(免费)2010年部分省市中考数学试题分类汇编_解直角三角形(含答案)[1]

合集下载

2010年全国各地数学中考试题分类汇编

2010年全国各地数学中考试题分类汇编

2010年全国各地数学中考试题分类汇编 数量和位置变化,平面直角坐标系一、选择题1.(2010江苏苏州)函数11y x =-的自变量x 的取值范围是 A .x ≠0 B .x ≠1 C .x ≥1 D .x ≤12.(2010甘肃兰州)函数y =x -2+31-x 中自变量x 的取值范围是A .x ≤2B .x =3C .x <2且x ≠3D .x ≤2且x ≠3 3.(2010江苏南京)如图,在平面直角坐标系中,菱形OABC 的顶点坐标是(3,4)则顶点A 、B 的坐标分别是A. (4,0)(7,4)B. (4,0)(8,4)C. (5,0)(7,4)D. (5,0)(8,4)4.(2010江苏南京)如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致为5.(2010江苏泰州)已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .6.(2010江苏南通)在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有 A .5个B .4个C .3个D .2个8.(2010 山东省德州)某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关 系的是(A) (B) (C)(D)10.(2010 河北)一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km /h ,水流速度为5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是11.(2010辽宁丹东市)如图,在平面直角坐标系中,以O (0,0),A (1,1), B (3,0)为顶点,构造平行四边形,下列各点中 不能..作为平行四边形顶点坐标的是( )A .(-3,1)B .(4,1)C .(-2,1)D .(2,-1)12.(2010山东济宁)如图,是张老师出门散步时离家的距离y 与时间x 之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是13.(2010山东威海)在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积yxO.AB.第7题图 sOAsOBsOCsODt hOt hO t hO htO 第5题图深 水 区浅水区••••ABCDyxO(第7题)为A .2009235⎪⎭⎫ ⎝⎛B .2010495⎪⎭⎫ ⎝⎛ C .2008495⎪⎭⎫⎝⎛D .4018235⎪⎭⎫ ⎝⎛14.(2010山东青岛)如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). A .(-3,3) B .(3,-3) C .(-2,4) D .(1,4)16.(2010 山东莱芜)在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米) 随时间x (分)变化的图象(全程)如图,根据图象判定下 列结论不正确...的是 A .甲先到达终点B .前30分钟,甲在乙的前面C .第48分钟时,两人第一次相遇D .这次比赛的全程是28千米18.(2010四川凉山)如图,因水桶中的水有图①的位置下降到图②的位置的过 程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图像是CB ①②A(第12题图)乙甲第7题图19.(2010四川眉山)某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关20.(2010台湾)坐标半面上,在第二象限内有一点P,且P点到x轴的距离是4,到y轴的距离是5,则P点坐标为何?(A) (-5,4) (B) (-4,5) (C) (4,5) (D) (5,-4) 。

(免费)2010年部分省市中考数学试题分类汇编 操作探究(含答案)

(免费)2010年部分省市中考数学试题分类汇编 操作探究(含答案)

2010年部分省市中考数学试题分类汇编操作探究(2010年安徽省B 卷)10.在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图(1)那样摆放,朝上的点数是2;最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可能...是下列数中的( )A .5【关键词】图形的变换 【答案】D .23(2010年浙江省东阳县)如图,在一块正方形ABCD 木板上要贴三种不同的墙纸,正方形EFCG 部分贴A 型墙纸,△ABE 部分贴B 型墙纸,其余部分贴C 型墙纸。

A 型、B 型、C 型三种墙纸的单价分别为每平方60元、80元、40元。

探究1:如果木板边长为2米,FC =1米,则一块木板用墙纸的费用需 元; 探究2:如果木板边长为1米,求一块木板需用墙纸的最省费用; 探究3:设木板的边长为a (a 为整数),当正方形 EFCG 的边长为多少时?墙纸费用最省;如要用这 样的多块木板贴一堵墙(7×3平方米)进行装饰, 要求每块木板A 型的墙纸不超过1平方米,且尽量 不浪费材料,则需要这样的木板 块。

【关键词】操作探究 【答案】(1)220 (2)y=20x 2—20x+60 当x=21时,y 小=55元。

(3)y=20x 2—20ax+60a 2当x=21a 时,21块23.(2010年山东省青岛市)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形....的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着4个正方形的内角. 试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着 个 正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案? 问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+= ,整理得:238x y +=,我们可以找到惟一一组适合方程的正整数解为12x y =⎧⎨=⎩ .结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:结论2: . 上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广O请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:.验证3:结论3:.【关键词】【答案】解:3个;················ 1分验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角.根据题意,可得方程:60120360a b+=.整理得:26a b+=,可以找到两组适合方程的正整数解为22ab=⎧⎨=⎩和41ab=⎧⎨=⎩.························· 3分结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.5分猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?······························ 6分验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角. 根据题意,可得方程:6090120360m n c++=,整理得:23412m n c++=,可以找到惟一一组适合方程的正整数解为121mnc=⎧⎪=⎨⎪=⎩. ······························ 8分结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌. (说明:本题答案不惟一,符合要求即可.)1.(2010年福建省晋江市)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) .A. 669B. 670C.671D. 672【关键词】正方形、实验操作、规律探索答案:B;22.(2010年北京崇文区) 正方形A B C D 的边长为a ,等腰直角三角形F A E 的斜边A E b = (a b 2<),且边A D 和A E 在同一直线上 .小明发现:当b a =时,如图①,在B A 上选取中点G ,连结F G 和C G ,裁掉F A G ∆和C H D ∆的位置构成正方形F G C H . (1)类比小明的剪拼方法,请你就图②和图③两种情形分别画出剪拼成一个新正方形的示意图.(2)要使(1)中所剪拼的新图形是正方形,须满足=AEBG .【关键词】正方形的剪拼、 【答案】(1)(2)21.(2010年浙江省绍兴市)分别按下列要求解答:(1)在图1中,将△ABC 先向左平移5个单位,再作关于直线AB 的轴对称图形,经两次变换后得到△A 1B 1 C 1.画出△A 1B 1C 1; (2)在图2中,△ABC 经变换得到△A 2B 2C 2.描述变换过程.1211 10 9 8 76 5 4 32 AC2B 2 12 11 10 9 8 7 6 5 4 3 2 C【答案】(1) 如图.(2) 将△ABC先关于点A作中心对称图形,再向左平移2个单位,得到△A2B2C2.(变换过程不唯一)2.(2010年宁德市)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是().A.2+10B.2+210C.12 D.18【答案】B27.(2010江苏泰州,27,12分)如图,二次函数cxy+-=221的图象经过点D⎪⎭⎫⎝⎛-29,3,与x轴交于A、B两点.⑴求c的值;⑵如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;⑶设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)第18题图1 第18题图2第18题图②4【答案】⑴ ∵抛物线经过点D (29,3-)∴29)3(212=+-⨯-c∴c=6.⑵过点D 、B 点分别作AC 的垂线,垂足分别为E 、F ,设AC 与BD 交点为M , ∵AC 将四边形ABCD 的面积二等分,即:S △ABC =S △ADC ∴DE =BF 又∵∠DME =∠BMF , ∠DEM =∠BFE ∴△DEM ≌△BFM∴DM =BM 即AC 平分BD ∵c =6. ∵抛物线为6212+-=x y∴A (0,32-)、B (0,32)∵M 是BD 的中点 ∴M (49,23) 设AC 的解析式为y =kx +b ,经过A 、M 点∴⎪⎩⎪⎨⎧=+=+-4923032b k b k 解得⎪⎪⎩⎪⎪⎨⎧==591033b k ∴直线AC 的解析式为591033+=x y.⑶存在.设抛物线顶点为N (0,6),在Rt △AQN 中,易得AN=,于是以A 点为圆心,AB =为半径作圆与抛物线在x 上方一定有交点Q ,连接AQ ,再作∠QAB 平分线AP 交抛物线于P ,连接BP 、PQ ,此时由“边角边”易得△AQP ≌△ABP .【关键词】二次函数、一次函数、解直角三角形及其知识的综合运。

(免费)2010年部分省市中考数学试题分类汇编 综合型问题(含答案)

(免费)2010年部分省市中考数学试题分类汇编 综合型问题(含答案)

