九年级上《第二章简单事件的概率》单元检测试题(有答案)
第2章 简单事件的概率 浙教版数学九年级上册单元试卷(含解析)
教版九年级数学上册第二章简单的事件概率单元检测试题一、选择题(共10 小题,每小题 3 分,共30 分)1. 下面每个语句中,都给出了两件可能发生的事情,其中发生的机会相同的是()A. 两次掷骰子,掷出的数的和大于与掷出的数的和不大于B. 掷骰子掷出数是偶数与掷出的数是奇数C. 最后一节课是数学与最后一节课不是数学D. 冬天里下雪和夏天里下雪2. 如图表示三个袋中分别装进只有颜色不同的个球,从中摸出一个,请你按照摸到红球的可能性由大到小排列.序号排列正确的是()A. ①②③B. ①③②C. ②③①D. ②①③3. 下列说法合理的是( )A. 小明在10次抛图钉的试验中发现三次钉尖朝上,由此他说钉尖朝上的概率为30%B. 抛掷一枚普通正六面体的骰子,出现6的概率是的意思是每6次就有1次掷到6C. 某彩票的中奖机会是2%,那么如果买100张彩票,一定会有2张中奖D. 在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.514. 若从一个袋子里摸到红球的概率是1%,则下列说法中正确的是( )A. 摸1次一定不会摸到红球B. 摸100次一定能摸到红球C. 摸1次有可能摸到红球D. 摸100次一定能摸到1次红球5. 有分别写数字、、、、的五张卡片,除数字不同外其它均相同,从中任意抽取一张,那么抽到的数是奇数的概率是()A. B. C. D.6. 一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是().A. B. C. D.7. 一袋苹果和雪梨共个,任选个,若选中苹果概率是,则苹果有()个.A. B. C. D.8. 一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是( )A. 红球比白球多B. 白球比红球多C. 红球,白球一样多D. 无法估计9. 同时投掷两枚普通的正方体骰子,所得两个点数之和大于9的概率是()A. B. C. D.10. 如图所示,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚( )A. 公平B. 对小明有利C. 对小刚有利D. 不可预测二、填空题(共10 小题,每小题 3 分,共30 分)11. 请写出一个概率小于的随机事件:________.12. 某人连续抛掷一枚质地均匀的硬币次,前两次的结果都是正面朝上,则他第三次抛掷这枚硬币,正面朝上的概率为________.13. 从,,,…,这个自然数中任取一个数,则它是的倍数的概率是________.14. 在一个袋子里装有个球,其中个红球,个黄球,这些球除颜色外,形状、大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,是红球的概率是________.15. 某单位工会组织内部抽奖活动,共准备了张奖券,设特等奖个,一等奖个,二等奖个,三等奖个.已知每张奖券获奖的可能性相同,则一张奖券中一等奖或二等奖的概率是________.16. 口袋中有红色、黄色、蓝色玻璃球共个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率依次为,和,则袋中蓝球的数目是________个.17. 掷一枚六面体骰子,向上一面的点数为偶数的概率为________.18. 某学习小组中共有名同学,其中男生有人、现在要从这名同学中抽调两名同学去参加数学知识竞赛,抽调的两名同学都是男生的概率是________.19. 一个口袋中装了三个球,其中两个是红球,另外一个是白球,若从口袋中随机地摸出两球,假如两球是同一色,则规定甲胜,假如两球不是同一色,则规定乙胜,则_______获胜的机会大(填“甲”或“乙”).20. 在一只不透明的袋中装有红球、白球若干个,这些球除颜色外形状大小均相同.八(2)班同学进行了“探究从袋中摸出红球的概率”的数学活动,下表是同学们收集整理的试验结果:试验次数n1001502005008001000摸到红球的次数m681111363455647010.680.740.680.690.7050.701根据表格,假如你去摸球一次,摸得红球的概率大约是_____(结果精确到0.1).三、解答题(共 6 小题,每小题10 分,共60 分)21. 根据你的经验,下列事件发生的可能性哪个大哪个小?根据你的想法,把这些事件的序号按发生的可能性从小到大的顺序排列________.从装有个红球和个黄球的袋子中摸出的个球恰好是红球;一副去掉大、小王的扑克牌中,随意抽取张,抽到的牌是红桃;水中捞月;太阳从东方升起;随手翻一下日历,翻到的刚好是周二.22. 在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.23. 某商场举行促销活动,规定“购物满元赠送一张摇奖券”.在张奖券中,只有张可获奖,小明抽了两次就抽出其中一个奖,他对大家说:“这次抽奖的中奖率是.”你同意他的说法吗?为什么?24. 为丰富学生校园文化生活,振兴中学举办了一次学生才艺比赛,三个年级都有男、女各一名选手进入决赛,初一年级选手编号为男号、女号,初二年级选手编号为男号、女号,初三年级选手编号为男号、女号.比赛规则是男、女各一名选手组成搭档展示才艺.用列举法说明所有可能出现搭档的结果;求同一年级男、女选手组成搭档的概率;求高年级男选手与低年级女选手组成搭档的概率.25. 一个不透明的袋子里装着个黄球,个黑球和个红球,他们除了颜色外完全相同.小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在附近,问裁判放入了多少个红球?26. 在班上组织的“元旦迎新晚会”中,小丽和小芳都想当节目主持人,但现在只有一个名额.小芳想出了一个用游戏来选人的办法,她将一个转盘平均分成份,如图所示.游戏规定:随意转动转盘,若指针指到偶数,则小丽去;若指针指到奇数,则小芳去.指针指到偶数的概率是多少?指针指到奇数的概率是多少?这个游戏对双方公平吗?为什么?若游戏不公平,请你修改转盘中数字,使得游戏对双方公平.浙教版九年级数学上册第二章简单的事件概率单元检测试题一、选择题(共10 小题,每小题 3 分,共30 分)1. 下面每个语句中,都给出了两件可能发生的事情,其中发生的机会相同的是()A. 两次掷骰子,掷出的数的和大于与掷出的数的和不大于B. 掷骰子掷出的数是偶数与掷出的数是奇数C. 最后一节课是数学与最后一节课不是数学D. 冬天里下雪和夏天里下雪【答案】B【解析】【分析】分别根据事件发生的大小关系求出其概率进而判断得出即可.【详解】解:A、根据两次掷骰子,掷出的数的和大于4的概率为:掷出的数的和不大于4的概率为:,故其概率不相等,不符合题意;B、掷骰子掷出的数是偶数的概率为:掷出的数是奇数的概率为:,故其概率相等,符合题意;C、最后一节课是数学与最后一节课不是数学,由于科目较多,概率不相等,概率不相等,不符合题意;D、冬天里下雪是随机事件,夏天里下雪是不可能事件,故其概率不相等,不符合题意.故选B.【点睛】此题主要考查了事件发生的大小关系,根据实际正确判断出事件发生的可能性是解题的关键.2. 如图表示三个袋中分别装进只有颜色不同的个球,从中摸出一个,请你按照摸到红球的可能性由大到小排列.序号排列正确的是()A. ①②③B. ①③②C. ②③①D. ②①③【答案】C【解析】【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.求出后再比较即可解答.【详解】解:①的可能性为②的可能性为③的可能性为①最小,③最大,∴②>③>①,故选C.【点睛】考查事件发生的可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.3. 下列说法合理的是( )A. 小明在10次抛图钉的试验中发现三次钉尖朝上,由此他说钉尖朝上的概率为30%B. 抛掷一枚普通正六面体的骰子,出现6的概率是的意思是每6次就有1次掷到6C. 某彩票的中奖机会是2%,那么如果买100张彩票,一定会有2张中奖D. 在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51【答案】D【解析】分析:概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.解答:解:A、10次抛图钉的试验太少,错误;B、概率是反映事件发生机会的大小的概念,机会大也不一定发生,错误;C、概率是反映事件发生机会的大小的概念,机会大也不一定发生,错误;D、根据概率的统计定义,可知正确.4. 若从一个袋子里摸到红球的概率是1%,则下列说法中正确的是( )A. 摸1次一定不会摸到红球B. 摸100次一定能摸到红球C. 摸1次有可能摸到红球D. 摸100次一定能摸到1次红球【答案】C【解析】【分析】根据可能性的意义,结合题意,分析选项可得答案.【详解】根据题意,从一个袋子里摸到红球的概率1%;即从一个袋子里摸到红球有1%的可能;A,摸1次有可能摸到红球,错误;B中,摸100次也可能摸不到红球,错误;C中,摸1次有可能摸到红球,体现了可能性,正确;D中,摸100次一定不一定能摸到红球,错误;故选C.【点睛】本题考查随机事件的定义与随机事件可能性的意义,随机事件可能性体现这个事件发生的可能性的大小,可能性大的不一定发生,可能性小的也不一定一定不发生.5. 有分别写数字、、、、的五张卡片,除数字不同外其它均相同,从中任意抽取一张,那么抽到的数是奇数的概率是()A. B. C. D.【答案】C【解析】【分析】先找出分别标有数字1,2,3,4,5的,五张卡片中奇数的个数,再根据概率公式解答即可.【详解】解:标有数字1,2,3,4,5的五张卡片中,有两张标有奇数;任意抽取一张,数字为奇数的概率是 .【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=6. 一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是().A. B. C. D.【答案】D【解析】【分析】由于每个球都有被摸到的可能性,故可利用概率公式求出摸到白球的概率与摸到的球不是白球的概率,列出等式,求出m、n的关系.【详解】根据概率公式,摸出白球的概率,,摸出不是白球的概率,,由于二者相同,故有,整理得,m+n=8,故选:D.【点睛】此题考查概率公式,解题关键在于掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7. 一袋苹果和雪梨共个,任选个,若选中苹果的概率是,则苹果有()个.A. B. C. D.【答案】B【解析】【分析】利用选中苹果的概率公式列出方程求解即可.【详解】解:设苹果有n个,根据概率公式得:故选B.【点睛】考查事件发生的可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.8. 一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是( )A. 红球比白球多B. 白球比红球多C. 红球,白球一样多D. 无法估计【答案】A【解析】根据题意可得5位同学摸到红球的频率为,由此可得盒子里的红球比白球多.故选A.9. 同时投掷两枚普通的正方体骰子,所得两个点数之和大于9的概率是()A. B. C. D.【答案】A【解析】试题分析:同时投掷两枚普通的正方体骰子,一共有36种结果,其中两个点数之和大于9的结果有4+6,5+5,5+6,6+4,6+5,6+6共6种,所以所得两个点数之和>9的概率是.故选A.考点:概率公式.10. 如图所示,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚( )A. 公平B. 对小明有利C. 对小刚有利D. 不可预测【答案】A【解析】试题分析:游戏是否公平,关键要看游戏双方取胜的机会是否相等,计算配成紫色和不是紫色的概率,比较概率就可以得出答案.解:两个转盘各转一次,配成颜色所有的情况如下:(红1,红3)(红1,蓝2)(红2,蓝2)(红2,红3)(蓝1,红3)(蓝1,蓝2)(绿,红3)(绿,蓝2)共8种情况.所以P(紫色)=,P(其他颜色)=,而5×=3×;因此规则对小明和小刚公平.故选A.点评:判断游戏公平性就要计算每个人取胜的概率,概率相等就公平,否则就不公平.二、填空题(共10 小题,每小题 3 分,共30 分)11. 请写出一个概率小于的随机事件:________.【答案】掷一个骰子,向上一面的点数为1【解析】试题分析:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.因此,因为掷一个骰子,向上一面的点数有6种等可能结果,向上一面的点数为1的有1种,所以概率为,小于.(答案不唯一).12. 某人连续抛掷一枚质地均匀的硬币次,前两次的结果都是正面朝上,则他第三次抛掷这枚硬币,正面朝上的概率为________.【答案】【解析】【分析】利用概率的意义直接得出答案.【详解】解:某人连续抛掷一枚质地均匀的硬币3次,前两次的结果都是正面朝上,他第三次抛掷这枚硬币,正面朝上的概率为:.故答案为【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=13. 从,,,…,这个自然数中任取一个数,则它是的倍数的概率是________.【答案】【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.本题先找出4的倍数只有4和8这两个数,然后用2除以10即可.【详解】解:∵1,2,3,…,10这10个自然数中只有4和8是4的倍数,因此从1,2,3,…,10这10个自然数中任取一个数,则它是4的倍数的概率是故答案为【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=14. 在一个袋子里装有个球,其中个红球,个黄球,这些球除颜色外,形状、大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,是红球的概率是________.【答案】【解析】【分析】由在一个袋子里装有5个球,其中3个红球,2个黄球,利用概率公式求解即可求得答案.【详解】解:∵在一个袋子里装有5个球,其中3个红球,2个黄球,∴随机从这个袋子中摸出一球,是红球的概率是:故答案为【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=15. 某单位工会组织内部抽奖活动,共准备了张奖券,设特等奖个,一等奖个,二等奖个,三等奖个.已知每张奖券获奖的可能性相同,则一张奖券中一等奖或二等奖的概率是________.【答案】【解析】【分析】直接利用概率公式求解.【详解】解:一张奖券中一等奖或二等奖的概率故答案为:【点睛】本题考查概率的求法,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=16. 口袋中有红色、黄色、蓝色玻璃球共个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率依次为,和,则袋中蓝球的数目是________个.【答案】20【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手求解.【详解】解:∵摸到红球、黄球、蓝球的频率依次为35%,25%和40%,∴袋中蓝球的数目=50×40%=20个.故答案为20.【点睛】解答此题关键是要先计算出口袋中篮球的比例再算其个数.部分的具体数目=总体数目相应频率.17. 