式的几何意义,加深对数学概念的理解,提高空间想象力和直观感知力。
三、教学难点与重点
1.教学重点
-二次根式的定义与性质:理解二次根式的概念,掌握其性质,如非负性、乘除法法则等。
-举例:解释二次根式表示的是非负平方根,如√9=3,但不表示-3。
-二次根式的化简与运算:掌握化简二次根式的方法,包括分母有理化、合并同类项等。
人教版八年级数学下册第十六章二次根式教案全
人教版八年级数学下册教案16.1二次根式(第1课时)16.1 二次根式(第2课时)偿提高化简23x+x的结果是()A、-4xB、4xC、-2xD、2x3.已知实数x,y满足x y-++=540,求代数式的值.问题共同讨论解决.第3题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内.小结本节课你学到了什么知识?你有什么认识?学生自己说出本节课的收获作业设计作业:教材P5习题21.1复习巩固2题 (3)、(4)3题 (1)、(2).教师布置作业,并提出要求.学生课下独立完成,延续课堂.16.2 二次根式的乘除(第1课时)教学目标知识技能1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算;2.会进行简单的二次根式的乘法运算.过程方法让学生进一步了解数学知识之间是相互联系的.情感态度培养学生用分类讨论的思想分析生活中出现的不同事物.重点abba=⋅(a≥0,b≥0),baab⋅=(a≥0,b≥0)及它们的运用.难点二次根式的乘法与积的算术平方根的关系及应用.环节教学问题设计教学活动设计情境引入计算下列各式,观察计算结果,你发现什么规律(1)259⨯=,259⨯=(2) 436⨯= , 436⨯=(3)16×25=____,1625⨯=___;教师出示问题,引导学生观察运算结果,发现和总结式子有什么规律?学生计算,观察,分小组讨论.全班交流,体会结果特点.自主探究【问题1】1.参考上面的结果,用“>、<或=”填空.4×9_____49⨯,100×36________10036⨯16×25__ 1625⨯学生通过计算,能对于公式有些感性上的认识,并且能举一些类似的式子.学生先完成填空,对于公式的推导有更深一步的认识,再通过观察,分析,合作交流,得出公式.二次根式的除法是建立在二次根式的基础上的,所以在学习中侧重于引导学生利用与乘法相类似的方法去学习,从而进一步降低学习的难度,提高学习的效率,但在教与学中,可以明显感受到学生对分母有理化概念在运用中的不灵活性,这也是应在今后的复习中给予加强的16.1 二次根式(第2课时)直角坐标系中A(3,2)、B(6,2)、C(3,5)是三角形的三个顶点,求:BC的长.成果展示引导学生对上面的问题进行展示交流引导学生自己出一组题,小组内做.学习小组内互相交流,讨论,展示.补偿提高1.计算:(18)2 (23)2(94)2(0)2(-478)222(35)(53)-2.若数轴上表示数x的点在原点的左边,则化简23x+x的结果是()A、-4xB、4xC、-2xD、2x3.已知实数x,y满足x y-++=540,求代数式的值.教师出示题目.第1题、第2题由学生独立完成. 教师巡视,个别辅导.请学生板练.师生共同评析.存在的共性问题共同讨论解决.第3题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内.小结本节课你学到了什么知识?你有什么认识?学生自己说出本节课的收获作业设计作业:教材P5习题21.1复习巩固2题 (3)、(4)3题 (1)、(2).教师布置作业,并提出要求.学生课下独立完成,延续课堂.16.3 二次根式的加减(第1课时)教学目标知识技能能够正确进行简单的二次根式加减法的运算.过程方法1.通过整式加减法运算与二次根式加减法运算体会类比思想.2.通过二次根式加减法运算培养学生运算能力.情感态度通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.4.计算:(1)212+348 ; (2)(48+20)+(12-5)5.例题3.如图21.3.1-1要焊接如图所示的钢架,大约需要多少米钢材(结果保留小数点后两位)?图21.3.1-1 分析:先利用勾股定理求出AB 的长度,再求出BC 的长度,然后相加:AB =5216422=+,BC =51422=+ AB+BC+AC+BD =)(71.13753m ≈+教师巡视及时补教.小组讨论分析,养成良好的分析问题,解决问题的能力和习惯. 成果 展示通过今天的学习你有何收获?1二次根式加减法的运算方法和步骤是什么?2.二次根式加减法应注意先化简成最简二次根式,以及运算的准确性.3.在学习过程中运用了类比的学习方法.学习小组内互相交流,讨论,展示.补 偿 提 高1.以下二次根式:①12;②22;③23;④27中,与3是同类二次根式的是( ). A .①和② B .②和③ C .①和④ D .③和④2.计算5a -3b -7a +9b =________.3. 计算:(1)()279818-+(2)()⎪⎪⎭⎫⎝⎛--+6815.024.练习2:教材第16页练习教师出示题目. 第(1)题、第(2)题由学生独立完成. 教师巡视,个别辅导.请几位学生板练.师生共同评析.存在的共性问题共同讨论解决.第(3)题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内. 作 业 设 计 教材第12页.习题21.2复习巩固 2题,3题 (3)、(4) 综合运用 4题 (2),6题 (3)、(4)教师布置作业,分层要求. 学生按要求独立完成作业完成.16.3 二次根式的加减(第2课时)。
学教评一致性八年级数学教学设计16.1二次根式(1)
情景二是第二个“思考”,掌握二次根式在实数范围内有意义的条件.
