西安铁一中滨河学校数学整式的乘法与因式分解单元练习(Word版 含答案)
《整式的乘法与因式分解》单元综合测试题(含答案)
[答案]﹣A.
[解析]
[分析]
先计算(﹣A)4,再把除法转换成乘法进行计算即可.
[详解](﹣A)4÷(﹣A3)= .
故答案是:-A.
14.整数m为_____时,式子 为整数.
[答案]2,0,4,﹣2.
[解析]
[分析]
由式子为整数可知m-1=3或m-1=1或m-1=-1或m-1=-3,从而可解得m的值.
[答案]B
[解析]
[分析]
根据平方差公式计算可得.
[详解]原式=x2-22=x2-4,
故选B.
[点睛]考查平方差公式,解题的关键是掌握(A+B)(A-B)=A2-B2.
10.用配方法将二次三项式x2+4x﹣96变形,结果为( )
A.(x+2)2+100B.(x﹣2)2﹣100C.(x+2)2﹣100D.(x﹣2)2+100
12.计算4y·(-2xy2)的结果等于__________.
[答案]-8xy3
[解析]
[分析]
直接利用单项式乘以单项式运算法则得出答案.
[详解]4y•(-2xy2)=-8xy3.
故答案是:-8xy3.
[点睛]查了单项式乘以单项式运算,正确掌握运算法则(把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式)是解题关键.
[答案]A
[解析]
分析:直接利用积的乘方运算法则将原式变形得出答案.
详解:
=
=
故选A.
点睛:此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.
6.若多项式-6A B+18A Bx+24A By的一个因式是-6A B,那么另一个因式是
人教版八年级上册数学第14章《整式的乘法与因式分解》单元测试卷(Word版,含答案)
人教版八年级上册数学第14章《整式的乘法与因式分解》单元测试卷题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.计算(-2a2b)3的结果是()A. -6a6b3B. -8a6b3C. 8a6b3D. -8a5b32.计算的结果是A. a7B. a8C. a10D. a113.下列从左边到右边的变形,是因式分解的是( )A.(3-x)(3+x)=9-x2B.(y+1)(y-3)=-(3-y)(y+1)C.4yz-2y2z+z=2y(2z-yz)+z D.-8x2+8x-2=-2(2x-1)24.下列多项式中,不能因式分解的是()A.a3﹣a B.a2﹣9 C.a2+2a+2 D.a2+a+1 5.若x+y=1且xy=﹣2,则代数式(1﹣x)(1﹣y)的值等于()A.﹣2 B.0 C.1 D.26.若x2+6x+p=(x﹣q)2,则p,q的值分别为()A.6,6 B.9,﹣3 C.3,﹣3 D.9,37.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.18.20042-2003×2005的计算结果是()A.1 B.-1 C.0 D.2×20042-19. 将代数式2x+4x-1化成()2x+p+q的形式为()A.(x-2)2+3 B.(x+2)2-4C.(x+2)2 -5 D.(x+2)2+410.下列各式,能够表示图中阴影部分的面积的是()①ac+(b﹣c)c;②ac+bc﹣c2;③ab﹣(a﹣c)(b﹣c);④(a﹣c)c+(b﹣c)c+c2A .①②③④B .①②③C .①②D .①二、填空题(每题3分,共24分)11.把多项式2a 2b ﹣18b 分解因式的结果是 . 12.若ab =﹣2,a 2+b 2=5,则(a ﹣b )2的值为 . 13.已知:x +=3,则x 2+= .14.若(m+1)0=1,则实数m 应满足的条件 . 15.若(x+2)(x −6)=x 2+px+q ,则p+q= . 16.等式(a+b)2=a 2+b 2成立的条件为 .17.若x 2−(m −1)x+36是一个完全平方式,则m 的值为 .18.如图,边长为(m +n )的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为n ,则另一边长是 .三.解答题(共46分,19题6分,20 ---24题8分) 19.计算: (1)(-1)2 018+⎝ ⎛⎭⎪⎫-12 2-(3.14-π)0; (2)(2x 3y )2·(-2xy )+(-2x 3y )3÷2x 2;(3)(2x -3)2-(2x +3)(2x -3);。
《整式乘法与因式分解》单元综合测试卷(含答案)
第九章《整式乘法与因式分解》单元综合测试卷(考试时间:90分钟 满分:100分)一、选择题(每小题3分,共24分) 1. 下列关系式中正确的是( )A.222()a b a b -=- B.22()()a b a b a b +-=- C.222()a b a b +=+ D.222()2a b a ab b +=-+ 2. 若223649x mxy y -+是完全平方式,则m 的值是( )A.1764B.42C.84D.84± 3. 对代数式244ax ax a -+分解因式,下列结果正确的是( )A.2(2)a x - B.2(2)a x + C.2(4)a x - D.(2)(2)a x x +- 4. 已知13x x -=,则221x x+的值( ) A.9 B.7 C.11 D.不能确定 5. 下列多项式中,不能用公式法因式分解的是( )A.2214x xy y -+ B.222x xy y ++ C.22x y -+ D.22x xy y ++ 6. 若2x y +=,2xy =-,则(1)(1)x y --的值是( )A.1-B.1C.5D.3-7. 从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式( )A.222()2a b a ab b -=-+ B.222()2a b a ab b +=++ C.22()()a b a b a b -=+- D.22(2)()2a b a b a ab b +-=+-8. 若(3)(5)M x x =--,(2)(6)N x x =--,则M 与N 的关系为( )A.M N =B.M N >C.M N <D. M 与N 的大小由x 的取值而定 二、填空题(每小题2分,共20分)9. 计算:(1)32(2)(3)a ab -= ; (2)2(231)x x x -+= .10. 若32mx y 与23n x y -是同类项,则322(3)mn x yx y -= .11. 多项式23264m n mn m n +-的公因式是 .12. 如果要使22(1)(2)x x ax a +-+的乘积中不含扩2x 项,则a = .13. 分解因式:325x x -= ;()()()a x y b y x c x y ---+-= .14. 若二次三项式2(21)4x m x +-+是一个完全平方式,则m = . 15. (1)若10m m +=,24mn =,则22m n += .(2)若13a b -=,2239a b -=,则2()a b += .16. 2(2)(23)26x x x mx +-=+-,则m = . 17. 已知210t t +-=,则3222016t t ++= .18. 若249a +加上一个单项式后可化为一个整式的平方的形式,则这个单项式可以是 .(写一个即可) 三、解答题(共56分) 19. (8分)计算:(1)22()(23)()a b a b a ab a b ab +---(2)2(4)(4)(2)x x x +---(3)225(21)(23)(5)x x x x x --++--+(4)(34)(34)x y z x y z +--+20. ( 8分)把下列各式因式分解:(1) 22()()a x y b y x -+- (2)4224168x x y y -+(3) (2)(4)1x x +++ (4)222(4)16x x +-21. (6分)(1)先化简,再求值: 2(32)(32)7(1)2(1)x x x x x +-----,其中13x =-(2)先化简,再求值: 22(1)3(3)(3)(5)(2)x x x x x +--+++-,其中x 满足22245x y x y +=--.22. ( 6分)(1)已知3()()2x a x +-的结果中不含关于字母x 的一次项,求2(2)(1)(1)a a a +---- 的值;(2)已知221x x -=,求2(1)(31)(1)x x x -+-+的值.23. ( 4分)若x ,y 满足2254x y +=,12xy =-,求下列各式的值. (1) 2()x y + (2)44x y +24. ( 5分)如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为m cm 的大正方形,两块是边长都为n cm 的小正方形,五块是长、宽分别是m cm ,n cm 的小矩形,且m n >.(1)用含m ,n 的代数式表示切痕的总长为 cm:(2)若每块小矩形的面积为34.5cm 2,四个正方形的面积和为200cm 2 ,试求m n +的值.25. (6分)阅读并探索:在数学中,有些大数值问题可以通过用字母代替数转化成整式问题来解决.例:试比转2015040820150405⨯与2015040620150407⨯的大小. 解:设20150407a =,2015040820150405x =⨯,2015040620150407y =⨯ 则2(1)(2)2x a a a a =+-=--,2(1)y a a a a =-=- 因为x y -=所以x y (填“>”或“<”). 填完后,你学到了这种方法吗?不妨尝试一下.计算: (22.2015)(14.2015)(18.2015)(17.2015)m m m m ++-++26. ( 7分)动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形. 提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积: ; ; (2)请写出三个代数式2()a b +,2()a b -,ab 之间的一个等量关系: ; 问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知7x y +=,6xy =,求x y -的值.27. ( 6分)你能求999897(1)(1)x x x xx -+++++…的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值. ①2(1)(1)1x x x -+=- ②23(1)(1)1x x x x -++=- ③324(1)(1)1x x x x x -+++=- ……由此我们可以得到:999897(1)(1)x xx x x -+++++=…请你利用上面的结论,再完成下面两题的计算: (1) 504948(2)(2)(2)(2)1-+-+-++-+…(2)若3210x x x +++=,求2016x 的值.参考答案一、1. B 2. D 3. A 4. C5. D6. D7. C8. B 二、9. (1)4224a b - (2)3223x x x -+ 10. 646x y - 11. 2mn 12. 0.513. (5)(5)x x x +- ()()x y a b c -++14. 52或32- 15. (1)52 (2)916. 1 17. 201718. 12a (或12a -,24a -,9-,449a ,答案不唯一,写对一个即可) 三、19. (1)原式3223232222233a b a b a b a b a b a b =+-++-323222322a b a b a b a b =--+(2)原式2216(44)420x x x x =---+=- (3)原式32325105(102153)x x x x x x =---+--32371515x x x =--+(4)原式[(34)][(34)]x y z x y z =+---22(34)x y z =-- 22292416x y yz z =-+-20. (1)原式22()()()()()a b x y a b a b x y =--=+-- (2)原式22222(4)(2)(2)x y x y x y =-=+- (3)原式2269(3)x x x =++=+(4)原式2222(44)(44)(2)(2)x x x x x x =+++-=+- 21. (1)2(32)(32)7(1)2(1)x x x x x +-----222(94)772(21)x x x x x =--+--+2229477242x x x x x =--+-+-116x =-当13x =-时,原式1129633=--=-(2)原式2222(21)3(9)(310)x x x x x =++--++-719x =+由22245x y x y +=--,得22(1)(2)0x y -++= 故1x =,2y =- 故原式711926=⨯+= 22. (1)3()()2x a x +-23322x x ax a =-+-233()22x a x a =+--因为不含关于字母x 的一次项,所以302a -=所以32a =2(2)(1)(1)a a a +---- 2244(1)a a a =++--22441a a a =++-+34545112a =+=⨯+=(2)2(1)(31)(1)x x x -+-+2232121x x x x =----- 2242x x =--22(2)2x x =--因为221x x -= 所以原式2120=⨯-= 23. (1)原式222x xy y =++5112()424=+⨯-= (2)原式=22222()2x y x y +-22511()2()14216=-⨯-= 24. (1)66m n +(2)依题意,得34.5mn =,2222200m n += 故22100m n +=因为222()210069169m n m mn n +=++=+= 且0m n +> 所以13m n += 25. 2- <设18.2015m x +=则原式(4)(4)(1)x x x x =+---2216x x x =--+16x =-18.201516m =+-2.2015m =+26. (1)2()4a b ab +- 2()a b -(2)22()4()a b ab a b +-=- 问题解决:由(2)知22()()4x y x y xy -=+- 当7x y +=,6xy =时22()474625x y xy +-=-⨯=故5x y -=± 27. 1001x-(1)504948(2)(2)(2)(2)1-+-+-++-+…504948(21)[(2)(2)(2)(2)1]=(21)---+-+-++-+--…5049481(21)[(2)(2)(2)(2)1]3=-⨯---+-+-++-+ (511)[(2)1]3=-⨯--512133=+ (2)因为3210x x x +++= 所以32(1)(1)0x x x x -+++= 所以41x = 所以20164504()1x x ==。
《整式的乘法与因式分解》单元测试(带答案)
[分析]
先分别进行幂的乘方与积的乘方运算,然后再根据单项式乘除法的法则进行计算即可得.
[详解]原式=A6•A6B2÷A2B
=A12B2÷A2B
=A10B,
故答案 A10B.
[点睛]本题考查了单项式乘除混合运算,熟练掌握各运算的运算法则以及确定好运算顺序是解题的关键.
12.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米= 米,用科学记数法将16纳米表示为__________________米.
4.已知多项式2x2+Bx+C分解因式为2(x-3)(x+1),则B,C的值为().
A.B=3,C=-1B.B=-6,C=2
C.B=-6,C=-4D.B=-4,C=-6
[答案]D
[解析]
[分析]
利用整式的乘法计算出2(x-3)(x+1)的结果,与2x2+Bx+C对应找到一次项的系数和常数项即可解题.
考点:因式分解.
