2014-2015年湖北省荆州市公安三中高一(上)期中数学试卷及参考答案(理科)
湖北省荆州市高三上学期期中数学试卷(理科)
湖北省荆州市高三上学期期中数学试卷(理科)姓名:________班级:________成绩:________一、 选择题 (共 10 题;共 20 分)1. (2 分) 角 α 的终边经过两点 P(3a,4a),Q(a+1,2a)(a≠0),则角 α 的正弦值等于( )A.B.C.D.2. (2 分) 已知全集 U={小于 10 的正整数},集合 M={3,4,5},P={1,3,6,9},则集合 A. B. C. D.=( )3. (2 分) 已知等差数列 满足 A.8 B.9 C . 10 D . 11, 则 n 的值为 ( )4. (2 分) (2016 高一下·益阳期中) 若 A.0,则 cos4x﹣sin4x 的值为( )第1页共9页B.C.D. 5. (2 分) (2017·揭阳模拟) 已知函数 f(x)=|sinx|(x∈[﹣π,π]),g(x)=x﹣2sinx(x∈[﹣π, π]),设方程 f(f(x))=0,f(g(x))=0,g(g(x))=0 的实根的个数分别为 m,n,t,则 m+n+t=( ) A.9 B . 13 C . 17 D . 216. (2 分) 已知函数 取值范围是( )A. B.满足对任意,都有C. D. 7. (2 分) (2019·中山模拟) 下列有关命题的说法中错误的是( )成立,则 的A.若为真命题,则中至少有一个为真命题.B . 命题:“若是幂函数,则的图象不经过第四象限”的否命题是假命题.第2页共9页C . 命题“,有且”的否定形式是“,有且”.D . 若直线和平面 ,满足.则“” 是“”的充分不必要条件.8. (2 分) 已知向量 、 不共线,A . k=1 且 与 同向B . k=1 且 与 反向C . k=﹣1 且 与 同向D . k=﹣1 且 与 反向9. (2 分) (2020 高一下·陕西月考) 在平行四边形,,若,,则,如果,那么( )中,点分别在边()上,且满足A. B.0C. D.710. (2 分) (2016 高二上·商丘期中) 若关于 x 的不等式 的取值范围是( )A . [﹣10,10]对任意的正实数 x 恒成立,则 aB.C.D.第3页共9页二、 填空题 (共 5 题;共 5 分)11. (1 分) 若等边△ABC 的边长为 2 , 平面内一点 M 满足 = +,则=________12. (1 分) 计算:=________.13. (1 分) (2016 高一上·浦东期中) 不等式 x2﹣2mx+1≥0 对一切实数 x 都成立,则实数 m 的取值范围是 ________.14. (1 分) (2018·南阳模拟) 某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润如下表 所示:体积(升/件) 甲 乙重量(公斤/件)利润(元/件)在一次运输中,货物总体积不超过 最大利润为________元.升,总重量不超过公斤,那么在合理的安排下,一次运输获得的15.(1 分)已知数列{an}的前 n 项和为 Sn ,且 a1=1,Sn=n2an(n∈N*),可归纳猜想出 Sn 的表达式________三、 解答题 (共 6 题;共 45 分)16. ( 5 分 ) (2017 高 二 上 · 阜 宁 月 考 ) 已 知 命 题 . 若“p 且 q”为真命题,求实数 m 的取值范围.;命题17. (10 分) (2019 高一上·宾县月考) 已知函数.第4页共9页(1) 用五点法画出它在一个周期内的闭区间上的图象;(2) 指出的周期、振幅、初相、对称轴、对称中心.18. (5 分) 已知函数 f(x)=lg(3+x)+lg(3﹣x). (1)求函数 f(x)的定义域; (2)判断函数 f(x)的奇偶性. 19. (10 分) (2016 高一下·奉新期末) 已知数列{an}的前 n 项和为 Sn , 且 Sn=n﹣5an﹣85,n∈N+ . (1) 求 an . (2) 求数列{Sn}的通项公式,并求出 n 为何值时,Sn 取得最小值?并说明理由.(参考数据:lg 2≈0.3,lg 3≈0.48). 20. (5 分) (2015 高二下·会宁期中) 某养鸡场是一面靠墙,三面用铁丝网围成的矩形场地,如果铁丝网长 40m,那么围成的场地面积最大为多少?21. (10 分) (2019 高三上·牡丹江月考) 已知函数在极值.(1) 求 的值与函数的单调区间;(2) 若对,不等式恒成立,求 的取值范围.与时都取得第5页共9页一、 选择题 (共 10 题;共 20 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、二、 填空题 (共 5 题;共 5 分)11-1、 12-1、 13-1、 14-1、 15-1、参考答案第6页共9页三、 解答题 (共 6 题;共 45 分)16-1、17-1、17-2、第7页共9页18-1、 19-1、19-2、第8页共9页20-1、21-1、21-2、第9页共9页。
湖北省部分重点中学联考2014-2015学年高一上学期期中数学试卷
2014-2015学年湖北省部分重点中学联考高一(上)期中数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={0,1,2,4,6,8,10},集合A={2,4,6},B={1},则∁U A∪B等于()A.{0,1,8,10} B.{1,2,4,6} C.{0,8,10} D.Φ2.(5分)函数y=的定义域为()A.(﹣∞,)B.(﹣∞,1]C.(,1]D.(,1)3.(5分)已知f(x)=2x+3,g(x+2)=f(x),则g(x)等于()A.2x+1 B.2x﹣1 C.2x﹣3 D.2x+74.(5分)已知A={y|y=x2﹣2};B={ y|y=﹣x2+2},则A∩B=()A.{(﹣,0),(,0)} B.[﹣,]C.[﹣2,2]D. {﹣,}5.(5分)方程x3﹣x﹣3=0的实数解落在的区间是()A.[1,2]B.[0,1]C.[﹣1,0]D.[2,3]6.(5分)设f(x)是奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,则x•f(x)<0的解集是()A.{x|﹣3<x<0或x>3} B.{x|x<﹣3或0<x<3}C.{x|x<﹣3或x>3} D.{x|﹣3<x<0或0<x<3}7.(5分)对于0<a<1,给出下列四个不等式:①②③④.其中成立的是()A.①③B.①④C.②③D.②④8.(5分)已知f(x)=ax3+bx﹣4其中a,b为常数,若f(﹣2)=7,则f(2)的值等于()A.15 B.﹣7 C.14 D.﹣159.(5分)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)10.(5分)设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g (x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m 的取值范围为()A.(﹣,﹣2]B.[﹣1,0]C.(﹣∞,﹣2]D.(﹣,+∞)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知f(x)=x2+2x+4(x∈[﹣2,2])则f(x)的值域为.12.(5分)已知f(x﹣1)的定义域为[﹣3,3],则f(x)定义域为.13.(5分)已知a=2﹣3;b=()﹣2;c=log20.5.则a,b,c的大小关系是(从大到小排列).14.(5分)函数y=log(x2﹣2mx+3)在(﹣∞,1)上为增函数,则实数m的取值范围是.15.(5分)已知函数f(x)=是(﹣∞,+∞)上的减函数,则a的取值范围是.三、解答题:本大题共6个小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(12分)计算:(1)已知全集为R,集合A={x|﹣2≤x≤5},B={x|1≤x≤6},求∁U A∩∁U B;(2)﹣﹣lg0.01+lne3.17.(12分)已知f(x)是R上的奇函数,且当x>0时,f(x)=x2﹣x﹣1;(1)求f(x)的解析式;(2)作出函数f(x)的图象(不用列表),并指出它的增区间.18.(12分)已知函数f(x)=ln(ax2+2x+1),g(x)=(x2﹣4x﹣5).(1)若f(x)的定义域为R,求实数a的取值范围.(2)若f(x)的值域为R,则实数a的取值范围.(3)求函数g(x)的递减区间.19.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价﹣成本)20.(13分)已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.21.(14分)函数f(x)对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时f(x)<0恒成立.(1)证明函数f(x)的奇偶性;(2)若f(1)=﹣2,求函数f(x)在[﹣2,2]上的最大值;(3)解关于x的不等式f(﹣2x2)﹣f(x)>f(4x)﹣f(﹣2).2014-2015学年湖北省部分重点中学联考高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={0,1,2,4,6,8,10},集合A={2,4,6},B={1},则∁U A∪B等于()A.{0,1,8,10} B.{1,2,4,6} C.{0,8,10} D.Φ考点:交、并、补集的混合运算.专题:集合.分析:由已知中全集U={0,1,2,4,6,8,10},集合A={2,4,6},B={1},进而结合集合交集,并集,补集的定义,代入运算后,可得答案.解答:解:∵全集U={0,1,2,4,6,8,10},集合A={2,4,6},∴∁U A={0,1,8,10},又∵集合B={1},∴∁U A∪B={0,1,8,10},故选:A点评:本题考查的知识点是集合的交集,并集,补集及其运算,难度不大,属于基础题.2.(5分)函数y=的定义域为()A.(﹣∞,)B.(﹣∞,1]C.(,1]D.(,1)考点:对数函数的定义域;函数的定义域及其求法.专题:计算题.分析:直接根据真数大于0以及根号内大于等于0列出关于x的不等式组,解之即可得到答案.解答:解:由题得:⇒⇒⇒(,1].故选:C.点评:本题主要考查函数的定义域及其求法.当函数是由解析式给出时,其定义域是使解析式有意义的自变量的取值集合.3.(5分)已知f(x)=2x+3,g(x+2)=f(x),则g(x)等于()A.2x+1 B.2x﹣1 C.2x﹣3 D.2x+7考点:函数解析式的求解及常用方法.专题:计算题.分析:先根据f(x)的解析式求出g(x+2)的解析式,再用x代替g(x+2)中的x+2,即可得到g(x)的解析式.解答:解:∵f(x)=2x+3,g(x+2)=f(x),∴g(x+2)=2x+3=2(x+2)﹣1,∴g(x)=2x+3=2x﹣1故选B点评:本题主要考查了由f(x)与一次函数的复合函数的解析式求f(x)的解析式,关键是在g(x+2)中凑出x+2,再用x代替x+2即可.4.(5分)已知A={y|y=x2﹣2};B={ y|y=﹣x2+2},则A∩B=()A.{(﹣,0),(,0)} B.[﹣,]C.[﹣2,2]D. {﹣,}考点:交集及其运算.专题:集合.分析:求出A与B中y的范围确定出A与B,求出两集合的交集即可.解答:解:由A中y=x2﹣2≥﹣2,得到A=[﹣2,+∞);由B中y=﹣x2+2≤2,得到B=(﹣∞,2],则A∩B=[﹣2,2].故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.5.(5分)方程x3﹣x﹣3=0的实数解落在的区间是()A.[1,2]B.[0,1]C.[﹣1,0]D.[2,3]考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:利用函数零点的判断方法即可得出.解答:解:令f(x)=x3﹣x﹣3,则f(1)=1﹣1﹣3=﹣3<0,f(2)=23﹣2﹣3=3>0,∴f(1)f(2)<0,∴函数f(x)在区间[1,2]内有零点.故选A.点评:熟练函数零点的判断方法是解题的关键.6.(5分)设f(x)是奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,则x•f(x)<0的解集是()A.{x|﹣3<x<0或x>3} B.{x|x<﹣3或0<x<3}C.{x|x<﹣3或x>3} D.{x|﹣3<x<0或0<x<3}考点:奇偶性与单调性的综合.专题:计算题;分类讨论;转化思想.分析:由x•f(x)<0对x>0或x<0进行讨论,把不等式x•f(x)<0转化为f(x)>0或f(x)<0的问题解决,根据f(x)是奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,把函数值不等式转化为自变量不等式,求得结果.解答:解;∵f(x)是奇函数,f(﹣3)=0,且在(0,+∞)内是增函数,∴f(3)=0,且在(﹣∞,0)内是增函数,∵x•f(x)<0∴1°当x>0时,f(x)<0=f(3)∴0<x<32°当x<0时,f(x)>0=f(﹣3)∴﹣3<x<0.3°当x=0时,不等式的解集为∅.综上,x•f(x)<0的解集是{x|0<x<3或﹣3<x<0}.故选D.点评:考查函数的奇偶性和单调性解不等式,体现了分类讨论的思想方法,属基础题.7.(5分)对于0<a<1,给出下列四个不等式:①②③④.其中成立的是()A.①③B.①④C.②③D.②④考点:对数函数的单调性与特殊点;指数函数的单调性与特殊点.专题:常规题型.分析:根据题意,∵0<a<1∴>1∴又∵y=log a x此时在定义域上是减函数,∴①log a (1+a)<log a(1+)错误;②log a(1+a)>log a(1+)正确;又∵y=a x此时在定义域上是减函数,∴③a1+a<a1错误;④a1+a>a正确.解答:解:∵0<a<1,∴a<,从而1+a<1+.∴log a(1+a)>log a(1+).又∵0<a<1,∴a1+a>a.故②与④成立.点评:此题充分考查了不等式的性质,同时结合函数单调性对不等关系进行了综合判断.8.(5分)已知f(x)=ax3+bx﹣4其中a,b为常数,若f(﹣2)=7,则f(2)的值等于()A.15 B.﹣7 C.14 D.﹣15考点:函数的值.专题:函数的性质及应用.分析:由已知得f(﹣2)=﹣8a﹣2b﹣4=7,从而﹣8a﹣2b=11,由此能求出f(2)=8a+2b﹣4=﹣15.解答:解:∵f(x)=ax3+bx﹣4,其中a,b为常数,f(﹣2)=﹣8a﹣2b﹣4=7,∴﹣8a﹣2b=11,∴f(2)=8a+2b﹣4=﹣15.故选:D.点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.9.(5分)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)考点:对数函数图象与性质的综合应用;复合函数的单调性.专题:计算题.分析:结合对数函数、指数函数的性质和复合函数的单调性可知:当0<a<1,log a(a2x﹣2a x﹣2)<0时,有a2x﹣2a x﹣2>1,解可得答案.解答:解:设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),若f(x)<0则log a(a2x﹣2a x﹣2)<0,∴a2x﹣2a x﹣2>1∴(a x﹣3)(a x+1)>0∴a x﹣3>0,∴x<log a3,故选C.点评:解题中要注意0<a<1时复合函数的单调性,以避免出现不必要的错误.10.(5分)设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g (x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m 的取值范围为()A.(﹣,﹣2]B.[﹣1,0]C.(﹣∞,﹣2]D.(﹣,+∞)考点:函数零点的判定定理.专题:压轴题;新定义.分析:由题意可得h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m 在[0,3]上有两个不同的零点,故有,由此求得m的取值范围.解答:解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.点评:本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知f(x)=x2+2x+4(x∈[﹣2,2])则f(x)的值域为[3,12].考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:运用二次函数的性质得出[﹣2,﹣1]单调递减,[﹣1,2]单调递增,求出f(﹣2)=4,f(﹣1)=3,f(2)=12,判断最大值,最小值,即可得到值域.解答:解:∵f(x)=x2+2x+4(x∈[﹣2,2])∴对称轴x=﹣1,∴f(﹣2)=4,f(﹣1)=3,f(2)=12∴f(x)的值域为[3,12]故答案为:[3,12]点评:本题考察了二次函数的性质,运用求解值域.12.(5分)已知f(x﹣1)的定义域为[﹣3,3],则f(x)定义域为[﹣4,2].考点:函数的定义域及其求法.专题:函数的性质及应用.分析:f(x﹣1)的定义域为[﹣3,3],是指的x的范围是[﹣3,3],由此求出x﹣1的范围得到f(x)的定义域.解答:解:∵f(x﹣1)的定义域为[﹣3,3],即﹣3≤x≤1.∴﹣4≤x﹣1≤2,即函数f(x)定义域为[﹣4,2].故答案为:[﹣4,2].点评:本题考查了与抽象函数有关的简单复合函数定义域的求法,关键是对该类问题求解方法的掌握,是基础题.13.(5分)已知a=2﹣3;b=()﹣2;c=log20.5.则a,b,c的大小关系是(从大到小排列)b >a>c.考点:对数值大小的比较.专题:函数的性质及应用.分析:利用指数函数与对数函数的单调性即可得出.解答:解:∵1>a=2﹣3>0,b=()﹣2>1,c=log20.5<0.∴b>a>c.故答案为:b>a>c.点评:本题考查了指数函数与对数函数的单调性,属于基础题.14.(5分)函数y=log(x2﹣2mx+3)在(﹣∞,1)上为增函数,则实数m的取值范围是[1,2].考点:复合函数的单调性.专题:函数的性质及应用.分析:根据复合函数单调性之间的关系即可得到结论.解答:解:设t=x2﹣2mx+3,则函数y=log2t为增函数,要使函数y=log(x2﹣2mx+3)在(﹣∞,1)上为增函数,则等价为函数函数t=g(x)=x2﹣2mx+3在(﹣∞,1)上为减函数,且g(1)>0,即,解得,即1≤m≤2,故答案为:[1,2]点评:本题主要考查复合函数单调性之间的关系以及应用,注意定义域的限制.15.(5分)已知函数f(x)=是(﹣∞,+∞)上的减函数,则a的取值范围是(1,2].考点:函数单调性的性质.专题:函数的性质及应用.分析:根据函数单调性的定义和性质即可得到结论.解答:解:根据分段函数单调性的性质则满足,即,解得1<a≤2,故答案为:(1,2]点评:本题主要考查函数单调性的应用,根据分段函数单调性的性质是解决本题的关键.三、解答题:本大题共6个小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(12分)计算:(1)已知全集为R,集合A={x|﹣2≤x≤5},B={x|1≤x≤6},求∁U A∩∁U B;(2)﹣﹣lg0.01+lne3.考点:对数的运算性质;交、并、补集的混合运算.专题:集合.分析:结合数轴,对集合进行交、并、补的运算.解答:(1)解:A∪B═{x|﹣2≤x≤6},∁U A∩∁U B=C U(A∪B)={x|x<﹣2或x>6};…(6分)(2)解:﹣﹣lg0.01+lne3=4﹣﹣lg10﹣2+3=4﹣9+2+3=0;…(12分)点评:本题考查了集合的运算以及对数式的化简;对于集合的运算,一般结合数轴使运算直观简便.17.(12分)已知f(x)是R上的奇函数,且当x>0时,f(x)=x2﹣x﹣1;(1)求f(x)的解析式;(2)作出函数f(x)的图象(不用列表),并指出它的增区间.考点:函数图象的作法;函数解析式的求解及常用方法;函数单调性的判断与证明.专题:函数的性质及应用.分析:(1)根据函数的奇偶性的性质即可求f(x)的解析式;(2)利用分段函数作出函数图象即可得到结论.解答:解:(1)设x<0,则﹣x>0∴f(﹣x)=(﹣x)2﹣(﹣x)﹣1=x2+x﹣1,又∵函数f(x)为奇函数∴f(﹣x)=﹣f(x)∴f(x)=﹣f(﹣x)=﹣x2﹣x+1,当x=0时,由f(0)=﹣f(0),∴f(0)=0.故f(x)=.(2)由函数图象…(11分)易得函数的增区间为:(﹣∞,﹣),(,+∞).点评:本题主要考查函数奇偶性的应用以及分段函数图象的应用,利用数形结合是解决本题的关键.18.(12分)已知函数f(x)=ln(ax2+2x+1),g(x)=(x2﹣4x﹣5).(1)若f(x)的定义域为R,求实数a的取值范围.(2)若f(x)的值域为R,则实数a的取值范围.(3)求函数g(x)的递减区间.考点:复合函数的单调性;对数函数图象与性质的综合应用.专题:函数的性质及应用.分析:(1)根据f(x)的定义域为R,结合对数函数的性质即可求实数a的取值范围.(2)根据f(x)的值域为R,结合对数函数的性质以及二次函数的性质即可求实数a的取值范围.(3)根据复合函数单调性之间的关系即可得到结论.解答:解:(1)若f(x)的定义域为R,则y=ax2+2x+1的图象恒在x轴的上方,∴,解得a>1.(2)若f(x)的值域为R,则y=ax2+2x+1的图象一定要与x轴有交点,∴a=0或,解得a=0或0<a≤1,综上0≤a≤1.(3)由x2﹣4x﹣5>0,解得x<﹣1或x>5,即g(x)的定义域为{x|x<﹣1或x>5},设t=x2﹣4x﹣5,则y=)=t为减函数,则根据复合函数单调性之间的关系可得要求函数g(x)的递减区间即求函数x2﹣4x﹣5的增区间,即g(x)的减区间为(5,+∞).点评:本题主要考查对数函数的性质以及复合函数单调区间的求解,结合对数函数的性质以及一元二次函数的性质是解决本题的关键.19.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价﹣成本)考点:根据实际问题选择函数类型;分段函数的应用.专题:压轴题.分析:(1)由题意设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元;(2)前100件单价为P,当进货件数大于等于550件时,P=51,则当100<x<550时,得到P为分段函数,写出解析式即可;(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,表示出L与x的函数关系式,然后令x=500,1000即可得到对应的利润.解答:解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(2)当0<x≤100时,P=60当100<x<550时,当x≥550时,P=51所以(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则当x=500时,L=6000;当x=1000时,L=11000因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.点评:本小题主要考查函数的基本知识,考查应用数学知识分析问题和解决问题的能力.20.(13分)已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.考点:指数函数单调性的应用;奇函数.专题:压轴题.分析:(Ⅰ)利用奇函数定义,在f(﹣x)=﹣f(x)中的运用特殊值求a,b的值;(Ⅱ)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2﹣2t)+f(2t2﹣k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围.解答:解:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,即又由f(1)=﹣f(﹣1)知.所以a=2,b=1.经检验a=2,b=1时,是奇函数.(Ⅱ)由(Ⅰ)知,易知f(x)在(﹣∞,+∞)上为减函数.又因为f(x)是奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.即对一切t∈R有:3t2﹣2t﹣k>0,从而判别式.所以k的取值范围是k<﹣.点评:本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略.21.(14分)函数f(x)对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时f(x)<0恒成立.(1)证明函数f(x)的奇偶性;(2)若f(1)=﹣2,求函数f(x)在[﹣2,2]上的最大值;(3)解关于x的不等式f(﹣2x2)﹣f(x)>f(4x)﹣f(﹣2).考点:抽象函数及其应用;函数的最值及其几何意义.专题:函数的性质及应用.分析:(1)根据对任意的实数x,y都有均有f(x+y)=f(x)+f(y),令x=0,得f(0)=0,然后令y=﹣x即可利用定义求证函数为奇函数;(2)先令且x1<x2,则x2﹣x1>0,由已知得f(x2﹣x1)<0,然后利用f(x+y)=f(x)+f(y)求出函数为减函数,再利用单调性求最大值;(3)先利用函数的奇偶性和单调性去函数符号,然后解不等式.解答:解:(1)证明:令x=y=0得f(0)=0,再令y=﹣x即得f(﹣x)=﹣f(x)则f(x)是奇函数,(2)设任意x1,x2∈R,且x1<x2,则x2﹣x1>0,由已知得f(x2﹣x1)<0①又f(x2﹣x1)=f(x2)+f(﹣x1)=f(x2)﹣f(x1)②由①②可知f(x1)>f(x2),由函数的单调性定义知f(x)在(﹣∞,+∞)上是减函数,∴x∈[﹣2,2]时,f(x)max=f(﹣2)=﹣f(2)=﹣f(1+1)=﹣2f(1)=4,∴当x∈[﹣2,2]时f(x)的最大值为4.(3)由已知得f(﹣2x2)﹣f(4x)>2[f(x)﹣f(﹣2)]由(1)知f(x)是奇函数,∴上式又可化为f(﹣2x2﹣4x)>2[f(x+2)]=f(x+2)+f(x+2)=f(2x+4)由(2)知f(x)是R上的减函数,∴上式即﹣2x2﹣4x<2x+4化简得(x+2)(x+1)>0,∴原不等式的解集为{x|x<﹣2,或x>﹣1}.点评:本题考查抽象函数及其应用,以及利用函数单调性的定义判断函数的单调性,并根据函数的单调性解函数值不等式,体现了转化的思想,在转化过程中一定注意函数的定义域.解决抽象函数的问题一般应用赋值法.。
