淮海工学院2014高等数学竞赛AB组试卷参考答案及评分标准

合集下载

2014年高考江苏数学试题与答案(word解析版)

2014年高考江苏数学试题与答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.参考公式:圆柱的体积公式:V圆柱sh,其中s为圆柱的表面积,h为高.圆柱的侧面积公式:S圆柱=cl,其中c是圆柱底面的周长,l为母线长.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题.卡.相.应.位.置.上...(1)【2014年江苏,1,5分】已知集合A{2,1,3,4},B{1,2,3},则AB_______.【答案】{1,3}【解析】由题意得AB{1,3}.(2)【2014年江苏,2,5分】已知复数【答案】21 z(52i)(i为虚数单位),则z的实部为_______.2 2【解析】由题意22z(52i)25252i(2i)2120i,其实部为21.(3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n的值是_______.【答案】5n的最小整数解.2n20整数解为n5,因此输出的n5.【解析】本题实质上就是求不等式220(4)【2014年江苏,4,5分】从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______.【答案】13【解析】从1,2,3,6这4个数中任取2个数共有 2C46种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为21P.63(5)【2014年江苏,5,5分】已知函数ycosx与ysin(2x)(0≤),它们的图象有一个横坐标为的3 交点,则的值是_______.【答案】6【解析】由题意cossin(2)33 ,即21sin()32,2kk(1),(kZ),因为0,所36以.6(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.【答案】241【解析】由题意在抽测的60株树木中,底部周长小于100cm的株数为(0.0150.025)106024.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}a中,若na8a62a4,则a21,a的值是________.6【答案】4【解析】设公比为q,因为a21,则由a8a62a4得64224220qqa,qq,解得22q,所以4a6a2q4.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为S,S,体积分别为12 V,V,若它们的侧面积相12等,且S1S294,则V1V2的值是_______.【答案】32【解析】设甲、乙两个圆柱的底面和高分别为r、h,r2、h2,则2r1h12r2h2,11 h r12hr21,又2Sr112Sr2294,所以r1r232,则222Vrhrhrrr11111121222Vrhrhrrr2222221232.(9)【2014年江苏,9,5分】在平面直角坐标系xOy中,直线x2y30被圆长为________.22(x2)(y1)4截得的弦【答案】2555 【解析】圆22(x2)(y1)4的圆心为C(2,1),半径为r2,点C到直线x2y30的距离为22(1)33d,所求弦长为22512 229255 l2rd24.55(10)【2014年江苏,10,5分】已知函数f(x)xmx1,若对任意x[m,m1],都有f(x)0成立,则实2数m的取值范围是________.【答案】20,2【解析】据题意22f(m)mm102f(m1)(m1)m(m1)10,解得22m0.(11)【2014年江苏,11,5分】在平面直角坐标系xOy中,若曲线2byaxx(a,b为常数)过点P(2,5),且该曲线在点P处的切线与直线7x2y30平行,则ab的值是________.【答案】3【解析】曲线yax 2bxb b过点P(2,5),则4a5①,又y'2ax22x,所以b74a②,由①②解得42ab11,所以ab2.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD中,已知,AB8,AD5,CP3PD,APBP2,则ABAD的值是________.【答案】22【解析】由题意,1APADDPADAB,433BPBCCPBCCDADAB,44所以13APBP(ADAB)(ADAB)442132ADADABAB,216即1322564ADAB,解得ADAB22.216(13)【2014年江苏,13,5分】已知f(x)是定义在R上且周期为3的函数,当x[0,3)时,21f(x)x2x.2 若函数yf(x)a在区间[3,4]上有10个零点(互不相同),则实数a的取值范围是________.【答案】01,22【解析】作出函数 21 f(x)x2x,x[0,3)的图象,可见21 f(0),当x1时,21 f(x)极大, 27f ,方程f(x)a0在x[3,4]上有10个零点,即函数yf(x)和图象与直线 (3) 2ya 在[3,4]上有10个交点,由于函数f(x)的周期为3,因此直线ya 与函数21f(x)x2x,x[0,3)的应该是4个交点,则有21 a(0,). 2(14)【2014年江苏,14,5分】若ABC 的内角满足sinA2sinB2sinC ,则cosC 的最小值是_______.【答案】624【解析】由已知sinA2sinB2sinC 及正弦定理可得a2b2c , cosC a2b 222 ab() 2 222abc 2ab2ab223a2b22ab26ab22ab628ab8ab4,当且仅当 22 3a2b ,即a b 2 3时等号成立,所以cosC的最小值为 62 4. 二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出必要的文字说明、证明过程或演算步骤. (15)【2014年江苏,15,14分】已知2,,sin5 5 .(1)求sin的值;4(2)求cos2 6的值. 解:(1)∵sin5,,,∴ 25225cos1sin5, 210sinsincoscossin(cossin).444210(2)∵43 sin22sincoscos2cossin,,sin22sincoscos2cossin2255∴3314334 cos2coscos2sinsin2666252510. (16)【2014年江苏,16,14分】如图,在三棱锥PABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知 PAAC ,PA6,BC8,DF5.(1)求证:直线PA ∥平面DEF ;(2)平面BDE ⊥平面ABC . 解:(1)∵D ,E 为PC ,AC 中点∴DE ∥PA ∵PA 平面DEF ,DE 平面DEF ∴PA ∥平面DEF .(2)∵D ,E 为PC ,AC 中点,∴DE1PA3∵E ,F 为AC ,AB 中点,∴14 EFBC ,22∴DE 2EF 2DF 2,∴DEF90°,∴DE ⊥EF ,∵DE//PA ,PAAC ,∴DEAC , ∵ACEFE ,∴DE ⊥平面ABC ,∵DE 平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中, F ,F 分别是椭圆 12 22yxab的左、221(0)ab右焦点,顶点B的坐标为(0,b),连结B F并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,2连结F C.1B F22,求椭圆的方程;(1)若点C的坐标为41,,且33(2)若F CAB,求椭圆离心率e的值.13161解:(1)∵41C,,∴33 999ab22,∵2222BFbca,∴22(2)22a,∴b,21∴椭圆方程为2xy.21 2(2)设焦点F1(c,0),F2(c,0),C(x,y),∵A,C关于x轴对称,∴A(x,y),∵B,F,A三点共线,∴2bybcx,即bxcybc0①∵yb FCAB,∴11xcc ,即20xcbyc②①②联立方程组,解得xyca2bc222bc2bc22∴Cac2bc22,2222bcbcC在椭圆上,∴22ac2bc22bcbc2222ab221,化简得5ca,∴c522a5,故离心率为55.(18)【2014年江苏,18,16分】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段O A上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O 正东方向170m处(OC为河岸),tan4BCO.3(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?.解:解法一:(1)如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系x Oy.由条件知A(0,60),C(170,0),直线BC的斜率4k-tanBCO.BC3又因为AB⊥BC,所以直线AB的斜率3k.设点B的坐标为(a,b),AB4则k BC=b04a1703 ,k AB=603ba04,解得a=80,b=120.所以BC= 22(17080)(0120)150.因此新桥BC的长是150m.(2)设保护区的边界圆M的半径为rm,OM=dm,(0≤d≤60.) 由条件知,直线BC的方程为4(170)yx,即4x3y6800,3由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即因为O和A到圆M上任意一点的距离均不少于80m,|3d680|6803d r.55所以rd≥ 80r(60d)≥80,即6803d 5 6803d5d80 ≥ (60d)80≥,解得10≤d ≤35.故当d=10时, 6803d r 最大,即圆面积最大.所以当OM=10m 时,圆形保护区的面积最大.5解法二:(1)如图,延长OA,CB 交于点F .因为tan ∠BCO=43 .所以sin ∠FCO=45 ,cos ∠FCO=3 5 .因为OA=60,OC=170,所以OF=OCtan ∠FCO=680 3.CF= OC 850cosFCO3 , 4从而500AFOFOA.因为O A⊥OC,所以cos∠AFB=sin∠FCO=3 45,又因为A B⊥BC,所以BF=AFcos∠AFB== 4003,从而BC=CF-BF=150.因此新桥B C的长是150m.(2)设保护区的边界圆M与BC的切点为D,连接M D,则MD⊥BC,且MD是圆M的半径,并设MD=rm,OM=dm(0≤d≤60.)因为O A⊥OC,所以sin∠CFO=cos∠FCO,故由(1)知,sin∠CFO= M DMDr3MFOFOM 6805d3所以6803dr.5因为O和A到圆M上任意一点的距离均不少于80m,所以rd≥80r(60d)≥80,即6803d56803d5d80≥(60d)≥80,解得10≤d≤35,故当d=10时,6803dr最大,即圆面积最大.所以当OM=10m时,圆形保护区的面积最大.5(19)【2014年江苏,19,16分】已知函数()eexxfx其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤em1在(0,)上恒成立,求实数m的取值范围;x(3)已知正数a满足:存在你的结论.x0[1,),使得3ea1与f(x)a(x3x)成立.试比较000a e1的大小,并证明解:(1)x R,f(x)eef(x),∴f(x)是R上的偶函数.xx(2)由题意,(ee)e1xxxm≤,∵x(0,),∴exex10,xxxm≤m,即(ee1)e1即e1xm≤对x(0,)恒成立.令e(1)tt,则xee1xx m1t≤对任意t(1,)恒成立.tt12∵1111tt≥,当且仅当t2时等号成立,∴1m≤.223tt1(t1)(t1)113t11t1(3)f'(x)ee,当x1时f'(x)0∴f(x)在(1,)上单调增,令xx h(x)a(x3x),h'(x)3ax(x1),33∵a0,x1,∴h'(x)0,即h(x)在x(1,)上单调减,∵存在x0[1,),使得f xaxx,∴f(1)e12a,即1e1()(3)a.3000e2e∵aaaa,设m(a)(e1)lnaa1,则m'(a)e11e1a e-1lnlnlne(e1)ln1e1a1eaaa1 ,11 ae.当2e 11eae1时,m'(a)0,m(a)单调增;当ae1时,m'(a)0,m(a)单调2e减,因此m(a)至多有两个零点,而m(1)m(e)0,∴当ae时,m(a)0,a e1ea1;当1e1ea 时,m(a)0,2ea e1e1;当ae 时,m(a)0, aae1ea1.(20)【2014年江苏,20,16分】设数列{}a 的前n 项和为S .若对任意的正整数n ,总存在正整数m ,使得 nnS a , nm则称{}a 是“H 数列”. nn(1)若数列{a}的前n 项和S2(n N ),证明:{a}是“H 数列”;nnn(2)设{a}是等差数列,其首项 na 11,公差d0.若{a }是“H 数列”,求d 的值; n (3)证明:对任意的等差数列{}a ,总存在两个“H 数列”{b}和{c},使得abc(n N )成立. nnnnnn 解:(1)当n ≥2时,nn1n1 aSS1222,当n1时,nnn a 1S 12, ∴n1时, S a ,当n ≥2时, 11 S a ,∴{a }是“H 数列”. nn1n(2) n(n1)n(n1) Snadnd ,对n N ,m N 使 n122Sa ,即 nm n(n1) nd1(m1)d , 2 5取n2得1d(m 1)d ,m21d,∵d0,∴m2,又m N ,∴m1,∴d1. (3)设{} a 的公差为d ,令 n b a1(n1)a1(2n)a1,对n N , nbba , n1n1 c (n1)(ad), n1 对n N , c cad ,则 n1n1b ca1(n1)da ,且{b},{c }为等差数列. nnnnn{b}的前n 项和 n n(n1) Tna(a),令 n112T(2m)a ,则 n1 n(n3) m2. 2 当n1时m1;当n2时m1;当n ≥3时,由于n 与n3奇偶性不同,即n(n3)非负偶数,m N . 因此对n ,都可找到m N ,使T b 成立,即{b}为“H 数列”. nmn{c }的前n项和 n n(n1) R(ad),令 n12c(m1)(ad)R ,则 n1m m n (n1) 2 1∵对n N ,n(n1)是非负偶数,∴m N ,即对n N ,都可找到m N ,使得R c 成立, nm即{}c 为“H 数列”,因此命题得证. n数学Ⅱ 注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必 答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定 位置. 3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚. 4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】本题包括A 、B 、C 、D 四小题,请选.定.其.中.两.题.,并.在.相.应.的.答.题.区.域.内.作.答.,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、D是圆O 上位于AB 异侧的两点.证明:∠OCB=∠D .解:因为B ,C 是圆O 上的两点,所以OB=OC .故∠OCB=∠B .又因为C,D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B=∠D .因此∠OCB=∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵 1211 A ,B ,向量1x212 y , x ,y 为实数,若A α=B α,求x ,y 的值.解: 2y2 A ,2xy2y B α,由A α=B α得4y2y22y , 解得14x ,y .2xy4y ,2(21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2 x1t ,2(t 为参数),直线l 与抛物线2y2t2y 24x 交于A ,B 两点,求线段A B 的长. 解:直线l :xy3代入抛物线方程24 yx 并整理得x 210x90,∴交点A(1,2),B(9,6),故|AB|82. (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知x0,y0,证明: 22 1xy1xy9xy .解:因为x>0,y>0,所以1+x+y 2≥33xy 20,1+x 2+y ≥ 2≥33xy 20,1+x 2+y ≥ 22222 333 3xy0,所以(1+x+y)(1+x+y)≥3xy3xy=9xy .【必做】第22、23题,每小题10分,计20分.请把答案写在.答.题.卡.的.指.定.区.域.内...完(22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外全相同.6(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x,x,x,随机变量X表示123 x,x,x 123中的最大数,求X的概率分布和数学期望E(X).解:(1)一次取2个球共有 2C36种可能情况,2个球颜色相同共有9222CCC10种可能情况,432∴取出的2个球颜色相同的概率105P.3618(2)X的所有可能取值为4,3,2,则C14PX;(4)4C12649CCCC133131P(X3)4536;C6339 11P(X2)1P(X3)P(X4).∴X的概率分布列为:14X234P11 14 13631126故X的数学期望()2113134120EX.14631269(23)【2014年江苏,23,10分】已知函数sinxf(x)(x0)x ,设f(x)为nf x的导数,n N.n1()(1)求2f f的值;12222(2)证明:对任意的n N,等式 2nff成立.n1n4442解:(1)由已知,得sinxcosxsinxf(x)f(x)102xxx,于是cosxsinxsinx2cosx2sinx f(x)f(x)21223xxxxx ,所以4216f(),f(),122322故2f()f()1.12222(2)由已知,得xf0(x)sinx,等式两边分别对x求导,得f0(x)xf0(x)cosx,即f0(x)xf1(x)cosxsin(x),类似可得2 2f(x)xf(x)sinxsin(x),123 3f(x)xf(x)cosxsin(x),232 4f(x)xf(x)sinxsin(x2).34下面用数学归纳法证明等式nnfxxfxx对所有的nnn1()()sin()2N*都成立.(i)当n=1时,由上可知等式成立.(ii)假设当n=k时等式成立,即kkf1(x)xf(x)sin(x).kk2因为[kf(x)xf(x)]kf(x)f(x)xf(x)(k1)f(x)f(x),k1kk1kkkk1(k1) kkk[sin(x)]cos(x)(x)sin[x],所以2222 (k1)f(x)f(x)kk1(k1)sin[x].2所以当n=k+1时,等式也成立.综合(i),(ii)可知等式nnf1(x)xf(x)sin(x)对所有的nnnN都成立.*2令x,可得4nnf1()f()sin()(nnn44442N).所以*2nff(nn1n()()4442N).*7。

