第24章 与圆有关的最值
人教版九上数学第24章 圆 24.1.3 弧 弦 圆心角教案+学案
人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.3 弧、弦、圆心角教案【教材内容】1.圆心角的概念;2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等;3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.【教学目标】1.了解圆心角的概念;2.掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.【教学重点】通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.【教学难点】弧、弦、圆心角之间的相等关系是论证同圆或等圆中弧相等、角相等、线段相等的主要依据.【教学过程设计】一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究知识点一:圆心角 【类型一】圆心角的识别例1 如图所示的圆中,下列各角是圆心角的是( )A .∠ABCB .∠AOBC .∠OABD .∠OCB 解析:根据圆心角的概念,∠ABC 、∠OAB 、∠OCB 的顶点分别是B 、A 、C ,都不是圆心O ,因此都不是圆心角.只有B 中的∠AOB 的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.知识点二:圆心角的性质 【类型一】利用圆心角的性质求角例2 如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角例3 如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明例4 如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB .又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO .∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.知识点四:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 例5 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么? (2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?解析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到AB =CD 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=12AB ,CF=12CD ∴AE=CF 又∵OA=OC ∴Rt △OAE ≌Rt △OCF ∴OE=OF(2)如果OE=OF ,那么AB=CD ,AB =CD ,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CDD∴AE=12AB,CF=12CD∴AB=2AE,CD=2CF∴AB=CD∴AB=CD,∠AOB=∠COD方法归纳:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.三、教学小结师生一起总结本节学习知识要点:1.圆心角的概念;2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.【板书设计】24.1 圆的有关性质24.1.3 弧、弦、圆心角1.圆心角的识别2.圆心角的性质3.弧、弦、圆心角之间的关系4.运用弧、弦、圆心角的关系进行证明与计算【课堂检测】1.(1)在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.在同圆或等圆中,如果两条弧相等,那么它们所对的相等,•所对的弦也.(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的也相等.2. 如图,在⊙O中,AB=AC∠ACB=60 °,求证:∠AOB=∠BOC=∠AOC3. 如图,AB,CD是⊙O的两条弦。
九年级数学下 第24章 圆24.2 圆的基本性质第4课时 圆心角、弧、弦、弦心距间的关系说课
圆心角、弧、弦、弦心距间的关系教材分析:本课是沪科版九年级下册第24章第二节圆的有关性质,它是在学习了垂径定理后进而要学习的圆的又一个重要性质。
主要研究弧,弦,圆心角的关系。
教材中充分利用圆的对称性,通过观察,实验探究出性质,再进行证明,体现图形的认识,图形的变换,图形的证明的有机结合。
在证明圆的许多重要性质时都运用了圆的旋转不变性。
同时弧,弦,圆心角的关系定理在后继证明线段相等,角相等,弧相等提供了又一种方法。
重点:圆心角、弧、弦之间的相等关系难点:从圆的旋转不变性出发,得到圆心角,弦,弧之间的相等关系。
目的分析:知识与技能目标:(1)让学生在实际操作中发现并理解圆的旋转不变性。
(2)结合图形让学生理解圆心角的概念,学会辨别圆心角。
(3)引导学生发现圆心角、弧、弦之间相等关系,并初步学会运用这些关系解决有关问题。
过程与方法目标:培养学生观察,分析,归纳的能力,渗透旋转变化的思想及有特殊到一般的变化规律。
情感与态度目标:进一步培养学生的合情推理能力,发展学生的逻辑思维能力和推理论证的表达能力,同时对学生渗透事物之间是可相互转化的辨证唯物主义教育。
教法分析:1.学情:由于圆的知识是轴对称及旋转知识的后续学习,学生又有一定圆的相关概念,计算的知识储备,因此学习本节难度不是太大。
由于学生对圆的旋转不变性不甚了解,所以在探讨圆心角、弧、弦之间的相等关系时可能感到困难,另外对等弧等的理解可能不透彻,我会做直观的示范;初始阶段在证明角相等,线段相等等有关问题时受思维定势的影响,学生往往会走利用“三角形全等”的老路,这时我会有意识引导,针对性训练构建学生头脑中新的知识网络。
2.教学活动是教与学双边互动过程,必须充分发挥学生的主体和教师的主导作用,因此教学目标的达成,需优选教学法,根据学生的学情,本节课在探究圆心角,弦,弧之间的相等关系我采用发现模式,基本程序是:观察实践——概括归纳——重点研讨——推理反思。
这种教学模式注重知识的形成过程,有利于体现学生的主体地位和分析问题的方法,例题教学时采用讲授模式,一方面通过新知识的讲解练习,及时反馈,查缺补漏,使学生树立信心,培养学习能力,另一方面对大面积提高教学质量也是有意的。
初中数学教材解读人教九年级上册第二十四章圆圆的有关性质PPT
)
A.弦的垂线平分弦所对的弧;
B.平分弦的直径垂直于这条弦;
C.过弦的中点的直线必过圆心;
D.弦所对的两条弧的中点连线垂直平分弦 且过圆心;
双基训练
5. 如图,将半径为2cm的圆形纸片折叠后,圆弧 恰好经过圆心,则折痕AB的长为( C )
A.2cm B. 3 cm C. 2 3cm D. 2 5 cm
12.已知直径AB被弦CD分成AE=4,
EB=8,CD和AB成300角,则弦CD
的弦心距OF=___1_;CD=_2__3_5_.
D
F
A
B
C
EO
13.已知:如图,直径CD⊥AB,垂足为E .
⑴若半径R = 2 ,AB = 2 3 , 求OE、DE 的长.
⑵若半径R = 2 ,OE = 1 ,求AB、DE 的长.
(C )
A.1.5cm
B.10.5cm;
C.1.5cm或10.5cm D.都不对;
随堂训练
8.已知P为⊙o内一点,且OP=2cm,如果⊙o
的半径是3 c m ,则过P点的最长的弦等于 .
最短的弦等于_________。
M
O
P
A
B
N
9.P为⊙O内一点,且OP=2cm,若⊙O的半径为3cm,
则过P点的最短弦长等于( A.1cm B.2cm C. 5 cm
点.
连M和N并反向延长交圆于P和Q两点.
求证: PM=NQ.
A
PM HN Q
B
O
C
•例1 如图,一条公路的转变处是一段圆弧(即 图中弧CD,点O是弧CD的圆心),其中CD=600m,E
为弧CD上的一点,且OE⊥CD垂足为F,EF=90m.求
人教版初中数学九年级上册第24章知识复习第一部分圆的有关概念和性质
在上图中,
D
若∠COD=∠AOB,则 CD=AB,CD=AB ;
若CD=AB,则 ∠COD=∠AOB,CD=AB;
若CD=AB,则 ∠COD=∠AOB,CD=AB,.
CAD=ACB.
(二)圆的有关性质 3、垂径定理:
•
垂直于弦的直径平分这条弦,并且平分弦 所对的两条弧。 推论:①平分弦(非直径)的直径垂直于这条弦,
(二)圆的有关性质 Q
A•
O•
•B
P
C
4、②在同圆或等圆中,同弧或等弧所对的 圆周角相等,都等于该弧所对的圆心角的 一半;相等的圆周角所对的弧相等。
如图:∠BOC=2∠BAC=2∠BPC=2∠BQC.
(二)圆的有关性质
PQ
O •
D
A C
B
如图:若AB=CD, 则∠AOB=∠COD=2∠APB=2∠CQD.
反之,若∠APB=∠CQD,则AB=CD.
【及时巩固】
d P
P
d
O
•
r
d
P
1、设⊙O的半径为r,点P到圆心的而距离为d,
则 ①点P在⊙O上 d = r;
②点P在⊙O内 d< r;
③点P在⊙O外 d >r.
【及时巩固】
2、“经过三角形各顶点的圆叫三角形的外接圆. 外接圆的圆心叫做三角形的外心(即三角形三边 中垂线的交点),这个三角形叫圆的内接三角形.” 先分别作出锐角三角形、钝角三角形、直角三 角形的外接圆,再观察图形,填空:
并且平分弦所对的弧; ②平分弧的直径垂直平分这条弧所对的弦;...
(二)圆的有关性质
•
垂径定理及推论可归纳为: 一条直线若具有“①经过圆心; ②垂直于弦;③平分弦;④平分弦所对的 优弧;⑤平分弦所对的劣弧”这五个性质 中的两个,这条直线就具有其余三个性质. 注意:①③组合有限制.