掷一枚六面体骰子,向上的一面的点数为偶数的概率为________.【答案】【解析】分析】根据概率公式知,6个数中有3个偶数,即可得出掷一次骰子,向上一面的点数为偶数的概率.【详解】解:根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有3种为向上一面的点数偶数,故其概率是:故答案为【点睛】本题考查概率求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=18. 某学习小组中共有名同学,其中男生有人、现在要从这名同学中抽调两名同学去参加数学知识竞赛,抽调的两名同学都是男生的概率是________.【答案】【解析】【分析】根据概率求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:依题意得:全部情况的总数为:12×(12−1)÷2=66抽调的两名同学都是男生的情况为:7×(7−1)÷2=21因而抽调两名同学都是男生的概率为:故答案为【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=19. 一个口袋中装了三个球,其中两个是红球,另外一个是白球,若从口袋中随机地摸出两球,假如两球是同一色,则规定甲胜,假如两球不是同一色,则规定乙胜,则_______获胜的机会大(填“甲”或“乙”).【答案】乙【解析】【分析】列举出符合题意的各种情况的个数,再根据概率公式解答比较即可.【详解】由分析知:若甲胜,则必须摸出两个红球,其概率为;乙胜的概率为: .故乙获胜的机会大.故答案为乙.【点睛】考查概率公式,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.20. 在一只不透明的袋中装有红球、白球若干个,这些球除颜色外形状大小均相同.八(2)班同学进行了“探究从袋中摸出红球的概率”的数学活动,下表是同学们收集整理的试验结果:试验次数n1001502005008001000摸到红球次数m681111363455647010.680.740.680.690.7050.701根据表格,假如你去摸球一次,摸得红球的概率大约是_____(结果精确到0.1).【答案】0.7【解析】试题分析:利用频率估计概率结合表格中数据得出答案即可.根据随着实验的次数不断增加,摸得红球的概率大约是0.7.考点:利用频率估计概率.三、解答题(共 6 小题,每小题10 分,共60 分)21. 根据你的经验,下列事件发生的可能性哪个大哪个小?根据你的想法,把这些事件的序号按发生的可能性从小到大的顺序排列________.从装有个红球和个黄球的袋子中摸出的个球恰好是红球;一副去掉大、小王的扑克牌中,随意抽取张,抽到的牌是红桃;水中捞月;太阳从东方升起;随手翻一下日历,翻到的刚好是周二.【答案】【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:(1)从装有2个红球和2个黄球的袋子中摸出的1个球恰好是红球,则获得红球的概率为:(2)一副去掉大、小王的扑克牌中,随意抽取1张,抽到的牌是红桃;则获得红桃的概率为:(3)水中捞月;是不可能事件,概率为:0,(4)太阳从东方升起;是必然事件,概率是:1,(5)随手翻一下日历,翻到的刚好是周二,获得周二的概率接近:,故这些事件的序号按发生的可能性从小到大的顺序排列:(3)(5)(2)(1)(4).故答案为(3)(5)(2)(1)(4).【点睛】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.22. 在一个不透明袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.【答案】(1);(2)5.【解析】【分析】(1)用黄球的个数除以所有球的个数即可求得概率;(2)由概率公式列出方程求得红球的个数即可.【详解】(1)∵共10个球,有2个黄球,∴P(黄球)==;(2)设有x个红球,根据题意得:,解得:x=5.故后来放入袋中的红球有5个.23. 某商场举行促销活动,规定“购物满元赠送一张摇奖券”.在张奖券中,只有张可获奖,小明抽了两次就抽出其中一个奖,他对大家说:“这次抽奖的中奖率是.”你同意他的说法吗?为什么?【答案】不同意他的说法,理由见解析.【解析】【分析】由于100张奖券中,只有2张可获奖,中奖的概率为,由此判断他的说法不正确.【详解】解:不同意他的说法.因为张奖券中,只有张可获奖,中奖的概率为,小明抽了两次就抽出其中一个奖,只能说明他两次抽奖的中奖的频率.【点睛】本题考查了概率的意义:对于给定的随机事件A,如果随着实验次数的增加,事件A发生的频率稳定在某常数上,那么把这个常数叫事件A的概率,即作.24. 为丰富学生的校园文化生活,振兴中学举办了一次学生才艺比赛,三个年级都有男、女各一名选手进入决赛,初一年级选手编号为男号、女号,初二年级选手编号为男号、女号,初三年级选手编号为男号、女号.比赛规则是男、女各一名选手组成搭档展示才艺.用列举法说明所有可能出现搭档的结果;求同一年级男、女选手组成搭档的概率;求高年级男选手与低年级女选手组成搭档的概率.【答案】可能出现共种情况;;.【解析】【分析】(1)用列举法列举时,要不重不漏,按一定规律来列举;(2)根据用列举法概率的求法,找准两点:①符合条件的情况数目,②全部情况的总数;二者的比值就是其发生的概率;(3)根据(1)中高年级男选手与低年级女选手组成搭档的情况,求概率即可.【详解】可能出现搭档的结果有男号、女号,男号、女号,男号、女号,男号、女号,男号、女号,男号、女号,男号、女号,男号、女号,男号、女号,共种情况;在中同一年级男、女选手组成搭档有种情况,故其概率为;在中高年级男选手与低年级女选手组成搭档有种情况,故其概率为.【点睛】本题考查的是列举法求概率.列举法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25. 一个不透明的袋子里装着个黄球,个黑球和个红球,他们除了颜色外完全相同.小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.。
浙教版九年级上《第2章简单事件的概率》单元测试含答案解析
《第2章简单事件的概率》一、选择题1.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.a是实数,|a|≥0C.某运动员跳高的最好成绩是20.1米D.从车间刚生产的产品中任意抽取一个,是次品2.已知抛一枚均匀硬币正面朝上的概率是0.5,下列说法正确的是()A.连续抛一枚均匀硬币2次,必有1次正面朝上B.连续抛一枚均匀硬币2次,一次是正面一次是反面的概率是C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的3.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是()A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为 D.事件M发生的概率为4.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.15.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5 B.m=n=4 C.m+n=4 D.m+n=86.在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是()A.1 B.C.D.7.如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A.B.C. D.8.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是()A.B.C.D.9.如图,A、B是数轴上两点.在线段AB上任取一点C,则点C到表示﹣1的点的距离不大于2的概率是()A.B.C.D.10.已知A,B两个口袋中都有6个分别标有数字0,1,2,3,4,5的彩球,所有彩球除标示的数字外没有区别.甲、乙两位同学分别从A,B两个口袋中随意摸出一个球.记甲摸出的球上数字为x,乙摸出的球上数字为y,数对(x,y)对应平面直角坐标系内的点Q,则点Q落在以原点为圆心,半径为的圆上或圆内的概率为()A.B.C.D.二、填空题11.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后发现其中投到红色、黑色球的频率稳定在5%和15%,则口袋中白色球的个数很可能是个.12.如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是.13.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是.14.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是.15.两个袋子中分别装着写有1、2、3、4的四张卡片,从每一个袋子中各抽取一张,则两张卡片上的数字之和是6的机会是.16.在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字,2,4,﹣,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P的横坐标,且点P在反比例函数y=图象上,则点P落在正比例函数y=x图象上方的概率是.17.如图,某商标是由边长均为2的正三角形、正方形、正六边形的金属薄片镶嵌而成的镶嵌图案.如果在这个镶嵌图案中随机确定一个点O,那么点O落在镶嵌图案中的正方形区域的概率为.(.结果保留二位小数)18.17世纪的一天,保罗与著名的赌徒梅尔赌钱,每人拿出6枚金币,然后玩骰子,约定谁先胜三局谁就得到12枚金币,比赛开始后,保罗胜了一局,梅尔胜了两局,这是一件意外的事中断了他们的赌博,于是他们商量这12枚金币应该怎样分配才合理,保罗认为,根据胜的局数,他应得总数的三分之一,即4枚金币,但精通赌博的梅尔认为他赢得可能性大,所以他应得全部赌金.请你根据概率知识分析保罗应赢得枚金币.三、简答题(共38分)19.在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点P(m,n)的横坐标,第二个数作为点P(m,n)的纵坐标,则点P(m,n)在反比例函数的图象上的概率一定大于在反比例函数的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点P(m,n)的情形;(2)分别求出点P(m,n)在两个反比例函数的图象上的概率,并说明谁的观点正确.20.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?21.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)比赛完四个人站成一排拍照,甲乙刚好相邻而站的概率是多少?22.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字,现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P (x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)李刚为甲、乙两人设计了一个游戏:记s=x+y.当s<6时,甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?(3)请你利用两个转盘,设计一个公平的游戏规则.23.如图1,抛物线与x轴交于A、C两点,与y轴交于B点,与直线y=kx+b交于A、D两点.(1)直接写出A、C两点坐标和直线AD的解析式;(2)如图2,质地均匀的正四面体骰子的各个面上依次标有数字﹣1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点P(m,n)落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?《第2章简单事件的概率》参考答案与试题解析一、选择题1.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.a是实数,|a|≥0C.某运动员跳高的最好成绩是20.1米D.从车间刚生产的产品中任意抽取一个,是次品【考点】随机事件.【专题】应用题.【分析】一定会发生的事情称为必然事件.依据定义即可解答.【解答】解:A、是随机事件,故不符合题意,B、是必然事件,符合题意,C、是不可能事件,故不符合题意,D、是随机事件,故不符合题意.故选B.【点评】本题主要考查了必然事件为一定会发生的事件,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养,难度适中.2.已知抛一枚均匀硬币正面朝上的概率是0.5,下列说法正确的是()A.连续抛一枚均匀硬币2次,必有1次正面朝上B.连续抛一枚均匀硬币2次,一次是正面一次是反面的概率是C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【考点】概率的意义.【专题】应用题.【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B、连续抛一枚均匀硬币2次,一次是正面一次是反面的概率应是,故本选项错误;C、大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次,不正确,有可能都朝上,故本选项错误;D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选:D.【点评】此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.3.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是()A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为 D.事件M发生的概率为【考点】正多边形和圆;三角形内角和定理;等腰三角形的性质;多边形内角与外角;等腰梯形的判定;随机事件;概率公式.【分析】连接BE,根据正五边形ABCDE的性质得到BC=DE=CD=AB=AE,根据多边形的内角和定理求出∠A=∠ABC=∠C=∠D=∠AED=108°,根据等腰三角形的性质求出∠ABE=∠AEB=36°,求出∠CBE=72°,推出BE∥CD,得到四边形BCDE是等腰梯形,即可得出答案.【解答】解:如图,连接BE,∵正五边形ABCDE,∴BC=DE=CD=AB=AE,根据多边形的内角和(n﹣2)×180°得:∠A=∠ABC=∠C=∠D=∠AED==108°,∴∠ABE=∠AEB=(180°﹣∠A)=36°,∴∠CBE=∠ABC﹣∠ABE=72°,∴∠C+∠CBE=180°,∴BE∥CD,∴四边形BCDE是等腰梯形,即事件M是必然事件,故选:B.【点评】本题主要考查对正多边形与圆,三角形的内角和定理,等腰三角形的性质,等腰梯形的判定,必然事件,概率,随机事件,多边形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.4.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.1【考点】概率公式;中心对称图形.【专题】计算题.【分析】先判断出圆、矩形、等边三角形、等腰梯形中的中心对称图形,再根据概率公式解答即可.