10.已知 则 的大小关系是()
A. B. C. D.
[答案]A
[解析]
[分析]
先把A,B,C化成以3为底数的幂的形式,再比较大小.
[详解]解:
故选A.
[点睛]此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.
二、填空题
11. =____________
[答案]
C.两数和的完全平方公式D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
《第14章整式的乘法与因式分解》单元测试题(含答案).doc
(第10题图)第十四章 整式的乘法与因式分解一、选择题1.下列各式由左边到右边的变形为因式分解的是( )A.a 2-b 2+1=(a+b)(a-b)+1B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t2.分解因式:x 3-x,结果为( )A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1)4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 26.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .17、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
A 、222b ab a ++;B 、222b ab a +--;C 、222b ab a -+-;D 、222b ab a ++-9、已知x 2+kxy+64y 2是一个完全式,则k 的值是( )A 、8B 、±8C 、16D 、±1610、如下图(1),边长为a 的大正方形中一个边长为b小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2)。
这一过程可以验证( )A 、a 2+b 2-2ab=(a -b)2 ;B 、a 2+b 2+2ab=(a+b)2 ;C 、2a 2-3ab+b 2=(2a -b)(a -b) ;D 、a 2-b 2=(a+b) (a -b)二、填空题11.若单项式-3x 4a-b y 2与3x 3y a+b 是同类项,则这两个单项式的积为 . 图1 图212.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.13.若16b2+a2+m是完全平方式,则m= .14.分解因式:x3﹣x= .15.因式分解:43a﹣122a+9a= .16、若4x2+kx+25=(2x-5)2,那么k的值是三、解答题17.(8分)因式分解:(1)3a2-27b2; (2)x2-8(x-2).18. (10分)计算:(1)已知a+b=3,ab=-2,求a2+b2和a2-ab+b2的值;(2)已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值;(3)已知a-b=1,a2+b2=25,求ab的值.19.已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2-2ab+b2-4a+4b+4=0,求a,b的值.20、李老师给学生出了一道题:当a=0.35,b= -0.28时,求3323323a ab a b a a b a b a-+++--的值.题目出完后,小聪说:“老师给76336310的条件a=0.35,b= -0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?21、如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b4答案BDCCA BACDD11.-9x 6y 412.013.±8ab14.x (x+1)(x ﹣1).15.a 2(23)a -16.-20;17.解 (1)3a 2-27b 2=3(a 2-9b 2)=3(a+3b)(a-3b);(2)x 2-8(x-2)=x 2-8x+16=(x-4)2.18 (1)a 2+b 2=(a+b)2-2ab=32-2×(-2)=13;a 2-ab+b 2=(a+b)2-3ab=32-3×(-2)=15.(2)∵(x+y)2=x 2+y 2+2xy=1,(x-y)2=x 2+y 2-2xy=49,即解得(3)∵a-b=1,∴(a-b)2=a 2+b 2-2ab=1.∵a 2+b 2=25,∴25-2ab=1,解得ab=12.19.解 ∵长方形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a 2-2ab+b 2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得方程组解得 20.原式=332(7310)(66)(33)0a a b a b +-+-++-=,合并得结果为0,与a 、b 的取值无关,所以小明说的有道理.21.4;6;4;。
西安市铁一中学数学整式的乘法与因式分解达标检测卷(Word版 含解析)
西安市铁一中学数学整式的乘法与因式分解达标检测卷(Word 版含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x, 10y =时,用上述方法产生的密码不可能...是( ) A .201030B .201010C .301020D .203010【答案】B【解析】【分析】【详解】解:x 3-xy 2=x (x 2-y 2)=x (x+y )(x-y ),当x=20,y=10时,x=20,x+y=30,x-y=10,组成密码的数字应包括20,30,10,所以组成的密码不可能是201010.故选B .2.若(x +y )2=9,(x -y )2=5,则xy 的值为( )A .-1B .1C .-4D .4【答案】B【解析】试题分析:根据完全平方公式,两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,分别化简可知(x+y )2=x 2+2xy+y 2=9①,(x ﹣y )2= x 2-2xy+y 2=5②,①-②可得4xy=4,解得xy=1.故选B点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..3.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n + 【答案】A【解析】【分析】先乘以(2-1)值不变,再利用平方差公式进行化简即可.【详解】()()()()242n 212121......21++++=(2-1)()()()()242n 212121......21++++ =24n -1.故选A.【点睛】本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.4.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1B .﹣52C .±1D .±52 【答案】C【解析】分析:利用完全平方公式解答即可.详解:∵a+b=2,ab=34, ∴(a+b )2=4=a 2+2ab+b 2,∴a 2+b 2=52, ∴(a-b )2=a 2-2ab+b 2=1,∴a-b=±1,故选C .点睛:本题考查了完全平方公式的运用,熟记公式结构是解题的关键.5.如果x m =4,x n =8(m 、n 为自然数),那么x 3m ﹣n 等于( )A .B .4C .8D .56【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x 3m ﹣n 可化为x 3m ÷x n ,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x 3m =(x m )3,再代入x m =4,x n =8,即可得到结果.【详解】解:x 3m ﹣n =x 3m ÷x n =(x m )3÷x n =43÷8=64÷8=8, 故选:C .此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.6.把228a -分解因式,结果正确的是( )A .22(4)a -B .22(2)a -C .2(2)(2)a a +-D .22(2)a +【答案】C【解析】【分析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】 228a -=22(4)a -=2(2)(2)a a +-,故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.7.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】 根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.8.下面计算正确的是( )A .33645x x x +=B .236a a a ⋅=C .()4312216x x -=D .()()22222x y x y x y +-=- 【答案】C【解析】【分析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=35x ,错误;B.原式=5a ,错误;C.原式=1216x ,正确;D.原式=224x y -,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.9.下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a•3a=6a 2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)【答案】B【解析】【分析】 通过平移后,根据长方形的面积计算公式即可求解.【详解】 平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知3x y +=,3336x y +=,则xy =______.【答案】-1【解析】【分析】将3336x y +=利用立方和公式以及完全平方公式进行变形后再计算即可得出答案.【详解】解:∵3x y +=∴33222()()3()33(93)279x y x y x xy y x y xy xy xy ⎡⎤+=+-+=⨯+-=-=-⎣⎦ ∵3336x y +=∴27936xy -=∴1xy =-故答案为:-1.【点睛】本题考查的知识点是立方和公式以及完全平方公式,解此题的关键是记住立方和公式.12.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m 应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.13.在实数范围内因式分解:22967x y xy --=__________.【答案】11933xy xy ⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭【解析】【分析】将原多项式提取9,然后拆项分组为222189399x y xy ⎛⎫-+- ⎪⎝⎭,利用完全平方公式将前一组分解后,再利用平方差公式继续在实数范围内分解.【详解】解:22967x y xy --2227=939x y xy ⎛⎫-- ⎪⎝⎭ 222117=9+3999x y xy ⎛⎫--- ⎪⎝⎭ 218=939xy ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦122122=93333xy xy ⎛⎫⎛⎫---+ ⎪⎪ ⎪⎪⎝⎭⎝⎭122122=933xy xy ⎛⎫⎛⎫+--- ⎪⎪ ⎪⎪⎝⎭⎝⎭故答案为:1221229xy xy ⎛⎫⎛⎫+--- ⎪⎪ ⎪⎪⎝⎭⎝⎭【点睛】本题考查在实数范围内因式分解,利用分组分解法将原多项式“三一”分组后采用公式法因式分解,注意在实数范围内因式分解是指系数可以是根式.14.若a 2+a-1=0,则a 3+2a 2+2014的值是___________.【答案】2015【解析】【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可.【详解】∵a 2+a-1=0∴a 2+a=1a 3+2a 2+2014=a (a 2+a )+a 2+2014=a+a 2+2014=2015故答案为2015【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.15.计算:=_____.【答案】1【解析】【分析】根据平方差公式可以使本题解答比较简便.【详解】解:====1.【点睛】 本题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.16.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.17.已知3a b +=,2ab =-, (1)则22a b +=____;(2)则a b -=___.【答案】13; 17±【解析】试题解析:将a+b=-3两边平方得:(a+b )2=a 2+b 2+2ab=9,把ab=-2代入得:a 2+b 2-4=9,即a 2+b 2=13;(a-b )2=a 2+b 2-2ab=13+4=17,即17.18.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m=7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.19.分解因式:2x2﹣8=_____________【答案】2(x+2)(x﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.20.分解因式:3x2-6x+3=__.【答案】3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()222-+=-+=-.36332131x x x x x故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。
西安市铁一中学数学整式的乘法与因式分解达标检测卷(Word版 含解析)
西安市铁一中学数学整式的乘法与因式分解达标检测卷(Word 版含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.把多项式2425m -分解因式正确的是( )A .(45)(45)m m +-B .(25)(25)m m +-C .(5)(5)m m -+D .(5)(5)m m m -+【答案】B【解析】利用公式法分解因式的要点,根据平方差公式:()()22a b a b a b -=+-,分解因式为:()()()222425252525m m m m -=-=+-.故选B.2.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( )A .1、3B .3、5C .6、8D .7、9【答案】D【解析】248-1=(224+1)(224-1)= (224+1)(212+1)(212-1)= (224+1)(212+1)(26+1)(26-1)=(224+1)(212+1)(26+1)(23+1) (23-1) , 23+1=9, 23-1=7,所以这两个数是7、9.故选D.点睛:平方差公式:a 2-b 2=(a +b )(a -b ).3.在2014,2015,2016,2017这四个数中,不能表示为两个整数平方差的数是( ).A .2014B .2015C .2016D .2017 【答案】A【解析】由于22()()a b a b a b -=+-,所以22201510081007=-;222016505503=-;22201710091008=-;因+a b 与-a b 的奇偶性相同,21007⨯一奇一偶,故2014不能表示为两个整数的平方差. 故选A.4.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.5.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.16【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.6.如果是个完全平方式,那么的值是()A.8 B.-4 C.±8 D.8或-4【答案】D【解析】试题解析:∵x2+(m-2)x+9是一个完全平方式,∴(x±3)2=x2±2(m-2)x+9,∴2(m-2)=±12,∴m=8或-4.故选D.7.如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A .a 2+2ab+b 2=(a+b )2B .a 2﹣2ab+b 2=(a ﹣b )2C .4ab=(a+b )2﹣(a ﹣b )2D .(a+b )(a ﹣b )=a 2﹣b 2【答案】C【解析】【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【详解】∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b )2﹣(a ﹣b )2=4ab ,即4ab=(a+b )2﹣(a ﹣b )2.故选C .8.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.9.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( ) A .3-,4-B .3-,4C .3,4-D .3,4【答案】A【解析】【分析】 根据题意可得规律为712a b ab +=-⎧⎨=⎩,再逐一判断即可. 【详解】根据题意得,a ,b 的值只要满足712a b ab +=-⎧⎨=⎩即可, A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.10.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -【答案】B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.多项式x 2+2mx+64是完全平方式,则m = ________ .【答案】±8【解析】根据完全平方式的特点,首平方,尾平方,中间是加减首尾积的2倍,因此可知2mx=2×(±8)x ,所以m=±8. 故答案为:±8.点睛:此题主要考查了完全平方式,解题时,要明确完全平方式的特点:首平方,尾平方,中间是加减首尾积的2倍,关键是确定两个数的平方.12.x+1x=3,则x 2+21x =_____. 【答案】7【解析】【分析】 直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x +1x =3, ∴(x +1x )2=9, ∴x 2+21x +2=9, ∴x 2+21x =7. 故答案为7.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.13.如果9x 2-axy+4y 2是完全平方式,则a 的值是____.【答案】±12【解析】【分析】根据完全平方式得出-axy=±2×3x2y ,求出即可.【详解】解:9x 2-axy+4y 2=(3x±2y )2即-axy=±2×3x2y【点睛】本题考查了完全平方式,能熟记完全平方公式的特点是解此题的关键,注意:完全平方式有两个a 2-2ab+b 2和a 2+2ab+62是本题的易错点.14.(m+n+p+q) (m-n-p-q)=(__________) 2-(__________) 2.【答案】m n+p+q【解析】(m+n+p+q)(m-n-p-q)=[m+(n+p+q)][m-(n+p+q)]=()22m n p q -++,故答案为(1)m ,(2)n+p+q. 点睛:本题主要考查了平方差公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差,多项式与多项相乘时,要注意观察能否将其中符号相同的项结合成为一项后,再运用平方差公式运算.15.对于实数a ,b ,定义运算“※”如下:a ※b=a 2﹣ab ,例如,5※3=52﹣5×3=10.若(x+1)※(x ﹣2)=6,则x 的值为_____.【答案】1【解析】【分析】根据新定义运算对式子进行变形得到关于x 的方程,解方程即可得解.【详解】由题意得,(x+1)2﹣(x+1)(x ﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为1.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.16.因式分解:2()4()a a b a b ---=___.【答案】()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.17.分解因式2242xy xy x ++=___________【答案】22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.若()2242x ax x ++=-,则a =_____.【答案】-4【解析】【分析】直接利用完全平方公式得出a 的值.【详解】解:∵()2242x ax x ++=-,∴4a =-故答案为:4-【点睛】此题主要考查了公式法分解因式,正确应用公式是解题关键.19.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.20.分解因式:3x 2-6x+3=__.【答案】3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()222-+=-+=-.x x x x x36332131故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。
《整式的乘法与因式分解》单元测试(含答案)
A. 9B. 27C. 54D. 81
二、填空题:
13.2xy(x﹣y)=______.