2024年人教版九年级数学上册教案及教学反思第24章24.3 正多边形和圆(第1课时)
24.3 正多边形和圆第1课时一、教学目标【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系.【情感态度与价值观】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、边心距,边长之间的关系.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课出示课件2,3:观察上边的美丽图案,思考下面的问题:(1)这些都是生活中经常见到的利用正多边形得到的物体,你能找出正多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样做一个正多边形呢?学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.(板书课题)(二)探索新知探究一正多边形的对称性教师问:什么叫做正多边形?(出示课件5)学生答:各边相等,各角也相等的多边形叫做正多边形.教师问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?学生答:矩形不是正多边形,因为矩形不符合各边相等;菱形不是正多边形,因为菱形不符合各角相等;教师强调:正多边形:①各边相等;②各角相等,两个条件,缺一不可.教师问:正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?(出示课件6,7)学生动手操作,交流,感受正多边形的对称性.教师归纳:正n边形都是轴对称图形,都有n条对称轴,只有边数为偶数的正多边形既是轴对称图形又是中心对称图形.探究二正多边形的有关概念教师问:以正四边形为例,根据对称轴的性质,你能得出什么结论?(出示课件8,9)师生结合图形共同探究:EF是边AB、CD的垂直平分线,∴OA=OB,OD=OC.GH是边AD、BC的垂直平分线,∴OA=OD,OB=OC.∴OA=OB=OC=OD.∴正方形ABCD有一个以点O为圆心的外接圆.AC是∠DAB及∠DCB的角平分线,BD是∠ABC及∠ADC的角平分线,∴OE=OH=OF=OG.∴正方形ABCD还有一个以点O为圆心的内切圆.出示课件10:教师问:所有的正多边形是不是也都有一个外接圆和一个内切圆?学生答:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.教师问:一个正多边形的各个顶点在同一个圆上?学生答:一个正多边形的各个顶点在同一个圆上,则这个正多边形就是这个圆的一个内接正多边形,圆叫做这个正多边形的外接圆.教师问:所有的多边形是不是都有一个外接圆和内切圆?学生答:多边形不一定有外接圆和内切圆,只有是正多边形时才有,任意三角形都有外接圆和内切圆.教师出示概念:(出示课件11)1.正多边形的外接圆和内切圆的公共圆心,叫做正多边形的中心.2.外接圆的半径叫做正多边形的半径.3.内切圆的半径叫做正多边形的边心距.4.正多边形每一条边所对的圆心角,叫做正多边形的中心角.正多边形的每个中心角都等于360.n练一练:(出示课件12)完成下面的表格:学生计算交流并填表.探究三 正多边形的有关计算出示课件13:如图,已知半径为4的圆内接正六边形ABCDEF :①它的中心角等于 度; ②OC BC(填>、<或=); ③△OBC 是 三角形;④圆内接正六边形的面积是△OBC 面积的 倍. ⑤圆内接正n 边形面积公式:_______________________. 学生计算交流后,教师抽学生口答.①60;②=;③等边;④6;⑤1=2S ⨯⨯正多边形周长边心距出示课件14:例 有一个亭子,它的地基是半径为4m 的正六边形,求地基的周长和面积(精确到0.1m 2).教师分析:根据题意作图,将实际问题转化为数学问题.师生共同解答:(出示课件15)解:过点O 作OM ⊥BC 于M.在Rt △OMB 中,OB =4,MB =4222BC ==,利用勾股定理,可得边心距r ==亭子地基的面积:2112441.6(m ).22S l r =⋅=⨯⨯≈ 巩固练习:(出示课件16)如图所示,正五边形ABCDE 内接于⊙O ,则∠ADE 的度数是( )A .60°B .45°C .36°D .30° 学生独立思考后自主解答:C.教师归纳:圆内接正多边形的辅助线(出示课件17)1.连半径,得中心角;2.作边心距,构造直角三角形. 巩固练习:(出示课件18)已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?学生独立思考后解答,一生板演.解:∵直角三角形两直角边之和为8,设一边长为x. ∴ 另一边长为8-x.则该直角三角形面积:S=(8-x )x ÷2,即214.2s x x =-+ 当x=2b a -=4,另一边为4时,S 有最大值244ac b a -=8.∴当两直角边都是4时,直角面积最大,最大值为8. (三)课堂练习(出示课件19-24)1.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=______度.2.填表:3.若正多边形的边心距与半径的比为1:2,则这个多边形的边数是_____.4.如图是一枚奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为_____度.(不取近似值)5.要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要____cm.6.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,求⊙O的面积.7.如图,正六边形ABCDEF的边长为,点P为六边形内任一点.则点P 到各边距离之和是多少?8.如图,M,N分别是☉O内接正多边形AB,BC上的点,且BM=CN.(1)求图①中∠MON=_______;图②中∠MON=_______;图③中∠MON=_______;(2)试探究∠MON的度数与正n边形的边数n的关系.参考答案:1.360°解析:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°.2.3.34.412875.6.解:∵正方形的面积等于4, ∴正方形的边长AB=2. 则圆的直径AC=2, ∴⊙O 的半径=.∴⊙O 的面积为22.ππ=7.解:过P 作AB 的垂线,分别交AB 、DE 于H 、K ,连接BD ,作CG ⊥BD 于G.22∵六边形ABCDEF 是正六边形, ∴AB ∥DE ,AF ∥CD ,BC ∥EF ,∴P 到AF 与CD 的距离之和,及P 到EF 、BC 的距离之和均为HK 的长. ∵BC=CD ,∠BCD=∠ABC=∠CDE=120°, ∴∠CBD=∠BDC=30°,BD ∥HK ,且BD=HK.∴CG=12BC=.∵CG ⊥BD ,∴BD=2BG=2×=2×3=6.∴点P 到各边距离之和=3BD=3×6=18. 8.解:⑴①120°;②90°;③72°;⑵360MON n ︒∠=.(四)课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?(五)课前预习22BG BC-预习下节课(24.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.。
第24章 圆之专题练习:隐形的圆——“道是无圆却有圆”
专题:隐形的圆——“道是无圆却有圆”方法技巧常见的隐圆有两类:(1)到定点的距离等于定长的点在同一个圆上(圆的定义);(2)若定长线段的张角是定角(定弦定角),则定角的顶点在定弦所对的一条弧上运动.利用“辅助圆”的丰富性质转换角,求线段的长或最值是隐圆类问题的基本模式.题型一利用“定点定长”构隐圆【例1】如图,在 ABCD中,AB=4,BC=3,∠ABC=60°,点E为平面内的一动点,点P为CE的中点,若AE=1,求BP的最大值.【例2】如图,O是长度为4的线段AB上的一点,且OA=1,以OA为半径作⊙O,点M是⊙O上的一动点,连接MB,以MB为腰作等腰Rt△MBC,使∠MBC=90°(M,B,C三点为逆时针顺序),连接AC.求AC长度的取值范围.题型二 利用“定弦定角”构隐圆【例3】如图,在正方形ABCD 中,AC ,BD 是对角线,点P 为对角线BD 上的一点,作PE ⊥AP 交BC 于点E .若∠CAE =15°,求PBPE的值.【例4】如图,⊙O 的半径为1,AB 为⊙O 的弦,将弦AB 绕点A 逆时针旋转120°,得到AC ,连接OC ,求OC 长度的最大值.针对练习61.如图,已知AB 是⊙O 的直径,CD 是⊙O 的弦(CD 与AB 不平行),点M 是CD 的中点,CE ⊥AB 于点E ,DF ⊥AB 于点F .①当∠EMF =60°时,求CDAB的值;②当∠EMF =90°时,CD AB 的值为 ;当∠EMF =120°时,CDAB的值为 .AC上的一动点,PEAB上的一点,且∠AOC=120°,点P是⌒2.如图,AB是半圆⊙O的直径,点C是⌒⊥OA于点E,PF⊥OC于点F,CD⊥OB于点D,求证:EF=CD.3.如图,在四边形ABCD中,∠DAB=∠ABC=90°,AD=AB=1,BC=2,点P为射线DA上的一动点,过B,D,P三点的圆交PC于点Q.求DQ的最小值.4.如图,△ABC的两个顶点A,B在半径为6的⊙O上,∠A=30°,∠B=90°,点C在⊙O内.当点A在圆上运动,且OC的长最小时,求弦AB的长.。
人教版九年级数学上册第24章24.1圆的有关性质考点与题型归纳