2010年部分省市中考数学试题分类汇编综合型问题20、(2010年浙江省东阳县)如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E 点,AE=2,ED=4.(1)求证: ABE ∆~ABD ∆;(2) 求tan ADB ∠的值; (3)延长BC 至F ,连接FD ,使BDF ∆的面积等于 求EDF ∠的度数.【关键词】圆、相似三角形、三角形函数问题【答案】(1)∵点A 是弧BC 的中点 ∴∠ABC=∠ADB 又∵∠BAE=∠BAE ∴△ABE∽△ABD(2)∵△ABE∽△ABD ∴AB2=2×6=12 ∴AB=23在Rt△ADB中,tan∠ADB=33632=(3)连接CD,可得BF=8,BE=4,则EF=4,△DEF是正三角形, ∠EDF=60°20.(2010年山东省青岛市)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金. 【关键词】不等式与方程问题 【答案】解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ········· 3分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ······· 6分解这个不等式组,得111244y ≤≤.∵y 取正整数, ∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. (2010年安徽省B 卷)23.(本小题满分12分)如图, Rt ABC △内接于O ⊙,AC BC BAC =∠,的平分线AD 与O ⊙交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连接CD G ,是CD 的中点,连结OG .(1)判断OG 与CD 的位置关系,写出你的结论并证明; (2)求证:AE BF =; (3)若3(2OG DE = ,求O ⊙的面积.【关键词】圆 等腰三角形 三角形全等 三角形相似 勾股定理【答案】(1)猜想:OG CD ⊥. 证明:如图,连结OC 、OD . ∵OC OD =,G 是CD 的中点,∴由等腰三角形的性质,有OG CD ⊥.(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°. 而∠CAE =∠CBF (同弧所对的圆周角相等). 在Rt △ACE 和Rt △BCF 中, ∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF , ∴Rt △ACE ≌Rt △BCF (ASA ) ∴ AE BF =.(3)解:如图,过点O 作BD 的垂线,垂足为H .则H 为BD 的中点.∴OH =12AD ,即AD =2OH . 又∠CAD =∠BAD ⇒CD =BD ,∴OH =OG . 在Rt △BDE 和Rt △ADB 中, ∵∠DBE =∠DAC =∠BAD , ∴Rt △BDE ∽Rt △ADB∴BD DE AD DB=,即2BD AD DE =·AA∴226(2BD AD DE OG DE ===·· 又BD FD =,∴2BF BD =.∴22424(2BF BD == … ① 设AC x =,则BC x =,.∵AD 是∠BAC 的平分线, ∴FAD BAD ∠=∠.在Rt △ABD 和Rt △AFD 中, ∵∠ADB =∠ADF =90°,AD =AD ,∠F AD =∠BAD , ∴Rt △ABD ≌Rt △AFD (ASA ). ∴AF =AB,BD =FD . ∴CF =AF -AC1)x x -= 在Rt △BCF 中,由勾股定理,得2222221)]2(2BF BC CF x x x =+=+= …②由①、②,得22(224(2x =. ∴212x =.解得x =-.∴AB ===∴⊙O∴π6πO S =⋅2⊙=(2010年安徽省B 卷)24.(本小题满分12分)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.【关键词】二次函数解析式 对称点 相似三角形 三角形面积【答案】(1)由题意得129302b a a bc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- (2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+则302k b b -+=⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--.把1x =-代入得43y =-∴P 点的坐标为413⎛⎫--⎪⎝⎭, (3)S 存在最大值 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=. ∴332OE m =-,连结OPOAC OED AEP PCD S S S S S =---△△△△=()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭ =()22333314244m m m -+=--+ ∵304-<∴当1m =时,34S =最大(2010年福建省晋江市)已知:如图,把矩形OCBA 放置于直角坐标系中,3=OC ,2=BC ,取AB 的中点M ,连结MC ,把MBC ∆沿x 轴的负方向平移OC 的长度后得到DAO ∆.(1)试直接写出点D 的坐标;(2)已知点B 与点D 在经过原点的抛物线上,点P 在第一象限内的该抛物线上移动,过点P 作x PQ ⊥轴于点Q ,连结OP .①若以O 、P 、Q 为顶点的三角形与DAO ∆相似,试求出点P 的坐标;②试问在抛物线的对称轴上是否存在一点T ,使得TB TO -的值最大.【关键词】二次函数、相似三角形、最值问题答案:解:(1)依题意得:⎪⎭⎫ ⎝⎛-2,23D ;(2) ① ∵3=OC ,2=BC , ∴()2,3B .∵抛物线经过原点,∴设抛物线的解析式为bx ax y +=2()0≠a又抛物线经过点()2,3B 与点⎪⎭⎫⎝⎛-2,23D∴⎪⎩⎪⎨⎧=-=+22349,239b a b a 解得:⎪⎪⎩⎪⎪⎨⎧-==32,94b a ∴抛物线的解析式为x x y 32942-=. ∵点P 在抛物线上, ∴设点⎪⎭⎫ ⎝⎛-x x x P 3294,2. 1)若PQO ∆∽DAO ∆,则AO QO DA PQ =, 22332942x xx =-,解得:01=x (舍去)或16512=x ,∴点⎪⎭⎫⎝⎛64153,1651P . 2)若OQP ∆∽DAO ∆,则AO PQ DA OQ =, 23294232xx x -=,解得:01=x (舍去)或292=x ,∴点⎪⎭⎫⎝⎛6,29P . ②存在点T ,使得TO TB -的值最大. 抛物线x x y 32942-=的对称轴为直线43=x ,设抛物线与x 轴的另一个交点为E ,则点⎪⎭⎫⎝⎛0,23E . ∵点O 、点E 关于直线43=x 对称, ∴TE TO =要使得TB TO -的值最大,即是使得TB TE -的值最大,根据三角形两边之差小于第三边可知,当T 、E 、B 三点在同一直线上时,TB TE -的值最大.设过B 、E 两点的直线解析式为b kx y +=()0≠k ,∴⎪⎩⎪⎨⎧=+=+023,23b k b k 解得:⎪⎩⎪⎨⎧-==2,34b k∴直线BE 的解析式为234-=x y . 当43=x 时,124334-=-⨯=y . ∴存在一点⎪⎭⎫⎝⎛-1,43T 使得TO TB -最大.2. (2010年福建省晋江市)如图,在等边ABC ∆中,线段AM 为BC 边上的中线. 动点D 在直线..AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连结BE .(1) 填空:______ACB ∠=度;(2) 当点D 在线段..AM 上(点D 不运动到点A )时,试求出BEAD的值; (3)若8=AB ,以点C 为圆心,以5为半径作⊙C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.(2)∵ABC ∆与DEC ∆都是等边三角形∴BC AC =,CE CD =,︒=∠=∠60DCE ACB ∴BCE DCB DCB ACD ∠+∠=∠+∠ ∴BCE ACD ∠=∠CAB 备用图(1) AB C备用图(2)∴ACD ∆≌BCE ∆()SAS∴BE AD =,∴1=BEAD. (3)①当点D 在线段AM 上(不与点A 重合)时,由(2)可知ACD ∆≌BCE ∆,则︒=∠=∠30CAD CBE ,作BE CH ⊥于点H ,则HQ PQ 2=,连结CQ ,则5=CQ .在CBH Rt ∆中,︒=∠30CBH ,8==AB BC ,则421830sin =⨯=︒⋅=BC CH . 在CHQ Rt ∆中,由勾股定理得:3452222=-=-=CH CQ HQ ,则②当点D 在线段AM 的延长线上时,∵ABC ∆与DEC ∆都是等边三角形 ∴BC AC =,CE CD =,︒=∠=∠60DCE ACB ∴DCB ACB =∠+∠∴BCE ACD ∠=∠ ∴ACD ∆≌BCE ∆(∴=∠=∠CAD CBE ③当点D 在线段MA ∵ABC ∆与DEC ∆∴BC AC =,CD =∴=∠+∠ACE ACD ∴BCE ACD ∠=∠ ∴ACD ∆≌BCE ∆(∴CAD CBE ∠=∠∵︒=∠30CAM∴︒=∠=∠150CAD CBE ∴︒=∠30CBQ . 同理可得:6=PQ . 综上,PQ 的长是6.1.(2010年浙江省东阳市)如图,P 为正方形ABCD 的对称中心,A (0,3),B (1,0),直线OP 交AB 于N ,DC 于M ,点H 从原点O 出发沿x 轴的正半轴方向以1个单位每秒速度运动,同时,点R 从O 出发沿OM 方向以2个单位每秒速度运动,运动时间为t 。

(免费)2010年部分省市中考数学试题分类汇编 函数与一次函数(含答案)

(免费)2010年部分省市中考数学试题分类汇编 函数与一次函数(含答案)

2010年部分省市中考数学试题分类汇编函数与一次函数10.(2010年浙江省东阳县)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( ) 【关键词】函数的意义 【答案】A1、(2010年宁波市)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。

(2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【关键词】函数与实际问题 【答案】解:(1)15,154(2)由图像可知,s 是t 的正比例函数 设所求函数的解析式为kt s =(0≠k )(A) (B) (C)(D)1题代入(45,4)得:k 454= 解得:454=k∴s 与t 的函数关系式t s 454=(450≤≤t )(3)由图像可知,小聪在4530≤≤t 的时段内s 是t 的一次函数,设函数解析式为n mt s +=(0≠m ) 代入(30,4),(45,0)得:⎩⎨⎧=+=+045430n m n m解得:⎪⎩⎪⎨⎧=-=12154n m∴12154+-=t s (4530≤≤t )令t t 45412154=+-,解得4135=t当4135=t 时,34135454=⨯=S 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。

5.(2010年安徽省芜湖市)要使式子a +2a有意义,a 的取值范围是() A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠0 【关键词】函数自变量的取值范围 【答案】D9.(2010重庆市)小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。

2010年部分省市中考数学试题分类汇编(共28专题)17[1(精)

2010年部分省市中考数学试题分类汇编(共28专题)17[1(精)