2014年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)

2014年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)

2014年普通高等学校招生全国统一考试(某某卷)圆柱的体积公式:Sh V =圆柱, 其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1. 已知集合A={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ .2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ .3. 右图是一个算法流程图,则输出的n 的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲ .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲ .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则(第3题)100 80 90 110 120 底部周长/cm(第6题)21V V 的值是 ▲ .9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值X 围是▲ .11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ .12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是 ▲ .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值X 围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .(第12题)PDCA17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a b y a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程; (2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,某某数m 的取值X 围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”; (2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点. 证明:∠OCB= ∠D .B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵 1 2 1 1,1 x 2 -1A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,向量 2a y ⎡⎤=⎢⎥⎣⎦,x ,y 为实数. 若Aa =Ba ,求x+y 的值.C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线 l 的参数方程为 212222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l 与抛物线24y x =相交于A ,B 两点,求线段AB 的长.D .[选修4-5:不等式选讲](本小题满分10分)已知x>0,y>0,证明: 22(1)(1)9x y x y xy ++++≥.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同. (l)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出 4个球,其中红球、黄球、绿球的个数分别记为 123,,x x x ,随机 变量X 表示123,,x x x 中的最大数,求X 的概率分布和数学期望E(X). 23.(本小题满分10分) 已知函数 0sin ()(0)xf x x x=>,设 ()n f x 为 1()n f x -的导数,n N *∈. (1)求 122222f f πππ⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭的值; (2)证明:对任意的 n N *∈,等式 124442n n nf f πππ-⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭都成立.。

2014年全国高中数学联赛江苏赛区复赛参考答案与评分标准(加试)

2014年全国高中数学联赛江苏赛区复赛参考答案与评分标准(加试)

取正整数 k1 满足 1- 1k1>cos nt,由(1)可知存在正整数 n,使得 cos n>1- 1k1>22001145. 这与使 cosn>22001145成立的正整数 n 的个数是 t 矛盾.
所以存在无穷多个正整数 n,使得 cosn>22001145.
………………………50 分
2014 年全国高中数学联赛江苏赛区复赛试4 卷(加试)参考答案 第 4 页 共 4 页
从而 n<36,又因为 n 为偶数,所以 n≤34.
……………… 40 分
(3)证明 n=34 能取到.
不妨设凸 34 边形内角中只有两个值 x 和 x-20°,它们相间出现,各为一半,
有 17(2x-20°)=32×180°,x=301570°<180°.x-20°>0,
知存在满足条件的凸 34 边形.
({x}=x-[x],[x]表示不大于 x 的最大整数). 将区间[0,1)分成 M 个小区间:[0,M1 ),[M1 ,M2 ),…,[MM-1,1), 由抽屉原理可知,一定存在 1≤i<j≤M+1,使得{iα},{jα}在同一个小区间,
因此,|{jα}-{iα}|<M1 ,从而|nα-([jα]-[iα])|<M1 ,
而当 n 为偶数时,且 x1,x2,…,xn 中一半取 2,一半取 8 时,等号成立. 故当且仅当 n 为偶数,且 x1,x2,…,xn 中一半取 2,一半取 8 时等号成立.
…………………………… 40 分
2014 年全国高中数学联赛江苏赛区复赛试2 卷(加试)参考答案 第 2 页 共 4 页
Printed with FinePrint trial version - purchase at
⎩⎨⎧ 由①②知,必须有

2014年全国高中数学联赛江苏赛区初赛参考答案与评分细则(定稿)

2014年全国高中数学联赛江苏赛区初赛参考答案与评分细则(定稿)

2014年全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题满分70分,每小题7分)1.若x ≥2,则函数f (x )=x +1x +1的最小值是 .答案:73.2.已知函数f (x )=e x .若f (a +b )=2,则f (3a )·f (3b )的值是 . 答案:8.3.已知数列{a n }是各项均不为0的等差数列,公差为d ,S n 为其前n 项和,且满足a n 2=S 2n -1,n ∈N *,则数列{a n }的通项a n = . 答案:2n -1.4.若函数f (x )=⎩⎨⎧2x 2-3x , x ≥0,-2x 2+ax ,x <0是奇函数,则实数a 的值是_________. 答案:-3. 5.已知函数f (x )=|lg|x -103||.若关于x 的方程f 2(x )-5f (x )-6=0的实根之和为m ,则f (m )的值是 . 答案:1.6.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于 . 答案:2525.说明:若学生得出255或2525,255,本题得4分.7.四面体ABCD 中,AB =3,CD =5,异面直线AB 和CD 之间的距离为4,夹角为60°,则四面体ABCD 的体积为 . 答案:53.8.若满足∠ABC =π3,AC =3,BC =m 的△ABC 恰有一解,则实数m 的取值范围是 .答案:(0,3]∪{23}.9.设集合S ={1,2,…,8},A ,B 是S 的两个非空子集,且A 中最大的数小于B 中的最小数,则这样的集合对(A ,B )的个数是 . 答案:769.10.如果正整数m 可以表示为x 2-4y 2 (x ,y ∈Z ),那么称m 为“好数”.问1,2,3,…,2014中“好数”的个数为 . 答案:881.二、解答题(本题满分80分,每小题20分)11.已知a ,b ,c 为正实数,a x =b y =c z ,1x +1y +1z=0,求abc 的值.证明:设a x =b y =c z =p >0,则a =1xp ,b =1yp ,c =1zp .…………………… 10分所以abc =1xp·1yp·1zp =111x y zp++. …………………… 15分因为1x +1y +1z=0,所以abc =0p =1. …………………… 20分12.已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点,点B 的坐标为(0,b ),直线F 1B 与双曲线C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若MF 2=12F 1F 2,求双曲线C 的离心率.解:设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的半焦距长为c ,则点F 1,F 2的坐标分别(-c ,0),(c ,0).从而直线F 1B 的方程为x -c +y b=1,双曲线C :x 2a 2-y 2b 2=1的渐近线方程为x 2a 2-y 2b 2=0.联立⎩⎨⎧x -c +yb =1,x 2a 2-y2b 2=0,消去y 得,b 2x 2-2a 2cx -a 2c 2=0.由韦达定理得:线段PQ 中点的坐标(a 2c b 2,c 2b ). ………………………… 10分因此PQ 中垂线的方程是:y -c 2b =-c b (x -a 2cb2).在上式中,令y =0,得M (c +a 2cb 2,0). ………………………… 15分另一方面,由MF 2=12F 1F 2,则M (2c ,0),或M (0,0)(舍去),由此可得,c +a 2cb2=2c ,即a =b ,故e =2. ………………………… 20分13.如图,已知△ABC 是锐角三角形,以AB 为直径的圆交边AC 于点D ,交边AB 上的高CH于点E .以AC 为直径的半圆交BD 的延长线于点G .求证:AG =AE .证明:连结BE ,CG . 因为AB 为直径,所以∠AEB =90°,BG ⊥AC . 又EH ⊥AB ,在△AEB 中,由射影定理得 AE 2=AH ·AB . 因为AC 为直径,所以∠AGC =90°.在△AGC 中,由射影定理得AG 2=AD ·AC . …………10分因为∠BDC =∠BHC =90°, 所以B ,C ,D ,H 四点共圆,从而由割线定理知AH ·AB =AD ·AC . …………………… 15分 所以AE 2=AG 2,即AE =AG . …………………… 20分14.(1)正六边形被3条互不交叉(端点可以重合)的对角线分割成4个三角形.将每个三角形区域涂上红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.怎样分割并涂色可以使红色三角形个数与蓝色三角形个数的差最大?(2) 凸2016边形被2013条互不交叉(端点可以重合)的对角线分割成2014个三角形.将每个三角形区域涂上红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.在上述分割并涂色的所有情形中,红色三角形个数与蓝色三角形个数之差的最大值是多少?证明你的结论.ABCDEFABCDGE HABCDGEH解:(1)3条对角线分得4个三角形,相邻的两个涂色相异,则既有红 色三角形,又有蓝色三角形.不妨设红色三角形多于蓝色三角形.则蓝色三角形至少有1个,红色三角形最多3个,红色三角形个数与蓝色三角形个数之差不超过3-1=2.如图连接AC ,CE ,EA ,△ACE 涂蓝色,其余3个三角形涂红色,差为2. 故红色三角形个数与蓝色三角形个数之差的最大值为2. …………………… 5分 (2)2013条互不交叉(端点可以重合)的对角线分割成2014个三角形.每个三角形区域涂红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.设红色三角形多于蓝色三角形.每个蓝色三角形三条边中至少有一条对角线,即三条边中对角线的条数只能为1、2或3.每条对角线只属于一个蓝色三角形.设边中恰含k (k =1,2,3)条对角线的蓝色三角形的个数为m k ,则对角线条数m 1+2m 2+3m 3=2013, 蓝色三角形个数m 1+m 2+m 3=3m 1+3m 2+3m 33≥m 1+2m 2+3m 33= 20133 =671,红色三角形个数≤2013-671=1343,红色三角形个数与蓝色三角形个数之差≤1343-671=672. ……………………10分 注意到凸6边形中红色三角形个数与蓝色三角形个数之差的最大值为2,此时6边形的边均为红色; 假定凸3k 边形中,红色三角形个数与蓝色三角形个 数之差的最大值为k 且凸3k 边形的边均为红色.则凸3(k +1)边形A 1A 2A 3…A 3k A 3k +1A 3k +2A 3k +3中的凸3k 边形A 1A 2A 3…A 3k 按假定涂色,红色三角形个数与蓝色三角形个数之差最大值为k 且边A 1A 3k 为红色.如图,则△A 1A 3k A 3k +2区域涂蓝色,△A 3k A 3k +1A 3k +2区域涂红色,△A 1A 3k +2A 3k +3区域涂红色,凸3(k +1)边形中红色三角形个数与蓝色三角形个数之差的值为k +2-1= k +1.即按上述方法涂色,凸2016边形中红色三角形个数与蓝色三角形个数之差为20163 = 672.所以凸2016边形中红色三角形个数与蓝色三角形个数之差的最大值为672.……………………20分ABCDEFA 1A 3k +1A 3kA 3k +2A 3k +3。