湖北省公安县第三中学2014-2015学年高一上学期5月上学期质量检测数学试题
公安三中高一年级质量检测(2014年5月)数学试题出题人:黄远生一.选择题:1.在ABC ∆中,若a =1,C=︒60, c =3则A 的值为 ( )A .︒30B .︒60C .30150︒︒或D . 60120︒︒或2.直线13kx y k -+=,当k 变动时,所有直线都通过定点 ( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)3.两直线330x y +-=与610x my ++=平行,则它们之间的距离为 ( )A .4BCD 4.在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于 ( )A.45B.90C.180D.300 5.若等比数列的前3项依次为,……,则第四项为 ( ) A.1 B. C. D. 6.若lg2,lg(21),lg(23)x x -+成等差数列,则x 的值等于 ( )A.0B. 2log 5 C . 32 D.0或327.cos x x a +=在[0,2]π上有两个不同的实数解,的取值范围是则a ( )A. (2,0)(1,2)a ∈-⋃B. (2,2)a ∈-C. (2,1)(1,2)a ∈-⋃D. (2,1)a ∈-8.已知一正方体棱长为1,一正四棱锥以该正方体的某个面为底面,且与该正方体有相同的全面积,则这一正四棱锥的侧棱与底面所成的角的余弦值为 ( ) A B C D . (131336332626)9.当20π<<x 时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为 ( )A.2B.32C.4D.3410.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是 ( )A .平行B .垂直C .斜交D .与,,a b θ的值有关二.填空题:11.直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,则直线l 的方程是 .12.等比数列a ,-6,m ,-54,……的通项a n = ___________.13.含有三个实数的集合既可表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,则a=______,b=________.14.已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于 .15.如图,在正方体ABCD-A 1B 1C 1D 1中,P为A 1D 1上的一定点,Q为A 1B 1上的任意一点,E、F为CD 上的任意两点,且EF 长为定值,有下列命题:①点P 到平面QEF 的距离为定值;②直线PQ 与平面PEF 所成的角为定值;③二面角P —EF —Q 的大小为定值;④三棱锥P —QEF 的体积为定值其中正确命题的序号是___________.三.解答题16. 已知等比数列{a n }的公比q =3,前3项和S 3=133. (1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为a 3,求函数f (x )的解析式.17.在△ABC 中,设内角A 、B 、C 的对边分别为a 、b 、c , 22)4cos()4cos(=-++ππC C (Ⅰ)求角C 的大小;(Ⅱ)若32=c 且B A sin 2sin =,求ABC ∆的面积.18.直线1y x =+和x 轴,y 轴分别交于点,A B ,在线段AB 为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等,求m 的值。
湖北省荆州市-高一数学上学期期中考试 理
湖北省荆州市-高一数学上学期期中考试 理科目:数学(理科) 考试时间:120分钟一.选择题(本题共10小题,每小题5分,共50分;每小题的四个选项中只有一个是正确的.) 1、设全集{}1,2,3,4,5U =,{}123A =,,,{}3,4,5B =则()UA B ⋂=( )A.{}3B. {}1,2,4,5C. {}1,2,3,4,5D. ∅2、定义集合运算A ◇B ={}|,,c c a b a A b B =+∈∈,设{}0,1,2A =,{}3,4,5B =,则集合A ◇B 的子集个数为( )A .32B .31C .30D .143、设211()21x x f x x x +≥⎧=⎨-<⎩,,,则((2))f f -的值为( )A .-3B .4C .5D .94、已知113212111,,log 233a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 之间的大小关系为( ) A .a b c >> B .c a b >> C .a c b >> D .c b a >>5、函数(01)xy a a a =>≠且,在[1,2]上的最大值与最小值的差为2a,则a 的值为( ) A .12B .32C .23或2 D .12或326、下列各函数在其定义域中,既是奇函数,又是增函数的是( )A.1y x =+B.3y x =-C.1y x=-D.||y x x = 7、已知函数(21)f x +的定义域为[1,2],则函数(41)f x +的定义域为( )A.[3,5]B.1[,1]2C.[5,9]D.1[0,]28、下列函数中在区间)2,1(上有零点的是( )A. 2()32f x x x =-+B. 3()23f x x x =-+ C. ()lg 23f x x x =+- D. ()35x f x e x =+-9、如右图所示为函数①xy a =、②xy b =、③log c y x =、④log d y x =的图像,其中a b c d 、、、均大于0且不等于1,则a b c d 、、、大小关系为( )A. a b c d >>>B.a b d c >>>C. b a c d >>> D .b a d c >>>10、已知函数()f x =|2(35)||1x m x +++|的定义域为R ,且函数有八个单调区间,则实数m 的取值范围为( ) A. 53m <-B. 73m <-或1m >- C. 73m <- D. 53m <-或1m >-二、填空题(本题共5小题,每小题5分,共25分.) 11、m n ∈R ,,集合,1m P n ⎧⎫=⎨⎬⎩⎭,{},0Q n =,若P Q =,则m n +的值等于________; 12、二次函数()f x 满足()(1)22f x f x x --=-且(0)1f =.则函数()3y f x =-的零点是 ; 13、已知2()2y f x x =+为奇函数,且()()1g x f x =+. 若(2)2f =,则(2)g -= ;14、已知01a a >≠且,函数()log 232a y x =-+的图象恒过定点P , 若P 在幂函数()f x 的图象上,则()8f =__________;15、给出下列命题:①22()44f x x x =-+-既是奇函数,又是偶函数;②()f x x =和2()x f x x=为同一函数;③已知()f x 为定义在R 上的奇函数,且()f x 在(0,)+∞上单调递增,则()f x 在(,)-∞+∞上为增函数;④函数221x y x =+的值域为22[,]44-. 其中正确命题的序号是 .三、解答题(本大题共6个小题,共75分,解答题应写出文字说明,证明过程或演算步骤.) 16、 (本小题满分12分) 化简求值:(1)211ln 363221(22)(6)3334e -++(2)26666(1log 3)(log 2)(log 18)log 4-+⋅17、(本小题满分12分) 已知集合11|2168x A x +⎧⎫=≤≤⎨⎬⎩⎭,{}|131B x m x m =+≤≤-. (1)求集合A ;(2)若B A ⊆,求实数m 的取值范围.18、(本小题满分12分) 已知函数()f x 为定义在R 上的奇函数,且当0x >时,2()2f x x x =-+. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[1,](1)a a ->-上的值域.19、(本小题满分12分) 已知xaxxx g a f x f 43)(,18)2(,3)(-==+=并且的定义域为区间[1,1]-.(1)求函数)(x g 的解析式;(2)用定义证明)(x g 在[1,1]-上为单调递减函数;(3)若函数()4y f x =-和()g x 值域相同,求()4y f x =-的定义域.20、(本小题满分13分)如图,有一块矩形草地,要在这块草地上开辟一个内接四边形建体育设施(图中阴影部分),使其四个顶点分别落在矩形的四条边上,已知AB =a (a >2),BC =2,且AE =AH =CF =CG ,设AE =x ,阴影部分面积为y .(1)求y 关于x 的函数关系式,并指出这个函数的定义域; (2)当x 为何值时,阴影部分面积最大?最大值是多少?21、(本小题满分14分) 函数()f x 的定义域为R ,并满足以下条件:①对任意x R ∈,有()0f x >; ②对任意x 、y R ∈,有()[()]y f xy f x =; ③1() 1.3f >(1)求(0)f 的值;(2)求证:()f x 在R 上是单调增函数;(3)若(2)2f =,且x 满足1()()(2)2f f x f ≤≤,求函数2212(2log )(2log )y f x f x =+的最大值和最小值.参考答案科目:数学(理科) 考试时间:120分钟一.选择题(本题共10小题,每小题5分,共50分;每小题四个选项中只有一个正确.)二、填空题(本题共5小题,每小题5分,共25分.)综上所述43m ≤................12分 18、(1)当0x >时,2()2f x x x =-+ ,又()f x 为奇函数,则当0x <时,22()()(2)2f x f x x x x x =--=---=+ ,又(0)0f =故222,0()0,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩..............6分(2)结合()f x 的图像,(1)1f -=-,由0()1a f a >⎧⎨=-⎩得12a =+ .............7分当11a -<≤时,函数在[1,]a -单调递增, 值域为[1,()]f a -又20,()2x f x x x >=-+,20,()2x f x x x <=+ 则10a -<≤时,值域为2[1,2]a a -+01a <≤时,值域为2[1,2]a a --+ ..............9分19、(1)23183,3)(,18)2(2=⇒=∴==++a a xx f a f ,()(3)424,[1,1]a x x x x g x x ∴=-=-∈- ...............4分(2)()24,[1,1]xxg x x =-∈-, 任取实数12,x x 满足1211x x -≤<≤11221122122121121222()()24(24)242422(2)(2)(22)(221)x x x x x x x x x x x x x x x x g x g x -=---=--+=-+-=-+-2xy =为单调递增函数,1211x x -≤<≤,则21220x x-> 12111122,2222xx x -≥=>≥,则11221x x +>则12()()0g x g x ->,于是()g x 在[1,1]-上为单调递减函数 ...............8分20、:(1)S ΔAEH =S ΔCFG=21x 2,S ΔBEF =S ΔDGH =21(a -x )(2-x )。
湖北省荆州中学高一上学期期中考试(数学理).doc
湖北省荆州中学高一上学期期中考试(数学理)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列表示图形中的阴影部分的是( )A .()()A CBC B .()()A B A C C .()()A B B CD .()A B C2.下列函数中,奇函数的个数是( )①11x x a y a +=- ②2lg(1)33x y x -=+- ③x y x = ④1log 1a x y x +=-A .1B .2C .3D .43.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( )A .14400亩B .172800亩C .17280亩D .20736亩 4.已知函数()ln 26f x x x =+-有一个零点在开区间(2,3)内,用二分法求零点时,要使精确度达到0.001,则至少需要操作(一次操作是指取区间中点并判断中点对应的函数值的符号)的次数为( )A .8B .9C .10D .11 5.若1x 是方程lgx+x=3的解,2103x x x +=是的解,则12x x +的值为( )A .32B .23C .3D .136.直线3y =与函数26y x x =-的图象的交点个数为( )A .4个B .3个C .2个D .1个 7.在222,log ,x y y x y x ===这三个函数中,当1201x x <<<时,使1212()()22x x f x x f ++>恒成立的函数的个数是( )A .0个B .1个C .2个D .3个8.下列四个说法:(1)函数f(x)>0在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;(2)若函数2bx ++2f(x)=ax 与x 轴没有交点,则280b a -<且a>0;(3) 223y x x =--的递增区间为[)1,+∞;(4) y=1+x和y =表示相等函数。
【精编】2014-2015年湖北省荆州市公安三中高一(上)数学期中试卷带解析答案(理科)
2014-2015学年湖北省荆州市公安三中高一(上)期中数学试卷(理科)一、选择题:(共50分)1.(5分)集合A={x|x2﹣1=0}的子集共有()A.4个 B.3 个C.2 个D.1 个2.(5分)已知A={第一象限角},B={锐角},C={小于的角},那么A、B、C 关系是()A.B=A∩C B.B∪C=C C.A⊊C D.A=B=C3.(5分)下列各组函数中,f(x)与g(x)表示同一函数的是()A.f(x)=x0,g(x)=1B.,g(x)=xC.f(x)=D.f(x)=4.(5分)在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x﹣y,x+y),则与A中的元素(﹣1,2)对应的B中的元素为()A.(﹣3,1)B.(1,3) C.(﹣1,﹣3)D.(3,1)5.(5分)函数y=(3x﹣x2﹣2)的单调递减区间是()A.(1,2) B.(2,+∞)C.(1,)D.(,+∞)6.(5分)已知函数f(x)=|x+1|+|x﹣1|,则它()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数7.(5分)函数y=|lg(x﹣1)|的图象是()A.B.C.D.8.(5分)设lg2=a,lg3=b,则log512等于()A.B.C.D.9.(5分)若函数f(x)=x3+x2﹣2x﹣2正整数为零点附近的函数值用二分法计算,其参考数据如下:f(1)=﹣2,f(1.5)=0.625,f(1.25)=﹣0.984,f(1.375)=﹣0.260,f(1.4375)=0.162.f(1.40625)=﹣0.054.则方程x3+x2﹣2x﹣2=0的一个近似值(精确到0.1)为()A.1.2 B.1.3 C.1.4 D.1.510.(5分)已知函数f(x)=,若关于x的方程f(f(x))=0有且仅有一个实数解,则实数a的取值范围是()A.(﹣∞,0)B.(﹣∞,0)∪(0,1)C.(0,1) D.(0,1)∪(1,+∞)二、填空题:(共25分)11.(5分)已知=2,则=.12.(5分)设集合M=(﹣∞,m],P=,若M∩P=∅,则实数m的取值范围是.13.(5分)已知函数f(x)=的定义域是一切实数,则m的取值范围是.14.(5分)已知关于x的方程在区间[﹣1,0]上有实数根,则实数a的取值范围是.15.(5分)下列几个命题:①方程x2+(a﹣3)x+a=0的有一个正实根,一个负实根,则a<0;②若f(x)的定义域为[0,1],则f(x+2)的定义域为[﹣2,﹣1];③函数y=log2(﹣x+1)+2的图象可由y=log2(﹣x﹣1)﹣2的图象向上平移4个单位,向左平移2个单位得到;④若关于x方程|x2﹣2x﹣3|=m有两解,则m=0或m>4;⑤若角α与角β的终边关于y轴对称,则α与β的关系是α+β=π;其中正确的有.三、解答题:(共75分)16.(12分)计算:(1)()﹣1﹣4•(﹣2)﹣3+()0﹣9(2).17.(12分)已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=∅,求a 的范围.18.(12分)已知x2﹣20x+64≤0的解集为A,当的值域为B.(1)求集合B;(2)当x∈B时不等式1+2x+4x a≥0恒成立,求a的最小值.19.(12分)设函数f(x)=ka x﹣a﹣x(a>0且a≠1)是定义域为R的奇函数.(1)若f(1)<0,试求不等式f(x2+2x)+f(x﹣4)>0的解集;(2)若f(1)=,且g(x)=a2x+a﹣2x﹣2mf(x),x∈[1,+∞)的最小值为﹣2,求m的值.20.(13分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=,其中x是仪器的月产量.(注:总收益=总成本+利润)(1)将利润f(x)表示为月产量x的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?21.(14分)已知函数,函数.(1)若函数y=g(mx2+2x+m)的值域为R,求实数m的取值范围;(2)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(3)是否存在非负实数m,n,使得函数y=g[f(x2)]的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.2014-2015学年湖北省荆州市公安三中高一(上)期中数学试卷(理科)参考答案与试题解析一、选择题:(共50分)1.(5分)集合A={x|x2﹣1=0}的子集共有()A.4个 B.3 个C.2 个D.1 个【解答】解:集合A={x|x2﹣1=0}={﹣1,1},∴A的子集的个数为:22=4个,故选:A.2.(5分)已知A={第一象限角},B={锐角},C={小于的角},那么A、B、C 关系是()A.B=A∩C B.B∪C=C C.A⊊C D.A=B=C【解答】解:∵A={第一象限角}={θ|2kπ<θ<2kπ+,k∈Z},C={小于的角}={θ|θ<},B={锐角}=,∴B∪C=C,故选:B.3.(5分)下列各组函数中,f(x)与g(x)表示同一函数的是()A.f(x)=x0,g(x)=1B.,g(x)=xC.f(x)=D.f(x)=【解答】解:对于A,f(x)=x0=1(x≠0),与g(x)=1(x∈R)的定义域不同,∴不是同一函数;对于B,f(x)==|x|(x∈R),与g(x)=x(x∈R)的对应关系不相同,∴不是同一函数;对于C,f(x)=x2(x∈R),与g(x)==x2(x≠0)的定义域不同,∴不是同一函数;对于D,f(x)==x•(x∈R),与g(x)=x•(x∈R)的定义域相同,对应关系也相同,∴是同一函数.故选:D.4.(5分)在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x﹣y,x+y),则与A中的元素(﹣1,2)对应的B中的元素为()A.(﹣3,1)B.(1,3) C.(﹣1,﹣3)D.(3,1)【解答】解:由映射的对应法则f:(x,y)→(x﹣y,x+y),故A中元素(﹣1,2)在B中对应的元素为(﹣1﹣2,﹣1+2)即(﹣3,1)故选:A.5.(5分)函数y=(3x﹣x2﹣2)的单调递减区间是()A.(1,2) B.(2,+∞)C.(1,)D.(,+∞)【解答】解:由3x﹣x2﹣2>0,得1<x<2.∵内函数g(x)=3x﹣x2﹣2在(1,)上为增函数,∴函数y=(3x﹣x2﹣2)的单调递减区间是(1,).故选:C.6.(5分)已知函数f(x)=|x+1|+|x﹣1|,则它()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数【解答】解:∵f(﹣x)=|﹣x+1|+|﹣x﹣1|=|x﹣1|+|x+1|=f(x),∴函数f(x)=|x+1|+|x﹣1|是偶函数.故选:B.7.(5分)函数y=|lg(x﹣1)|的图象是()A.B.C.D.【解答】解:由x﹣1>0解得,x>1,故函数的定义域是(1,+∞),由选项中的图象知,故C正确.故选:C.8.(5分)设lg2=a,lg3=b,则log512等于()A.B.C.D.【解答】解:log512===.故选:C.9.(5分)若函数f(x)=x3+x2﹣2x﹣2正整数为零点附近的函数值用二分法计算,其参考数据如下:f(1)=﹣2,f(1.5)=0.625,f(1.25)=﹣0.984,f(1.375)=﹣0.260,f(1.4375)=0.162.f(1.40625)=﹣0.054.则方程x3+x2﹣2x﹣2=0的一个近似值(精确到0.1)为()A.1.2 B.1.3 C.1.4 D.1.5【解答】解:由表中数据f(1)=﹣2,f(1.5)=0.625,f(1.25)=﹣0.984,f(1.375)=﹣0.260,f(1.4375)=0.162.f(1.40625)=﹣0.054.中结合二分法的定义得f(1.375)•f(1.4375)<0,零点应该存在于区间(1.375,1.4375)中,观察四个选项,方程x3+x2﹣2x﹣2=0的一个近似值(精确到0.1)为1.4,与其最接近的是C,故选:C.10.(5分)已知函数f(x)=,若关于x的方程f(f(x))=0有且仅有一个实数解,则实数a的取值范围是()A.(﹣∞,0)B.(﹣∞,0)∪(0,1)C.(0,1) D.(0,1)∪(1,+∞)【解答】解:设t=f(x),则f(t)=0,若a<0时,当x≤0,f(x)=a•2x<0.由f(t)=0,即,此时t=1,当t=1得f(x)=1,此时x=有唯一解,此时满足条件.若a=0,此时当x≤0,f(x)=a•2x=0,此时函数有无穷多个点,不满足条件.若a>0,当x≤0,f(x)=a•2x∈(0,a].此时f(x)的最大值为a,要使若关于x的方程f(f(x))=0有且仅有一个实数解,则a<1,此时0<a<1,综上实数a的取值范围是(﹣∞,0)∪(0,1)故选:B.二、填空题:(共25分)11.(5分)已知=2,则=8.【解答】解:∵已知=2,∴tanα=2,则===8,故答案为:8.12.(5分)设集合M=(﹣∞,m],P=,若M∩P=∅,则实数m的取值范围是m<﹣1..【解答】解:函数y=x2﹣x﹣=(x﹣)2﹣1为开口向上的抛物线,最小值为﹣1,所以得到y≥﹣1,所以集合P的区间为[﹣1,+∞);由M∩P=∅得到两个集合没有公共元素,即m<﹣1.故答案为:m<﹣1.13.(5分)已知函数f(x)=的定义域是一切实数,则m的取值范围是0≤m≤4.【解答】解:∵函数f(x)=的定义域是一切实数,∴mx2+mx+1≥0对一切x∈R恒成立,当m=0时,上式变为1>0,恒成立,当m≠0时,必有,解之可得0<m≤4,综上可得0≤m≤4故答案为0≤m≤414.(5分)已知关于x的方程在区间[﹣1,0]上有实数根,则实数a的取值范围是[﹣1,0] .【解答】解:分类参数可得:a=﹣2×(2x)2+2x(x∈[﹣1,0])令2x=t(t∈[,1],a=﹣2t2+t=﹣2∴函数在[,1]上单调减∴a∈[﹣1,0]故答案为:[﹣1,0]15.(5分)下列几个命题:①方程x2+(a﹣3)x+a=0的有一个正实根,一个负实根,则a<0;②若f(x)的定义域为[0,1],则f(x+2)的定义域为[﹣2,﹣1];③函数y=log2(﹣x+1)+2的图象可由y=log2(﹣x﹣1)﹣2的图象向上平移4个单位,向左平移2个单位得到;④若关于x方程|x2﹣2x﹣3|=m有两解,则m=0或m>4;⑤若角α与角β的终边关于y轴对称,则α与β的关系是α+β=π;其中正确的有①②④.【解答】解:①方程x2+(a﹣3)x+a=0有一个正实根,一个负实根,则,即a<0,①正确;②若f(x)的定义域为[0,1],由0≤x+2≤1,解得﹣2≤x≤﹣1,∴f(x+2)的定义域为[﹣2,﹣1],②正确;③函数y=log2(﹣x+1)+2=log2[﹣(x﹣2)﹣1]﹣2+4的图象可由y=log2(﹣x﹣1)﹣2的图象向上平移4个单位,向右平移2个单位得到,③错误;④若关于x方程|x2﹣2x﹣3|=m有两解,对于方程的左边,设函数y=|x2﹣2x﹣3|,作出此函数的图象,而方程的右边对应直线y=m,问题转化为两个图象有且仅有两个公共点的问题,当m=3时,两个图象有三个不同的公共点;当0<m<4时,两个图象有四个不同和公共点;当m=0或m>4时,两个图象有且只有两个公共点.