14.若3×9m×27m=316,则m=______.
15.如果(x+1)(x2﹣5ax+a)的乘积中不含x2项,则a为_______.
∵(a+b)2=72=49,
∴a2-ab+b2=(a+b)2-3ab=49-39=10,
故答案为10.
18.现有A、B、C三种型号地砖,其规格如图所示,用这三种地砖铺设一个长为x+y,宽为3x+2y的长方形地面,则需要A种地砖___________块.
【答案】3
【解析】
【分析】
由长与宽的乘积表示出长方形底面面积,即可确定出需要A种地砖的块数.
故选A.
【点睛】考查了单项式乘法,关键是掌握单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
9.若(y+3)(y-2)=y2+my+n,则m、n的值分别为()
A. , B. , C. , D. ,
【答案】B
【解析】
【分析】
先根据多项式乘以多项式的法则计算 ,再根据多项式相等的条件即可求出 、 的值.
A. ①②B. ③④C. ②④D. ④
5.(2011福建龙岩,4,4分) 的计算结果是
A. B. C. D.
6.下列计算正确的是()
A.a+a2=a3B.a6b÷a2=a3bC.(a﹣b)2=a2﹣b2D.(﹣ab3)2=a2b6
《整式的乘法与因式分解》单元测试题(带答案)
A. B. C. D.
[答案]D
[解析]
[分析]
根据平方差公式(A+B)(A-B)=A2-B2对各选项分别进行判断即可.
[详解]能用平方差公式计算的是 ,
故选D.
[点睛]本题考查了平方差公式,熟练掌握平方差公式(A+B)(A-B)=A2-B2是解本题的关键.
10.下列从左到右的变形,是因式分解的是
4.下列计算正确的是()
A 3A2﹣4A2=A2B.A2•A3=A6C.A10÷A5=A2D.(A2)3=A6
5.下列各式中,运算正确的是()
A. B. C. D.
6.下列运算错误的是()
A.(m2)3=m6B.A10÷A9=AC.x3•x5=x8D.A4+A3=A7
7.化简(A2)A3所得 结果是()
(2)用两种不同的方法求图中阴影部分的面积.
11.下列运算正确的是()
A. B. C. D.
[答案]D
[解析]
[分析]
根据同底数幂的乘除法法则,幂的乘方,积的乘方一一判断即可.
[详解]解:A、错误.应该是x3•x3=x6;
B、错误.应该是x8÷x4=x4;
C、错误.(A B3)2=A2B6.
D、正确.
故选D.
[点睛]本题考查同底数幂的乘除法法则,幂的乘方,积的乘方等知识,解题的关键是熟练掌握基本知识.
∴A2﹣4A+4+B2﹣8B+16=0,
∴(A﹣2)2+(B﹣4)2=0,
又∵(A﹣2)2≥0,(B﹣4)2≥0,
∴A﹣2=0,B﹣4=0,
∴A=2,B=4,
∴△A B C的周长为A+B+C=2+4+3=9,
《整式的乘法与因式分解》单元测试(含答案)
C.x2-xy+y2=(x-y)2D.2x-2y=2(x-y)
5.若 ,那么 值是
A. B. C. D.
6.如果 ,那么 的值为
A. B. C. D.
7.计算 的结果是
A. B. C. D.
8.已知 ,则 的值等于 .
A. B. C. D.
9.下列各式中与 相等的是
A. B. C. D.
10.如果 的左边是一个关于 的完全平方式,则 的值为
【点睛】本题考查了提公因式法和运用公式法因式分解的综合运用,分解因式时,要分解到每一个因式都不能够在分解即可.
12.计算 _______________.
【答案】
【解析】
【分析】
把(-2)2014写成(-2)×(-2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.
【详解】原式=
故答案为2.
【点睛】考查有理数的乘方运算,掌握乘方运算法则是解题的关键.
13.分解因式: ____________________________.
【答案】(x-6)(x+1)
【解析】
因为-6×1=-6,-6+1=-5,所以利用十字相乘法分解因式为: =(x-6)(x+1).
故答案为(x-6)(x+1)
【解析】
【分析】
(1)先利用完全平方公式和多项式除单项式的方法计算,再合并同类项,再进一步代入求得数值即可;
(2)利用平方差公式和单项式乘以多项式进行计算,再进一步合并同类项,最后代入求得数值即可.
【详解】(1)原式=
=
当 , 时,原式=
(2) ,
当 , 时, .
【点睛】考查整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.
《整式的乘法与因式分解》单元综合测试(含答案)
(2)利用上述规律计算:1+2+3+4+…+200;
(3)尝试计算:3+6+9+12+…3n的结果.
参考答案
一、填空题:
1.已知x2+y2=10,xy=3,则x+y=_____.
【答案】±4
【解析】
【分析】
先根据完全平方公式可:(x+y)2=x2+y2+2xy,求出(x+y)2的值,然后两边开平方即可求出x+y的值.
原式=2(m2+2mn+n2)-6,
=2(m+n)2-6,
=2×9-6,
=12.
4.若a+b=4,a﹣b=1,则(a+2)2﹣(b﹣2)2的值为_____.
【答案】20
【解析】
【分析】
先利用平方差公式: 化简所求式子,再将已知式子的值代入求解即可.
【详解】
将 代入得:原式
故答案为:20.
【点睛】本题考查了利用平方差公式进行化简求值,熟记公式是解题关键.另一个重要公式是完全平方公式: ,这是常考知识点,需重点掌握.
25.阅读下列题目的解题过程:
已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.
解:∵a2c2﹣b2c2=a4﹣b4(A)
∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)
∴c2=a2+b2(C)
∴△ABC 直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;
西安铁一中滨河学校八年级数学上册第十四章《整式的乘法与因式分解》经典复习题
一、选择题1.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 2.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( )A .6x ±B .-1或4814xC .29x -D .6x ±或1-或29x - 3.已知3x y +=,1xy=,则23x xy y -+的值是( ) A .7 B .8 C .9 D .124.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7 5.已知25y x -=,那么()2236x y x y --+的值为( )A .10B .40C .80D .2106.将11n n x x +--因式分解,结果正确的是( )A .()121n xx -- B .()11n x x -- C .()1n x x x --D .()()111n x x x -+-7.化简()2003200455-+所得的值为( ) A .5- B .0 C .20025D .200345⨯ 8.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关 9.下列运算正确的是( ). A .()2326ab a b = B .()325a a = C .236a a a ⋅= D .347a a a +=10.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 211.下列运算正确是( )A .b 5÷b 3=b 2B .(b 5)3=b 8C .b 3b 4=b 12D .a (a ﹣2b )=a 2+2ab 12.下列各式中,正确的是( )A .2222x y yx x y -+=B .22445a a a +=C .()2424m m --=-+D .33a b ab += 13.下列运算中,正确的是( )A .()23294x y x y = B .3362x x x += C .34x x x ⋅= D .22(3)(3)3x y x y x y +-=-14.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34 B .54- C .12- D .5415.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( )A .1B .1-C .2D .2-二、填空题16.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.17.若2330x x --=,则()()()123x x x x ---的值为______.18.若()()21x a x -+的积中不含x 的一次项,则a 的值为______.19.已知25m =,2245m n +=,则2n =_______.20.计算:248(21)(21)(21)(21)1+++++=___________.21.2|1|0++-=a b ,则2020()a b +=_________.22.若2211392781n n ++⨯÷=,则n =____.23.若2a x =,3b x =,则32a b x -=___________.24.若()2340x y -+=,则x y -=______.25.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________.26.如果()()223232x x y ---=-,那么代数式()3()4(2)x y x y x y ++----的值是___________. 三、解答题27.计算:4a 2·(-b )-8ab ·(b -12a ). 28.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以 用来解释()2222a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m n >.(以上长度单位: cm )(1)观察图形,可以发现代数式22252m mn n ++可以分解因式为_________(2)若每块小长方形的面积为210cm ,四个正方形的面积和为258,cm 试求图中所有裁剪线(虚线部分)长之和.29.已知7,12a b ab -==-(1)求22ab a b -的值(2)求22a b +的值30.先化简,再求值:[(2a ﹣1)2﹣(2a+1)(2a ﹣1)+(2a ﹣1)(a+2)]÷2a ,其中a =12.。
《整式的乘法与因式分解》单元测试题(含答案)
A.2x(x+3)=2x2+6xB.24xy2=3x•8y2
C.x2+2xy+y2+1=(x+y)2+1D.x2﹣y2=(x+y)(x﹣y)
[答案]D
[解析]
[分析]
根据因式分解的定义逐个判断即可.
[详解]A、不是因式分解,故本选项不符合题意;
B、不是因式分解,故本选项不符合题意;
[答案]9
[解析]
[分析]
根据幂的运算即可得到答案.
[详解]解:20182m-n=(2018m)2÷2018n=62÷4=36÷4=9,故答案为9.
[点睛]本题主要考查了幂 运算法则,解本题的要点在于利用已知条件求出答案.
14.如图,一块直径为A+B的圆形钢板,从中挖去直径分别为A与B的两个圆,则剩下的钢板的面积为_____.
C. 9D.以上答案都不对
3.如果A2n-1An+5=A16,那么n 值为( )
A.3B.4C.5D.6
4.计算(﹣4A2+12A3B)÷(﹣4A2)的结果是( )
A. 1﹣3A BB. ﹣3A BC. 1+3A BD. ﹣1﹣3A B
5.若等式x2+Ax+19=(x﹣5)2﹣B成立,则A+B的值为( )
18.若实数A、B、C满足A﹣B= ,B﹣C=1,那么A2+B2+C2﹣A B﹣B C﹣C A的值是_____
[答案]3+
[解析]
[分析]
利用完全平方公式将代数式变形:A2+B2+C2-A B-B C-C A= (2A2+2B2+2C2-2A B-2B C-2C A)= [(A-B)2+(B-C)2+(A-C)2],即可求代数式的值.