2014年全国高中数学联合竞赛试题及解答.(B卷)

2014年全国高中数学联合竞赛试题及解答.(B卷)
(也可以猜出通项,用数学归纳法证明)
2014B 10、(本题满分 20 分)设 x1, x2 , x3 是多项式方程 x3 10x 11 0 的三个根.
⑴已知 x1, x2 , x3 都落在区间 5,5 之中,求这三个根的整数部分;(5 分)
2014 年全国高中数学联合竞赛试题(B 卷) 第 4 页 共 10 页
以得到 an3 an 12 ,说明 a3k1,a3k ,a3k1分别是公差为12 的等差数列,首先分别为 a2 5 , a3 9 , a4 13 。又 a1, a2 , a3 , a4 成公差为 4 的等差数列,所有 an 也是公差为 4 的等差数列,
an 4n 3。
由过
AD

BE
交点的直线系方程为
x0 (x 2) 2(2 x0 2 y0
)

y



x 2

2y0 ( 2 x0
y 1) 2y0


0

把 C(2,1)
代入可得


1,此时直线系就变为
x0 (x 2(2 x0
2) 2y0
)

y

x

2

件 A 共包含 45 C153 。由于在 52 张牌随机抽取 5 张的基本事件个数为 C552 ,于是事件 A 发生的概率
为 45 C153
C
5 52
0.5071,从而 P( A) 1 0.5071 0.4929 。
2014B 8、设 g(x) x(1 x) ,是定义在区间[0,1]上的函数,则函数 y xg (x) 的图像与 x

2014年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2014年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2014年普通高等学校招生全国统一考试〔江苏卷〕答案解析数 学Ⅰ一、填空题:本大题共14小题,每一小题5分,共70分.请把答案直接填写在答题卡相应位置上. 1、集合}4,3,1,2{A --=,}3,2,1{B -=,如此B A = ▲ . 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】此题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。

属于根底题,难度系数较小。

2、复数2)25(i z -=(i 为虚数单位〕,如此z 的实部为▲ .【答案】21【解析】根据复数的乘法运算公式,i i i i z 2021)2(2525)25(222-=+⨯⨯-=-=,实部为21,虚部为-20。

【点评】此题重点考查的是复数的乘法运算公式,容易出错的地方是计算粗心,把12-=i 算为1。

属于根底题,难度系数较小。

〔第33、右图是一个算法流程图,如此输出的n 的值是▲ . 【答案】5【解析】根据流程图的判断依据,此题202>n是否成立,假设不成立,如此n 从1开始每次判断完后循环时,n 赋值为1+n ;假设成立,如此输出n 的值。

此题经过4次循环,得到203222,55>===n n ,成立,如此输出的n 的值为5【点评】此题重点考查的是流程图的运算,容易出错的地方是判断循环几次时出错。

属于根底题,难度系数较小。

4、从6,3,2,1这4个数中一次随机地取2个数,如此所取2个数的乘积为6的概率是▲ .【答案】31【解析】将随机选取2个数的所有情况“不重不漏〞的列举出来:〔1,2〕,〔1,3〕〔1,6〕,〔2,3〕,〔2,6〕,〔3,6〕,共6种情况,满足题目乘积为6的要求的是〔1,6〕和〔2,3〕,如此概率为31。

【点评】此题主要考查的知识是概率,题目很平稳,考生只需用列举法将所有情况列举出来,再将满足题目要求的情况选出来即可。

2014高教社杯全国大学生数学建模竞赛A题_共26页

2014高教社杯全国大学生数学建模竞赛A题_共26页

2014 高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
嫦娥三号软着陆轨道设计与控制策略 摘要
本文针对嫦娥三号软着陆轨道设计与控制策略问题,通过提取题目中的信 息,利用拱点的概念、B 样条函数逼近的统计定位方法、非线性规划问题及哈 密尔顿函数为理论基础进行了完整的建模工作。首先,通过建立坐标系结合物 理学运动公式求解出了近月点与远月点的位置及相应的速度;在此基础上,利 用 B 样条函数逼近的方法确定了嫦娥三号的着陆轨;最后通过分解着陆过程并 利用非线性规划问题及哈密尔顿函数确定着陆阶段的最优控制策。
参赛队员 (打印并签名) :1.
2.
3.
指导教师或指导教师组负责人 (打印并签名):
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上
内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖
资格。)
日期: 2014 年 9 月 15 日
赛区评阅编号(由赛区组委会评阅前进行编号):
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开 展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):
A
我们的报名参赛队号为(8 位数字组成的编号):
07033001
所属学校(请填写完整的全名):吉林师范大学博达学院
针对问题二,采用 B 样条函数逼近的运动学统计定位方法确定了在着陆弧 段上任意时刻的位置方程,从而刻画出了嫦娥三号的着陆轨道,并用 matlab 对轨 迹进行了模拟。在 6 个阶段的最优控制策略上,先通过直角坐标系得出质心的运 动方程,再通过对 6 个阶段初始条件和终端状态的分解,利用非线性规划问题 求解哈密尔顿函数,得出性能指标(耗燃量)的最小值为:382.6531kg,从而确 定了最优控制策略。