故m=0或m>4,④正确;⑤若角α与角β的终边关于y轴对称,则π﹣α是与α关于y轴对称的一个角,∴β与π﹣α的终边相同,即β=2kπ+(π﹣α),∴α+β=α+2kπ+(π﹣α)=(2k+1)π,k∈Z,⑤错误.故答案为:①②④.三、解答题:(共75分)16.(12分)计算:(1)()﹣1﹣4•(﹣2)﹣3+()0﹣9(2).【解答】解:(1)()﹣1﹣4•(﹣2)﹣3+()0﹣9=2++1﹣3=.(2)====.17.(12分)已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=∅,求a 的范围.【解答】解:当A=φ时即2a>a+3,a>3,此时满足A∩B=∅当A≠∅时,2a≤a+3,即a≤3时有2a≥﹣1且a+3≤5解之﹣≤a≤2,此时A∩B=φ综合知,当a>3或﹣≤a≤2时,A∩B=∅18.(12分)已知x2﹣20x+64≤0的解集为A,当的值域为B.(1)求集合B;(2)当x∈B时不等式1+2x+4x a≥0恒成立,求a的最小值.【解答】解:(1)A={x|4≤x≤16}f(x)=(log2x﹣3)(log2x﹣2)=(log2x)2﹣5log2x+6令t=log2x,则t∈[2,4],∵t∈[2,4],∴时,y取得最小值,t=4时,y取得最大值2∴(2)分离参数可得:设当x∈B时不等式1+2x+4x a≥0恒成立,可转化为a≥g(x)max∵在上递增∴∴19.(12分)设函数f(x)=ka x﹣a﹣x(a>0且a≠1)是定义域为R的奇函数.(1)若f(1)<0,试求不等式f(x2+2x)+f(x﹣4)>0的解集;(2)若f(1)=,且g(x)=a2x+a﹣2x﹣2mf(x),x∈[1,+∞)的最小值为﹣2,求m的值.【解答】解:(1)∵f(x)是定义域为R的奇函数,∴f(0)=0,可k﹣1=0,即k=1,故f(x)=a x﹣a﹣x(a>0,且a≠1)∵f(1)<0,∴a﹣<0,又a>0且a≠1,∴0<a<1.f′(x)=a x lna+,∵0<a<1,∴lna<0,而a x+>0,∴f′(x)<0,∴f(x)在R上单调递减.原不等式化为:f(x2+2x)>f(4﹣x),∴x2+2x<4﹣x,即x2+3x﹣4<0∴﹣4<x<1,∴不等式的解集为{x|﹣4<x<1}.(2)∵f(1)=,∴a﹣=,即2a2﹣3a﹣2=0,∴a=2或a=﹣(舍去).∴g(x)=22x+2﹣2x﹣2m(2x﹣2﹣x)=(2x﹣2﹣x)2﹣2m(2x﹣2﹣x)+2.令t=f(x)=2x﹣2﹣x,由(1)可知f(x)=2x﹣2﹣x为增函数∵x≥1,∴t≥f(1)=,令h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2(t≥)若m≥,当t=m时,h(t)min=2﹣m2=﹣2,∴m=2若m<,当t=时,h(t)min=﹣3m=﹣2,解得m=>,舍去.综上可知m=2.20.(13分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=,其中x是仪器的月产量.(注:总收益=总成本+利润)(1)将利润f(x)表示为月产量x的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?【解答】解:(1)由于月产量为x台,则总成本为20000+100x,从而利润f(x)=;(2)当0≤x≤400时,f(x)=300x﹣﹣20000=﹣(x﹣300)2+25000,∴当x=300时,有最大值25000;当x>400时,f(x)=60000﹣100x是减函数,∴f(x)=60000﹣100×400<25000.∴当x=300时,有最大值25000,即当月产量为300台时,公司所获利润最大,最大利润是25000元.21.(14分)已知函数,函数.(1)若函数y=g(mx2+2x+m)的值域为R,求实数m的取值范围;(2)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(3)是否存在非负实数m,n,使得函数y=g[f(x2)]的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.【解答】解:(1)①当m=0时,满足条件;②当m≠0时,有综上可得,0≤m≤1.(2)令,则y=t2﹣2at+3=(t﹣a)2+3﹣a2①当时,②当时,h(a)=3﹣a2③当a>3时,h(a)=12﹣6a故h(a)=;(3)假设存在实数m,n满足条件,则有0≤m<n,化简可得函数表达式为y=x2,则函数在[m,n]上单调递增,故值域为[m2,n2]=[2m,2n]解得m=0,n=2故存在m=0,n=2满足条件.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
湖北省部分重点中学2014-2015学年高一上学期期中考试数学试卷(解析版)
湖北省部分重点中学2014-2015学年高一上学期期中考试数学试卷(解析版)一、选择题1.已知全集{}10864210,,,,,,U =,集合{}642,,A =,{}1=B ,则B A U等于( )A 、{}10810,,,B 、{}6421,,, C 、{}1080,, D 、∅ 【答案】A【解析】试题分析:由题意知{}10810,,,A U=,又{}1=B ,∴{}10810,,,B A U= .考点:集合的运算.2.函数()3421-=x log y 的定义域为( )A 、⎪⎭⎫⎝⎛+∞,43 B 、⎪⎭⎫ ⎝⎛∞-43, C 、⎥⎦⎤ ⎝⎛143, D 、⎪⎭⎫ ⎝⎛143,【答案】C【解析】试题分析:由题意知()03421≥-x log ,推出()1342121log x log ≥-,而函数()3421-x log 在定义域内是减函数,所以得134≤-x ,故求得1≤x .再根据对数的定义得到034>-x ,求得43>x ,二者取交集得到函数的定义域为⎥⎦⎤ ⎝⎛143,. 考点:对数函数的定义域和单调性.3.若()32+=x x f ,()()x f x g =+2,则()x g 的表达式为( ) A 、12+x B 、12-x C 、32-x D 、72+x【答案】B 【解析】试题分析:()()122322-+=+=+x x x g ,所以()12-=x x g . 考点:函数解析式的求解.4.已知{}22-==x y y A ;{}22+-==x y y B ,则=B A ( )A 、()(){}0202,,,-B 、[]22,-C 、[]22,-D 、{}22,-【答案】D 【解析】试题分析:由题意知{}[)+∞-=-==,x y y A 222,{}(]222,x y y B ∞-=+-==,所以[]22,B A -=.考点:集合的表示和运算.5.方程033=--x x 的实数解落在的区间是( )A 、[]01,-B 、[]10,C 、[]21,D 、[]32, 【答案】C【解析】试题分析:设函数()33--=x x x f ,而()()()()()0302010001>><<<-f ,f ,f ,f ,f ,根据函数零点的存在性定理可知,()x f 在()21,内有零点,故只有C 符合题意. 考点:函数零点的存在性定理.6.设()x f 是奇函数,且在()+∞,0是增函数,又()03=-f ,则()0<x xf 的解集是( ) A 、{}303><<-x x x 或 B 、{}303<<-<x x x 或 C 、{}33>-<x x 或 D 、{}3003<<<<-x x x 或 【答案】D 【解析】试题分析:由于()x f 是奇函数,所以()()033=--=f f ,因为()x f 在()+∞,0是增函数,所以()x f 在()-∞,0上也是增函数,故当{}303><<-x x x 或时,()0>x f ,当{}303<<-<x x x 或时,()0<x f ,因此,()0<x xf 的解集为{}3003<<<<-x x x 或. 考点:函数的奇偶性和单调性.7.对于10<<a ,给出下列四个不等式 ①()⎪⎭⎫ ⎝⎛+<+a log a log a a 111 ②()⎪⎭⎫ ⎝⎛+>+a log a log a a 111 ③a aaa 111++< ④aaaa111++>其中成立的是( )A 、①与③B 、①与④C 、②与③D 、②与④ 【答案】D 【解析】试题分析:由于10<<a ,所以函数()x log x f a =和()x a x g =在定义域上都是单调递减函数,而且aa 111+<+,所以②与④是正确的. 考点:指数函数和对数函数的单调性.8.已知()43-+=bx ax x f ,其中b ,a 为常数,若()72=-f ,则()2f 的值为( ) A 、15 B 、7- C 、14 D 、15- 【答案】D 【解析】试题分析:设()bx ax x g +=3,()x g 显然为奇函数,而且()()4-=x g x f ,()()7422=--=-g f ,则()112=-g ,因为()()422-=g f ,()()1122-=--=g g ,所以()152-=f . 考点:函数的奇偶性.9.设10<<a ,函数()()222--=x x a a a log x f ,则使()0<x f 得x 的取值范围是( ) A 、()0,∞- B 、()+∞,0 C 、()3a log ,∞- D 、()+∞,log a 3 【答案】C 【解析】试题分析:由于函数()10<<=a x l o g y a 在定义域内是减函数,所以()()122122022>--⇒<--⇔<x x a x x a a a log a a log x f ,解不等式得到3>x a 或1-<x a (舍去),而且 333a a xa xlog x log a log a <⇒<⇒>,所以选C. 考点:对数函数的单调性.10.设()x f 和()x g 是定义在同一个区间[]b ,a 上的两个函数,若函数()()x g x f y -=在[]b ,a x ∈上有两个不同的零点,则称()x f 和()x g 在[]b ,a 上是“关联函数”,区间[]b ,a 称为“关联区间”.若()432+-=x x x f 与()m x x g +=2在[]30,上是“关联函数”,则m 的取值范围是( ) A 、⎥⎦⎤ ⎝⎛--249, B 、[]01,- C 、(]2-∞-, D 、⎪⎭⎫⎝⎛+∞-,49【答案】A 【解析】试题分析由题意知:()()m x x x g x f y -+-=-=452在区间[]30,上有两个不同的零点,所以方程0452=-+-m x x 有两个不同的实根,所以△0<,求得49->m ,而函数图像开口向上,由题意必须保证()00≥f 且()03≥f ,求得2-≤m ,综上249-≤<-m . 考点:二次函数的图像及性质.二、填空题11.已知()[]()22422,x x x x f -∈++=,则()x f 的值域为__________. 【答案】[]123, 【解析】试题分析:函数()x f 的图像对称轴为1-,开口向上,而1-在区间[]22,-上,所以()x f 最小值为()31=-f ,最大值为()122=f ,所以()x f 在[]22,-上值域为[]123,. 考点:二次函数闭区间上求最值.12.已知()1-x f 的定义域为[]33,-,则()x f 的定义域为__________. 【答案】[]24,- 【解析】试题分析:由于()1-x f 的定义域为{}33≤≤-x x ,则214≤-≤-x ,故()x f 的定义域为{}24≤≤-x x . 考点:函数的定义域.13.已知32-=a ;221-⎪⎭⎫⎝⎛=b ;502.log c =.则c ,b ,a 的大小关系是(从大到小排列)__________. 【答案】c a b >> 【解析】试题分析:8123==-a ,422122==⎪⎭⎫⎝⎛=-b ,015022=<=log .log c ,故c a b >>.考点:指数函数和对数函数比较大小(运算).14.函数()32221+-=mx x log y 在()1,∞-上为增函数,则实数m 道的取值范围是__________.【答案】[]21, 【解析】试题分析:设()()222332m m x mx x x f -+-=+-=,则()x f 开口向上,对称轴为m x =,则原题实际等价于()()()()()⎩⎨⎧≤≥⇒⎩⎨⎧≥≥=⇒⎩⎨⎧∞-∈>∞-21011101m m f m x ,x x f ,x f 时恒成立对上为减函数在,即所求的m 取值范围是[]21,.考点:对数函数和二次函数复合的问题应用.15.已知函数()()()()⎩⎨⎧>-≤+-=12153x x log a x x a x f a 是()+∞∞-,上的减函数,则a 的取值范围是__________. 【答案】(]21, 【解析】试题分析:设()()53+-=x a x g ,()x log a x h a -=2,由题意可知:()()x h ,x g 在()+∞∞-,都为减函数,所以03<-a 且1>a ,解得31<<a ,再有()()11h g ≥,解得2≤a ,最后a 的取值范围是(]21,. 考点:分段函数的单调性.三、解答题16.计算:(1)已知全集为R ,集合{}52≤≤-=x x A ,{}61≤≤=x x B ,求A UB U.(2)33240102733e ln .lg log +--【答案】(1){}62>-<x x x 或;(2)0【解析】试题分析:(1)先分别求集合A 和B 的补集,然后再取交集.(2)四项分别计算,然后求和.试题题析:(1){}52>-<=x x x A U或 2分{}61><=x x x BU或 4分∴AU{}62>-<=x x x B U或 6分()0329401027333243=+---=+--e ln .lg log 12分考点:1、集合的补集和交集运算.2、指数和对数的运算.17.已知()x f 是R 上的奇函数,且当0>x 时,()12--=x x x f ; (1)求()x f 的解析式;(2)作出函数()x f 的图象(不用列表),并指出它的增区间.【答案】(1)()()()()⎪⎩⎪⎨⎧<+--=>--=01000122x x x x x x x x f ; (2),函数的增区间为:⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,,,2121【解析】试题分析:(1)根据奇函数的性质求得,当0=x 和0<x 时的解析式,最后得到()x f 分段函数的解析式.(2)根据各段区间的解析式画出()x f 函数的图象,找到增区间. 试题题析:(1)设0<x ,则0>-x()()()1122-+=----=-∴x x x x x f 3分又 函数()x f 是奇函数()()x f x f -=-∴()()12+--=--=∴x x x f x f 6分当0=x 时,由()()00f f -=得()00=f 7分()()()()⎪⎩⎪⎨⎧<+--=>--=∴01000122x x x x x x x x f 8分11分由函数图象易得函数的增区间为:⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,,,2121 12分考点:1、奇函数的定义和性质.2、分段函数图像的画法.3、二次图象的画法.4、从函数图像看单调区间.18.已知函数()()122++=x ax ln x f ;()()54221--=x x log x g(1)若()x f 的定义域为R ,求实数a 的取值范围. (2)若()x f 的值域为R ,则实数a 的取值范围. (3)求函数()x g 的递减区间.【答案】(1)()+∞,1;(2)[]10,;(3)()+∞,5 【解析】试题分析:(1)保证内函数122++=x ax y 的值恒大于0,也就是说判别式小于0.(2)()x f 的值域为R 等价于内函数122++=x ax y 的值域包含()+∞,0,分情况考虑,当0=a ,122++=x ax y 为一次函数,值域包含()+∞,0,0≠a 时,122++=x ax y 为二次函数时,保证判别式大于等于0,最后取并集得结果.先求出()x g 的定义域,再求内函数542--=x x y 的增区间,即为()x g 的递减区间.试题题析:(1)若()x f 的定义域为R ,则122++=x ax y 的图像恒在x 轴的上方,⎩⎨⎧<-=>∴0440a Δa , 1>∴a即a 的取值范围是()+∞,1. 4分若()x f 的值域为R ,则122++=x ax y 的图象一定要与x 轴有交点,0=∴a 或⎩⎨⎧≥-=>0440a Δa10≤≤∴a即a 的取值范围是[]10,8分 求出()x g 的定义域为{}51>-<x x x 或 10分∴()x g 的减区间为()+∞,5 12分考点:带有参数的对数函数关于定义域、值域以及单调区间讨论问题.19.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元.写出函数()x f P =的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)【答案】(1)550;(2)()()()()()N x x x xx x f P ∈⎪⎩⎪⎨⎧≥<<-≤<==550515501005062100060;(3)6000,,11000【解析】试题分析:(1)当实际出厂单价为51元时,相比原定价60元降低了9元,而每多订购一个全部零件的出厂单价就降低0.02元,用9除以0.02得到450,得到多订购的零件数,再加上100等于550就是一共订的零件数.(2)分情况讨论当订单数小于等于100,出厂单价不变,当订单数在100到550时,零件的实际出厂单价和零件数变化而变化.当零件数大于等于550时,出厂单价就为51,保持不变.(3)根据零件数的单价讨论,列出利润的分情况讨论,再分别求出零件数为500和1000时的利润.试题题析:(1)设每个零件实际出厂价格恰好降为51元时,一次订购量为0x 个,则55002051601000=-+=.x ,因此,当一次订购量为550个时,每个零件的实际出厂价格恰好降为51元 2分当1000≤<x 时,60=P当500100<<x 时,()506210002060x x .P -=--= 当500≥x 时,51=P()()()()()N x x x xx x f P ∈⎪⎩⎪⎨⎧≥<<-≤<==550515501005062100060 6分设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则()()⎪⎪⎩⎪⎪⎨⎧≥∈<<-≤<=-=550115501005022100020402x xN x x x x x x x P L当500=x 时,6000=L ;当1000=x 时,11000=L因此,当销售商一次订购500个零件时,该厂获得的利润为6000元,如果订购100个利润为11000元. 12分 考点:分段函数的应用.20.已知定义域为R 的函数()abx f x x ++-=+122是奇函数.(1)求b ,a 的值;(2)若对任意的R t ∈,不等式()()0222<--+-k t t f t t f 恒成立,求k 的取值范围. 【答案】(1)2=a ,1=b ;(2)⎪⎭⎫ ⎝⎛-∞-31, 【解析】试题分析:(1)根据奇函数的性质,()00=f 可以求出b 的值;再根据奇函数的定义,带入特值1,得到()()11--=f f ,求得a 的值.(2)先判断函数在定义域上是减函数,再通过已知给的式子建立不等式,得到0232>--k t t ,由于对一切t 恒成立,再根据判别式小于0得到结论.试题题析:(1)因为()x f 是奇函数,所以()00=f ,即1021=⇒=+-b a b ()1221++-=∴x x a x f ,又因为()()11--=f f 知21211421=⇒+--=+-a a a 4分由(1)知()1212122211++-=+-=+xx x x f ,易知()x f 在()+∞∞-,上为减函数.又因为()x f 是奇函数,从而不等式:()()0222<--+-k t t f t t f ,等价于()()()k t t f k t t f t t f ++-=---<-2222,因()x f 是减函数,由上式推得:即对一切R t ∈有:t t k 232-<,又31313132322-≥-⎪⎭⎫ ⎝⎛-=-t t t31-<∴k ,即k 的取值范围是⎪⎭⎫ ⎝⎛-∞-31, 13分考点:函数的奇偶性和单调性.21.函数()x f 对于任意的实数y ,x 都有()()()y f x f y x f +=+成立,且当0>x 时()0<x f 恒成立.(1)证明函数()x f 的奇偶性;(2)若()21-=f ,求函数()x f 在[]22,-上的最大值; (3)解关于x 的不等式()()()()24212212-->--f x f x f x f 【答案】(1)见解析;(2)4;(3){}12->-<x x x 或 【解析】试题分析:(1)先求出()00=f ,再取x y -=,证明出()()x f x f -=-,得出()x f 为奇函数.(2)先用定义法证明()x f 是在()+∞∞-,上是减函数,即得出在[]22,-上()2-f 最大.(3)通过已知给出的式子()()()y f x f y x f +=+讲不等式合并成一项,再通过当0>x 时()0<x f 恒成立,即可解出不等式.试题解析:(1)令0==y x 得()00=f ,再令x y -=,即得()()x f x f -=-,所以()x f 是奇函数 2分设任意的R x ,x ∈21,且21x x <,则021>-x x ,由已知得()012<-x x f (1) 又()()()()()121212x f x f x f x f x x f -=-+=-(2) 由(1)(2)可知()()21x f x f >,由函数的单调性定义知()x f 在()+∞∞-,上是减函数 6分[]22,x -∈∴时,()()()()()4121122=-=+-=-=-=f f f f x f m ax ,()x f ∴当[]22,x -∈时的最大值为4. 8分由已知得:()()()()24212212-->--f x f x f x f ,所以()()()()024212212<--++--f x f x f x f , 所以()()()()0222242<--+--f x f x f x f ,所以()04622<++x x f ,当0>x 时()0<x f 恒成立,所以4622++=x x y 恒大于0,解得12->-<x x 或,即原不等式的解集是{}12->-<x x x 或. 14分考点:函数的奇偶性和单调性的综合应用.。
荆州市数学高一上期中经典测试(含答案)
