缝隙腐蚀试验1
缝隙腐蚀
2. 环境因素的影响
溶液中溶解的氧浓度:氧浓度增加,缝外阴极还原反应更易
进行缝隙腐蚀加剧 0.5×106
溶液中氯离子浓度:氯离子浓度增加,缝隙腐蚀加剧 0.1% 温度: 1 )温度升高使传输过程反应动力学加速,从而增大 阳极反应速度;2)溶解氧浓度随温度升高而下降,缝隙腐蚀速 度会下降 pH:pH降低,缝隙腐蚀量增加 腐蚀介质的流速:增加缝隙溶液的流速,使输送到缝隙外部 的金属表面上的氧量增加,缝隙腐蚀量也增加。但流速快则沉 积物不易附着,可能减少缝隙腐蚀。
(1)阴极保护:外加电流或牺牲阳极法将金属材料的电
位降于临界缝隙腐蚀电位以下。 (2)阳极保护:在金属表面上通入足够的阳极电流使电 位达到并保持在钝化区内。
接头设计
尽可能不采用铆接结构而采用焊接结构
容器壁 支管
焊接 部位
管板 热电 偶套管
Ø25.4
3.2 mm 适当加大热电偶套管和支管 管壁的间隙,避免液体停滞
2.8 mm
加大管子和管板的间隙
增大间隙尺寸,消除闭塞条件
缝隙 胀接
缝隙
缝隙
绝热环型焊接
常规型焊接
背部深孔密封焊
热交换器管子和管板的联接
为了避免容器底部与多孔性基础之间产生缝隙腐蚀,罐 体不要直接座在多孔性基础上,可在罐体上加裙式基座 或其他支座。
垫圈的选择
垫圈不宜采用石棉、纸质等吸湿性材料:如用聚四氟乙烯 则较为理想
缝隙腐蚀
缝隙腐蚀
缝隙腐蚀的定义
缝隙的种类
缝隙腐蚀的特征
缝隙腐蚀的形成条件&机理
点蚀和缝隙腐蚀的比较 缝隙腐蚀的影响因素 缝隙腐蚀的防止措施
缝隙腐蚀的定义
在腐蚀介质中的金属构件,由于金属与金属或金属与 非金属之间存在特别小的缝隙,造成缝内介质处于滞 流状态而发生的一种局部腐蚀形态称为缝隙腐蚀。
腐蚀试验标准
GB/T 13671-1992 GB/T 15748-1995 GB/T 10119-1988 GB/T 10123-2001 GB/T 10126-2002 GB/T 10127-2002 GB/T 15970.2-2000 GB/T 15970.4-2000 GB/T 15970.5-1998 GB/T 15970.6-1998 GB/T 15970.7-2000 GB/T 16482-1996 GB/T 16545-1996 GB/T 17897-1999 GB/T 17898-1999 GB/T 17899-1999 GB/T 18590-2001 GB/T 19291-2003 GB/T 19292.1-2003 GB/T 19292.2-2003 GB/T 19292.3-2003 GB/T 19292.4-2003 GB/T 2526-1996 GB 5776-1986GB/T 19747-2005 GB/T 19746-2005 GB/T 15970.8-2005 GB/T 5776-2005 GB/T 13448-2006 GB/T 20121-2006 GB/T 20122-2006 GB/T 20120.1-2006 GB/T 8650-2006 GB/T 20120.2-2006 GB/T 4157-2006JB/T 7901-1999 GB/T 19745-2005 GB/T 10126-1988 GB/T 10127-1988 GB/T 8152.11-2006 GB/T 8152.12-2006 GB/T 8152.4-2006 GB/T 8152.7-2006 GB/T 8152.9-2006 YB/T 5344-2006 YB/T 5362-2006 GB/T 15970.6-2007 GB/T 15970.9-2007 GB/T 20852-2007 GB/T 20853-2007 GB/T 20854-2007 SL 105-2007ICS国际标准分类目录之77.060金属的腐蚀址: 电话:400-7255 888 QQ:569872709 MSN/Email:csres@不锈钢缝隙腐蚀电化学试验方法船用金属材料电偶腐蚀试验方法黄铜耐脱锌腐蚀性能的测定金属和合金的腐蚀 基本术语和定义铁-铬-镍合金在高温水中应力腐蚀试验方法不锈钢三氯化铁缝隙腐蚀试验方法金属和合金的腐蚀 应力腐蚀试验 第2部分:弯梁试样的制备和应用金属和合金的腐蚀 应力腐蚀试验 第4部分:单轴加载拉伸试样的制备和应用金属和合金的腐蚀 应力腐蚀试验 第5部分:C型环试样的制备和应用金属和合金的腐蚀 应力腐蚀试验 第6部分:预裂纹试样的制备和应用金属和合金的腐蚀 应力腐蚀试验 第7部分:慢应变速率试验荧光级氧化钇铕金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除不锈钢三氯化铁点腐蚀试验方法不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法不锈钢点蚀电位测量方法金属和合金的腐蚀 点蚀评定方法金属和合金的腐蚀 腐蚀试验一般原则金属和合金的腐蚀 大气腐蚀性 分类金属和合金的腐蚀 大气腐蚀性 腐蚀等级的指导值金属和合金的腐蚀 大气腐蚀性 污染物的测量金属和合金的腐蚀 大气腐蚀性 用于评估腐蚀性的标准试样的腐蚀速率的测定氧化钆金属材料在表面海水中常规暴露腐蚀试验方法金属和合金的腐蚀 双金属室外暴露腐蚀试验金属和合金的腐蚀 盐溶液周浸试验金属和合金的腐蚀 应力腐蚀试验 第8部分 焊接试样的制备和应用金属和合金的腐蚀 金属和合金在表层海水中暴露和评定的导则彩色涂层钢板及钢带试验方法金属和合金的腐蚀 人造气氛的腐蚀试验 间歇盐雾下的室外加速试验(疮痂试验)金属和合金的腐蚀 滴落蒸发试验的应力腐蚀开裂评价金属和合金的腐蚀 腐蚀疲劳试验 第1部分:循环失效试验管线钢和压力容器钢抗氢致开裂评定方法金属和合金的腐蚀 腐蚀疲劳试验 第2部分:预裂纹试样裂纹扩展试验金属在硫化氢环境中抗特殊形式环境开裂实验室试验金属材料实验室均匀腐蚀全浸试验方法人造低浓度污染气氛中的腐蚀试验铁-铬-镍合金在高温水中应力腐蚀试验方法不锈钢三氯化铁缝隙腐蚀试验方法铅精矿化学分析方法 汞量的测定 原子荧光光谱法铅精矿化学分析方法 镉量的测定 火焰原子吸收光谱法铅精矿化学分析方法 锌量的测定 EDTA滴定法铅精矿化学分析方法 铜量的测定 火焰原子吸收光谱法铅精矿化学分析方法 氧化镁的测定 火焰原子吸收光谱法铁-铬-镍合金在高温水中应力腐蚀试验方法不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法金属和合金的腐蚀 应力腐蚀试验 第6部分:恒载荷或恒位移下的预裂纹试样的制备和应用金属和合金的腐蚀 应力腐蚀试验 第9部分:渐增式载荷或渐增式位移下的预裂纹试样的制金属和合金的腐蚀 大气腐蚀防护方法的选择导则金属和合金的腐蚀 人造大气中的腐蚀 暴露于间歇喷洒盐溶液和潮湿循环受控条件下的加金属和合金的腐蚀 循环暴露在盐雾、“干”和“湿”条件下的加速试验水工金属结构防腐蚀规范(附条文说明)1993-7-1 1996-8-1 1989-1-2 2002-5-1 2002-1-2 2002-12-1 2001-9-1 2001-9-1 1999-7-1 1999-7-1 2000-1-2 1997-1-1 1997-4-1 2000-8-1 2000-8-1 2000-8-1 2002-5-1 2004-4-1 2004-4-1 2004-4-1 2004-4-1 2004-4-1 1997-1-1 1986-1-1 2005-10-1 2005-10-1 2005-10-1 2005-10-1 2006-8-1 2006-9-1 2006-9-1 2006-9-1 2006-9-1 2006-9-1 2006-9-12000-1-1 2005-10-1 1989-1-1 1989-1-1 2007-2-1 2007-2-1 2007-2-1 2007-2-1 2007-2-1 2006-10-11 2006-10-11 2007-12-1 2007-12-1 2007-10-1 2007-10-1 2007-10-1。
腐蚀试验方法ppt课件
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
(1)模拟试验 一种不加速的长期试验,在实验室的小型
模拟装置中,尽可能地精确地模拟自然界或工 业生产中所遇到的介质及条件,虽然介质和环 境条件的严格重现是困难的,但主要影响因素 要充分考虑。
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
常用的绝缘材料有环氧树脂、清漆、聚 四氟乙烯和石蜡、松香等。
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
试样的安放应保证试样与试样之间、试样与容器 之间、试样与支架之间电绝缘; (2)防止缝隙腐蚀