淮海工学院2012高等数学竞赛B组试卷参考答案及评分标准

淮海工学院2012高等数学竞赛B组试卷参考答案及评分标准

第1页 共3页2012年淮海工学院高等数学竞赛B 组试卷参考答案及评分标准1、当0x →时,1xxe 是--------------------------------------------------------------------------(D)(A) 无穷小 (B)有界但非无穷小 (C) 无穷大 (D)无界但非无穷大2、设函数22012111()(1)(2)(2012)f x xx x =--- ,则'(1)f =--------------------(C ) (A )2012!- (B )2011!- (C )2011! (D )2012!3、当0x →时,2ln(1)0()ln(1)x f x x dx +=+⎰是ln(1)20()ln(1)x g x x dx +=+⎰的----(D)(A)低价无穷小 (B)同阶非等价无穷小 (C)等价无穷小 (D)高阶无穷小 4、22(,)(0,0)(,)(0,0)limx y f xy f x y→-+存在是(,)f x y 在()0,0处可微的 ------------------ (B) (A) 必要但非充分条件 (B) 充分但非必要条件 (C) 充要条件(D) 既不充分也不必要条件5(本二学生做)、设函数)(t f 连续,则二次积分122cos ()d f r dr πθθ=⎰⎰------------(C )(A )22110dx⎰(B )1220()dx x y dy +⎰(C )2210dx dy ⎰(D )1220()dx x y dy +⎰5(东港学生做)、设4488tan ,tan xx I dx J dx x xππππ==⎰⎰,则有---------------------(C )(A )ln 28I J π<<< (B )ln 28J I π<<< (C )ln 28I J π<<< (D)ln 28I J π<<<二、填充题(本大题共5小题,每题4分,共20分)1、22(1)1x x y x -=+的斜渐近线方程为1y x =-.2、设)(u f 可导,22(log )y f x =当自变量x 在1-=x 处取得增量0.01x ∆=-时,相应的函数增量y ∆的线性主部为0.02,则(0)f '=ln 2.提示:22222[(log )]''(log )ln 2dy f x x f x x x =∆=∆. 3、y xz x y -=+, 则n n z x ∂=∂12(1)!()n n y n x y +-+.4、21x x dx e e +∞-=+⎰4eπ.5、(本二学生做)设{}(,)|2,0,0D x y x y x y =+≤≥≥,则1d 2Dx x y σ+=++⎰⎰1. 5、(东港学生做)40=⎰2.三、计算题(本题8分)3arcsin32sin 2022lim 33x xx arc x x →--. 解:原式arcsin33arcsin33arcsin3sin 22sin 22sin 200022121lim lim lim 33131x x x x x arc x x arc x x arc x x x x ----→→→--==--------------------2(3arcsin3)ln 2(2sin 2)ln3001ln 23arcsin 3lim lim 1ln 32sin 2x x x arc x x x e x x e x arc x--→→--==----------------------2 112222'11002222ln 233(19)3ln 2(19)1lim lim ln 32ln 322(14)(14)1L Hx x x x x x --→→------==--------------------2 20293ln 227ln 22lim 42ln 38ln 32x xx →==.---------------------------------------2第2页 共3页四、计算题(本题8分) 若2arctan ln(1)sin x t y t y =⎧⎨=--⎩确定了二阶可导函数()y y x =, 试判定()y y x =在0x =处的极值性与局部凹凸性.【解】因22212'(),''()1(1)tx t x t t t -==++, 2222222(1)'()'()cos ,''()'()sin ''()cos 1(1)t t y t y t y y t y t y y t y t t --+=-=+---,----------2 则3'()1'()'()''()''()'()'(),''()[]'()'()'()'()y t d y t x t y t x t y t y x y x x t x t dt x t x t -===,------------------2 当0x =时,0t =,0y =,将其代入上述诸式,得'(0)0,''(0)10y y ==-< 则()y y x =在0x =处取得极大值(0)0y =-------------------------------------------------2 由''()y x 的连续性知,在0x =的局部邻域内''()0y x <,故其为凸的. ----------------2 五、问答题(本题10分)设数列{}{}n n x y 、满足10x >,11n x +=,1(cos )n n x x n n y x += (1,2,)n = ,请问数列{}{}n n x y 、收敛吗?若收敛,求lim ,lim n n n n x y →∞→∞;若发散,说明理由. 答:因10x >,若0n x >,则10n x +=>,{}n x 有下界----------------1于是41334(1)114n n nx C x x +>+=+,有1(1)0n n n x x x +-=+>,则{}n x 单调减少-----------------------2根据单调有界定理知{}n x 收敛,-------------------------------------------1 令lim n n x A →∞=,则0A ≥--------------------------------------------------1在11n x +=两边取极限化简得3(64)0A A A ++= 于是有lim 0n n A x →∞==, -------------------------------------------------10limlim lim (cos x n n n n n x y x e→+→∞→== ---------------------------1232003(cos 1)11ln cos cos 1limlim 221n n nn n x x n n nnnx x x x x x x x eee ++→→----== ,---------------------------2故{}n y 收敛.------------------------------------------------------1六、计算题(本题8分)如图,)2,3(是()y f x =的拐点,1l 、2l 分别是该曲线在)0,0(与)2,3(处的切线,其交点为)4,2(,设()y f x =具有三阶连续导数,求320()()x x f x dx '''+⎰.y0 2 3 4 x解: 由题设图形知, (0)0,(0)2f f '==;(3)2,(3)2,(3)0.f f f '''==-=---------2则原式3322300()()()()(21)()x x df x x x f x x df x '''''=+=+-+⎰⎰---------------233(21)()2()x f x d f x '=-++⎰-------------------------------------------------2 162[(3)(0)]ff =+-=.-----------------------------------------------------2七、计算题(本题8分)设(,)((,))((,)),((,))((,))0,z xu x y y u x y u x y x y u x y u x y ϕψϕψ=++⎧⎨''++=⎩其中),(y x z z =二阶偏导数连续,求2()xx yy xy z z z ⋅-.解:将原方程组各方程两端对x 求导得(()())1(()())0x x x z u x y u u u uy u u u ϕψϕψ''=+++=⎧⎨''''++=⎩--------2将原方程组各方程两端对y 求导得()(()())()()(()())0y y y z u x y u u u u u y u u u ϕϕψϕϕϕψ''=+++=⎧⎨'''''++=⎩---2则1()()xx x z u y u u φψ==-''''+-----------------------------------------------------------------12()(),()()yy y u z u u y u u φϕφψ''==-''''+------------------------------------------------------------1xy y z u =(),()()u y u u φφψ'=-''''+ ------------------------------------------------------------------1 故2()0xx yy xy z z z ⋅-=.---------------------------------------------------------------------------1第3页 共3页八、(该题本二学生做)计算题(本题8分)设(){}1010≤≤≤≤=y ,x x,y D ,计算{}2max d d DI x,y y x x y =-⎰⎰.解:记1:01D x y ≤≤≤,22:1D x y x ≤≤≤,: 23:01D y x ≤≤≤-------------------2则123222()d d ()d d ()d d D D D I y y xx y x y x x y x x y x y =-+-+-⎰⎰⎰⎰⎰⎰------------------22211112233d ()d d ()d d ()d xx xxx y yx y x xy x y x x xy y =-+-+-⎰⎰⎰⎰⎰⎰-------------21140=.----------------------------------------------------------2 八、(该题东港学生做)计算题(本题8分)过曲线)0y x =≥上点A 的切线与该曲线及x 轴所围区域D 的面积为43=S ,(1)求点A 的横坐标t ;(2)求D 绕直线x t =旋转一周所得旋转体的体积V .解:(1)设(A ,则切线方程为()2313y t x t -=-,-----------------------------1 此切线与x 轴交点的横坐标为t x 20-=,-----------------------------------------------------2因401333244t S t x t =⋅==⎰,有1t =,得(11)A ,;---------------------1(2)123201333(1)d 314V ππy y π=--=⎰.-------------------------------4九、证明题(本题10分) 设0()()t F t f t dt =⎰,其中()f t 是周期为T 的连续函数,证明:(1)()()()F t T F t F T +=+;(2)0()[()()]()tg t F t T F t dt TF t =+--⎰是周期为T 的周期函数.证明:(1)设()()()()HtFt T Ft FT =+----------------------------------------------------1因()f t 是周期为T 的连续函数,则'()()()0H t f t T f t =+-=-------------------------2 于是()(0)(0)0H t C H F ====,则(1)得证;--------------------------------------------1 (2)由上,知0()()()()()t g t F T dt TF t tF T TF t =-=-⎰---------------------------------1则'()()()g t F T Tf t =----------------------------------------------------------------------------1 令()()()G t g t T g t =+-,则'()'()'()0G t g t T g t =+-=-------------------------------2 于是()(0)()(0)0G t C G g T g ===-=,故(2)得证.------------------------------------1十、应用题(本题10分)设圆222x y y +=含于椭圆22221x y a b+=的内部, 且圆与椭圆相切于两点(即在这两点处圆与椭圆都有公共切线),(1)求,a b 满足的等式;(2) 求,a b 的值, 使椭圆的面积最小.解:(1) 由题意,圆与椭圆的公切点00(,)x y 不在y 轴上,则00x ≠,--------------1同时220000()(1)b x a y x y -=--,即2220)y b b a =---------------------------------1 因22220000222,1x y x y y a b +=+=,有222200220b a y y a b--+=----------------------------1 将上述两式消0y ,得22420ab a b --=;-----------------------------------------------------1(2) 按题意, 需求椭圆面积S ab π=在条件22420a b a b --=下的最小值,构造拉格朗日函数2242()L ab a b a b πλ=+-- ------------------------------------------1 令2222(2)0,2(1)0a b L b a b a L a b a πλπλ=+-==+-=-----------------------------2 可得242b a =,代入22420a b a b --=,得(,)(a b =,-----------------2 因该实际问题中,椭圆面积的最小值存在, 则上述坐标即为所求.------------------------1。

2014级高等数学第二学期期末试卷(B类)

2014级高等数学第二学期期末试卷(B类)

3.
交换二次积分
1 0
dx
2 x2
x
x2
f
(x, y)dy 的积分次序,结果为




(A)
1dy y 0 1 1 y2
f (x, y)dx ;
(B)
1dy y
0
1 1 y2
f (x, y)dx ;
(C)
1 0
dy
1 y
1 y2
f (x, y)dx ;
(D)
1dy 0
2 y y2 y2
f (x, y)dx 。
n1
(2)
若级数 xn
n1
收敛,且级数
an
n1 xn
收敛,请猜测级数 an 是否收敛,
n1
并证明(或说明)你的猜测结论。
第2页
2014 级第二学期《高等数学》期中考试试卷 (B 类) (多元微分学部分试题)
1.

f
(x,
y)
2x2 y4 x2 y2
,则 lim x0
f (x, y)
y0
(A) 等于 0 ; (B)等于1; (C)等于 2 ;
2014 级高等数学第二学期期末试卷(B 类)
注 1:下面划去部分试题内容,不是 15 级(本次)期末考试范围。 注 2:后面增加的试题是本次期中考试范围内容。 一、单项选择题(每小题 3 分,共 15 分)
1. 设向量 a, b 满足| a b || a b |,则必有


(A) a 0 ; (B) b 0 ; (C) a b 0 ; (D) a b 0 .
n1
n1
n1
(A) 0 ;
(B)1;

2014年高考数学江苏卷完美解析版(精品资料)

2014年高考数学江苏卷完美解析版(精品资料)
变式 4 最大值是__________ . 【答案】4
已知函数 f ( x ) x 2 2 x 1 ,若存在实数 t ,当 x [ 1 ,m ] 时, f ( x t ) x 恒成立,则实数 m 的 (江苏苏州 陈海锋)
变式 5 若关于 x 的不等式 x2 mx m 1 0 恒成立,则实数 m ________. 【答案】2 (江苏苏州 陈海锋) 变式 6 设 f ( x) 是定义在 R 上的奇函数,且当 x 0 时, f ( x ) x 2 ,若对任意的 x [t , t 2] ,不等式 则实数 t 的取值范围是________. 【答案】 f ( x t ) 2 f ( x) 恒成立, 2, 11. 在平面直角坐标系 xOy 中,若曲线 y ax 2 切线与直线 7 x 2 y 3 0 平行,则 a b 的值是 【答案】 3 【解析】曲线 y ax2 又 y 2ax
又 0 ,所以

6
. (三角函数图象的交点与
【考点】函数 y A sin( x ) 的图象与性质 (B),三角函数的概念(B). 已知三角函数值求角)
1
2014 高考数学【江苏卷】解析版
6. 设抽测的树木的底部周长均在区间[80 ,130] 上,其频率分布直方图如图所示,则在抽测的 60 株树木 中, 有 100cm. 【答案】24 【解析】 由题意在抽测的 60 株树木中, 底部周长 小于 100cm 的株数为(0.015+0.025) 10 60=24. 【考点】总体分布的估计 (A). (频率分布直方图) 7. 在 各 项 均 为 正 数 的 等 比 数 列 {a n } 中 ,
1 AB 4, FE 2 PE 6 2 , 2

2014年全国高中数学联赛江苏赛区复赛参考答案与评分细则(一试)[1]

2014年全国高中数学联赛江苏赛区复赛参考答案与评分细则(一试)[1]