【解答】解:圆、矩形、等边三角形、等腰梯形中,中心对称图形有圆,矩形2个;则P(中心对称图形)==.故选B.【点评】此题考查了概率公式和中心对称图形的定义,要弄清概率公式适用的条件方可解题:(1)试验中所有可能出现的基本事件有有限个;(2)每个基本事件出现的可能性相等.5.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5 B.m=n=4 C.m+n=4 D.m+n=8【考点】概率公式.【专题】计算题.【分析】由于每个球都有被摸到的可能性,故可利用概率公式求出摸到白球的概率与摸到的球不是白球的概率,列出等式,求出m、n的关系.【解答】解:根据概率公式,摸出白球的概率,,摸出不是白球的概率,,由于二者相同,故有=,整理得,m+n=8,故选D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是()A.1 B.C.D.【考点】概率公式;完全平方式.【专题】数形结合.【分析】让填上“+”或“﹣”后成为完全平方公式的情况数除以总情况数即为所求的概率.【解答】解:能够凑成完全平方公式,则2xy前可是“﹣”,也可以是“+”,但y2前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:C.【点评】此题考查完全平方公式与概率的综合应用,注意完全平方公式的形式.用到的知识点为:概率=所求情况数与总情况数之比;a2±2ab+b2能构成完全平方式.7.如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A.B.C. D.【考点】几何概率;正多边形和圆.【专题】压轴题.【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.【解答】解:因为⊙O的直径为分米,则半径为分米,⊙O的面积为π()2=平方分米;正方形的边长为=1分米,面积为1平方分米;因为豆子落在圆内每一个地方是均等的,==.所以P(豆子落在正方形ABCD内)故选A.【点评】此题主要考查几何概率的意义:一般地,对于古典概型,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有 P(A)=.8.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是()A .B .C .D .【考点】列表法与树状图法. 【专题】数形结合.【分析】列举出所有情况,看两指针指的数字和为奇数的情况占总情况的多少即可. 【解答】解:所有出现的情况如下,共有16种情况,积为奇数的有4种情况,所以在该游戏中甲获胜的概率是=.乙获胜的概率为=.故选C .【点评】本题主要考查用列表法与树状图法求概率,用到的知识点为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.9.如图,A 、B 是数轴上两点.在线段AB 上任取一点C ,则点C 到表示﹣1的点的距离不大于2的概率是( )A .B .C .D .【考点】概率公式;数轴. 【专题】计算题.【分析】将数轴上A 到表示﹣1的点之间的距离不大于2、表1的点到表示﹣1 的点间的距离不大于2,而AB 间的距离分为5段,利用概率公式即可解答.【解答】解:如图,C 1与C 2到表示﹣1的点的距离均不大于2,根据概率公式P=. 故选:D .【点评】此题结合几何概率考查了概率公式,将AB间的距离分段,利用符合题意的长度比上AB的长度即可.10.已知A,B两个口袋中都有6个分别标有数字0,1,2,3,4,5的彩球,所有彩球除标示的数字外没有区别.甲、乙两位同学分别从A,B两个口袋中随意摸出一个球.记甲摸出的球上数字为x,乙摸出的球上数字为y,数对(x,y)对应平面直角坐标系内的点Q,则点Q落在以原点为圆心,半径为的圆上或圆内的概率为()A.B.C.D.【考点】列表法与树状图法;点与圆的位置关系.【专题】压轴题.【分析】根据已知列表得出所有结果,进而得出满足条件的点的个数为:8个,即可求出点Q落在以原点为圆心,半径为的圆上或圆内的概率.【解答】解:根据题意列表得出:∵数对(x,y)对应平面直角坐标系内的点Q,点Q落在以原点为圆心,半径为的圆上或圆内的坐标横纵坐标绝对值都必须小于等于2,∴满足条件的点的个数为:8个,∴点Q落在以原点为圆心,半径为的圆上或圆内的概率为:.故选:A.【点评】此题考查的是用列表法或者用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.二、填空题11.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后发现其中投到红色、黑色球的频率稳定在5%和15%,则口袋中白色球的个数很可能是16 个.【考点】利用频率估计概率.【专题】计算题.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得白球的频率,再乘以总球数求解.【解答】解:白色球的个数是:20×(1﹣5%﹣15%)=20×80%=16,故答案为:16,【点评】此题主要考查了利用频率估计概率,解答此题的关键是要计算出口袋中白色球所占的比例,再计算其个数.12.如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是.【考点】列表法与树状图法.【专题】计算题;压轴题.【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合K时才发光,所以小灯泡发3光的概率等于.小灯泡才发光,所以小灯泡发光的概率等于.【解答】解:根据题意,三个开关,只有闭合K3故答案为.【点评】本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是.【考点】概率公式.【专题】压轴题;规律型.【分析】先得出四个数字中随机划去两个,剩下的两个数字组成两位数的可能,再得出是86的可能,根据概率公式即可求解.【解答】解:如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数的可能有6种,其中是86的可能有2种,故选中的车牌号为8ZK86的概率是=2÷6=.故答案为:.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.14.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是.【考点】列表法与树状图法.【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.【解答】解:∵随机掷一枚质地均匀的硬币三次,∴根据树状图可知至少有一次正面朝上的概率是:.故答案为:.【点评】此题主要考查了树状图法求概率,根据题意画出树状图是解决问题的关键.15.两个袋子中分别装着写有1、2、3、4的四张卡片,从每一个袋子中各抽取一张,则两张卡片上的数字之和是6的机会是.【考点】列表法与树状图法.【专题】数形结合.【分析】列举出所有情况,看两张卡片上的数字之和是6的情况数占总情况数的多少即可.【解答】解:共16种情况,和等于6的情况数有3种,所以所求的概率为,故答案为.【点评】考查概率的求法;得到两张卡片上的数字之和是6的情况数的解决本题的关键;用到的知识点为:概率=所求情况数与总情况数之比.16.在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字,2,4,﹣,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P的横坐标,且点P在反比例函数y=图象上,则点P落在正比例函数y=x图象上方的概率是.【考点】概率公式;正比例函数的图象;反比例函数图象上点的坐标特征.【专题】压轴题.【分析】首先由点P在反比例函数y=图象上,即可求得点P的坐标,然后找到点P落在正比例函数y=x图象上方的有几个,根据概率公式求解即可.【解答】解:∵点P在反比例函数y=图象上,∴点P的坐标可能为:(,2),(2,),(4,),(﹣,﹣3),∵点P落在正比例函数y=x图象上方的有:(,2),∴点P落在正比例函数y=x图象上方的概率是.故答案为:.【点评】此题考查了反比例函数与一次函数与点的关系,以及概率公式的应用.注意概率=所求情况数与总情况数之比.17.如图,某商标是由边长均为2的正三角形、正方形、正六边形的金属薄片镶嵌而成的镶嵌图案.如果在这个镶嵌图案中随机确定一个点O,那么点O落在镶嵌图案中的正方形区域的概率为0.54 .(.结果保留二位小数)【考点】几何概率;平面镶嵌(密铺).【分析】由图形得到由10个正三角形,11个正方形,2个正六边形,分别求出三个图形的面积,即可求出点O落在镶嵌图案中的正方形区域的概率.【解答】解:由图形可知:由10个正三角形,11个正方形,2个正六边形,正方形的面积是2×2=4,连接OA、OB,∵图形是正六边形,∴△OAB是等边三角形,且边长是2,即等边三角形的面积是,∴正六边形的面积是6×=6,∴点O落在镶嵌图案中的正方形区域的概率是≈0.54,答:点O落在镶嵌图案中的正方形区域的概率约为0.54.故答案为:0.54.【点评】本题主要考查了正多边形与圆,等边三角形的性质和判定,几何概率,勾股定理,平面镶嵌等知识点的理解和掌握,能根据性质进行计算是解此题的关键.18.17世纪的一天,保罗与著名的赌徒梅尔赌钱,每人拿出6枚金币,然后玩骰子,约定谁先胜三局谁就得到12枚金币,比赛开始后,保罗胜了一局,梅尔胜了两局,这是一件意外的事中断了他们的赌博,于是他们商量这12枚金币应该怎样分配才合理,保罗认为,根据胜的局数,他应得总数的三分之一,即4枚金币,但精通赌博的梅尔认为他赢得可能性大,所以他应得全部赌金.请你根据概率知识分析保罗应赢得 3 枚金币.【考点】概率公式.【分析】根据保罗胜了一局,梅尔胜了两局得到要再玩两局,才会决定胜负,根据要再玩两局出现的结果即可得到结论.【解答】解:∵要再玩两局,才会决定胜负,∴会出现四种可能的结果:(梅尔胜,保罗胜),(保罗胜,梅尔胜),(梅尔胜,梅尔胜),(保罗胜,保罗胜),其中前三种结果都是梅尔胜,只有第四种结果是保罗胜,∴梅尔取胜的概率是,保罗取胜的概率是,∴梅尔赢得12×=9枚金币,保罗应赢,12×=3枚金币,故答案为:3.【点评】本题考查了概率的公式,掌握的理解题意是解题的关键.三、简答题(共38分)19.在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点P(m,n)的横坐标,第二个数作为点P(m,n)的纵坐标,则点P(m,n)在反比例函数的图象上的概率一定大于在反比例函数的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点P(m,n)的情形;(2)分别求出点P(m,n)在两个反比例函数的图象上的概率,并说明谁的观点正确.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验;(2)依据(1)分析求得所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)列表得:。
浙教版九年级上第2章《简单事件的概率》测试题含答案(PDF版)
1 1
【解】
密码是一位数时一次就拨对密码的概率是10;密码是两位数时一次就拨对密码的概率是100;密码是三位
1 1
数时一次就拨对密码的概率是1000;密码是四位数时一次就拨对密码的概率是10000,故密码至少需要 4 位.
8
【解】 设 4 名同学为 A,B,C,D,相应的贺卡为 a,b,c,d,画树状图如解图.
1
小球除标号外其他均相同,从两个袋子中各随机摸出 个小球,两球标号恰好相同的概率是 .
二、填空题(每小题 4 分,共 24 分)
9.“任意打开一本 200 页的数学书,正好是第 35 页”,这是随机事件(填“必然”“不可能”或“随机”).
10.如图,有 A,B,C,D,E 五张质地均匀、大小形状完全相同的卡片.将有运算式的一面朝下,洗匀后,从中随
A B C
( 3+ 2)( 3- 2)=1 x3·x-4=x
D E
小明认为口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是 ,你认为对吗?
(2) 3
1 6
12.一个口袋中有 3 个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下
的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……不断重复
B.抛一枚硬币,正面朝上
C.打开电视正在播放动画片
D.3 个人分成两组,一定有 2 个人分在一组
2.一个袋子里装有 6 个红球,3 个白球和 7 个黑球,每个球除颜色外都相同,任意摸出一个球,被摸到的可能性最大
的球是(C)
A.红球 B.白球
浙教版九年级上《第二章简单事件的概率》单元评估试题附参考答案
27.一个不透明的布袋里装有 3 个球,其中 2 个红球,1 个白球,它们除颜色外其余都相同。 (1)求摸出 1 个球是白球的概率; (2)摸出 1 个球,记下颜色后放回,并搅均,再摸出 1 个球。求两次摸出的球恰好颜色不同的概率(要求画 树状图或列表); (3)现再将 n 个白球放入布袋,搅均后,使摸出 1 个球是白球的概率为 。求 n 的值。
浙教版九年级数学上册 第二章 简单事件的概率 单元评估检测试题
一、单选题(共 10 题;共 30 分)
1.某班级中男生和女生各若干,若随机抽取 1 人,抽到男生的概率是 ,则抽到女生的概率是( ) A. 不确定 B. C. D.
2.某校甲、乙、丙、丁四名同学在运动会上参加 4×100 米接力比赛,其中甲跑第一棒,那么乙跑第二棒的概率 为( ) A. B. C. D.
8.100 个白色乒乓球中有 20 个被染红,随机抽取 20 个球,下列结论正确的是( A. 红球一定刚好 4 个 B. 红球不可能少于 4 个 C. 红球可能多于 4 个
D. 抽到的白球一定比红球多
9.一个不透明的盒子里装有 2 个白球,2 个红球,若干个黄球,这些球除了颜色外,没有任何其他区别.若从 这个盒子中随机摸出一个是黄球的概率是 A. 2 B. 4 , 则盒子中黄球的个数是( ) C. 6 D. 8
发芽种子粒数 85 发芽频率
0.850 0.745 0.815 0.793 0.802 0.801
根据以上数据可以估计,该玉米种子发芽的概率约为________(精确到 0.1). 12.某电视台综艺节目接到热线电话 500 个,现从中抽取“幸运观众”10 名,小明打通了一次热线电话,他成为 “幸运观众”的概率是________ . 13.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有 3 个选项,第二道单选题有 4 个 选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个 错误选项).从概率的角度分析,你建议小明在第 ________题使用“求助”. 14.把一个体积是 64 立方厘米的立方体木块的表面涂上红漆, 然后锯成体积为 1 立方厘米的小立方体, 从中任 取一块,则取出的这一块至少有一面涂红漆的概率是 ________. 15.(2016•淮安)一个不透明的袋子中装有 3 个黄球和 4 个蓝球,这些球除颜色外完全相同,从袋子中随机摸 出一个球,摸出的球是黄球的概率是________. 16.如图,正方形的阴影部分是由四个直角边长都是 1 和 3 的直角三角形组成的,假设可以在正方形内部随意 取点,那么这个点取在阴影部分的概率为________.