试样与试样之间、试样与容器之间、试样与支架 之间不产生缝隙;
试样表面与介质充分接触。同时,要求试样装取 方便、牢固可靠;支架本身耐蚀等。
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
纯试剂精确地配制试验溶液,以严格控制试液的成 分。
在试验过程中,还必须防止由于溶液蒸发及其它 原因引起介质浓度、成分和体积的变化,以免影响 介质的腐蚀性能和结果的可靠性。
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
2 试验温度 腐蚀试验温度应尽量模拟实际腐蚀介质的
温度。 实验室控温方法:水浴、油浴或空气恒温箱中 进行。
控制的温度应是整个试样的表面温度,但 为简便起见,往往以试液温度为控制对象。
第5章 局部腐蚀试验方法
Multielectrode Array Sensor (MAS) in ProcessStream of Chemical PlantBefore cleaningMaximum penetration rate:~149 mil/yr (3.73 mm/yr) Coupon tests showed 100to 200 mil/yr (2.5 to 5mm/yr) pitting rateAfter cleaning Dorsey, et al, CORROSION/2004, paper # 04077, 2004•蚀孔通常往重力方向增长•一般蚀孔需要几个月或几年才穿透金属。
通常在出现可以看到的蚀孔之前,需要一段很长的孕育期。
•这段时间由数月到数年,它取决于金属和腐蚀介质的种类。
•然而一旦开始,蚀孔就以不断增长的速度穿透金属。
早期点蚀 破坏性点蚀•点蚀浸泡试验溶液中的氧化剂通常具有较高的氧化还原电位,常用的氧化剂有Fe3+、Cu2+、Hg2+、MnO-、H2O2等。
4•选用不同的氧化剂时将呈现不同的氧化还原电位,因此应谨慎选择氧化剂的种类和数量。
•化学浸泡的点蚀试验溶液种类较多,采用的氧化剂也不同。
1.3 现场试验方法试片实际工况介质测定材料表面发生点蚀的几率测定点蚀发展速度•方法:在试验过程的不同时刻取出一批试片,以其最大点蚀深度对时间作图,并通过数学分析找出它们之间的相关性(关系式),据此可比较点蚀发展速度。
•为使结果可靠,试片的面积应尽可能大一些,每批次取出的试片也要尽可能多一些。
多缝隙腐蚀试验• (a )铜—铁 (b )铜—铝•图 两种不同电化学性质的金属材料接触后诱发的电偶腐蚀 当两种金属或合金相接触,在溶液中可以发现在该液中电位较负的金属腐蚀速度加大,而电位较正的金属受到保护,这种现象就是电偶腐蚀。
电偶腐蚀(接触腐蚀、异金属腐蚀)用极化曲线预测电偶腐蚀行为的示意图ISO大气电偶腐蚀标准方法的试样1-阳极板 2- 阴极板 3- 微断面 4-拉伸试样 5-螺栓 6-垫圈 7-绝缘垫圈 8- 绝缘套管 9-螺帽阴、阳极板状金属用螺栓联结暴露后可用失重和抗拉强度降低评价电偶作用ASTM大气腐蚀试验标准试样1-金属2-胶木套管3-胶木垫圈4-金属5-胶木垫圈阴、阳极板状金属用螺栓联结暴露后可用失重和抗拉强度降低评价电偶作用。
不锈钢缝隙腐蚀电化学试验方法
不锈钢缝隙腐蚀电化学试验方法引言:不锈钢是一种具有优异耐腐蚀性能的金属材料,广泛应用于工业领域。
然而,在特定条件下,不锈钢的缝隙部位仍然可能发生腐蚀,导致设备或结构的损坏。
因此,研究不锈钢缝隙腐蚀的电化学试验方法,对于预防和控制缝隙腐蚀具有重要意义。
一、试验目的本试验的目的是通过电化学方法,评估不锈钢缝隙腐蚀的程度和特性,为防止和控制缝隙腐蚀提供科学依据。
二、实验材料和设备1. 不锈钢试样:选择常见的不锈钢材料作为试样,如AISI 304和AISI 316等。
2. 电解槽:用于容纳试样和电解液的容器,其尺寸应根据试样尺寸和实验要求进行选择。
3. 参比电极:选择适宜的参比电极,如银/银氯化银电极。
4. 工作电极:将试样作为工作电极使用。
5. 电位扫描仪:用于控制和测量电位的仪器。
三、实验步骤1. 准备试样:将不锈钢试样切割成适当尺寸,并去除表面的污染物。
2. 清洗试样:使用去离子水彻底清洗试样,以确保试样表面的纯净度。
3. 安装试样:将试样安装在电解槽中,并保证试样与电解液充分接触。
4. 准备电解液:根据实验要求,选择适当的电解液,如盐酸溶液或硫酸溶液,并根据实验要求调整其浓度和pH值。
5. 连接电极:将参比电极和工作电极连接到电位扫描仪,并确保电极与电解槽中的试样相连。
6. 电位扫描:使用电位扫描仪,以一定速率扫描试样的电位,记录电流随电位变化的曲线。
7. 数据分析:根据电流-电位曲线,分析不锈钢缝隙腐蚀的特性和程度。
四、实验注意事项1. 实验操作应规范,注意安全,避免发生意外。
2. 实验前应确保试样的表面光洁,并避免手触摸试样表面。
3. 电解槽和电解液应清洁,以避免杂质对实验结果的影响。
4. 实验过程中应控制电位扫描速率和范围,以确保实验结果的准确性。
5. 实验结束后,应及时清洗试样和设备,以防止腐蚀物对设备和试样的损害。
五、实验结果分析根据电流-电位曲线,可以得到不锈钢缝隙腐蚀的特性和程度。
缝隙腐蚀
IR PH 和腐蚀产物的交互作用
• 当Ph下降到平衡值的时候,ipass处于它的最 大值,但是I可以随着越来越多的缝隙溶液 获得它的平衡而继续增加。因此,越来越 多的缝隙壁有着这么大的ipass值。超过这 个时间,当所有的缝隙溶液都在它的平衡 PH,整个缝隙壁就处于相应的ipass值,当 腐蚀产物的聚集持续发生时R也持续增加, 因此IR>ΔΦ的条件最终会得到满足
IR PH 和腐蚀产物的交互作用
• 1 对于较低的Ex=0值,IR>ΔΦ条件可能在 PH降低到它的平衡值以前或者电解质横截 面通过腐蚀产物的聚集而减少以前就得到 满足 • 2 对于一些大的Ex=0值,IR>ΔΦ条件在PH 下降到平衡值从而增加缝隙在长度方向上 缝隙电解质碎片同时腐蚀产物持续积累时 发生
讨
• 铬酸盐的影响
在中性0.2 M Na2SO4溶液中 在不同浓度的 K2CrO4条件下 铁的腐蚀活性
论
PdH PH探针
• 钯只有在吸收了适当数量的氢以便于形成 一个其中氢的活性是固定的两相的微观结 构的时候才能被用作PH感应器
IR PH 和腐蚀产物的交互作用
• 这篇论文中有两个变量在实验中被观察, PH从9.1降到3.5,缝隙中腐蚀产物在增 加。随着PH的降低,倾向是缝隙中ipass和腐 蚀产物聚集(在这里特别是氢气)增加, 这导致I和R分别增加。PH能够降低到系统 的平衡水解PH(对于铁来说典型的是3到4) 然而腐蚀产物的聚集并没定义明确的限制
IR PH 和腐蚀产物的交互作用
• 3 对于一些更大的Ex=0值,孕育期可能在 整个缝隙电解质全部带到它的平衡PH以后 仍然继续,但是IR>ΔΦ条件最终会随着R (不是I)由于腐蚀产物对缝隙的填充导致 的的增加而得到满足
腐蚀事例
第二章:电偶腐蚀:实例1:六十年代初,美国破冰船壳上的焊缝很快腐蚀,比船壳钢板腐蚀还更严重,原因是焊接金属对船壳是阳极。
加之船壳的涂层系统被冰擦伤,阴极保护系统的阳极也被冰刮落,失去了保护作用。
Eg:焊缝是阳极,船壳是阴极,这就构成了小阳极大阴极的电偶腐蚀电池。
在“制造”部分已经讲到,由于焊缝高温熔化和冷却过程中成分和组织的变化,如果焊条选择不当,很容易造成焊缝耐腐蚀性低于母体,使焊缝发生优先腐蚀。
如果焊缝的电位比母体低得多,那么焊缝与母材组成电偶腐蚀电池,焊缝的腐蚀将大大的加速。
所以在选择焊接金属时一个基本的原则:焊缝相对于母材应是阴极性的。
///对于船舶来说,船壳上都有涂层,大多数还使用阴极保护。
涂料层如果完整致密,将船体和海水隔开,而阴极保护又将船壳控制在同一个保护电位,消除了电位的差异。
所以只要涂层和阴极保护正常。
那么焊缝与母材的电偶腐蚀问题是不会发生的。
实例2:某发电厂凝汽器的管束材质为黄铜,花板未碳钢。
原来使用河水作凝汽器的冷却水,后来因为缺水,便掺入了一些海水。
结果许多设备的腐蚀都加剧了,特别是凝汽器的花板,膨接处的腐蚀率达到20-25mm/a。
Eg:黄铜管束与碳钢花板组成了电偶对,碳钢作为阳极而黄铜作为阴极。
由于黄铜管束面积比碳钢面积大得多,这又是一个小阳极大阴极的组合。
因而天花板可能遭到电偶腐蚀。
///在使用河水作冷却水时电偶腐蚀问题并不明显,没有引起注意;而在河水中掺入海水是电偶腐蚀问题突出了。
这是因为河水的电阻率大,导电性不好,而海水的导电性很好。
腐蚀电池的电流回路包括溶液的欧姆电阻,欧姆电阻大则电池工作阻力大,腐蚀电流小。
海水电阻率小,腐蚀电池电流回路的欧姆电阻笑,因而阳极碳钢花板的电偶腐蚀大大加剧。
实例2:某啤酒厂的大啤酒罐,用碳钢制造,表面涂覆防腐涂料,用了20年。
为了解决罐底涂料层容易损坏的问题,新造贮罐采用了不锈钢板作罐底,筒体仍用碳钢。