2014年全国高中数学联赛江苏赛区复赛参考答案与评分细则(一试)[1]2014年全国高中数学联赛江苏赛区复赛参考答案与评分细则一试一、填空题(本题满分64分,每小题8分)1.在△ABC中,若c cos B=12,b sin C=5,则c=.答案:13.解:根据正弦定理,得c sin B=b sin C=5,所以c2=(c cos B)2+(c sin B)2=132,从而c=13.2.函数f(x)=x+1(x+1)3+1(x>0),则函数取得最小值时,所对应的x值是.答案:43-1.解:由f(x)=x+1(x+1)3+1=13(x+1)+13(x+1)+13(x+1)+1(x+1)3≥44(13)3,等号当且仅当13(x+1)=1(x+1)3,即x=43-1.(本题也可求导)3.对于任意的实数a∈(-2,4],都有x2-ax+9>0成立,则实数x的取值范围为.答案:R.解:当a∈(-2,4]时,△=a2-36<0,故x2-ax+9>0恒成立,从而x的取值范围是R.4.已知等比数列{a n}的公比为q,前n项和S n>0(n=1,2,3,…),则q的取值范围是.答案:(-1,0)∪(0,+∞).解:因为S n>0(n=1,2,3,…),所以a1>0.当q=1,S n=na1>0成立.当q≠1,S n=a1(1-q n)1-q>0(n=1,2,3,…)恒成立,所以q∈(-1,0)∪(0,1)∪(1,+∞).综上q的取值范围是(-1,0)∪(0,+∞).5.已知5件产品中有3件合格品,2件次品.每次任取一个检验,检验后不再放回,恰好经过3次检验找出2件次品的概率为.答案:3 10.解:恰好3次找出2件次品,有三种情况:(1)第1次,第3次找出次品;(2)第2次,第3次找出次品,(3)前三次均为正品.若第1次,第3次找出次品的25×34×13=110;若第2次,第3次找出次品的概率35×24×13=110.若前3次均找出的是正品的概率35×24×13=110,故恰好经过3次检验找出2件次品的概率为110+110+110=310.6.点A 是椭圆x 2a 2+y 2=1(a >1)的上顶点,B 、C 是该椭圆上的另外两点,且△ABC 是以点A为直角顶点的等腰直角三角形.若满足条件的△ABC 只有一解,则椭圆的离心率的范围为.答案:(0,63].解:设等腰直角三角形的一边所在直线方程为:y =kx +1(k >0),它与椭圆的另一个交点B 的横坐标为-2ka 21+a 2k 2,从而点C 的横坐标为2ka 2a 2+k 2.由AB =AC ,得(1+k 2)×4k 2a 4(1+a 2k 2)2=(1+1k 2)×4k 2a 4(a 2+k 2)2,化简得:k 3-a 2k 2+ka 2-1=0,由题意知,此方程的解只有k =1.而k 3-a 2k 2+ka 2-1=(k -1)[k 2-(a 2-1)k +1]=0,要使上述方程有惟一的正数解k =1,则(a 2-1)2-4≤0,即1<a ≤3(a =3时,方程的解惟一).所以其离心率的取值范围是(0,63].7.方程x +2y +3z =2014的非负整数解(x ,y ,z )的个数为.答案:339024.解:方程x +2y =k 的非负整数解(x ,y )个数为[k2]+1,所以,方程x +2y =2014-3z 的非负整数解的个数为671∑z =0{[2014-3z 2]+1}=671∑z =0(1007-2z )+671∑z =0[z2]+672 =672×1007-670×672+335×336=339024.8.计算:2014∑k =1[-3+8k +14]=.答案:40115.解:令t =-3+8k +14,则k =2t 2+3t +1.因此[-3+8k +14]=n 当且仅当2n 2+3n +1≤k <2(n +1)2+3(n +1)+1,n ∈N .由于2×302+3×30+1=1891,2×312+3×31+1=2016,所以 2014∑k =1[-3+8k +14]=30∑n =1n [2(n +1)2+3(n +1)+1-(2n 2+3n +1)]-30 =30∑n =1(4n 2+5n )-30=4(12+22+…+302)+5(1+2+…+30)-30=40115.二、解答题(本题满分16分)设数列{a n }的前n 项和为S n ,a 1≠0,2S n +1-3S n =2a 1,n ∈N *.(1)证明数列{a n }为等比数列;(2)若a 1,a p (p ≥3)两项均为正整数,且存在正整数m ,使a 1≥m p -1,a p ≤(m +1) p -求a n .解:(1)由题意2S 2-3S 1 =2a 1,得2a 2-3a 1=0.由a 1≠0,得 a 2a 1=32.………………………… 2分又 2S n +1-3S n =2a 1,2S n +2-3S n +1=2a 1,得 2a n +2-3a n +1=0,n ∈N *.由a 1≠0,得a n +1≠0,故a n +2a n +1=32.所以数列{a n }为等比数列.………………………… 6分(2)由(1)知a p =a 1×(32p -1.因为a 1,a p ∈N *,所以a 1=k ×2p -1,k ∈N *,从而a p = k ×3 p -1.………………………… 10分由a 1≥m p -1,a p ≤(m +1) p -1,得k ×2p -1≥m p -1,k ×3p -1≤(m +1) p -1,即m ≤2×p -1k ,m +1≥3×k ,作差得1≥p -1k ,即k ≤1,所以k =1.所以 a n =2p -1×(32)n -1.………………………… 16分已知动点A ,B 在椭圆x 28+y 24=1上,且线段AB 的垂直平分线始终过点P (-1,0).(1)求线段AB 中点M 的轨迹方程;(2)求线段AB 长度的最大值.解:(1)设点A ,B 的坐标为A (x 1,y 1),B (x 2,y 2),线段AB 的中点M 的坐标为(x 0,y 0).当AB 与x 轴垂直时,线段AB 的中点M 的坐标为(-2,0).当AB 与x 轴不垂直时,因为点A ,B 在椭圆x 28+y 24=1上,所以x 128+y 124=1,x 228+y 224=1.从而(x 1-x 2)(x 1+x 2)8+(y 1-y 2)(y 1+y 2)4=0,即y 1-y 2x 1-x 2=-x 02y 0.因为线段AB 的垂直平分线始终过点P (-1,0),所以y 1-y 2x 1-x 2×y 0x 0+1=-1,从而x 0=-2.即线段AB 中点M 的轨迹方程为x =-2,-2<y <2.…………………… 8分(2)当AB 与x 轴垂直时,AB =22.当AB 与x 轴不垂直时,由(1)知,直线AB 的方程为y -y 0=1y 0(x +2).…………………… 12分由y -y 0=1y 0(x +2),x 28+y 24=1,得(y 02+2)x 2+4(y 02+2)x +2y 04+8=0.所以x 1+x 2=-4,x 1x 2=2y 04+8y 02+2.从而AB =(1+1y 02)×[16-4×2y 04+8y 02+2])=8(y 02+1)(2-y 02)y 02+2=22×-[(y 02+2)+4y 02+2]+5,其中-2<y 0<2,且y 0≠0,所以AB <22.所以线段AB 长度的最大值为22.…………………… 20分设a ,b ,c ,d 都是整数,p =a 2+b 2是素数.如果p |c 2+d 2,证明:c 2+d 2p 可以表示为两个整数的平方和.证明:因为p | c 2+d 2,所以c 2+d 2=pm ,其中m 为整数.于是m =c 2+d 2p =(c 2+d 2)(a 2+b 2)p 2=(c +d i)(c -d i)(a +b i)(a -b i)p 2,一方面,m =(c +d i)(c -d i)(a +b i)(a -b i)p 2=(ca -db )2+(da +cb )2p 2,(1)另一方面,m =(c +d i)(c -d i)(a +b i)(a +b i)p 2=(ca +db )2+(da -cb )2p 2,(2)…………………………………… 10分注意到(ca +db )(ca -db )=c 2a 2-d 2b 2=(pm -d 2)a 2-d 2b 2 =pma 2-d 2(a 2+b 2) =p (ma 2-d 2).因为p 是素数,所以ca +db 和ca -db 中至少有一个数能被p 整除.……………………………… 15分当ca -db 能被p 整除时,令ca -db =pt ,t 是整数,根据(1),因为m 是整数,所以da +cb 也被p 整除.令da +cb =ps ,s 是整数,则c 2+d 2p =m =t 2+s 2.当ca +db 能被p 整除时,同理可证:c 2+d 2p 也可以表示为两个整数的平方和.……………………………… 20分。

2014年江苏数学试题及答案word版

2014年江苏数学试题及答案word版

绝密★启用前2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的侧面积公式:clS=圆柱侧,其中c是圆柱底面的周长,l为母线长.圆柱的体积公式:ShV=圆柱, 其中S是圆柱的底面积,h为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1. 已知集合A={4,3,1,2--},}3,2,1{-=B,则=BA ▲.2. 已知复数2)i25(+=z(i为虚数单位),则z的实部为▲.(第3题)3. 右图是一个算法流程图,则输出的n 的值是 ▲.4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 ▲.5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲.100 80 90 110 120 底部周长/cm6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.【考点】频率分布直方图.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V 的值是 ▲ .9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是▲.11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ .12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,3=,2=⋅BP AP ,则AD AB ⋅的值是 ▲ .(第12题)13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA.5,8==DFBC求证: (1)直线//PA平面DEF;(2)平面⊥BDE平面ABC.17.(本小题满分14分)如图,在平面直角坐标系xOy中,21,FF分别是椭圆)0(12322>>=+babyax的左、右焦点,顶点B的坐标为),0(b,连结2BF并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结CF1.(1)若点C的坐标为)31,34(,且22=BF,求椭圆的方程;(2)若,1ABCF⊥求椭圆离心率e的值.(第16题)PDCEFBAF1 F2O xyBCA18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.【解析】(1)首先112a S ==,当2n ≥时,111222n n n n n n a S S ---=-=-=,所以12,1,2,2,n n n a n -=⎧=⎨≥⎩, 所。

2014年普通高等学校招生全国统一考试江苏卷完整解析版(word)-推荐下载

2014年普通高等学校招生全国统一考试江苏卷完整解析版(word)-推荐下载

3
1
2
6

的角的惯性思维为 ,这个问题也是今年的热点问题,在模拟题中也经常出现,需要引
起考生的重视。
6
6. 设抽测的树木的底部周长均在区间[80,130]上, 其频率分布直方图如图所示,则在抽测的 60 株树木 中,有 ▲ 株树木的底部周长小于 100cm.
【答案】24
【解析】从图中读出底部周长在[80,90] 的频率为 0.01510 0.15 ,底部周长在
3
6
结合题目中 [0, ] 的条件,确定出 。 6
【点评】本题主要考查的是三角函数,由两个图象交点建立一个关于 的方程
1
2

sin(2
3
) ,在解方程时,考生一般只想到第一种情况
忽略了在一个周期内,正弦值为
1
2

的角有两个:
2 5 2k , (k Z ) 解出,此处为考生的易错点和薄弱点,主要是由于对正弦值为
2
2
和66源自353
2
3




几次时出错。属于基础题,难度系数较小。
4. 从 1,2,3,6 这 4 个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是 ▲ .
1
【答案】
3
【解析】将随机选取 2 个数的所有情况“不重不漏”的列举出来:(1,2),(1,3)
(1,6),(2,3),(2,6),(3,6),共 6 种情况,满足题目乘积为 6 的要求的是(1,6)

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2014江苏数学试题及标准答案(word解析版)