一、选择题1.(0分)[ID :11822]函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为( ) A .()0,1B .()1,2C .()2,3D .()3,42.(0分)[ID :11819]在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭3.(0分)[ID :11808]已知函数()1ln 1xf x x-=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭4.(0分)[ID :11807]如图,点O 为坐标原点,点(1,1)A ,若函数xy a =及log b y x =的图象与线段OA 分别交于点M ,N ,且M ,N 恰好是线段OA 的两个三等分点,则a ,b 满足.A .1a b <<B .1b a <<C .1b a >>D .1a b >>5.(0分)[ID :11805]三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<< B .0.320.3log 220.3<<C .20.30.30.3log 22<<D .20.30.30.32log 2<<6.(0分)[ID :11799]已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩是(,)-∞+∞上的减函数,那么a的取值范围是( ) A .(0,1)B .1(0,)3C .11[,)73D .1[,1)77.(0分)[ID :11782]设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( ) A .1-B .13-C .12-D .138.(0分)[ID :11777]设log 3a π=,0.32b =,21log 3c =,则( ) A .a c b >>B .c a b >>C .b a c >>D .a b c >>9.(0分)[ID :11755]函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ).A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]10.(0分)[ID :11750]函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( ) A . B .C .D .11.(0分)[ID :11795]已知全集U =R ,集合A ={x |x 2-x -6≤0},B ={x |14x x +->0},那么集合A ∩(∁U B )=( ) A .{x |-2≤x <4} B .{x |x ≤3或x ≥4} C .{x |-2≤x <-1}D .{x |-1≤x ≤3}12.(0分)[ID :11792]函数223()2xx xf x e +=的大致图像是( )A .B .C .D .13.(0分)[ID :11766]函数f(x)=23x x +的零点所在的一个区间是 A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)14.(0分)[ID :11742]已知0.80.820.7,log 0.8, 1.1a b c ===,则,,a b c 的大小关系是( ) A .a b c << B .b a c << C .a c b <<D .b c a <<15.(0分)[ID :11804]已知函数()f x 的定义域为R .当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则(6)f =( ) A .2-B .1-C .0D .2二、填空题16.(0分)[ID :11921]函数的定义域是 .17.(0分)[ID :11909]设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.18.(0分)[ID :11892]若1∈{}2,a a, 则a 的值是__________19.(0分)[ID :11869]如果函数221xx y a a =+-(0a >,且1a ≠)在[]1,1-上的最大值是14,那么a 的值为__________.20.(0分)[ID :11844]有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两 种都没买的有 人.21.(0分)[ID :11843]关于函数()f x =__________.①()f x 的定义域为[)(]1,00,1-;②()f x 的值域为()1,1-;③()f x 的图象关于原点对称;④()f x 在定义域上是增函数. 22.(0分)[ID :11837]已知实数0a ≠,函数2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩若()()11f a f a -=+,则a 的值为___________.23.(0分)[ID :11835]甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程()(1,2,3,4)i f x i =关于时间(0)x x ≥的函数关系式分别为1()21x f x =-,22()f x x =,3()f x x =,42()log (1)f x x =+,有以下结论:①当1x >时,甲走在最前面; ②当1x >时,乙走在最前面;③当01x <<时,丁走在最前面,当1x >时,丁走在最后面; ④丙不可能走在最前面,也不可能走在最后面; ⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).24.(0分)[ID :11830]已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.25.(0分)[ID :11904]已知函数())ln1f x x =+,()4f a =,则()f a -=________. 三、解答题26.(0分)[ID :12019]近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike ”计划在甲、乙两座城市共投资160万元,根据行业规定,每个城市至少要投资30万元,由前期市场调研可知:甲城市收益P 与投入(a 单位:万元)满足6P =,乙城市收益Q 与投入(b 单位:万元)满足124Q b =+,设甲城市的投入为(x 单位:万元),两个城市的总收益为()(f x 单位:万元).(1)写出两个城市的总收益()(f x 万元)关于甲城市的投入(x 万元)的函数解析式,并求出当甲城市投资72万元时公司的总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?27.(0分)[ID :11981]已知函数()212ax f x x b +=+是奇函数,且()312f =.(1)求实数a ,b 的值;(2)判断函数()f x 在(],1-∞-上的单调性,并用定义加以证明. (3)若[]2,1x ∈--,求函数的值域28.(0分)[ID :11962]已知()42log ,[116]f x x x =+∈,,函数()()()22[]g x f x f x =+.(1)求函数()g x 的定义域;(2)求函数()g x 的最大值及此时x 的值.29.(0分)[ID :11949]已知函数()f x 的定义域是(0,)+∞,且满足()()()f xy f x f y =+,1()12f =,如果对于0x y <<,都有()()f x f y >.(1)求()1f 的值;(2)解不等式()(3)2f x f x -+-≥-.30.(0分)[ID :11944]已知函数24,02()(2)2,2x x f x x x a x a x ⎧-<≤⎪=⎨⎪-++->⎩,其中a 为实数.(1)若函数()f x 为定义域上的单调函数,求a 的取值范围.(2)若7a <,满足不等式()0f x a ->成立的正整数解有且仅有一个,求a 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.C 3.D 4.A 5.A 6.C 7.B 8.C 9.D 10.B 11.D 12.B 13.B 14.B 15.D二、填空题16.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域17.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注18.-1【解析】因为所以或当时不符合集合中元素的互异性当时解得或时符合题意所以填19.3或【解析】【分析】令换元后函数转化为二次函数由二次函数的性质求得最大值后可得但是要先分类讨论分和求出的取值范围【详解】设则对称轴方程为若则∴当时解得或(舍去)若则∴当时解得或(舍去)答案:3或【点20.【解析】【分析】【详解】试题分析:两种都买的有人所以两种家电至少买一种有人所以两种都没买的有人或根据条件画出韦恩图:(人)考点:元素与集合的关系21.①②③【解析】【分析】由被开方式非负和分母不为0解不等式可得f(x)的定义域可判断①;化简f(x)讨论0<x≤1﹣1≤x<0分别求得f(x)的范围求并集可得f(x)的值域可判断②;由f(﹣1)=f(22.【解析】【分析】分两种情况讨论分别利用分段函数的解析式求解方程从而可得结果【详解】因为所以当时解得:舍去;当时解得符合题意故答案为【点睛】本题主要考查分段函数的解析式属于中档题对于分段函数解析式的考23.③④⑤【解析】试题分析:分别取特值验证命题①②;对数型函数的变化是先快后慢当x=1时甲乙丙丁四个物体又重合从而判断命题③正确;指数函数变化是先慢后快当运动的时间足够长最前面的动物一定是按照指数型函数24.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题25.【解析】【分析】发现计算可得结果【详解】因为且则故答案为-2【点睛】本题主要考查函数的性质由函数解析式计算发现是关键属于中档题三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】判断函数()2 312xf x x-⎛⎫=- ⎪⎝⎭单调递增,求出f(0)=-4,f(1)=-1,f(2)=3>0,即可判断.【详解】∵函数()2 312xf x x-⎛⎫=- ⎪⎝⎭单调递增,∴f(0)=-4,f(1)=-1,f(2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2,故选B.【点睛】本题考查了函数的单调性,零点的存在性定理的运用,属于容易题.2.C解析:C【解析】【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.3.D解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数,()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.4.A解析:A 【解析】 【分析】由,M N 恰好是线段OA 的两个三等分点,求得,M N 的坐标,分别代入指数函数和对数函数的解析式,求得,a b 的值,即可求解. 【详解】由题意知(1,1)A ,且,M N 恰好是线段OA 的两个三等分点,所以11,33M ⎛⎫⎪⎝⎭,22,33N ⎛⎫ ⎪⎝⎭, 把11,33M ⎛⎫ ⎪⎝⎭代入函数xy a =,即1313a =,解得127a =,把22,33N ⎛⎫ ⎪⎝⎭代入函数log b y x =,即22log 33b =,即得32239b ⎛⎫== ⎪⎝⎭,所以1a b <<. 故选A. 【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答熟练应用指数函数和对数函数的解析式求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.5.A解析:A 【解析】 【分析】利用指数函数与对数函数的单调性即可得出. 【详解】∵0<0.32<1,20.3>1,log 0.32<0, ∴20.3>0.32>log 0.32.故选A . 【点睛】本题考查了指数函数与对数函数的单调性,属于基础题.6.C解析:C 【解析】 【分析】要使函数()f x 在(,)-∞+∞上为减函数,则要求①当1x <,()(31)4f x a x a =-+在区间(,1)-∞为减函数,②当1x ≥时,()log a f x x =在区间[1,)+∞为减函数,③当1x =时,(31)14log 1a a a -⨯+≥,综上①②③解方程即可.【详解】令()(31)4g x a x =-+,()log a h x x =.要使函数()f x 在(,)-∞+∞上为减函数,则有()(31)4g x a x =-+在区间(,1)-∞上为减函数,()log a h x x =在区间[1,)+∞上为减函数且(1)(1)g h ≥,∴31001(1)(31)14log 1(1)a a a g a a h -<⎧⎪<<⎨⎪=-⨯+≥=⎩,解得1173a ≤<. 故选:C. 【点睛】考查分段函数求参数的问题.其中一次函数y ax b =+,当0a <时,函数y ax b =+在R 上为减函数,对数函数log ,(0)a y x x =>,当01a <<时,对数函数log ay x =在区间(0,)+∞上为减函数.7.B解析:B 【解析】 【分析】由题意,函数()f x 在[0,)+∞上单调递减,又由函数()f x 是定义上的偶函数,得到函数()f x 在(,0)-∞单调递增,把不等式(1)()f x f x m -≤+转化为1x x m -≤+,即可求解. 【详解】易知函数()f x 在[)0,+∞上单调递减, 又函数()f x 是定义在R 上的偶函数, 所以函数()f x 在(),0-∞上单调递增, 则由()()1f x f x m -≤+,得1x x m -≥+,即()()221x x m -≥+,即()()22210g x m x m =++-≤在[],1x m m ∈+上恒成立,则()()()()()()3110121310g m m m g m m m ⎧=-+≤⎪⎨+=++≤⎪⎩,解得113m -≤≤-, 即m 的最大值为13-. 【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为1x x m -≤+ 求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.8.C解析:C 【解析】 【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解. 【详解】 由题得21log 3c =2log 10<=,a>0,b>0. 0.30log 3log 1,22 1.a b πππ====所以b a c >>.故答案为C 【点睛】(1)本题主要考查指数函数对数函数的单调性,考查实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)实数比较大小,一般先和“0”比,再和“±1”比.9.D解析:D 【解析】 【分析】 【详解】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤-(1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.10.B解析:B 【解析】 【分析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果. 【详解】当2x =时,110x x -=>,函数有意义,可排除A ;当2x =-时,1302x x -=-<,函数无意义,可排除D ;又∵当1x >时,函数1y x x=-单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,可排除C ; 故选:B. 【点睛】本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.11.D解析:D 【解析】依题意A ={x |-2≤x ≤3},B ={x |x <-1或x >4},故∁U B ={x |-1≤x ≤4},故A ∩(∁U B )={x |-1≤x ≤3},故选D.12.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 13.B解析:B 【解析】试题分析:因为函数f(x)=2x +3x 在其定义域内是递增的,那么根据f(-1)=153022-=-<,f (0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B . 考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间.14.B解析:B 【解析】 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出a b c 、、的取值范围,从而可得结果. 【详解】0.8000.70.71a <=<=,22log 0.8log 10b =<=, 0.801.1 1.11c =>=,b ac ∴<<,故选B. 【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间 );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.15.D解析:D 【解析】 试题分析:当时,11()()22f x f x +=-,所以当时,函数是周期为的周期函数,所以,又函数是奇函数,所以,故选D .考点:函数的周期性和奇偶性.二、填空题16.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1- 考点:函数定义域17.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注解析:1(,)4-+∞ 【解析】由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞. 【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.18.-1【解析】因为所以或当时不符合集合中元素的互异性当时解得或时符合题意所以填解析:-1 【解析】 因为{}21,a a∈,所以1a =或21a=,当1a =时,2a a =,不符合集合中元素的互异性,当21a =时,解得1a =或1a =-,1a =-时2a a ≠,符合题意.所以填1a =-.19.3或【解析】【分析】令换元后函数转化为二次函数由二次函数的性质求得最大值后可得但是要先分类讨论分和求出的取值范围【详解】设则对称轴方程为若则∴当时解得或(舍去)若则∴当时解得或(舍去)答案:3或【点解析:3或13【解析】 【分析】令x t a =,换元后函数转化为二次函数,由二次函数的性质求得最大值后可得a .但是要先分类讨论,分1a >和01a <<求出t 的取值范围. 【详解】设0x t a =>,则221y t t =+-,对称轴方程为1t =-.若1,[1,1]a x >∈-,则1,xt a a a ⎡⎤=∈⎢⎥⎣⎦, ∴当t a =时,2max 2114y a a =+-=,解得3a =或5a =-(舍去).若01a <<,[1,1]x ∈-,则1,xt a a a⎡⎤=∈⎢⎥⎣⎦∴当1t a =时,2max 112114y a a ⎛⎫=+⨯-= ⎪⎝⎭解得13a =或15a =-(舍去)答案:3或13本题考查指数型复合函数的最值,本题函数类型的解题方法是用换元法把函数转化为二次函数求解.注意分类讨论.20.【解析】【分析】【详解】试题分析:两种都买的有人所以两种家电至少买一种有人所以两种都没买的有人或根据条件画出韦恩图:(人)考点:元素与集合的关系解析:【解析】【分析】【详解】试题分析:两种都买的有人,所以两种家电至少买一种有人.所以两种都没买的有人.或根据条件画出韦恩图:(人).考点:元素与集合的关系.21.①②③【解析】【分析】由被开方式非负和分母不为0解不等式可得f(x )的定义域可判断①;化简f(x)讨论0<x≤1﹣1≤x<0分别求得f(x)的范围求并集可得f(x)的值域可判断②;由f(﹣1)=f(解析:①②③【解析】【分析】由被开方式非负和分母不为0,解不等式可得f(x)的定义域,可判断①;化简f(x),讨论0<x≤1,﹣1≤x<0,分别求得f(x)的范围,求并集可得f(x)的值域,可判断②;由f(﹣1)=f(1)=0,f(x)不是增函数,可判断④;由奇偶性的定义得f(x)为奇函数,可判断③.【详解】①,由240110x xx⎧-≥⎪⎨--≠⎪⎩,解得﹣1≤x≤1且x≠0,可得函数()24 11 x xf xx -=--的定义域为[﹣1,0)∪(0,1],故①正确;②,由①可得f(x)=24x xx--,即f(x)=﹣2||1x xx-,当0<x≤1可得f(x21x-1,0];当﹣1≤x<0可得f(x21x-[0,可得f (x )的值域为(﹣1,1),故②正确;③,由f (x )=﹣||x x 的定义域为[﹣1,0)∪(0,1],关于原点对称,f (﹣x )=|x x=﹣f (x ),则f (x )为奇函数,即有f (x )的图象关于原点对称,故③正确.④,由f (﹣1)=f (1)=0,则f (x )在定义域上不是增函数,故④错误; 故答案为:①②③ 【点睛】本题考查函数的性质和应用,主要是定义域和值域的求法、单调性的判断和图象的特征,考查定义法和分类讨论思想,以及化简运算能力和推理能力,属于中档题.22.【解析】【分析】分两种情况讨论分别利用分段函数的解析式求解方程从而可得结果【详解】因为所以当时解得:舍去;当时解得符合题意故答案为【点睛】本题主要考查分段函数的解析式属于中档题对于分段函数解析式的考解析:34a =-【解析】 【分析】分0a >,0a <两种情况讨论,分别利用分段函数的解析式求解方程()()11f a f a -=+,从而可得结果.【详解】 因为2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩所以,当0a >时,()()2(1)(11)21a f a f a a a a -+=-+=⇒--+,解得:3,2a =-舍去;当0a <时,()()2(1)(11)21a f a f a a a a ++=--=⇒--+,解得34a =-,符合题意,故答案为34-. 【点睛】本题主要考查分段函数的解析式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.23.③④⑤【解析】试题分析:分别取特值验证命题①②;对数型函数的变化是先快后慢当x=1时甲乙丙丁四个物体又重合从而判断命题③正确;指数函数变化是先慢后快当运动的时间足够长最前面的动物一定是按照指数型函数解析:③④⑤ 【解析】试题分析:分别取特值验证命题①②;对数型函数的变化是先快后慢,当x=1时甲、乙、丙、丁四个物体又重合,从而判断命题③正确;指数函数变化是先慢后快,当运动的时间足够长,最前面的动物一定是按照指数型函数运动的物体,即一定是甲物体;结合对数型和指数型函数的图象变化情况,可知命题④正确.解:路程f i (x )(i=1,2,3,4)关于时间x (x≥0)的函数关系是:,,f 3(x )=x ,f 4(x )=log 2(x+1),它们相应的函数模型分别是指数型函数,二次函数,一次函数,和对数型函数模型. 当x=2时,f 1(2)=3,f 2(2)=4,∴命题①不正确; 当x=4时,f 1(5)=31,f 2(5)=25,∴命题②不正确;根据四种函数的变化特点,对数型函数的变化是先快后慢,当x=1时甲、乙、丙、丁四个物体又重合,从而可知当0<x <1时,丁走在最前面,当x >1时,丁走在最后面, 命题③正确;指数函数变化是先慢后快,当运动的时间足够长,最前面的动物一定是按照指数型函数运动的物体,即一定是甲物体,∴命题⑤正确.结合对数型和指数型函数的图象变化情况,可知丙不可能走在最前面,也不可能走在最后面,命题④正确. 故答案为③④⑤.考点:对数函数、指数函数与幂函数的增长差异.24.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以4x c =-2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.25.【解析】【分析】发现计算可得结果【详解】因为且则故答案为-2【点睛】本题主要考查函数的性质由函数解析式计算发现是关键属于中档题 解析:2-【解析】 【分析】发现()()f x f x 2+-=,计算可得结果. 【详解】因为()()))()22f x f x lnx 1lnx 1ln 122x x +-=+++=+-+=,()()f a f a 2∴+-=,且()f a 4=,则()f a 2-=-.故答案为-2 【点睛】本题主要考查函数的性质,由函数解析式,计算发现()()f x f x 2+-=是关键,属于中档题.三、解答题 26.(1)()1364f x x =-+,30130x ≤≤,66万元(2)甲城市投资128万元,乙城市投资32万元 【解析】 【分析】() 1由题知,甲城市投资x 万元,乙城市投资160x -万元,求出函数的解析式,利用当甲城市投资72万元时公司的总收益;()()12364f x x =-+,30130x ≤≤,令t =,则t ∈,转化为求函数2,6143y t t ∈=-++最值,即可得出结论.【详解】()1由题知,甲城市投资x 万元,乙城市投资160x -万元,所以()()11616023644f x x x =+-+=-+, 依题意得3016030x x ≥⎧⎨-≥⎩,解得30130x ≤≤,故()1364f x x =-+,30130x ≤≤, 当72x =时,此时甲城市投资72万元,乙城市投资88万元,所以总收益()136664f x x =-+=. ()()12364f x x =-+,30130x ≤≤令t =t ∈.2,6143y t t ∈=-++当t =,即128x =万元时,y 的最大值为68万元, 故当甲城市投资128万元,乙城市投资32万元时, 总收益最大,且最大收益为68万元. 【点睛】本题考查实际问题的应用,二次函数的性质以及换元法的应用,考查转化思想以及计算能力,属于中档题.27.(1)2,0a b ==;(2)()f x 在(],1-∞-上为增函数,证明见解析;(3)93,42⎡⎤--⎢⎥⎣⎦. 【解析】 【分析】(1)由函数为奇函数可得()312f =,()312f -=-,再联立解方程组即可得解; (2)利用定义法证明函数()f x 在(],1-∞-上为增函数即可; (3)由函数()f x 在[]2,1--上为增函数,则可求得函数的值域. 【详解】解:(1)由函数()212ax f x x b+=+是奇函数,且()312f =,则()312f -=-,即22113212(1)132(1)2a b a b ⎧⨯+=⎪⨯+⎪⎨⨯-+⎪=-⎪⨯-+⎩ ,解得:20a b =⎧⎨=⎩ ; (2)由(1)得:()2212x f x x+=,则函数()f x 在(],1-∞-上为增函数; 证明如下: 设121x x <≤-,则12()()f x f x -=211212x x +222212x x +-=2212212112222x x x x x x x x +--121212()(21)2x x x x x x --=,又因为121x x <≤-,所以120x x -<,12210x x ->,120x x >, 即12())0(f x f x -< ,即12()()f x f x <, 故()f x 在(],1-∞-上为增函数;(3)由(2)得:函数()f x 在[]2,1--上为增函数,所以(2)()(1)f f x f -≤≤-,即93()42f x -≤≤-,故[]2,1x ∈--,函数的值域为:93,42⎡⎤--⎢⎥⎣⎦. 【点睛】本题考查了函数的奇偶性及增减性,重点考查了利用函数的性质求函数的值域问题,属中档题.28.(1)[1]4,;(2)4x =时,函数有最大值13. 【解析】 【分析】(1)由已知()f x 的定义域及复合函数的定义域的求解可知,2116116x x ≤≤⎧⎨≤≤⎩,解不等式可求(2)由已知可求()()()22[]g x f x f x +=,结合二次函数的性质可求函数g x ()的最值及相应的x . 【详解】 解:(1)()42log [116]f x x x =+∈,,,()()()22[]g x f x f x +=.由题意可得,2116116x x ≤≤⎧⎨≤≤⎩, 解可得,14x ≤≤即函数()g x 的定义域[1]4,; (2)()42log ,[116]f x x x =+∈,,()()()()222224444[]2log 2log log 6log 6g x f x f x x x x x ∴=+=+++=++设4log t x =,则[01]t ∈,, 而()()226633g t t t t =++=+-在[0]1,单调递增, 当1t =,即4x =时,函数有最大值13. 【点睛】本题主要考查了对数函数的性质,二次函数闭区间上的最值求解,及复合函数的定义域的求解,本题中的函数()g x 的定义域是容易出错点.29.(1)()10f = (2){|10}x x -≤<. 【解析】 【分析】(1)根据()()()f xy f x f y =+,令1x y ==,即可得出()1f 的值;(2)由0x y <<,都有()()f x f y >知()f x 为()0,+∞上的减函数,根据()f x 的单调性,结合函数的定义域,列出不等式解出x 的范围即可.【详解】(1)令1x y ==,则()()()111f f f =+,()10f =.(2)解法一:由x y <<,都有()()f x f y >知()f x 为()0,+∞上的减函数,且030x x ->⎧⎨->⎩,即0x <. ∵()()()f xy f x f y =+,(),0,x y ∈+∞且112f ⎛⎫= ⎪⎝⎭, ∴()()32f x f x -+-≥-可化为()()1322f x f x f ⎛⎫-+-≥- ⎪⎝⎭,即()()113022f x f f x f ⎛⎫⎛⎫-++-+≥ ⎪ ⎪⎝⎭⎝⎭=()()()331112222x x x x f f f f f f --⎛⎫⎛⎫⎛⎫⇔-+≥⇔-⋅≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则03122x x x <⎧⎪⎨--⋅≤⎪⎩,解得10x -≤<. ∴不等式()()32f x f x -+-≥-的解集为{|10}x x -≤<.【点睛】本题主要考查抽象函数的定义域、不等式的解法,属于中档题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出. 30.(1)2a ≤(2)03a ≤<【解析】【分析】(1)分析当02x <≤时的单调性,可得2x >的单调性,由二次函数的单调性,可得a 的范围;(2)分别讨论当0a <,当02a ≤≤时,当23a <<时,当37a ≤<,结合函数的单调性和最值,即可得到所求范围.【详解】(1)由题意,当02x <≤时,4()f x x x =-为减函数, 当2x >时,()()222f x x a x a =-++-,若2a ≤时,()()222f x x a x a =-++-也为减函数,且()()20f x f <=, 此时函数()f x 为定义域上的减函数,满足条件;若2a >时,()()222f x x a x a =-++-在22,2a +⎛⎫ ⎪⎝⎭上单调递增,则不满足条件. 综上所述,2a ≤.(2)由函数的解析式,可得()()13, 20f f ==,当0a <时,()()20, 13f a f a =>=>,不满足条件;当02a ≤≤时,()f x 为定义域上的减函数,仅有()13f a =>成立,满足条件; 当23a <<时,在02x <≤上,仅有()13f a =>,对于2x >上,()f x 的最大值为22(2)1244a a f a +-⎛⎫=≤< ⎪⎝⎭, 不存在x 满足()0f x a ->,满足条件;当37a ≤<时,在02x <≤上,不存在整数x 满足()0f x a ->,对于2x >上,22(2)(4)123444a a a ----=<-, 不存在x 满足()0f x a ->,不满足条件;综上所述,03a ≤<.【点睛】本题主要考查了分段函数的运用,以及函数的单调性的判断和不等式有解问题,其中解答中熟练应用函数的单调性,以及把函数的有解问题转化为函数的最值问题是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档题.。