认为不锈钢完全耐蚀就没有涂覆涂料。
第5章 局部腐蚀试验方法
1.3 现场试验方法
试片 实际工况介质
测定材料表面发生孔蚀的几率
测定孔蚀发展速度
方法:在试验过程的不同时刻取出一批试片,以其最大孔蚀 深度对时间作图,并通过数学分析找出它们之间的相关性 (关系式),据此可比较孔蚀发展速度。 为使结果可靠,试片的面积应尽可能大一些,每批次取出的 试片也要尽可能多一些。
2.缝隙腐蚀试验
2.1化学浸泡试验方法 2.2电化学测试方法
缝隙腐蚀 在电解液中,金属与金属或金属与非金属表面之间构 成狭窄的缝隙,缝隙内有关物质的移动受到了阻滞, 形成浓差电池,从而产生局部腐蚀,这种腐蚀被称为 缝隙腐蚀。
缝隙腐蚀常发生在设备中法兰的连接处,垫圈、衬板、 缠绕与金属重叠处,它可以在不同的金属和不同的腐 蚀介质中出现,从而给生产设备的正常运行造成严重 障碍,甚至发生破坏事故。 介质中,氧气浓度增加,缝隙腐蚀量增加;PH值减小, 阳极溶解速度增加,缝隙腐蚀量也增加;活性阴离子 的浓度增加,缝隙腐蚀敏感性升高。但是,某些含氧 阴离子的增加会减小缝隙腐蚀量。
-
Cl
2
-
e 2H++2eH e
2+ 2
M
2+ n
+H S 2
FeCl HCl
含H2S的酸性 氯化物溶液
间或有FeCl .4H O结晶
2 2
H
2
S
Fe
+H
2
OFeOH
+
+H
+
Fe2+
2+ FeFe +2e
蚀孔的生长
氢离子和氯离子都能促进大多数金属和合金的溶解,并且 整个过程随时间而加速。 由于氧在蚀孔溶液中的浓度实际等于零,所以蚀孔内不存 在氧的阴极还原过程。溶解氧是在蚀孔附近的表面上进行 阴极反应,故这部分表面不受腐蚀。也就是说,孔蚀使蚀 孔之外的金属表面受到阴极保护,而使蚀孔之内的金属表 面不断溶解而被腐蚀。 综上所述,蚀孔生长的机理和缝隙腐蚀的机理实 质上是相同的。孔蚀是缝隙腐蚀的一种自身诱发的腐蚀形 态——即它不需一条缝隙,它自己创造蚀孔。
ASTM G48-2011(R2015)使用三氯化铁溶液做不锈钢及其合金的耐点腐蚀和抗缝隙腐蚀性试验的标准方法
ASTM G48-2011(R2015)使用三氯化铁溶液做不锈钢及其合金的耐点腐蚀和抗缝隙腐蚀性试验的标准方法(中文翻译版)本标准以固定名称G48发布;紧跟在名称后面的数字表示最初采用的年份,如果是修订,则表示最后修订的年份。
括号中的数字表示上次重新批准的年份。
上标(ε)表示自上次修订或重新批准以来的编辑性更改。
1.范围1.1本试验方法包括若干测定规程,用于测定不锈钢及其台金暴露于氯-氧化环境时的耐麻点和缝隙腐蚀性(见术语G15)。
介绍六种规程,命名为方法A、B、C、D、E和F。
1.1.1方法A——三氯化铁点腐蚀试验。
1.1.2方法B——三氯化铁缝隙腐蚀试验。
1.1.3方法C——镍基和铬包复合金的临界点腐蚀温度试验。
1.1.4方法D——镍基和铬包复合金的临界缝隙腐蚀温度试验。
1.1.5方法E——不锈钢的临界点腐蚀温度试验。
1.1.6方法F——不锈钢的临界缝隙腐蚀温度试验。
1.2方法A用于测定不锈钢和镍基、铬包复合金的相对耐点腐蚀性,方法B可用于侧定这些合金的耐麻点和缝隙腐蚀性。
方法C、D、E 和F可在标准三氯化铁溶液中,按导致不锈钢、镍基和铬包复合金各自开始点腐蚀和缝隙腐蚀的最低(临界)温度,为这些合金划分等级。
1.3这些试验可用于测定合金填加剂、热处理和表面光洁度对耐点腐蚀性和耐缝隙腐蚀性的影响。
1.4以SI单位表示的值被认为标准。
在括号中给出其它单位,仅供参考。
1.5本标准并不意味已提及与其使用相关的所有安全事项。
制定合适的安全和健康规范,确定规章限制的适用性,是本标准用户的职责。
2.引用文件2.1 ASTM标准A262检测奥氏体不锈钢晶间腐蚀敏感性规范D1193试剂水技术规范E691进行实验室间研究以测定试验方法精度的规范E1338计算机化材料性能数据库中金属与合金识别指南G1制备、清洗和评估腐蚀拭验试样的规范G15与腐蚀和腐蚀试验相关的术语(2010年撤回)33该历史标准的最新批准版本在上引用。
缝隙腐蚀
缝隙腐蚀1.产生条件①缝隙的宽度一般为0.025~0.1mm,有介质滞留在缝内。
②几乎所有的金属或合金。
易钝化合金或金属更易发生。
③几乎所有的腐蚀介质。
包括酸性、中性或淡水介质,含氯离子的溶液最为容易。
2.机理缝隙腐蚀可分为初期阶段和后期阶段。
在初期阶段,腐蚀发生在包括缝隙内部的整个金属表面上,阳极溶解:M → M++e,阴极还原:O2+2H2O+4e→4OH-(见图1)。
但经过一个短时间后,缝内的氧由于扩散困难而减少,缝隙中的氧化还原反应就被迫停止。
氧消耗完以后,缝隙内的氧化还原反应不再发生了,这时由于缝内缺氧,缝外富氧,形成了“供氧差异电池”。
然而金属M在缝内继续溶解,缝内溶液中M+过剩,为了保持平衡,氯离子迁移到缝内,同时阴极过程转到缝外(如图2 所示)。
缝内已形成的金属盐类发生水解即:M+Cl-+H2O → M O H ↓ + H+,结果使缝内pH下降,可达2~3,这就促使缝内金属溶解速度增加,相应缝外邻近表面的阴极过程,即氧的还原速度也增加,使外部表面得到阴极保护,而加速了缝内金属的腐蚀。
缝内金属离子进一步过剩促使Cl-迁入缝内,这就是缝隙腐蚀的自催化过程。
3.影响因素3.1 几何形状缝隙宽度与缝隙腐蚀深度和速度有关(如图3)。
图3. 2Cr13不锈钢在0.5N(29.3g/L)NaCl溶液中缝隙宽度、腐蚀深度和腐蚀率的关系由图可看出,当缝隙宽度变窄时,总腐蚀率随之增高,腐蚀深度随之度化。
损伤最大的是缝隙宽度为0.10mm~0.12mm,50天的侵入深度约达90μm;当间隙0.25mm或更宽些时,在0.5NNaCl溶液中并不产生缝隙腐蚀。
环境因素①溶解O2量:溶液中O2浓度增加,缝隙外部阴极反应加速,腐蚀量增加。
②电解质的流速:增加腐蚀液的流速,即输送到缝隙外部的金属表面上的O2量增加,腐蚀量也增加。
③温度:温度升高能增加阳极反应速度。
④ pH值:pH值减小,阳极溶解速度增加。
⑤氯离子等破坏钝化膜的离子:缝隙腐蚀在许多介质中都能产生,但在含氯离子溶液中最易发生。
腐蚀试验方法
2 测量仪器及装置 测量极化曲线一般采用三电极系统,所谓三电极即研究电
极、辅助电极和参比电极。 (1) 研究电极(工作电极)
由试样制成,一般要求经一定的表面处理,并有确定的暴 露面积。因此,在测试前需封装试样。 (2)辅助电极
与研究电极构成电流通路,因此辅助电极通常由惰性材料 制成,以免与电解质发生反应。常采用铂或石墨作辅助电极。 (3)参比电极
其最佳使用量。 (4)对已确定的材料/介质体系,估计材料的使用寿
命。
(5)确定由于腐蚀对产品造成污染的可能性或污染程 度。
(6)在发生事故时,追查原因和寻找解决问题的方法。 (7)选择有效的防腐措施,并估计其效果如何。 (8)研制和发展新型耐蚀材料。 (9)对工厂设备的腐蚀状态进行间断的或连续的监视
第三节 金属腐蚀试验方法
一、表面观察法 表面观察法分为宏观检查和显微观察两种。
(1)宏观检查 对金属材料在腐蚀前后及去除腐蚀产物前后的形
态做肉眼观察。 ①注意腐蚀产物的形态、分布以及它们的颜色、厚度、
致密度和附着性; ②注意腐蚀介质中的变化,包括溶液的颜色,腐蚀产
物在溶液中的形态、颜色、类型和数量等。
以单位时间内、单位面积上的质量变化 来表示的腐蚀速度即为质量指标,常用g/ (m2·除而不损伤 主体金属时用这个方法较为恰当。
v-=m0-m1/St 式中 v-——金属失重腐蚀速度,g/(m2·h);
m0——腐蚀前金属的质量,g; m1——腐蚀后金属的质量,g; S——暴露在腐蚀介质中的表面积, m2;
(1)机械法 用毛刷或软橡皮、滤纸等擦洗,在腐蚀
产物疏松的情况下应用。
(2)化学法 选择适宜的去膜剂及去膜条件,要力求
腐蚀产物溶解快,空白失重小,操作简便。 在浸洗后用橡皮、刷子擦除腐蚀产物。
尿素级不锈钢衬锆管的缝隙腐蚀试验研究
选择性 结 果 腐 蚀 深 度 结 果
判定 标准要求 判定
≤7 / 0m  ̄ 图 2 试样 1的尺寸
I
06 -2
一
2
3
4
5
。
1 2 0 06 2
:。3: 。1: 。3 格 <。 合 00 。1: 。 0 合 : 0 0 0 : 9。 。 。 。 。 0 0 0 0 0 2 3 。 格 0
维普资讯
《 工装 备技 术 》第 2 卷 第 3期 2 0 年 化 7 06
7 3
尿 素 级 不 锈 钢 衬锆 管 的缝 隙腐蚀 试 验研 究
刘 爽 南 东 国 孙 祥超
( 大连冰山集团金州重型机器有限公司)( 大连施 奈莱克创 新汽车零部件有限公司)
出现 腐蚀 损坏 ( 穿孔 或破 裂 ) ,对 容器 的安全 运
够 自动修复 。这时发生孔蚀 的几率就会小些。 金属涂层也是一种行之有效的方法 ,但对 于大型设备来说不易做到,而有机涂层也会对 产 品质量产 生影 响 , 以在许 多地 方不 宜采 用 。 所