西安铁一中分校八年级数学上册第十四章《整式的乘法与因式分解》经典习题
一、选择题1.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 2.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 3.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( )A .6x ±B .-1或4814xC .29x -D .6x ±或1-或29x - 4.若3a b +=-,10ab =-,则-a b 的值是( )A .0或7B .0或13-C .7-或7D .13-或13 5.已知: 13m m +=, 则: 331m m +的值为( ) A .15 B .18 C .21D .9 6.下列因式分解正确的是( ) A .24414(1)1m m m m -+=-+ B .a 2+b 2=(a +b )2C .x 2-16y 2=(x +8y )(x -8y )D .-16x 2+1=(1+4x )(1-4x )7.如果x+y =6,x 2-y 2=24,那么y-x 的值为( ) A .﹣4 B .4 C .﹣6D .6 8.下列运算正确..的是( ) A .246x x x ⋅= B .246()x x = C .3362x x x += D .33(2)6x x -=- 9.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+ 10.下列计算一定正确的是( )A .235a b ab +=B .()235610a b a b -=C .623a a a ÷=D .()222a b a b +=+ 11.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( )A .43B .43-C .0.75D .-0.7512.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n ),其中正整数n ≥2,下列说法正确的是( )A .A 5<A 6B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <10082015 13.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1 14.下列计算正确的是( )A .224x x x +=B .222()x y x y -=-C .26()x y x y =3D .235x x x 15.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a +=二、填空题16.如果210x x m -+是一个完全平方式,那么m 的值是__________.17.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 18.下图中的四边形均为长方形,根据图形面积,写出一个正确的等式:______.19.2|1|0++-=a b ,则2020()a b +=_________.20.若2211392781n n ++⨯÷=,则n =____.21.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____22.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________. 23.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______. 24.若2x y a +=,2x y b -=,则22x y -的值为____________.25.因式分解()2228ac bc abc -+=______.26.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a +b )0=1(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a +b )5=__________,并说出第7排的第三个数是___.三、解答题27.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图1、图2,请你写出()2a b +、()2a b -、ab 之间的等量关系;(2)根据(1)中的结论,若5x y -=,114xy =,试求x y +的值; (3)拓展应用:若()()222019202134m m -+-=,求()()20192021m m --的值.28.分解因式(1)22363ax axy ay -+(2)()()22162x x x ---29.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a b 、的代数式分别表示1S 、2S ;(2)若10,23a b ab +==,求12S S +的值;(3)当1229S S +=时,求出图3中阴影部分的面积3S .30.阅读:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值. 解:设另一个因式为x +n ,得x 2﹣4x +m =(x +3)(x +n )则x 2﹣4x +m =x 2+(n +3)x +3n ∴343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩∴另一个因式为x ﹣7,m 的值为﹣21问题:仿照上述方法解答下列问题:(1)已知二次三项式2x 2+3x ﹣k 有一个因式是2x ﹣5,求另一个因式及k 的值. (2)已知2x 2﹣13x +p 有一个因式x ﹣3,则P = .。
西安铁一中滨河学校八年级数学上册第四单元《整式的乘法与因式分解》检测卷(含答案解析)
一、选择题1.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( ) A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解2.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0 B .2- C .0或2- D .以上答案都不对3.形如ab cd的式子叫做二阶行列式,它的算法是:ab ad bc cd=-,则221a a a a -++的运算结果是( ) A .4a B .4a -C .4D .4-4.化简()2003200455-+所得的值为( )A .5-B .0C .20025D .200345⨯5.下列运算正确是( )A .b 5÷b 3=b 2B .(b 5)3=b 8C .b 3b 4=b 12D .a (a ﹣2b )=a 2+2ab6.数151025N =⨯是( ) A .10位数 B .11位数 C .12位数 D .13位数 7.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n -B .6323m n -C .383m n -D .6169m n -8.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .59.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-110.下列计算正确的是( ) A .(ab 3)2=a 2b 6 B .a 2·a 3=a 6 C .(a +b )(a -b )=a 2-2b 2 D .5a -2a =3 11.长和宽分别为a ,b 的长方形的周长为16,面积为12,则22 a b ab +的值为( ) A .24 B .48 C .96 D .192 12.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9二、填空题13.已知a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,则2021a bxcd cd+-+的值为_______. 14.若()()21x a x -+的积中不含x 的一次项,则a 的值为______. 15.若26x x m ++为完全平方式,则m =____.16.计算:248(21)(21)(21)(21)1+++++=___________.17.若()230x -+=,则x y -=______.18.若2249x mxy y -+是一个完全平方式,则m =______19.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示) 20.计算:32(2)a b -=________.三、解答题21.先化简,再求值:2(21)(21)(23)+---a a a ,其中112a =-. 22.分解因式(1)22363ax axy ay -+(2)()()22162xx x ---23.分解因式:(1)222ax axy ay ++;(2)4161y -24.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题:①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________; ③请应用上述性质计算:201920182017(0.125)24-⨯⨯ 25.已知5x y -=,6xy =,求下列各式的值.(1)22xy +;(2)x y +26.先化简,再求值:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦,其中212025a b ⎛⎫-+-= ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算. 【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解; 所以①是乘法运算,②因式分解. 故选:D . 【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.2.A解析:A 【分析】由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案. 【详解】 解:根据题意, ∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020, ∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==,∴222||2||0x y x y -+-=; 故选:A . 【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-.3.A解析:A 【分析】根据定义把二阶行列式表示成整式,然后再化简计算即可. 【详解】 解:由题意可得:()()()212221a a a a a a a a -=+--+++=()224a a a +-- =224a a a +-+ =a+4, 故答案为A . 【点睛】本题考查整式乘法的混合运算,通过观察题目给出的运算法则,把所求解的算式根据运算法则展开是解题关键.4.D解析:D 【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案. 【详解】 解:()2003200455-+=(-5)2003+(-5)2004 =(-5)2003(1-5) =4×52003, 故选:D . 【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.5.A解析:A 【分析】根据幂的乘方,同底数幂乘法和除法,单项式乘多项式运算法则判断即可. 【详解】A 、b 5÷b 3=b 2,故这个选项正确;B 、(b 5)3=b 15,故这个选项错误;C 、b 3•b 4=b 7,故这个选项错误;D 、a (a ﹣2b )=a 2﹣2ab ,故这个选项错误; 故选:A . 【点睛】本题考查了幂的乘方,同底数幂乘法和除法,以及单项式乘多项式,重点是掌握相关的运算法则.6.C解析:C 【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论. 【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数, 故选:C . 【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.7.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.8.A解析:A 【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么: 第1次输出的结果是5 第2次输出的结果是16 第3次输出的结果是8 第4次输出的结果是4 第5次输出的结果是2 第6次输出的结果是1 第7次输出的结果是4 ……综上可得,从第4次开始,每三个一循环由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等 故选:A 【点睛】本题实为代数式求值问题,解题的关键是通过计算特殊结果发现一般规律9.D解析:D 【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断. 【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确;故选:D . 【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.10.A解析:A 【分析】根据整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项依次进行计算并判断. 【详解】A 、(ab 3)2=a 2b 6,故正确;B 、a 2·a 3=a 5,故错误;C 、(a +b )(a -b )=a 2-b 2,故错误;D 、5a -2a=3a ,故错误; 故选:A . 【点睛】此题考查整式的计算,正确掌握整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项是解题的关键.11.C解析:C 【分析】根据已知条件长方形的长与宽之和为8,长与宽之积为12,然后分解因式代入即可. 【详解】∵长方形的周长为16, ∴8a b +=, ∵面积为12, ∴12ab =,∴()2212896a b ab ab a b +=+=⨯=,故选:C . 【点睛】本题考查的是因式分解的应用,以及长方形周长和面积的计算,熟练掌握长方形的周长和面积的计算公式是解答本题的关键.12.B解析:B 【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可. 【详解】∵x 2•x 3=x 5,∴选项A 不符合题意; ∵(x 3)2=x 6,∴选项B 符合题意; ∵(−3x )3=−27x 3,∴选项C 不符合题意; ∵x 4+x 5≠x 9,∴选项D 不符合题意. 故选:B . 【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.二、填空题13.0或-2【分析】根据ab 互为相反数cd 互为倒数x 是数轴上到原点的距离为1的点表示的数可以得到a+b=0cd=1x=±1从而可以求得所求式子的值【详解】解:∵ab 互为相反数cd 互为倒数x 是数轴上到原点解析:0或-2 【分析】根据a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,可以得到a+b=0,cd=1,x=±1,从而可以求得所求式子的值. 【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数, ∴a+b=0,cd=1,x=±1, ∴x 2021=±1, ∴2021a bxcd cd+-+=1-1+0 =0; 或2021a bxcd cd+-+=-1-1+0 =-2.故答案为:0或-2. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.14.2【分析】先运用多项式的乘法法则计算再合并同类项因积中不含x 的一次项所以让一次项的系数等于0得a 的等式再求解【详解】解:(2x-a )(x+1)=2x2+(2-a )x-a ∵积中不含x 的一次项∴2-a=解析:2 【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解. 【详解】解:(2x-a )(x+1)=2x 2+(2-a )x-a , ∵积中不含x 的一次项, ∴2-a=0, ∴a=2, 故答案为:2. 【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.15.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的解析:9 【分析】完全平方式可以写为首末两个数的平方(2x ,则中间项为x 2倍,即可解得m 的值. 【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成(2x +,则中间项为x 2倍,故62x = ∴m =9, 故答案填:9. 【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.16.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216 【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解. 【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++ =448(21)(21)(21)1-+++ =88(21)(21)1-++ =16(21)1-+ =216. 故答案是:216. 【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.17.7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3y=-4代入x-y 中计算即可【详解】∵且∴x-3=0y+4=0∴x=3y=-4∴x-y=3-(-4)=7故答案为:7【点睛】此题考查已知字母解析:7 【分析】根据偶次方的非负性及算术平方根的非负性求出x=3,y=-4,代入x-y 中计算即可. 【详解】∵()230x -=,且()230x -≥≥,∴x-3=0,y+4=0, ∴x=3,y=-4, ∴x-y=3-(-4)=7, 故答案为:7. 【点睛】此题考查已知字母的值求代数式的值,掌握偶次方的非负性及算术平方根的非负性求出x=3,y=-4是解题的关键.18.【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键 解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值. 【详解】∵2249x mxy y -+是一个完全平方式, ∴22312m =±⨯⨯=±. 故答案为:12±. 【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键.19.【分析】根据题意得:通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到得a 和c 的关系式经计算即可得到答案【详解】根据题意得:∴∴∴∴故答案为:【点睛】本题考查了三元一次方程组整式运算的知识;解题的解析:222644c c -+-【分析】根据题意得:20a b c ++=,2342a b c ++=,通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到20a b c ++=,得a 和c 的关系式,经计算即可得到答案. 【详解】根据题意得:20a b c ++=,2342a b c ++= ∴204223a b c b c =--=-- ∴222b c =-∴20202222a b c c c c =--=-+-=- ∴()()2222222644w a b c c c c =⨯=--=-+-故答案为:222644c c -+-.【点睛】本题考查了三元一次方程组、整式运算的知识;解题的关键是熟练掌握三元一次方程组、整式乘法运算的性质,从而完成求解.20.