2010年部分省市中考数学试题分类汇编 (1平行四边形、矩形、菱形与正方形1. (2010重庆市潼南县如图24,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连结AG ,点E 、F 分别在AG 上,连接BE 、DF ,∠1=∠2 , ∠3=∠4. (1证明:△AB E ≌△DAF ;(2若∠AGB =30°,求EF 的长. 解:(1∵四边形ABCD 是正方形∴AB=AD在△ABE 和△DAF 中⎪⎩⎪⎨⎧∠=∠=∠=∠3412DA AB ∴△ABE ≌△DAF -----------------------4分(2∵四边形ABCD 是正方形∴∠1+∠4=900∵∠3=∠4∴∠1+∠3=900∴∠AFD=900----------------------------6分在正方形ABCD 中, AD ∥BC∴∠1=∠AGB=300在Rt △ADF 中,∠AFD=900AD=2∴AF=3 DF =1----------------------------------------8分由(1得△ABE ≌△ADF∴AE=DF=1∴EF=AF-AE=13- -----------------------------------------10分2. (2010年青岛已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1求证:BE = DF ;(2连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF是什么特殊四边形?并证明你的结论.【答案】证明:(1∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°.∵AE = AF ,∴Rt Rt ABE ADF △≌△.∴BE =DF .(2四边形AEMF 是菱形.∵四边形ABCD 是正方形,∴∠BCA = ∠DCA = 45°,BC = DC .∵BE =DF ,题图24A D B E F O CM第21题图∴BC -BE = DC -DF . 即CE CF =. ∴OE OF =. ∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形.3.(2010福建龙岩中考20.(10分如图,平行四边形ABCD 中,E 、F 是对角线BD 上的点,且BE =DF . (1请你写出图中所有的全等三角形(2试在上述各对全等三角形中找出一对加以证明.4.(2010年益阳市如图7,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E . (1 求∠ABD 的度数; (2求线段BE 的长.【关键词】菱形性质、等边三角形、【答案】解:⑴在菱形ABCD 中,AD AB =,︒=∠60A∴ABD ∆为等边三角形∴︒=∠60ABD⑵由(1可知4==AB BD又∵O 为BD 的中点∴2=OB 又∵AB OE ⊥,及︒=∠60ABD ∴︒=∠30BOE ∴1=BE5.(2010年山东省青岛市已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1求证:BE = DF ;(2连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.7图【关键词】菱形的判定【答案】证明:(1∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE =DF .(2四边形AEMF 是菱形.∵四边形ABCD 是正方形,∴∠BCA = ∠DCA = 45°,BC = DC . ∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =. ∴OE OF =. ∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形.6. (2010年浙江省绍兴市 (1 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,∠AOF =90°. 求证:BE =CF .(2 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°, EF =4.求GH 的长.(3 已知点E ,H ,F ,G 分别在矩形ABCD 的边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°,EF =4. 直接写出下列两题的答案:①如图3,矩形ABCD 由2个全等的正方形组成,求GH 的长; ②如图4,矩形ABCD 由n 个全等的正方形组成,求GH 的长(用n的代数式表示.【答案】(1 证明:如图1,∵四边形ABCD 为正方形,∴ AB =BC ,∠ABC =∠BCD =90°, ∴∠EAB +∠AEB =90°. ∵∠EOB =∠AOF =90°, ∴∠FBC +∠AEB =90°,∴∠EAB =∠FBC ,∴△ABE ≌△BCF , ∴ BE =CF .(2 解:如图2,过点A 作AM //GH 交BC 于M ,第23题图1第23题图3 第23题图 4 第23题图1第23题图2O ′N AD BEFOC第21题图过点B 作BN //EF 交CD 于N ,AM 与BN 交于点O /, 则四边形AMHG 和四边形BNFE 均为平行四边形, ∴ EF=BN ,GH=AM ,∵∠FOH =90°, AM //GH ,EF//BN , ∴∠NO /A =90°, 故由(1得, △ABM≌△BCN , ∴ AM =BN , ∴ GH =EF =4. (3 ① 8.② 4n .7.(2010年宁德市(本题满分13分如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. ⑴求证:△AMB ≌△ENB ;⑵①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶当AM +BM +CM 的最小值为13【答案】解:⑴∵△ABE 是等边三角形, ∴BA =BE ,∠ABE =60°. ∵∠MBN=60°,∴∠MBN -∠ABN =∠ABE -∠ABN. 即∠BMA =∠NBE. 又∵MB =NB ,∴△AMB ≌△ENB (SAS .⑵①当M 点落在BD 的中点时,AM +CM 的值最小. ②如图,连接CE ,当M 点位于BD 与CE 的交点处时, AM +BM +CM 的值最小. ………………9分理由如下:连接MN.由⑴知,△AMB ≌△ENB , ∴AM =EN.∵∠MBN =60°,MB =NB , ∴△BMN 是等边三角形. ∴BM =MN.∴AM +BM +CM =EN +MN +CM.根据“两点之间线段最短”,得EN +MN +CM =EC 最短∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长.⑶过E 点作EF ⊥BC 交CB 的延长线于F , ∴∠EBF =90°-60°=30°.A DB C F A DB CABC DFED CB AO E设正方形的边长为x ,则BF =23x ,EF =2x . 在Rt △EFC 中,∵EF 2+FC 2=EC 2, ∴(2x 2+(23x +x 2=(213+.解得,x =2(舍去负值. ∴正方形的边长为2.8.(2010年四川省眉山市如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1试判断四边形OCED 的形状,并说明理由;(2若AB =6,BC =8,求四边形OCED 的面积.【关键词】平行四边形的判定、菱形的性质与判定和面积、矩形的性质【答案】解:(1四边形OCED 是菱形.∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, 又在矩形ABCD 中,OC =OD , ∴四边形OCED 是菱形.(2连结OE .由菱形OCED 得:CD ⊥OE , ∴OE ∥BC 又 CE ∥BD∴四边形BCEO 是平行四边形∴OE =BC =8 ∴S 四边形OCED =11862422OE CD ⋅=⨯⨯=9.(2010年浙江省东阳市(6分如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF . (1 请你判断AD 是△ABC 的中线还是角平分线?请证明你的结论.(2连接BF 、CE ,若四边形BFCE 是菱形,则△ABC 中应添加一个条件▲ 【关键词】三角形的全等【答案】(1AD 是△ABC 的中线.................................1分理由如下:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°.........1分又∵BE=CF,∠BDE=∠CFD ∴△BDE≌△CFD(AAS.......2分(2AB=AC或∠ABC=∠ACB或AD⊥BC或AD平分∠BAC.......2分10. (2010年安徽中考如图,AD ∥FE ,点B 、C 在AD 上,∠1=∠2,BF =BC⑴求证:四边形BCEF 是菱形⑵若AB =BC =CD ,求证:△ACF ≌△BDE 。

2010年部分省市中考数学试题分类汇编(共28专题)16.三角形(等腰三角形,等边三角形, 全等,尺规作图)-推荐下载

2010年部分省市中考数学试题分类汇编(共28专题)16.三角形(等腰三角形,等边三角形, 全等,尺规作图)-推荐下载

∴DE= 3t 8 3 - 3t = 8 3 2 3t
∴等边△DEF 的 DE 边上的高为:12 3t ∴当点 F 在 BO 边上时:12 3t = t ,∴ t =3 ……………………5 分
……………………4 分
① 当 0≤ t <3 时,重叠部分为等腰梯形,可求梯形上底为: 8 3 2 3t - 2 3 t …7 分 3
t S= (8
2
32
= t (16 3 14 3t)
2
3
3t 8
图b
(2)在图 b 中,将直线 AB 绕点 B 逆时针方向旋转一定角度交直线 CD 于点 Q, 如图 c,则∠BPD﹑∠B﹑∠D﹑∠BQD 之间有何数量关系?(不需证明);
(3)根据(2)的结论求图 d 中∠A+∠B+∠C+∠D+∠E+∠F 的度数.
图c
解:(1)不成立,结论是∠BPD=∠B+∠D. 延长 BP 交 CD 于点 E, ∵AB∥CD. ∴∠B=∠BED. 又∠BPD=∠BED+∠D, ∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3)由(2)的结论得:∠AGB=∠A+∠B+∠E. 又∵∠AGB=∠CGF. ∠CGF+∠C+∠D+∠F=360° ∴∠A+∠B+∠C+∠D∠E+∠F=360°.
(桂林 2010)26.(本题满分 12 分)如图,过 A(8,0)、B(0, 8 3 )两点的直线与直
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2010年部分省市中考数学试题分类汇编 压轴题(五)及答案

2010年部分省市中考数学试题分类汇编 压轴题(五)及答案

2010年部分省市中考数学试题分类汇编压轴题(五)28.(江苏省无锡市本题满分10分)如图1是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD (如图2),然后用这条平行四边形纸带按如图3 的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.解:(1)由图2的包贴方法知:AB的长等于三棱柱的底边周长,∴AB=30∵纸带宽为15,∴sin∠DAB=sin∠ABM=151302AMAB==,∴∠DAB=30°.(2)在图3中,将三棱柱沿过点A的侧棱剪开,得到如图甲的侧面展开图,C 图甲图1图3A将图甲种的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图乙中的平行四边形ABCD ,此平行四边形即为图2中的平行四边形ABCD 由题意得,知:BC=BE+CE=2CE=2×cos 30CD =︒∴所需矩形纸带的长为MB+BC=30·cos30°+cm .28.(江苏省宿迁市 本题满分12分)已知抛物线c bx x y ++=2交x 轴于)0,1(A 、)0,3(B ,交y 轴于点C ,其顶点为D .(1)求b 、c 的值并写出抛物线的对称轴; (2)连接BC ,过点O 作直线BC OE ⊥交抛物线的对称轴于点E .求证:四边形ODBE 是等腰梯形; (3)问Q 抛物线上是否存在点Q ,使得△OBQ 的面积等于四边形ODBE 的面积的31?若存在,求出点Q 的坐标;若不存在,请说明理由.解:(1)求出:4-=b ,3=c ,抛物线的对称轴为:x=2 ……3分(2) 抛物线的解析式为342+-=x x y ,易得C 点坐标为(0,3),D 点坐标为(2,-1) 设抛物线的对称轴DE 交x 轴于点F ,易得F 点坐标为(2,0),连接OD ,DB ,BE ∵∆OBC 是等腰直角三角形,∆DFB 也是等腰直角三角形,E 点坐标为(2,2), ∴∠BOE= ∠OBD=45 ∴OE ∥BD∴四边形ODBE 是梯形 ………………5分在ODF Rt ∆和EBF Rt ∆中,(第28题)(第28题2)OD=5122222=+=+DF OF ,BE=5122222=+=+FB EF∴OD= BE∴四边形ODBE 是等腰梯形 ……………7分(3) 存在, ……8分 由题意得:29332121=⨯⨯=⋅=DE OB S ODBE 四边形 ………………9分 设点Q 坐标为(x ,y ), 由题意得:y y OB S OBQ 2321=⋅=三角形=23293131=⨯=ODBE S 四边形 ∴1±=y当y=1时,即1342=+-x x ,∴ 221+=x , 222-=x ,∴Q 点坐标为(2+2,1)或(2-2,1) …………11分 当y=-1时,即1342-=+-x x , ∴x=2, ∴Q 点坐标为(2,-1)综上所述,抛物线上存在三点Q 1(2+2,1),Q 2 (2-2,1) ,Q 3(2,-1) 使得OBQ S 三角形=ODBE S 四边形31. ………………12分EFQ 1 Q 3Q 226.(湖南省长沙市)如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y轴上,OA =cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OAcm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒. (1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;(3)当△OPQ 与△P AB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.解:(1) ∵CQ =t ,OPt ,CO =8 ∴OQ =8-t∴S △OPQ=21(8)222t t -=-+(0<t <8) …………………3分 (2) ∵S 四边形OPBQ =S 矩形ABCD -S △PAB -S △CBQ=1188)22⨯⨯-⨯⨯=………… 5分 ∴四边形O PBQ 的面积为一个定值,且等于 …………6分(3)当△OPQ 与△P AB 和△QPB 相似时, △QPB 必须是一个直角三角形,依题意只能是∠QPB =90°又∵BQ 与AO 不平行 ∴∠QPO 不可能等于∠PQB ,∠APB 不可能等于∠PBQ ∴根据相似三角形的对应关系只能是△OPQ ∽△PBQ ∽△ABP ………………7分8=解得:t =4经检验:t =4是方程的解且符合题意(从边长关系和速度) 此时P(0)∵B (8)且抛物线214y x bxc =++经过B 、P 两点, 第26题图∴抛物线是212284y x x =-+,直线BP 是:28y x =- …………………8分 设M (m , 28m -)、N (m ,212284m m -+)∵M 在BP 上运动 ∴4282m ≤≤ ∵2112284y x x =-+与228y x =-交于P 、B 两点且抛物线的顶点是P ∴当4282m ≤≤时,12y y > ………………………………9分 ∴12MN y y =-=21(62)24m --+ ∴当62m =时,MN 有最大值是2 ∴设MN 与BQ 交于H 点则(62,4)M 、(62,7)H ∴S △BHM =13222⨯⨯=32 ∴S △BHM :S 五边形QOPMH =32:(32232)-=3:29 ∴当MN 取最大值时两部分面积之比是3:29. ……10分28.(南京市8分)如图,正方形ABCD 的边长是2,M 是AD 的中点,点E 从点A 出发,沿AB 运动到点B 停止,连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连结EG 、FG 。