有 机 涂 层 使 用 较 多 的场 合 主 要 是 防 止 环 境 腐
爽 ,女 .1 7 9 8年 l 生 ,助 理 工程 师 。大 连 市 , l 6 0 。 0月 1 10
生成更稳定的钝化膜 。不锈钢这一类合金 比其 它各类金属或合金都更容易受孔蚀破坏。根据 国外资料记载,奥氏体不锈钢经固溶淬火后其
耐 孔蚀 能力 要 高 于 敏 化 温 度 处 理 过 的 3 4和 0 36不锈 钢 。孑蚀 在 光 洁表 面 比在粗糙 表 面更 1 L 不 易发 生 ,其原 因主要是 减少 了表 面易滞 留介 质 的空 间 ,增 加 了介 质的 流动 性 。有些金 属 的 氧化膜 受到破 坏后 ,在一 个氧 化性 的环境 中能
缝隙腐蚀的机理
缝隙腐蚀的机理
缝隙腐蚀是指在两个物体接触的缝隙处出现腐蚀现象。
其机理主要包括以下几个方面:
1. 电化学反应:缝隙腐蚀是由于缝隙处的局部电化学环境与周围环境不同而引起的。
当缝隙处存在不同的金属、电解质或氧化还原条件时,可能发生电化学反应,导致局部腐蚀。
2. 浸润液:缝隙容易积聚水分或其他电解液,这些液体会浸入缝隙中并停留,形成浸润液。
浸润液中的离子可以提供电解质,促进腐蚀反应的发生。
3. 屏蔽效应:由于缝隙的存在,导致金属表面被局部屏蔽,使得该区域附近的金属成为阳极区,而缝隙内或其他地方成为阴极区。
这种差异导致局部电流增大,促进腐蚀反应发生。
4. 空气传递:缝隙可以提供氧气或其他氧化剂进入腐蚀区域,加速金属的腐蚀速率。
同时,氧气也可以促进一些比较复杂的氧化还原反应发生,进一步加剧了腐蚀现象。
总之,缝隙腐蚀是由于缝隙处的特殊环境条件导致了局部电化学差异,从而引发了局部腐蚀反应。
8种腐蚀测试
8种腐蚀测试腐蚀测试是腐蚀工程师紧要的职责之一。
事实上,假如没有腐蚀评估,在任何行业中减轻或除去腐蚀几乎是不可能的。
腐蚀检查有几个原因。
有时,在工业应用的材料选择过程中,需要评估特定环境中的不同种类的材料。
评估不同类型环境中的新型合金,以与传统商业合金进行比较;估量抑制剂在降低金属腐蚀速率方面的效率;了解腐蚀机理是其他原因。
腐蚀测试通常分为两大类:试验室测试和现场测试,每种测试都有其优点和缺点。
例如,实际应用中的环境条件与试验室环境中的环境条件不同。
因此,很难将试验室测试的结果外推到行业环境中。
另一方面,在试验室测试中,可以加速环境的腐蚀性以更快地获得结果,这在现场测试中是不可能的。
试验室腐蚀测试浸入式测试试验室测试中常见和简单的方法之一是浸入测试。
在这种测试中,其程序由ASTM和NACE阐明,干燥试样的重量在暴露于腐蚀性环境特定时间段之前和之后通过分析天平进行测量。
在称量样品之前和之后,应进行特定的制备以去除任何腐蚀产物或有机污染物。
样品的耐腐蚀性通常计算为以每年密耳(0.001英寸)或毫米/年(毫米/年)为单位的重量损失或厚度损失的腐蚀速率。
结果取决于被测金属的类型(比重)、暴露表面积和测试持续时间因素。
目视检查还建议进行一些目视检查,以评估局部腐蚀,如点蚀或剥落。
此外,光学或扫描电子显微镜;元素和成分分析,如能量色散X射线光谱(EDX);X射线衍射;能量色散X射线光谱(XPS)是更精准明确地评估腐蚀表面和腐蚀产物的有用技术。
有几种方法可以评估被测样品的点蚀。
确定凹坑密度(特定表面积内的凹坑数量)或点蚀系数(最深凹坑深度除以均匀腐蚀引起的厚度损失值之比)是评估点蚀的两种紧要方法。
有不同类型的应用工具来测量坑深。
当无法使用基坑测厚仪时,可以使用等高线测量仪来实现凹坑深度的轮廓。
盐雾/雾测试一些测试样品和程序旨在评估特定类型的腐蚀,例如缝隙腐蚀,应力腐蚀开裂和侵蚀腐蚀。
涂层样品的大气腐蚀可以通过盐雾或雾测试来检查。
缝隙腐蚀的现象、产生原因和防止措施
缝隙腐蚀的现象、产生原因和防止措施
(1)现象
不锈钢由于设备、构件结构上存在缝隙[见图8.13(a)]或在表面上存在金属或非金属沉积物[在沉积物与不锈钢表面间形成缝隙,见图8.13(b)],在腐蚀介质作用下,会在缝隙处优先产生点状和溃疡状损伤,这就是缝隙腐蚀。
图8.14则是一台管与管板胀焊连接的热交换器的缝隙处,18-8不锈钢的缝隙腐蚀(已呈溃疡状)。
(2)原因
在含有CL-等的水介质中,由于缝隙内介质溶液的酸化(CL-浓度增加,pH值下降)、缺氧而引起的钝化膜的局部破坏(氧浓差电池,缝隙缺氧)。
(3)防止措施
消除缝隙。
最根本的是从结构设计上避免存在缝隙入手,对换热设备管与管板连接处的缝隙,对法兰、垫圈、螺栓、铆钉的间隙,要采取适宜措施加以防止[3]。
定期清洗并在海水等环境中保持流速≥1.5m/s,防止污物(包括海生物)在钢的表面堆积。
选用耐缝隙腐蚀的高铬、钼和高铬、钼、氮不锈钢。
图8.15[4]中的结果仅提供耐点蚀和耐缝隙腐蚀选用不锈钢的大致思路。
同时可看出,为解决缝隙腐蚀,从选材入手要比解决点蚀更加困难,且经济上的代价会更高。
点腐蚀缝隙腐蚀
6
二、点蚀的形貌和产生条件
1、点蚀的形貌:种类多样,随材料和介质的不同而异
窄深型
椭圆型
宽浅型
空洞型
底切型
水平型
垂直型
各种点蚀的形貌
7
2、点蚀的三个产生条件
➢ 点蚀多发生在表面易钝化的金属材料(如不锈钢、铝及铝合金 等)或表面有阴极性镀层的金属。当钝化膜受到破坏,膜未受破坏 的区域和受到破坏已裸露基体金属的区域形成了活化-钝化腐蚀电 池,钝化表面为阴极而且面积比膜破坏处的活化区大得多,腐蚀就 向深处发展而形成蚀孔。 ➢ 点蚀发生于有特殊离子的介质中。例如卤素离子对不锈钢引起 小孔腐蚀敏感性的作用顺序为Cl->Br->I-;另外也有ClO4-和SCN-等 介质中产生小孔腐蚀的报道。这些特殊阴离子在合金表面的不均匀 腐蚀,导致膜的不均匀破坏。
所以溶液中存在活性阴离子是发生点蚀的必要条件。 8
E
Etp
D
C
Ep
A
E E
过钝化区 Etbp
钝化区 Ebp
B 过渡区 活化区(失电子) 阴极区(得电子)
点蚀发生、发展 点蚀发展 缝隙腐蚀发生、发展
点蚀不发生
O lg io lg ip’
lg ip
lgi
O
lgi
➢ 电位Etp称作“点蚀电位”或“破裂电位” 、“过钝电位” :金
13
点蚀过程的电极反应
点蚀是个多电极体系
➢ 蚀孔外表面阴极极化,阴极反应电流大于阳极反应电流
阳极反应:M Mn+ + ne-
阴极反应: 1/2O2 + H2O + 2e- 2OH➢ 蚀孔内表面阳极极化,阳极反应电流大于阴极反应电流
缝隙腐蚀试验
缝隙腐蚀试验
缝隙腐蚀试验是一种常见的材料腐蚀性能测试方法,它主要用于评估材料在缝隙处的耐腐蚀性能。
在实际工程中,材料的缝隙处往往是最容易受到腐蚀的地方,因此对于材料的缝隙腐蚀性能进行测试是非常必要的。
缝隙腐蚀试验的原理是将试样放置在一定的腐蚀介质中,使试样表面形成缝隙,然后观察缝隙处的腐蚀情况。
通常情况下,缝隙腐蚀试验采用的腐蚀介质是盐水或酸性溶液,这些介质能够模拟实际工程中的腐蚀环境。
在进行缝隙腐蚀试验时,需要注意以下几点:
1. 试样的制备:试样的制备应该符合标准要求,试样表面应该光洁无瑕疵,以保证试验结果的准确性。
2. 缝隙的制备:缝隙的制备应该严格按照标准要求进行,缝隙的宽度和深度应该符合试验要求。
3. 试验条件的控制:试验条件的控制非常重要,包括腐蚀介质的浓度、温度、PH值等,这些条件都会影响试验结果。
4. 试验时间的控制:试验时间的长短也会影响试验结果,通常情况下,试验时间应该根据标准要求进行控制。
通过缝隙腐蚀试验可以评估材料在缝隙处的耐腐蚀性能,这对于材
料的选择和使用非常重要。
在实际工程中,材料的缝隙处往往是最容易受到腐蚀的地方,因此对于材料的缝隙腐蚀性能进行测试是非常必要的。
同时,缝隙腐蚀试验也可以为材料的改进和优化提供参考依据。
缝隙腐蚀试验是一种非常重要的材料腐蚀性能测试方法,它可以评估材料在缝隙处的耐腐蚀性能,为材料的选择和使用提供参考依据。
在进行试验时,需要注意试样的制备、缝隙的制备、试验条件的控制和试验时间的控制等因素,以保证试验结果的准确性。
Q235碳钢缝隙腐蚀的电化学噪声研究