浙教版初中数学九年级上册第二单元《简单事件的概率》单元测试卷(标准难度)(含答案解析)
浙教版初中数学九年级上册第二单元《简单事件的概率》单元测试卷考试范围:第二章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.我国南方地区冬至的传统习俗是吃汤圆,其寓意团团圆圆冬至这一天,小红家煮了30个汤圆,其中有12个黑芝麻馅的,14个枣泥馅的,4个豆沙馅的,煮完之后的汤圆看起来都一样,小红盛了1个汤圆,下列各种描述正确的是( )A. 她吃到黑芝麻馅汤圆和枣泥馅汤圆可能性一样大B. 她吃到枣泥馅汤圆比豆沙馅汤圆的可能性大很多C. 她不可能吃到豆沙馅汤圆D. 她一定能吃到枣泥馅汤圆2.某班有25名男生和20名女生,现随机抽签确定一名学生做代表参加学代会,则下列选项中说法正确的是( )A. 男、女生做代表的可能性一样大B. 男生做代表的可能性较大C. 女生做代表的可能性较大D. 男、女生做代表的可能性的大小不能确定3.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A. 36种B. 48种C. 96种D. 192种4.将三幅完全相同的图片,分别剪成大小相同的上、中、下三段,每张图片的三段放在一起组成三部分,若从每一部分中抽取一段,则正好拼成一幅完整图片的概率是( )A. 227B. 29C. 13D. 495.某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )A. 15B. 14C. 13D. 126.下列说法中,正确的是( )A. 不可能事件发生的概率为0B. 随机事件发生的概率为12C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A. 从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率B. 掷一枚质地均匀的硬币,正面朝上的概率C. 从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率D. 任意买一张电影票,座位号是2的倍数的概率8.下图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断: ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618; ③若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是( )A. ①B. ②C. ① ②D. ① ③9.一个不透明的袋子中有1个红球,1个绿球和n个白球,这些球除颜外都相同.从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则白球的个数n的值可能是( )A. 1B. 2C. 4D. 510.某校九年级百日誓师大会的学生代表王红,李明和张敏三人按顺序先后发言,但是教务处认为采用抽签方式决定发言顺序比较公平.经过抽签后,只有李明顺序不变的概率为( )A. 112B. 16C. 13D. 1211.小明和小刚各自掷一枚质地均匀的正方体骰子,若两人的点数之和是奇数,则小明积1分,若两人的点数之和是偶数,则小刚积1分,此游戏( )A. 对小明有利B. 对小刚有利C. 是公平的D. 无法判断12.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A. 23B. 13C. 29D. 19第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.小东认为:任意抛掷一个啤酒盖,啤酒盖落地后印有商标一面向上的可能性的大小是12,你认为小东的想法______(“合理”或“不合理”),理由是______.14.如图,小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为________.15.从一个不透明的口袋中随机摸出1个球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___________个白球.16.名额分配综合评价是2022年上海市高中阶段学校的招生录取方式之一.市实验性示范性高中将对入围学生开展现场综合评价并赋分,为更好保证打分的公平,将以所有打分的截尾平均数作为考生的分数,即去掉一个最高分和一个最低分以后的平均分数.如果7位高中老师的打分如表所示,那么这位学生的现场综合评价得分是______分.老师1老师2老师3老师4老师5老师6老师7打分910788910三、解答题(本大题共9小题,共72.0分。
九年级上册数学单元测试卷-第2章 简单事件的概率-浙教版(含答案)
九年级上册数学单元测试卷-第2章简单事件的概率-浙教版(含答案)一、单选题(共15题,共计45分)1、下列事件中,是必然事件的为()A.明天会下雨B.打开电视机,正在播放动画片C.三角形内角和为180°D.经过一个路口,信号灯刚好是红灯2、一个十字路口的交通信号灯每分钟红灯亮30s,绿灯亮25s,黄灯亮5s,当你抬头看信号灯时,是绿灯的概率是()A. B. C. D.3、以下说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑g牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是4、一只不透明的袋子中装有1个黑球3个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率为()A. B. C. D.5、如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是()A. B. C. D.6、下列事件中,属于不可能事件的是()A.明天会下雨B.从只装有8个白球的袋子中摸出红球C.抛一枚硬币正面朝上D.在一个标准大气压下,加热到100℃水会沸腾7、下列事件中,属于必然发生的事件是( )A.今天下雨,则明天也会下雨B.小明数学考试得满分C.若今天是2月28日,则明天是2月29日D.2008年有366天8、某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A. B. C. D.9、如图,有三条绳子穿过一块木板,姐妹两人分别站在木板的左、右两边,各选该边的一段绳子.若每边每段绳子被选中的机会相等,则两人选到同一条绳子的概率为A. B. C. D.10、如图所示的程序是函数型的数值转换程序,其中-2≤x≤2,若输入的x的值时满足条件的整数,则输出结果为0的概率为()A.0B.1C.D.11、下列事件中是必然事件的是()A.实心铁球投入水中,会沉入水底B.篮球队员在罚球线上投篮一次,未投中C.明天太阳从西边升起D.抛出一枚硬币,落地后正面朝上12、下列事件中,是必然事件的是()A.打开电视,它正在播广告B.抛掷一枚硬币,正面朝上C.打雷后会下雨D.367人中有至少两人的生日相同13、甲、乙两盒中各放入分别写有数字1,2,3的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是3的概率是()A. B. C. D.14、一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A. B. C. D.15、一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是( )A.摸出的是白球B.摸出的是黑球C.摸出的是红球D.摸出的是绿球二、填空题(共10题,共计30分)16、抛掷一枚均匀的硬币,前次都正面朝上,则抛掷第次正面朝上的概率是________.17、下表记录了一名球员在罚球线上投篮的结果.投篮次数n 100 150 300 500 800 1000投中次数m 60 96 174 302 484 602投中频率0.600 0.640 0.580 0.604 0.605 0.602估计这名球员在罚球线上投篮一次,投中的概率为________.18、某校八年级在“停课不停学”期间,积极开展网上答疑活动.在某时间段共开放7个网络教室,其中1个是语文答疑教室,3个是数学答疑教室,3个是英语答疑教室.为了解学校的八年级学生参与网上答疑的情况,学校教学管理人员随机进入一个网络教室,那么他进入数学答疑教室的概率为________.19、布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________ .20、一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是________.21、30张牌,牌面朝下,每次抽出一张记下花色后再放回,洗牌后再抽,抽到红心、黑桃、草花、方块的频率依次为20%,32%,44%,4%,则四种花色的牌各约有________ .(按红心、黑桃、草皮、方块的顺序填写)22、如图为一个电路图,在该电路图上有四个开关S1, S2, S3, S4和一个灯泡⊗,闭合开关S1或同时闭合开关S2, S3, S4都能够使灯泡发光,现在任意闭合其中两个开关,灯泡能够发光的概率为________.23、春节前夕,小丽的奶奶给孩子们准备了一些红包,这些红包的外观相同,其中有个红包装的是元,有个红包装的是元,剩下的红包装的是元.若小丽从中随机拿出一个红包,里面装的是元的红包的概率是,则装有元红包的个数是________.24、在一个不透明的口袋中,有若干个红球和白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率0.75,若白球有3个,则红球有________个.25、北京奥运会的吉祥物是“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”等五个福娃,现将三张分别印有“欢欢”、“迎迎”、“妮妮”这三个吉祥物图案的卡片(卡片形状、大小一样,质地相同)放入一个盒中,小明从盒中任取一张,取到“贝贝”这张卡片是________事件(填“必然”或“不可能”或“随机”).三、解答题(共5题,共计25分)26、一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.27、如图,有两个可以自由转动的均匀转盘A,B,都被分成3等份,每份内均标有数字,小明和小亮用这两个转盘做游戏,游戏规则如下:分别转动转盘A和B,两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止),若和为偶数,则小明获胜;如果和为奇数,那么小亮获胜.(1)请画出树状图,求小明获胜的概率P(A)和小亮获胜的概率P(B).(2)通过(1)的计算结果说明该游戏的公平性.28、在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数65 124 178 302 481 599 1803m摸到白球的频率0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估计:当很大时,摸到白球的频率将会接近.(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= .(3)试估算盒子里黑、白两种颜色的球各有多少只?29、篮球运动员甲的三分球命中率是70%,乙的三分球命中率是50%.本场比赛中甲投三分球4次,命中1次;乙投三分球4次,全部命中.全场比赛结束前,甲、乙两人所在球队还落后对方球队2分,但还有一次进攻的机会.如果你是教练,那么最后一个三分球由谁来投?说说你的理由.30、有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率.参考答案一、单选题(共15题,共计45分)1、C2、A3、A4、D5、A6、B7、D8、B9、B10、D11、A12、D13、B14、C15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
浙教版九年级上册数学第2章《简单事件的概率》单元测试卷(Word版含答案)
浙教版九年级上册数学第2章《简单事件的概率》单元测试卷(Word版含答案)一、选择题〔每题3 分,共30 分〕1.以下事情中,属于肯定事情的是〔 C 〕A.明天一定会下雨B.购置一张彩票并中奖C.抛出的篮球会下落D.坐公交车有位子2.口袋中有9 个球,其中4 个红球、3 个蓝球、2 个白球,那么以下事情中,发作的能够性为1 的是〔 C 〕A.从口袋中拿出1 个球恰为红球B.从口袋中拿出2 个球都是白球C.拿出的6 个球中至少有一个球是红球D.从口袋中拿出的球恰为3 个红球、2 个白球3.转动转盘,当转盘中止转动时,指针落在白色区域的能够性最大的是〔 B 〕A. B. C. D.4.某个密码锁的密码由三个数字组成,每个数字都是0~9 这十个数字中的一个,只要当三个数字与所设定的密码及顺序完全相反时,才干将锁翻开.假设仅遗忘了所设密码的最后那个数字,那么一次就能翻开该密码的概率是〔 A 〕A.110B.19C.13D.125.从区分标有数-4,-3,-2,-1,0,1,2,3,4 的九张没有清楚差异的卡片中,随机抽取一张,所抽卡片上的数的相对值不小于3 的概率是〔 C 〕A.19B.29C.49D.596.某校举行〝中国梦·我的梦〞演讲竞赛,需求在九年级的同窗中选取一名掌管人,共有12 名同窗报名参与,其中九〔1〕班有2 名,九〔2〕班有4 名,九〔3〕班有6 名,现从这12 名同窗中随机选取一名掌管人,那么选中的这名同窗恰恰是九〔1〕班同窗的概率是〔 D 〕A.112B.13C.12D.167.一个暗箱中放有a 个除颜色外其他完全相反的球,这a 个球中只要2 个红球,每次将球搅拌平均后,恣意摸出1 个球记下颜色,再放回暗箱,经过少量重复实验后发现,摸到红球的频率动摇在20%,那么可以预算a 的值是〔 B 〕A.15B.10C.4D.38.小明把如下图的3×3 的正方形网格纸板挂在墙上玩飞镖游戏〔每次飞镖均落在纸板上,且落在纸板的任何一个点的时机都相等〕,那么飞镖落在阴影区域〔四个全等的直角三角形的每个顶点都在格点上〕的概率是〔C 〕A.12B.23C.49D.59【解析】∵阴影局部的面积=4 个小正方形的面积,大正方形的面积=9 个小正方形的面积,∴阴影局部的面积占总面积的49.∴飞镖落在阴影区域的概率为49.应选C.9.某学习小组做〝用频率估量概率〞的实验时,统计了某一结果出现的频率,绘制了如下的表格,那么契合这一结果的实验最有能够的是〔 B 〕A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花样是红桃B.在〝石头、剪刀、布〞的游戏中,小明随机出的是〝剪刀〞C.抛一个质地平均的正六面体色子,向上的面点数是5D.抛一枚硬币,反面朝上【解析】A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花样是红桃的概率为14,不契合题意.B.在〝石头、剪刀、布〞的游戏中,小明随机出的是〝剪刀〞的概率是13,契合题意.C.抛一个质地平均的正六面体色子,向上的面点数是5 的概率为16,不契合题意.D.抛一枚硬币,出现反面朝上的概率为12,不契合题意.应选B.10.如下图为两个完全相反的转盘,每个转盘被分红了面积相等的五个区域,每个区域内区分填上数字1,2,3,4,5.甲、乙两先生玩转盘游戏,规那么如下:固定指针,同时转动两个转盘,任其自在转动,当转盘中止时,假定两指针所指数字的积为奇数,那么甲获胜;假定两指针所指数字的积为偶数,那么乙获胜.那么在该游戏中乙获胜的概率是〔 D 〕A.25B.35C.12D.1625【解析】一切出现的状况如下表所示,共有25 种状况,积为偶数的状况有16 种,∴P〔乙获胜〕=1625.应选D.二、填空题〔每题 4 分,共24 分〕11.小燕抛一枚硬币10 次,有7 次正面朝上,当她抛第11 次时,正面朝上的概率为1 212.,-1113,π,除正面的数不同外其他都相反,将它们反面朝上洗匀后,从中任取一张卡片,取到的数是在理数的概率是2 5 .13.一个不透明的袋子中装了除颜色不同外其他没有任何区别的白色球3 个,绿色球4 个,黑色球7 个,黄色球2 个,从袋子中随机摸出一个球,摸到黑色球的概率是7 16.14.从外形、大小相反的9 张数字卡片〔区分标有数字1,2,3,4,5,6,7,8,9〕中任意抽1 张,抽出的恰恰是:①偶数;②小于6 的数;③不小于9 的数,这些事情按发作的能够性从大到小陈列是②①③ .〔填序号〕15.从装有a 个球的暗袋中随机摸出一个球,袋中有5 个红球,经过少量的实验发现,摸到红球的频率动摇在0.25 左右,那么可以估量a 约为20 .16.有五张正面区分标有数-2,0,12,1,3 的不透明卡片,它们除所标数不同外其他全部相反.现将它们反面朝上,洗匀后从中任取一张,将该卡片上的数记为a,那么使关于x 的分式方程11222axx x-+=--有整数解的概率是25【解析】去分母得1-ax+2〔x-2〕=-1,整理得〔a-2〕x=-2,解得x=-2a-2.∵分式方程11222axx x-+=--有整数解,∴a=0,1〔此时求得的x 为增根,舍去〕,3.∴使关于x 的分式方程11222axx x-+=--有整数解的概率是25三、解答题〔共66 分〕17.〔6 分〕不透明的布袋里装有红、蓝、黄三种颜色的小球共40 个,它们除颜色外其他都相反,其中白色球20 个,蓝色球比黄色球多8 个.〔1〕求袋中蓝色球的个数.〔2〕现再将2 个黄色球放入布袋,搅匀后,求摸出1 个球是黄色球的概率.【解析】〔1〕设蓝色球有x 个,那么黄色球有〔x-8〕个.依据题意列方程得20+x+〔x-8〕=40,解得x=14.∴袋中有14 个蓝色球.〔2〕∵三种颜色小球共40+2=42〔个〕,其中黄色球有14-8+2=8〔个〕,∴P〔摸出1 个球是黄色球〕=842=421..18.〔8 分〕下表是一名同窗在罚球线上投篮的实验结果,依据表中数据,回答以下效果:(1)估量这名同窗投篮一次就投中的概率(结果准确到0.1).(2)依据此概率,这名同窗投篮622 次,投中的次数约是多少?【解析】(1)投中的概率约是0.5.(2)622×0.5=311〔次〕.∴这名同窗投篮622 次,投中的次数约是311 次.19.〔8 分〕如下图,转盘A 的三个扇形面积相等,区分标有数字1,2,3,转盘B 的四个扇形面积相等,区分标有数字1,2,3,4.