2010年中考数学试题及答案

2010年中考数学试题及答案

2010年中考数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1) A. BC.-D2.反比例函数23m y x--=的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限3.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对 B .6对 C .5对 D .3对4.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +5.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是A .2x >-;B .0x >;C .2x <-;D .0x <7.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .32二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处.xb +8.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .9.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.10.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是 1.2m ,在同一时刻测得某棵树的影长为 3.6m ,则这棵树的高度约为 m . 12.如图所示的半圆中,AD 是直径,且3AD =,2AC =,则sin B 的值是 .13.某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为︒120的扇形,则这个圆锥的底面半径为______________cm .三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分)14.计算:230116(2)(πtan60)3-⎛⎫--÷-+-- ⎪⎝⎭.15.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)C BD A16.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径; (2)求图中阴影部分的面积.17.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超..过.132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?18.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间C OABD的函数图象如图所示,根据图象所提供的信息解答问题:(1) 他们在进行 米的长跑训练,在0<x <15的时段内,速度较快的人是 ;(2) 求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式; (3) 当x =15时,两人相距多少米?在15<x <20的时段内,求两人速度之差.Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)19.把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.如图,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河分)岸b 上的A 处测得30DAB ∠= ,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).21.三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.Ⅳ(本题满分8分)BED CFab A22.如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动) . (1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.Ⅴ(本题满分14分)图① 图② 图③A·BCD EF··N MFEDCB ANMF EDCBA·23.如图,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在C 上.(1)求ACB 的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.2010年中考数学试题参考答案及评分标准二、填空题(本大题共6小题,每小题4分,共24分) 8.(00),;9.152;10.210;11.4.8;12.23;13.4 三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式=9-16÷(-8)+1-23×23……………………2分 =9+2+1-3.……………………………………4分 =9 ………………………………6分15.解:原式211(1)1(1)(1)1x x x x x -=-++-+······································································ 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.(1)连结OC ,则 OC AB ⊥. …………………………………………………1分∵OA OB =,∴1122AC BC AB ===⨯ ………………………………………2分在Rt AOC △中,3OC ===.∴ ⊙O 的半径为3. …………………………………………………………3分 (2)∵ OC =12OB , ∴ ∠B =30o , ∠COD =60o . ……………………………………5分 ∴扇形OCD 的面积为OCD S 扇形=260π3360⨯⨯=32π. …………………………………5分阴影部分的面积为:Rt Δ=OBC OCD S S S -阴影扇形=12OC CB ⋅-3π2-3π2.…………………………7分 17.解:(1)设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台,根据题意,列不等式: ································································ 1分120021600(803)2000132000x x x ⨯++-⨯≤. ···························································· 3分解这个不等式,得14x ≥. ·································································································· 4分 ∴至少购进乙种电冰箱14台. ····························································································· 5分 (2)根据题意,得2803x x -≤. ····················································································· 6分 解这个不等式,得16x ≤. ·································································································· 7分 由(1)知14x ≥. 1416x ∴≤≤. 又x 为正整数, 141516x ∴=,,. ···················································································································· 8分 所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台; 方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台; 方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台. ··················· 10分 18.解:(1)5000…………………………………2分甲 ………………………………4分(2)设所求直线的解析式为:y =kx +b (0≤x ≤20), ………5分由图象可知:b =5000,当x =20时,y =0, ∴0=20k +5000,解得k = -250. …7分即y = -250x +5000 (0≤x ≤20) ……………7分(3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. ………8分 两人相距:(5000 -1250)-(5000-2000)=750(米)………………9分 两人速度之差:750÷(20-15)=150(米/分)……………11分Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19解:(1)P (抽到牌面数字是4)13=; ········································································ 2分(2)游戏规则对双方不公平. ················································································· 5分 理由如下:由上述树状图或表格知:所有可能出现的结果共有9种. P (抽到牌面数字相同)=3193=, P (抽到牌面数字不相同)=6293=.∵1233<,∴此游戏不公平,小李赢的可能性大. ············································ 12分 (说明:答题时只需用树状图或列表法进行分析即可)20.解:过点C 作CE AD ∥,交AB 于E CD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分21.答:(1)甲厂的广告利用了统计中的平均数. ····························································· 2分乙厂的广告利用了统计中的众数. ············································································ 4分 丙厂的广告利用了统计中的中位数. ············································································ 7分分…………………………8分11F B C (2) 选用甲厂的产品. 因为它的平均数较真实地反映灯管的使用寿命 ······················· 10分 或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月 ··························· 10分Ⅳ.(本题满分8分)22.(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ········ 2分(2)成立. ······························ 3分 证明:法一:连结DE ,DF .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°,∴∠MDF =∠NDE .在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE ,∴△DMF ≌△DNE . 8∴MF =NE . ·························· 6分法二:延长EN ,则EN 过点F .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点, ∴EF =DF =BF .∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°,∴∠BDM =∠FDN .又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN .∴BM =FN .∵BF =EF , ∴MF =EN . ·························· 6分(3)画出图形(连出线段NE ), 6MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 8分Ⅴ.(本题满分14分)23.解:(1)作CHN C A B F M D E NC A B F MD E12 1CH = ,半径2CB = ·························································· 1分60BCH ∠= ,120ACB ∴∠= ········································· 3分(2)1CH = ,半径2CB =HB ∴=(1A ,················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分 设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分 222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分 PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分又2PC = ,2OD ∴=,即(02)D ,. 又(02)D ,满足222y x x =-++, ∴点D 在抛物线上 ··············································································································· 13分 所以存在(02)D ,使线段OP 与CD 互相平分. ·································································· 14分。

(免费)2010年部分省市中考数学试题分类汇编 点线面角(含答案)

(免费)2010年部分省市中考数学试题分类汇编 点线面角(含答案)

(第3题)2010年部分省市中考数学试题分类汇编点、线、面、角1.(2010年福建晋江) 附加题:若︒=∠35A , 则A ∠的余角等于 度. 答案:552010年广东省广州市)将图1所示的直角梯形绕直线l 旋转一周,得到的立体图开是( )lA .B .C .D . 图1 【关键词】面动成体 【答案】C2.(2010年浙江台州市)如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点, 则AP 长不可能...是(▲) A .2.5 B .3 C .4 D .5 【关键词】点到直线的距离 【答案】A3.(2010年益阳市)如图3,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且P A =PB .下列A.P 为∠A 、∠B 两角平分线的交点B.P 为∠A 的角平分线与AB 的垂直平分线的交点 C.P 为AC 、AB 两边上的高的交点 D.P 为AC 、AB 两边的垂直平分线的交点【关键词】角平分线、垂直平分线、三角形的高 【答案】B4.(2010年台湾省)如图(十二),直线CP 是AB 的中垂线且交AB 于P ,其中AP =2CP 。

甲、乙两人想在AB 上取两点D 、E ,使得AD =DC =CE =EB ,其作法如下:(甲) 作∠ACP 、∠BCP 之角平分线,分别交AB 于D 、E , 则D 、E 即为所求(乙) 作AC 、BC 之中垂线,分别交AB 于D 、E ,则D 、 E 即为所求对于甲、乙两人的作法,下列判断何者正确?ABCP 图(十二)AB3图(A) 两人都正确 (B) 两人都错误 (C) 甲正确,乙错误 (D) 甲错误,乙正确。

【关键词】垂线 【答案】D5、(2010年宁波)《几何原本》的诞生,标志着几何学已成为一个有着严密理论系统和科学方法的学科,它奠定了现代数学的基础,它是下列哪位数学家的著作( ) A 、欧几里得 B 、杨辉 C 、费马 D 、刘徽 答案:A4. (金华)下图所示几何体的主视图是( ▲ ) A . B . C . D .正面。

2010中考数学试题分类汇编--三角函数解直角三角形

2010中考数学试题分类汇编--三角函数解直角三角形

2010中考数学试题分类汇编--三角函数解直角三角形(2010哈尔滨)1。

在 Rt △ ABC 中,. / C = 90°,/ B = 35 °,AB = 7,贝U BC 的长为( )• C(A ) 7sin35 °7 (B )cos35(C ) 7cos35° (D ) 7tan35 °(2010红河自治州)13•计算: 12 +2sin60 ° = 3.3(2010红河自治州) 为 60°,此后飞机以300米/秒的速度沿平行于地面 AB 的方向匀速飞行,飞行 此时测得飞机距地平面的垂直高度为 解:延长CD 交AB 于G ,则CG=12 依题意:PC=300X 10=3000 (米)17.(本小题满分9分)如图5, —架飞机在空中 P 处探测到某高山山顶 D 处的俯角 10秒到山顶D 的正上方C 处,12千米,求这座山的高(精确到C 0.1千米) (千米二 杰砧—「— =3 (千米) \ I在 Rt △ PCD中:PC=3,/ P=60 CD=PC • tan / P =3 x tan 60° =33• 12-CD=12- 3 3 〜6.8 (千米)答:这座山的高约为 6.8千米.12千米(2010 遵义市)(10分)如图,水坝的横断面是梯形,背水坡AB 的坡 角/ BAD=60 :,坡长AB=20,3m ,为加强水坝强度 将坝底从A 处向后水平延伸到 F 处,使新的背水坡的坡角/ F=45 求AF 的长度(结果精确到1米, 参考数据:.2 1.414, .3 : 1.732).答案:(10分)解:过E 作BE X AD 于E在 Rt △ ABE 中,/ BAE=60 :,(22题图)• / ABE=30 • AE = 1 AE = —20. 3 = 10 32 2 ••• BE 二..AB 2- AE 2=20.3 10 3 2=30•••在 Rt △ BEF 中,ZF= 45 二 • EF = BE= 30•AF=EF—AE=30—10 3(22 题图)•••岛=1.732 ,• AF = 12.68^13(2010台州市)19.施工队准备在一段斜坡上铺上台阶方便通行•现测得斜参考数据 cos20 坡上铅sin20 sin18 cos18 10.94, |0.34 , | 0.31 , | 0.95o_,Cl,垂的两棵树间水平距离AB=4米,斜面距离BC=4.25米,斜坡总长DE=85米.若这段斜坡用厚度为17cm的长方体台阶来铺,需要铺几级台阶•••/ D : 20°. ..........(2) EF=DEsin / D=85sin20 °: 85X 0.34=28.9(米),共需台阶28.9X 100- 17=170 级. ..................(玉溪市2010) 17.在玉溪州大河旁边的路灯杆顶上有一个物体,它的抽象几何图形如图若AB =4,AC =10, ZABC =60?求 B C两点间的距离解:过A点作AD丄BC于点D,在Rt△ ABD中,•••/ ABC=60,•/ BAD=30•/ AB=4,• BD=2, • AD=2 3 .在Rt △ ADC中, AC=10,•- CD= AC2 -AD2= 100 -12=2 22 .• BC=2+2.22 .答:B、C两点间的距离为2+2 . 22 .(2010年无锡)23.(本题满分8分)在东西方向的海岸线西端图8(1) 求坡角/ D的度数(结果精确到1°);(2)解:19.l上有一长为1km的码头MN (如图), 在码头BC 4.25(8 分)M 的正西19. 5 km 处有一观察站 A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30° ,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于 A 的北偏东 60°,且与A 相距8、、3 km 的C 处. (1) 求该轮船航行的速度(保留精确结果) ; (2) 如果该轮船不改变航向继续航行,那么轮船能否正 好行至码头MN 靠岸?请说明理由. 答案解:(1)由题意,得/ BAC=90 , ............ ( 1分) ••• BC =丐402 (&、3)2 =16.7 . .... ( 2 分) • ••轮船航行的速度为16、7 V 4 =12、7 km/时. …… (3 分)3 (2) 能.……(4分) 作BD 丄I 于D, CEL I 于E ,设直线 BC 交I 于F , 则 BD=A B cos / BAD=20 CE=AC- sin / CAE=4>/3 , AE=AC- cos / CAE=12 •/ BD L l,CE L I,; / BDF=/ CEF=9C ° .又/ BFD=Z CFE •△ BDF^A CEF ,……(6 分) • DF BD EF +32 • • EF CE EF 201 3 • - EF=8. 4、3(7 分) • AF=AE+EF=20 •/ AM K AF V AN, •轮船不改变航向继续航行,正好能行至码头 MN 靠岸. (2010年兰州)24.(本题满分8分)如图是某货站传送货物的平面示意图 •为了提高传送过程的安全性, 工人师傅欲减小传送带与地面的夹角,使其由 45。