2014江苏数学试题及标准答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ圆柱的体积公式:V sh =圆柱,其中s 为圆柱的表面积,h 为高.圆柱的侧面积公式:=S cl 圆柱,其中c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】已知集合{2134}A =--,,,,{123}B =-,,,则A B =_______.【答案】{13}-,【解析】由题意得{1,3}A B =-.(2)【2014年江苏,2,5分】已知复数2(52i)z =+(i 为虚数单位),则z 的实部为_______. 【答案】21【解析】由题意22(52i)25252i (2i)2120i z =+=+⨯⨯+=+,其实部为21. (3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n 的值是_______. 【答案】5【解析】本题实质上就是求不等式220n >的最小整数解.220n >整数解为5n ≥,因此输出的5n =. (4)【2014年江苏,4,5分】从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______. 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==.(5)【2014年江苏,5,5分】已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是_______. 【答案】6π【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________. 【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12VV 的值是_______. 【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.(9)【2014年江苏,9,5分】在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为________.【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为d ==,所求弦长为l =. (10)【2014年江苏,10,5分】已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是________.【答案】0⎛⎫ ⎪⎝⎭【解析】据题意222()10(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得02m <<. (11)【2014年江苏,11,5分】在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是________. 【答案】3-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得11a b =-⎧⎨=-⎩,所以2a b +=-.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的值是________.【答案】22【解析】由题意,14AP AD DP AD AB =+=+,3344BP BC CP BC CD AD AB =+=+=-, 所以13()()44AP BP AD AB AD AB ⋅=+⋅-2213216AD AD AB AB =-⋅-,即1322564216AD AB =-⋅-⨯,解得22AD AB ⋅=.(13)【2014年江苏,13,5分】已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是________. 【答案】()102,【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大, 7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线 y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数 21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈. (14)【2014年江苏,14,5分】若ABC ∆的内角满足sin 2sin A B C =,则cos C 的最小值是_______.【解析】由已知sin 2sin A B C =及正弦定理可得2a c =,2222222cos 22a b a b c C ab ab +-+-==22328a b ab +-=,当且仅当2232a b =,即a b =所以cos C二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()2απ∈π,,sin α=. (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.解:(1)∵()sin 2ααπ∈π=,,,∴cos α==, ()s i n s i n c o s c o s (c o s )4440αααααπππ+=++. (2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,, ∴()()314cos 2cos cos2sin sin 2666525ααα5π5π5π-=+=+⨯-=.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,, 的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC . 解:(1)∵D E ,为PC AC ,中点∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF .(2)∵D E ,为PC AC ,中点,∴132DE PA ==∵E F ,为AC AB ,中点,∴142EF BC ==,∴222DE EF DF +=,∴90DEF ∠=°,∴DE ⊥EF ,∵//DE PA PA AC ⊥,,∴DE AC ⊥, ∵AC EF E =,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且2BF = (2)若1FC AB ⊥,求椭圆离心率e 的值.解:(1)∵()4133C ,,∴22161999a b+=,∵22222BF b c a =+=,∴222a ==,∴21b =,∴椭圆方程为2212x y +=. (2)设焦点12(0)(0)()F c F c C x y -,,,,,,∵A C ,关于x 轴对称,∴()A x y -,,∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩ ∴()2222222a c bc C b c b c --, C 在椭圆上,∴()()222222222221a c bc b c b c a b--+=,化简得225c a =,∴c a =. (18)【2014年江苏,18,16分】如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?. 解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率43BC k tan BCO =∠=--.又因为AB ⊥BC ,所以直线AB 的斜率34AB k =.设点B 的坐标为(a ,b ),则k BC =041703b a -=--, k AB =60304b a -=-,解得a =80,b=120.所以BC150=.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=,由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤.故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =368053MD MD r MF OF OM d ===--所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤,故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.(19)【2014年江苏,19,16分】已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明 你的结论.解:(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数.(2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤,∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x xm ---+-≤对(0)x ∈+∞,恒成立.令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立. ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立,∴13m -≤. (3)'()e e x xf x -=-,当1x >时'()0f x >∴()f x 在(1)+∞,上单调增,令3()(3)h x a x x =-+,'()3(1)h x ax x =--,∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减,∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+. ∵e-1e 111ln ln ln e (e 1)ln 1e a a a a a a ---=-=--+,设()(e 1)ln 1m a a a =--+,则e 1e 1'()1a m a a a---=-=,()11e 2e a >+.当()11e e 12ea +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减,因此()m a 至多有两个零点,而(1)(e)0m m ==,∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=. (20)【2014年江苏,20,16分】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 解:(1)当2n ≥时,111222n n n n n n a S S ---=-=-=,当1n =时,112a S ==,∴1n =时,11S a =,当2n ≥时,1n n S a +=,∴{}n a 是“H 数列”.(2)1(1)(1)22n n n n n S na d n d --=+=+,对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-,取2n =得1(1)d m d +=-,12m d=+,∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-.(3)设{}n a 的公差为d ,令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-,1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+,则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列. {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+. 当1n =时1m =;当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N .因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N ,即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立, 即{}n c 为“H 数列”,因此命题得证.数学Ⅱ..................的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、 D是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .解:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α, x y ,为实数,若A α=B α,求x y ,的值.解:222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=,. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为12x y ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长.解:直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+=,∴交点(12)A ,,(96)B -,,故||8AB = (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知0x >,0y >,证明:()()22119x y x y xy ++++≥. 解:因为x >0, y >0, 所以1+x +y 2≥0>,1+x 2+y ≥0,所以(1+x +y 2)( 1+x 2+y )≥=9xy . 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,, 中的最大数,求X 的概率分布和数学期望()E X .解:(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况,∴取出的2个球颜色相同的概率1053618P ==.(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===;3131453639C C C C 13(3)C 63P X +===; 11(2)1(3)(4)14P X P X P X ==-=-==.∴X 的概率分布列为:故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=.(23)【2014年江苏,23,10分】已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n n nf f -πππ+=成立.解:(1)由已知,得102sin cos sin ()()x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭, 于是21223cos sin sin 2cos 2sin ()()x x x x xf x f x x x x x x ''⎛⎫⎛⎫'==-=--+⎪ ⎪⎝⎭⎝⎭,所以12234216(),()22f f πππππ=-=-+, 故122()()1222f f πππ+=-.(2)由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. (i )当n =1时,由上可知等式成立.(ii )假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+n ∈*N ).。

(word完整版)2014年高考江苏数学试题及答案(word解析版),推荐文档

(word完整版)2014年高考江苏数学试题及答案(word解析版),推荐文档

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的体积公式:V sh =圆柱,其中s 为圆柱的表面积,h 为高.圆柱的侧面积公式:=S cl 圆柱,其中c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】已知集合{2134}A =--,,,,{123}B =-,,,则A B =I _______. 【答案】{13}-,【解析】由题意得{1,3}A B =-I .(2)【2014年江苏,2,5分】已知复数2(52i)z =+(i 为虚数单位),则z 的实部为_______. 【答案】21【解析】由题意22(52i)25252i (2i)2120i z =+=+⨯⨯+=+,其实部为21. (3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n 的值是_______. 【答案】5【解析】本题实质上就是求不等式220n >的最小整数解.220n >整数解为5n ≥,因此输出的5n =. (4)【2014年江苏,4,5分】从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______. 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==.(5)【2014年江苏,5,5分】已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是_______. 【答案】6π【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1. 本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题 - 第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________. 【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12VV 的值是_______. 【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.(9)【2014年江苏,9,5分】在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为________.255【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)3512d +⨯--==+,所求弦长为2292552245l r d =--. (10)【2014年江苏,10,5分】已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是________.【答案】20⎛⎫ ⎪⎝⎭【解析】据题意222()10(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得202m <<. (11)【2014年江苏,11,5分】在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是________. 【答案】3-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得11a b =-⎧⎨=-⎩,所以2a b +=-.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=u u u r u u u r u u u r u u u r ,,则AB AD ⋅u u u r u u u r 的值是________. 【答案】22【解析】由题意,14AP AD DP AD AB =+=+u u u r u u u r u u u r u u u r u u u r ,3344BP BC CP BC CD AD AB =+=+=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r,所以13()()44AP BP AD AB AD AB ⋅=+⋅-u u u r u u u r u u u r u u u r u u u r u u u r 2213216AD AD AB AB =-⋅-u u u r u u u r u u u r u u u r ,即1322564216AD AB =-⋅-⨯u u ur u u u r ,解得22AD AB ⋅=u u u r u u u r .(13)【2014年江苏,13,5分】已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是________. 【答案】()102,【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大, 7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线 y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数 21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈. (14)【2014年江苏,14,5分】若ABC ∆的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是_______.【答案】62-【解析】由已知sin 2sin 2sin A B C +=及正弦定理可得22a b c +=,2222222()2cos 22a b a b a b c C ab ab ++-+-==2232222622628a b ab ab ab ab +---=≥=,当且仅当2232a b =,即23a b =时等号成立,所以cos C 的最小值为62-. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()2απ∈π,,5sin α=. (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.解:(1)∵()5sin 2ααπ∈π=,,,∴225cos 1sin αα=--=-, ()210sin sin cos cos sin (cos sin )444αααααπππ+=+=+=-.(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,, ∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=-⨯+⨯-=-.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,, 的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC . 解:(1)∵D E ,为PC AC ,中点∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF .(2)∵D E ,为PC AC ,中点,∴132DE PA ==∵E F ,为AC AB ,中点,∴142EF BC ==,∴222DE EF DF +=,∴90DEF ∠=°,∴DE ⊥EF ,∵//DE PA PA AC ⊥,,∴DE AC ⊥, ∵AC EF E =I ,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =,求椭圆的方程; (2)若1FC AB ⊥,求椭圆离心率e 的值.解:(1)∵()4133C ,,∴22161999a b+=,∵22222BF b c a =+=,∴22(2)2a ==,∴21b =,∴椭圆方程为2212x y +=. (2)设焦点12(0)(0)()F c F c C x y -,,,,,,∵A C ,关于x 轴对称,∴()A x y -,,∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩ ∴()2222222a c bc C b c b c --, C 在椭圆上,∴()()222222222221a c bc b c b c a b--+=,化简得225c a =,∴5c a = 5. (18)【2014年江苏,18,16分】如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?. 解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率43BC k tan BCO =∠=--.又因为AB ⊥BC ,所以直线AB 的斜率34AB k =.设点B 的坐标为(a ,b ),则k BC =041703b a -=--, k AB =60304b a -=-,解得a =80,b=120.所以BC 22(17080)(0120)150-+-=.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=,由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤.故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =368053MD MD r MF OF OM d ===--所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤,故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.(19)【2014年江苏,19,16分】已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明 你的结论.解:(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数.(2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤,∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x xm ---+-≤对(0)x ∈+∞,恒成立.令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立. ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立,∴13m -≤. (3)'()e e x xf x -=-,当1x >时'()0f x >∴()f x 在(1)+∞,上单调增,令3()(3)h x a x x =-+,'()3(1)h x ax x =--,∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减,∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+. ∵e-1e 111ln ln ln e (e 1)ln 1e a a a a a a ---=-=--+,设()(e 1)ln 1m a a a =--+,则e 1e 1'()1a m a a a---=-=,()11e 2e a >+.当()11e e 12ea +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减,因此()m a 至多有两个零点,而(1)(e)0m m ==,∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=. (20)【2014年江苏,20,16分】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 解:(1)当2n ≥时,111222n n n n n n a S S ---=-=-=,当1n =时,112a S ==,∴1n =时,11S a =,当2n ≥时,1n n S a +=,∴{}n a 是“H 数列”.(2)1(1)(1)22n n n n n S na d n d --=+=+,对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-,取2n =得1(1)d m d +=-,12m d=+,∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-.(3)设{}n a 的公差为d ,令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-,1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+,则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列. {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+. 当1n =时1m =;当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N .因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N ,即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立, 即{}n c 为“H 数列”,因此命题得证.数学Ⅱ【选做】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、 D是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .解:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α, x y ,为实数,若A α=B α,求x y ,的值.解:222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=,. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为21222x t y t⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长.解:直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+=,∴交点(12)A ,,(96)B -,,故||82AB =. (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知0x >,0y >,证明:()()22119x y x y xy ++++≥. 解:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y ⋅=9xy . 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,, 中的最大数,求X 的概率分布和数学期望()E X .解:(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况,∴取出的2个球颜色相同的概率1053618P ==.(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===;3131453639C C C C 13(3)C 63P X +===; 11(2)1(3)(4)14P X P X P X ==-=-==.∴X 的概率分布列为:故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=.(23)【2014年江苏,23,10分】已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n n nf f -πππ+=成立.解:(1)由已知,得102sin cos sin ()()x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭, 于是21223cos sin sin 2cos 2sin ()()x x x x xf x f x x x x x x ''⎛⎫⎛⎫'==-=--+⎪ ⎪⎝⎭⎝⎭,所以12234216(),()22f f πππππ=-=-+, 故122()()1222f f πππ+=-.(2)由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. (i )当n =1时,由上可知等式成立.(ii )假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+n ∈*N ).。