转动A,B 转盘各一次,当转盘中止转动时,记下指针所落扇形中的两个数字〔当指针落在扇形的交线上时,重新转动转盘〕.〔1〕用树状图或列表法列出一切能够出现的结果.〔2〕求两个数字的平方和为奇数的概率.【解析】〔1〕画树状图如答图所示.那么共有12 种等能够的结果.〔2〕∵两个数字的平方和为奇数的状况有6 种,∴P〔两个数字的平方和为奇数〕=412=13.20.〔10 分〕一次抽奖活动设置如下的翻奖牌,翻奖牌的正面、反面区分如图1,2 所示,假设你只能在9 个数字中选中一个翻牌,请处置下面的效果:〔1〕请直接写出抽到〝手机〞奖品的能够性的大小 .〔2〕假定第一次没有抽到〝手机〞奖品,央求出第二次抽到〝手机〞奖品的能够性的大小. 〔3〕请你依据题意在图 3 中设计翻奖牌反面的奖品〔包括手机、微波炉、球拍、电影票、 谢谢参与〕,使得最后抽到〝球拍〞的能够性是49. 【解析】〔1〕抽到〝手机〞奖品的能够性是29. 〔2〕由题意可得,第二次抽到〝手机〞奖品的能够性是〔3〕如答图所示〔答案不独一〕.21.〔10 分〕某同窗报名参与校运动会,有以下 5 个项目可供选择:径赛项目:100m ,200m ,400m(区分用 A 1,A 2,A 3 表示);田赛项目:跳远、跳高(区分用 B 1,B 2 表示).(1)该同窗从 5 个项目中任选一个,恰恰是田赛项目的概率为25 .(2)该同窗从 5 个项目中任选两个,用树状图或列表法罗列出一切能够出现的结果,并求恰 好是一个田赛项目和一个径赛项目的概率.【解析】〔1〕25〔2〕如下图.∵共有 20 种等能够的结果,恰恰是一个田赛项目和一个径赛项目的状况有 12 种, ∴恰恰是一个田赛项目和一个径赛项目的概率为123=20522.(12 分)如下图为 9×7 的正方形点阵,其水平方向和竖直方向的两格点间的长度都为 1 个单位,以这些点为顶点的三角形称为格点三角形.请经过画图剖析,探求以下效果:(1)请在图中画出以 AB 为边且面积为 2 的一个格点三角形.(2)任取该点阵中能与 A ,B 构成三角形的一点 M ,求以点 A ,B ,M 为顶点的三角形的面积为2 的概率.(3)任取该点阵中能与A,B 构成三角形的一点N,求以点A,B,N 为顶点的三角形为直角三角形的概率.【解析】〔1〕如答图1 所示〔图中为其中一种状况,答案不独一,共有12 种,在图中两条直线上的12 个点均满足条件〕.〔2〕该点阵中,除了与点A,B 在同不时线上的点外,其他点都能与点A,B 构成三角形,所以一共可以构成7×9-7=56 个三角形,其中面积为2 的有12 个三角形,∴以A,B,M 为顶点的三角形的面积为2 的概率为123= 5614(3)如答图2 所示,该点阵中能与A,B 构成直角三角形的点N 共有12 个〔图中两条直线上除点A,B 外的10 个点以及点N1,N2〕,∴以A,B,N 为顶点的三角形为直角三角形的概率为23.〔12 分〕经过某十字路口的汽车,它能够继续直行,也能够向左转或向右转,假定这三种状况是等能够的,当三辆汽车经过这个十字路口时:〔1〕求三辆车全部同向而行的概率.〔2〕求至少有两辆车向左转的概率.〔3〕由于十字路口右拐弯处是通往新建经济开发区的,因此交通管理部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间区分为30s,在绿灯亮总时间不变的条件下,为了缓解交通拥堵,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.【解析】区分用A,B,C 表示向左转、直行、向右转.依据题意,画树状图如答图所示.〔第23 题答图〕〔1〕∵共有27 种等能够的结果,三辆车全部同向而行的状况有3 种,∴P〔三辆车全部同向而行〕=31 279〔2〕∵至少有两辆车向左转的状况有7 种,∴P〔至少有两辆车向左转〕=7 27.〔3〕∵汽车向右转、向左转、直行的频率区分为25,310,310∴在不改动绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮的时间为90×310=27〔s〕,直行绿灯亮的时间为90×310=27〔s〕,右转绿灯亮的时间为90×25=36〔s〕.。
浙教版九年级数学上《第二章简单事件的概率》单元检测试题(有答案)
浙教版九年级数学上《第二章简单事件的概率》单元检测试题(有答案)2018-2019学年度第一学期浙教版九年级数学上第二章简单事件的概率单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列事件中出现机会最大的是()A.必然事件B.不可能事件C.随机事件D.不能确定2.下列说法正确的是()A.“明天降雨的概率是”表示明天有的时间降雨B.“一批铅笔的废品率为. ”表示如果从中抽出一只铅笔肯定不是废品C.“彩票中奖的概率是”表示买张彩票一定有张会中奖D.在同一年出生的名学生中,至少有两人的生日是同一天3.下列事件中,概率的事件是()A.某地月日刮西北风B.当是有理数时,C.手电筒的电池没电,灯泡发亮D.一个电影院某天的上座率超过4.同时抛掷两枚元的硬币,菊花图案都朝上的概率是()A. B. C. D.5.掷一次骰子(每面分别刻有点),向上一面的点数是质数的概率等于()A. B. C. D.6.在相同条件下重复试验,若事件发生的概率是,则下列说法正确的是()A.说明在相同条件下做次试验,事件必发生次B.说明在相同条件下做多次这种试验,事件发生的频率必是C.说明在相同条件下做两个次这种试验,事件平均发生次D.说明在相同条件下做次这种试验,事件可能发生次7.一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有个,黑色球有个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在 . 附近,则的值为()A. B. C. D.8.小鸡孵化场孵化出只小鸡,在只上做记号,再放入鸡群中让其充分跑散,再任意抓出只,其中做有记号的大约是()A.只B.只C.只D.只9.如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个区域内分别填上数字“ ”“ ”“ ”“ ”.甲、乙两学生玩转盘游戏,规则如下:固定指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜.那么在该游戏中乙获胜的概率是()A. B. C. D.10.某口袋中有个球,其中白球个,绿球个,其余为黑球.甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜.则当时,游戏对甲乙双方公平.A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.袋子里放入个白球,个黄球和个红球,这些球除颜色不同外,其他均一样,若从袋子里摸出一球,则摸到________颜色球的可能性最大,摸到________颜色的可能性最小.12.袋子中有个红球,个白球,个绿球,则从袋子中任意摸出一个球是白球的可能性是________.13.从,,,…,这个自然数中任取一个数,则它是的倍数的概率是________.14.有五张质地、大小、反面完全相同的不透明卡片,正面写着,,,,,现把它们正面向下,随机摆放在桌面上,从中任意抽一张,则抽出的数字是偶数的概率是________.15.某班有一个同学想给老师打电话,可他记不得其中的两个号码了,即..,他随意拨,恰好拨通老师电话的概率为________.16.购买体育彩票,特等奖可获得万元巨奖,其获奖规则如下:你如果购买的彩票号码与开出的号码完全相同,就可以获得该奖,开奖的号码通过如下方法获得:将号码(共计组)放入七台摇号机中,并编上序号① ⑦,规定第①台机摇出的号码为首位,第②台机摇出的号码为第二位…,第⑦台摇出的号码为第七位,请你分析一下,购买一张体育彩票,中特等奖的概率是________.17.在一个暗箱里放有个除颜色外完全相同的球,这个球中红球只有个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在.那么估计大约有________个.18.有一道四选一的选择题,某同学完全靠猜测获得结果,则这个同学答对的概率是________.19.甲、乙两同学手中各有分别标注,,三个数字的纸牌,甲制定了游戏规则:两人同时各出一张牌,当两纸牌上的数字之和为偶数时甲赢,奇数时乙赢.你认为此规则公平吗?并说明理由.________.20.如图所示,有三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形、将这三张纸片放在一个盒子里摇匀,随机地同时抽取两张纸片,若可以拼成一个圆形(即取出的两张纸片都画有半圆形)则甲方赢;若可以拼成一个蘑菇形(取出的一张纸片画有半圆,一张纸片画有正方形)则乙方赢,问甲方赢的概率是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.根据你的经验,下列事件发生的可能性哪个大哪个小?根据你的想法,把这些事件的序号按发生的可能性从小到大的顺序排列________.从装有个红球和个黄球的袋子中摸出的个球恰好是红球;一副去掉大、小王的扑克牌中,随意抽取张,抽到的牌是红桃;水中捞月;太阳从东方升起;随手翻一下日历,翻到的刚好是周二.22.某超市为了促销一批新品牌的商品,设立了一个不透明的纸箱,纸箱里装有一个红球,个白球和个黄球,并规定:顾客每购买元的新品牌商品,就能获得一次摸球的机会,如果摸到红球,顾客可以获得一把雨伞,摸到白球,可以获得一个文具盒,摸到黄球,可以获得一支铅笔,甲顾客购此新商品元,她获得奖品的概率是多少?他得到一把雨伞,一个文具盒,一支铅笔的概率分别是多少?23.一个不诱明的集中装有红、黄、白三种颜色的球共个,它们除颜色外都相同,其中黄球个数比白球个数的倍少个.已知从袋中摸出一个球是红球的概率是.求袋中红球的个数;求从袋中摸出一个球是白球的概率.24.小明做了一个转盘,转盘上的指针一头粗一头细,小明将转盘挂在垂直于地面的墙壁上.若将指针固定,转动转盘,则指针细的一头指向红色的概率是多少?若将转盘固定(如图,红色朝上),转动指针,那么指针细的一头指向红色的概率和第一个问题中的概率一样吗?为什么?25.有两个可以自由转动的均匀转盘,都被分成了等份,并在每份内均标有数字,如图所示.规则如下:分别转动转盘,两个转盘停止后,将两个指针所指份内的数字相乘,(若指针停止在等分线上,那么重转一次,直到指针指向某份为止).用列表或画树状图法分别求出数字之积为的倍数和数字之积为的倍数的概率;小明和小亮想用这两个转盘做游戏,他们规定:数字之积为的倍数时,小明得分;数字之积为的倍数时,小亮得分.这个游戏对双方公平吗?若认为公平请说明理由;若认为不公平,试修改得分规定,使游戏对双方公平.26.小亮看到路边上有人设摊玩“有奖掷币”游戏,规则是:交元钱可以玩一次掷硬币游戏,每次同时掷两枚硬币,如果出现两枚硬币正面朝上,奖金元;如果是其它情况,则没有奖金(每枚硬币落地只有正面朝上和反面朝上两种情况).小亮拿不定主意究竟是玩还是不玩,请同学们帮帮忙!小亮看到路边上有人设摊玩“有奖掷币”游戏,规则是:交元钱可以玩一次掷硬币游戏,每次同时掷两枚硬币,如果出现两枚硬币正面朝上,奖金元;如果是其它情况,则没有奖金(每枚硬币落地只有正面朝上和反面朝上两种情况).小亮拿不定主意究竟是玩还是不玩,请同学们帮帮忙!求出中奖的概率;如果有人,每人玩一次这种游戏,大约有________人中奖,奖金共约是________元,设摊者约获利________元;通过以上“有奖”游戏,你从中可得到什么启示?答案1.A2.D3.C4.C5.B6.D7.B8.D9.A10.B11.白红12.13.14.15.16.17.18.19.不公平.因为出现偶数的概率为,而出现奇数的概率为20.21..22.解:无论摸到什么球,都有相应的奖励;即中奖是必然事件,故获得奖品的概率为;他得到一把雨伞,摸到红球,其概率为,他得到一个文具盒,即摸到白球,其概率为他得到一支铅笔即摸到黄球的概率为.23.解:∵一个不诱明的集中装有红、黄、白三种颜色的球共个,从袋中摸出一个球是红球的概率是.∴袋中红球的个数为:(个);设白球有个,则黄球有个,根据题意得:,解得:,∴从袋中摸出一个球是白球的概率为:.24.解:若将指针固定,转动转盘,则指针细的一头指向红色的概率是;若将转盘固定转动指针,那么指针细的一头指向红色的概率是,因为指针一头细一头粗,受地心吸引力的影响,细的一头永远指向红色.则数字之积为的倍数的有五种,其概率为;数字之积为的倍数的有三种,其概率为.这个游戏对双方不公平.∵小明平均每次得分为(分),小亮平均每次得分为(分),∵,∴游戏对双方不公平.修改得分规定为:若数字之积为的倍数时,小明得分;若数字之积为的倍数时,小亮得分即可.26.。
浙教版数学九年级上册第二章简单事件的概率单元检测试题(含答案)
第二章简单事件的概率单元检测试题一、选择题1、随机掷两枚硬币,落地后全部正面朝上的概率是()A .1B .12C .13D .142、如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是()A .15B .25C .12D .353、有一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子,掷一次骰子,向上的一面的点数为2的概率是()A .0B .12C .16D .14、向如图所示的圆盘中随机抛掷一枚骰子,骰子落在阴影区域的概率(盘底被等分成12份,不考虑骰子落在线上情形)是()A .61B .41C .31D .235、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为()A.12个B.9个C.6个D.3个6、在盒子里放有三张分别写有整式1a 、2a 、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ).A.13B.23C.16D.347、从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是()A .6B .3C .2D .18、从n 张互不相同的普通扑克牌中任意抽取一张,抽到黑桃K 的概率为51,则n =()A .54B .52C .10D .59、在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是()A .12 B .9C .4D .3答10、一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A .19B .13C .12D .23二、填空题11、随机掷一枚质地均匀的普通硬币两次,出现两次正面都朝上的概率是.12、在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.13、在2a □2ab □2b 的空格中,任意填上“+”或“-”,得到的所有多项式中是完全平方式的概率为.14、某校九年级二班50名学生的年龄情况如下表所示:年龄14岁15岁16岁17岁人数720167则该班学生年龄的中位数为________;从该班随机地抽取一人,抽到学生的年龄恰好是15岁的概率等于________.15、已知平面内的凸四边形ABCD ,现从一下四个关系式①AB=CD 、②AD =BC 、③AB ∥CD 、④∠A=∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率为.16、有5张质地相同的卡片,它们的背面都相同,正面分别印有“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”五种不同形象的福娃图片.现将它们背面朝上,卡片洗匀后,任抽一张是“欢欢”的概率是.17、如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球总表面积的百分比,若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是.18、在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则n.19、一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个球为白球的概率是.20、如图所示,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是.三、应用题21、甲同学口袋中有三张卡片,分别写着数字1,1,2,乙同学口袋中也有三张卡片,分别写着数字1,2,2.两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜;否则乙胜.求甲胜的概率.22、四张大小、质地均相同的卡片上分别标有1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取得的两张卡片上的数字之积为奇数的概率.23、甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).甲超市:球两红一红一白两白礼金券(元)5105乙超市:(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;((2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.球两红一红一白两白礼金券(元)10510参考答案一、选择题1、D 2、B 3、C 4、C 5、A 6、B7、B8、D9、A10、B二、填空题11、4112、2513、0.5 14、15岁(1分);52(2分)15、0.5 16、5117、0.7118、119、1320、35三、应用题21、解:所有可能的结果列表如下:11 2 1 偶数偶数奇数2 奇数奇数偶数2奇数奇数偶数由表可知,和为偶数的结果有4种,4()9P 甲胜.答:甲胜的概率是49. 10分22、解:(1)(2)P (积为奇数)16.23、(1)树状图为:(2)方法1:∵去甲超市购物摸一次奖获10元礼金券的概率是P (甲)4263,去乙超市购物摸一次奖获10元礼金券的概率是P (乙)2163,∴我选择去甲超市购物.方法2:∵两红的概率P=61,两白的概率P=61,一红一白的概率P=46=32,∴在甲商场获礼金券的平均收益是:61×5+32×10+61×5=325;在乙商场获礼金券的平均收益是:61×10+32×5+61×10=320.∴我选择到甲商场购物.说明:树状图表示为如下形式且按此求解第(2)问的,也正确.初中数学试卷金戈铁骑制作。