湖北省荆州市荆州中学高一上学期期中数学试题
湖北省荆州市荆州中学高一上学期期中数学试题一、单选题1.已知集合{}4,5,6,7A =,集合{}|36,B x x x N =≤<∈,N 为自然数集,则A B =( )A .{}4,5,6B .{}4,5C .{}3,4,5D .{}5,6,7【答案】B【解析】由题意首先求得集合B ,然后进行交集运算即可. 【详解】由题意可得:{}3,4,5B =,故A B ={}4,5.故选:B . 【点睛】本题主要考查集合的表示方法,交集的定义与运算,属于基础题.2.已知2log 3a =, 1.22.1b =,0.3log 3.8c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c a b <<C .b c a <<D .c b a <<【答案】B【解析】由题意利用中间值比较所给的数与0、1、2的大小即可得到a ,b ,c 的大小关系. 【详解】由题意可知:()2log 31,2a =∈, 1.212.21.12b >=>,0.3log 3.80c =<,则c a b <<. 故选:B . 【点睛】本题主要考查指数函数和对数函数的性质,实数比较大小的方法等知识,意在考查学生的转化能力和计算求解能力.3.下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速;(3)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间.A .(1)(2)(4)B .(4)(2)(1)C .(4)(3)(1)D .(4)(1)(2)【答案】B【解析】由实际背景出发确定图象的特征,从而解得. 【详解】(1)我离开家不久,发现自己把作业本放在家里了,于是立刻返回家里取了作业本再上学,中间有回到家的过程,故④成立;(2)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速,②符合; (3)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间,①符合. 故选:B . 【点睛】本题考查了学生的识图与图象的应用.4.如图的曲线是幂函数ny x =在第一象限内的图像.已知n 分别取2±,12±四个值,与曲线1c 、2c 、3c 、4c 相应的n 依次为( )A .2,12,12-,2-B .2,12,2-,12-C .12-,2-,2,12D .2-,12-,12,2 【答案】A【解析】根据幂函数112222,,,y x y x y x y x --====的图像,判断出正确选项.【详解】依题意可知,四条曲线分别表示112222,,,y x y x y x y x --====的图像,当1x >时,幂函数y x α=的图像随着α的变大而变高,故1c 、2c 、3c 、4c 相应的n 依次为2,12,12-,2-. 故选:A. 【点睛】本小题主要考查幂函数的图像与性质,考查函数图像的识别,属于基础题. 5.若0x 是方程32x e x =-的根,则0x 属于区间( ) A .()1,0- B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,2【答案】C【解析】由题意构造新函数,结合函数零点存在定理即可确定零点所在的区间. 【详解】构造函数()23xf x e x =+-,则原问题等价于求解函数零点0x 所在的区间.注意到:()1150f e -=-<,()020f =-<,1202f ⎛⎫=< ⎪⎝⎭, ()110f e =->,()2210f e =+>,结合零点存在定理可得0x 属于区间1,12⎛⎫⎪⎝⎭.故选:C . 【点睛】本题主要考查函数零点存在定理,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.函数的单调递增区间为A .B .C .D .【答案】D【解析】根据复合函数的单调性“同增异减”,注意函数的定义域,转化求解即可. 【详解】函数, 令,,则有,在定义域内是增函数,只需求解,,的增区间即可.函数开口向上,对称轴.,,解得或,增区间为:.故选:D . 【点睛】本题考查了复合函数的单调性的求解,根据“同增异减”即可求解属于基础题. 7.已知偶函数()f x 在[0,)+∞上递增,且2()3f x f ⎛⎫<⎪⎝⎭,则实数x 的取值范围是( ) A .22,33⎛⎫-⎪⎝⎭B .12,33⎡⎫⎪⎢⎣⎭C .20,3⎡⎫⎪⎢⎣⎭D .20,3⎛⎫ ⎪⎝⎭【答案】A【解析】由题意结合函数的奇偶性脱去f 符号求解不等式即可确定实数x 的取值范围. 【详解】函数为偶函数,则不等式2()3f x f ⎛⎫< ⎪⎝⎭等价于()23f x f ⎛⎫< ⎪⎝⎭,结合函数的单调性脱去f 符号可得:23x <,解得:2233x -<<, 即实数x 的取值范围是22,33⎛⎫- ⎪⎝⎭. 故选:A . 【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若f (x )为偶函数,则f (-x )=f (x )=f (|x |).8.若关于x 的方程20x x m --=在[1,1]-上有解,则实数m 的取值范围是( ) A .[1,1]- B .1,4⎡⎫-+∞⎪⎢⎣⎭C .(,1]-∞D .1,24⎡⎤-⎢⎥⎣⎦【答案】D【解析】将原问题转化为两个函数有交点的问题,然后求解函数的值域即可确定实数m 的取值范围. 【详解】题中的方程即2x x m -=,则原问题等价于函数y m =和函数2y x x =-在区间[]1,1-上有交点,二次函数2y x x =-开口向上,对称轴为12x =, 故12x =时,min 14y =-,1x =-时,max 2y =,则函数2y x x =-在区间[]1,1-上的值域为1,24⎡⎤-⎢⎥⎣⎦,实数m 的取值范围是1,24⎡⎤-⎢⎥⎣⎦.故选:D . 【点睛】本题主要考查等价转化的数学思想,二次函数在给定区间求值域的方法等知识,意在考查学生的转化能力和计算求解能力.9.已知0a >,1a ≠,xy a =和log ()a y x =-的图像只可能是( )A .B .C .D .【答案】B【解析】由题意利用函数的定义域和函数的单调性排除错误选项即可确定满足题意的函数图像. 【详解】函数log ()a y x =-的定义域为(),0-∞,据此可排除选项A ,C ;函数x y a =与log ()a y x =-的单调性相反,据此可排除选项D , 故选:B . 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.10.已知定义域为(,)-∞+∞的函数()f x 都可以表示成一个奇函数()g x 与一个偶函数()h x 之和,若()x f x e =(e 为自然对数的底),则( )A .()xxg x e e -=-,()xxh x e e -=+B .()x xg x e e-=+,()x xh x e e -=-C .()2x x e e g x --=,()2x x e e h x -+=D .()2x x e e g x -+=,()2x xe e h x --=【答案】C【解析】由题意首先写出一般函数构造奇函数、偶函数的式子,然后确定题中所给函数需要构造的奇函数、偶函数的解析式即可. 【详解】 注意到()()()2f x f x g x --=为奇函数,()()()2f x f x h x +-=为偶函数,且()()()g x h x f x +=,故当()xf x e =时,()2x x e eg x --=,()2x xe e h x -+=.故选:C . 【点睛】本题主要考查函数的表示方法,函数的奇偶性及其应用等知识,意在考查学生的转化能力和计算求解能力.11.高斯是德国著名的数学家,近代数学奠基人,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设R x ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如[3,5]4-=-,[2,1]2=,已知函数31()133x xf x =-+,则函数[()]y f x =的值域是( )A .{0,1}B .{1}C .{1,0,1}-D .{1,0}-【答案】D【解析】采用分离常数法可将函数化简为()21313x f x =-+,进而求得()f x 的值域;根据[]x 定义可求得()f x ⎡⎤⎣⎦的所有可能的值,进而得到函数的值域. 【详解】()31311111211133133133313x x x x x xf x +-=-=-=--=-++++ 30x > 10113x ∴<<+ 121233133x∴-<-<+,即()12,33f x ⎛⎫∈- ⎪⎝⎭()1f x ∴=-⎡⎤⎣⎦或0 ()y f x ∴=⎡⎤⎣⎦的值域为{}1,0-故选:D 【点睛】本题考查新定义运算问题的求解,关键是能够通过分离常数的方式求得已知函数的解析式,再结合新定义运算求得所求函数的值域. 12.已知0m >,函数2()()24()x x m f x x mx m x m ⎧≤=⎨-+>⎩,若存在实数b ,使得函数()y f x =与y b =的图像恰有三个公共点,则实数m 的取值范围是( )A .(3,)+∞B .(3,8)C .(,3)-∞-D .(8,3)--【答案】A【解析】由题意首先研究函数()f x 的图像的性质,然后数形结合得到关于m 的不等式,求解不等式即可确定实数m 的取值范围. 【详解】注意到二次函数224y x mx m =-+开口向上,对称轴为y m =,据此绘制满足题意的函数()f x 的图像如图所示:满足题意时,只需当x m =时,224x x mx m >-+,即:2224m m m m >-+,由于0m >,故:2224m m m m >-+, 整理可得:230m m ->,结合0m >可得:3m >. 即实数m 的取值范围是(3,)+∞. 故选:A . 【点睛】本题主要考查分段函数的性质,数形结合的数学思想,二次函数的性质等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【答案】0-0.1+0.5-0.4=0【考点】指数对数的运算。
湖北省荆州市公安三中2014-2015学年高一上学期12月月考数学(理)试卷Word版含解析
2014-2015学年湖北省荆州市公安三中高一(上)12月月考数学试卷(理科)一.选择题:(共10小题,每题5分,共50分)1.已知全集U=Z,A={﹣1,0,1,2},B={x|x2=x},则A∩∁U B为( )A.{﹣1,2} B.{﹣1,0} C.{0,1} D.{1,2}2.cos24°cos36°﹣sin24°cos54°=( )A.cos12°B.sin12°C.D.3.已知函数f(x)和g(x)分别是定义在[﹣10,10]上的奇函数和偶函数,则函数F(x)=f(x)•g(x)的图象关于( )A.x轴对称B.y轴对称C.原点对称 D.直线y=x对称4.下列函数中,在区间(﹣∞,0)上是增函数的是( )A.y=x2﹣4x+8 B.y=丨x﹣1丨C.y=﹣D.y=5.下列四组函数:(1)f(x)=x,(2)f(x)=x,(3)f(x)=1,g(x)=x0(4)f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1其中表示同一函数的是( )A.(1) B.(2)(3) C.(2)(4) D.(2)(3)(4)6.若函数为奇函数,则a=( )A.B.C.D.17.函数的图象上相邻两条对称轴间的距离是,则ω的一个值为( )A.B.C.D.8.给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下列函数中不满足其中任何一个等式的是( )A.f(x)=3x B.f(x)=sinx C.f(x)=log2x D.f(x)=tanx9.把函数y=(cos3x﹣sin3x)的图象适当变化就可以得到y=﹣sin3x的图象,这个变化可以是( )A.沿x轴方向向右平移B.沿x轴方向向左平移C.沿x轴方向向右平移D.沿x轴方向向左平移10.方程log2x+log2(x﹣1)=1的解集为M,方程22x+1﹣9•2x+4=0的解集为N,那么M与N的关系是( )A.M=N B.M⊊N C.N⊊M D.M∩N=φ二、填空题:(共5个小题,每题5分,共25分)11.计算(lg5)2+lg50•lg2=__________.12.若tanx=3,则1+sinxcosx的值为__________.13.已知cosαcos(α+β)+sinαsin(α+β)=,β是第二象限角,则tan2β=__________.14.若关于x的方程cos2x﹣sinx+a=0有解,则实数a的取值范是__________.15.设函数的最小正周期为,且其图象关于直线对称,则下列四个结论中正确的编号为__________(把你认为正确的结论编号都填上);①图象关于直线对称;②图象关于点对称;③在上是减函数;④在上是增函数.三、解答题:(共六个小题,75分)16.设集合A={x|﹣7≤2x﹣1≤7},B={x|m﹣1≤x≤3m﹣2},R为实数集(1)当m=3时,求A∩B与A∪(∁R B);(2)若A∩B=B,求实数m的取值范围.17.已知第四象限角α的终边与单位圆交于点(1)写出sinα,cosα,tanα的值;(2)求的值.18.已知函数f(x)的定义域是(0,+∞),当x>1时f(x)>0,且f(xy)=f(x)+f(y);(1)求f(1);(2)证明:f(x)在定义域上是增函数;(3)如果f(3)=1,解不等式f(x)+f(x﹣2)≥2.19.已知函数f(x)=2sin2(+x)﹣cos2x,x∈[,].(Ⅰ)求f(x)的最大值和最小值;(Ⅱ)若不等式|f(x)﹣m|<2在x∈[,]上恒成立,求实数m的取值范围.20.已知(1)设h(x)=f(x)g(x),求函数h(x)在[0,π]上的单调递减区间;(2)若一动直线x=t与函数y=f(x),y=g(x)的图象分别交于M,N两点,求|MN|的最大值.21.已知函数f(x)=log9(9x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)若函数y=f(x)的图象与直线没有交点,求b的取值范围;(3)设,若函数f(x)与h(x)的图象有且只有一个公共点,求实数a的取值范围.2014-2015学年湖北省荆州市公安三中高一(上)12月月考数学试卷(理科)一.选择题:(共10小题,每题5分,共50分)1.已知全集U=Z,A={﹣1,0,1,2},B={x|x2=x},则A∩∁U B为( )A.{﹣1,2} B.{﹣1,0} C.{0,1} D.{1,2}【考点】交、并、补集的混合运算.【分析】B为二次方程的解集,首先解出,再根据交集、补集意义直接求解.【解答】解:由题设解得B={0,1},C U B={x∈Z|x≠0且x≠1},∴A∩C U B={﹣1,2},故选A【点评】本题考查集合的基本运算,属容易题.2.cos24°cos36°﹣sin24°cos54°=( )A.cos12°B.sin12°C.D.【考点】两角和与差的正弦函数.【专题】整体思想;综合法;三角函数的求值.【分析】由条件利用诱导公式、两角和差的余弦公式求得所给式子的值.【解答】解:cos24°cos36°﹣sin24°cos54°=cos24°cos36°﹣sin24°sin36°=cos(24°+36°)=cos60°=,故选:C.【点评】本题主要考查诱导公式、两角和差的余弦公式的应用,属于基础题.3.已知函数f(x)和g(x)分别是定义在[﹣10,10]上的奇函数和偶函数,则函数F(x)=f(x)•g(x)的图象关于( )A.x轴对称B.y轴对称C.原点对称 D.直线y=x对称【考点】函数奇偶性的性质.【专题】规律型;函数思想;数学模型法;函数的性质及应用.【分析】根据函数奇偶性的性质:奇•偶=奇,可得函数F(x)=f(x)•g(x)为奇函数,进而得到答案.【解答】解:∵函数f(x)和g(x)分别是定义在[﹣10,10]上的奇函数和偶函数,根据函数奇偶性的性质,∴可得:函数F(x)=f(x)•g(x)为奇函数,故函数F(x)的图象关于原点对称,故选:C【点评】本题考查的知识点是函数奇偶性的性质,熟练掌握函数奇偶性的性质,是解答的关键.4.下列函数中,在区间(﹣∞,0)上是增函数的是( )A.y=x2﹣4x+8 B.y=丨x﹣1丨C.y=﹣D.y=【考点】函数单调性的判断与证明.【专题】计算题.【分析】选项A,函数在(﹣∞,2)上单调递减;选项B,去掉绝对值可得y=|x﹣1|=,可知满足在(﹣∞,0)上单调递减;选项C,y=﹣在(﹣∞,1)和(1,+∞)均单调递增;选项D,y=在定义域(﹣∞,1]单调递减,由此可得答案.【解答】解:选项A,图象为开口向上的抛物线,对称轴为x=2,函数在(﹣∞,2)上单调递减,故不满足题意,错误;选项B,y=|x﹣1|=,故函数在(﹣∞,1)上单调递减,当然在(﹣∞,0)上单调递减,故错误;选项C,y=﹣在(﹣∞,1)和(1,+∞)均单调递增,显然满足在(﹣∞,0)上单调递增,故正确;选项D,y=在定义域(﹣∞,1]单调递减,故不满足题意.故选C【点评】本题考查函数的单调性的判断,涉及分式函数和绝对值函数的单调性,属基础题.5.下列四组函数:(1)f(x)=x,(2)f(x)=x,(3)f(x)=1,g(x)=x0(4)f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1其中表示同一函数的是( )A.(1) B.(2)(3) C.(2)(4) D.(2)(3)(4)【考点】判断两个函数是否为同一函数.【专题】函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是相同函数.【解答】解:对于(1),函数f(x)=x(x∈R),与=x(x≥0)的定义域不同,∴不是同一函数,对于(2),函数f(x)=x(x∈R),与=x(x∈R)的定义域相同,对应关系也相同,∴是同一函数;对于(3),函数f(x)=1(x∈R),与g(x)=x0(x≠0)的定义域不同,∴不是同一函数;对于(4),函数f(x)=x2﹣2x﹣1(x∈R),与g(t)=t2﹣2t﹣1(t∈R)的定义域相同,对应关系也相同,∴是同一函数.综上,表示同一函数的是(2)、(4).故选:C.【点评】本题考查了判断两个函数为同一函数的应用问题,是基础题目.6.若函数为奇函数,则a=( )A.B.C.D.1【考点】函数奇偶性的性质.【专题】计算题.【分析】利用奇函数的定义得到f(﹣1)=﹣f(1),列出方程求出a.【解答】解:∵f(x)为奇函数∴f(﹣1)=﹣f(1)∴=∴1+a=3(1﹣a)解得a=故选A【点评】本题考查利用奇函数的定义:对定义域内任意的自变量x都有f(﹣x)=﹣f(x)成立.7.函数的图象上相邻两条对称轴间的距离是,则ω的一个值为( )A.B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题.【分析】利用两角差的余弦函数展开,然后利用两角和的正弦函数化为一个角的一个三角函数的形式,根据题意求出周期,然后求出ω.【解答】解:∵=,∴,∴,∴,故选C.【点评】本题是基础题,考查三角函数的化简求值,三角函数的周期的求法,考查计算能力.8.给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下列函数中不满足其中任何一个等式的是( )A.f(x)=3x B.f(x)=sinx C.f(x)=log2x D.f(x)=tanx【考点】指数函数与对数函数的关系.【分析】依据指、对数函数的性质可以发现A,C满足其中的一个等式,而D满足,B不满足其中任何一个等式【解答】解:f(x)=3x是指数函数满足f(x+y)=f(x)f(y),排除A.f(x)=log2x是对数函数满足f(xy)=f(x)+f(y),排除Cf(x)=tanx满足,排除D.故选B【点评】本题主要考查指数函数和对数函数以及正切函数的性质.9.把函数y=(cos3x﹣sin3x)的图象适当变化就可以得到y=﹣sin3x的图象,这个变化可以是( )A.沿x轴方向向右平移B.沿x轴方向向左平移C.沿x轴方向向右平移D.沿x轴方向向左平移【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先根据两角和与差的正弦公式进行化简为与y=﹣sin3x同名的三角函数,再由左加右减的平移原则进行平移.【解答】解:∵y=(cos3x﹣sin3x)=﹣sin(3x﹣)=﹣sin3(x﹣)∴为得到y=﹣sin3x可以将y=(cos3x﹣sin3x)向左平移个单位故选D.【点评】本题主要考查两角和与差的正弦公式和三角函数的图象变换.一般先化简为形式相同即同名函数再进行平移或变换.10.方程log2x+log2(x﹣1)=1的解集为M,方程22x+1﹣9•2x+4=0的解集为N,那么M与N的关系是( )A.M=N B.M⊊N C.N⊊M D.M∩N=φ【考点】函数的零点;集合的包含关系判断及应用.【专题】函数的性质及应用.【分析】解对数方程log2(x2﹣x)=1我们可以求出集合M,解指数方程22x+1﹣9•2x+4=0我们可以求出集合N,进而根据集合包含关系的判定方法,易判断出集合M,N的关系.【解答】解:∵log2x+log2(x﹣1)=1,∴log2(x2﹣x)=1,即x2﹣x=2,解得x=﹣1,或x=2,又∵x>0,x﹣1>0,∴函数的定义域是x>1,M={2};若22x+1﹣9•2x+4=0,∴2x=4,或2x=,解得x=2,x=﹣1,即N={﹣1,2}故M⊊N,故选B.【点评】本题考查的知识点是对数方程的解法,指数方程的解法,其中解对应的指数方程和对数方程,求出集合M,N是解答本题的关键.二、填空题:(共5个小题,每题5分,共25分)11.计算(lg5)2+lg50•lg2=1.【考点】对数的运算性质.【专题】计算题.【分析】利用lg2+lg5=1和对数的运算法则即可得出.【解答】解:原式=lg25+(1+lg5)•lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1.故答案为:1.【点评】本题考查了lg2+lg5=1和对数的运算法则,属于基础题.12.若tanx=3,则1+sinxcosx的值为.【考点】同角三角函数基本关系的运用.