2014年全国高中数学联赛江苏赛区初赛试题

2014年全国高中数学联赛江苏赛区初赛试题

2014年全国高中数学联赛江苏赛区初赛试题D14.(1)正六边形被3条互不交叉(端点可以重合)的对角线分割成4个三角形.将每个三角形区域涂上红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.怎样分割并涂色可以使红色三角形个数与蓝色三角形个数的差最大?(2)凸2016边形被2013条互不交叉(端点可以重合)的对角线分割成2014个三角形.将每个三角形区域涂上红、栏两种颜色之一,使得有公共边的三角形涂的颜色不同.在上述分割并涂色的所有情形中,红色三角形个数与蓝色三角形个数之差的最大值是多少?证明你的结论.2006年全国1卷理科第12题设集合{1,2,3,4,5}I ,选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有(B)A.50种B.49种C.48种D.47种解法一,若集合A、B中分别有一个元素,则选法种数有C52=10种;若集合A中有一个元素,集合B中有两个元素,则选法种数有C53=10种;若集合A中有一个元素,集合B中有三个元素,则选法种数有C54=5种;若集合A中有一个元素,集合B中有四个元素,则选法种数有C55=1种;若集合A中有两个元素,集合B中有一个元素,则选法种数有C53=10种;若集合A中有两个元素,集合B中有两个个元素,则选法种数有C54=5种;若集合A中有两个元素,集合B中有三个元素,则选法种数有C55=1种;若集合A中有三个元素,集合B中有一个元素,则选法种数有C54=5种;若集合A中有三个元素,集合B中有两个元素,则选法种数有C55=1种;若集合A中有四个元素,集合B中有一个元素,则选法种数有C55=1种;总计有49种,选B.解法二:集合A、B中没有相同的元素,且都不是空集,从5个元素中选出2个元素,有C52=10种选法,小的给A集合,大的给B集合;从5个元素中选出3个元素,有C53=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有2×10=20种方法;从5个元素中选出4个元素,有C54=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有3×5=15种方法;从5个元素中选出5个元素,有C55=1种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有4×1=4种方法;总计为10+20+15+4=49种方法.选B.第9题的本质与推广2014年金海南最后一模试题设整数n≥3,集合P={1,2,3,…,n},A,B 是P的两个非空子集.记a n为所有满足A中的最大数小于B中的最小数的集合对(A,B)的个数.(1)求a3;(2)求a n.解:(1)当n=3时,P={1,2,3 },其非空子集为:{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},则所有满足题意的集合对(A,B)为:({1},{2}),({1},{3}),({2},{3}),({1},{2,3}),({1,2},{3})共5对,所以a35=;……3分(2)设A 中的最大数为k ,其中11k n -≤≤,整数n ≥3,则A 中必含元素k ,另元素1,2,…,k 1-可在A 中,故A 的个数为:0111111C C C 2k k k k k -----++⋅⋅⋅+=,…… 5分B 中必不含元素1,2,…,k ,另元素k +1,k +2,…,k 可在B 中,但不能 都不在B 中,故B 的个数为:12C C C 21n k n k n k n k n k -----++⋅⋅⋅+=-, …… 7分从而集合对(A ,B )的个数为()1221k n k --⋅-=1122n k ---,所以a n ()11111111222(1)2(2)2112n n n k n n k n n ------=-=-=-⋅-=-⋅+-∑. …… 10分an=C(n ,2)·1+C(n ,3)·2+……+C(n ,n)·(n-1) ∵C(n ,k)·k=n·C(n-1,k-1) an=n·[2^(n-1)-1]-(2^n-1-n) =(n-2)·2^(n-1)+1。

淮海工学院17-18 学年 第1学期 高等数学A1 期末试卷

淮海工学院17-18 学年 第1学期 高等数学A1 期末试卷

第1页 共3页淮 海 工 学 院17 - 18 学年 第 1 学期 高等数学A1 期末试卷(B 闭卷)答案及评分标准1. 12lim(cos sin )x x x xx→∞+ ------------------------------------------------------------------(C)(A) 0 (B) 1 (C) 2 (D) ∞ 2.函数y =的渐近线为-------------------------------------- (B)(A) 0,0x y == (B) 0,1x y == (C) 1,0x y == (D) 1,1x y == 3. 设)(x f 可导,则3[()]d f x =--------------------------------------- (D) (A) 3'()f x dx (B) dx x f )(32 (C) 3'()()f x df x (D) 23()()f x df x 4. 设点(1,2)-为曲线23bx ax y +=的拐点,则------------------------(A ) (A )3,1-==b a (B )1,3=-=b a (C )0,2=-=b a (D )2,0-==b a 5. 24y x x =+在[1,3]上满足拉格朗日中值定理的中值ξ= ---------------------(B ) (A )1 (B )2 (C )3 (D )4 6.若()lnsec f x dx x C =+⎰,则=)(x f ------------------------------------------------(C ) (A )tan x - (B )cot x - (C )tan x (D )cot x 7.定积分171(1)xe x dx -+⎰的值为----------------------------------------------------------(D )(A )0 (B )1e - (C )1ee- (D )2(1)e -8. 椭圆12222=+by a x 的面积可表示为-------------------------------------------------------(B)(A)a aydx -⎰(B) 2a aydx -⎰(C) aaydx π-⎰(D) 2a ay dx π-⎰二、计算题(本大题共4小题,每题7分,共28分)1.23011lim ()11x x x x e e →---.解:原式32230lim (1)(1)x x x x x e e x e e →-=-- -----------------------------------------2 231~21~3x x e x e x--=320lim 6x x x e e x→-----------------------------------------------2 H L '32032lim 6x xx e e →----------------------------------------------216=. ----------------------------------------------------------12. 求由方程arcsin()y x y =+确定的函数)(x f y =的导数y '. 解:y '=----------------------------------------------------------------------------3[1y '=---------------------------------------------------2y '=.---------------------------------------------------------------------23.3)1(>x . 解:原式3sec sec sec tan x d θθθθ==⎰ -------------------------------------------------------------------2 4sec d θθ=⎰ ---------------------------------------------------------------------------12(tan 1)tan d θθ=+⎰----------------------------------------------------------------231tan tan 3C θθ=++-----------------------------------------------------------------1 21(3x C =+.-----------------------------------------------------------14.41ln ex xdx ⎰.解:原式 511ln 5e xdx =⎰ ---------------------------------------------------------------2541111[ln ]55e e x x x dx =-⎰ -------------------------------------------25111[(ln )]55ex x =- ------------------------------------------2 51(41)25e =+.---------------------------------------------------------------------1三、计算题(本题8分)30limln(1)x xx x →-+⎰.334ln(1)limxx x x x →-+⎰解:原式---------------------------2301'lim 4x L H x →---------------------------------33111~28x .----------------------------------------3四、计算题(本题8分)若抛物线22(0)y px p =>与其在点(,)2pp 处的切线及x 轴所围的图形绕x 轴旋转一周所形成的旋转体体积为23x V π=,求p . 解:p y y 22=' ------------------------------------------------------------------------------------2 则其切线斜率为1),2(='p p y --------------------------------------------------------------1切线方程为1()22p y x p x p =-+=+ --------------------------------------------------- 1 因0p >,则323322002233123p px V p y dx p pxdx p ππππ=-=-==⎰⎰ --------3 解得2p =.-------------------------------------------------------------------------------------- 1五、证明题(本题8分)求证:0122=+-nx xn有且仅有一个小于1的正根,其中1>n .证明:设=)(x f 122+-nx x n,-----------------------------------------------------------1 )(x f 为初等函数,在]1,0[上连续而1)0(=f ,0)1(2)1(<--=n f ---------------------------------------------2 由零点定理知,0)(=x f 在)1,0(内至少有一个根--------------------------1 又当)1,0(∈x 时,0)1(2)(12'<-=-n xn x f ---------------------------------2知 )(x f 于)1,0(单调递减-------------------------------------------------------1故0)(=x f 在)1,0(内有且仅有一个根.--------------------------------------1六、计算题(本题8分)若(1)y x =≥上任一点(,)M x y 处的曲率半径为322[1'()]()''()y x x y x ρ+=,()s x 是该抛物线上介于点(1,1)A 与M 之间的弧长,求222()()3()[]()()d x d x x ds x ds x ρρρ-. 解:33222[1'()]1()(41)''()2y x x x y x ρ+==+--------------------------------------------------------111()s x ==⎰⎰---------------------------------------------212()'()1)()()'()d x x x ds x s x ρρβ====------------------------------------------1 22()'()()'()d x x ds x s x ρβ===故原式9=.------------------------------------------------------------------------------------2七、应用题(本题8分)某矿物局拟从地面上的A 点掘一巷道至C 点,C 点距地面的垂直距离为240米,垂足为B ,AB 长为600米,若地面属软土结构掘进费每米5元,地面以下属岩土结构,掘进费每米13元,问采取怎样的掘进方法才能使总掘进费用最省?A x M x -600 B240C 解:由题设,设从A 点沿AB 方向掘进到M ,在沿MC 掘进至C (如图),其中x AM =,22240)600(+-=x MC , 6000≤≤x --------------------1总掘进费用 22240)600(135+-+=x x y -------------------------------------222240)600()600(135+--+=x x dx dy ----------------------------------------------------------2 令0=dxdy,得500=x ----------------------------------------------------------------1 注意到(500)(0),(500)(600)y y y y <<,有500=x 为最小点-------------------1 故采掘方案应从A 点沿AB 方向掘进500米到M ,在沿MC 掘进至C .-------1。

海大高数2014试卷A分析

海大高数2014试卷A分析

lim f (x) 1 f (1)
x1
ax b 1
ax a

Q
f
' (1)
lim
x1
x 1
lim
a
x1 x 1
x2 1
f
' (1)
lim
x1
x 1
2
分析 本题考查 未定式,使用洛必达法则。

lim
x0
1 x
1
ex
1
lim
x0
ex 1 x x(ex 1)
lim
x0
ex
1 x2
x
lim ex 1 lim x

f (x) (xex ) ex (1 x)
x f (x) dx x d f (x) x f (x) f (x) dx
x ex (1 x) x ex C
x2ex C
分析 本题考查的是导数的应用。 解
y '' 2(1 x2 ) (x2 1)2
y
分析 本题考查定积分在几何上的应用。