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.三、解答题21.12a -10,-11【分析】先按乘法公式进行化简,再代入求值即可.【详解】解:原式=2241(4129)---+a a a=22414129--+-a a a=12a -10 当112a =-时, 原式=112()1012⨯-- =110--=11-.【点睛】本题考查了运用乘法公式进行化简整式并求值,解题关键是熟练运用乘法公式进行化简,注意符号的变化.22.(1)3a (x-y )2;(2)()()()2+44x x x --【分析】(1)先提取公因式3a ,然后由完全平方公式进行因式分解;(2)直接提取公因式(x-2),进而利用平方差公式分解因式即可.【详解】解:(1)原式=3a (x 2-2xy+y 2)=3a (x-y )2;(2)()()22162x x x ---()()2=216x x --()()()=2+44x x x --【点睛】本题考查了分解因式.因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.23.(1)2()a x y +;(2)2(41)(21)(21)y y y ++-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可得出结果;(2)先利用平方差公式分解可得22(41)(41)y y +-,再次利用平方差公式对2(41)y -进行分解,即可完成.【详解】解:(1)原式22(2)a x xy y =++2()a x y =+,(2)原式22(41)(41)y y =+-2(41)(21)(21)y y y =++-.【点睛】本题考查了因式分解,掌握因式分解的基本方法,并能根据多项式的特点准确选择分解方法是解题的关键.24.①1,1;②n n a b ,n n n a b c ;③-132. 【分析】 ①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.【详解】①∵1001001212⎛⎫⨯= ⎪⎝⎭=1,∴100122⎛⎫⨯= ⎪⎝⎭1; ∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1, ∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()n a b ⋅=n n a b ;()n a b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2,∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174=20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键.25.(1) 37 ;(2)7±.【分析】(1) 根据x 2+y 2=(x-y )2+2xy ,把已知的式子代入即可求解.(2)根据()22+()4x y x y xy =-+ ,求出()2+x y ,再开方求x+y 即可.【详解】解:5x y -=,6xy =,(1) 2222()252637.x y x y xy +=-+=+⨯=(2) ()222+()454649x y x y xy =-+=+⨯=,∴=7x y +±.【点睛】本题主要考查完全平方公式,熟记公式的几个变形公式是解题关键.26.4a b -,85【分析】先算乘法,再合并同类项,最后算除法,代入求出即可.【详解】解:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦()()22223293ab b a ab b a a =--++-÷-()()23123ab a a =-÷-4a b =- ∵212025a b ⎛⎫-+-= ⎪⎝⎭ ∴1=02a -,2=05b - 解得:12a =,25b = ∴原式1284255=⨯-= 【点睛】本题考查了整式的混合运算和求值的应用,主要考查学生的化简能力和计算能力,注意运算顺序.。
西安铁一中分校八年级数学上册第四单元《整式的乘法与因式分解》检测题(含答案解析)
一、选择题1.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( )A .301050B .103020C .305010D .501030 2.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .73.若2()(2)3x a x x x b +-=-+,则实数b 等于( )A .2-B .2C .12-D .124.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18 B .12 C .9D .7 5.下列因式分解正确的是( ) A .24414(1)1m m m m -+=-+ B .a 2+b 2=(a +b )2C .x 2-16y 2=(x +8y )(x -8y )D .-16x 2+1=(1+4x )(1-4x )6.2a =1,b 是2的相反数,则a+b 的值是( ) A .1B .-3C .-1或-3D .1或-3 7.下列运算正确的是( ) A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-18.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .c a b >>D .a c b >> 9.下列各式中,正确的是( ) A .2222x y yx x y -+= B .22445a a a +=C .()2424m m --=-+D .33a b ab +=10.下列计算正确的是( ) A .224x x x += B .222()x y x y -=-C .26()x y x y =3D .235x x x11.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34 B .54- C .12- D .5412.已知x =7+1,y =7﹣1,则xy 的值为( )A .8B .48C .27D .6二、填空题13.如果210x x m -+是一个完全平方式,那么m 的值是__________.14.如果23a b -的值为1-,则645b a -+的值为_____.15.已知a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,则2021a b x cd cd +-+的值为_______. 16.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 17.若23x =,25y =,则22x y +=____________.18.若26x x m ++为完全平方式,则m =____.19.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知min{21,}21a =,min{21,}b b =,且a 和b 是两个连续的正整数,则a+b =_____.20.若()2340x y -++=,则x y -=______.三、解答题21.如图1,将一个长为4a ,宽为2b 的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a ,b 的式子表示)(2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b )2,ab 和(2a+b )2的数量关系.22.阅读下列文字,并解决问题.已知x 2y =3,求2xy (x 5y 2﹣3x 3y ﹣4x )的值.我们知道,满足x 2y =3的x ,y 的值可能较多,不可能逐一代入求解,而运用整体思想能使问题化繁为简,化难为易,运用整体代入的方法能巧妙地解决一些代数式的求值问题,于是将x 2y =3整体代入.解:2xy (x 5y 2﹣3x 3y ﹣4x )=2x 6y 3﹣6x 4y 2﹣8x 2y=2(x 2y )3﹣6(x 2y )2﹣8x 2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab =4,求(2a 3b 2﹣3a 2b+4a )•(﹣2b )的值;(2)已知x ﹣1x =5,求1x x +的值. 23.给出下列算式:2231842-==⨯;22531644-==⨯;22752446-==⨯;22973248-==⨯.······()1观察上面一系列式子,你能发现什么规律?()2用含(n n 为正整数)的式子表示出来你发现的规律,并证明这个规律﹔()3计算2220212019-=_ _,此时n =_ .24.把一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后拼成一个正方形(如图1).(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示). 方法1:______________________________.方法2:______________________________.(2)根据(1)中结论,请你写出下列三个代数式()2m n +,()2m n -,mn 间的等量关系:________(3)根据(2)中的等量关系,解决如下问题:已知实数x ,y 满足6xy =,5x y -=,请求出x y +的值.25.如图1是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边,两个小正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图2).用两种不同的方法列代数式表示图2中的大正方形面积:方法一:________________;方法二:________________;(直接把答案填写在答题卡的横线上)(2)观察图2,试写出()2a b +,2a ,2ab ,2b 这四个代数式之间的等量关系:________________.(直接把答案填写在答题卡的横线上)(3)请利用(2)中等量关系解决问题:若图1中一个三角形面积是6,图2的大正方形面积是64,求22a b +的值.26.分解因式:(1)222ax axy ay ++;(2)4161y -【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.【详解】x 3−xy 2=x (x 2−y 2)=x (x +y )(x−y ),当x =30,y =20时,x =30,x +y =50,x−y =10,组成密码的数字应包括30,50,10,所以组成的密码不可能是103020.故选:B .【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.2.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.3.B解析:B【分析】等式左边去括号后两边经过比对可以得解 .【详解】解:原等式可变为:()22223x a x a x x b +--=-+,∴可得:232a b a-=-⎧⎨=-⎩, 解之得:a=-1,b=2,故选B .【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.4.D解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.5.D解析:D【分析】把各式分解得到结果,即可作出判断.【详解】解: A 、()224412-1-+=m m m ,原选项错误,不符合题意;B 、a 2+b 2不能分解,不符合题意;C 、x 2-16y 2=(x +4y )(x -4y ),原选项错误,不符合题意;D 、-16x 2+1=(1+4x )(1-4x ) ,原选项正确,符合题意;故选:D .【点睛】此题考查了运用公式法分解因式,熟练掌握因式分解的方法是解本题的关键. 6.C解析:C【分析】根据平方及相反数定义求出a 、b 的值,代入a+b 计算即可.【详解】∵2a =1,b 是2的相反数,∴1a =±,b=-2,当a=1时,a+b=1-2=-1,当a=-1时,a+b=-1-2=-3,故选:C .【点睛】此题考查求代数式的值,根据平方及相反数定义求出a 、b 的值是解题的关键. 7.D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.8.B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.9.A解析:A【分析】根据同类项的定义与单项式的乘法法则,分别判断分析即可.【详解】解:A.2222x y yx x y -+=,故A 正确;B.22245a a a +=,故B 不正确;C.-2(m-4)=-2m+8,故C 不正确;D.3a 与b 不是同类项,不能合并,故D 不正确.故选A.【点睛】本题考查了合并同类项与单项式的乘法、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.10.D解析:D【分析】根据整式的加法法则,乘法法则,积的乘方计算法则,完全平方公式分别计算进行判断.【详解】A 、2222x x x +=,故该项错误;B 、222()2x y x xy y -=-+,故该项错误;C 、2363()x y x y ,故该项错误;D 、235x x x ,故该项正确;故选:D .【点睛】此题考查整式的计算,正确掌握整式的加法法则,乘法法则,积的乘方计算法则,完全平方公式是解题的关键. 11.B解析:B【分析】直接利用非负数的性质得出x ,y 的值,进而代入得出答案.【详解】∵|x +1|+(y−12)2=0, ∴x +1=0,y−12=0, 解得:x =−1,y =12, ∵2xy−(x +y )2=2xy−x 2−y 2−2xy =−x 2−y 2,∴当x =−1,y =12时, 原式=−(−1)2−(12)2=−1−14=−54. 故选:B .【点睛】 此题主要考查了非负数的性质,和完全平方公式,正确得出x ,y 的值是解题关键. 12.D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,故选:D.【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键.二、填空题13.25【分析】利用完全平方公式的结构特征即可求出m 的值【详解】解:∵x2-10x+m 是一个完全平方式∴m==25故答案为:25【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:25【分析】利用完全平方公式的结构特征,即可求出m 的值.【详解】解:∵x 2-10x +m 是一个完全平方式,∴m=210()2-=25. 故答案为:25.【点睛】 此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.7【分析】把所求代数式整理成已知条件的形式然后整体代入进行计算即可得解【详解】解:∵2a-3b=-1∴3b-2a=1∴=2+5=7故答案是:7【点睛】本题考查了代数式求值整体思想的利用是解题的关键解析:7【分析】把所求代数式整理成已知条件的形式,然后整体代入进行计算即可得解.【详解】解:∵2a-3b=-1,∴3b -2a=1,∴()64523b 2a 5b a -+=-+=2+5=7,故答案是:7.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.15.0或-2【分析】根据ab 互为相反数cd 互为倒数x 是数轴上到原点的距离为1的点表示的数可以得到a+b=0cd=1x=±1从而可以求得所求式子的值【详解】解:∵ab 互为相反数cd 互为倒数x 是数轴上到原点解析:0或-2【分析】根据a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,可以得到a+b=0,cd=1,x=±1,从而可以求得所求式子的值.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,∴a+b=0,cd=1,x=±1,∴x 2021=±1, ∴2021a b x cd cd+-+ =1-1+0=0; 或2021a b x cd cd+-+ =-1-1+0=-2.故答案为:0或-2.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 16.【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可.【详解】 解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯ =1120. 故答案为:1120. 【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.17.75【分析】逆用积的乘方可得再逆用幂的乘方即可求解【详解】解:故答案为:75【点睛】本题考查积的乘方和幂的乘方的逆用掌握积的乘方和幂的乘方是解题的关键解析:75【分析】逆用积的乘方可得22222x y x y +=⋅,再逆用幂的乘方即可求解.【详解】解:()2222222223575x y x y x y +=⋅=⋅=⨯=,故答案为:75.【点睛】本题考查积的乘方和幂的乘方的逆用,掌握积的乘方和幂的乘方是解题的关键. 18.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的解析:9【分析】完全平方式可以写为首末两个数的平方(2x ,则中间项为x 2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成(2x +,则中间项为x 2倍,故62x =∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解. 19.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9【分析】根据新定义得出a ,b 的值,再求和即可.【详解】解:∵,b}=b , ∴a ,b又∵a 和b 为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a ,b 的值是解题关键. 20.7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3y=-4代入x-y 中计算即可【详解】∵且∴x-3=0y+4=0∴x=3y=-4∴x-y=3-(-4)=7故答案为:7【点睛】此题考查已知字母解析:7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3,y=-4,代入x-y 中计算即可.【详解】∵()230x -=,且()230x -≥≥, ∴x-3=0,y+4=0,∴x=3,y=-4,∴x-y=3-(-4)=7,故答案为:7.【点睛】此题考查已知字母的值求代数式的值,掌握偶次方的非负性及算术平方根的非负性求出x=3,y=-4是解题的关键.三、解答题21.(1)2a-b ;(2)1;(3)22(2)(2)8a b a b ab +=-+【分析】(1)观察由已知图形,求出小长方形的长为2 a ,宽为b ,那么图2中的空白部分的正方形的边长是小长方形的长—小长方形的宽;(2)通过观察图形,大正方形的边长为小长方形的长和宽的和.图2中空白部分的正方形的面积为大正方形的面积 - 四个小长方形的面积;(3)通过观察图形知:(2 a +b )2 ,(2 a -b )2 , 8 a b .分别表示的是大正方形、空白部分的正方形及小长方形的面积,据此即可解答.【详解】解:()1长为4a ,宽为2b 的长方形分成四个小长方形,则小长方形的长为422a a ÷=,宽为22b b ÷=,图2的空白部分的边长=小长方形的长 - 小长方形的宽,即图2的空白部分的边长是2a b -;()2由图2可知,S 空白小正方形=()()222=28a b a b ab -+-,27a b +=,且6ab =,∴S 空白小正方形=()()222=28a b a b ab -+-=()2786=1-⨯; ()3由图2可以看出,大正方形面积=空白部分的正方形的面积+四个小长方形的面积, 即:22(2)(2)8a b a b ab +=-+.