2010年部分省市中考数学试题分类汇编 有理数(含答案)

2010年部分省市中考数学试题分类汇编 有理数(含答案)

2010年部分省市中考数学试题分类汇编 有理数一 选择题1.(2010重庆市) 3的倒数是()A .13B .— 13C .3D .—3解析:由一个不为0的数a 倒数是a 1知: 3的倒数是— 13 .答案:B.2. (2010重庆市潼南县)2的倒数是( )A .21 B .-2 C . -21D . 2 答案:A3.(2010年四川省眉山市)5-的倒数是A .5B .15C .5-D .15- 【关键词】有理数的倒数的概念和性质 【答案】D4.(2010年福建省晋江市)51-的相反数是( ). A. 51 B. 51- C. 5 D.5-【关键词】倒数的概念与性质 【答案】D5.(2010年浙江省东阳市)73是 ( ) A .无理数B .有理数C .整数D .负数【关键词】有理数的概念 【答案】B6.(2010年浙江省东阳市)73是 ( ) A .无理数B .有理数C .整数D .负数【关键词】有理数的概念 【答案】B7.(2010年四川省眉山市)5-的倒数是A .5B .15 C .5- D .15- 【关键词】有理数的倒数的概念和性质 【答案】D8.(2010年福建省晋江市)51-的相反数是( ). A.51 B. 51- C. 5 D.5- 【关键词】倒数的概念与性质 【答案】D9.(2010重庆市) 3的倒数是()A .13B .— 13C .3D .—3解析:由一个不为0的数a 倒数是a 1知: 3的倒数是— 13 .答案:B.10.(2010江苏宿迁)3)2(-等于( )A .-6B .6C .-8D .8 【关键词】有理数的乘方【答案】C11.(2010江苏宿迁)有理数a 、b 在数轴上的位置如图所示,则b a +的值A .大于0B .小于0C .小于aD .大于b 【关键词】数轴 【答案】A12.(2010江苏宿迁)下列运算中,正确的是( )A .325=-m mB .222)(n m n m +=+C .n m nm =22 D .222)(mn n m =⋅【关键词】有理数的运算【答案】D13.(2010年毕节地区)若23(2)0m n -++=,则2m n +的值为( ) A .4- B .1- C .0 D .4 【关键词】绝对值、代数式的值、两个非负数的和 【答案】B14.(2010年重庆市潼南县)2的倒数是( )A .21 B .-2 C . -21D . 2 【关键词】有理数运算、倒数 【答案】A(第3题)15. (2010年浙江省东阳市)73是 ( ) A .无理数 B .有理数C .整数D .负数【关键词】有理数 【答案】B16. (2010年浙江省东阳市)某电视台报道,截止到2010年5月5日,慈善总会已接受支援玉树地震灾区的捐款15510000元.将15510000用科学记数法表示为 ( )A.8101551.0⨯ B. 4101551⨯ C.710551.1⨯ D.61051.15⨯【关键词】科学记数法 【答案】C17.(2010年安徽中考) 在2,1,0,1-这四个数中,既不是正数也不是负数的是( ) A )1- B )0 C )1 D )2 【关键词】有理数 【答案】B18. (2010年安徽中考) 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是…………………………( )A )2.89×107.B )2.89×106 .C )2.89×105.D )2.89×104. 【关键词】科学记数法 【答案】B19. (2010年宁波市)-3的相反数是( ) A 、3 B 、31 C 、-3 D 、31- 【关键词】相反数【答案】A 20、(2010年宁波市)据《中国经济周刊》报道,上海世博会第四轮环保活动投资总金额高达820亿元,其中820亿用科学记数法表示为( ) A 、111082.0⨯ B 、10102.8⨯ C 、9102.8⨯ D 、81082⨯ 【关键词】科学记数法 【答案】B21.(2010·重庆市潼南县)2的倒数是( )A .21 B .-2 C. -21D. 2 【关键词】倒数的概念 【答案】A22.(2010年山东聊城)据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为A .8.55×106B .8.55×107C .8.55×108D .8.55×109 【关键词】科学记数法 【答案】C23.(2010·重庆市潼南县)2的倒数是( )A .21 B .-2 C. -21D. 2 【关键词】倒数的概念 【答案】A24.(2010年辽宁省丹东市)在“2008北京”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为84.610⨯帕的钢材,那么84.610⨯的原数为( )A .4 600 000B .46 000 000C .460 000 000D .4 600 000 000 【关键词】科学计数法 【答案】C 25(2010辽宁省丹东市)1在“2008北京”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为84.610⨯帕的钢材,那么84.610⨯的原数为( )A .4 600 000B .46 000 000C .460 000 000D .4 600 000 000 【关键词】科学记数法 【答案】C 25.(2010年山东聊城)据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为A .8.55×106B .8.55×107C .8.55×108D .8.55×109 【关键词】科学记数法 【答案】C 1、(2010年宁波)-3的相反数是( ) A 、3 B 、31 C 、-3 D 、31- 答案:A27、(2010年宁波)据《中国经济周刊》报道,上海世博会第四轮环保活动投资总金额高达820亿元,其中820亿用科学记数法表示为( ) A 、111082.0⨯ B 、10102.8⨯ C 、9102.8⨯ D 、81082⨯ 答案:B28.(2009年山东省济南市)某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( ) A .-10℃ B .-6℃ C .6℃ D .10℃ 【关键词】有理数 【答案】D29.(2010年台湾省)下列何者是0.000815的科学记号?(A) 8.15⨯10-3 (B) 8.15⨯10-4 (C) 815⨯10-3 (D) 815⨯10-6 。

(免费)2010年部分省市中考数学试题分类汇编 频数与频率(含答案)

(免费)2010年部分省市中考数学试题分类汇编 频数与频率(含答案)

频数分布直方图2010年部分省市中考数学试题分类汇编频数与频率1.(2010山东德州)为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),请根据统计图计算成绩在20~30次的频率是 (A )0.4(B )0.5 (C )0.6 (D )0.7【关键词】频率、频数分布直方图 【答案】D1.(2010年台湾省)自连续正整数10~99中选出一个数,其中每个数被选出的机会相等。

求选出的数其十位数字与个位数字的和为9的机率为何? (A)908 (B) 909 (C) 898 (D) 899 【关键词】频率 【答案】B1. (2010重庆市潼南县)根据市教委提出的学生每天体育锻炼不少于1小时的要求,为确保阳光体育运动时间得到落实,某校对九年级学生每天参加体育锻炼的时间作了一次抽样调查,其中部分结果记录如下:频数分布表:请你将频数分布表和频数分布直方图补充完整.5.2频数分布直方图题图20 第6题图2. (2010年福建晋江)某校为了了解九年级女生的体能情况,随机抽查了部分女生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图和不完整的统计表(每个分组包括左端点,不包括右端点). 请你根据图中提供的信息,解答以下问题: (1) 分别把统计图与统计表补充完整;位数”,请你写出小敏仰卧起坐次数所在的范围.(3)若年段的奋斗目标成绩是每个女生每分钟23次,问被抽查的所有女生的平均成绩是否达到奋斗目标成绩? 解: (1) 5 ,52…………………………………………(2分) 补图正确得2分. ………………………………………(4分) (2) 25~30.………………………………………………(7分) (3) 被抽查的所有女生的平均成绩至少是:2.233053012251020315≈⨯+⨯+⨯+⨯(次) ………………(9分)∵23.2>23∴被抽查的所有女生的平均成绩达到奋斗目标成绩. …………(10分)3. (2010浙江衢州)黄老师退休在家,为选择一个合适的时间参观2010年上海 世博会,他查阅了5月10日至16日(星期一至星期日)每天 的参观人数,得到图1、图2所示的统计图,其中图1是每天参观人数的统计图,图2是5月15日(星期六)这一天上午、中午、下午和晚上四个时间段参观人数的扇形统计图.请你根据统计图解答下面的问题: (1) 5月10日至16日这一周中,参观人数最多的是哪一天?有多少人?参观人数最少的又是哪一天?有多少人?(2) 5月15日(星期六)这一天,上午的参观人数比下午的参观人数多多少人 (精确到1万人)? (3) 如果黄老师想尽可能选择参观人数较少的时间去参观世博会,你认(次)(次)为他选择什么时间比较合适?解:(1) 参观人数最多的是15日(或周六),有34万人; ……2分参观人数最少的是10日(或周一),有16万人. ……2分 (2) 34×(74%-6%)=23.12≈23.上午参观人数比下午参观人数多23万人. ……2分 (3) 答案不唯一,基本合理即可,如选择星期一下午参观等. ……2分4.(2010年日照市)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时。

(免费)2010年部分省市中考数学试题分类汇编 解直角三角形(含答案)