人教版九年级数学上册第二十四章圆24.1 圆的有关性质一:考点归纳考点一、圆在一个平面内,一条线段O A绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆. 圆心:固定的端点叫作圆心.半径:线段OA的长度叫作这个圆的半径.(1)圆的表示方法:以点O为圆心的圆,记作“ ⊙O ”,读作“圆O”. 同圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.考点二、垂直于弦的直径(1)圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,圆有无数条对称轴.(2)垂直于弦的直径平分弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.考点三、弧、弦、圆心角(1)顶点在圆心的角叫做圆心角 .(2)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(3)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.考点四、圆周角(1)圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角. 特征:①角的顶点在圆上;②角的两边都与圆相交.(2)同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.(3)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(4)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(5)如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.圆内接四边形的对角互补.二:【题型归纳】【题型一】圆1.下列说法正确的是()①弦是圆上两点间的部分;②直径是弦;③经过圆心的每一条直线都是圆的对称轴;A.0个B.1个C.2个D.3个2.下列说法:①直径是弦;②长度相等的两条弧是等弧;③半圆是弧,但弧不一定是半圆;④圆的对称轴是直径;⑤外心在三角形的一条边上的三角形是直角三角形,正确的命题有()A.1个B.2个C.3个D.4个【题型二】垂直于弦的直径3.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为()A.OF=CF B.AF=BF C.AD BDD.∠DBC=90°4.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5º,AB=2,则半径OB等()A .1B .22C .2D .2【题型三】弧、弦、圆心角5.给出下列命题:①弦是直径;②圆上两点间的距离叫弧;③长度相等的两段弧是等弧;④圆心角的度数与它所对的弧的度数相等;⑤圆是轴对称图形,不是中心对称图形;⑥直径是弦.其中正确的个数为( )A .1B .2C .3D .46.如图,AB 为O 的直径,点D 是弧AC 的中点,过点D 作DE AB ⊥于点E ,延长DE 交O 于点F ,若12AC =,3AE =,则O 的直径长为( )A .10B .13C .15D .16.7.O 是四边形ABCD 的外接圆,AC 平分BAD ∠,则正确结论是( )A .AB AD = B .BC CD = C .AB BD = D .ACB ACD ∠=∠【题型四】圆周角8.如图,O 是ABC 的外接圆,CD 是O 的直径,35B ∠=︒,则ACD ∠的度数是( )A .45︒B .50︒C .55︒D .60︒9.如图,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ACD=40°,则∠BAD 的大小为()A .60ºB .30ºC .45ºD .50º三:基础巩固和培优一、单选题1.如图,点A 、B 、C 在⊙O 上,CO 的延长线交AB 于点D ,∠A =50°,∠B =30°,∠ACD 的度数为( )A .10°B .15°C .20°D .30°2.如图,在5×5的正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条弧所在圆的半径是( )A .2B .5C .22D .33.如图是我市环北路改造后一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为4m ,水面最深地方的高度为1m ,则该输水管的半径为( )A .2mB .2.5mC .4mD .5m4.如图,在⊙O 中,半径OC 垂直弦AB 于D ,点E 在⊙O 上,∠E =22.5º,AB =2,则半径OB 等( )A .1B .22C .2D .25.下列说法中,正确的是( )A .直径所对的弧是半圆B .相等的圆周角所对的弦相等C .两个半圆是等弧D .一条弧所对的圆心角等于它对的圆周角的一半6.如图,已知抛物线()()31916y x x =---与x 轴交于,A B 两点,对称轴与抛物线交于点C ,与x 轴交于点D ,C 的半径为2,G 为C 上一动点,P 为AG 的中点,则DP 的最大值为( )A .412B .23C .72D .57.如图,AB 是O 的直径,弦CD 交AB 于点P ,4AP =,8BP =,45APC ∠=︒,则CD 的长为( )A .34B .62C .234D .128.已知,AB 为圆O 的一条弦,∠AOB=80°,则弦AB 所对的圆周角的度数为( )A .40︒B .140︒C .70︒D .40︒或140︒9.下列说法:①直径是弦;②长度相等的两条弧是等弧;③半圆是弧,但弧不一定是半圆;④圆的对称轴是直径;⑤外心在三角形的一条边上的三角形是直角三角形,正确的命题有 ( )A .1个B .2个C .3个D .4个10.如图,已知100BOC ∠=︒,则A ∠的度数为( )A .50︒B .80︒C .100︒D .130︒二、填空题 11.圆弧形蔬菜大棚的剖面如图,已知AB =16m ,半径OA =10m ,OC ⊥AB ,则中柱CD 的高度为_________m .12.若圆的半径为6cm ,圆中一条弦长为3cm ,则此弦中点到此弦所对弧的中点的距离为_______cm.13.如图,在⊙O中,CA DB,∠1=30°,则∠2=_________°.14.如图,⊙O的半径为10,弦AB的长为12,OD⊥AB,交AB于点D,交⊙O于点C,则CD=______.15.如图,△ABC的三个顶点都在⊙O上,∠ACB=40°,则∠OAB=______.三、解答题16.如图,⊙O的半径OD⊥弦AB于点C,联结AO并延长交⊙O于点E,联结EC.已知AB=8,CD=2.(1)求OA的长度;(2)求CE的长度.17.如图,已知,AB是O的直径,弦CD⊥AB于点E,∠ACD=30°,AE=3cm,求BD的长度.18.如图,D 是O 弦BC 的中点,A 是BC 上一点,OA 与BC 交于点E ,已知8AO =,12BC =. (1)求线段OD 的长.(2)当2EO BE =时,求ED ,EO 的长.19.已知P 是O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A B 、 (不与P ,Q 重合),连接AP 、BP 若=APQ BPQ ∠∠.(1)如图1,当=45APQ ∠︒,=1AP ,=22BP O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P M 、重合),连接ON OP 、,若+2=90NOP OPN ∠∠︒,探究直线AB 与ON 的位置关系,并证明.20.如图,90BCD ∠=︒,BC DC =,直线PQ 经过点D .设PDC α∠=(45135α︒<<︒),BA PQ ⊥于点A ,将射线CA 绕点C 按逆时针方向旋转90︒,与直线PQ 交于点E .(1)判断:ABC ∠________PDC ∠(填“>”或“=”或“<”);(2)猜想ACE △的形状,并说明理由;(3)若ABC的外心在其内部(不含边界),直接写出 的取值范围.参考答案题型归纳【解析】:1【详解】①弦是连接圆上两点间线段,故不正确;②直径是最长的弦,故正确;③经过圆心的每一条直线都是圆的对称轴,故正确;故选C.2.【详解】解:①直径是弦,是真命题;②在同圆与等圆中,长度相等的两条弧是等弧,原命题是假命题;③半圆是弧,但弧不一定是半圆,是真命题;④圆的对称轴是直径所在的直线,原命题是假命题;⑤外心在三角形的一条边上的三角形是直角三角形,是真命题;故选:C.【解析】3.【详解】解:∵DC是⊙O直径,弦AB⊥CD于点F,∴AF=BF,AD BD,∠DBC=90°,∴B、C、D正确;∵点F不一定是OC的中点,∴A错误.故选:A.4.【详解】解:∵半径OC⊥弦AB于点D,∴=AC BC,∴∠E=12∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,∵AB=2,10∴DB=OD=1,则半径OB.故选:D.【解析】:5【详解】解:①弦不一定是直径,原命题是假命题;②圆上任意两点间的部分叫弧,原命题是假命题;③在同圆或等圆中,长度相等的两段弧是等弧,原命题是假命题;④圆心角的度数与它所对的弧的度数相等,是真命题;⑤圆是轴对称图形,也是中心对称图形,原命题是假命题;⑥直径是弦,是真命题.故选:B.6【详解】解:连接OD交AC于点G,∵AB⊥DF,∴AD AF=,DE=EF.又点D是弧AC的中点,∴AD CD AF==,OD⊥AC,∴AC DF=,∴AC=DF=12,∴DE=6.设O的半径为r,∴OE=AO-AE=r-3,在Rt△ODE中,根据勾股定理得,OE2+DE2=OD2,∴(r-3)2+62=r2,解得r=152.∴O的直径为15.故选:C.7.【详解】解:ACB ∠与ACD ∠的大小关系不确定,AB ∴与AD 不一定相等,故选项A 错误; AC 平分BAD ∠,BAC DAC ∴∠=∠,BC CD ∴=,故选项B 正确;ACB ∠与ACD ∠的大小关系不确定,∴AB 与AD 不一定相等,选项C 错误;∵BCA ∠与DCA ∠的大小关系不确定,选项D 错误;故选B .8.【详解】解:连接AD ,∵CD 是圆的直径,∴∠DAC=90°,∵∠B=∠D=35°,∴∠ACD=90°-∠D=90°-35°=55°,故选C .9.【详解】连结BD ,∵同弧所对的圆周角相等,∴∠B=∠C=40º,∵AB 为直径,∴∠ADB=90º,∴∠DAB+∠B=90º,∴∠DAB=90º-40º=50º.故选择:D.