学
情
分
析
为把握学生学习新知的起点,执教这节课之前,对本班学生进行了相关知识点的复习.复习内容:平方根、算术平方根
学生已经会求平方根、算术平方根,但对于相关概念的理解并不透彻,因此在授课前需要进行相关的复习,八年级的学生已经具备了一定的合作交流与探究能力,所以新知识的接受相对容易,教学中注意把学生的已有经验作为认知基础,在学习过程中,把“理解被开方数是非负数的要求”作为重点,采用让学生观察、思考、探究的方法实现学习目标.
学生怎样学
借助教材中的“思考”,掌握二次根式的定义
教
材
分
析
“二次根式的定义与性质”是人教版八年级数学下册第十六章“二次根式”的内容,二次根式是初中数学知识体系与结构中不可或缺的部分.
学生理解、掌握数学概念,一般需要经历“感知、抽象、符号表征、应用”等一系列认知过程,为了达成课标要求,遵循学生学习的认知规律,教材设置了两个问题情境.
学习
目标
借助教材中的情景,能理解二次根式的概念,并利用 (a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题
评估
任务
能判断一个式子是否为二次根式,掌握二次根式的定义
课题
16.1二次根式
日期
3.1
节次
第节
来源
人教版八年级数学下册第十六章二次根式16.1二次根式(1)
课型
新授课
授课对象
八年班学生
教师
单位
目
标
确
立
依
人教版八年级下册数学第十六章《二次根式》教案
16.1 二次根式(1)教学目的:1、了解二次根式的概念;2、了解二次根式的基本性质;3、通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力。
重点:二次根式的概念和基本性质难点:二次根式的基本性质的灵活运用。
教学过程:例1.(1)当x 是怎样的实数时,2-x 在实数范围内有意义?(2)当x 是怎样的实数时,2x 在实数范围内有意义? (3)当x 是怎样的实数时,3x 在实数范围内有意义? 归纳总结:n x :当n 为奇数时,x ≥0时nx 有意义当n 为偶数时,x 为任意实数时n x 都有意义1. 求下列二次根式中字母k 的取值范围:(1 (2 (3 (42. 当x 分别取下列值时,的值:()10x =; ()21x =; ()31x =-.检测:求二次根式中x 的取值范围: (1)4-x (2)12+x (3)25+x (4)xx -42附加题:(5)22x x - (6)42-x (7)42+-x x 教学目的:1、理解二次根式的性质:(1)a (a ≥0)是非负数;(2)(a )2=a (a ≥0);(3)2a =a (a ≥0)2、会运用其进行相关计算。
重点:会运用a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)进行相关运算。
难点:理解a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)。
教学过程:阅读P69-P71内容,完成两个探究填空,理解、识记两个公式。
公式1 : 公式2 : 例1计算:(1)(5.1)2 (2)(52)2练习:1、(32)2 2、(23)2 3、(52)2 4、(25)2 例2化简:(1)16 (2)2)5(-16.1 二次根式(2)教学目的:复习二次根式的概念、二次根式的基本性质a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0),能熟练运用其进行相关计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年度第二学期八年级数学学科教学工作计划教者:夏彦荣班级:八(3)(4)学生:54人一、指导思想在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
我班优生稍少,学生非常活跃,有少数学生不求上进,思维不紧跟老师。
有的学生思想单纯爱玩,缺乏自主学习的习惯,有部分同学基础较差,厌学无目标。
要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:《义务教育教科书•数学》八年级下册包括二次根式,勾股定理,平行四边形,一次函数,数据的分析等五章内容,学习内容涉及到了《义务教育数学课程标准》(以下简称《课程标准》)中“数与代数”“图形与几何”“统计与概率”“综合与实践”全部四个领域。
其中对于“综合与实践”领域的内容,本册书在第十九章、第二十章分别安排了一个课题学习,并在每一章的最后安排了两个数学活动,通过这些课题学习和数学活动落实“综合与实践”的要求。
第16章“二次根式”主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。
通过本章学习,学生将建立起比较完善的代数式及其运算的知识结构,并为勾股定理、一元二次方程、二次函数等内容的学习做好准备。
第17章“勾股定理”主要研究勾股定理和勾股定理的逆定理,包括它们的发现、证明和应用。
第18章“平行四边形”主要研究一般平行四边形的概念、性质和判定,还研究了矩形、菱形和正方形等几种特殊的平行四边形。
第19章是“一次函数”,其主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系,以及以建立一次函数模型来选择最优方案为素材的课题学习。
第20章“数据的分析”主要研究平均数(主要是加权平均数)、中位数、众数以及方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
四、提高学科教育质量的主要措施:1、认真做好教学六认真工作。
把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。
激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。