(免费)2010年部分省市中考数学试题分类汇编 解直角三角形(含答案)
解:∵∠C=90°,∠ADC=60°
∴CD=ACtan30°=1,
∴AD= .
∴BD=2AD=4.
∴AB= ,
∴△ABC的周长=AB +AC+ BC=5+ + .
15.(2010江苏泰州)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度 ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)
(2010年福建省德化县).(本题满分10分)小明在某风景区的观景台O处观测到北偏东 的P处有一艘货船,该船正向南匀速航行,30分钟后再观察时,该船已航行到O的南偏东40 ,且与O相距2km的Q处.如图所示.
求: (1)∠OPQ和∠OQP的度数;
(2)货船的航行速度是多少km/h?
(结果精确到0.1km/h,已知sin =cos =0.7660,
【答案】A
2.(2010江苏宿迁)小明沿着坡度为1:2的山坡向上走了1000m,则他升高了()
A. mB.500mC. mD.1000m
【关键词】坡角
【答案】A
3.(2010年日照市)如图,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBA= ,则AD的长为
(A)2(B) (C) (D)1
【答案】2≦AD < 3
10.(2010重庆市潼南县)如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m,则电梯楼的高BC为米(精确到0.1).(参考数据: )

(免费)2010年部分省市中考数学试题分类汇编 整式与因式分解(含答案)

(免费)2010年部分省市中考数学试题分类汇编 整式与因式分解(含答案)

2010年部分省市中考数学试题分类汇编整式与因式分解12. (2010年浙江省东阳县)因式分解:x 3-x=___ ____ 【关键词】因式分解 【答案】x(x+1)(x-1)12. (2010年浙江省东阳县)因式分解:x 3-x=___ ____ 【关键词】因式分解 【答案】x(x+1)(x-1)1、(2010年宁波市)下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy =C 、632)(x x =D 、422x x x =+ 【关键词】整式运算 【答案】C2(2010年宁波市)、若3=+y x ,1=xy ,则=+22y x ___________。

【关键词】完全平方公式 【答案】71、(2010年宁波市)下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy =C 、632)(x x =D 、422x x x =+ 【关键词】整式运算 【答案】C2(2010年宁波市)、若3=+y x ,1=xy ,则=+22yx ___________。

【关键词】完全平方公式 【答案】711.(2010浙江省喜嘉兴市)用代数式表示“a 、b 两数的平方和”,结果为_______. 【关键词】代数式 【答案】22b a + 14.(2010浙江省喜嘉兴市)因式分解:2mx 2-4mx +2m = . 【关键词】提公因式、完全平方公式 【答案】2)1(2-x m17、(2010浙江省喜嘉兴市)计算:a (b +c )-ab 【关键词】单项式与多项式的积、整式加减 【答案】ab c b a -+)(ab ac ab -+=ac =.7(2010年浙江省金华). 如果33-=-b a ,那么代数式b a 35+-的值是( ▲ ) A .0 B .2 C .5 D .8 【关键词】整体带入、代数式 【答案】D11(2010年浙江省金华). 分解因式=-92x . 【关键词】分解因式 【答案】(x -3)(x +3);4.(2010年浙江台州市)下列运算正确的是(▲)A .22a a a =⋅B .33)(ab ab =C .632)(a a =D .5210a a a =÷ 【关键词】幂的有关运算 【答案】C12.(2010年浙江台州市)因式分解:162-x = ▲ . 【关键词】因式分解、平方差公式 【答案】)4)(4(-+x x9. (2010年益阳市)若622=-n m ,且3=-n m ,则=+n m . 【关键词】平方差 【答案】215.(2010年益阳市)已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.【关键词】完全平方公式、整式加减【答案】15.解法一:原式=2)21(-+x =2)1(-x 原式= 2)3( =3 解法二:由31=-x 得13+=x化简原式=444122+--++x x x=122+-x x=1)13(2)13(2++-+=12321323+--++ =32. (2010江西) 计算 -(-3a)2的结果是( )A .-6a 2B . -9a 2C . 6a 2D . 9a 2 【关键词】有关幂的运算 【答案】B9.(2010江西) 因式分解:=-822a . 【关键词】因式分解、平方差公式 【答案】)2)(2(2-+a a(2010年广东省广州市)下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3【关键词】去括号 【答案】D(2010年广东省广州市)因式分解:3ab 2+a 2b =_______.【关键词】提公因式法因式分解【答案】ab (3b +a )(2010年四川省眉山)下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 【关键词】幂的运算 【答案】B(2010年四川省眉山)把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 【关键词】因式分解 【答案】D第3章 整式与因式分解2.(2010年重庆)计算232x x ⋅的结果是( )A .x 2B .52x C .62x D .5x 【答案】B2.(2010年重庆)计算232x x ⋅的结果是( )A .x 2B .52x C .62x D .5x 【答案】B(2010年广东省广州市)下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3 【关键词】去括号 【答案】D(2010年广东省广州市)因式分解:3ab 2+a 2b =_______.【关键词】提公因式法因式分解【答案】ab (3b +a )(2010年四川省眉山)下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 【关键词】幂的运算 【答案】B(2010年四川省眉山)把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 【关键词】因式分解 【答案】D12.(2010年安徽省芜湖市)因式分解:9x 2-y 2-4y -4=__________. 【关键词】分解因式、完全平方公式、平方差公式 【答案】)23)(23(--++y x y x12. (2010年浙江省东阳县)因式分解:x 3-x=___ ____ 【关键词】因式分解 【答案】x(x+1)(x-1)(2010年山东省济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+ C .2(3)x x y - D .23()x x y - 【关键词】先运用提公因式法再运用完全平方公式 【答案】D12.(2010年山东省济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 .【关键词】配方法的应用 【答案】5(2010年山东省济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y - 【关键词】先运用提公因式法再运用完全平方公式 【答案】D12.(2010年山东省济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 .【关键词】配方法的应用 【答案】5(2010年山东省济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y - 【关键词】先运用提公因式法再运用完全平方公式 【答案】D12.(2010年山东省济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 .【关键词】配方法的应用 【答案】52.(2010重庆市)计算2x 3·x 2的结果是()A .2xB .2x 5C .2x 6D .x 5解析:由单项式乘法法则知, 2x 3·x 2=2x 5 . 答案:B.2.(2010重庆市)计算2x 3·x 2的结果是()A .2xB .2x 5C .2x 6D .x5解析:由单项式乘法法则知, 2x 3·x 2=2x 5 .答案:B. (2010日照市)10.由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b-ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3. ………………………①我们把等式①叫做多项式乘法的立方公式。

2010年部分省市中考数学试题分类汇编 压轴题(一)及答案

2010年部分省市中考数学试题分类汇编 压轴题(一)及答案

2010年部分省市中考数学试题分类汇编 压轴题(一)1.(2010广东广州,24,14分)如图,⊙O 的半径为1,点P 是⊙O 上一点,弦AB 垂直平分线段OP ,点D 是 A P B 上任一点(与端点A 、B 不重合),DE ⊥AB 于点E ,以点D 为圆心、DE 长为半径作⊙D ,分别过点A 、B 作⊙D 的切线,两条切线相交于点C .(1)求弦AB 的长;(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由; (3)记△ABC 的面积为S ,若2S D E=ABC 的周长.【分析】(1)连接OA ,OP 与AB 的交点为F ,则△OAF 为直角三角形,且OA =1,OF =12,借助勾股定理可求得AF 的长;(2)要判断∠ACB 是否为定值,只需判定∠CAB +∠ABC 的值是否是定值,由于⊙D 是△ABC 的内切圆,所以AD 和BD 分别为∠CAB 和∠ABC 的角平分线,因此只要∠DAE +∠DBA 是定值,那么CAB +∠ABC 就是定值,而∠DAE +∠DBA 等于弧AB 所对的圆周角,这个值等于∠AOB 值的一半;(3)由题可知A B D A C D B C D S S S S ∆∆∆=++=12DE (AB +AC +BC ),又因为2S D E=所以21()2D E A B A C B C D E++=,所以AB +AC +BC=E ,由于DH =DG =DE ,所F C PD OBAEH GCP DOBAE以在Rt△CDH中,CH,同理可得CG,又由于AG=AE,BE=BH,所以AB+AC+BC=CG+CH+AG+AB+BH=DE+,可得E=+,解得:DE=13,代入AB+AC+BC=E3.【答案】解:(1)连接OA,取OP与AB的交点为F,则有OA=1.∵弦AB垂直平分线段OP,∴OF=12OP=12,AF=BF.在Rt△OAF中,∵AF2,∴AB=2AF(2)∠ACB是定值.理由:由(1)易知,∠AOB=120°,因为点D为△ABC的内心,所以,连结AD、BD,则∠CAB=2∠DAE,∠CBA=2∠DBA,因为∠DAE+∠DBA=12∠AOB=60°,所以∠CAB+∠CBA=120°,所以∠ACB=60°;(3)记△ABC的周长为l,取AC,BC与⊙D的切点分别为G,H,连接DG,DC,DH,则有DG=DH=DE,DG⊥AC,DH⊥BC.∴A B D A C D B C DS S S S∆∆∆=++=12AB•DE+12BC•DH+12AC•DG=12(AB+BC+AC) •DE=12l•DE.∵2SD E=212l D ED E=l=∵CG,CH是⊙D的切线,∴∠GCD=12∠ACB=30°,∴在Rt△CGD中,CG=ta n30D G3,∴CH=CG.又由切线长定理可知AG=AE,BH=BE,∴l=AB+BC+AC==,解得DE=13,FCP DOBAEHG∴△ABC3.【涉及知识点】垂径定理 勾股定理 内切圆 切线长定理 三角形面积【点评】本题巧妙将垂径定理、勾股定理、内切圆、切线长定理、三角形面积等知识综合在一起,需要考生从前往后按顺序解题,前面问题为后面问题的解决提供思路,是一道难度较大的综合题2.(2010广东广州,25,14分)如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y=-12x +b 交折线OAB 于点E .(1)记△ODE 的面积为S ,求S 与b 的函数关系式; (2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形OA 1B 1C 1,试探究OA 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.【分析】(1)要表示出△ODE 的面积,要分两种情况讨论,①如果点E 在OA 边上,只需求出这个三角形的底边OE 长(E 点横坐标)和高(D 点纵坐标),代入三角形面积公式即可;②如果点E 在AB 边上,这时△ODE 的面积可用长方形OABC 的面积减去△OCD 、△OAE 、△BDE 的面积;(2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA 边上的线段长度是否变化.【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C (0,1)时,则b =1①若直线与折线OAB 的交点在OA 上时,即1<b ≤32,如图25-a ,此时E (2b ,0)∴S =12OE ·CO =12×2b ×1=b②若直线与折线OAB 的交点在BA 上时,即32<b <52,如图2此时E (3,32b -),D (2b -2,1)∴S =S 矩-(S △OCD +S △OAE +S △DBE )= 3-[12(2b -1)×1+12×(5-2b )·(52b -)+12×3(32b -)]=252b b -∴2312535222b b S b b b ⎧<≤⎪⎪=⎨⎪-<<⎪⎩(2)如图3,设O 1A 1与CB 相交于点M ,OA 与C 1B 1相交于点N ,则矩形OA 1B 1C 1与矩形OABC 的重叠部分的面积即为四边形DNEM 的面积。