收稿日期:2009201216,修订日期:2009203202 3通讯作者,Tel:(86227)87558221,E 2mail:guoxp@mail .hust .edu .cn 国家863项目(2007AA06Z06),973项目(2006CB705808)资助第15卷 第2期2009年5月电化学E LECTROCHE M I STRYVol .15 No .2M ay 2009文章编号:100623471(2009)022*******Q235碳钢缝隙腐蚀的电化学噪声研究胡 骞,邱于兵,郭兴蓬3(华中科技大学化学与化工学院,材料化学与服役失效湖北省重点实验室,湖北武汉430074)摘要: 应用电化学噪声和电化学阻抗技术研究Q235碳钢在NaHCO 3+NaCl 溶液中的缝隙腐蚀行为.结果显示,缝隙腐蚀过程可以被清楚地划分为3个阶段:孕育期、快速转换期和稳定发展期.电化学噪声的特征和噪声电阻在各阶段有着显著的变化.缝隙外、内表面积比(r )对缝隙腐蚀的孕育和发展有着十分重要的影响:r 越大,孕育期越长.但是,在缝隙腐蚀稳定发展期,r 较小时,缝隙外电极表面处于活性溶解状态,缝隙内外电位差很小,缝隙内腐蚀速率较小;倘如r 很大时,则缝隙外电极表面处于钝态,缝隙内外电位差大,最终将导致严重的缝隙腐蚀.关键词: 碳钢;缝隙腐蚀;外内表面积比;电化学噪声;电化学阻抗中图分类号: O646.6文献标识码: A 缝隙腐蚀(Crevice Corr osi on )是一种广泛存在的局部腐蚀.只要存在缝隙结构,几乎所有的金属都能发生缝隙腐蚀.钝性金属在含氯离子溶液中或非钝性金属在钝化介质和氯离子的溶液中最易发生缝隙腐蚀.电化学噪声(Electr oche m ical Noise,EN )技术是一种原位无损的监测方法,能够在不施加任何外加扰动的情况下监测金属腐蚀行为,并且能够提供较传统方法更多的局部腐蚀信息[123].电化学噪声技术已成功研究金属点蚀的发生和发展[427],但是对金属缝隙腐蚀研究相对较少.M.Z .Yang 等[8]探讨A516270碳钢在含有缓蚀剂及氯离子溶液中的缝隙腐蚀,其耦合电位在缝隙腐蚀发生时会迅速降低;A.Conde 等[9]研究304不锈钢在不同浓度氯化钠溶液中的缝隙腐蚀,电流逐渐上升电位负移是其缝隙腐蚀的特征;G .Gus mano 等[10]测量A I SI 430不锈钢在氯化钠溶液中的缝隙腐蚀噪声谱,并将其缝隙腐蚀发生、发展过程分为4个阶段;M.Schneider 等[11]讨论含缓蚀剂的氯化钠溶液中A l99.5缝隙腐蚀初始阶段的电化学噪声,铬酸盐缓蚀剂对噪声强度没有影响.本文以油气井及集输管线的局部腐蚀监测为对象,探讨NaHCO 3+NaCl 溶液碳钢缝隙腐蚀发生、发展过程的腐蚀电化学噪声特征,并考察缝隙外、内电极面积比(r )变化的缝隙腐蚀及其电化学噪声谱特征,为局部腐蚀电化学噪声监测探头的参数设计提供参考数据.1 实验部分1.1 试剂与电极碳酸氢钠(NaHCO 3)和氯化钠(NaCl )均为分析纯.工作电极使用柱状Q235碳钢,其化学组成为(%,by mass ):C 0.19,Si 0.22,Mn 0.56,P 0.0086,S 0.022,Fe 余量.电极用环氧树脂封装,分别留有0.1、1.0和16c m 2的工作面.工作面用金刚砂纸逐级打磨至最细1200目,而后用蒸馏水清洗净,丙酮、酒精除油.一部分电极1.0c m 2的工作面再用绝缘胶带进一步封装,只留出约0.1c m 2(11.3mm ×0.9mm )的工作面.1.2 电化学噪声测试图1给出模拟缝隙腐蚀试验的三电极体系装置示意.其中工作电极1(W E1)和工作电极2(W E2)均为Q235碳钢,W E1上覆盖玻片模拟缝隙第2期胡 骞等:Q235碳钢缝隙腐蚀的电化学噪声研究・185 ・内表面(0.1c m 2),W E2模拟缝隙外表面,其面积分别为0.1、1.0及16.0c m 2.参比电极(RE )为饱和甘汞电极,文内所指的电位除特别说明外均相对于此电极.两个工作电极间的噪声电流以及参比电极与耦合后的工作电极间的噪声电位由自制的电化学噪声测试系统同步测量[12],采样频率2Hz .试验之前,先将W E1和W E2放在0.5mol ・L -1NaHCO 3溶液中浸泡1h,再加入一定量的NaCl 使Cl -浓度达到0.1mol ・L-1,并在W E1之上盖上玻璃圆片( 13mm )形成人造缝隙(缝隙宽约40μm ),再将W E1和W E2耦接,电解池置于屏蔽箱中(温度30±1℃).记录其电化学噪声数据,连续监测20h.图1 模拟缝隙腐蚀试验的三电极体系装置示意Fig .1 Sche matics of the si m ulated crevice and the arrange 2ment of the three electr odes1.3 电化学阻抗谱测量电化学阻抗谱测试使用CS300型电化学工作站.以W E1为工作电极,W E2为辅助电极和参比电极.工作、辅助两电极先在0.5mol ・L -1NaHCO 3溶液中浸泡1h,再加入一定量的NaCl 使Cl -浓度达到0.1mol ・L -1,W E1之上同样盖上玻璃圆片,控制两电极的电位差△E =0V ,测量不同时间的电化学阻抗谱.频率范围10kHz ~10mHz,电位扰动幅值±10mV.阻抗数据用Zvie w2软件拟合.2 结果与讨论2.1 电化学噪声时域谱特征据图1,当将两个工作电极W E1和W E2耦合之后,就组成了一个模拟缝隙腐蚀体系.噪声电流是缝隙内外的耦合电流(I g ,表征缝隙内腐蚀的加速程度);噪声电位是缝隙内外表面的耦合电位(E ,反映耦合电极表面状态的变化).图2为Q235碳钢在0.5mol ・L -1NaHCO 3+0.1mol ・L-1NaCl 溶液中缝隙腐蚀发生、发展过程的电化学噪声时域谱.如图,该E N 时域谱有一个共同特征,即一定时间后,电位快速下降,同时伴随着电流的快速上升,而后进入一个相对稳定的状态,这和M.Z .Yang 等[8]报道类似.从图看出,当缝隙外表面积与缝隙内表面积比(r )改变时,EN 时域谱到达,出现电位快速下降和电流快速上升经过的时间有明显的差异,即r 越大所需的时间越长.参照图2b (r =10),可将电化学噪声图谱分为3个区域(阶段).其中,初始阶段(0~5.9h )噪声电流(I g )很小(约0.074μA ),而噪声电位(E )保持一个较正数值(约-0.248V ),但I g 缓慢增加、且E 缓慢负移,可以认为这是缝隙腐蚀孕育期;而后,进入快速转化期,此时I g 超过1.0μA (即缝隙内的耦合电流>10.0μA ・c m-2),并在随后1.7h I g 增至最大值(38.0μA ),E 从-0.339V 降至-0.472V ,1h 内I g 又降至1.5μA ,且在1.2~ 图2 Q235碳钢缝隙腐蚀的电化学噪声时域谱 Fig .2 The E N ti m e records of the crevice corr osi on f or Q235carbon steel in 0.5mol ・L -1NaHC O 3+0.1mol ・L -1NaCl s olu 2ti on electr ode area rati o r (surface )of outside t o inside crevice:a .1,b .10,c .160・186 ・电 化 学2009年2.8μA 间波动,而E 在0.5h 内负移至-0.750V 并在此电位波动;噪声电流和噪声电位剧烈波动后,缝隙腐蚀便进入了相对稳定的发展阶段(7.6h 后).图3为r =10时,不同时间段电化学噪声谱的局部放大图像.可以看出,初期(a )噪声电流(峰)快速上升并快速回复,而噪声电位(峰)则快速下降缓慢回复,这是典型的亚稳态点蚀的噪声(峰)特征.随着时间的延长(b ),噪声电流(峰)从快速上升快速回复,逐步与噪声电位(峰)的波动同步,点蚀进入稳态发展.缝隙腐蚀进入稳定的发展阶段(c ),电流噪声和电位噪声均表现为随机高频波动,没有特征暂态(峰).这表明缝隙腐蚀的孕育以亚稳态点蚀过程为起点,逐渐发展为稳态点蚀,进而进入稳定的发展期,整个缝隙内发生活性溶解.表1归纳电化学噪声谱的特征值,包括耦合初始的噪声电位E s 、噪声电流密度i g,s (相对于缝隙内表面积,以下同)、i g 达到10.0μA ・c m -2的时间T ig =10以及i g 的最大值i g,max 和达到最大值的时间T ig,max 终端噪声电位E f 和噪声电流密度i g,f 等.从表中看出,耦合初期,3种缝隙外、内电极面积比下的噪声电流和噪声电位没有显著差异,但r 增大,耦合电流达到最大值经过的时间显著增长,其电流密度的最大值也显著增加.在缝隙腐蚀达到稳态发展阶段(末期),与r =1相比,r =10的缝隙内耦合电流略大,噪声电位稍正,但两者电位均很负(≤-0.760V ).由此推测:由于耦合电流的阴极极化效应,缝隙外表面处于去钝化的活性溶解态;r =160,缝隙内耦合电流密度已在1000μA ・c m -2以上,但噪声电位为-0.355V ,显然,此时缝隙外表面仍然处于钝化状态.