引导学生写学后总结,写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。
8、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
9、培养学生学习数学的良好习惯。
这些习惯包括①认真做作业的习惯包括作业前清理好桌面,作业后认真检查;②预习的习惯;③认真看批改后的作业并及时更正的习惯;④认真做好课前准备的习惯;⑤在书上作精要笔记的习惯;⑥妥善保管书籍资料和学习用品的习惯;⑦认真阅读数学教材的习惯。
教学进度安排第十六章 二次根式 16.1 二次根式(1)教学目标1、理解二次根式的概念,并利用a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键1.重点:形如a ≥0)的式子叫做二次根式的概念;2.难点与关键:利用“a ≥0)”解决具体问题.教学过程 一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题: 二、探索新知很明显a ≥0)•的式子叫做二次根式,“(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少?3.当a<0 老师点评:(略)例1.下列式子,哪些是二次根式,、1xx>0)1x y+x ≥0,y •≥0).分析0.x>0x ≥0,y ≥0);不是二次根式的有:1x 、1x y+.例2.当x 在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0才能有意义.解:由3x-1≥0,得:x ≥13当x ≥13在实数范围内有意义.三、巩固练习教材P3练习1、2. 四、应用拓展例3.当x 11x +在实数范围内有意义?分析:11x +在实数范围内有意义,0和11x +中的x+1≠0.解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2)若,求a 2004+b 2004的值.(答案:25)五、归纳小结(学生活动,老师点评) 本节课要掌握:1.形如a ≥02.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业1.教材P5 1,3,6. 2.选用课时作业设计.16.1二次根式(2)教学目标理解a ≥02=a (a ≥0),并利用它们进行计算和化简.a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出(2=a (a ≥0);最后运用结论严谨解题. 教学重难点关键1.重点:a ≥02=a (a ≥0)及其运用.2.难点、关键:用分类思想的方法导出a ≥0)是一个非负数;用探究的方法导出(2=a (a ≥0). 教学过程一、复习引入 (学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0 老师点评(略). 二、探究新知议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:2=_______2=_______2=______2=_______;2=______2=_______)2=_______.老师点评:44的非负数,因此有(2=4.同理可得:(2=22=92=32=13,(2=72,(2=0,所以 例1 计算1.(2 2.(2 32 4)2分析2=a (a ≥0)的结论解题.2 =32,(2 =322=32·5=45,2=56274=.三、巩固练习计算下列各式的值:2 2 2 )2 ( 222- 四、应用拓展例2 计算1.(2(x ≥0) 22 3 2分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0;(4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的42=a (a ≥0)的重要结论解题. 解:(1)因为x ≥0,所以x+1>0(2=x+1(2)∵a 2≥02=a 2 (3)∵a 2+2a+1=(a+1)2又∵(a+1)2≥0,∴a 2+2a+1≥0 2+2a+1 例3在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3分析:(略) 五、归纳小结 本节课应掌握:1.a ≥0)是一个非负数;22=a (a ≥0);反之:a=2(a ≥0). 六、布置作业教材P5 2,4,5。
16.1二次根式(3)教学目标1、理解(a ≥0)并利用它进行计算和化简.2、通过具体数据的解答,探究(a ≥0),并利用这个结论解决具体问题. 教学重难点关键1.重点:a (a ≥0).2.难点:探究结论.讲清a ≥0a 才成立. 教学过程一、复习引入老师口述并板书上两节课的重要内容;1.形如a ≥0)的式子叫做二次根式;2.a ≥0)是一个非负数;3.(2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题. 二、探究新知(学生活动)填空:=_______;=________. (老师点评):根据算术平方根的意义,我们可以得到:=0.01=1102337.例1 化简(1) (2) (3 (4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a ≥0)去化简.解:(1 (2=4(3(4三、巩固练习教材P4练习1,2.四、应用拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1)若,则a可以是什么数?(2)若,则a可以是什么数?(3),则a可以是什么数?