浙教版九年级数学上册《第二章简单事件的概率》单元评估检测试题(有答案)
浙教版九年级数学上册第二章简单事件的概率单元评估检测试题一、单选题(共10题;共30分)1.某班级中男生和女生各若干,若随机抽取1人,抽到男生的概率是,则抽到女生的概率是()A. 不确定B.C.D.2.某校甲、乙、丙、丁四名同学在运动会上参加4×100米接力比赛,其中甲跑第一棒,那么乙跑第二棒的概率为()A. B. C. D.3.某足球运动员在同一条件下进行射门,结果如下表所示:则该运动员射门一次,射进门的概率为( )A. 0.7B. 0.65C. 0.58D. 0.54.从长度分别为3、5、7、9的4条线段中任取3条作边,能组成三角形的概率为()A. B. C. D.5.从编号为1~10的10个完全相同的球中,任取一球,其号码能被3整除的概率是()A. B. C. D.6.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率为()A. B. C. D. 17.把一副普通的扑克牌中的13张黑桃洗匀后正面向下放在桌子上,从中任意抽取一张,抽出的牌左上角的标记是字母的概率为()A. B. C. D.8.100个白色乒乓球中有20个被染红,随机抽取20个球,下列结论正确的是()A. 红球一定刚好4个B. 红球不可能少于4个C. 红球可能多于4个D. 抽到的白球一定比红球多9.一个不透明的盒子里装有2个白球,2个红球,若干个黄球,这些球除了颜色外,没有任何其他区别.若从这个盒子中随机摸出一个是黄球的概率是,则盒子中黄球的个数是()A. 2B. 4C. 6D. 810.甲乙两人轮流在黑板上写下不超过的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字()时有必胜的策略.A. 10B. 9C. 8D. 6二、填空题(共10题;共30分)11.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为________(精确到0.1).12.某电视台综艺节目接到热线电话500个,现从中抽取“幸运观众”10名,小明打通了一次热线电话,他成为“幸运观众”的概率是________ .13.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第 ________题使用“求助”.14.把一个体积是64立方厘米的立方体木块的表面涂上红漆,然后锯成体积为1立方厘米的小立方体,从中任取一块,则取出的这一块至少有一面涂红漆的概率是 ________.15.(2016•淮安)一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是________.16.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为________.17.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外其余均相同.若从中随机摸出一个球,摸到黄球的概率是,则n=________.18.我们知道π约为3.14159265359,在这串数字中,任挑一个数是5的可能性为 ________.19.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________20.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是________.三、解答题(共8题;共60分)21.现有小莉,小罗,小强三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答)22.体育课上,老师为了解女学生定点投篮的情况,随机抽取8名女生进行每人4次定点投篮的测试,进球数的统计如图所示.(1)求女生进球数的平均数、中位数;(2)投球4次,进球3个以上(含3个)为优秀,全校有女生1200人,估计为“优秀”等级的女生约为多少人?23.小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.24.甲班56人,其中身高在160厘米以上的男同学10人,身高在160厘米以上的女同学3人,乙班80人,其中身高在160厘米以上的男同学20人,身高在160厘米以上的女同学8人.如果想在两个班的160厘米以上的女生中抽出一个作为旗手,在哪个班成功的机会大?为什么?25.解不等式组写出符合不等式组的整数解,并求出这些整数解中能使关于x的方程:2x+k=﹣1的解为非负数的概率.26.某批乒乓球的质量检验结果如下:(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.①求从袋中摸出一个球是黄球的概率;②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?27.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同。
(考试真题)第2章 简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)
(考试真题)第2章简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、“五一”长假期间,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动,顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:转动转盘的次数n100 150 200 500 800 1000 落在“铅笔”区域的次数m68 108 140 355 560 690落在“铅笔”区域的频率0.68 0.72 0.70 0.71 0.70 0.69下列说法不正确的是()A.当n很大时,估计指针落子在”铅笔“区域的概率大约是0.70B.假如你去转动转盘一次,获得“铅笔”概率大约是0.70C.如果转动转盘3000次,指针落在“文具盒”区域的次数大约有900次D.转动转盘20次,一定有6次获得“文具盒”2、如图,在平面直角坐标系中,点A1, A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()A. B. C. D.3、在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A. B. C. D.4、一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是( )A. B. C. D.5、一个袋子中只装有两种颜色的球,这些球的形状、质地等完全相同,其中白色球有4个,黑球有n个.在看不到球的条件下,随机地从袋子中摸出一个球,记录颜色后,放回袋中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值为()A.2B.3C.4D.66、下列事件中,必然事件是()A.掷一枚硬币,正面朝上.B.a是有理数,则.C.某运动员跳高的最好成绩是20 .1米.D.从车间刚生产的产品中任意抽取一个,是次品.7、掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数是奇数的概率为()。
【浙教版】九年级数学上册 第二章 简单事件的概率单元检测卷(含答案)
第二章简单事件的概率单元检测卷姓名:_______________班级:_________学号:_________ (总分:100分考试时间:60分钟考试难度:0.80)一.选择题(每题3分,共30分)1.下列事件中,不可能事件是()A.肥皂泡会破碎B.打开电视机,正在转播足球比赛C.在平面内,度量一个三角形各内角度数,其和为D.在只装有5个红球的袋中任意摸出1球是红球2.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1至6六个数。
连续掷两次,掷得面向上的点数之和是3的倍数的概率为()A. B. C. D.3.甲.乙两人掷两个普通的正方体骰子,规定掷出“和为7”算甲赢,掷出“和为8”算乙赢,这个游戏是否公平?()A.公平B.对甲有利C.对乙有利D.无法判断4.从n张互不相同的普通扑克牌中任意抽取一张,抽到黑桃K的概率为,则n=()A.54B.52C.10D.55.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A. B. C. D.(第5题图)(第6题图)6.袋中放有一套(五枚)北京2008年奥运会吉祥物福娃纪念币,依次取出(不放回)两枚纪念币,恰好能够组成“欢迎”的概率是()A. B. C. D.7.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示)。
小亮同学随机地在大正方形及其内部区域投针,若直角三角形的两条直角边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是()A. B. C. D.(第7题图)(第10题图)8.今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,准备从中随机抽取1200名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为()A. B. C. D.9.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A. B. C. D.10.一张圆桌旁有四个座位,A先坐在如图所示的座位上,B.C.D三人随机坐到其他三个座位上,则A与B不相邻而坐的概率是()A. B. C. D.二.填空题(每空3分,共15分)11.在一个不透明的袋中装有2个绿球,3个红球和5个黄球,它们除了颜色外都相同,从中随机摸出一个球,摸到红球的概率是.12.从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是________.13.从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数的系数,,则一次函数的图象不经过第四象限的概率是________.14.一个盒子中有个红球和个黄球,每个球除了颜色外都相同.若从盒子中摸到红球的可能性小于摸到黄球的可能性,则与的大小关系是.15.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是.三.解答题(每题11分,共55分)16.在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,转盘被平均分成16份,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色.黄色.绿色区域,那么顾客就可以分别获得50元.30元.20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券10元.(1)求每转动一次转盘所获购物券金额的平均数;(2)如果你在该商场消费125元,你会选择转转盘还是直接获得购物券?说明理由。
第2章 简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)
第2章简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、盒中有4枚黑棋和2枚白棋,这些棋除颜色外无其他差别,在看不到盒中棋子颜色的前提下,从盒中随机摸出3枚棋,下列事件是不可能事件的是()A.摸出的3枚棋中至少有1枚黑棋B.摸出的3枚棋中有2枚白棋C.摸出的3枚棋都是黑棋D.摸出的3枚棋都是白棋2、如图,转动质量均匀的转盘,当转盘停止时,指针落在白色区域的概率是()A.90B.C.D.3、一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小华在袋中放入10个除颜色外其它完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是,则袋中红球约为()个.A.4B.25C.14D.354、在一个不透明的袋子内装有2个红球、3个红球和4黑球,它们除了颜色外其余均相同,从中任意摸出一个红球的概率是 ( )A. B. C. D.5、下列说法正确的是().A.一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据 8,8,7,10,6,8,9 的众数和中位数都是8D.若甲组数据的方差s2=0.01,乙组数据的方差s 2=0.1,则乙组数据比甲组数据稳定6、下列事件是必然事件的是( )A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《今日在线》C.射击运动员射击一次,命中十环D.方程x²-x=0必有实数根7、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总数为()A.12个B.9个C.6个D.3个8、一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是()A. B. C. D.9、一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A. B. C. D.10、10名学生的身高如下(单位:cm)159,169,163,170,166,165,156,172,165,162,从中任选一名学生,其身高超过165cm的概率是()A. 0.5B.0.4C.0.2D.0.111、一个不透明的盒子中装有3个白球,5个红球和7个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A. B. C. D.12、某市大约有100万人口,随机抽查了2000人,具有大专以上学历的有120人,则在该市随便调查一个人,他具有大专以上学历的概率为()A.6%B.12%C.20%D.以上都不正确13、同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有l到6的点数,下列事件中为不可能事件的是( )A.点数之和为12B.点数之和小于3C.点数之和为13D.点数之和大于4且小于814、四张相同的卡片,每张的正面分别写着,,,,将卡片正面朝下扣在桌上,随机抽出一张,这张卡片上写的不是最简二次根式的概率是()A. B. C. D.15、在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有()A.12个B.14个C.18个D.28个二、填空题(共10题,共计30分)16、布袋中装有3个红球和n个白球,它们除颜色外其它都相同,如果从布袋里随机摸出一个球,所摸到的球恰好是红球的概率是,那么布袋中白球有________个.17、为了帮助残疾人,某地举办“即开型"福利彩票销售活动,规定每10万张为一组,其中有10名一等奖,100名二等奖,1 000名三等奖,5 000名爱心奖,小明买了10张彩票,则他中奖的概率为________.18、一个盒中装着大小、外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是.如果再往盒中放进12颗同样的白色弹珠,取得白色弹珠的概率是,则原来盒中有白色弹珠________颗.19、小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是________.20、一个不透明的袋中装有3个黑球和2个白球,这些球除颜色外都相同,从这个袋中任意摸出一个球为白球的概率是________.21、如图,A,B是4×4网格上的两个格点,在格点中任意放置点C,与点A,点B恰好围成等腰三角形的概率是是________.22、已知三角形的两边分别是2cm和4cm,现从长度分别为2cm、3cm、4cm、5cm、6cm五根小木棒中随机抽一根,抽到的木棒能作为该三角形第三边的概率是________.23、经过人民路十字路口红绿灯处的两辆汽车,可能直行,也可能左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是________.24、从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:30≤t≤35 35<t≤40 40<t≤45 45<t≤50 合计A 59 151 166 124 500B 50 50 122 278 500C 45 265 167 23 500早高峰期间,乘坐________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.25、如图,大圆半径为6,小圆半径为3,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A中”记作事件W,请估计事件W的概率P (W)的值________.三、解答题(共5题,共计25分)26、篮球课上,朱老师向学生详细地讲解传球的要领时,叫甲、乙、丙、丁四位同学配合朱老师进行传球训练,朱老师把球传给甲同学后,让四位同学相互传球,其他人观看体会,当甲同学第一个传球时,求甲同学传给下一个同学后,这个同学再传给甲同学的概率27、抛掷一枚均匀的硬币2次,请用列表或画树状图的方法抛掷的结果都是反面朝上的概率.28、某校对初三学生进行物理、化学实验操作能力测试.物理、化学各有3个不同的操作实验题目,物理实验分别用①、②、③表示,化学实验分别用a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.王刚同学对物理的①、②号实验和化学的b、c号实验准备得较好.请用画树状图(或列表)的方法,求王刚同学同时抽到两科都准备得较好的实验题目的概率.29、某工厂生产的一批零件,出现次品的概率为5%,若生产这种零件10000个,大约出现次品多少个?30、用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起就配成了紫色,其中A盘中红色和蓝色均为半圆,B盘中红色、蓝色、绿色所在扇形圆心角均为120度).小亮和小刚同时用力转动两个转盘,当转盘停下时,两枚指针停留的区域颜色刚好配成紫色时小亮获胜,否则小刚获胜.判断这个游戏对双方是否公平,并借助树状图或列表说明理由.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、C5、C6、D7、C8、A9、C10、B11、B12、A14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