2010年中考数学真题分类汇编三角形全等解答题

2010年中考数学真题分类汇编三角形全等解答题

2010年中考数学真题分类汇编:三角形全等解答题三、解答题1.(2010江苏苏州)(本题满分6分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.【答案】2.(2010江苏南通)(本小题满分8分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件.......,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的三个条件(请从其中选择一个):①AB=ED;②BC=EF;③∠ACB=∠DFE.AEFC(第25题)【答案】解:由上面两条件不能证明AB//ED .有两种添加方法. 第一种:FB =CE ,AC =DF 添加 ①AB =ED证明:因为FB =CE ,所以BC =EF ,又AC =EF ,AB =ED ,所以 ABC ≅ DEF 所以∠ABC =∠DEF 所以AB//ED第二种:FB =CE ,AC =DF 添加 ③∠ACB =∠DFE证明:因为FB =CE ,所以BC =EF ,又∠ACB =∠DFE AC =EF ,所以 ABC ≅ DEF 所以∠ABC =∠DEF 所以AB//ED3.(2010浙江金华)如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段,不再标注或使用其他字母),并给出证明. (1)你添加的条件是: ▲ ; (2)证明: 【答案】解:(1)DC BD =(或点D 是线段BC的中点),ED FD =,BE CF =中 任选一个即可﹒(2)以DC BD =为例进行证明: ∵CF ∥BE , ∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC ﹦∠EDB ,∴△BDE ≌△CDF .4.(2010福建福州)(每小题7分,共14分)(1)如图,点B 、E 、C 、F 在一条直线上,BC =EF ,AB ∥DE ,∠A =∠D . 求证:△ABC ≌△DEF .(第17(1)题)【答案】证明:∵ AB ∥DE . ∴ ∠B =∠DEF . 在△ABC 和△DEF 中,B DEF A D BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,,.∴ △ABC ≌△DEF .5.(2010四川宜宾,13(3),5分)如图,分别过点C 、B 作△ABC 的BC 边上的中线AD 及其延长线的垂线,垂足分A CBDF E(第18题图)别为E 、F .求证:BF =CE .【答案】∵CE ⊥AF ,FB ⊥AF ,∴∠DEC =∠DFB =90°又∵AD 为BC 边上的中线,∴BD =CD , 且∠EDC =∠FDB (对顶角相等) ∴所以△BFD ≌△CDE (AAS ),∴BF =CE .6.(2010福建宁德)如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AE D ≌△AFD ,需添加一个条件是:_______________,并给予证明.【答案】解法一:添加条件:AE =AF ,证明:在△AED 与△AFD 中,∵AE =AF ,∠EAD =∠FAD ,AD =AD , ∴△AED ≌△AFD (SAS ). 解法二:添加条件:∠EDA =∠FDA ,证明:在△AED 与△AFD 中,∵∠EAD =∠FAD ,AD =AD ,∠EDA =∠FDA∴△AED ≌△AFD (ASA ). 7.(2010湖北武汉)如图,B ,F ,C ,E 在同一条直线上,点A ,D 在直线BE 的两侧,AB ∥DE ,AC ∥DF ,BF=CE .求证:AC=DFB D CAEF【答案】证明:∵AB ∥DE , ∴∠ABC=∠DEF∵AC ∥DF , ∴∠ABC=∠DEF ∵BF=CE ,∴BC=EF ∴△ABC ≌△DEF ∴AC=DF8.(2010江苏淮安)已知:如图,点C 是线段AB 的中点,CE=CD ,∠ACD=∠BCE, 求证:AE=BD .题20图【答案】证明:∵点C 是线段AB 的中点, ∴AC=BC ,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE, 即∠ACE=∠BCD,在△ACE 和△BCD 中,AC BC ACE BCD CE CD ⎧=⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ), ∴AE=BD.9.(2010北京)已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .【答案】证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD ∴∠A =∠D =90° 在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DB AC D A FDEA ∴△EAC ≌△FDB ∴∠ACE =∠DBF .10.(2010云南楚雄)如图,点A 、E 、B 、D 在同一条直线上,AE =DB ,AC =DF ,AC ∥DF . 请探索BC 与EF 有怎样的位置关系?并说明理由.【答案】解:BC ∥EF .理由如下:∵AE =DB ,∴AE +BE =DB +BE ,∴AD =DE .∵AC ∥DF , ∴∠A =∠D ,∵AC =DF , ∴△ACB ≌△DFE ,∴∠FED =∠CBA ,∴BC ∥EF . 11.(2010云南昆明)如图,点B 、D 、C 、F 在一条直线上,且BC = FD ,AB = EF.(1)请你只添加一个条件(不再加辅助线),使△ABC ≌△EFD ,你添加的条件是 ;(2)添加了条件后,证明△ABC ≌△EFD.【答案】(1)∠B = ∠F 或 AB ∥EF 或 AC = ED .(2)证明:当∠B = ∠F 时 在△ABC 和△EFD 中A B E FB F BC FD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△EFD (SAS) 12.(2010四川 泸州)如图4,已知AC ∥DF ,且BE =CF . (1)请你只添加一个..条件,使△ABC ≌△DEF ,你添加的条件是 ; (2)添加条件后,证明△ABC ≌△DEF.【答案】(1)添加的条件是AC =DF (或AB ∥DE 、∠B =∠DEF 、∠A =∠D )(有一个即可)(2)证明:∵AC ∥DF ,∴∠ACB =∠F ,∵BE=CF ,∴BC =EF ,在△ABC 和△DEF 中,ACB F AC DF BC EF===⎧⎪⎨⎪⎩∠∠ ,∴△ABC ≌△DEF. ABCDEFFABCDEDO BA 13.(2010 甘肃)(8分)如图,BAC ABD ∠=∠.(1)要使OC OD =,可以添加的条件为: 或 ;(写出2个符合题意的条件即可)(2)请选择(1)中你所添加的一个条件,证明OC OD =. 【答案】解:(1)答案不唯一. 如C D ∠=∠,或ABC BAD ∠=∠,或OAD OBC ∠=∠,或AC BD =. ……4分 说明:2空全填对者,给4分;只填1空且对者,给2分. (2)答案不唯一. 如选AC BD =证明OC=OD. 证明: ∵ BAC ABD ∠=∠,∴ OA=OB. ……………………6分 又 AC BD =,∴ AC-OA=BD-OB ,或AO+OC=BO+OD. ∴ OC OD =. ……………………8分14.(2010 重庆江津)已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF . 求证:⑴ △ABC ≌△DEF ;⑵ BE =CF .【答案】证明:(1)∵AC ∥DF∴∠ACB =∠F ……………………………………………………………………2分 在△ABC 与△DEF 中ACB F A D AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF ……………………………………………………………………6分 (2) ∵△ABC ≌△DEF ∴BC=EF∴BC –EC=EF –EC即BE=CF ……………………………………………………………………………10分15.(2010 福建泉州南安)如图,已知点E C ,在线段BF 上,CF BE =,请在下列四个等式中,①AB =DE ,②∠ACB =∠F ,③∠A =∠D ,④AC =DF .选出两个..作为条件,推出ABC DEF △≌△.并予以证明.(写出一种即可)已知: , .DOCBA BC E B FDA求证:ABC DEF △≌△. 证明:【答案】解:已知:①④(或②③、或②④)……………3分 证明:若选①④ ∵CF BE =∴EF BC EC CF EC BE =+=+即,.…………………………………………5分 在△ABC 和△DEF 中AB =DE ,BC =EF ,AC =DF .……………………………8分∴ABC DEF △≌△.……………………………………9分 16.(2010青海西宁)八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:(Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线. (Ⅱ)∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线. (1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使PM⊥OA,PN ⊥OB.此方案是否可行?请说明理由. 【答案】解:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件. ……………………………2分(2)方案(Ⅱ)可行. ……………………………3分证明:在△OPM 和△OPN 中⎪⎩⎪⎨⎧===OP OP PN PM OP OM∴△OPM ≌△OPN(SSS)∴∠AOP=∠BOP(全等三角形对应角相等) ……………………………5分 (3)当∠AOB 是直角时,此方案可行. ……………………………6分∵四边形内角和为360°,又若PM ⊥OA,PN ⊥OB, ∠OMP=∠ONP=90°, ∠MPN=90°, ∴∠AOB=90°∵若PM ⊥OA,PN ⊥OB, 且PM=PNC E B CDA∴OP 为∠AOB 的平分线.(到角两边距离相等的点在这个角的角平分线上) 当∠AOB 不为直角时,此方案不可行. …………8分 17.(2010广西梧州)如图,AB 是∠DAC 的平分线,且AD =AC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B Caα2010年部分省市中考数学试题分类汇编解直角三角形1.(2010年辽宁省丹东市)如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是( )A .(53332+)m B .(3532+)m C .533m D .4m 【关键词】解直角三角形 【答案】A2.(2010江苏宿迁)小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了( )A .5200mB .500mC .3500mD .1000m 【关键词】坡角 【答案】A3.(2010年日照市)如图,在等腰Rt △ABC 中,∠C =90o ,AC =6,D 是AC 上一点,若tan ∠DBA =51,则AD 的长为 (A ) 2 (B )3 (C )2 (D )14.(2010年湖北黄冈市)在△ABC 中,∠C =90°,sinA =45,则tanB = ( ) A .43 B .34 C .35 D .455.(2010年浙江省东阳县)如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,那么AB 等于 ( ) A 、a ·sin α B 、a ·tan α C 、a ·cos α D 、αtan a【关键词】解直角三角形 【答案】B6.(2010江苏宿迁)17.如图,在Rt △ABC 中,∠C =90°, AM 是BC第6题图BA ED C30°ABα5米第14题图边上的中线,53sin =∠CAM ,则B ∠tan 的值为 . 【关键词】解直角三角形 【答案】32 7.(2010福建泉州市惠安县) 如图,先锋村准备在坡角为030=α山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为__________米.【关键词】解直角三角形 【答案】3310 8、(2010年宁波市)如图,某河道要建造一座公路桥,要求桥面离地面高度AC 为3米,引桥的坡角ABC ∠为︒15,则引桥的水平距离BC 的长是_________米(精确到0.1米)。