分析(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1)因为,所以a≥0;(2)因为,所以a≤0;(3)因为当a≥0,即使a>a所以a不存在;当a<0,要使,即使-a>a,a<0综上,a<0例3当x>2分析:(略)五、归纳小结本节课应掌握:(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业教材P5习题16.1 2、8、10.16.2 二次根式的乘除(1)教学目标1a≥0,b≥0a≥0,b≥0),并利用它们进行计算和化简2a≥0,b≥0)并运用它进行计算;•利用逆向思维,得出a≥0,b≥0)并运用它进行解题和化简.教学重难点关键a≥0,b≥0a≥0,b≥0)及它们的运用.难点:发现规律,导出a≥0,b≥0).教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1);(2.(3).参考上面的结果,用“>、<或=”填空.2.利用计算器计算填空(1)23(4)5.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:例1.计算(1)(2(3(4分析:a≥0,b≥0)计算即可.解:(1)(2(3)=(4例2 化简(1)(2(3(4(5分析:利用a≥0,b≥0)直接化简即可.解:(1)×4=12 (2×9=36(3)×10=90 (4(5)=3xy三、巩固练习(1)计算(学生练习,老师点评)①②(2) 化简: ;教材P7练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1)=(2)=4解:(1)不正确.改正:×3=6(2)不正确.改正:=五、归纳小结本节课应掌握:(1(a≥0,b≥0a≥0,b≥0)及其运用.六、布置作业课本P10习题16.2:1,3,5,6.16.2 二次根式的乘除(2)教学目标a≥0,b>0a≥0,b>0)及利用它们进行运算.1、理解2、利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点1a≥0,b>0a≥0,b>0)及利用它们进行计算和化简.2.难点:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1);(2=________;(3);(4=________.规律:每组推荐一名学生上台阐述运算结果.(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:下面我们利用这个规定来计算和化简一些题目.例1.计算:(1(2(3(4a≥0,b>0)便可直接得出答案.分析:上面4解:(1) (2==(3)= (4 例2.化简:(1) (2 (3 (4分析:直接利用a ≥0,b>0)就可以达到化简之目的.解:(1)8= (283b a =(3)= (4= 三、巩固练习 教材P10 练习1.四、应用拓展例3.=,且x 为偶数,求(1+x分析:a ≥0,b>0时才能成立. 因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩ ∴6<x ≤9 ∵x 为偶数 ∴x=8∴原式=(1+x (1+x (1+x∴当x=8时,原式的值=6.五、归纳小结本节课要掌握a ≥0,b>0a ≥0,b>0)及其运用. 六、布置作业习题16.2 2、4、7.16.2 二次根式的乘除(3)教学目标1、理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.2、通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(1)23老师点评:2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_________..二、探索新知观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.学生分组讨论,推荐3~4个人到黑板上板书.老师点评:不是.2==例1.(1); (3)三、巩固练习1、P10练习2、32(y>0)是二次根式,那么,化为最简二次根式是().A(y>0)By>0)Cy>0)D.以上都不对3.把(a-1)中根号外的(a-1)移入根号内得().A.B C.D.4.化简.(x≥0)5._________.四、应用拓展例2.观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:,=同理可得:从计算结果中找出规律,并利用这一规律计算)的值.(解:原式=……)=)=2002-1=2001五、归纳小结本节课应掌握:最简二次根式的概念及其运用.六、布置作业习题16.2 8、10、11.16.3 二次根式的加减(1)教学目标1、理解和掌握二次根式加减的方法.2、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经,用它来指导根式的计算和化简.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学过程一、复习引入学生活动:计算下列各式.(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.二、探索新知学生活动:计算下列各式.(1)2(2)2(3)(4)老师点评:(1)如果我们把x,不就转化为上面的问题吗?2(2+3(2)把y;(2-3+5)(3)把z;(1+2+3(4)x y.=(3-2因此,二次根式的被开方数相同是可以合并的,如2它们可以合并吗?可以的.(板书)33所以,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.例1.计算(1)(2分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1)(2+3(2(4+8 例2.