二:基础巩固和培优1.C【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC-∠B=100°-30°=70°,∴∠ACD=70°-50°=20°;故选:C.2.B【详解】解:如图线段AB的垂直平分线和线段BC的垂直平分线的交点M,即点M为圆心,22+125故选:B.3.B【详解】过点O作OD⊥AB于点D,连接OA,设OA=x,则OD=x-1,在Rt△AOD中, x2=(x-1)2+22,解得x=2.5m.故选B.4.D【详解】解:∵半径OC⊥弦AB于点D,∴=AC BC,∴∠E=12∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB2211=2.故选:D.5.A【详解】解:A、直径所对的弧是半圆,正确,符合题意;B、同圆或等圆中,相等的圆周角所对的弦相等,故原命题错误,不符合题意;C、半径相等的两个半圆是等弧,故原命题错误,不符合题意;D、同圆或等圆中,一条弧所对的圆心角等于它对的圆周角的一半,故原命题错误,不符合题意,故选:A.6.C【详解】如图,连接BG,由题意可得:A(1,0),B(9,0),D是AB的中点,∴AB=8,∴BD=4, 3y=(1)(9)16x x ---=23(5)316x --+, ∴C(5,3),∴CD=3,由D 、P 分别是AB 、AG 的中点可得:DP 是ABG 的中位线, ∴DP=12BG ,要求DP 的最大值,即要求BG 的最大值,当G 、C 、B 三点共线时,BG 最大,BC=22345+=,BG=5+2=7,DP=12BG=72.故选:C .7.C【详解】解:∵4AP =,8BP =,∴AB=12,AO=6,∴PO=2,作OM ⊥CD ,连接OC ,∵45DPB APC ∠=∠=︒,∴∠AOM=45°,△MOP 为等腰直角三角形,∴222MO OP ,在Rt △OCM 中根据勾股定理22226(2)34CMCO OM , ∴2234CD CM .故选:C .8.D【详解】解:如图,弦AB 所对的圆周角为C D ∠∠,,80AOB ∠=︒,40D ∴∠=︒,四边形ADBC 为O 的内接四边形,180C D ∴∠+∠=︒,=140C ∴∠︒.故选D .9.C【详解】解:①直径是弦,是真命题;②在同圆与等圆中,长度相等的两条弧是等弧,原命题是假命题; ③半圆是弧,但弧不一定是半圆,是真命题;④圆的对称轴是直径所在的直线,原命题是假命题;⑤外心在三角形的一条边上的三角形是直角三角形,是真命题; 故选:C .10.A【详解】解:∵100BOC ∠=︒,∴A ∠=1250BOC ∠=︒,故选A .11.4【详解】解:∵CD 垂直平分AB ,∴AD =8.∴OD =22108-=6m ,∴CD =OC−OD =10−6=4(m ).故答案是:412.3或9【详解】在⊙O 中,弦AB=63cm ,半径6R =;过圆心O 作直径MN ,且MN ⊥AB 于点C ,连接OB ;则AC=BC=12AB=33,OB=6, 由勾股定理得:()22226333OB BC -=-=,∴CM=6+3=9,CN=6-3=3;∵MN ⊥AB ,且MN 为⊙O 的直径,∴点M 、N 分别为AMB 、ANB 的中点, ∴AB 弦中点到弦所对应的弧的中点的距离分别为3或9. 故答案为:3或9.13.30【详解】解:CA DB =,BC BC =,∴AB CD =,∴∠1=∠2,∠1=30°,∴∠2=30°;故答案为30.14.2【详解】∵OD ⊥AB ,OD 过圆心O , ∴162AD BD AB ===,由勾股定理可得:8OD ===, ∴1082CD CO OD =-=-=; 故答案是2.15.50°【详解】解:根据圆周角定理得:∠AOB=2∠ACB ,∵∠ACB=40°,∴∠AOB=2×40°=80°,∵OA=OB ,∴∠OAB=∠OBA ,∴∠OAB+∠OBA+∠AOB=180°, ∴∠OAB=50°.故答案为: 50°.16.(1)5;(2)【详解】解:(1)∵在⊙O 中,OD ⊥弦AB , ∴AC =BC =12AB =4,设OA 为x ,则OD =OA =x ,∵CD =2,∴OC=x﹣2在Rt△ACO中,AC2+OC2=AO2∴42+(x﹣2)2=x2,解得x=5,∴OA=5;(2)连接BE,∵OA=OE,AC=BC,∴OC∥BE且OC=12 BE,∴∠EBA=∠OCA=90°,∵OC=OD﹣CD=5﹣2=3,∴BE=6,在Rt△ECB中,BC2+EB2=EC2∴42+62=EC2,∴CE=213.17.63BD cm=【详解】连接OC、OD,AB是⊙O的直径,弦CD⊥AB,∴CE=DE,∠AEC=∠DEB=90°,AC AD=,∴30ACD ∠=︒,∴260COA DOA ACD ∠=∠=∠=︒, OC =OA ,∴AOC △是等边三角形,∴AE =EO =3cm ,∴AO =DO =OB =6cm ,∴BE =9cm ,DE =22226333OD OE -=-=cm , ∴BD =22229(33)63BE DE +=+=cm . ∴DB 的长为63cm .18.(1)线段OD 的长为27;(2)ED 2=,EO=42【详解】解:(1)连接OB .∵OD 过圆心,且D 是弦BC 中点, ∴OD ⊥BC ,BD=12BC , 在Rt △BOD 中,OD 2+BD 2=BO 2. ∵BO=AO=8,BD=6.∴22228627BO BD --= (2)在Rt △EOD 中,OD 2+ED 2=EO 2. 设BE=x ,则2x ,DE=6x -, (())222762x x +-=, 整理得:212640x x +-=,解得:12416x x ==-,(舍去).∴BE=4,ED=642-=,EO=42.19.(1) ☉O 的半径是32;(2)A B ∥ON ,证明见解析 【详解】解:(1)连接AB ,在☉o 中,o APQ BPQ 45∠=∠=,o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ ,在☉0中, AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ 90O ∴∠=NOQ OCA 180O ∴∠+∠= .AB//ON ∴20.(1)=;(2)ACE △是等腰直角三角形;理由见解析;(3)4590α︒<<︒.【详解】解:(1) 90AB AD DCB ⊥∠=︒,,3609090180CDA ABC ∴∠+∠=︒-︒-︒=︒,180CDA CDE ∠+∠=︒,.EDC ABC ∴∠=∠故答案为:=.(2)ACE △是等腰直角三角形.理由如下:由旋转可得:90ACE BCD ∠=∠=︒,90ECD DCA DCA BCA ∴∠+∠=︒=∠+∠,ECD BCA ∴∠=∠,在ECD 与ACB △中,ECD BCA CD CBEDC ABC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ECD ACB ASA ∴≌EC AC ∴=,又90ACE ∠=︒ACE ∴是等腰直角三角形.(3)当∠ABC=α=90°时, ABC 的外心在其斜边上,∠ABC=α>90°时,ABC 的外心在其外部,由PDC ∠>45EAC ∠=︒,PDC DCA EAC ∠=∠+∠<135︒, ∴ 45°<α<135°,故:4590α︒<<︒.。
人教版初中数学九年级上册第24章圆知识复习第二部分点和圆、直线和圆的位置关系
*有兴趣的同学可以尝试证明: (1)如图,正五角星中AC=a, 求该五角星外接圆的直径.(用三角函数表示) (2)圆内接四边形两组对边乘积之和等于两条对角线 的乘积。(提示:构造相似形)
(3)若圆内接四边形的对角线互相垂直,则过对角线 的交点所作任一边的垂线将对边平分. A
B
E
•
O
C
D
中考试题精选
O• 5 A 4P B
【及时巩固】
7、如图,AB是ʘO的直径,AC是弦,∠CAB=30º, 过C点作ʘO的切线交AB的延长线于D,如果 OD=12cm,那么ʘO的半径为 6 .
C
30º • 60º 30º
AO
BD
【及时巩固】
8、如图,PB、PC分别切ʘO于B、C两点,A 是ʘO上一点,∠CAB=50º,则∠P等于 80º .
6、如图,△ABC内接于⊙O,AB的延长线 与过C点的切线GC相交于点D,BE与AC相 交于点F,且CB=CE.求证:(1)BE∥DG; (2)CB2-CF2=BF·FE.
A
O•
E
FB
G CD
中考试题精选
7、如图,PC为⊙O的切线,C为切点, PAB是过O点的割线,CD⊥AB于点D,
若 tan B 1,PC=10cm,求△BCD的面积. 2
A
对应的一个基本图
E O• C D
P
形,其中有很多关
系,你能找出多少?
B
弦切角:圆的切线和过切点的弦所夹的角。 P
O•
O•
B
A
M
(5)弦切角定理:弦切角等于它所夹的弧所对 的圆周角.
推论:如果两个弦切角所夹的弧相等,那么 这两个弦切角也相等.
(6)和三角形各边都相切的圆叫三角形的内切圆。 内切圆的圆心是三角形的内心(即三角形三内角 平分线的交点)。各边都和圆相切的三角形叫圆 的外切三角形。
2018_2019学年九年级数学上册第24章圆24.3正多边形和圆课件新版新人教版
24.3 正多边形和圆
学习指南 知识管理 归类探究 当堂测评 分层作业
学习指南
★教学目标★ 使学生经历正多边形的形成过程,了解正多边形的有关概念,掌握用等分 圆周画圆的内接正多边形的方法.
★情景问题引入★ 我国古代数学家刘徽,在公元三世纪用“割圆术”求得 π 的近似值为15507 ≈3.14,祖冲之在公元五世纪又进一步求得 π 的值在 3.141 592 6 与 3.141 592 7 之间,是当时世界上最先进的成就.现代利用电子计算机,已有人把 π 的值算 到小数点后上万亿位.它是从圆内接正六边形开始,逐步计算所得的结果.你 知道正多边形和圆有什么关系吗?给你一个圆,怎样就能作出一个正多边形? 圆中依次出现几段相等的弧?
3 B. 2
C. 2Biblioteka D. 3【解析】 如答图 1,∵OC=2,∴OD=1;
如答图 2,∵OB=2,∴OE= 2;如答图 3,∵OA=2,∴OD= 3;则该
三角形的三边分别为 1, 2, 3.∵12+( 2)2=( 3)2,∴该三角形是直角三角
形,∴该三角形的面积是21×1×
2=
2 2.