【专题】三角函数的求值.【分析】由条件利用同角三角函数的基本关系,求得1+sinxcosx的值.【解答】解:∵tanx=3,则1+sinxcosx=1+=1+=1+=,故答案为:.【点评】本题主要考查同角三角函数的基本关系,属于基础题.13.已知cosαcos(α+β)+sinαsin(α+β)=,β是第二象限角,则tan2β=.【考点】两角和与差的余弦函数;二倍角的正切.【专题】计算题.【分析】把已知的等式利用两角差的余弦函数公式化简,求出cosβ的值,由β的范围,利用同角三角函数间的基本关系求出sinβ的值,进而求出tanβ的值,然后把所求的式子利用二倍角的正切函数公式化简后,把tanβ的值代入即可求出值.【解答】解:∵cosαcos(α+β)+sinαsin(α+β)=cos[α﹣(α+β)]=cos(﹣β)=cosβ=,∴cosβ=,又β是第二象限角,∴sinβ=﹣=﹣,∴tanβ==﹣,则tan2β===.故答案为:【点评】此题考查了两角和与差的余弦函数公式,二倍角的正切函数公式以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.14.若关于x的方程cos2x﹣sinx+a=0有解,则实数a的取值范是[﹣].【考点】函数的零点.【专题】函数的性质及应用.【分析】若方程cos2x﹣sinx+a=0有实数解,cos2x﹣sinx=﹣a,实数﹣a应该属于函数y=cos2x ﹣sinx的值域,结合同角公式,再结合二次函数在定区间上的值域求法,易得函数y=cos2x ﹣sinx的值域,进而得到实数a的取值范围.【解答】解:∵cos2x﹣sinx=1﹣sin2x﹣sinx=﹣(sinx+)2+又∴﹣1≤sinx≤1∴﹣1≤﹣(sinx+)2+≤则关于x的方程cos2x﹣sinx+a=0有解,∴﹣1≤﹣a≤,故实数a的取值范围:[﹣].故答案为:[﹣].【点评】本题主要考查方程根的问题转化为函数的值域求解,还涉及了三角函数,二次函数值域的求法.15.设函数的最小正周期为,且其图象关于直线对称,则下列四个结论中正确的编号为②③(把你认为正确的结论编号都填上);①图象关于直线对称;②图象关于点对称;③在上是减函数;④在上是增函数.【考点】正弦函数的图象.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由周期求得ω,由y的图象关于直线对称,可得φ的值,可得函数的解析式为y=3sin(4x+).再根据函数y的解析式,判断各个选项是否正确,从而得出结论.【解答】解:由题意可得=,∴ω=4.再根据函数y的图象关于直线对称,可得4×+φ=kπ+,即φ=kπ+,k∈Z,故φ=,故函数的解析式为y=3sin(4x+).令x=﹣,求得y=﹣,不是最值,故函数的图象不关于直线对称,故①不正确.令x=,求得y=0,故函数的图象关于点对称,故②正确.在上,4x+∈[,],y=3sin(4x+)是减函数,故③正确.在上,4x+∈[﹣,],y=3sin(4x+)不是减函数,故④不正确,故答案为:②③.【点评】本题主要考查正弦函数的周期性以及它的图象的对称性,正弦函数的单调性,属于中档题.三、解答题:(共六个小题,75分)16.设集合A={x|﹣7≤2x﹣1≤7},B={x|m﹣1≤x≤3m﹣2},R为实数集(1)当m=3时,求A∩B与A∪(∁R B);(2)若A∩B=B,求实数m的取值范围.【考点】交集及其运算;交、并、补集的混合运算.【专题】计算题.【分析】(1)求出集合A,集合B,再求出集合B的补集,进行交,并运算即可.(2)根据集合A、B之间的包含关系,分两种情况分析求解.【解答】解:A=[﹣3,4](1)当m=3时,B=[2,7],C R B=(﹣∞,2)∪(7,+∞),∴A∩B=[2,4],A∪(C R B)=(﹣∞,4]∪(7,+∞).(2)∵A∩B=B⇒B⊆A,当B=∅时,m<;当B≠∅时,即m≥时,⇒≤m≤2.综上m≤2.【点评】本题考查集合的交、并、补集运算.利用数形结合计算直观、形象.17.已知第四象限角α的终边与单位圆交于点(1)写出sinα,cosα,tanα的值;(2)求的值.【考点】任意角的三角函数的定义.【专题】三角函数的求值.【分析】(1)由条件利用任意角的三角函数的定义,求得sinα,cosα,tanα的值.(2)由条件利用诱导公式化简所给的式子,求得结果.【解答】解:(1)第四象限角α的终边与单位圆交于点,∴m=﹣,∴x=,y=﹣,r=|OP|=1,故sinα==﹣,cosα==,tanα==﹣.(2)==tanα﹣1=•(﹣)﹣1=﹣.【点评】本题主要考查任意角的三角函数的定义,诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.18.已知函数f(x)的定义域是(0,+∞),当x>1时f(x)>0,且f(xy)=f(x)+f(y);(1)求f(1);(2)证明:f(x)在定义域上是增函数;(3)如果f(3)=1,解不等式f(x)+f(x﹣2)≥2.【考点】抽象函数及其应用.【专题】函数的性质及应用;不等式的解法及应用.【分析】(1)利用赋值法令x=y=1,即可求f(1)的值;(2)根据抽象函数的关系结合函数单调性的定义即可证明:f(x)在定义域上是增函数;(3)根据函数的单调性即可解不等式f(x(x﹣2))≥f(9),注意定义域的运用.【解答】解:(1)∵对任意的x>0,y>0,f(xy)=f(x)+f(y),令x=y=1,结合f(1)=f(1)+f(1)=2f(1),∴f(1)=0;(2)证明:任取x1,x2∈(0,+∞),且x1<x2∴>1,∴f()>0,即有f(x2)=f(x1•)=f(x1)+f(),即f(x2)>f(x1),∴函数f(x)是定义在(0,+∞)上为增函数;(3)∵f(3)=1,即有f(9)=2f(3)=2,∴不等式f(x)+f(x﹣2)≥2等价为f(x(x﹣2))≥f(9),∵f(x)是定义在(0,+∞)上为增函数,∴,即,解得x≥1+,即不等式的解集为[1+,+∞).【点评】本题主要考查抽象函数的应用,利用赋值法是解决抽象函数的基本方法.结合函数的单调性是解决本题的关键.19.已知函数f(x)=2sin2(+x)﹣cos2x,x∈[,].(Ⅰ)求f(x)的最大值和最小值;(Ⅱ)若不等式|f(x)﹣m|<2在x∈[,]上恒成立,求实数m的取值范围.【考点】正弦函数的定义域和值域;函数恒成立问题;三角函数的化简求值.【专题】计算题.【分析】(Ⅰ)利用降幂公式将f(x)化简为f(x)=1+2sin(2x﹣),即可求得f(x)的最大值和最小值;(Ⅱ)|f(x)﹣m|<2⇔f(x)﹣2<m<f(x)+2,而x∈[,],可求得2x﹣∈[,],从而可求得f(x)max=3,f(x)min=2,于是可求实数m的取值范围.【解答】解:(Ⅰ)∵f(x)=[1﹣cos(+2x)]﹣cos2x=1+sin2x﹣cos2x=1+2sin(2x﹣),又∵x∈[,],∴≤2x﹣≤,即2≤1+2sin(2x﹣)≤3,∴f(x)max=3,f(x)min=2.(Ⅱ)∵|f(x)﹣m|<2⇔f(x)﹣2<m<f(x)+2,∵x∈[,],由(1)可知,f(x)max=3,f(x)min=2,∴m>f(x)max﹣2=1且m<f(x)min+2=4,∴1<m<4,即m的取值范围是(1,4).【点评】本题考查三角函数恒成立问题,着重考查正弦函数的定义域和值域,考查三角函数的化简求值与辅助角公式的应用,属于中档题.20.已知(1)设h(x)=f(x)g(x),求函数h(x)在[0,π]上的单调递减区间;(2)若一动直线x=t与函数y=f(x),y=g(x)的图象分别交于M,N两点,求|MN|的最大值.【考点】余弦函数的图象;正弦函数的图象.【专题】计算题;转化思想;综合法;三角函数的图像与性质.【分析】(1)由条件利用两角和差的正弦公式求得h(x)的解析式,再利用正弦函数的单调性,求得函数h(x)在[0,π]上的单调递减区间.(2)根据函数f(x)=sin2x 和g(x)=sin(2x+)的周期相同,把f(x)的图象向左平移个单位,再把各点的纵坐标变为原来的倍,可得g(x)的图象,求得|MN|的最大值.【解答】解:(1)∵已知,故h(x)=f(x)g(x)=[sin2xcos+cos2xsin+sin2xcos﹣cos2xsin]cos2x=sin2x•cos2x=sin4x,令2kπ+≤4x≤2kπ+,求得+≤x≤+,k∈Z,故函数h(x)的减区间为[+,+],k∈Z.再结合x∈[0,π],可得h(x)的减区间为[,]、[,].(2)函数y=f(x)=sin(2x+)+sin(2x﹣)=2sin2xcos=sin2x,y=g(x)=cos2x=sin(2x+),故f(x)和g(x)的周期相同,把f(x)的图象向左平移个单位,再把各点的纵坐标变为原来的倍,可得g(x)的图象,若一动直线x=t与函数y=f(x),y=g(x)的图象分别交于M,N两点,则|MN|=|sin(2t+)﹣sin2t|=|cos2x﹣sin2t|=|2sin(﹣2t)|≤2,则|MN|的最大值为2.【点评】本题主要考查两角和差的正弦公式,正弦函数的单调性,属于中档题.21.已知函数f(x)=log9(9x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)若函数y=f(x)的图象与直线没有交点,求b的取值范围;(3)设,若函数f(x)与h(x)的图象有且只有一个公共点,求实数a的取值范围.【考点】函数奇偶性的性质;函数与方程的综合运用.【专题】计算题.【分析】(1)因为f(x)为偶函数所以f(﹣x)=f(x)代入求得k的值即可;(2)函数与直线没有交点即无解,即方程log9(9x+1)﹣x=b无解.令g(x)=log9(9x+1)﹣x,则函数y=g(x)的图象与直线y=b无交点.推出g(x)为减函数得到g(x)>0,所以让b≤0就无解.(3)函数f(x)与h(x)的图象有且只有一个公共点,即联立两个函数解析式得到方程,方程只有一个解即可.【解答】解:(1)因为y=f(x)为偶函数,所以∀x∈R,f(﹣x)=f(x),即log9(9﹣x+1)﹣kx=log9(9x+1)+kx对于∀x∈R恒成立.即恒成立即(2k+1)x=0恒成立,而x不恒为零,所以.(2)由题意知方程即方程log9(9x+1)﹣x=b无解.令g(x)=log9(9x+1)﹣x,则函数y=g(x)的图象与直线y=b无交点.因为任取x1、x2∈R,且x1<x2,则,从而.于是,即g(x1)>g(x2),所以g(x)在(﹣∞,+∞)是单调减函数.因为,所以.所以b的取值范围是(﹣∞,0].(3)由题意知方程有且只有一个实数根.令3x=t>0,则关于t的方程(记为(*))有且只有一个正根.若a=1,则,不合,舍去;若a≠1,则方程(*)的两根异号或有两相等正根.由或﹣3;但,不合,舍去;而;方程(*)的两根异号⇔(a﹣1)•(﹣1)<0,即﹣a+1<0,解得:a>1.综上所述,实数a的取值范围{﹣3}∪(1,+∞).【点评】考查学生运用函数奇偶性的能力,以及函数与方程的综合运用能力.。
最新版高一数学上学期期中试题 理 及答案(新人教A版 第164套)
荆州中学2013~2014学年度上学期期 中 试 卷一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(U C M )∩N =( )A .{}4,3,2B .{}2C .{}3D .{}4,3,2,1,0 2.已知函数()y f x =,则该函数与直线x a =的交点个数有( ) A .1个 B .2个 C .无数个 D .至多一个3.实数,,a b c 是图象连续不断的函数()y f x =定义域中的三个数,且满足,()()0,()()0a b c f a f b f c f b <<<<,则()y f x =在区间(,)a c 的零点个数为( ) A .2 B .奇数 C .偶数 D .至少是24.()f x 是定义在R 上的奇函数且单调递减,若(2)(4)0f a f a -+-<,则a 的取值范围是( )A .1a <B .3a <C .1a >D . 3a > 5.下列函数图象关于原点对称的有( )①()f x =2()log (f x x =;③1(),(1,0)(0,1]f x x x=∈- ④()lg f x x x =-. A .①② B .①③ C .②③ D . ②④6.集合2{|log ,1}A y y x x ==>,1{|(),1}2x B y y x ==>,则()R C A B =( ).A .1{|0}2y y <<B .{|01}y y <<C .1{|1}2y y << D .∅7.某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为2121L x x=-+和22L x =,其中x 为销售量(单位:辆).若该公司这两地共销售15辆车,则能获得最大利润为( )A .120.25万元B .120万元 C. 90.25万元 D .132万元 8.下列说法正确的个数是( )①空集是任何集合的真子集;②函数1()3x f x +=是指数函数;③既是奇函数又是偶函数的函数有无数多个;④若A B B =,则A B A =A.0个B.1个C. 2个D. 3个9.已知函数()f x 的定义域为{},1x x R x ∈≠,且(1)f x +为奇函数,当1x <时,2()21f x x x =-+,那么当1x >时,()f x 的递减区间是( )A .5[,)4+∞B .7[,)4+∞C .5(1,]4D .7(1,]410.定义域为R 的函数1,33()2,3x x f x x ⎧-≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x af x b -+=有3个不同实数解123,,x x x ,且123x x x <<,则下列说法错误的是( ) A .521b a +-= B .0b <C .1233x x x -+=D .2221239x x x ++=二、填空题:(本大题共5小题,每小题5分,共25分) 11.已知2510xy==,则11x y+= ____________________. 12.已知A 是有限集合,x A ∉,{}B A x =,若,A B 的子集个数分别为,a b ,且b ka =,则k = _____.13.已知1()02x a x x ⎧⎫∈-=⎨⎬⎩⎭,则2(23)()x x f x a --=的增区间为 _______________.14. 已知函数22log (1)(0)()2(0)x x f x x x x +>⎧=⎨--≤⎩ 若函数()()g x f x m =-有3个零点,则实数m 的取值范围是_______________.15.若函数()y f x =是函数(01)xy a a =<≠的反函数,其图象过点)a ,且函数(3)my f x x=-+-在区间(2,)+∞上是增函数,则正数m 的取值范围是 . 三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.) 16.(本题12分)(1)计算:2213log lg14812lg1)27100-⎛⎫-++ ⎪⎝⎭(2)已知11223x x-+=,求22123x x x x --+-+-的值.17.(本题12分)已知集合{}41(21)(216)0x x A ++=--≤与{}131B x m x m =+≤≤-分别是函数()f x 的定义域与值域.(1)求集合A ;(2)当A B B =时,求实数m 的取值范围.18.(本题12分)湖北省第十四届运动会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向荆州筹委会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x 元,x 为整数.(1)写出该专营店一年内销售这种纪念章所获利润y (元)与每枚纪念章的销售价格x (元)的函数关系式(并写出这个函数的定义域...); (2)当每枚纪念章销售价格x 为多少元时,该特许专营店一年内利润y (元)最大,并求出最大值.19.(本题12分)已知函数4()nf x x x=-,且(4)3f =. (1)判断()f x 的奇偶性并说明理由;(2)判断()f x 在区间()0,+∞上的单调性,并证明你的结论;(3)若对任意实数12,[1,3]x x ∈,有12()()f x f x t -≤成立,求t 的最小值.20.(本题13分)若非零函数()f x 对任意实数,x y 均有()()()f x f y f x y ⋅=+,且当0x <时() 1.f x >(1)求证:()0f x >;(2)求证:()f x 为R 上的减函数; (3)当1(4)16f =时, 对[1,1]a ∈-时恒有21(22)4f x ax -+≤,求实数x 的取值范围.21.(本题14分)已知函数1()a x f x x-=(1)写出函数()f x 的单调区间;(2)若()2f x x <在(1,)+∞恒成立,求实数a 的取值范围;(3)若函数()y f x =在[,]m n 上值域是[,]()m n m n ≠,求实数a 的取值范围.荆州中学2013~2014学年度上学期期 中 试 卷年级:高一 科目:数学(理科) 命题人:徐法章 审题人:田园参考答案一、选择题:三、解答题:16.解:(1)原式=222log 2320322[()]log101)3----++1921344=--+=- ………………6分 (2)112122()29x xx x --+=++=得17x x -+=1222()249x x x x --+=++=得2247x x -+=原式=47245734-=- ………………12分 17. 解:(1)由41(21)(216)0x x ++--≤可化为112168x +≤≤则314x -≤+≤得43x -≤≤故集合{}43A x x =-≤≤ ………………6分 (2)集合B 为函数的值域B φ∴≠A B B B A =∴⊆ ………………8分13141413313m m m m m +≤-⎧⎪∴+≥-≤≤⎨⎪-≤⎩得故实数m 的取值范围为4[1,]3………………12分18. (1)依题意⎩⎨⎧∈<<---∈≤<--+=++N x x x x N x x x x y ,4020),7)](20(1002000[,207),7)](20(4002000[∴⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022, 定义域为{}407<<∈+x N x ………………6分(2) ∵⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022, ∴ 当720x <≤时,则16x =,max 32400y =(元)当2040x <<时,则23x =或24,max 27200y =(元)综上:当16x =时,该特许专营店获得的利润最大为32400元. ………………12分 19.解:(1)(4)413nf =-=即44,1nn =∴= 4()f x x x∴=-函数定义域为(,0)(0,)-∞+∞关于原点对称4()()f x x f x x-=-+=- ()f x ∴是奇函数 ………………4分(2)任取120x x <<则212121212112444()()()f x f x x x x x x x x x x x -=--+=-+-⋅ 120x x << 21120,0x x x x ∴->⋅> 21()()f x f x ∴>()f x ∴在区间(0,)+∞上单调递增 ………………8分(3)依题意只需 12max ()()t f x f x ≥-又12max min max 14()()()()3f x f x f x f x -=-=143t ∴≥min 143t ∴= ………………12分 20. (1)证法一:(0)()()f f x f x ⋅=即()[(0)1]0f x f -=又()0f x ≠(0)1f ∴=当0x <时,()1,f x > 0x ->()()(0)1f x f x f ⋅-== 则1()(0,1)()f x f x -=∈ 故对于x R ∈恒有()0f x > ………………4分 证法二:2()()[()]0222x x x f x f f =+=≥ ()f x 为非零函数 ()0f x ∴>(2)令12x x >且12,x x R ∈有1212()()()f x f x x f x ⋅-=, 又210x x -< 即21()1f x x -> 故2211()()1()f x f x x f x =-> 又()0f x > 21()()f x f x ∴> 故()f x 为R 上的减函数 ………………8分 (3)21(4)(22)(2)16f f f ==+=⇒故1(2)4f =, ………………10分 则原不等式可变形为2(22)(2)f x ax f -+≤ 依题意有 220x ax -≥对[1,1]a ∈-恒成立2220220x x x x x ⎧-≥∴⇒≥⎨+≥⎩或2x ≤-或0x = 故实数x 的取值范围为{}(,2]0[2,)-∞-+∞ ………………13分21.解:(1)增区间(0,)+∞, 减区间(,0)-∞ ………………2分(2)()2f x x <在(1,)+∞上恒成立即12x a x+>在(1,)+∞上恒成立 易证,函数1()2g x x x=+在上递减,在)+∞上递增 故当x ∈(1,)+∞上有()(3,)g x ∈+∞3a ∴≤故a 的取值范围为(,3]-∞ ………………5分 (3)[,](,0)m n ⊆-∞或[,](0,)m n ⊆+∞①当0m n <<时,()f x 在(0,)+∞上递增,(),()f m m f n n ∴==即11a m m a nn ⎧-=⎪⎪⎨⎪-=⎪⎩即方程1a x x -=有两个不等正实数根方程化为:210x ax -+=故2400a a ⎧∆=->⎨>⎩得2a > ………………10分②当0m n <<时()f x 在(0,)+∞上递减 (),()f m n f n m ∴== 即1(1)1(2)a n m a m n ⎧+=⎪⎪⎨⎪+=⎪⎩(1)-(2)得1()(1)0n m mn --=又n m ≠,1mn ∴= 0a ∴= ………………13分 综合①②得实数a 的取值范围为{}(2,)0+∞ ………………14分。
湖北省荆州中学高一数学上学期期中考试(a)【会员独享】.doc
荆州中学~上学期高一数学期中试卷(A )一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,选出正确选项填在答题卡相应位置) 1.若集合{|1}M x x =>-,下列关系式中成立的为 ( ) A .0M ⊆ B .{}0M ∈ C .M ∅∈ D .{}0M ⊆ 2.已知0.1 1.32log 0.3,2,0.2ab c ===,则,,a b c 的大小关系是 ( )A .a b c <<B .c a b <<C .a c b <<D .b c a << 3.下列对应法则f 中,构成从集合A 到集合B 的映射是 ( )A .2||:,},0|{x y x f R B x x A =→=>=B .2:},4{},2,0,2{x y x f B A =→=-= C .21:},0|{,x y x f y y B R A =→>== D .2:},1,0{},2,0{x y x f B A =→== 4. 右图给出了红豆生长时间t (月)与枝数y (枝)的散点图; 那么“红豆生南国,春来发几枝.”的红豆生长时间与枝数的关系 用下列哪个函数模型拟合最好? ( ) A .指数函数:t y 2= B .对数函数:t y 2log = C .幂函数:3t y = D .二次函数:22t y =5.设函数()y f x =的定义域为[,则函数2)y f =的定义域是( )A .[B .[22+C .[6-6+D .[0,6+6.已知()log a f x x =,()log b g x x =,()log c r x x =,()log d h x x =的图象如图所示则a,b,c,d 的大小为 ( )A .c d a b <<<B .c d b a <<<C .d c a b <<<D .d c b a <<<7. 若(,1]x ∈-∞-时,不等式2()420x x m m -⋅-<恒成立,则实数m 的取值范围是 ( ) A .(-2,1) B.(-4,3) C.(-1,2) D.(-3,4) 8.已知函数()y f x =是R 上的偶函数,且()f x 在[)0,+∞上是减函数,若()()2f a f ≥-,则a 的取值范围是 ( ) A.2a ≤ B.2a ≥C.22a a ≤-≥或D.22a -≤≤9.已知⎩⎨⎧≥<+-=1,1,4)13()(x a x a x a x f x 是(,)-∞+∞上的减函数,那么a 的取值范围( )A.(0,1) B .1(0,)3 C. )31,61[ D. [)1,6110.对于集合M 、N,定义{}|,()()M N x x M x N M N M N N M -=∈∉⊕=--且设{}R x x x y y M ∈-==,4|2,{}R x y y N x∈-==,2|,则N M ⊕= ( ) A.(]04,- B.[)04,- C.()[),40,-∞-+∞ D.(](),40,-∞-+∞二、填空题:(本大题5个小题,每小题5分,共25分,各题答案必须填写在答题卷相应位置上,只填结果,不要过程)11.幂函数3222)14(--+-=m m xm m y 的图像过原点,则实数m 的值等于12.已知函数2()log (2)a f x x ax =-+在()+∞,2上为增函数,则实数a 的取值范围为___________13. 若 33log 2,log 5m n == , 则 lg 5用,m n 表示为 .14.设[]x 表示不超过x 的最大整数,如[][]1.51,1.52=-=-.若函数()()0,11x x a f x a a a =>≠+,则()()()1122g x f x f x ⎡⎤⎡⎤=-+--⎢⎥⎢⎥⎣⎦⎣⎦的值域为______ 15.若函数()x f 同时满足:①对于定义域上的任意x ,恒有()()0=-+x f x f ②对于定义域内任意21,x x ,当21x x ≠时,恒有()()02121<--x x x f x f ,则称函数()x f 为“理想函数”。