计算(1)3 (2)+解:(1)3(12-3+6(2)(+=三、巩固练习教材P 19 练习1、2.四、应用拓展例3.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x )的值. 分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=12,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值.解:∵4x 2+y 2-4x-6y+10=0∵4x 2-4x+1+y 2-6y+9=0 ∴(2x-1)2+(y-3)2=0 ∴x=12,y=3原式=23+y当x=12,y=3时,原式=12 五、归纳小结本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.六、布置作业习题16.3 1、2、3.16.3 二次根式的加减(2)教学目标1、运用二次根式、化简解应用题.2、通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.重难点关键讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.教学过程一、复习引入上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固.二、探索新知例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?(结果用最简二次根式表示)ACQ P分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,根据三角形面积公式就可以求出x的值.解:设x 后△PBQ的面积为35平方厘米.则有PB=x,BQ=2x依题意,得:12x·2x=35x2=35所以PBQ的面积为35平方厘米.答:PBQ的面积为35平方厘米.三、巩固练习1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A.5BC.D.以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.13BC.D.3.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,鱼塘的宽是_______m.(结果用最简二次根式)4.已知等腰直角三角形的直角边的边长为,那么这个等腰直角三角形的周长是________.(结果用最简二次根式)四、应用拓展例2.若最简根式3a a、b的值.(•同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,化简成|b|·由同类二次根式的定义得3a-•b=•2,2a-b+6=4a+3b.解:首先把根式由题意得4326 32a b a ba b+=-+⎧⎨-=⎩∴246 32 a ba b+=⎧⎨-=⎩∴a=1,b=1五、归纳小结本节课应掌握运用最简二次根式的合并原理解决实际问题.六、布置作业1.习题16.3 4.6,8.16.3 二次根式的加减(3)教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用. 复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算. 重难点关键重点:二次根式的乘除、乘方等运算规律;难点关键:由整式运算知识迁移到含二次根式的运算.教学过程一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y )·zx (2)(2x 2y+3xy 2)÷xy2.计算(1)(2x+3y )(2x-3y ) (2)(2x+1)2+(2x-1)2老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全;平方公式(5)平方差公式的运用.二、探索新知如果把上面的x 、y 、z 改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立. 整式运算中的x 、y 、z 是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)( (2)( 分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.解:(1)((2)(432例2.计算(1)()( (2分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)()( 2(2)(=2-2=10-7=3三、巩固练习1.(-12+)2的计算结果(用最简根式表示)是________.2.(1-2-()2的计算结果(用最简二次根式表示)是_______.3.若,则x 2+2x+1=________.4.已知a 2b-ab 2=_________.四、应用拓展例3.已知x b a -=2-x a b -,其中a 、b 是实数,且a+b ≠0并求值.分析:由于=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x 的值,代入化简得结果即可.解:原式22=2(1)x x +-+2(1)x x+-=(x+1) ∵x b a-=2-x a b - ∴b (x-b )=2ab-a (x-a )∴bx-b 2=2ab-ax+a 2∴(a+b )x=a 2+2ab+b 2∴(a+b )x=(a+b )2∵a+b ≠0∴x=a+b∴原式=4x+2=4(a+b )+2五、归纳小结本节课应掌握二次根式的乘、除、乘方等运算.六、布置作业选用课时作业设计.。