【点睛】此题考查了学生观察、分析图形解答问题的综合能力,以及对列代数式、代数式求值的理解与掌握.关键是通过观察图形找出各图形之间的关系.22.(1)-192;(2)129x x +=± 【分析】(1)根据单项式乘多项式的运算法矩形计算,根据积的乘方法则变形,把已知数据代入计算即可;(2)根据完全平方公式把原式变形,把已知数据代入计算即可.【详解】解:(1)∵ab =4,∴(2a 3b 2﹣3a 2b+4a )•(﹣2b )=﹣4a 3b 3+6a 2b 2﹣8ab=﹣4(ab )3+6(ab )2﹣8ab=﹣4×43+6×42﹣8×4=﹣192;(2)∵x ﹣1x=5, ∴22211()()45429x x x x +=-+=+=. 129x x∴+=±【点睛】本题考查的整式的混合运算及完全平方公式,正确理解题意掌握相关运算顺序和计算法则正确计算是解题的关键.23.(1)两个连续奇数的平方差(大奇数的平方减去小奇数的平方),等于夹在两个奇数之间的偶数的4倍;(2)()()22212142n n n +•=-﹣;证明见解析;(3)8080,1010.【分析】(1)通过观察找出规律,可发现两个连续奇数的平方差等于夹在两个奇数之间的偶数的4倍;(2)由(1)进一步可得出第n 个等式为()()22212142n n n +-⋅=-.(3)利用前面得到的规律即可求得答案.【详解】(1)规律:两个连续奇数的平方差(大奇数的平方减去小奇数的平方),等于夹在两个奇数之间的偶数的4倍;(2)设1n n ≥()表示自然数,用关于n 的等式表示这个规律为: ()()22212142n n n +⋅﹣=-;证明:左边()()2244144142n n n n n =++--+=⋅=右边 ()()22212142n n n ∴+-⋅﹣=;(3)212021n +=,解得:1010n =, 22420212019101088200-=⨯=⨯∴.【点睛】此题考查数字的变化规律,根据数字的特点,得出运算的规律,利用规律解决问题. 24.(1)方法1:()24m n mn +-,方法2:()2m n -;(2)()()224m n m n mn -=+-;(3)7x y += 【分析】(1)由题意知,阴影部分为一正方形,其边长正好为m ﹣n .根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积由图形可得:(2)大正方形的面积减去四个小长方形的面积正好等于图中阴影部分的面积.(3)(x +y )2正好表示大正方形的面积,(x ﹣y )2正好表示阴影部分小正方形的面积,xy 正好表示一个小长方形的面积.根据(2)中的等式代入计算即可.【详解】解:(1)()24m n mn +-;()2m n -.(2)()()224m n m n mn -=+-.(3)∵()()224x y x x y y +=-+,5x y -=,6xy =,∴()2254649x y +=+⨯=, ∴7x y +=.【点睛】本题考查了完全平方式和整式的混合运算,主要考查学生的理解能力和计算能力. 25.(1)()2a b +;222a b ab ++;(2)()2222a b a b ab +=++;(3)40【分析】(1)利用两种方法表示出大正方形面积即可;(2)写出四个代数式之间的等量关系即可;(3)由直角三角形的面积是6,得到ab =12,大正方形②的面积是(a +b )2=64,把(2)变形后,整体代入可直接求值;【详解】解:(1)方法一:()2a b +;方法二:222a b ab ++;故答案为:(a +b )2;a 2+2ab +b 2;(2)()2222a b a b ab +=++;(3)∵162ab =,()264a b +=, ∴224ab =, ∴()222240a b a b ab +=+-=.【点睛】此题考查了完全平方公式的几何背景,代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.26.(1)2()a x y +;(2)2(41)(21)(21)y y y ++-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可得出结果;(2)先利用平方差公式分解可得22(41)(41)y y +-,再次利用平方差公式对2(41)y -进行分解,即可完成.【详解】解:(1)原式22(2)a x xy y =++2()a x y =+,(2)原式22(41)(41)y y =+-2(41)(21)(21)y y y =++-.【点睛】本题考查了因式分解,掌握因式分解的基本方法,并能根据多项式的特点准确选择分解方法是解题的关键.。
西安铁一中分校八年级数学上册第十四章《整式的乘法与因式分解》经典习题
一、选择题1.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( )A .2-B .2C .1-D .1D 解析:D【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入x y 中即可.【详解】 根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=. ∴435=024=0x y x y +-⎧⎨--⎩, 解得:=2=1x y ⎧⎨-⎩, ∴2(1)1x y =-=.故选:D .【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.2.下列因式分解正确的是( )A .24414(1)1m m m m -+=-+B .a 2+b 2=(a +b )2C .x 2-16y 2=(x +8y )(x -8y )D .-16x 2+1=(1+4x )(1-4x )D 解析:D【分析】把各式分解得到结果,即可作出判断.【详解】解: A 、()224412-1-+=m m m ,原选项错误,不符合题意;B 、a 2+b 2不能分解,不符合题意;C 、x 2-16y 2=(x +4y )(x -4y ),原选项错误,不符合题意;D 、-16x 2+1=(1+4x )(1-4x ) ,原选项正确,符合题意;故选:D .【点睛】此题考查了运用公式法分解因式,熟练掌握因式分解的方法是解本题的关键. 3.计算()201920180.52-⨯的值( )A .2B .2-C .12D .12- D 解析:D 【分析】 将原式变形为201920181-22⎛⎫⨯ ⎪⎝⎭,再利用同底数幂的乘法逆运算变为2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭,然后运用乘法交换律及积的乘方的逆运算计算即可. 【详解】 解:原式=201920181-22⎛⎫⨯ ⎪⎝⎭=2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2018201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =()20181-1-2⎛⎫⨯ ⎪⎝⎭=1×1-2⎛⎫ ⎪⎝⎭=12- 故选:D .【点睛】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法、积的乘方的逆运算是解题的关键.4.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n == D解析:D【分析】 根据题意逐一计算即可判断.【详解】A 、当m=1,n=4时,则m n <,∴2224210y n =+=⨯+=,不合题意;B 、当m=2,n=5时,则m n <,∴2225212y n =+=⨯+=,不合题意;C 、当m=5,n=3时,则m n >,∴3135114y m =-=⨯-=,不合题意;D 、当m=2,n=2时,则m n >,∴313215y m =-=⨯-=,符合题意;故选:D .【点睛】本题考查了代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.5.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y = D .623x x x ÷= C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.6.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( )A .1B .0C .1或2D .0或4D解析:D【分析】依据绝对值的性质,即可得到m ﹣3n =2020或2018,进而得出m ﹣3n 的值,再根据平方运算,即可得到(2020﹣m +3n )2的值.【详解】∵|m ﹣3n ﹣2019|=1,∴m ﹣3n ﹣2019=±1,即m ﹣3n =2020或2018,∴2020﹣m +3n =2020﹣(m ﹣3n )=0或2,∴(2020﹣m +3n )2的值为0或4,故选:D .【点睛】本题考查绝对值的性质和代数式求值,利用整体思想求出m ﹣3n 的值且注意去绝对值时的两种情况.7.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222x y a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽C 解析:C【分析】将式子先提取公因式再用平方差公式因式分解可得:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),再结合已知即可求解.【详解】解:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),由已知可得:我爱昭通,故选:C .【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求解是解题的关键. 8.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6D 解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】 ()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.9.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.10.已知x ,y ﹣1,则xy 的值为( )A .8B .48C .D .6D 解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,故选:D.【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键.二、填空题11.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.30【分析】直接利用正方形的性质结合三角形面积求法利用平方差公式即可得出答案【详解】解:设大正方形的边长为a小正方形的边长为b故阴影部分的面积是:AE•BC+AE•BD=AE(BC+BD)=(AB﹣解析:30【分析】直接利用正方形的性质结合三角形面积求法,利用平方差公式即可得出答案.【详解】解:设大正方形的边长为a,小正方形的边长为b,故阴影部分的面积是:12AE•BC+12AE•BD=12AE(BC+BD)=12(AB﹣BE)(BC+BD)=12(a﹣b)(a+b)=12(a2﹣b2)=12×60=30.故答案为:30.【点睛】本题主要考查平方差公式与几何图形和三角形的面积公式,用代数式表示阴影部分的面积,是解题的关键.12.如图是一个简单的数值运算程序,当输入n的值为3时,则输出的结果为______.870【分析】将n=3代入数值运算程序计算判断结果与30大小小于或等于30再代入计算大于30输出即可得到输出结果【详解】解:当n=3时根据数值运算程序得:32−3=9−3=6<30当n =6时根据数值解析:870【分析】将n =3代入数值运算程序计算,判断结果与30大小,小于或等于30再代入计算,大于30输出,即可得到输出结果.【详解】解:当n =3时,根据数值运算程序得:32−3=9−3=6<30,当n =6时,根据数值运算程序得:62−6=36−6=30,当n =30时,根据数值运算程序得:302−30=900−30=870>30,则输出结果为870.故答案为:870【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.已知18m x =,16n x =,则2m n x +的值为________.【分析】根据同底数幂的乘法可得再根据幂的乘方可得然后再代入求值即可【详解】解:故答案为【点睛】此题主要考查了同底数幂的乘法和幂的乘方关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加;幂的乘 解析:14【分析】根据同底数幂的乘法可得22m n m n xx x +=⋅,再根据幂的乘方可得()22m m x x =,然后再代入18m x =,16n x =求值即可. 【详解】解:()2222111684m n m n m n x x x xx +⎛⎫=⋅=⋅=⨯= ⎪⎝⎭ , 故答案为14. 【点睛】此题主要考查了同底数幂的乘法和幂的乘方,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.14.因式分解269x y xy y -+-=______.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.15.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94【分析】(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.16.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.4【分析】根据x2-3x -1=0可得x2-3x =1再将所求代数式适当变形后分两次整体代入即可求得值【详解】解:∵x2-3x -1=0∴x2-3x =1∴==将x2-3x =1代入原式==将x2-3x =1代解析:4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】解:∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点睛】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想.17.观察下列各式: 2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-; ()324(1)11x xx x x -+++=-; …… (1)()432(1)1x x x x x -++++=___;(2)根据规律可得:()1(1)1n x x x --+++=_____(其中n 为正整数);(3)计算:()5049482(31)333331-++++++;(1);(2);(3)【分析】(1)第二个括号里最高次数4根据观察可知结论中次数为4+1=5;(2)第二个括号里最高次数n-1根据观察可知结论中次数为n-1+1=n ;(3)用3代替等式中的x 次数根据解析:(1)51x -;(2)1n x -;(3)5131-.【分析】(1)第二个括号里最高次数4,根据观察可知结论中次数为4+1=5;(2) 第二个括号里最高次数n-1,根据观察可知结论中次数为n-1+1=n ;(3)用3代替等式中的x ,次数根据观察规律确定即可.【详解】(1)根据观察,发现结论是个二项式,且常数项为-1,另一项底数是x ,指数比第二个括号里多项式的最高次数多1,∵()4321x x x x ++++的最高次数是4,∴()432(1)1x x x x x -++++=51x -,故应该填51x -; (2)∵()11n x x -+++的最高次数是n-1, ∴()1(1)1n x x x --+++=1n x -,故应该填1n x -;(3)由(2)知:()1(1)11n n x xx x --+++=-,令3x =,51n =,得: ()504948251(31)33333131-++++++=-,故应该填5131-.【点睛】 本题考查了整式变化中的规律探索,解答时,抓住变化中变化项,不变项,变化的位置,变化的规律是解题的关键.18.关于x 的一次二项式mx +n 的值随x 的变化而变化,分析下表列举的数据mx +n -3 -1 0 1若mx +n =17,线段AB 的长为x ,点C 在直线AB 上,且BC =12AB ,则直线AB 上所有线段的和是_____________.20或30【分析】把表格中的前两对值代入求出m 与n 的值即可求出x 的值然后把x 的值代入求解即可【详解】解:由表格得x =0时m 0+n =-3∴n =-3;x =1时m 1+(-3)=-1∴m =2;∵mx +n 解析:20或30【分析】把表格中的前两对值代入求出m 与n 的值,即可求出x 的值,然后把x 的值代入求解即可.【详解】解:由表格得x =0时,m ⋅0+n =-3,∴n =-3;x =1时,m ⋅1+(-3)=-1,∴m =2;∵mx +n =17,∴2x -3=17,∴x =10,当点C 在线段AB 上时,∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =20;当点C 在点B 右侧时,∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =30.故答案为20或30.【点睛】此题考查了代数式求值和线段的和差计算,熟练掌握运算法则是解本题的关键. 19.若2a 与()23b +互为相反数,则2-=b a ______.-8【分析】根据题意得到+=0根据绝对值的非负性及偶次方的非负性求出a=2b=-3代入2b-a 计算即可【详解】由题意得:+=0∵00∴a-2=0b+3=0∴a=2b=-3∴2b-a=-6-2=8故答 解析:-8【分析】根据题意得到2a +2(3)b +=0,根据绝对值的非负性及偶次方的非负性求出a=2,b=-3,代入2b-a 计算即可.【详解】 由题意得:2a +2(3)b +=0 ∵2a ≥0,2(3)b +≥0,∴a-2=0,b+3=0,∴a=2,b=-3,∴2b-a=-6-2=8,故答案为:-8.【点睛】此题考查相反数的定义,绝对值的非负性及偶次方的非负性,求代数式的值,根据绝对值的非负性及偶次方的非负性求出a 和b 的值是解题的关键.20.已知4222112x x +-⋅=,则x =________3【分析】利用同底数幂乘法的逆运算求解即可【详解】∵∴即:∴∴故答案为:3【点睛】本题主要考查同底数幂乘法的逆运算灵活运用同底数幂乘法法则是解题关键解析:3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点睛】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键.三、解答题21.先化简,再求值:2()(2)(2)()x y x y y x y ⎡⎤---+÷-⎣⎦,其中1x =-,2y =. 解析:25x y -;-12【分析】整式的混合运算,中括号内利用完全平方公式和平方差公式展开,合并,再计算多项式除以单项式,然后代入求值.【详解】解:2()(2)(2)()x y x y y x y ⎡⎤---+÷-⎣⎦=22222(4)()x xy y x y y ⎡⎤-+--÷-⎣⎦=2222(2+4)()x xy y x y y -+-÷-=2(25)()xy y y -+÷-=25x y -当1x =-,2y =时,原式=2(1)5221012⨯--⨯=--=-【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 解析:(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.23.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以 用来解释()2222a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m n >.(以上长度单位: cm )(1)观察图形,可以发现代数式22252m mn n ++可以分解因式为_________(2)若每块小长方形的面积为210cm ,四个正方形的面积和为258,cm 试求图中所有裁剪线(虚线部分)长之和.