7.小刚有一块边长为 a m 的正方形花布,准备做一个形状为正八边形的
第7题答图
∴x+x+ 2x=a,解得 x=2-2 2a,
因此,从四个角上各剪去一个直角边长为2-2
2 a
m
的等腰直角三角形,即
可得到一个面积最大的正八边形风筝.
8.如图 24-3-8 所示,已知正五边形 ABCDE,连接对角 线 AC,BD,设 AC 与 BD 相交于点 O.
(1)写出图中所有的等腰三角形; (2)判断四边形 AODE 的形状,并说明理由. 解:(1)△ABO,△ABC,△BOC, △DOC,△BCD; (2)四边形 AODE 是菱形,理由: ∵AB=BC,∠ABC=108°,
第24章 圆之专题练习:隐圆隐切线求最值
隐圆隐切线求最值
方法技巧
在于最值有关的动态几何问题中,常利用“隐圆”或“辅助圆”,借助切线的性质转化为与切线相关的问题解决.
题型一在“角度最值”问题中的运用
【例1】如图,A(0,8),B(0,2),点E是x轴的正半轴上的一动点,连接AE,BE,当∠AEB最大时,求点E的坐标.
【例2】如图,在△ABC中,BC=2AC=2a,当∠ABC最大时,求AB
BC的值.
题型二在“线段最值”问题中的运用
【例3】如图,点C是⊙O上的一点,⊙O的半径为22,点D,E分别是弦CA,CB上的一动点,OD=OE=2,求AB得最大值.
【例4】如图,在矩形ABCD 中,AB =5
2,点P 是边BC 上的一动点(不与B ,C 重合),PQ ⊥AP 交边CD
于点Q ,若CQ 的最大值为2
5
,求矩形ABCD 的周长.
针对练习7
1.如图,点P 为⊙O 内的一定点,点A 为⊙O 上的一动点,射线AP ,AO 分别与⊙O 交于B ,C 两点,若⊙O 的半径为3,OP =3,则弦BC 的最大值为 .
2.如图,点A ,B ,P 三点在一条直线上,AB =4,PB =2,∠ACB =90°,当∠APC 最大时,求PC 的长.
3.如图,在四边形ABCD中,AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12,点P是边AD上的一动点,当∠BPC最大时,求PC的长.
4.如图,已知A,B两点的坐标分别为(8,0)(0,8),点C,F分别是直线x=-5和x轴上的动点,且CF =10,点D是线段CF的中点,直线AD交y轴于点E,连接AB,求△ABE面积的最小值.。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆直线和圆的位置关系 (第1课时)教案
24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系(第1课时)一、教学目标【知识与技能】掌握直线和圆的三种位置关系及其数量间的关系,掌握运用圆心到直线的距离的数量关系或用直线与圆的交点个数来确定直线与圆的三种位置关系的方法.【过程与方法】通过生活中的实例,探求直线和圆的三种位置关系,并提炼出相关的数学知识,从而渗透数形结合,分类讨论等数学思想.【情感态度与价值观】在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】直线与圆的三种位置关系及其数量关系.【教学难点】通过数量关系判断直线与圆的位置关系.五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课如图,在太阳升起的过程中,太阳和地平线会有几种位置关系?我们把太阳看作一个圆,地平线看作一条直线,由此你能得出直线和圆的位置关系吗?(出示课件2)解决这个问题要研究直线和圆的位置关系.(板书课题)(二)探索新知探究一用公共点个数判断直线与圆的位置关系教师问:如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆的公共点个数想象一下,直线和圆有几种位置关系吗?(出示课件4)学生交流,回答问题:有三种位置关系.教师问:如图,在纸上画一条直线l,把钥匙环看作一个圆,在纸上移动钥匙环,你能发现在钥匙环移动的过程中,它与直线l的公共点的个数吗?(出示课件5)学生交流,回答问题:0个,1个,2个.教师问:请同学在纸上画一条直线l,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?(出示课件6)学生交流,回答问题:公共点个数最少时0个,公共点个数最多时2个.出示课件7:教师展示切割钢管过程,学生观察并填表.出示课件8:填一填:(教师引导学生构建并填写表格,帮助学生理清知识脉络)教师归纳:(出示课件9)直线和圆有唯一的公共点(即直线和圆相切)时,这条直线叫做圆的切线(如图直线l),这个唯一的公共点叫做切点(如图点A).练一练:判断正误.(出示课件10)(1)直线与圆最多有两个公共点.(2)若直线与圆相交,则直线上的点都在圆上.(3)若A是⊙O上一点,则直线AB与⊙O相切.(4)若C为⊙O外一点,则过点C的直线与⊙O相交或相离.(5)直线a和⊙O有公共点,则直线a与⊙O相交.学生独立思考后口答:⑴√⑵×⑶×⑷×⑸×探究二用数量关系判断直线与圆的位置关系教师问:同学们用直尺在圆上移动的过程中,除了发现公共点的个数发生了变化外,还发现有什么量也在改变?它与圆的半径有什么样的数量关系呢?(出示课件11)学生讨论,归纳总结答案,并由学生代表回答问题.教师问:怎样用d(圆心与直线的距离)来判别直线与圆的位置关系呢?(出示课件12)学生讨论,归纳总结答案后教师归纳:根据直线和圆相交、相切、相离的定义:直线和⊙O d<r;直线和⊙O d>r;直线和⊙O d = r.教师演示:根据直线和圆相切的定义,经过点A用直尺近似地画出⊙O的切线.(出示课件13)学生根据教师演示进行操作.教师归纳:(出示课件14)直线和⊙O d<r 两个直线和⊙O d>r 0个直线和⊙O d=r 1个位置关系公共点个数出示课件15-17:例1 在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.教师分析:要了解AB 与⊙C 的位置关系,只要知道圆心C 到AB 的距离d 与r 的关系.已知r ,只需求出C 到AB 的距离d.师生共同解决如下:解:过C 作CD ⊥AB ,垂足为D.在△ABC 中,==5(cm ).根据三角形的面积公式有1122CD AB AC BC ⨯=⨯.∴342.4(cm),5AC BC CD AB ⨯⨯===即圆心C 到AB 的距离d=2.4cm.所以(1)当r=2cm 时,有d>r,因此⊙C 和AB 相离.(1) (2) (3) (2)当r=2.4cm 时,有d=r ,因此⊙C 和AB 相切. (3)当r=3cm 时,有d<r ,因此⊙C 和AB 相交. 巩固练习:(出示课件18-20)1.Rt △ABC,∠C=90°AC=3cm ,BC=4cm ,以C 为圆心画圆,当半径r 为何值时,圆C 与直线AB 没有公共点?学生独立思考后独立解答.解:当0cm<r<2.4cm或r>4cm时,⊙C与线段AB没有公共点.2.Rt△ABC,∠C=90,AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与线段AB有一个公共点?当半径r为何值时,圆C与线段AB有两个公共点?学生独立思考后独立解答.解:当r=2.4cm或3cm<r≤4cm时,⊙C与线段AB有一个公共点.当2.4cm<r≤3cm时,⊙C与线段AB有两公共点.3.圆的直径是13cm,如果直线与圆心的距离分别是(1)4.5cm ;(2)6.5cm;(3)8cm;那么直线与圆分别是什么位置关系?有几个公共点?学生独立思考后一生板演.解:如图所示.(1)圆心距d=4.5cm<r=6.5cm时,直线与圆相交,有两个公共点;(2)圆心距d=6.5cm=r=6.5cm时,直线与圆相切,有一个公共点;(3)圆心距d=8cm>r=6.5cm时,直线与圆相离,没有公共点.出示课件21:例2 如图,Rt △ABC 的斜边AB=10cm,∠A=30°.学生独立思考后师生共同解答. 解:过点C 作边AB 上的高CD. ∵∠A=30°,AB=10cm,15cm.2BC AB ==在Rt △BCD 中,有1 2.5cm,2BD BC CD ====时,AB 与☉C 相切. 巩固练习:(出示课件22)如图,已知∠AOB=30°,M 为OB 上一点,且 OM=5cm ,以M 为圆心、r 为半径的圆与直线OA 有怎样的位置关系?为什么?(1)r=2cm ;(2)r=4cm ;(3)r=2.5cm.学生思考后自主解答.解:(1)相离;(2)相交;(3)相切. (三)课堂练习(出示课件23-29)1.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O 的位置关系为()A.相交B.相切C.相离D.无法确定2.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为________.3.看图判断直线l与☉O的位置关系?4.直线和圆相交,圆的半径为r,且圆心到直线的距离为5,则有()A.r<5B.r>5C.r=5D.r≥55.☉O的最大弦长为8,若圆心O到直线l的距离为d=5,则直线l与☉O______.6.☉O的半径为5,直线l上的一点到圆心O的距离是5,则直线l与☉O的位置关系是()A.相交或相切B.相交或相离C.相切或相离D.上三种情况都有可能7.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点.若点M的坐标是(-4,-2),则点N的坐标为( )A.(-1,-2) B.(1,2)C.(-1.5,-2) D.(1.5,-2)8.已知☉O的半径r=7cm,直线l1//l2,且l1与☉O相切,圆心O到l2的距离为9cm.求l1与l2的距离.参考答案:1.B2.13m0<<23.解:⑴相离;⑵相交;⑶相切;⑷相交;⑸相交.4.B5.相离6.A7.A8.解:(1)l2与l1在圆的同一侧:m=9-7=2cm;(2)l2与l1在圆的两侧:m=9+7=16cm.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课从生活中的常见情况引出了直线和圆的位置关系,并且从两个不同方面去判定直线与圆的三种关系,让学生讨论并归纳总结常用的直线和圆位置关系的判定方法,让学生领会该判定方法的实质是看直线到圆心的距离与半径的大小.对于该判定方法,学生一般能够熟记图形,以数形结合的方法理解并记忆.。
人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)