浙教新版九年级上《第2章简单事件的概率》单元测试(有答案)
浙教新版九年级数学上册《第2章简单事件的概率》单元测试考试范围:150分;考试时间:100分钟一.选择题(共10小题,满分40分)1.(4分)下列说法中,完全正确是()A.从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性较大B.抛掷一枚均匀的硬币,正面一定朝上C.三条任意长的线段都可以组成一个三角形D.打开电视机,正在转播足球比赛2.(4分)下列事件中是必然发生的事件是()A.任意画一个三角形,其内角和是180°B.某种彩票中奖率是1%,则买这种彩票100张一定会中奖C.掷一枚硬币,正面朝上D.投掷一枚质地均匀的骰子,掷得的点数是奇数3.(4分)张老师上班途中要经过3个十字路口,每个十字路口遇到红、绿灯的机会都相同,张老师希望上班经过每个路口都是绿灯,但实际上这样的机会是()A.B.C.D.4.(4分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.5.(4分)在一个不透明的袋子里共有2个黄球和3个白球,每个球除颜色外都相同,小亮从袋子中任意摸出一个球,结果是白球,则下面关于小亮从袋中摸出白球的概率和频率的说明正确的是()A.小亮从袋中任意摸出一个球,摸出白球的概率是1B.小亮从袋中任意摸出一个球,摸出白球的概率是0C.在这次实验中,小亮摸出白球的频率是1D.由这次实验的频率去估计小亮从袋中任意摸出一个球,摸出白球的概率是1 6.(4分)一个不透明的袋子中有1个红球、2个黄球,这些球除颜色外无其他差别,从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率()A.B.C.D.7.(4分)四张质地、大小、背面完全相同的卡片上,正面分别画有下列图案,现把它们正面朝下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.18.(4分)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.19.(4分)在某校运动会4×400m接力赛中,甲乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲乙两名同学恰好抽中相邻赛道的概率为()A.B.C.D.10.(4分)一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.二.填空题(共6小题,满分30分)11.(5分)如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于.12.(5分)某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有千克种子能发芽.13.(5分)一枚质地均匀的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是.14.(5分)有10张卡片,分别写有0~9共10个数字,将背面朝上洗匀后,任意抽出一张,那么P(抽到的数是偶数)=,P(抽到的数字是6)=,P(抽到的数字是3的倍数)=.15.(5分)将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)开始向左数,黑球的个数不小于白球的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为.16.(5分)2017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为.三.解答题(共7小题,满分80分)17.(10分)某班级准备召开主题班会,现从由3名男生和2名女生所组成的班委中,随机选取产生主持人.(1)若选取一人担任主持人,则恰好是女生担任主持人的概率为;(2)若选取两人担任主持人,求两名主持人恰好为一男一女的概率.(请用“画树状图”或“列表”等方法写出求解过程)18.(10分)某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)19.(10分)在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.20.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是0.;(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.21.(12分)在一个不透明的布袋里有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).(1)画树状图或列表,写出点Q所有可能的坐标;(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.22.(14分)有三张正面分别标有数字0,1,﹣3的卡片,它们除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后在从中随机抽出一张记下数字.(1)请用列表或画树状图的方法,表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在抛物线y=x2+2x﹣3上的概率.23.(12分)盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:(精(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由参考答案一.选择题1.A.2.A.3.C.4.C.5.C.6.D.7.B.8.B.9.D.10.C.二.填空题11..12.8.8.13..14..15..16..三.解答题17.解:(1)若选取一人担任主持人,则恰好是女生担任主持人的概率为;故答案为;(2)画出树形图为:共有20种等可能的结果数,其中恰好为一男一女的结果数为12,所以P(主持人恰好为一男一女)==.18.解:可能出现的所有结果列表如下:共有4种可能的结果,且每种的可能性相同,其中恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的结果有1种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为.19.解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率==;(2)设放入袋中的黑球的个数为x,根据题意得=,解得x=2,所以放入袋中的黑球的个数为2.20.解:(1)利用图表得出:实验次数越大越接近实际概率,所以出现“和为8”的概率是.故答案为;(2)当x=7时,画树状图如下:则两个小球上数字之和为8的概率是:=≠,所以x的值不可以取7.21.解:(1)画树状图得:则点Q所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),2,4),(3,1),(3,2),(3,4)(4,1),(4,2),(4,3)共12种;(2)这个游戏不公平.理由:∵x、y满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x、y满足xy<6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况.∴P(小明胜)==,P(小红胜)==,∴这个游戏不公平.22.解:(1)画树状图如下:(2)在所有9种等可能结果中,落在抛物线y=x2+2x﹣3上的有(0,﹣3)、(1,﹣2)、(﹣3,0)这3种结果,∴点(x,y)落在抛物线y=x2+2x﹣3上的概率为=.23.解:(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25,故答案为:0.25;(2)由(1)可知,黑棋的个数为4×0.25=1,则白棋子的个数为3,画树状图如下:由表可知,所有等可能结果共有12种情况,其中这两枚棋颜色不同的有6种结果,所以这两枚棋颜色不同的概率为.。
【期末复习】九年级数学上册《第2章简单事件的概率》单元检测试卷有答案
期末专题复习:浙教版九年级数学上册第二章简单事件的概率单元检测试卷一、单选题(共10题;共30分)1.有一个不透明的盒子中装有个除颜色外完全相同的球,这个球中只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则的值大约是()A.12B.15C.18D.212.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A. 频率就是概率B. 频率与试验次数无关C. 概率是随机的,与频率无关D. 随着试验次数的增加,频率一般会越来越接近概率3.小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的频率约是( )A. 38%B. 60%C. 63%D. 无法确定4.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A. B. C. D.5.下列说法中正确的是()A. 一个事件发生的机会是99.99%,所以我们说这个事件必然会发生B. 抛一枚硬币,出现正面朝上的机会是,所以连续抛2次,则必定有一次正面朝上C. 甲、乙两人掷一枚正六面体骰子做游戏,规则是:出现1点时甲赢,出现2点时乙赢,出现其它点数时大家不分输赢,这个游戏对两人来说是公平的D. 在牌面是1~9的九张牌中随机地抽出一张,抽到牌面是奇数和偶数的机会是一样的6.在1,2,3三个数中任取两个,组成一个两位数,则组成的两位数是偶数的概率为()A. B. C. D.7.投掷一枚普通的六面体骰子,有下列事件:①掷得的点数是6;②掷得的点数是奇数;③掷得的点数不大于4;④掷得的点数不小于2.这些事件发生的可能性由大到小排列正确的是( )A. ①②③④B. ④③②①C. ③④②①D. ②③①④8.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为()A. B. C. D.9.“上海地区明天降水概率是15%”,下列说法中,正确的是().A. 上海地区明天降水的可能性较小B. 上海地区明天将有15%的时间降水C. 上海地区明天将有15%的地区降水D. 上海地区明天肯定不降水10.下列说法正确的是().①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A. ①②B. ②③C. ③④D. ①③二、填空题(共10题;共30分)11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是________.12.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是________ .13.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为________(精确到0.1).14.一个不透明的袋子里装有3个白球、1个红球,这些球除了颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是________.15.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为________16.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是________.17.—个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是________18.同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是________。
第2章 简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)
第2章简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、有一个质地均匀且可以转动的转盘,盘面被分成6个全等的扇形区域,在转盘的适当地方涂上灰色,未涂色部分为白色,用力转动转盘,为了使转盘停止时,指针指向灰色的可能性的大小是,那么下列涂色方案正确的是()A. B. C. D.2、某学校从三楼到四楼的楼梯共9级,上楼可以一步上一级,也可以一步上两级,若规定从三楼到四楼用7步走完,则方法有()A.21B.28C.35D.363、从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是A. B. C. D.4、5月19日为中国旅游日,衢州推出“读万卷书,行万里路,游衢州景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗家庙、烂柯山、龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、开化根博园中随机选择一个地点游玩,则王先生恰好上午选中孔氏南宗家庙,下午选中江郎山这两个地的概率是()A. B. C. D.5、下列说法正确的是( )A.为了检测一批电池使用时间的长短,应该采用全面调查的方法;B.方差反映了一组数据的波动大小,方差越大,波动越大;C.打开电视一定有新闻节目; D.为了解某校学生的身高情况,从八年级学生中随机抽取50名学生的身高情况作为总体的一个样本.6、甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚质地均匀的正六面体的骰子,向上的一面点数是1点的概率B.抛一枚质地均匀的硬币,出现正面朝上的概率C.一副去掉大小王的普通扑g牌洗匀后,从中任抽一张牌的花色是红桃的概率D.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率7、如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是()A. B. C. D.8、一个布袋中有4个红球与8个白球,除颜色外完全相同,那么从布袋中随机摸一个球是白球的概率是()A. B. C. D.9、下面事件是随机事件的有()①连续两次掷一枚硬币,两次都出现正面朝上②异性电荷,相互吸引③在标准大气压下,水在1℃时结冰A.②B.③C.①D.②③10、要从小强、小红和小华三人中随机选两人作为旗手,则小强和小红同时入选的概率是()A. B. C. D.11、若一组数据为:2,3,1,3,3.则下列说法错误的是()A.这组数据的众数是3B.事件“在这组数据中随机抽取1个数,抽到的数是“是不可能事件C.这组数据的中位数是3D.这组数据的平均数是312、在“生活处处有创新”这句话任选一个汉字,这个字是“处”的概率为()A. B. C. D.13、已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是()A. B.C.D.14、在4 张相同的卡片上分别写有数1、3、4、6.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率()A. B. C. D.115、在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到黄球的概率为()A. B. C. D.1二、填空题(共10题,共计30分)16、在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有3个红球,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.25左右,则白球的个数约为________.17、同时抛掷两枚质地均匀的硬币,出现“一正一反”的概率是________.18、小明和小兵进行投靶游戏,如图所示,靶中两个同心圆的半径与的比为3:4,随机投一次,苦投在阴影部分,小明获胜;投在环形部分,小兵获胜;小明获胜的概率记为,小兵获胜的概率记为,则________ .(用“”“”“”填空)19、在-3、-2、-1、1、2五个数中,随机取一个数作为二次函数y=ax2+x-2中a的值,使该二次函数图象开口向上的概率是________。
第2章 简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)