表1 3种外、内电极面积比的缝隙腐蚀电化学噪声谱特征值Tab .1 Para meters of the electr oche m ical noise s pectra f or the crevice corr osi on with different r rE s /Vi g,s /μA ・c m-2T ig =10/h T ig,max /h i g,max /μA ・c m-2E f /Vi g,f/μA ・cm -2110160-0.237-0.248-0.2290.840.740.561.865.908.101.987.6011.30763801068-0.796-0.760-0.35513.2015.00342.00 图3 不同耦合时间段Q235碳钢缝隙腐蚀电化学噪声时域谱(r =10) Fig .3 The E N ti m e records of the crevice corr osi on f or Q235carbon steel during different coup ling peri od (r =10) electr o 2lyte:0.5mol ・L -1NaHC O 3+0.1mol ・L-1NaCl s oluti ons,coup ling peri od /h:a .0.27~0.57,b .4.15~4.45,c .11.10~11.40第2期胡 骞等:Q235碳钢缝隙腐蚀的电化学噪声研究・187 ・2.2 电化学噪声电阻R n的变化图4是噪声电阻Rn~t曲线(噪声电阻按每1024s的间隔取经过消除线性漂移后的数据计算).如图4可见,Rn随时间变化也呈现出3个阶段.r=1和10时,初始噪声电阻Rn为100kΩ・c m2左右,分别在1.9h和5.5h时间内开始快速下降,并于随后的2.0h和7.5h达到稳定值15kΩ・c m2.而r=160时,初始的R n为220kΩ・c m2,5.5h后下降,8.0h下降更显著,11.0h后逐渐稳定(1kΩ・c m2).对比之下第1阶段的Rn相对较大,此时缝隙腐蚀阻力较大,处在孕育阶段.第2阶段R n有不同程度的下降,最后缝隙腐蚀进入稳定发展期.当r=160时,其孕育期的Rn大于r= 1和10孕育期的R n,但进入稳定发展期后,前者R n又显著小于后者.这说明r=160时,其孕育期反应阻力相对较大,需更长的时间才能进入缝隙腐蚀的稳定发展期,在稳定发展期,缝隙内腐蚀速率将大大超过r=1和10的体系.如上所述,可根据R n变化规律可区分缝隙腐蚀的不同阶段,且与腐蚀速率的变化一致.图4 不同r值时Q235碳钢缝隙腐蚀电化学噪声的Rn~t 曲线Fig.4 R n~t p l ot of the crevice corr osi on f or Q235carbon steel with different rr:2□2=1,2○2:=10,2△2:=1602.3 缝隙腐蚀电池回路的阻抗模拟缝隙腐蚀的耦合回路其等效电路可由图5表示,其中Z f1、Z f2和CPE1、CPE2分别表示缝隙内外表面的法拉第阻抗和相应常相位角元件,Rs是连接缝隙内外的溶液电阻,总阻抗Zsum =Zf1+Rs+Zf2.图6为Q235碳钢在0.5mol・L-1NaHCO3+0.1mol・L-1NaCl溶液中不同耦合时间的电化学阻抗谱.表2为根据图5等效电路拟合阻抗谱(图6).从表看出,随着r增大,Z sum能在较长的时间内保持较大值.从电化学噪声谱的电位变化趋势可知,这与电极表面的状态有关,回路的总电阻主要取决于缝隙外表面的钝化状态.图5 Q235碳钢模拟缝隙腐蚀电极的等效电路Fig.5 Equivalent circuit for the si m ulating crevice corr osi onelectr odes of Q235Carbon steel表2 由图6阻抗谱拟合得到的阻抗Tab.2 Fitting i m pedance values fr om the E I S diagra m s shownin Fig.6T/hZsu m r=1/kΩZsum r=10/kΩZsum r=160/kΩ13741317136377540109411766599耦合前缝隙内外的初始电位差△E约0.3V,当Zsum为400kΩ左右时,△E/Zsum<0.1μA,这与电化学噪声时域谱的初期特征是一致的.r越小,缝隙外表面的阴极极化电流密度就越高,阴极还原越显著,去钝化的趋势就越明显.所以,延长耦合时间,必将导致r=1的缝隙腐蚀电极阻抗(Zsum r=1)首先下降,而电极阻抗减小则使△E/Zsum增加,这将促使缝隙内表面加速溶解,缩短缝隙腐蚀的孕育期,缝隙腐蚀更早地进入稳定发展期.而r=160电极在前7h均有很高的值阻抗Zsum r=160,这意味着△E/Zsum相当小,所以需要较长的时间才能完成缝隙腐蚀的孕育期,而后才进入缝隙腐蚀的稳定发展期.同理,r=10时缝隙腐蚀孕育期介于两者之间.3 结 论在NaHCO3+NaCl溶液中,Q235碳钢缝隙腐蚀可分3个阶段:孕育期、快速转化期和稳定发展期.电化学噪声谱及噪声电阻在不同阶段有着明显・188 ・电 化 学2009年图6 Q235碳钢模拟缝隙腐蚀电极的电化学阻抗谱 Fig .6 E I S diagra m s of the crevice corr osi on electr odes f or Q235carbon steel electr olyte:0.5mol ・L -1NaHCO 3+0.1mol ・L-1NaCl s oluti ons the coup ling ti m e /h:a .1,b .3,c .7 2□2=1,2○2=10,2△2=160的特征和显著的变化,因此借助此二者可预示缝隙腐蚀发生发展的不同阶段.增大缝隙外、内表面积,则缝隙腐蚀孕育期延长.倘如r 较小(r =1和10)时,那么在缝隙腐蚀稳定发展期间内,耦合电位显著负移,缝隙外的电极表面处于活性溶解,缝隙内外电位差很小,缝隙内腐蚀速率也相对较小;当r 很大(r =160)时,其于缝隙腐蚀稳定发展期间内,缝隙外的电极表面仍处于一种钝化状态,缝隙内外电位差大,最终将导致严重的缝隙腐蚀.参考文献(References):[1] Aballe A,Bethencourt M ,Botana F J,et al .W avelettransf or m 2based analysis for electr ochem ical noise [J ].Electr oche m Commun,1999,1:2662270.[2] Aballe A ,BethencourtM ,Botana F J ,et al.U singwavelets transfor m in the analysis of electr ochem ical noise data [J ].Electr ochi m Acta,1999,44:480524816.[3] Aballe A,Bethencourt M ,Botana F J,et al .U se ofwavelets t o study electr ochem ical noise transients[J ].J M S ánchez 2Amaya Electr ochi m Acta,2001,46:235322361.[4] Cao F H,Zhang Z,Su J X,et al .Electr oche m icalnoise analysis of LY122T3in EXC O s oluti on by discrete wavelet transf or m technique [J ].Electr ochi m Acta,2006,51:135921364.[5] Na K H,Pyun S I .Effect of sul phate and molybdatei ons on p itting corr osi on of alu m iniu m by using electr o 2che m ical noise analysis [J ].J Electr oanal Che m,2006,596:7212.[6] Na K H,Pyun S I .Comparis on of suscep tibility t o p it 2ting corr osi on of AA20242T4,AA70752T651and AA74752T761alu m iniu m all oys in neutral chl oride s o 2luti ons using electr oche m ical noise analysis[J ].Corr os Sci,2008,50:2482258.[7] L iu L,L i Y,W ang F H.Pitting mechanis m on an aus 2tenite stainless steel nanocrystalline coating investigated by electr oche m ical noise and in 2situ AF M analysis[J ].Electr ochi m Acta,2008,54:7682780.