第17讲 正多边形和圆、弧长和扇形面积 第一部分 知识梳理 知识点一:圆与内正多边形的计算1、正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;2、正四边形 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =3、正六边形 同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA = 知识点二、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n R l π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱侧面展开图:3、圆锥侧面展开图第二部分 考点精讲精练考点1、正多边形和圆的求解例1、六边形的边长为10cm ,那么它的边心距等于( )A .10cmB .5cmC .cm D .cm 例2、已知正多边形的边心距与边长的比为21,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形例3、如图,在⊙O 内,AB 是内接正六边形的一边,AC 是内接正十边形的一边,BC 是内接正n 边形的一边,那么n= .例4、圆的内接正六边形边长为a,这个圆的周长为.例5、如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,求图中阴影部分的总面积S.举一反三:1、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形2、已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.1:1:B.1::2 C.1::1 D.:2:43、某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为 cm.4、如图,正六边形与正十二边形内接于同一圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.5、如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.考点2、弧长的计算例1、一条弧所对的圆心角是90°,半径是R,则这条弧长是()A.B.C.D.例2、一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°例3、已知:如图,四边形ABCD内接于⊙O,若∠BOD=120°,OB=1,则∠BAD= 度,∠BCD= 度,弧BCD的长= .例4、如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=cm,将△ABC绕点B旋转至△A′BC′的位置,且使点A、B、C′三点在一条直线上,则点A经过的最短路线的长度是.例5、如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)举一反三:1、弧长为6π的弧所对的圆心角为60°,则弧所在的圆的半径为()A.6 B.6C.12D.182、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20cm C.10πcm D.5πcm3、一段铁路弯道成圆弧形,圆弧的半径是2km.一列火车以每小时28km的速度经过10秒通过弯道.那么弯道所对的圆心角的度数为度.(π取3.14,结果精确到0.1度).4、已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于.5、如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).考点3、扇形面积的计算例1、已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,那么阴影部分的面积是()A.B.2π C.D.3π例2、一个商标图案如图中阴影部分,在长方形ABCD中,AB=8cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.(4π+8)cm2 B.(4π+16)cm2C.(3π+8)cm2 D.(3π+16)cm2例3、如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积.例4、如图,有一直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,则剩下部分的(阴影部分)的面积是.例5、如图,已知P为正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置.(1)请说出旋转中心及旋转角度;(2)若连接PQ,试判断△PBQ的形状;(3)若∠BPA=135°,试说明点A,P,Q三点在同一直线上;(4)若∠BPA=135°,AP=3,PB=,求正方形的对角线长;(5)在(4)的条件下,求线段AP在旋转过程中所扫过的面积.举一反三:1、若一个扇形的面积是相应圆的41,则它的圆心角为( ) A .150° B .120° C .90° D .60°2、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( )A .π+1B .2πC .4D .63、如图,O 为圆心,半径OA=OB=r ,∠AOB=90°,点M 在OB 上,OM=2MB ,用r 的式子表示阴影部分的面积是 .4、如图,直角△ABC 的直角顶点为C ,且AC=5,BC=12,AB=13,将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,在旋转过程中,直角△ABC 扫过的面积是 .(结果中可保留π)5、如图,四边形ABCD 是长方形,AB=a ,BC=b (a >b ),以A 为圆心AD 长为半径的圆与CD 交于D ,与AB 交于E ,若∠CAB=30°,请你用a 、b 表示图中阴影部分的面积.考点4、圆锥侧面积计算例1、如果圆锥的高为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .16πcm 2B .20πcm 2C .28πcm 2D .36πcm 2例2、新疆哈萨克族是一个游牧民族,喜爱居住毡房,毡房的顶部是圆锥形,如图所示,为防雨需要在毡房顶部铺上防雨布.已知圆锥的底面直径是5.7m ,母线长是3.2m ,铺满毡房顶部至少需要防雨布(精确到1m 2)( )A .58 m 2B .29 m 2C .26 m 2D .28 m 2例3、扇形的圆心角为150°,半径为4cm ,用它做一个圆锥,那么这个圆锥的表面积为 cm 2.例4、在十年文革期间的“高帽子”.这种“高帽子”是用如图①所示的扇形硬纸板,做成如图②所示的无底圆锥体.已知接缝的重叠部分的圆心角为30°.(1)求重叠部分的面积.(结果保留π)(2)计算这顶“高帽子”有多高?(结果保留根号)例5、已知:一个圆锥的侧面展开图是半径为20cm,圆心角为120°的扇形,求这圆锥的底面圆的半径和高.举一反三:1、若圆锥的侧面积为12πcm2,它的底面半径为3cm,则此圆锥的母线长为()A.4πcm B.4 cm C.2πcm D.2 cm2、圆锥的轴截面是一个等腰三角形,它的面积是10cm2,底边上的高线是5cm,则圆锥的侧面展开图的弧长等于()A.87πcm B.47πcm C.8 cm D.4 cm3、如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的高为。
人教版九年级上册数学第二十四章 小结与复习
d=r
点P在圆上; 的距离与半径之间的关
系;反过来,也可以通
d>r
点P在圆外. 过这种数量关系判断点
与圆的位置关系.
2.直线与圆的位置关系 设r为圆的半径,d为圆心到直线的距离
直线与圆的 位置关系
相离
相切
图形
相交
d与r的关系 d>r 公共点个数 0个 公共点名称
直线名称
d=r 1个 切点 切线
d<r 2个 交点 割线
AC= AC'2 +CC'2 = 162 +82 =8 5
∴正方形ABCD外接圆的半径为 4 5
∴正方形ABCD的边长为 AB= AC 4 10 160
方法总结
当图中出现圆的直径时,一般方法是作出 直径所对的圆周角,从而利用“直径所对的圆
2
∵∠P+∠AOB=180°,∠P=70°, ∴∠DOE=55°.
(2)若PA=4 cm,求△PDE的周长.
(2)∵⊙O分别切PA、PB、DE于A、B、C, ∴AD=CD,BE=CE. ∴△PDE的周长=PD+PE+DE =PD+AD+BE+PE=2PA=8(cm)
考点四 圆中的计算问题
例5 如图,四边形OABC为菱形,点B、C在以点O为圆 心的圆上, OA=1,∠AOC=120°,∠1=∠2,则扇形 OEF的面积?
A
B
C
D
针对训练
1.如图a,四边形ABCD为☉O的内接正方形,点P为 劣弧BC上的任意一点(不与B,C重合),则∠BPC的 度数是 135° .
A
D
O
B
C
图Pa
2.如图b,线段AB是直径,点D是☉O上一点, ∠CDB=20 °,过点C作☉O的切线交AB的延长 线于点E,则∠E等于 50 .
人教版九年级上册数学24章圆的动点最值问题期末压轴训练题
故答案为:9.
13.
解:作出D关于AB的对称点D′,连接OC,OD′,CD′.
又∵点C在⊙O上,∠CAB=30°,D为弧 的中点,即 ,
∴∠BAD′= ∠CAB=15°.
∴∠CAD′=45°.
∴∠COD′=90°.则△COD′是等腰直角三角形.
∵OC=OD′= AB=10,
∴CD′= ,
∵AB是直径
∴
在 中,AB=13,AD=5
由勾股定理得:
即:
∵
∴
∵E为AD的中点
∴
在 中, ,
由勾股定理得:
即:
∵
∴
又∵DH⊥AC,且点E为AD的中点
∴
∴
故答案为:
9.
解:连接AO与⊙O相交于点P′,如图,
在△AOP中,AP+OP AO,
即:AP′是AP的最小值,
∵∠ACB=90°,AC=BC=2,BC为直径,
(1)求证: ;
(2)若 ,求 长;
(3)当 从 增大到 的过程中,求弦 在圆内扫过的面积.
18.已知 是⊙ 的直径,点 在 的延长线上, , , 是⊙ 上半部分的一个动点,连接 , .
(1)如图①, 的最大面积是;
(2)如图②,延长 交⊙ 于点 ,连接 ,当 时,求证: 是⊙ 的切线.