解析:(1)()()22m n m n ++;(2)42cm .【分析】(1)根据图形的面积直接可以得到;(2)根据222258m n +=,10mn =,可得2229m n +=,可求得7m n +=,根据图形可知,图中所有裁剪线(虚线部分)长之和是66m n +,据此求解即可.【详解】(1)根据图形,依题意可得:2225222m mn n m n m n(2)依题意得222258m n +=,10mn =2229m n ∴+=2222m n m mn n2292049m n0m n +>7m n ∴+=,根据图形可知,图中所有裁剪线(虚线部分)长之和是:6666742m n m n ∴图中所有裁剪线(虚线部分)长之和为42cm .【点睛】本题考查完全平方公式和因式分解的应用,理解题意,从题目中获取信息,列出正确的代数式,再由图形的特点求解是解题的关键.24.数学活动课上,张老师准备了若干个如图①的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为,b 宽为a 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图②的大正方形.()1观察图②,请你写出代数式()222,,a b a b ab ++之间的等量关系是 ;()2根据()1中的等量关系,解决下列问题;①已知224,10a b a b +=+=,求ab 的值;②已知()()222020201852x x -+-=,求2019x -的值.解析:(1)()2222a b a b ab +=++;(2)①3ab =;②20195x -=±.【分析】(1)整体看是一个边长为(a+b )的正方形,局部看它有一个边长为a ,b 的正方形,两个长为b ,宽为a 的矩形组成,根据图形的面积相等即可确定它们之间的关系; (2)①公式变形为ab=222()()2a b a b +-+计算即可;②把x-2020变形成(x-2019)-1, 把x-2018变形成(x-2019)+1,用整体思想展开公式计算即可.【详解】()()22212a b a b ab +=++;理由如下:图②是边长为()a b +的正方形,()2S a b ∴=+图②可看成1个边长为a 的正方形,1个边长为b 的正方形以及2个长为,b 宽为a 的长方形的组合图形, 222,S a b ab ∴=++()222 2a b a b ab ∴+=++. ()24a b +=①,()216,a b +∴=即22216a b ab ++=.又2210,a b +=3ab ∴=;②设2019,x a -=则20201,20181x a x a -=--=+,()()222020201852x x -+-=, ()()22 1152a a ∴-++=,22212152,a a a a ∴-++++=22252,a ∴+=2250,a ∴=225,a ∴=即()2201925,x -= 20195x ∴-=±.【点睛】本题考查了完全平方公式的几何意义,公式的应用,以及公式的整体思想代换应用,熟练掌握公式的几何意义和公式的变形是解题的关键.25.先化简,再求值:()()()2222(2)x y y x x y x y x --++---,其中1,22x y =-=. 解析:232+x xy ,54-.【分析】利用平方差公式,和的完全平方公式,单项式乘以多项式法则化简,合并同类项后,代入求值即可.【详解】原式2222244 42x y x xy y xy x =-+++-+ 232x xy =+, 当1,22x y =-=时, 原式2115322224⎛⎫⎛⎫=⨯-+⨯-⨯=- ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查了运用乘法公式进行化简,熟练运用公式,正确合并同类项是解题的关键. 26.分解因式:()()144m m ++()32228x xy -解析:(1)()22m +;(2)()()222x x y x y +- 【分析】(1)将原代数式去括号计算后,直接利用完全平方公式因式分解;(2)先提取公因式,再利用平方差公式因式分解.【详解】解:()()144m m ++244m m =++()22m =+; ()32228x xy -()2224x x y =- ()()222x x y x y =+-.【点睛】本题考查因式分解.一般因式分解时能提取公因式先提取公因式,再看能否运用公式因式分解.27.给出下列算式:2231842-==⨯;22531644-==⨯;22752446-==⨯;22973248-==⨯.······()1观察上面一系列式子,你能发现什么规律?()2用含(n n 为正整数)的式子表示出来你发现的规律,并证明这个规律﹔ ()3计算2220212019-=_ _,此时n =_ .解析:(1)两个连续奇数的平方差(大奇数的平方减去小奇数的平方),等于夹在两个奇数之间的偶数的4倍;(2)()()22212142n n n +•=-﹣;证明见解析;(3)8080,1010.【分析】(1)通过观察找出规律,可发现两个连续奇数的平方差等于夹在两个奇数之间的偶数的4倍;(2)由(1)进一步可得出第n 个等式为()()22212142n n n +-⋅=-.(3)利用前面得到的规律即可求得答案.【详解】(1)规律:两个连续奇数的平方差(大奇数的平方减去小奇数的平方),等于夹在两个奇数之间的偶数的4倍;(2)设1n n ≥()表示自然数,用关于n 的等式表示这个规律为: ()()22212142n n n +⋅﹣=-;证明:左边()()2244144142n n n n n =++--+=⋅=右边 ()()22212142n n n ∴+-⋅﹣=;(3)212021n +=,解得:1010n =, 22420212019101088200-=⨯=⨯∴.【点睛】此题考查数字的变化规律,根据数字的特点,得出运算的规律,利用规律解决问题. 28.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式. 例如由图①可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.请解答下列问题:(1)写出由图②可以得到的数学等式 ;(2)利用(1)中得到的结论,解决下面问题:若a +b +c =6,a 2+b 2+c 2=14,求ab +bc +ac 的值;(3)可爱同学用图③中x 个边长为a 的正方形,y 个宽为a ,长为b 的长方形,z 个边长为b的正方形,拼出一个面积为(2a+b)(a+4b)的长方形,则x+y+z=.解析:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)11;(3)15【分析】(1)观察图形可得:大正方形的边长为:a+b+c,该正方形的面积等于3个小正方形的面积加上6个长方形的面积,由此可得出等式;(2)将a+b+c=6,a2+b2+c2=14代入(1)中所得的等式,计算即可;(3)由题意得:(2a+b)(a+4b)=xa2+yab+zb2,将等式左边展开,再比较系数即可得出x,y,z的值,然后求和即可.【详解】解:(1)观察图形可得:大正方形的边长为:a+b+c,该正方形的面积等于3个小正方形的面积加上6个长方形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,a+b+c=6,a2+b2+c2=14,∴62=14+2(ab+ac+bc),∴ab+ac+bc=(36﹣14)÷2=11.(3)由题意得:(2a+b)(a+4b)=xa2+yab+zb2,∴2a2+8ab+ab+4b2=xa2+yab+zb2,∴2a2+9ab+4b2=xa2+yab+zb2,∴x=2,y=9,z=4,∴x+y+z=2+9+4=15.故答案为:15.【点睛】本题考查了因式分解的应用、完全平方公式的几何背景及多项式乘法等知识点,数形结合并熟练掌握相关运算法则是解题的关键.。
西安铁一中八年级数学上册第十四章《整式的乘法与因式分解》基础卷(培优练)
一、选择题1.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .7D 解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.2.下列运算正确的是( )A .()23636a =B .()()22356a a a a --=-+ C .842x x x ÷=D .326326x x x ⋅= B解析:B【分析】 分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可.【详解】解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意;C .844x x x ÷=,故本选项不合题意;D .325326x x x ⋅=,故本选项不合题意.故选:B .【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.3.下列等式中从左到右边的变形是分解因式的是( )A .()21a a b a ab a +-=+-B .()2211a a a a --=-- C .()()22492323a b a b a b -+=-++ D .1212x x x ⎛⎫+=+ ⎪⎝⎭C 解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断.【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意; B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意; C 、()()22492323a b a b a b -+=-++,故该项符合题意; D 、1212x x x ⎛⎫+=+⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C .【点睛】 此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.4.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7B .18C .5D .9C 解析:C【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可. 【详解】∵代数式3x 2−4x +6的值为3,∴3x 2−4x +6=3,∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C .【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键. 5.下列计算中能用平方差公式的是( ).A .()()a b a b -+-B .1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭C .22x xD .()()21x x -+ B 解析:B【分析】根据平方差公式()()22a b a b a b -+=-一项一项代入判断即可. 【详解】A 选项:两项都是互为相反数,故不能用平方差公式;B 选项:两项有一项完全相同,另一项为相反数,故可用平方差公式;C 选项:两项完全相同,故不能用平方差公式;D 选项:有一项2-与1不同,故不能用平方差公式.故选:B .【点睛】此题考查平方差的基本特征:()()22a b a b a b -+=-中a 与b 两项符号不同,难度一般.6.下列有四个结论,其中正确的是( )①若1(1)1x x +-=,则x 只能是2;②若()2(1)1x x ax -++的运算结果中不含2x 项,则1a =③若10,16a b ab +==,则6a b -=④若4,8x y a b ==,则232x y -可表示为a b A .①②③④B .②③④C .①③④D .②④D 解析:D【分析】根据零次幂、多项式乘多项式、完全平方公式及同底数幂的除法法则分别对每一项进行分析,即可得出答案.【详解】解:①若(x-1)x+1=1,则x=-1或x=2,故本选项错误;②(x-1)(x 2+ax+1)的运算结果中x 2项的系数为a-1,∵不含x 2项,则a=1,故本选项正确;③∵(a-b )2=(a+b )2-4ab=102-4×16=36,∴6a b -=±,故本选项错误;④∵4x =a ,∴22x =a ,∵8y =b ,∴23y =b ,∴22x-3y =22x ÷23y a b =;故本选项正确; 故选:D .【点睛】本题考查了零次幂、多项式乘多项式、完全平方公式以及同底数幂的除法,熟练掌握运算法则是解题的关键.7.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y = D .623x x x ÷= C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.8.下列计算正确的是( )A .(ab 3)2=a 2b 6B .a 2·a 3=a 6C .(a +b )(a -b )=a 2-2b 2D .5a -2a =3A解析:A【分析】根据整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项依次进行计算并判断.【详解】A 、(ab 3)2=a 2b 6,故正确;B 、a 2·a 3=a 5,故错误;C 、(a +b )(a -b )=a 2-b 2,故错误;D 、5a -2a=3a ,故错误;故选:A .【点睛】此题考查整式的计算,正确掌握整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项是解题的关键.9.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ).A .6或20B .20 或-20C .6或-6D .-6或20A 解析:A【分析】先求出a b ,的值,根据条件+a b >0,确定=13a ,b=7±,分类代入-a b 求值即可.【详解】|a |=13,=13a ±,|b|=7,b=7±,∵+a b >0,∴=13a ,b=7±,当=13a ,b=7时,=1376a b --=,当=13a ,7b =-时,=13+720a b -=,则6a b -=或20.故选择:A .本题考查条件限定求值问题,会根据限定条件求出字母的值,掌握分类思想求代数式的值是解题关键.10.a ,b ,c 在数轴上的位置如下图所示,则下列代数式中值为正的是( )A .()()1a c b --B .()11c a b c ⎛⎫-- ⎪⎝⎭C .()1a a c b ⎛⎫+- ⎪⎝⎭D .()1ac bc - C 解析:C【分析】现根据各数在数轴上的位置确定其取值范围,然后可确定答案.【详解】解:由图知:0<a <1,b >1,c <0, ∴()100a a c b ⎛⎫+>-> ⎪⎝⎭,, ()1a a c b ⎛⎫+- ⎪⎝⎭值为正,C 正确; 而()110c a b c ⎛⎫--< ⎪⎝⎭,()()10a c b --<,()10ac bc -<;A 、B 、D 错误. 故选:C.【点睛】此题主要考查由取值范围确定代数式正负问题,解题的关键是根据点在数轴上的位置判断其正负.二、填空题11.如果210x x m -+是一个完全平方式,那么m 的值是__________.25【分析】利用完全平方公式的结构特征即可求出m 的值【详解】解:∵x2-10x+m 是一个完全平方式∴m==25故答案为:25【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:25【分析】利用完全平方公式的结构特征,即可求出m 的值.【详解】解:∵x 2-10x +m 是一个完全平方式,∴m=210()2-=25. 故答案为:25.【点睛】 此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.12.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.13.已知2m a =,5n a =,则2m n a -=___________.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键 解析:45 【分析】根据幂的乘方与同底数幂的除法法则解答即可.【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】 本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键. 14.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.15.已知228a ab +=-,2214b ab +=,则2262a ab b ++=________.20【分析】将变形为然后利用整体思想代入求解【详解】解:∵∴原式=故答案为:20【点睛】本题考查代数式求值掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键解析:20【分析】将2262a ab b ++变形为2222(2)a ab b ab +++,然后利用整体思想代入求解.【详解】解:2222226222+422(+2)a ab b a ab b ab a ab b ab ++=++=++∵228a ab +=-,2214b ab +=∴原式=821420-+⨯=故答案为:20.【点睛】本题考查代数式求值,掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键.16.若2249x mxy y -+是一个完全平方式,则m =______【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 17.计算:32(2)a b -=________.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.18.若210x x --=,则3225x x -+的值为________.【分析】首先将已知条件变形为再把要求的式子变形然后整体代入即可求解【详解】解:∵即∴故答案为:4【点睛】此题主要考查了代数式求值把所给代数式进行恰当变形是解答此题的关键解析:【分析】首先将已知条件210x x --=变形为21x x -=,21x x -=,再把要求的式子变形,然后整体代入即可求解.【详解】解:∵210x x --=,即21x x -=,21x x -=,∴()323222514x x x x x -+=---+()()2214x x x x =---+4x x =-+4=.故答案为:4.【点睛】此题主要考查了代数式求值,把所给代数式进行恰当变形是解答此题的关键. 19.分解因式3225a ab -=____.a (a+5b )(a-5b )【分析】首先提取公因式a 进而利用平方差公式分解因式得出答案【详解】解:a3-25ab2=a (a2-25b2)=a (a+5b )(a-5b )故答案为:a (a+5b )(a-5b )解析:a (a+5b )(a-5b )【分析】首先提取公因式a ,进而利用平方差公式分解因式得出答案.【详解】解:a 3-25ab 2=a (a 2-25b 2)=a (a+5b )(a-5b ).故答案为:a (a+5b )(a-5b ).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 20.若方程22(1)8m x mx x --+=是关于x 的一元一次方程,则代数式2008|1|m m --的值为________.1【分析】根据一元一次方程的定义可求出m 的值在将m 代入代数式计算即可【详解】原方程可整理为根据题意可知且所以所以故答案为:1【点睛】本题考查一元一次方程的定义以及代数式求值利用一元一次方程的定义求出解析:1【分析】根据一元一次方程的定义,可求出m 的值.在将m 代入代数式计算即可.【详解】原方程可整理为22(1)(1)80m x m x --++=.根据题意可知210m -=且10m +≠,所以1m =. 所以2008200811111m m --=--=.故答案为:1.【点睛】本题考查一元一次方程的定义以及代数式求值.利用一元一次方程的定义求出m 的值是解答本题的关键.三、解答题21.计算:4a 2·(-b )-8ab ·(b -12a ). 