第2章简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、从标有-5a2b , 2a2b2 , ab2 , -5ab的四张同样大小的卡片中,任意抽出两张,“抽出的两张是同类项”这一事件是()A.不可能事件B.不确定事件C.必然事件D.确定事件2、同时抛掷A,B两个均匀的小正方体(每个面上分别标有数字1、2、3、4、5、6),设两个正方体朝上的数字分别是x,y,并以此确定点P(x,y),那么点P落在抛物线y=﹣x2+3x上的概率是()A. B. C. D.3、一个布袋中有4个红球与8个白球,除颜色外完全相同,那么从布袋中随机摸一个球是白球的概率是()A. B. C. D.4、下列说法正确的是( )A.“清明时节雨纷纷”是必然事件B.为了解某灯管的使用寿命,可以采用普查的方式进行 C.两组身高数据的方差分别是S甲2=0.01,S乙2=0.02,那么乙组的身高比较整齐 D.一组数据3,5,4,5,6,7的众数、中位数和平均数都是55、现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A. B. C. D.6、甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概7、在一个不透明的口袋里装有2个白球、3个黑球和3个红球,它们除了颜色外其余都相同.现随机从袋里摸出1个球,则摸出白球的概率是()A. B. C. D.8、如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是( )A. B. C. D.9、下列说法正确的是()①的值大于;②正六边形的内角和是720°,它的边长等于半径;③从一副扑g 牌中随机抽取一张,它是黑桃的概率是;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2甲=1.3,s2乙=1.1,则乙的射击成绩比甲稳定.A.①②③④B.①②④C.①④D.②③10、下列说法正确的是()A.扔100次硬币,都是国徽面向上,是不可能事件B.小芳在扔图钉游戏中,扔10次,有6次都是钉尖朝下,所以钉尖朝下的可能性大C.王明同学一直是级部第一名,他能考上重点高中是必然事件D.投掷一枚均匀的骰子,投出的点数是10,是一个确定事件11、在一个不透明的布袋里装有4个小球,其中2个红球,1个白球,1个黄球,它们除颜色外其它完全相同.那么一次性摸出两个小球恰好都是红球的概率是()A. B. C. D.12、小明用一枚均匀的硬币进行试验,连续抛三次,结果都是正面朝上的概率是()A. B. C. D.13、从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A. B. C. D.14、下列说法正确的是()A.“经过有交通信号的路口,遇到红灯,”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大数据的波动越大,方差越小数据的波动越小15、掷一枚硬币2次,正面都朝上的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、从﹣1、﹣2、3三个数字中任取两个不同的数作为点的坐标,该点在第三象限的概率是________.17、把一副普通扑g牌中的13张红桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的牌上的数字是3的倍数的概率为________.18、一个不透明的袋子中装有除颜色外完全相同的球共10个,从中随机摸出一个球,若摸到红色球的概率为,则袋子中红色球的个数是________.19、一书架有上下两层,其中上层有2本语文1本数学,下层有2本语文2本数学,现从上下层随机各取1本,则抽到的2本都是数学书的概率为________.20、盒子里有三张形状、大小等完全相同,且分别写有整式x+1,x+2,3的卡片,现从中随机抽取两张,把卡片上的整式分别作为分子和分母,则能组成分式的概率是________.21、下列事件:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球;②随意调查1位青年,他接受过九年制义务教育;③花2元买一张体育彩票,喜中500万大奖;④抛掷1个小石块,石块会下落.估计这些事件的可能性大小,并将它们的序号按从小到大排列:________.22、盒中装有红球、白球共11个,每个球除颜色外都相同,如果摸出任意一个球,摸到红球的可能性较大,则红球至少有________个.23、在一个不透明的盒子中装有8个白球和若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出1个球,它恰好是白球的概率是,则该盒中黄球的个数为________.24、抛掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率为________25、对某名牌衬衫抽检结果如下表:抽检件数10 20 100 150 200 300不合格件数0 1 3 4 6 9如果销售1000件该名牌衬衫,至少要准备________件合格品,供顾客更换三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、一天,小李和小王玩一个游戏,游戏规则是:将分别写有数字1,2,3,4,5的五张卡片先放在一个盒子里搅匀,然后随机抽取两张.把这两张卡片,上的数字相加,如果其和为奇数,则小李获胜;如果其和为偶数,则小王获胜.你认为这个游戏公平吗?如果不公平,谁获胜的可能性大些?请说明理由.28、图2是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图1中的箭头方向走),红方的马现在走一步能吃到黑方棋子的概率是多少?29、一个口袋中有15个黑球和若干个白球,从口袋中随机摸出一球,记下其颜色,再次放回摇匀,重复上述过程,共摸了100次,其中70次摸到白球,估计袋中共有多少个球?30、(探索题)世界杯决赛分成8个小组,每小组4个队,小组进行单循环(每个队都与该小组的其他队比赛一场)比赛,选出2个队进入16强,胜一场得3分,平一场得1分,负一场得0分.(1)求每小组共比赛多少场?(2)在小组比赛中,现有一队得到6分,该队出线是一个确定事件,还是不确定事件?参考答案一、单选题(共15题,共计45分)2、A3、C4、D5、A6、C7、D8、A9、B10、D11、C12、D13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
浙教版初中数学九年级上册第二单元《简单事件的概率》单元测试卷(较易)(含答案解析)
浙教版初中数学九年级上册第二单元《简单事件的概率》单元测试卷考试范围:第二章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.在有25名男生和20名女生的班级中,随机抽取一名学生做代表,则下列说法正确的是( )A. 男、女生做代表的可能性一样大B. 男生做代表的可能性大C. 女生做代表的可能性大D. 男、女生做代表的可能性大小不能确定2.如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是( )A. 1号B. 2号C. 3号D. 4号3.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算x−5,则其结果为非负数的概率是( )A. 16B. 14C. 13D. 124.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A. 12B. 13C. 23D. 165.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A. 16B. 14C. 13D. 126.在同一副扑克牌中抽取2张“黑桃”,5张“梅花”,3张“方块”,将这10张牌背面朝上洗匀,从中任意抽取1张,是“方块”的概率为( )A. 45B. 12C. 310D. 157.甲、乙两名同学在一次用频率估计概率的实验中统计了某一结果出现的频率,绘制统计图如图所示.符合这一结果的实验可能是( )A. 从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率.B. 掷一枚正六面体的骰子,出现1点的概率.C. 抛一枚硬币,出现正面的概率.D. 任意写一个整数,它能被2整除的概率.8.在抛掷一枚质地均匀的硬币的实验中,第100次抛掷时,反面朝上的概率是( )A. 1100B. 12C. 23D. 不确定9.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A. 16B. 20C. 24D. 2810.在联欢会上,有A、B、C三名同学玩抢凳子游戏,要求他们站在一个三角形的三个顶点位置上,在他们中间放一个方凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的( )A. 三边中线的交点B. 三边上高的交点C. 三边中垂线的交点D. 三条角平分线的交点11.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是( )A. 公平的B. 不公平的C. 先摸者赢的可能性大D. 后摸者赢的可能性大12.小晶和小红玩掷骰子游戏,每人将一个各面分别标有数字1、2、3、4、5、6的正方体骰子掷一次,把两人掷得的点数相加,并约定:若点数之和等于6,则小晶赢;若点数之和等于7,则小红赢;若点数之和是其他数,则两人不分胜负.那么( )A. 小晶赢的机会大B. 小红赢的机会大C. 小晶、小红赢的机会一样大D. 不能确定第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.排队时,3个人站成一横排,其中小亮“站在中间”的可能性______小亮“站在两边”的可能性(填“大于”、“小于”或“等于”).14.在一个不透明的盒子中装有10个大小相同的乒乓球,做了1000次摸球试验,摸到红球的频数是401,估计盒子中的红球的个数是____.15.甲、乙二人玩掷骰子游戏,规定同时掷出两枚骰子,点数和为奇数,甲得1分,点数和为偶数,乙得1分,谁先积满20分为胜,你认为这个游戏_____(填“公平”或“不公平”).16.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上和一个反面向上,则小亮赢;若出现一个正面向上和两个反面向上,则小文赢.有下列说法:①小强赢的概率最小;②小文和;④这是一个公平的游戏.其中,正确的是______(小亮赢的概率相等;③小文赢的概率是38填序号).三、解答题(本大题共9小题,共72.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页 共8页
浙江省金华十五中2019-2019学年度第一学期浙教版九年级数学上
第二章 简单事件的概率 单元检测试题
考试总分: 120 分 考试时间: 120 分钟
学校:__________ 班级:__________ 姓名:__________ 考号:__________
一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 ) 1.下列事件中出现机会最大的是( ) A.必然事件 B.不可能事件 C.随机事件 D.不能确定 2.下列说法正确的是( ) A.“明天降雨的概率是”表示明天有
的时间降雨
B.“一批铅笔的废品率为”表示如果从中抽出一只铅笔肯定不是废品
C.“彩票中奖的概率是”表示买
张彩票一定有张会中奖
D.在同一年出生的名学生中,至少有两人的生日是同一天
3.下列事件中,概率的事件是( )
A.某地
月
日刮西北风 B.当是有理数时,
C.手电筒的电池没电,灯泡发亮
D.一个电影院某天的上座率超过
4.同时抛掷两枚元的硬币,菊花图案都朝上的概率是( )
A.
B.
C.
D.
5.掷一次骰子(每面分别刻有点),向上一面的点数是质数的概率等于
( )
A.
B.
C.
D.
6.在相同条件下重复试验,若事件发生的概率是,则下列说法正确的是( )
A.说明在相同条件下做次试验,事件必发生次
B.说明在相同条件下做多次这种试验,事件发生的频率必是
C.说明在相同条件下做两个次这种试验,事件平均发生
次
D.说明在相同条件下做
次这种试验,事件可能发生
次
7.一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有个,黑色球有个.在看不到球的条件下,随机地从袋子中摸出
一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在附近,则的值为()
A. B. C. D.
8.小鸡孵化场孵化出只小鸡,在只上做记号,再放入鸡群中让其充分跑散,再任意抓出只,其中做有记号的大约是()
A.只
B.只
C.只
D.只
9.如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个
区域内分别填上数字“”“”“”“”.甲、乙两学生玩转盘游戏,规则如下:固定
指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜.那么在该游戏中乙获胜的概率是()
A. B. C. D.
10.某口袋中有个球,其中白球个,绿球个,其余为黑球.甲从袋中任意
摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜.则当时,游戏对甲乙双方公平.
A. B. C. D.
二、填空题(共 10 小题,每小题 3 分,共 30 分)
11.袋子里放入个白球,个黄球和个红球,这些球除颜色不同外,其他均
一样,若从袋子里摸出一球,则摸到________颜色球的可能性最大,摸到________颜色的可能性最小.
12.袋子中有个红球,个白球,个绿球,则从袋子中任意摸出一个球是白球
的可能性是________.
13.从,,,…,这个自然数中任取一个数,则它是的倍数的概率是
________.
14.有五张质地、大小、反面完全相同的不透明卡片,正面写着,,,,
,现把它们正面向下,随机摆放在桌面上,从中任意抽一张,则抽出的数字是偶数的概率是________.
15.
某班有一个同学想给老师打电话,可他记不得其中的两个号码了,即
..,他随意拨,恰好拨通老师电话的概率为________.
16.购买体育彩票,特等奖可获得万元巨奖,其获奖规则如下:你如果购买的彩票号码与开出的号码完全相同,就可以获得该奖,开奖的号码通过如下方法获得:将号码(共计组)放入七台摇号机中,并编上序号①⑦,规
定第①台机摇出的号码为首位,第②台机摇出的号码为第二位…,第⑦台摇出的号码为第七位,请你分析一下,购买一张体育彩票,中特等奖的概率是
________.
17.在一个暗箱里放有个除颜色外完全相同的球,这个球中红球只有个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在.那么估计大约有________个.
18.有一道四选一的选择题,某同学完全靠猜测获得结果,则这个同学答对的概率是________.
19.甲、乙两同学手中各有分别标注,,三个数字的纸牌,甲制定了游戏规
则:两人同时各出一张牌,当两纸牌上的数字之和为偶数时甲赢,奇数时乙赢.你认为此规则公平吗?并说明理由.________.
20.如图所示,有三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形、将这三张纸片放在一个盒子里摇匀,随机地同时抽取两张纸片,若可以拼成一个圆形(即取出的两张纸片都画有半圆形)则甲方赢;若可以拼成一个蘑菇形(取出的一张纸片画有半圆,一张纸片画有正方形)则乙方赢,问甲方赢的概率是________.
三、解答题(共 6 小题,每小题 10 分,共 60 分)
21.根据你的经验,下列事件发生的可能性哪个大哪个小?根据你的想法,把这些事件的序号按发生的可能性从小到大的顺序排列________.
从装有个红球和个黄球的袋子中摸出的个球恰好是红球;
一副去掉大、小王的扑克牌中,随意抽取张,抽到的牌是红桃;
第3页共8页
水中捞月;
太阳从东方升起;
随手翻一下日历,翻到的刚好是周二.
22.某超市为了促销一批新品牌的商品,设立了一个不透明的纸箱,纸箱里装有一个红球,个白球和个黄球,并规定:顾客每购买元的新品牌商品,就能获得一次摸球的机会,如果摸到红球,顾客可以获得一把雨伞,摸到白球,可以获得一个文具盒,摸到黄球,可以获得一支铅笔,甲顾客购此新商品
元,她获得奖品的概率是多少?他得到一把雨伞,一个文具盒,一支铅笔的概率分别是多少?
23.一个不诱明的集中装有红、黄、白三种颜色的球共个,它们除颜色外都相同,其中黄球个数比白球个数的倍少个.已知从袋中摸出一个球是红球的概率是.
求袋中红球的个数;
求从袋中摸出一个球是白球的概率.
24.小明做了一个转盘,转盘上的指针一头粗一头细,小明将转盘挂在垂直于地面的墙壁上.
若将指针固定,转动转盘,则指针细的一头指向红色的概率是多少?
若将转盘固定(如图,红色朝上),转动指针,那么指针细的一头指向红色
的概率和第一个问题中的概率一样吗?为什么?
25.有两个可以自由转动的均匀转盘,都被分成了等份,并在每份内均标有数
字,如图所示.规则如下:分别转动转盘,两个转盘停止后,将两个指针所指份内的数字相乘,(若指针停止在等分线上,那么重转一次,直到指针指向某份为止).
用列表或画树状图法分别求出数字之积为的倍数和数字之积为的倍数的概
率;
小明和小亮想用这两个转盘做游戏,他们规定:数字之积为的倍数时,小
明得分;数字之积为的倍数时,小亮得分.这个游戏对双方公平吗?若认为公平请说明理由;若认为不公平,试修改得分规定,使游戏对双方公平.
26.小亮看到路边上有人设摊玩“有奖掷币”游戏,规则是:交元钱可以玩一次掷硬币游戏,每次同时掷两枚硬币,如果出现两枚硬币正面朝上,奖金元;如
果是其它情况,则没有奖金(每枚硬币落地只有正面朝上和反面朝上两种情况).小亮拿不定主意究竟是玩还是不玩,请同学们帮帮忙!
小亮看到路边上有人设摊玩“有奖掷币”游戏,规则是:交元钱可以玩一次掷硬
币游戏,每次同时掷两枚硬币,如果出现两枚硬币正面朝上,奖金元;如果是
其它情况,则没有奖金(每枚硬币落地只有正面朝上和反面朝上两种情况).小亮拿不定主意究竟是玩还是不玩,请同学们帮帮忙!
求出中奖的概率;
如果有人,每人玩一次这种游戏,大约有________人中奖,奖金共约是
第5页共8页
________元,设摊者约获利________元;
通过以上“有奖”游戏,你从中可得到什么启示?
答案
1.A
2.D
3.C
4.C
5.B
6.D
7.B
8.D
9.A
10.B
11.白红
12.
13.
14.
15.
16.
17.
18.
19.不公平.因为出现偶数的概率为,而出现奇数的概率为
20.
21..
22.解:无论摸到什么球,都有相应的奖励;即中奖是必然事件,故获得奖品的概率为;
他得到一把雨伞,摸到红球,其概率为,他得到一个文具盒,即
摸到白球,其概率为
他得到一支铅笔即摸到黄球的概率为
.
23.解:∵
一个不诱明的集中装有红、黄、白三种颜色的球共个,从袋中摸出一个球是红球的概率是.
∴袋中红球的个数为:(个);设白球有个,则黄球有个,
根据题意得:,
解得:,
∴从袋中摸出一个球是白球的概率为:.
24.解:若将指针固定,转动转盘,则指针细的一头指向红色的概率是;
第7页共8页
若将转盘固定转动指针,那么指针细的一头指向红色的概率是, 因为指针一头细一头粗,受地心吸引力的影响,细的一头永远指向红色. 25.解:
每次游戏可能出现的所有结果列表如下:
转盘转盘
表格中共有种等可能的结果,
则数字之积为的倍数的有五种,
其概率为;数字之积为的倍数的有三种,
其概率为.这个游戏对双方不公平.
∵小明平均每次得分为(分),
小亮平均每次得分为(分),
∵,∴游戏对双方不公平.修改得分规定为:
若数字之积为的倍数时,小明得分; 若数字之积为的倍数时,小亮得分即可. 26.。