19.如图,△ABC中,AC=BC,CD是△ABC的高,AB=8,CD=3,以点C为圆心,半径为2作⊙C,点E是⊙C上一动点,连接AE,点F是AE的中点,求线段DF的最小值
∵OA=OT,
∴四边形ADTE是平行四边形,
∴AD=ET,
∵AD+AE=AE+ET≥10,
∴AD+AE的最小值为10.
人教版九上数学第24章 圆 24.1.4 课时1 圆周角定理及其推论教案+学案
人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.4圆周角课时1圆周角定理及其推论教案【教材内容】1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弦所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.【教学目标】知识与技能:1.了解圆周角的概念;2.理解圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半;3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;【教学重点】圆周角的定理、圆周角的定理的推导.【教学难点】1.探究圆周角的定理的存在;2.运用数学分类思想证明圆周角的定理.【教学过程设计】一、情境导入进行中的足球比赛如图所示,甲队员在圆心O处,乙队员在圆上C处,丙队员带球突破防守到圆上C处,依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗?二、合作探究知识点一:圆周角定理例1 如图,AB 是⊙O 的直径,C ,D 为圆上两点,∠AOC =130°,则∠D 等于( )A .25°B .30°C .35°D .50°解析:本题考查同弧所对圆周角与圆心角的关系.∵∠AOC =130°,∠AOB =180°,∴∠BOC =50°,∴∠D =25°.故选A.探究点二:圆周角定理的推论【类型一】利用圆周角定理的推论求角例2 如图,在⊙O 中,AB ︵=AC ︵,∠A =30°,则∠B =( ) A .150° B .75° C .60° D .15°解析:因为AB ︵=AC ︵,根据“同弧或等弧所对的圆周角相等”得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°,故选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.例3 如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( ) A .30° B .45° C .60° D .75°解析:由BD 是直径得∠BCD =90°.∵∠CBD =30°,∴∠BDC =60°.∵∠A与∠BDC 是同弧所对的圆周角,∴∠A =∠BDC =60°.故选C.【类型二】利用圆周角定理的推论求线段长例4 如图所示,点C 在以AB 为直径的⊙O 上,AB =10cm ,∠A =30°,则BC 的长为________.解析:由AB 为⊙O 的直径得∠ACB =90°.在Rt △ABC 中,因为∠A =30°,所以BC =12AB =12×10=5cm.【类型三】利用圆周角定理的推论进行有关证明例5 如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD .解析:连接BE 构造Rt △ABE ,由AD 是△ABC 的高得Rt △ACD ,要证∠BAE =∠CAD ,只要证出它们的余角∠E 与∠C 相等,而∠E 与∠C 是同弧AB 所对的圆周角.证明:连接BE ,∵AE 是⊙O 的直径,∴∠ABE =90°,∴∠BAE +∠E =90°.∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD +∠C =90°.∵AB ︵=AB ︵,∴∠E =∠C ,∵∠BAE +∠E =90°,∠CAD +∠C =90°,∴∠BAE =∠CAD .方法总结:涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.探究点三:圆的内接四边形及性质【类型一】利用圆的内接四边形的性质进行计算例6 如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD =________度.解析:∵四边形ABCD是圆内接四边形,∴∠B+∠ADC=180°.∵四边形OABC为平行四边形,∴∠AOC=∠B.又由题意可知∠AOC=2∠ADC.∴∠ADC =180°÷3=60°.连接OD,可得AO=OD,CO=OD.∴∠OAD=∠ODA,∠OCD =∠ODC.∴∠OAD+∠OCD=∠ODA+∠ODC=∠D=60°.【类型二】利用圆的内接四边形的性质进行证明例7如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.解析:由已知易得∠E=∠BCE,由同角的补角相等,得∠A=∠BCE,则∠E =∠A.证明:∵BC=BE,∴∠E=∠BCE.∵四边形ABCD是圆内接四边形,∴∠A +∠DCB=180°.∵∠BCE+∠DCB=180°,∴∠A=∠BCE.∴∠A=∠E.∴AD=DE.∴△ADE是等腰三角形.方法总结:圆内接四边形对角互补.三、教学小结教师引导学生总结本节所学知识:1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【板书设计】24.1 圆的有关性质 24.1.4 圆周角课时1 圆周角定理及其推论1.圆周角的概念2.圆周角定理及推论3.圆内接四边形的性质4.应用圆周角定理及推论进行计算【课堂检测】C1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可. 解:BD=CD理由是:如图24-30,连接AD ∵AB 是⊙O 的直径 ∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD2.如图,已知△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为R ,求证:sin a A =sin b B =sin cC =2R . 分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin bB=2R ,sin c C =2R ,即sinA=2a R ,sinB=2b R ,sinC=2c R ,因此,十分明显要在直角三角形中进行.证明:连接CO 并延长交⊙O 于D ,连接DB ∵CD 是直径 ∴∠DBC=90° 又∵∠A=∠D在Rt △DBC 中,sinD=BC DC ,即2R=sin a A同理可证:sin b B =2R ,sin cC=2R∴sin a A =sin b B =sin cC =2R教学过程中,强调圆周角定理得出的理论依据,使学生熟练掌握并会学以致用.在圆中,利用圆周定理及其推论求相关的角度时,注意辅助线的添加及多种可能情况的考虑.人教版九年级数学(上)第24章 圆 24.1 圆的有关性质 24.1.4 圆周角 课时1圆周角定理及其推论学案【学习目标】 知识与技能1.理解圆的轴对称性,掌握垂径定理及其推论;2.学会运用垂径定理及其推论解决一些有关证明、计算和作图问题; 3.了解拱高、弦心距等概念.过程与方法经历探索发现圆的对称性,证明垂径定理及其他结论的过程,锻炼思维品质,学习证明的方法.情感、态度与价值观在学生通过观察、操作、变换、探究出图形的性质后,还要求对发现的性质 进行证明,培养学生的创新意识. 【学习重点】垂径定理及其推论. 【学习难点】探索并证明垂径定理. 【自主学习】一、自学指导.(10分钟)自学:研读课本P 81~83内容,并完成下列问题.1.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,它也是中心对称图形,对称中心为圆心.2.垂直于弦的直径平分弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB 经过圆心O 且与圆交于A ,B 两点;②AB ⊥CD 交CD 于E ,那么可以推出:③CE =DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.3.平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧. 点拨精讲:(1)画图说明这里被平分的弦为什么不能是直径.(2)实际上,当一条直线满足过圆心、垂直弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,这五个条件中的任何两个,就可推出另外三个.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟) 1.在⊙O中,直径为10 cm,圆心O到AB的距离为3 cm,则弦AB的长为__8_cm__.2.在⊙O中,直径为10 cm,弦AB的长为8 cm,则圆心O到AB的距离为__3_cm__.点拨精讲:圆中已知半径、弦长、弦心距三者中的任何两个,即可求出另一个.3.⊙O的半径OA=5 cm,弦AB=8 cm,点C是AB的中点,则OC的长为__3_cm__.点拨精讲:已知弦的中点,连接圆心和中点构造垂线是常用的辅助线.4.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为多少米?(8米)点拨精讲:圆中已知半径、弦长、弦心距或弓形高四者中的任何两个,即可求出另一个.【新知探究】一、小组合作1.AB是⊙O的直径,弦CD⊥AB,E为垂足,若AE=9,BE=1,求CD的长.解:6.点拨精讲:常用辅助线:连接半径,由半径、半弦、弦心距构造直角三角形.2.⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM的长的最小值为__3__,最大值为__5__.点拨精讲:当OM与AB垂直时,OM最小(为什么),M在A(或B)处时OM 最大.3.如图,线段AB与⊙O交于C,D两点,且OA=OB.求证:AC=BD.证明:作OE⊥AB于E.则CE=DE.∵OA=OB,OE⊥AB,∴AE=BE,∴AE-CE=BE-DE.即AC=BD.点拨精讲:过圆心作垂线是圆中常用辅助线.