荆州中学2014-2015学年度高一数学试题
荆州中学 2014-2015 学年度高一数学试题 命题 谢俊一、选择题(每题 5 分,共 50 分)1、若函数 f (x) sin2 x 1 (x R) ,则 f (x) 是( ) 2A.最小正周期为 的奇函数 2B.最小正周期为 的奇函数C.最小正周期为 2 的偶函数D.最小正周期为 的偶函数2、ABC中,AD1AB ,DE//BC,且与边AC相交于点E,ABC的中线AM与DE相交于点4 N,设 AB a, AC b ,用 a, b 表达 DN =( )A.1ab4 B.1ba4 C.1ab8 D.1ba8 3、 不是函数 y tan(2x ) 的对称中心的是( ) 4A. ( 9 ,0) 8B. ( 3 ,0) 8C. ( ,0) 8D. ( ,0) 44、已知函数 f x msin x 2 cos x ( m 为常数,且 m 0)的最大值为 2, 则 函数 f x 的单调递减区间为( )(其中 k Z )A.2k 4, 2k5 4 B.2k 4,2k3 4 C.2k3 4, 2k 4 D.2k5 4,2k 4 5、要得到函数 y cos(x π ) 的图象,只需将函数 y sin x 的图象 3(A)向左平移 5π 个长度单位 6(B)向右平移 5π 个长度单位 6(C)向左平移 π 个长度单位 6(D)向右平移 π 个长度单位 66 、 设 函数 f(x) ( x R ) 满足 f (x 1) f (x) 对 任意 实数 x 恒 成立, 且 x ∈ [0,2]时 ,f (x) (x 1)2 。
那么函数 y f (x) sin x 在区间[-4,4]上的零点个数有( )个。
1A. 6B. 7C. 8D. 97. 已知 f x loga (6 3ax) 在[0,1]上是减函数,则 a 的取值范围是( )A. (0,1)B. (1,2)C. (1.2)D. (1,+∞)8.函数 y esin x ( x ) (e 2.71828) 的大致图象为()9. 如图,在 ABC 中,点 O 是 BC 的中点.过点 O 的直线分别交直线 AB, AC 于不同的两点 M , N , 若 AB m AM , AC n AN , 则 m n的值为( ).(A)1(B) 2(C)-2(D) 9 410.已知函数f (x) log 2m sin x 在 R 上的值域为 1,1,则实数 m3 sin x的值为()A. 1B. 2C. 3D. 4二、(每题 5 分,共 25 分)11、函数 y lg1 tan x 的定义域是.12、设 a cos 61 cos127 cos 29 cos 37,b12 tan13 tan2 13,c 1 cos50 2,则 a,b,c 的大小关系(由小到大排列)为13、已知 P 为 ABC 所在平面内一点,且满足 AP 1 AC 2 AB ,则 APB 的面积与 APC 的 55面积之比为。
2014年湖北省荆州市中考数学试卷(含答案)
湖北省荆州市2014年中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案.每小题3分,共30分)1.(3分)(2014•荆州)若□×(﹣2)=1,则□内填一个实数应该是()A.B.2C.﹣2 D.﹣考点:有理数的乘法分析:根据乘积是1的两个数互为倒数解答.解答:解:∵﹣×(﹣2)=1,∴□内填一个实数应该是﹣.故选D.点评:本题考查了有理数的乘法,是基础题,注意利用了倒数的定义.2.(3分)(2014•荆州)下列运算正确的是()A.3﹣1=﹣3 B.=±3 C.(ab2)3=a3b6D.a6÷a2=a3考点:同底数幂的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂分析:运用负整数指数幂的法则运算,开平方的方法,同底数幂的除法以及幂的乘方计算.解答:解:A、3﹣1=≠3a,故A选项错误;B、=3≠±3,故B选项错误;C、(ab2)3=a3b6故C选项正确;D、a6÷a2=a4≠a3,故D选项错误.故选:C.点评:此题考查了负整数指数幂的运算,开平方,同底数幂的除法以及幂的乘方等知识,解题要注意细心.3.(3分)(2014•荆州)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°考点:平行线的性质.分析:首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.解答:解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.点评:本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC的度数是解题的难点.4.(3分)(2014•荆州)将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6 B.y=(x﹣4)2﹣2 C.y=(x﹣2)2﹣2 D.y=(x﹣1)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为(3,﹣4),再把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),然后根据顶点式写出平移后的抛物线解析式.解答:解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4),把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),所以平移后得到的抛物线解析式为y=(x﹣4)2﹣2.故选B.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.(3分)(2014•荆州)已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3考点:解一元二次方程-公式法;估算无理数的大小.分析:先求出方程的解,再求出的范围,最后即可得出答案.解答:解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选C.点评:本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.6.(3分)(2014•荆州)如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.A D=DE C.A D2=BD•CD D.A D•AB=AC•BD考点:相似三角形的判定;圆周角定理.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故本选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故本选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故本选项正确;D、∵AD•AB=AC•BD,∴AD:BD=AC:AB,但∠ADC=∠ADB不是公共角,故本选项错误.故选D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.7.(3分)(2014•荆州)如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.考点:一次函数与一元一次不等式;在数轴上表示不等式的解集.专题:数形结合.分析:观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b>kx﹣1的解集为x>﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解答:解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.故选A.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.8.(3分)(2014•荆州)已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5B.1C.3D.不能确定考点:解分式方程;关于原点对称的点的坐标.专题:计算题.分析:根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.解答:解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(3分)(2014•荆州)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.解答:解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.点评:本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.10.(3分)(2014•荆州)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm考点:平面展开-最短路径问题.分析:要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.解答:解:如图,把圆柱的侧面展开,得到矩形,则则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2,∴这圈金属丝的周长最小为2AC=4cm.故选A.点评:本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•荆州)化减×﹣4××(1﹣)0的结果是.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.解答:解:原式=2×﹣4××1=2﹣=.故答案为.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.12.(3分)(2014•荆州)若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是2.考点:立方根;合并同类项;解二元一次方程组.分析:根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根.解答:解:若﹣2x m﹣n y2与3x4y2m+n是同类项,∴,解方程得:.∴m﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.点评:本题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n 的值.13.(3分)(2014•荆州)如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是(,).考点:位似变换;坐标与图形性质.分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).点评:此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.14.(3分)(2014•荆州)我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.考点:一元一次方程的应用.分析:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.解答:解:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,解方程得:x=.故答案为.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.15.(3分)(2014•荆州)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2014•荆州)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.考点:利用旋转设计图案;利用轴对称设计图案.分析:利用轴对称图形以及中心对称图形的性质与定义,进而得出符合题意的答案.解答:解:如图所示:这个格点正方形的作法共有4种.故答案为:4.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握中心对称以及轴对称图形的定义是解题关键.17.(3分)(2014•荆州)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.考点:切线的性质;平行四边形的性质;弧长的计算;扇形面积的计算.分析:求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD的面积﹣扇形ACE的面积,然后按各图形的面积公式计算即可.解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.点评:本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.18.(3分)(2014•荆州)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A 的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣6.考点:反比例函数图象上点的坐标特征;等边三角形的性质;相似三角形的判定与性质;特殊角的三角函数值.专题:动点型.分析:连接OC,易证AO⊥OC,OC=OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF=AE,FC=EO..设点A坐标为(a,b)则ab=2,可得FC•OF=6.设点C 坐标为(x,y),从而有FC•OF=﹣xy=﹣6,即k=xy=﹣6.解答:解:∵双曲线y=关于原点对称,∴点A与点B关于原点对称.∴OA=OB.连接OC,如图所示.∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°.∴tan∠OAC==.∴OC=OA.过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠FOC,∠AOE=90°﹣∠FOC=∠OCF.∴△AEO∽△OFC.∴==.∵OC=OA,∴OF=AE,FC=EO.设点A坐标为(a,b),∵点A在第一象限,∴AE=a,OE=b.∴OF=AE=a,FC=EO=b.∵点A在双曲线y=上,∴ab=2.∴FC•OF=b•a=3ab=6设点C坐标为(x,y),∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•(﹣y)=﹣xy=6.∴xy=﹣6.∵点C在双曲线y=上,∴k=xy=﹣6.故答案为:﹣6.点评:本题考查了等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K型相似是解答本题的关键.三、解答题(本大题共7题,共66分)19.(7分)(2014•荆州)先化简,再求值:()÷,其中a,b满足+|b﹣|=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=[﹣]•=•=,∵+|b﹣|=0,∴,解得:a=﹣1,b=,则原式=﹣.点评:此题考查了分式的化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.20.(8分)(2014•荆州)如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE还成立吗?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.分析:根据旋转角求出∠FAD=∠EAB,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF.解答:解:DF=BE还成立;理由:∵正方形ABCD绕点A逆时针旋转一定角度α,∴∠FAD=∠EAB,在△ADF与△ABE中∴△ADF≌△ABE(SAS)∴DF=BE.点评:本题考查了旋转的性质,正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记各性质求出三角形全等是解题的关键.21.(8分)(2014•荆州)钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,sin46°≈0.72)考点:解直角三角形的应用-方向角问题.分析:作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,分别在Rt△ACD中,和在Rt△BCD中,用a表示出AC和BC,然后除以速度即可求得时间,比较即可确定答案解答:解:如图,作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,∵在Rt△ACD中,=cos∠ACD,∴AC==≈1.92a;∵在Rt△BCD中,=cos∠BCD,∴BC==≈1.39a;∵其平均速度分别是20海里/小时,18海里/小时,∴1.92a÷20=0.096a.1.39a÷18=0.077a,∵a>0,∴0.096a>0.077a,∴乙先到达.点评:本题考查了解直角三角形的应用,解决本题的关键在于设出未知数a,使得运算更加方便,难度中等.22.(9分)(2014•荆州)我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率七年级6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.考点:条形统计图;统计表;加权平均数;中位数;方差.专题:计算题.分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.解答:解:(1)根据题意得:a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为==20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好.点评:此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解本题的关键.23.(10分)(2014•荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?考点:二次函数的应用.分析:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;解答:解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.点评:本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.24.(12分)(2014•荆州)已知:函数y=ax2﹣(3a+1)x+2a+1(a为常数).(1)若该函数图象与坐标轴只有两个交点,求a的值;(2)若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x2﹣x1=2.①求抛物线的解析式;②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.考点:二次函数综合题.分析:(1)根据a取值的不同,有三种情形,需要分类讨论,避免漏解.(2)①函数与x轴相交于点A(x1,0),B(x2,0)两点,则x1,x2,满足y=0时,方程的根与系数关系.因为x2﹣x1=2,则可平方,用x1+x2,x1x2表示,则得关于a 的方程,可求,并得抛物线解析式.②已知解析式则可得A,B,C,D坐标,求sin∠DCB,须作垂线构造直角三角形,结论易得.解答:解:(1)函数y=ax2﹣(3a+1)x+2a+1(a为常数),若a=0,则y=﹣x+1,与坐标轴有两个交点(0,1),(1,0);若a≠0且图象过原点时,2a+1=0,a=﹣,有两个交点(0,0),(1,0);若a≠0且图象与x轴只有一个交点时,令y=0有:△=(3a+1)2﹣4a(2a+1)=0,解得a=﹣1,有两个交点(0,﹣1),(1,0).综上得:a=0或﹣或﹣1时,函数图象与坐标轴有两个交点.(2)①∵函数与x轴相交于点A(x1,0),B(x2,0)两点,∴x1,x2为ax2﹣(3a+1)x+2a+1=0的两个根,∴x1+x2=,x1x2=,∵x2﹣x1=2,∴4=(x2﹣x1)2=(x1+x2)2﹣4x1x2=()2﹣4•,解得a=﹣(函数开口向上,a>0,舍去),或a=1,∴y=x2﹣4x+3.②∵函数y=x2﹣4x+3与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x1<x2,∴A(1,0),B(3,0),C(0,3),∵D为A关于y轴的对称点,∴D(﹣1,0).根据题意画图,如图1,过点D作DE⊥CB于E,∵OC=3,OB=3,OC⊥OB,∴△OCB为等腰直角三角形,∴∠CBO=45°,∴△EDB为等腰直角三角形,设DE=x,则EB=x,∵DB=4,∴x2+x2=42,∴x=2,即DE=2.在Rt△COD中,∵DO=1,CO=3,∴CD==,∴sin∠DCB==.点评:本题考查了二次函数图象交点性质、韦达定理、特殊三角形及三角函数等知识,题目考法新颖,但内容常规基础,是一道非常值得考生练习的题目.25.(12分)(2014•荆州)如图①,已知:在矩形ABCD的边AD上有一点O,OA=,以O为圆心,OA长为半径作圆,交AD于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.若点E是CD边上一动点(点E与C,D不重合),过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为G.设CE=x,△EFG与矩形ABCD 重叠部分的面积为S.(1)求证:四边形ABHP是菱形;(2)问△EFG的直角顶点G能落在⊙O上吗?若能,求出此时x的值;若不能,请说明理由;(3)求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值.考点:圆的综合题;含30度角的直角三角形;菱形的判定;矩形的性质;垂径定理;切线的性质;切线长定理;轴对称的性质;特殊角的三角函数值.专题:压轴题.分析:(1)连接OH,可以求出∠HOD=60°,∠HDO=30°,从而可以求出AB=3,由HP∥AB,HP=3可证到四边形ABHP是平行四边形,再根据切线长定理可得BA=BH,即可证到四边形ABHP是菱形.(2)当点G落到AD上时,可以证到点G与点M重合,可求出x=2.(3)当0≤x≤2时,如图①,S=S△EGF,只需求出FG,就可得到S与x之间的函数关系式;当2<x≤3时,如图④,S=S△GEF﹣S△SGR,只需求出SG、RG,就可得到S与x之间的函数关系式.当FG与⊙O相切时,如图⑤,易得FK=AB=3,KQ=AQ﹣AK=2﹣2+x.再由FK=KQ即可求出x,从而求出S.解答:解:(1)证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.实用题库∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.(2)△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.实用题库∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.(3)①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GE•FG=x•x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣(6﹣2x)=3x﹣6.∵tan∠SRG===,∴SG=(x﹣2).∴S△SGR=SG•RG=•(x﹣2)•(3x﹣6).=(x﹣2)2.∵S△GEF=x2,∴S=S△GEF﹣S△SGR=x2﹣(x﹣2)2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.实用题库当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F作FK⊥AD,垂足为K ,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,∴四边形ABFK 是矩形.∴FK=AB=3,AK=BF=3﹣x.∴KQ=AQ﹣AK=(+2)﹣(3﹣x )=2﹣2+x.在Rt△FKQ中,tan ∠FQK==.∴FK=QK.∴3=(2﹣2+x ).解得:x=3﹣.∵0≤3﹣≤2,∴S=x2=×(3﹣)2=﹣6.∴FG与⊙O相切时,S的值为﹣6.点评:本题考查了矩形的性质、菱形的性质、切线的性质、切线长定理、垂径定理、轴对称性质、特殊角的三角函数值、30°角所对的直角边等于斜边的一半、等腰三角形的性质等知识,综合性非常强.. 21。
湖北省荆州中学2013-2014学年高一上学期期中考试数学(理)试题