[8] Yang M Z,W il m ottM ,Lou J L.Crevice corr osi on be 2havi or of A516270carbon steel in s oluti ons containing第2期胡 骞等:Q235碳钢缝隙腐蚀的电化学噪声研究・189 ・inhibit ors and chl oride i ons[J].Thin Solid Fil m s,1998,326:1802188.[9] Conde A,W illiam s D E.Crevice corr osi on and p ittingdetecti on on304stainless steel using electr ochem icalnoise[J].Mater and Corr os,1999,50:5852590. [10] Gus mano G,M archi oni F,Montes perelli G.A crevicecorr osi on study by electr oche m ical noise analysis[J].Mater and Corr os,2000,51:5372544.[11] SchneiderM,Galle K.I nvestigati on of the initial stageof crevice corr osi on on A l99.5by electr oche m ical noiseanalysis[J].Mater and Corr os,2007,58:9832991.[12] Huang J Y,Guo X P,Q iu Y B,et al.Cluster anddiscri m inant analysis of electr oche m ical noise data[J].Electr ochi m Acta Oct,2007,53:6802687.I nvesti gati on of Electroche m i cal Noise i n the Crevi ce Corrosi onof Q235Carbon CteelHU Q ian,Q I U Yu2bing,G UO Xing2peng3(School of Che m istry and Che m ical Engineering,Huazhong U n iversity of Science and Technology, Hubei Key L aboratory of M aterials Che m istry and Service Fa ilure,W uhan430074,China)Abstract:The crevice corr osi on behavi or of Q235carbon steels in a NaHCO3+NaCl s oluti on was investigated by electr oche m ical noise(E N)and electr oche m ical i m pedance s pectr oscopy(E I S).Three stages of crevice cor2 r osi on including the inducti on,the rap id transf or m and the stable devel opment could be clearly distinguished.The characteristics of the electr oche m ical noise and the noise resistance Rnshowed re markable differences at each stage.The electr ode area rati o(r)of outside t o inside the crevice had a significant influence in the devel opment of crevice corr osi on.The ti m e of the inducti on stage increased with increasing r.However,under the stable de2 vel opment stage of the crevice corr osi on,the surface outside the crevice was at an active diss oluti on state when r was s mall,while the potential difference bet w een outside and inside the crevice and the corr osi on rate inside the crevice were s mall.W hen r was big,the surface outside the crevice was at a passive state and the potential difference bet w een outside and inside the crevice was large,which causes seri ous crevice corr osi on.Key words:carbon steel;crevice corr osi on;area rati o of outside t o inside crevice;electr oche m ical noise; electr oche m ical i m pedance。
焊接材料点蚀和缝隙腐蚀测试所用标准对比分析和探讨
e s Vol.53 N o.6 Jun. 2020焊接材料点蚀和缝隙腐蚀测试所用标准对比分析和探讨吴汉民\刘满雨“,陈波2’3,宋立群2'魏涛王庆江2,3(1.海盐中达金属电子材料有限公司,浙江海盐314300;2.哈尔滨威尔焊接有限责任公司,黑龙江哈尔滨150028;3.哈尔滨焊接研究院有限公司,黑龙江哈尔滨150028)[摘要]在不锈钢和镍基焊材局部腐蚀试验中,ASTM G48-2015,GB/T 17897-2016,GB/T 10127-2002和ASTM A923-2014 4个测试标准均使用FeCl3作为腐蚀溶液,但腐蚀介质的p H值、试验温度、试验时间和适用范围等方面各不相同,为此,对比了上述4个试验标准中试样制备、适用范围、腐蚀方法和环境及腐蚀结果评定4个方面的差异性。
结果表明:在检测腐蚀速率试验方面,国家标准在试验介质、试验温度精度控制等方面比美国标准要求的更加严格,溶液p H值要求更低,但国家标准中缺少最大点蚀深度、点蚀数量、点蚀密度和有害金属间相等测量指标,不能全面地对材料的腐蚀状况进行评价。
FeCl3溶液作为一种较强的腐蚀试剂,腐蚀诱导期短,腐蚀发展速度快,腐蚀介质p H值、试验温度、试验时间是影响FeCl3g液腐蚀机理的3个重要因素。
[关键词]焊接材料;点腐蚀;缝隙腐蚀;FeCl3溶液;试验标准[中图分类号]T G172 [文献标识码]A[文章编号]l(X H-1560(2020)06-0068-04Contrastive Analysis and Discussion on Standards Used for Pitting and CreviceCorrosion Test of Welding MaterialsW U Han-min', LIU Man-yu2'3, C H E N Bo2'3, S O N G U-q u n2'3, W E I Tao2'3, W A N G Qing-jiang2'3(1. Haiyan Zhongda Electronic Material Co., Ltd., Haiyan 314300, China; 2. Harbin Well Welding Co., Ltd., Harbin 150028, China;3. Machinery Research Institute, Harbin Welding Institute, Harbin 150028, China)Abstract: In the local corrosion experiments of stainless steel and nickel-based welding materials, four t e s t standards (A S T M G48-2015, G B/T 17897-2016, G B/T 10127-2002 and A S T M A923-2014) used FeCl3 solution as corrosive