二、跟踪练习学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.在直径是20 cm的⊙O中,∠AOB的度数是60°,那么弦AB的弦心距是__53 __cm.点拨精讲:这里利用60°角构造等边三角形,从而得出弦长.2.弓形的弦长为6 cm,弓形的高为2 cm,则这个弓形所在的圆的半径为__134__cm.3.如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.求证:AC=BD.证明:过点O作OE⊥AB于点E.则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.点拨精讲:过圆心作垂径.4.已知⊙O的直径是50 cm,⊙O的两条平行弦AB=40 cm,CD=48 cm,求弦AB与CD之间的距离.解:过点O作直线OE⊥AB于点E,直线OE与CD交于点F.由AB∥CD,则OF⊥CD.(1)当AB,CD在点O两侧时,如图①.连接AO,CO,则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=15 cm,OF=7 cm.∴EF=OE+OF=22 (cm).即AB与CD之间距离为22 cm.(2)当AB,CD在点O同侧时,如图②,连接AO,CO.则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=15 cm,OF=7 cm.∴EF=OE-OF=8 (cm).即AB与CD之间距离为8 cm.由(1)(2)知AB与CD之间的距离为22 cm或8 cm.点拨精讲:分类讨论,①AB,CD在点O两侧,②AB,CD在点O同侧.【学习总结】学生总结本节课的收获与困惑.(2分钟)1.圆是轴对称图形,任何一条直径所在直线都是它的对称轴.2.垂径定理及其推论以及它们的应用.教师点拨:圆是轴对称图形,经过圆心的都是它的对称轴。
第24章 圆(期末考点精讲)(原卷版)
第24章圆(期末精讲)目录24.1 与圆有关的基本性质 (4)知识点①圆的定义 (4)知识点②与圆有关的基本概念 (5)知识点③同心圆和等圆 (5)知识点④圆心角和圆周角 (5)知识点⑤弓形、扇形 (5)知识点⑥圆的对称性 (6)知识点⑦垂径定理及其推论 (6)知识点⑧圆心角、弧、弦之间的关系 (6)知识点⑨圆周角定理及其推论 (6)知识点⑩圆内接四边形及其性质定理 (7)方法①弧、弦、半径、直径等概念的区分方法 (15)方法②圆周角的识别方法 (15)方法③利用圆的半径相等进行计算的方法 (15)方法④证明几个点是否共圆的方法 (15)方法⑤运用垂径定理进行有关弦的计算 (15)方法⑥垂径定理在实际问题中的应用方法 (15)方法⑦圆心角、弧、弦的关系的应用方法 (15)方法⑧利用圆周角定理求角度的方法 (16)方法⑨圆周角定理的推论的应用方法 (16)方法⑩利用圆内接四边形的性质定理求角度的方法 (16)24.2 与圆有关的位置关系 (28)知识点①点与圆的位置关系 (29)知识点②过已知点的圆 (29)知识点③三角形的外接圆与外心 (29)知识点④直线与圆的位置关系 (29)知识点⑤直线和圆的位置关系的性质与判定 (29)知识点⑥切线的性质定理 (30)知识点⑦切线的判定定理 (30)知识点⑧切线长定理 (30)知识点⑨三角形的内切圆与内心 (31)知识点⑩圆外切四边形 (31)方法①点与圆的位置关系的识别方法 (35)方法②三角形外心的应用方法 (35)方法③直线与圆的位置关系的识别方法 (35)方法④利用切线的判定定理判定直线为切线的方法 (35)方法⑤利用“作垂直,证相等”判定直线为切线的方法 (36)方法⑥切线的性质的应用方法 (36)方法⑦三角形的内心的应用方法 (36)方法⑧利用切线长定理进行计算的方法 (36)方法⑨解决与圆的位置关系有关的多解问题的方法 (36)方法⑩圆的有关知识在动态问题中的应用 (36)24.3 与圆有关的计算 (49)知识点①正多边形与圆的关系 (49)知识点②正多边形的中心与中心角 (49)知识点③正多边形的半径与边心距 (49)知识点④正多边形的有关计算 (50)知识点⑤正多边形的对称性 (50)知识点⑥弧长公式 (50)知识点⑦扇形面积公式 (50)知识点⑧圆柱侧面展开图 (50)知识点⑨圆锥侧面展开图 (51)方法①弧长、扇形面积与圆锥侧面积的计算方法 (54)方法②应用弧长公式解决运动轨迹问题的方法 (55)方法③不规则图形的面积的计算方法 (55)方法④求圆锥侧面上两点之间的最短距离的方法 (55)方法⑤运用圆锥侧面积知识解决实际问题的方法 (55)24.1 与圆有关的基本性质知识点①圆的定义★☆☆圆的定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.定义②:圆可以看做是所有到定点O 的距离等于定长r 的点的集合.知识点② 与圆有关的基本概念 ★☆☆与圆有关的概念:弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.连接圆上任意两点的线段叫弦;经过圆心的弦叫直径;圆上任意两点间的部分叫圆弧,简称弧;圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆;大于半圆的弧叫做优弧;小于半圆的弧叫做劣弧.知识点③ 同心圆和等圆 ★☆☆1.同心圆:圆心相同 ,半径不相等的两个圆叫做同心圆。
圆的横纵坐标和的最大值
圆的横纵坐标和的最大值
圆的横纵坐标和的最大值是多少?
圆的横纵坐标和的最大值可以通过使用微积分的方法来求解。
首先,我们可以假设圆的方程为x^2 + y^2 = r^2,其中r为圆的半径。
我们想要求解当x和y的和最大时,圆上的点的坐标是多少。
解决这个问题的关键是利用微积分的极值原理。
我们可以将圆的方程重写为y = sqrt(r^2 - x^2)或者y = -sqrt(r^2 - x^2),这样我们可以得到y关于x的函数表达式。
已知y = ±sqrt(r^2 - x^2),我们可以对这个函数进行微积分来找到最大值。
首先,我们可以对y = sqrt(r^2 - x^2)进行微积分:∫[-r, r] sqrt(r^2 - x^2) dx
然后,我们求出这个积分的值。
通过对这个积分进行求导和解方程,我们可以找到这个函数的最大值,从而得到圆上的点的横纵坐标和的最大值。
因此,圆的横纵坐标和的最大值可以通过微积分的方法来求解。
这种方法是求解圆上的点的横纵坐标和的最大值的有效途径。
除了使用微积分的方法之外,我们还可以通过几何的方式来求解圆的横纵坐标和的最大值。
我们可以利用圆的几何特性,比如对称性和切线方程,来找到圆上横纵坐标和的最大值。
这种方法更加直观,可以帮助我们更好地理解圆的横纵坐标和的最大值的含义和特性。
总之,圆的横纵坐标和的最大值可以通过微积分和几何的方法来求解。
这个问题的求解过程可以帮助我们更好地理解圆的性质和微积分的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《专题复习四几何图形中的最值探究》教学设计
马寨中心学校刘洪贺
教学目标:1、通过几何图形中的最值探究题的专题复习,培养学生观察、分析的探究能力,进而提高学生的综合解题能力。
2、通过解法归类总结,增强学生解答数学几何图形中的最值探究题的兴趣。
教学重点:几何图形中的最值探究题型的分析解答。
教学难点:几何图形中的最值探究题的解法归类总结。
教学流程:
一、安徽中考热点命题预测
几何图形中的最值探究题是近两年安徽中考中常见的题型之一,一般涉及“轴对称型”最值探究、“圆型”最值探究、“勾股定理型”最值探究等。
2015年的第20题是“勾股定理型”最值探究的问题,2016年的第10题是“圆型”最值探究,题型以解答题和选择题为主,分值为4~10分。
预计2017年中考中仍会以几何图形中的最值探究作为考查对象。
二、专题题型及解法特点
·最值问题:可以分为最大值和最小值
·求最值:借助于“两点之间线段最短”或“三角形三边之间的关系(两边之和大于第三边或勾股定理)”。
·类型:与圆(定弦定角)有关、与轴对称有关、与直角三角形有关
三、解题方法指导
·一般解法:最值线段——(转化构造三角形)——使最值线段与定长线段构成三角形——三角形三边关系定理三点共线时取得最值(或勾股定理三边关系)
解法归类一“轴对称型”:与对称点有关
·解法:作对称点,利用两点之间线段最短
【典型例题1】如图,菱形ABCD中,对角线AC=6,BD=8,M,N分别是BC,CD的中点,P是线段BD上的一个动点,则PM+PN
的最小值是. .
解析:根据轴对称性,作出点N关于直线BD
对称的点H,连接MH,求MH的长即可。
【针对练习】如图,在正方形ABCD中,
E是AB上一点,BE=2,AE=3BE,P是
AC上的一个动点,则PB+PE的
最小值是. .
解法归类二“圆型”:与定弦定角的圆有关
·解法:最值线段与定线段构成三角形,三点共线时取得最值
【典型例题2】(2016安徽第10题)如图,Rt△ABC
中AB⊥BC,AB=6,BC=4,P是△ABC内部的一
个动点,且满足∠PAB=∠PBC.则线段CP长的最小值
为()
解析:本题是与定弦定角有关的圆有关。
由题意可知,∠P 是直角,因此,点P 在以AB 为直径的圆上。
点C 到点P 的最小值即为AB 中点到C 的距离—直径AB 的一半=2。
【针对练习】 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN
沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,
则A ′C 长度的最小值是 .
解法归类三 “勾股定理型”:与最值线段和定线段构成的直角三角形勾股定理有关
·解法:转化为最值线段与定线段构成三角形,利用三边关系求最值
【典型例题3】(2015安徽第20题) 如图,在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ.
(1)如图①,当PQ//AB 时,求PQ 长;
(2)如图②,当点P 在BC 上移动时,
求PQ 长的最大值.
解析:通过连接QO ,利用勾股定理进行分析即
可
【针对练习】1、如图,已知AB =10,P 是线
段AB上任意一点,在AB的同侧分别以AP和PB为边作等边△APC 和等边△BPD,则CD长度的最小值为.
四、达标检测
1、如图,AC=3,BC=5,∠BAC=90°,点D是AC一动点,
以AD为直径作圆,连接BD交圆与E点,连接
CE,则CE的最小值为().
五、课后反思。