解析:28ab -【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a 2·(-b )-8ab ·(b -12a ) =222484--+ab ab a b=28ab -.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.22.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.解析:(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245xx x x x x +--÷-=++(2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除 ∴余式()420b a +-= ∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b = 【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应. 23.因式分解:(1)222x - (2)32244x x y xy -+ 解析:(1)2(1)(1)x x +-;(2)2(2)-x x y . 【分析】(1)首先提公因式2,再利用平方差公式进行分解即可; (2)首先提公因式x ,再利用完全平方公式进行分解即可. 【详解】(1)原式()221x =-2(1)(1)x x =+-.(2)原式()2244x x xy y=-+2(2)x x y =-.【点睛】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解. 24.数学活动课上,张老师准备了若干个如图①的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为,b 宽为a 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图②的大正方形.()1观察图②,请你写出代数式()222,,a b a b ab ++之间的等量关系是 ;()2根据()1中的等量关系,解决下列问题;①已知224,10a b a b +=+=,求ab 的值;②已知()()222020201852x x -+-=,求2019x -的值.解析:(1)()2222a b a b ab +=++;(2)①3ab =;②20195x -=±. 【分析】(1)整体看是一个边长为(a+b )的正方形,局部看它有一个边长为a ,b 的正方形,两个长为b ,宽为a 的矩形组成,根据图形的面积相等即可确定它们之间的关系;(2)①公式变形为ab=222()()2a b a b +-+计算即可;②把x-2020变形成(x-2019)-1, 把x-2018变形成(x-2019)+1,用整体思想展开公式计算即可. 【详解】()()22212a b a b ab +=++;理由如下:图②是边长为()a b +的正方形,()2S a b ∴=+图②可看成1个边长为a 的正方形,1个边长为b 的正方形以及2个长为,b 宽为a 的长方形的组合图形,222,S a b ab ∴=++()222 2a b a b ab ∴+=++.()24a b +=①,()216,a b +∴=即22216a b ab ++=. 又2210,a b +=3ab ∴=;②设2019,x a -=则20201,20181x a x a -=--=+,()()222020201852x x -+-=,()()221152a a ∴-++=, 22212152,a a a a ∴-++++= 22252,a ∴+= 2250,a ∴= 225,a ∴=即()2201925,x -=20195x ∴-=±. 【点睛】本题考查了完全平方公式的几何意义,公式的应用,以及公式的整体思想代换应用,熟练掌握公式的几何意义和公式的变形是解题的关键. 25.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在m n +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值. 根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.解析:(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论;(2)根据阅读材料介绍的方法即可得出结论; (3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论. 【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯= ∵0x >∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020=当43636x x -=-时,即8433x =或(舍去)时,有最小值,∴当83x =时,代数式43201036x x ++-的最小值是2020.此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.26.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方. 例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n aa a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________; A .任何非零数的圈2次方都等于1; B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式(1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________; (3)将(m 为大于等于2的整数)写成幂的形式为_________.解析:【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案; (2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案; (2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.解:【初步探究】 (1)177777=÷÷=③; 111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意:A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确;C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确; 故选:C . 【深入思考】 (1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥;71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则 将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭;故答案为:21n a -⎛⎫⎪⎝⎭;(3)=224m n m n a a a --+-•=;故答案为:4m n a +-. 【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.27.把一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后拼成一个正方形(如图1).(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示). 方法1:______________________________. 方法2:______________________________.(2)根据(1)中结论,请你写出下列三个代数式()2m n +,()2m n -,mn 间的等量关系:________(3)根据(2)中的等量关系,解决如下问题:已知实数x ,y 满足6xy =,5x y -=,请求出x y +的值.解析:(1)方法1:()24m n mn +-,方法2:()2m n -;(2)()()224m n m n mn -=+-;(3)7x y +=【分析】(1)由题意知,阴影部分为一正方形,其边长正好为m ﹣n .根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积由图形可得:(2)大正方形的面积减去四个小长方形的面积正好等于图中阴影部分的面积. (3)(x +y )2正好表示大正方形的面积,(x ﹣y )2正好表示阴影部分小正方形的面积,xy 正好表示一个小长方形的面积.根据(2)中的等式代入计算即可. 【详解】解:(1)()24m n mn +-;()2m n -. (2)()()224m n m n mn -=+-.(3)∵()()224x y x x y y +=-+,5x y -=,6xy =, ∴()2254649x y +=+⨯=,∴7x y +=. 【点睛】本题考查了完全平方式和整式的混合运算,主要考查学生的理解能力和计算能力. 28.化简:2(3)3(2)m n m m n +-+.解析:226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可. 【详解】解:2(3)3(2)m n m m n +-+222=++--9636m mn n m mn22=+.6m n【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.。
《整式的乘法与因式分解》单元综合检测卷(附答案)
(2)把这个规律用含有字母的式子表示出来,并说明其正确性.
参考答案
一、选择题(每题3分,共33分)
1.下列计算,正确的是( )
A. B. C. D.
[答案]D
[解析]
[分析]
根据同底数幂的乘法法则对A进行判断;根据同底数幂的除法法则对B进行判断;根据合并同类项法则对C进行判断;根据幂的乘方对D进行判断.
18.计算:
(1) ;
(2) ;
(3) ;
(4) .
[答案](1)-6x3y4;(2)6A4-10A2B;(3) ;(4) .
[解析]
[分析]
原式利用单项式乘以单项式,多项式乘以多项式,以及单项式乘以多项式法则计算即可得到结果.
[详解](1)原式=-6x3y4;
(2)原式=6A4-10A2B;
(3)原式= = ;
A.1B.-2C.-1D.2
5.已知4x2+4mx+36是完全平方式,则m的值为()
A. 2B. ±2C. -6D. ±6
6.已知 ,则()
A.A=BB.A>BC.A<BD.A≤B
7.如 与 的乘积中不含x的一次项,则m的值为()
A. B. 3C. 0D. 1
8.已知A B2=﹣1,则﹣A B(A2B5﹣A B3﹣B) 值等于()
[答案]-395
[解析]
[分析]
根据完全平方公式、平方差公式,可得答案.
[详解]原式=(200-1)2-(200-2)(200+2)
=2002-400+1-(2002-4)
=2002-400+1-2002+4
=-395.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安铁一中滨河学校数学整式的乘法与因式分解单元练习(Word 版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定 【答案】C【解析】【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:22x kxy 9y -+是一个完全平方式,k 6∴-=±,解得:k 6=±,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.2.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.3.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).4.已知a ,b ,c 是△ABC 的三边长,且满足a 2+2b 2+c 2-2b(a +c)=0,则此三角形是( ) A .等腰三角形 B .等边三角形C .直角三角形D .不能确定【答案】B【解析】【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a =b =c ,即可解决问题.【详解】∵a 2+2b 2+c 2﹣2b (a +c )=0,∴(a ﹣b )2+(b ﹣c )2=0;∵(a ﹣b )2≥0,(b ﹣c )2≥0,∴a ﹣b =0,b ﹣c =0,∴a =b =c ,∴△ABC 为等边三角形. 故选B .【点睛】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.5.在2014,2015,2016,2017这四个数中,不能表示为两个整数平方差的数是( ).A .2014B .2015C .2016D .2017 【答案】A【解析】由于22()()a b a b a b -=+-,所以22201510081007=-;222016505503=-;22201710091008=-;因+a b 与-a b 的奇偶性相同,21007⨯一奇一偶,故2014不能表示为两个整数的平方差. 故选A.6.下列运算正确的是( )A .236•a a a =B .()325a a =C .23•a ab a b -=-D .532a a ÷=【答案】C【解析】【分析】根据同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法法则即可求出答案.【详解】A .原式=a 5,故A 错误;B .原式=a 6,故B 错误;C .23•a ab a b -=-,正确;D .原式=a 2,故D 错误.故选C .【点睛】本题考查了同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法,解题的关键是熟练运用运算法则,本题属于基础题型.7.设M=(x ﹣3)(x ﹣7),N=(x ﹣2)(x ﹣8),则M 与N 的关系为( )A .M <NB .M >NC .M=ND .不能确定【答案】B【解析】由于M=(x-3)(x-7)=x 2-10x+21,N=(x-2)(x-8)=x 2-10x+16,可以通过比较M 与N 的差得出结果.解:∵M=(x-3)(x-7)=x 2-10x+21,N=(x-2)(x-8)=x 2-10x+16,M-N=(x 2-10x+21)-(x 2-10x+16)=5, ∴M>N.故选B .“点睛”本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.8.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;22(24)()a a a -+--=-,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.9.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13± 【答案】C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k 的值.【详解】由完全平方式的形式(a±b )2=a 2±2ab+b 2可得: kx=±2•2x•13, 解得k=±43. 故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b )2=a 2±2ab+b 2是关键.10.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知3x y +=,3336x y +=,则xy =______.【答案】-1【解析】【分析】将3336x y +=利用立方和公式以及完全平方公式进行变形后再计算即可得出答案.【详解】解:∵3x y +=∴33222()()3()33(93)279x y x y x xy y x y xy xy xy ⎡⎤+=+-+=⨯+-=-=-⎣⎦ ∵3336x y +=∴27936xy -=∴1xy =-故答案为:-1.【点睛】本题考查的知识点是立方和公式以及完全平方公式,解此题的关键是记住立方和公式.12.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【答案】4035【解析】 【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.13.若()219x y +=,()25x y -=,则22xy +=______. 【答案】12【解析】【分析】根据完全平方公式的两个关系式间的关键解答即可.【详解】∵()219x y +=,()25x y -=,∴()()224x y x x y y +=-+,∴19=5+4xy ,∴xy=72, ∴()2227252122x x x y y y +-=+=+⨯=, 故答案为:12.【点睛】 此题考查完全平方公式,熟记公式并掌握两个公式的等量关系是解题的关键.14.已知2320x y --=,则23(10)(10)x y ÷=_______.【答案】100【解析】【分析】根据题意可得2x-3y=2,然后根据幂的乘方和同底数幂相除,底数不变,指数相减即可求得答案.【详解】由已知可得2x-3y=2,所以()()231010x y ÷=102x ÷103y =102x-3y =102=100. 故答案为100.【点睛】此题主要考查了幂的乘方和同底数幂相除,解题关键是根据幂的乘方和同底数幂相除的性质的逆运算变形,然后整体代入即可求解.15.把方程x 2+4xy ﹣5y 2=0化为两个二元一次方程,它们是_____和_____.【答案】x +5y =0 x ﹣y =0【解析】【分析】通过十字相乘法,把方程左边因式分解,即可求解.【详解】∵x 2+4xy ﹣5y 2=0,∴(x +5y )(x ﹣y )=0,∴x +5y =0或x ﹣y =0,故答案为:x +5y =0和 x ﹣y =0.【点睛】该题重点考查了因式分解中的十字相乘法,能顺利的把方程左边因式分解是解题的关键所在.十字相乘法相关的知识点是:必须是二次三项式,并且符合拆解的原则,即可利用十字相乘分解因式.16.(1)已知32m a =,33n b =,则()()332243mn m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0. 【解析】【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+- 21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.17.5(m -n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4, (5+m-n )【解析】把多项式5(m -n)4-(n-m)5运用提取公因式法因式分解即可得5(m -n)4-(n-m)5=(m -n)4(5+m-n ).故答案为:(m-n)4,(5+m-n ).18.分解因式212x 123y xy y -+-=___________【答案】()232x 1y --【解析】根据因式分解的方法,先提公因式-3y ,再根据完全平方公式分解因式为:()()22212x 12334x 41321y xy y y x y x -+-=--+=--. 故答案为()232x 1y --.19.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为______.【答案】13【解析】【分析】设正方形A的边长为a,正方形B的边长为b,由图形得出关系式求解即可.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得a2﹣b2﹣2(a﹣b)b=1即a2+b2﹣2ab=1,由图乙得(a+b)2﹣a2﹣b2=12,2ab=12,所以a2+b2=13,故答案为13.【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是根据图形得出数量关系.20.分解因式:x2﹣1=____.【答案】(x+1)(x﹣1).【解析】试题解析:x2﹣1=(x+1)(x﹣1).考点:因式分解﹣运用公式法.。