S
0
sin
x dx
cos x
0
2
0
V
0
(sin
x)2 dx
0
1
cos 2
2
x
dx
x
sin
2
x

2 4 0 2
x
分析 本题考查的是微分中值定理。 证明 设
在 上连续,在
内可导,则
.
在 上连续,在
内可导,且
由罗尔定理得
使

B
本题考查导函数与原函数的定义。
f (x) sin xdx cos x c1 f (x)的原函数为 f (x)dx (cos x c1)dx sin x c1x c,其中c1,c R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页 共4页2014年淮海工学院高等数学竞赛AB 组试卷参考答案及评分标准一、选择题1、()1lim 1xx x →-∞-=------------------------------------------------------------------------------(C )(A )0 (B )1e (C )1 (D )e2、n =--------------------------------------------------------------------------------------(C )(A )0 (B )1e (C )1 (D )e 3、当n →∞,22ln ln ,ln ,ln 2,2n nn n 趋于无穷大速度最慢与最快的分别是---- (D)(A) 2ln ln ,2nn (B) 2ln ln ,2nn (C) 2ln ,ln 2nn (D) 2ln ,ln 2nn注:ln ln 22nn =.4、下列曲线中无渐近线的是-----------------------------------------------------------------(A ) (A )sin y x x =+(B )1sin y x x -=+(C )1sin y x x -=+(D )1sin y x x -=+ 注:(B )、(C )有铅直渐近线;(D )有斜渐近线. 5、右下图为()f x 的导函数()f x '在[1,3]-上的图像,则()y f x =的图像--------(B ) (A )在(1,1)-单增,且为凹的,在(1,3)(B )在(1,0),(2,3)-单减,在(0,2)单增,在(1,1)-为凹的,在(1,3)为凸的(C )在(1,1)-单增,且为凸的,在(1,3)(D ) 在(1,0),(2,3)-单减,在(0,2)单增,在(1,1)-为凸的,在(1,3)为凹的6、设34arcsin[sec()],z x x y =则xx f =(A )-(B )2- (C )2 (D )7、设()f x 为周期为2的可导奇函数,且'()12,[0,1]f x x x =-∈,则(54)f =(B ) (A )516- (B )316- (C )316 (D )5168、设连续曲线)(x f y =与,x a x b ==及x 轴围成三块面积321,,S S S ,其中31,S S在x 轴下方,2S 在x 轴上方,若132S S a S b ++=-,则()b af x dx =⎰---------------(D)(A) ()a b -+ (B) a b - (C) b a - (D) a b +注:利用定积分的几何意义.二、填充题1、当0→x 时,5ln(1)()n x o x +=,而=1)n x o ,则正整数n =4.2、()f x x =的水平渐近线为23y =. 注:令1x t =求极限.3、设)(x f 导数连续,且[()2()]12x x f x f x '-=-,则(0)2(0)f f '-=ln 2-. 注:0lim[()2()](0)2(0)x f x f x f f →''-=-.4、设()f x =(1)(0)n f += [1(1)]!2n n +-. 注:(1)(1)(1)()()1111()[ln (1)ln (1)][()()]2211n n n n n fx x x x x +++=+--=-+-. 5、4434tan (tan 1)x x dx ππ-+=⎰423π-.(对称奇偶性) 6、设(,)z f x y =在点(0,0)的某邻域内可微,且(,)123(),f x y x y o ρ=+++而ρ=则(,)1f x y =在(0,0)处的切线方程为230x y +=.注:利用可微定义及公式法求切线斜率. 7、设1(),(1)xf x t t dt x -=≥-⎰,则曲线()f x 与x 轴所围封闭图形的面积S =12.注:当10x -≤<,21()xf x t dt -=-⎰;当0x ≥,0221()xf x t dt t dt -=-+⎰⎰. 8、设曲线段L 的方程为211ln (1)42y x x x e =-≤≤,则其弧长为s = 214e +.注:曲线弧微分11()2ds x dx x===+. 9、函数(),21f x y x y =-+满足方程225x y +=的条件极大值为6. 注:构造()22,21(5)L x y x y x y λ=-+++-.10、原点到曲面22()1x y z --= 注:构造()22222,(()1)L x y x y z x y z λ=+++---.x第2页 共4页三、计算题(本大题8分)设当0x →时, 2(1)x e ax bx -++与231x -互为等价无穷小,求(,)a b =(12,1). 解:当0x →时,222(1)31ln3x x e ax bx x -++--------------------------------------2则2'00(1)0limlim(2)1x L Hx x x e ax bx e ax b b x→→-++==--=-,有1b =-------------------2 而2''2000(1)212121lim lim lim ln 32ln 32ln 32ln 3x x x L H L H x x x e ax x e ax e a ax x →→→-++----====-------------3有12ln 3a =-,故(,)a b =(12l n 3,1)-.---------------------------------------------------1 四、计算题(本大题8分)10lim x x +→ 解:原式ln(1)12000ln(1)lim lim lim x x x x x x xe e e x ++++-→→→+-===----------4 1'00(1)1lim lim 222L H x x x x e e e x x ++-→→+--===-.-------------------------------------------4五、计算题(本大题8分)若324[ln(12)1]cos()x z z e x y xz e +-++-=确定了(,)z z x y =求(1)(0,0)dz ;(2)0(2,0)(0,3)lim x z x z x x →--. 解:(1)显然,当0,0x y ==时,1z =,对方程两端求微,有32242{[1ln(12)](3)}cos()cos()12x z z dx e x dx dz yd xz xz dy e dz x+-++++--=-+--2将0,0x y ==,1z =代入上式,易得31(0,0)(3)4dz dx e dy -=--;--------------------2(2)由(1)知,3(0,0)34,(0,0)x y z z e -=-=故0(2,0)(0,3)lim x z x z x x →--2030(2,0)(0,0)(0,3)(0,0)2lim lim 23x x z x z z x z x x→-→---=+---2 32(0,0)3(0,0)3(21)2x y z z e -=+=-.----------------------------------------------------2六、问答题(本大题8分)设数列{}n a 满足211,,01,222nn a c c a a c +==+<< 请问数列{}n a 收敛吗?若收敛,求lim n n a →∞.答:因01c <<,则012<+,即112c a =<=-若1n a <221(112222n n a c c a +=+<+=------------------1由数学归纳法知,11,2,n a n <=,即{}n a 上有界---------------------------1又21202n n n n a a c a a +-+-==>----------------2则{}n a 单增,由单调有界定理知,{}n a 收敛,令lim n n a a →∞=-------------------------------1 对2122n n a c a +=+两端取极限,有222c a a =+,得l i m 1n n a a →∞==. -------3六、证明题(本大题10分) 设(,)u v Φ可微,且(,)0ax cz by cz Φ--=确定了隐函数(,)z z x y =,其中0abc ≠(1)证明:曲面(,)z z x y =在任一点处的法线垂直于某常向量;(2)若(,)u v Φ二阶偏导数连续,证明:22xx yy b z a z =.证明:(1)()()()()0u v u v d ax cz d by cz adx cdz bdy cdz Φ-+Φ-=Φ-+Φ-=-----1则u v u v u v a b dz dx dy c c ΦΦ=+Φ+ΦΦ+Φ,有,u vx y u v u va b z z c c ΦΦ==Φ+ΦΦ+Φ-------2于是,1111(,,1)(,,)0y x x y z z z z a b c a b c-⋅=+-=,即111(,,1)(,,)x yz z a b c -⊥---------2 因(,)z z x y =在任一点处的法向量为(,,1)x y z z -,故其垂直于常向量111(,,)a b c----1(2)由题意知,,x y z z 都可微,则1()0y x z z d a b c+-=--------------------------------------1 有110xy yx yy xx x y z z z z dz dz dx dy dx dy a b a a b b+=+++=----------------------------------1 ()()0yx xy yy xx z z z z dx dy a b a b +++=,即0,0y x x y y y xx z z z z a b a b +=+=---------------------1 又(,)z z x y =二阶偏导数连续,则yx xy z z = ,对上述两式消去xy z ,(2)得证.-------2第3页 共4页七 、计算题(本大题10分)设(,)u v Φ可微,若(,)0y x x y Φ=确定了隐函数()y y x =,且(1)6y =, 求''()y x ,并由此求出()y y x =的解析表达式.解: 22()()()()0u v u v d y x d x y x xdy ydx y ydx xdy --Φ+Φ=-Φ+-Φ=---------2 则'()y x dy dx y x ==,此时,(,)(0,0)x y ≠--------------------------------------------2 于是,2''()()'(')0y x y x x xy y -==-=------------------------------------------------------2 当(,)(0,0)x y ≠时,'()y x y x k ==----------------------------------------------------------2 又(1)6y =,则6y x =,即()y y x =的解析表达式为6,0y x x =≠.----------------2八、计算题(本大题10分)设22()ln(1)xf x t dt -=+⎰,(1)求)1(-f ;(2)求)1('-f ;(3)求320()lim ln (1)x f x x →+.解:(1)22212112(1)ln(1)[ln(1)]1tf t dt t t dt t ----=+=+-+⎰⎰ -------------------------2 001211ln 22(1)ln 22(arctan )1dt t t t --=--=--+⎰ 222ln π+-= ;----------2 (2)因4()2l n (1)f x x x '=+, 则'(1)2ln 2f -=-;----------------------------------2 (3)原式326ln (1)60()lim x x x f x x +→=L'H 50'()lim 6x f x x →=4454002ln(1)1lim lim 633x x x x x x x →→+==.----4九、计算验证题(本大题10分)设)(x f 在13[0,]e -上单调且可导,(0)0f =,其反函数为)(x g ,若()20()ln f x x g tx dt x x =⎰,(1)求()f x ;(2)请验证题设条件:)(x f 在13[0,]e -上单调且可导的合理性.解:(1)0x >时,()()10()()xt uf x x f xg tx dt x g u du =-=⎰⎰,则()30()ln f x g u du x x =⎰----3其两端对x 求导得22()3ln ,xf x x x x '=+即()(3ln 1),f x x x '=+------------------1 则2()(3ln 1)(6ln 1)4x f x x xdx x C =+=-+⎰,由0lim ()(0)0x C f x f +→===,--2 则2(6ln 1)4,0()0,0x x x f x x ⎧->=⎨=⎩----------------------------------------------------------1(2)13(0,]x e -∈时,()(3ln 1)0f x x x '=+≤,则)(x f 单调且可导-----------------1又00()(0)'(0)limlim (6ln 1)04x x f x f xf x x+++→→-==-=,故题设条件合理.------------2 十、证明计算题(本大题10分)若()f x 在(,)-∞+∞上连续,且()()2a bf x f x ++=, 证明:()2()2()2()2()()()2b b a b a a b a b a a b xf x dx xf x dx f x dx ------+=+⎰⎰⎰, 并由上式计算2440(sin cos )x x x dx π+⎰。

相关文档
最新文档