【关键词】坡角【答案】11.29. (2010年河南)如图,Rt △ABC 中,∠C=090, ∠ABC=030,AB=6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA=DE ,则AD 的取值范围是 .【答案】2≦ AD < 310. (2010重庆市潼南县) 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:A B C414.12≈ 732.13≈)答案:82.011. (2010年青岛)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)【答案】解:设CD = x .在R t △ACD 中,tan37ADCD︒=, 则34ADx =, ∴34AD x =.在Rt △BCD 中,tan48° = BDCD ,则1110BD x =, ∴1110BD x =.∵AD +BD = AB , ∴31180410x x +=. 解得:x ≈43.12.(2010年山东省济宁市)如图,是一张宽 的矩形台球桌 ,一球从点 (点 在长边 上)出发沿虚线 射向边 ,然后反弹到边 上的 点. 如果 , .那么 点与 点的距离为 .【关键词】直角三角形的应用 【答案】(2010年福建省德化县). (本题满分10分) 小明在某风景区的观景台O 处观测到北偏东50的P 处有一艘货船,该船正向南匀速航行,30分钟后再观察时,该船已航行到O 的南偏东40,且与O 相距2km 的Q 处.如图所示. 求: (1)∠OPQ 和∠OQP 的度数; (2)货船的航行速度是多少km/h?(结果精确到0.1km/h, 已知sin50=cos40=0.7660,AB 37° 48°D C 第19题图cos 50=sin 40=0.6428, tan 50=1.1918, tan40=0.8391, 供选用.) 【关键词】解直角三角形的公式(三角函数的运用) 【答案】解:建立如图所示的直角坐标系,(1)设P Q ⊥x 轴,垂足为A,则∠POA= 40,∠QOA=50.……2分 ∴∠OPQ= 50,∠OQP=40.…………4分(2)设货船的航行速度是x km/h,由(1)知,∠POQ=90.……5分 ∴cos ∠OQP=PQ OQ . ∴PQ=OQPOQ∠cos . …………7分 又,OQ=2km, ∴PQ=.61.27660.0240cos 2≈=…………8分 ∵PQ 是货船30分钟的行程,∴货船的航行速度约为5.2 km/h. …………10分13.(2010年山东省青岛市)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,) 【关键词】【答案】解:设CD = x .在Rt △ACD 中, tan37ADCD ︒=, 则34AD x=, ∴34AD x =.在Rt△BCD 中,tan48° = BDCD, 则1110BD x=, ∴1110BD x =.∵AD +BD = AB , ∴31180410x x +=. 解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米.第19题图B37° 48° DC A14.(2010重庆市) 已知:如图,在Rt △ABC 中,∠C =90°,AC = 3 .点D 为BC 边上一点,且BD =2AD ,∠AD C =60°求△ABC 的周长(结果保留根号)解:∵∠C =90°,∠AD C =60° ∴CD=ACtan30°=1, ∴AD==+22CD AC 2)3(122=+. ∴BD =2AD =4. ∴AB==+22BC AC 72,∴△ABC 的周长= AB +AC+ BC=5+72+ 3 .15.(2010江苏泰州)庞亮和李强相约周六去登山,庞亮从北坡山脚C 处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度31∶=i ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A ?(将山路AB 、AC 看成线段,结果保留根号)【答案】过点A 作AD ⊥BC 于点D ,在Rt △ADC 中,由3:1=i 得tan C =3331=∴∠C =30°∴AD =21AC =21×240=120(米) 在Rt △ABD 中,∠B =45°∴AB =2AD =1202(米) 1202÷(240÷24)=1202÷10=122(米/分钟)答:李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A . 【关键词】解直角三角形16.(2010江苏泰州,27,12分)如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点.⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)【答案】⑴ ∵抛物线经过点D (29,3-) ∴29)3(212=+-⨯-c ∴c=6.⑵过点D 、B 点分别作AC 的垂线,垂足分别为E 、F ,设AC 与BD 交点为M , ∵AC 将四边形ABCD 的面积二等分,即:S △ABC =S △ADC ∴DE =BF 又∵∠DME =∠BMF , ∠DEM =∠BFE ∴△DEM ≌△BFM∴DM =BM 即AC 平分BD ∵c =6. ∵抛物线为6212+-=x y ∴A (0,32-)、B (0,32)∵M 是BD 的中点 ∴M (49,23) 设AC 的解析式为y =kx +b ,经过A 、M 点∴⎪⎩⎪⎨⎧=+=+-4923032b k b k 解得⎪⎪⎩⎪⎪⎨⎧==591033b k ∴直线AC 的解析式为591033+=x y . ⑶存在.设抛物线顶点为N (0,6),在Rt △AQN 中,易得AN=于是以A 点为圆心,AB=为半径作圆与抛物线在x 上方一定有交点Q ,连接AQ ,再作∠QAB 平分线AP 交抛物线于P ,连接BP 、PQ ,此时由“边角边”易得△AQP ≌△ABP .【关键词】二次函数、一次函数、解直角三角形及其知识的综合运用17.(2010年广东省广州市)目前世界上最高的电视塔是广州新电视塔.如图8所示,新电视塔高AB 为610米,远处有一栋大楼,某人在楼底C 处测得塔顶B 的仰角为45°,在楼顶D 处测得塔顶B 的仰角为39°. (1)求大楼与电视塔之间的距离AC ; (2)求大楼的高度CD (精确到1米)45°39°D CAE B【关键词】锐角三角函数、直角三角形的边角关系 【答案】(1)由题意,AC =AB =610(米);(2)DE =AC =610(米),在Rt △BDE 中,tan ∠BDE =BEDE,故BE =DE tan39°. 因为CD =AE ,所以CD =AB -DE ·tan39°=610-610×tan39°≈116(米)答:大楼的高度CD 约为116米.18. (2010年福建晋江)已知:如图,有一块含︒30的直角三角板OAB 的直角边长BO 的长恰与另一块等腰直角三角板ODC 的斜边OC 的长相等,把该套三角板放置在平面直角坐标系中,且3=AB . (1)若双曲线的一个分支恰好经过点A ,求双曲线的解析式; (2)若把含︒30的直角三角板绕点O 按顺时针方向旋转后,斜边OA 恰好与x 轴重叠,点A 落在点A ',试求图中阴影部分的面积(解:(1) 在OBA Rt ∆中,︒=∠30AOB ,3=AB ,ABOBAOB =∠cot ,……………………………………………………………(1分) ∴3330cot =︒⋅=AB OB ,………………………………(2分) ∴点()33,3A设双曲线的解析式为()0≠=k xky∴333k=,39=k ,则双曲线的解析式为x y 39=…………………………………………………(4分)(2) 在OBA Rt ∆中,︒=∠30AOB ,3=AB ,OA AB AOB =∠sin ,OA330sin =︒, ∴6=OA .………………………………………(5分)由题意得:︒=∠60AOC ,ππ63606602'=⋅⋅=AOA S 扇形………………………(7分)在OCD Rt ∆中,︒=∠45DOC ,33==OB OC ,∴263223345cos =⋅=︒⋅=OC OD .………………………………………(8分) ∴427263212122=⎪⎪⎭⎫ ⎝⎛==∆OD S ODC. ∴'27S 64ODC AOA S S π∆-=-阴扇形=…………………………………… 19. (2010年浙江省绍兴市)如图,小敏、小亮从A ,B 两地观测空中C 处一个气球,分别测得仰角为30°和60°,A ,B 两地相距100 m .当气球 沿与BA 平行地飘移10秒后到达C ′处时,在A 处测得气 球的仰角为45°.(1)求气球的高度(结果精确到0.1m);(2)求气球飘移的平均速度(结果保留3个有效数字). 【答案】解:(1) 作CD ⊥AB ,C /E ⊥AB ,垂足分别为D ,E.∵ CD =BD ·tan 60°, CD =(100+BD )·tan 30°,∴(100+BD )·tan 30°=BD ·tan 60°, ∴ BD =50, CD =503≈86.6 m , ∴ 气球的高度约为86.6 m.(2) ∵ BD =50, AB =100, ∴ AD =150 ,第20题图A OBC DA ’ xy又∵ AE =C /E =503, ∴ DE =150-503≈63.40, ∴ 气球飘移的平均速度约为6.34米/秒.20.(2010年宁德市)我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁 1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A 处于同一水平线上,视线恰好落在装饰画中心位置E 处,且与AD 垂直.已知装饰画的高度AD 为0.66米,求:⑴ 装饰画与墙壁的夹角∠CAD 的度数(精确到1°); ⑵ 装饰画顶部到墙壁的距离DC (精确到0.01米).【答案】解:⑴ ∵AD =0.66,∴AE =21CD =0.33. 在Rt △ABE 中, ∵sin ∠ABE =AB AE =6.133.0, ∴∠ABE ≈12°.∵∠CAD +∠DAB =90°,∠ABE +∠DAB =90°, ∴∠CAD =∠ABE =12°.∴镜框与墙壁的夹角∠CAD 的度数约为12°. ⑵ 解法一:在Rt △∠ABE 中, ∵sin ∠CAD =ADCD, ∴CD =AD ·sin ∠CAD =0.66×sin12°≈0.14. 解法二: ∵∠CAD =∠ABE ,AC DEB∠ACD =∠AEB =90°, ∴△ACD ∽△BEA. ∴AB ADAE CD =. ∴6.166.033.0=CD . ∴CD ≈0.14.∴镜框顶部到墙壁的距离CD 约是0.14米.21.(2010年四川省眉山市)如图,在一次数学课外实践活动中,要求测教学楼的高度AB .小刚在D 处用高1.5m 的测角仪CD ,测得教学楼顶端A 的仰角为30°,然后向教学楼前进40m 到达E ,又测得教学楼顶端A 的仰角为60°.求这幢教学楼的高度AB 【关键词】解直角三角形 【答案】解:在Rt △AFG 中,tan AGAFG FG∠=∴tan AG FG AFG ==∠ 在Rt △ACG 中,tan AGACG CG ∠=∴tan AGCG ACG==∠又 40CG FG -=即40=∴AG =∴ 1.5AB =(米)答:这幢教学楼的高度AB为 1.5)米.22.(2010年浙江省东阳市)如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E 点,AE=2,ED=4.(1)求证: ABE ∆~ABD ∆;(2) 求tan ADB ∠的值; (3)延长BC 至F ,连接FD ,使BDF ∆的面积等于 求EDF ∠的度数.【关键词】三角形相似、解直角三角形【答案】(1)∵点A 是弧BC 的中点 ∴∠ABC=∠ADB又∵∠BAE=∠BAE ∴△ABE∽△ABD......................3分 (2)∵△ABE∽△ABD ∴AB2=2×6=12 ∴AB=23在Rt△ADB中,tan∠ADB=33632=......................3分 (3)连接CD,可得BF=8,BE=4,则EF=4,△DEF是正三角形, ∠EDF=60°......................................2分23 (2010年安徽中考) 若河岸的两边平行,河宽为900米,一只船由河岸的A 处沿直线方向开往对岸的B 处,AB 与河岸的夹角是600,船的速度为5米/秒,求船从A 到B处约需时间几分。

相关文档
最新文档