一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(U C M )∩N =( )A .{}4,3,2B .{}2C .{}3D .{}4,3,2,1,0 2.已知函数()y f x =,则该函数与直线x a =的交点个数有( ) A .1个 B .2个 C .无数个 D .至多一个3.实数,,a b c 是图象连续不断的函数()y f x =定义域中的三个数,且满足,()()0,()()0a b c f a f b f c f b <<<<,则()y f x =在区间(,)a c 的零点个数为( )A .2B .奇数C .偶数D .至少是24.()f x 是定义在R 上的奇函数且单调递减,若(2)(4)0f a f a -+-<,则a 的取值范围是( )A .1a <B .3a <C . 1a >D . 3a > 5.下列函数图象关于原点对称的有( )①()f x =2()log (f x x =;③1(),(1,0)(0,1]f x x x=∈- ④()lg f x x x =-. A .①② B .①③ C .②③ D . ②④6.集合2{|log ,1}A y y x x ==>,1{|(),1}2x B y y x ==>,则()R C A B =( ).A .1{|0}2y y <<B .{|01}y y <<C .1{|1}2y y << D .∅7.某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为2121L x x =-+和22L x =,其中x 为销售量(单位:辆).若该公司这两地共销售15辆车,则能获得最大利润为( )A .120.25万元B .120万元 C. 90.25万元 D .132万元8.下列说法正确的个数是( )①空集是任何集合的真子集;②函数1()3x f x +=是指数函数;③既是奇函数又是偶函数的函数有无数多个;④若AB B =,则A B A =A.0个 B .1个 C . 2个 D. 3个9.已知函数()f x 的定义域为{},1x x R x ∈≠,且(1)f x +为奇函数,当1x <时,2()21f x x x =-+,那么当1x >时,()f x 的递减区间是( )A .5[,)4+∞B .7[,)4+∞C .5(1,]4D .7(1,]410.定义域为R 的函数1,33()2,3x x f x x ⎧-≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x af x b -+=有3个不同实数解123,,x x x ,且123x x x <<,则下列说法错误的是( ) A .521b a +-= B .0b <C .1233x x x -+=D .2221239x x x ++= 二、填空题:(本大题共5小题,每小题5分,共25分) 11.已知2510x y ==,则11x y+= ____________________. 12.已知A 是有限集合,x A ∉,{}B A x =,若,A B 的子集个数分别为,a b ,且b ka =,则k = _____.13.已知1()02xa x x ⎧⎫∈-=⎨⎬⎩⎭,则2(23)()x x f x a--=的增区间为 _______________.14. 已知函数22log (1)(0)()2(0)x x f x x x x +>⎧=⎨--≤⎩若函数()()g x f x m =-有3个零点,则实数m 的取值范围是_______________.15.若函数()y f x =是函数(01)xy a a =<≠的反函数,其图象过点)a ,且函数(3)my f x x=-+-在区间(2,)+∞上是增函数,则正数m 的取值范围是 . 三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.)16.(本题12分)(1)计算:2213log lg14812lg1)27100-⎛⎫-++- ⎪⎝⎭(2)已知11223x x-+=,求22123x x x x --+-+-的值.17.(本题12分)已知集合{}41(21)(216)0x x A ++=--≤与{}131B x m x m =+≤≤-分别是函数()f x 的定义域与值域.(1)求集合A ;(2)当A B B =时,求实数m 的取值范围.18.(本题12分)湖北省第十四届运动会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向荆州筹委会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x 元,x 为整数.(1)写出该专营店一年内销售这种纪念章所获利润y (元)与每枚纪念章的销售价格x (元)的函数关系式(并写出这个函数的定义域...); (2)当每枚纪念章销售价格x 为多少元时,该特许专营店一年内利润y (元)最大,并求出最大值.19.(本题12分)已知函数4()n f x x x=-,且(4)3f =. (1)判断()f x 的奇偶性并说明理由;(2)判断()f x 在区间()0,+∞上的单调性,并证明你的结论;(3)若对任意实数12,[1,3]x x ∈,有12()()f x f x t -≤成立,求t 的最小值.20.(本题13分)若非零函数()f x 对任意实数,x y 均有()()()f x f y f x y ⋅=+,且当0x <时() 1.f x >(1)求证:()0f x >;(2)求证:()f x 为R 上的减函数; (3)当1(4)16f =时, 对[1,1]a ∈-时恒有21(22)4f x ax -+≤,求实数x 的取值范围.21.(本题14分)已知函数1()a x f x x-=(1)写出函数()f x 的单调区间;(2)若()2f x x <在(1,)+∞恒成立,求实数a 的取值范围;(3)若函数()y f x =在[,]m n 上值域是[,]()m n m n ≠,求实数a 的取值范围.荆州中学2013~2014学年度上学期A B B B A =∴⊆ ………………8分13141413313m m m m m +≤-⎧⎪∴+≥-≤≤⎨⎪-≤⎩得故实数m 的取值范围为4[1,]3………………12分18. (1)依题意⎩⎨⎧∈<<---∈≤<--+=++N x x x x N x x x x y ,4020),7)](20(1002000[,207),7)](20(4002000[∴⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022, 定义域为{}407<<∈+x N x ………………6分(2) ∵⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022, ∴ 当720x <≤时,则16x =,max 32400y =(元)当2040x <<时,则23x =或24,max 27200y =(元)综上:当16x =时,该特许专营店获得的利润最大为32400元. ………………12分 19.解:(1)(4)413nf =-=即44,1nn =∴= 4()f x x x∴=-函数定义域为(,0)(0,)-∞+∞关于原点对称4()()f x x f x x-=-+=- ()f x ∴是奇函数 ………………4分(2)任取120x x <<则212121212112444()()()f x f x x x x x x x x x x x -=--+=-+-⋅ 120x x << 21120,0x x x x ∴->⋅> 21()()f x f x ∴>()f x ∴在区间(0,)+∞上单调递增 ………………8分(3)依题意只需 12max ()()t f x f x ≥-又12max min max 14()()()()3f x f x f x f x -=-=143t ∴≥min 143t ∴= ………………12分 20. (1)证法一:(0)()()f f x f x ⋅=即()[(0)1]0f x f -=又()0f x ≠(0)1f ∴=当0x <时,()1,f x > 0x ->()()(0)1f x f x f ⋅-== 则1()(0,1)()f x f x -=∈ 故对于x R ∈恒有()0f x > ………………4分 证法二:2()()[()]0222x x x f x f f =+=≥ ()f x 为非零函数 ()0f x ∴>(2)令12x x >且12,x x R ∈有1212()()()f x f x x f x ⋅-=, 又210x x -< 即21()1f x x -> 故2211()()1()f x f x x f x =-> 又()0f x > 21()()f x f x ∴> 故()f x 为R 上的减函数 ………………8分 (3)21(4)(22)(2)16f f f ==+=⇒故1(2)4f =, ………………10分 则原不等式可变形为2(22)(2)f x ax f -+≤ 依题意有 220x ax -≥对[1,1]a ∈-恒成立2220220x x x x x ⎧-≥∴⇒≥⎨+≥⎩或2x ≤-或0x = 故实数x 的取值范围为{}(,2]0[2,)-∞-+∞ ………………13分21.解:(1)增区间(0,)+∞, 减区间(,0)-∞ ………………2分(2)()2f x x <在(1,)+∞上恒成立即12x a x+>在(1,)+∞上恒成立 易证,函数1()2g x x x=+在上递减,在)+∞上递增故当x ∈(1,)+∞上有()(3,)g x ∈+∞3a ∴≤故a 的取值范围为(,3]-∞ ………………5分 (3)[,](,0)m n ⊆-∞或[,](0,)m n ⊆+∞①当0m n <<时,()f x 在(0,)+∞上递增,(),()f m m f n n ∴==即11a m m a nn ⎧-=⎪⎪⎨⎪-=⎪⎩即方程1a x x -=有两个不等正实数根方程化为:210x ax -+=故2400a a ⎧∆=->⎨>⎩得2a > ………………10分②当0m n <<时()f x 在(0,)+∞上递减 (),()f m n f n m ∴==即1(1)1(2)a n m a m n ⎧+=⎪⎪⎨⎪+=⎪⎩(1)-(2)得1()(1)0n m mn --=又n m ≠,1mn ∴= 0a ∴= ………………13分 综合①②得实数a 的取值范围为{}(2,)0+∞ ………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年湖北省荆州市公安三中高一(上)期中数学试卷(理科)一、选择题:(共50分)1.(5分)集合A={x|x2﹣1=0}的子集共有()A.4个 B.3 个C.2 个D.1 个2.(5分)已知A={第一象限角},B={锐角},C={小于的角},那么A、B、C 关系是()A.B=A∩C B.B∪C=C C.A⊊C D.A=B=C3.(5分)下列各组函数中,f(x)与g(x)表示同一函数的是()A.f(x)=x0,g(x)=1B.,g(x)=xC.f(x)=D.f(x)=4.(5分)在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x﹣y,x+y),则与A中的元素(﹣1,2)对应的B中的元素为()A.(﹣3,1)B.(1,3) C.(﹣1,﹣3)D.(3,1)5.(5分)函数y=(3x﹣x2﹣2)的单调递减区间是()A.(1,2) B.(2,+∞)C.(1,)D.(,+∞)6.(5分)已知函数f(x)=|x+1|+|x﹣1|,则它()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数7.(5分)函数y=|lg(x﹣1)|的图象是()A.B.C.D.8.(5分)设lg2=a,lg3=b,则log512等于()A.B.C.D.9.(5分)若函数f(x)=x3+x2﹣2x﹣2正整数为零点附近的函数值用二分法计算,其参考数据如下:f(1)=﹣2,f(1.5)=0.625,f(1.25)=﹣0.984,f(1.375)=﹣0.260,f(1.4375)=0.162.f(1.40625)=﹣0.054.则方程x3+x2﹣2x﹣2=0的一个近似值(精确到0.1)为()A.1.2 B.1.3 C.1.4 D.1.510.(5分)已知函数f(x)=,若关于x的方程f(f(x))=0有且仅有一个实数解,则实数a的取值范围是()A.(﹣∞,0)B.(﹣∞,0)∪(0,1)C.(0,1) D.(0,1)∪(1,+∞)二、填空题:(共25分)11.(5分)已知=2,则=.12.(5分)设集合M=(﹣∞,m],P=,若M∩P=∅,则实数m的取值范围是.13.(5分)已知函数f(x)=的定义域是一切实数,则m的取值范围是.14.(5分)已知关于x的方程在区间[﹣1,0]上有实数根,则实数a的取值范围是.15.(5分)下列几个命题:①方程x2+(a﹣3)x+a=0的有一个正实根,一个负实根,则a<0;②若f(x)的定义域为[0,1],则f(x+2)的定义域为[﹣2,﹣1];③函数y=log2(﹣x+1)+2的图象可由y=log2(﹣x﹣1)﹣2的图象向上平移4个单位,向左平移2个单位得到;④若关于x方程|x2﹣2x﹣3|=m有两解,则m=0或m>4;⑤若角α与角β的终边关于y轴对称,则α与β的关系是α+β=π;其中正确的有.三、解答题:(共75分)16.(12分)计算:(1)()﹣1﹣4•(﹣2)﹣3+()0﹣9(2).17.(12分)已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=∅,求a 的范围.18.(12分)已知x2﹣20x+64≤0的解集为A,当的值域为B.(1)求集合B;(2)当x∈B时不等式1+2x+4x a≥0恒成立,求a的最小值.19.(12分)设函数f(x)=ka x﹣a﹣x(a>0且a≠1)是定义域为R的奇函数.(1)若f(1)<0,试求不等式f(x2+2x)+f(x﹣4)>0的解集;(2)若f(1)=,且g(x)=a2x+a﹣2x﹣2mf(x),x∈[1,+∞)的最小值为﹣2,求m的值.20.(13分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=,其中x是仪器的月产量.(注:总收益=总成本+利润)(1)将利润f(x)表示为月产量x的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?21.(14分)已知函数,函数.(1)若函数y=g(mx2+2x+m)的值域为R,求实数m的取值范围;(2)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(3)是否存在非负实数m,n,使得函数y=g[f(x2)]的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.2014-2015学年湖北省荆州市公安三中高一(上)期中数学试卷(理科)参考答案与试题解析一、选择题:(共50分)1.(5分)集合A={x|x2﹣1=0}的子集共有()A.4个 B.3 个C.2 个D.1 个【解答】解:集合A={x|x2﹣1=0}={﹣1,1},∴A的子集的个数为:22=4个,故选:A.2.(5分)已知A={第一象限角},B={锐角},C={小于的角},那么A、B、C 关系是()A.B=A∩C B.B∪C=C C.A⊊C D.A=B=C【解答】解:∵A={第一象限角}={θ|2kπ<θ<2kπ+,k∈Z},C={小于的角}={θ|θ<},B={锐角}=,∴B∪C=C,故选:B.3.(5分)下列各组函数中,f(x)与g(x)表示同一函数的是()A.f(x)=x0,g(x)=1B.,g(x)=xC.f(x)=D.f(x)=【解答】解:对于A,f(x)=x0=1(x≠0),与g(x)=1(x∈R)的定义域不同,∴不是同一函数;对于B,f(x)==|x|(x∈R),与g(x)=x(x∈R)的对应关系不相同,∴不是同一函数;对于C,f(x)=x2(x∈R),与g(x)==x2(x≠0)的定义域不同,∴不是同一函数;对于D,f(x)==x•(x∈R),与g(x)=x•(x∈R)的定义域相同,对应关系也相同,∴是同一函数.故选:D.4.(5分)在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x﹣y,x+y),则与A中的元素(﹣1,2)对应的B中的元素为()A.(﹣3,1)B.(1,3) C.(﹣1,﹣3)D.(3,1)【解答】解:由映射的对应法则f:(x,y)→(x﹣y,x+y),故A中元素(﹣1,2)在B中对应的元素为(﹣1﹣2,﹣1+2)即(﹣3,1)故选:A.5.(5分)函数y=(3x﹣x2﹣2)的单调递减区间是()A.(1,2) B.(2,+∞)C.(1,)D.(,+∞)【解答】解:由3x﹣x2﹣2>0,得1<x<2.∵内函数g(x)=3x﹣x2﹣2在(1,)上为增函数,∴函数y=(3x﹣x2﹣2)的单调递减区间是(1,).故选:C.6.(5分)已知函数f(x)=|x+1|+|x﹣1|,则它()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数【解答】解:∵f(﹣x)=|﹣x+1|+|﹣x﹣1|=|x﹣1|+|x+1|=f(x),∴函数f(x)=|x+1|+|x﹣1|是偶函数.故选:B.7.(5分)函数y=|lg(x﹣1)|的图象是()A.B.C.D.【解答】解:由x﹣1>0解得,x>1,故函数的定义域是(1,+∞),由选项中的图象知,故C正确.故选:C.8.(5分)设lg2=a,lg3=b,则log 512等于()A.B.C.D.【解答】解:log512===.故选:C.9.(5分)若函数f(x)=x3+x2﹣2x﹣2正整数为零点附近的函数值用二分法计算,其参考数据如下:f(1)=﹣2,f(1.5)=0.625,f(1.25)=﹣0.984,f(1.375)=﹣0.260,f(1.4375)=0.162.f(1.40625)=﹣0.054.则方程x3+x2﹣2x﹣2=0的一个近似值(精确到0.1)为()A.1.2 B.1.3 C.1.4 D.1.5【解答】解:由表中数据f(1)=﹣2,f(1.5)=0.625,f(1.25)=﹣0.984,f(1.375)=﹣0.260,f(1.4375)=0.162.f(1.40625)=﹣0.054.中结合二分法的定义得f(1.375)•f(1.4375)<0,零点应该存在于区间(1.375,1.4375)中,观察四个选项,方程x3+x2﹣2x﹣2=0的一个近似值(精确到0.1)为1.4,与其最接近的是C,故选:C.10.(5分)已知函数f(x)=,若关于x的方程f(f(x))=0有且仅有一个实数解,则实数a的取值范围是()A.(﹣∞,0)B.(﹣∞,0)∪(0,1)C.(0,1) D.(0,1)∪(1,+∞)【解答】解:设t=f(x),则f(t)=0,若a<0时,当x≤0,f(x)=a•2x<0.由f(t)=0,即,此时t=1,当t=1得f(x)=1,此时x=有唯一解,此时满足条件.若a=0,此时当x≤0,f(x)=a•2x=0,此时函数有无穷多个点,不满足条件.若a>0,当x≤0,f(x)=a•2x∈(0,a].此时f(x)的最大值为a,要使若关于x的方程f(f(x))=0有且仅有一个实数解,则a<1,此时0<a<1,综上实数a的取值范围是(﹣∞,0)∪(0,1)故选:B.二、填空题:(共25分)11.(5分)已知=2,则=8.【解答】解:∵已知=2,∴tanα=2,则===8,故答案为:8.12.(5分)设集合M=(﹣∞,m],P=,若M∩P=∅,则实数m的取值范围是m<﹣1..【解答】解:函数y=x2﹣x﹣=(x﹣)2﹣1为开口向上的抛物线,最小值为﹣1,所以得到y≥﹣1,所以集合P的区间为[﹣1,+∞);由M∩P=∅得到两个集合没有公共元素,即m<﹣1.故答案为:m<﹣1.13.(5分)已知函数f(x)=的定义域是一切实数,则m的取值范围是0≤m≤4.【解答】解:∵函数f(x)=的定义域是一切实数,∴mx2+mx+1≥0对一切x∈R恒成立,当m=0时,上式变为1>0,恒成立,当m≠0时,必有,解之可得0<m≤4,综上可得0≤m≤4故答案为0≤m≤414.(5分)已知关于x的方程在区间[﹣1,0]上有实数根,则实数a的取值范围是[﹣1,0] .【解答】解:分类参数可得:a=﹣2×(2x)2+2x(x∈[﹣1,0])令2x=t(t∈[,1],a=﹣2t2+t=﹣2∴函数在[,1]上单调减∴a∈[﹣1,0]故答案为:[﹣1,0]15.(5分)下列几个命题:①方程x2+(a﹣3)x+a=0的有一个正实根,一个负实根,则a<0;②若f(x)的定义域为[0,1],则f(x+2)的定义域为[﹣2,﹣1];③函数y=log2(﹣x+1)+2的图象可由y=log2(﹣x﹣1)﹣2的图象向上平移4个单位,向左平移2个单位得到;④若关于x方程|x2﹣2x﹣3|=m有两解,则m=0或m>4;⑤若角α与角β的终边关于y轴对称,则α与β的关系是α+β=π;其中正确的有①②④.【解答】解:①方程x2+(a﹣3)x+a=0有一个正实根,一个负实根,则,即a<0,①正确;②若f(x)的定义域为[0,1],由0≤x+2≤1,解得﹣2≤x≤﹣1,∴f(x+2)的定义域为[﹣2,﹣1],②正确;③函数y=log2(﹣x+1)+2=log2[﹣(x﹣2)﹣1]﹣2+4的图象可由y=log2(﹣x﹣1)﹣2的图象向上平移4个单位,向右平移2个单位得到,③错误;④若关于x方程|x2﹣2x﹣3|=m有两解,对于方程的左边,设函数y=|x2﹣2x﹣3|,作出此函数的图象,而方程的右边对应直线y=m,问题转化为两个图象有且仅有两个公共点的问题,当m=3时,两个图象有三个不同的公共点;当0<m<4时,两个图象有四个不同和公共点;当m=0或m>4时,两个图象有且只有两个公共点.故m=0或m>4,④正确;⑤若角α与角β的终边关于y轴对称,则π﹣α是与α关于y轴对称的一个角,∴β与π﹣α的终边相同,即β=2kπ+(π﹣α),∴α+β=α+2kπ+(π﹣α)=(2k+1)π,k∈Z,⑤错误.故答案为:①②④.三、解答题:(共75分)16.(12分)计算:(1)()﹣1﹣4•(﹣2)﹣3+()0﹣9(2).【解答】解:(1)()﹣1﹣4•(﹣2)﹣3+()0﹣9=2++1﹣3=.(2)====.17.(12分)已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=∅,求a 的范围.【解答】解:当A=φ时即2a>a+3,a>3,此时满足A∩B=∅当A≠∅时,2a≤a+3,即a≤3时有2a≥﹣1且a+3≤5解之﹣≤a≤2,此时A∩B=φ综合知,当a>3或﹣≤a≤2时,A∩B=∅18.(12分)已知x2﹣20x+64≤0的解集为A,当的值域为B.(1)求集合B;(2)当x∈B时不等式1+2x+4x a≥0恒成立,求a的最小值.【解答】解:(1)A={x|4≤x≤16}f(x)=(log2x﹣3)(log2x﹣2)=(log2x)2﹣5log2x+6令t=log2x,则t∈[2,4],∵t∈[2,4],∴时,y取得最小值,t=4时,y取得最大值2∴(2)分离参数可得:设当x∈B时不等式1+2x+4x a≥0恒成立,可转化为a≥g(x)max∵在上递增∴∴19.(12分)设函数f(x)=ka x﹣a﹣x(a>0且a≠1)是定义域为R的奇函数.(1)若f(1)<0,试求不等式f(x2+2x)+f(x﹣4)>0的解集;(2)若f(1)=,且g(x)=a2x+a﹣2x﹣2mf(x),x∈[1,+∞)的最小值为﹣2,求m的值.【解答】解:(1)∵f(x)是定义域为R的奇函数,∴f(0)=0,可k﹣1=0,即k=1,故f(x)=a x﹣a﹣x(a>0,且a≠1)∵f(1)<0,∴a﹣<0,又a>0且a≠1,∴0<a<1.f′(x)=a x lna+,∵0<a<1,∴lna<0,而a x+>0,∴f′(x)<0,∴f(x)在R上单调递减.原不等式化为:f(x2+2x)>f(4﹣x),∴x2+2x<4﹣x,即x2+3x﹣4<0∴﹣4<x<1,∴不等式的解集为{x|﹣4<x<1}.(2)∵f(1)=,∴a﹣=,即2a2﹣3a﹣2=0,∴a=2或a=﹣(舍去).∴g(x)=22x+2﹣2x﹣2m(2x﹣2﹣x)=(2x﹣2﹣x)2﹣2m(2x﹣2﹣x)+2.令t=f(x)=2x﹣2﹣x,由(1)可知f(x)=2x﹣2﹣x为增函数∵x≥1,∴t≥f(1)=,令h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2(t≥)若m≥,当t=m时,h(t)min=2﹣m2=﹣2,∴m=2若m<,当t=时,h(t)min=﹣3m=﹣2,解得m=>,舍去.综上可知m=2.20.(13分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=,其中x是仪器的月产量.(注:总收益=总成本+利润)(1)将利润f(x)表示为月产量x的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?【解答】解:(1)由于月产量为x台,则总成本为20000+100x,从而利润f(x)=;(2)当0≤x≤400时,f(x)=300x﹣﹣20000=﹣(x﹣300)2+25000,∴当x=300时,有最大值25000;当x>400时,f(x)=60000﹣100x是减函数,∴f(x)=60000﹣100×400<25000.∴当x=300时,有最大值25000,即当月产量为300台时,公司所获利润最大,最大利润是25000元.21.(14分)已知函数,函数.(1)若函数y=g(mx2+2x+m)的值域为R,求实数m的取值范围;(2)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(3)是否存在非负实数m,n,使得函数y=g[f(x2)]的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.【解答】解:(1)①当m=0时,满足条件;②当m≠0时,有综上可得,0≤m≤1.(2)令,则y=t2﹣2at+3=(t﹣a)2+3﹣a2①当时,②当时,h(a)=3﹣a2③当a>3时,h(a)=12﹣6a故h(a)=;(3)假设存在实数m,n满足条件,则有0≤m<n,化简可得函数表达式为y=x2,则函数在[m,n]上单调递增,故值域为[m2,n2]=[2m,2n]解得m=0,n=2故存在m=0,n=2满足条件.。