medium, but the selected p H value of corrosive medium, test temperature, t e s t time and applicable range were different. Therefore, the differences of the four test standards were compared in terms of four sections: sample preparation, applicable range, corrosion method, environment/corrosion result. Results showed that in the experiments of corrosion rate test, national standard was s t r icter than American standard in experiment medium and experiment temperature control precision, and the solution's p H value was lower in national standard. However, owing t o lacks of t e s t indexes such as maximum pitting depth, number of pitting corrosions, density of pitting corrosion and the equivalent measurement index between the poisonous metals, the national standard could not evaluate comprehensively the corrosion situation of materials. Moreover, FeCl3 solution was a strong corrosive medium with short corrosion induction period and f a s t corrosion development speed. The p H value of corrosive medium, t e s t temperature and test time were the important factors which affected the corrosion mechanism of FeCl3 solution.K e y w ords:welding materials; p i t corrosion; crevice corrosion; FeCl3 solution; t e s t standards0前言在不锈钢和镍基焊材局部腐蚀的点蚀、缝隙腐蚀检测各项试验标准中,“使用三氯化铁溶液做不锈钢及其合金的耐点腐蚀和缝隙腐蚀试验标准方法“[1](ASTM G48-2015,下简称“标准一”)、“金属和合金的腐蚀—不锈钢三氯化铁点腐蚀试验方法”[2](GB/T 17897-2016,下简称“标准二”)、“不锈钢三氯化铁缝隙腐蚀试验方法”[3](GB/T 10127-2002,下简称“标准三”)和“奥氏体/铁素体双相不锈钢有害金属间相检测[收稿日期]2020 - (M - 08[通信作者]刘满雨(1986-),高级工程师,硕士,从事金属材料检验方面研究,E-mail: 137****************第53卷.第6期.2020年6月册的标准试验方法”[4](ASTM A923-2014,下简称“标准四”)都使用恒温水浴锅作为控温加热试验设备,采用6%的FeCl3作为腐蚀溶液,但在适用范围、试样制备、腐蚀方法和环境及腐蚀结果评定上存在异同点,总结和梳理4个标准的异同点有利于提升对焊接材料的局部腐蚀试验标准的认识。
缝隙腐蚀试验
缝隙腐蚀试验
缝隙腐蚀试验是指运用测量技术来测量缝隙的腐蚀速率,以便研究其变化。
该测量技术主要用于研究金属和合金的腐蚀特性,从而制定表面防护技术和抗腐蚀技术,并设计合理的外表皮保护工艺。
2、试验方法
2.1 试件及其准备:根据试验要求准备相应的标准试件,比如ASTM B 117 / ASTM G 96等。
这些试件应当在试验前进行无损检测,以保证它们的品质。
2.2 试剂的准备:根据试验要求准备相应的试剂,如腐蚀溶液、抗腐蚀剂、洗涤剂或润滑剂等,以及用于清洗试件的粉状浴或液体浴。
2.3试验装置:按试验要求,准备相应的试验装置,并安装在试验室中,如阴极保护、电解、电化学保护、静电保护、液体动力学腐蚀等。
2.4 试验过程:根据试验要求,准备好试件及其他必要的材料,并仔细安装试件到试验装置上,接下来就可以开始进行腐蚀试验了。
3、试验结果
通过实验可以得出不同试件在相同环境条件下的缝隙腐蚀速率。
据此,可以优化材料、准备过程、表面处理工艺和抗腐蚀剂,以减缓表面材料缝隙腐蚀,延长使用寿命。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Temperature and potential dependence of crevicecorrosion of AISI 316stainless steelP.T.Jakobsen *,1,E.MaahnMaterials Technology,Department of Manufacturing Engineering,Technical University of Denmark,Building 204,DK-2800Lyngby,DenmarkReceived 16March 2000;accepted 9October 2000AbstractCrevice corrosion of AISI 316steel has been investigated in a modi®ed ÔAvesta Cell Õ.Po-tentiodynamic scans have been made in sodium chloride solutions of various pH values at di erent temperatures with and without crevice.The breakthrough potential changes dis-continuously with temperature.At all temperatures the attack is localised to the crevice,and the breakthrough potential is lower than for experiments without the crevice.The experiments in acidi®ed environments indicate that crevice corrosion at low temperatures results from acidi®cation in the crevice.At higher temperatures crevice corrosion is believed to be the result of metastable pitting stabilised by the crevice.Ó2001Elsevier Science Ltd.All rights re-served.Keywords:Stainless steel;Polarisation;Crevice corrosion1.IntroductionCrevice corrosion is one of the most common forms of corrosion of stainless steels.Because it cannot easily be discovered before it is fatal for the construction,crevice corrosion is a very detrimental form of corrosion.Crevice corrosion of stainless steel shares many similarities with pitting corro-sion of stainless steel [1].Both phenomena are in¯uenced by pH,bulk chloride/locate/corsciCorrosion Science 43(2001)1693±1709*Corresponding author.Tel.:+46-8-674-17-00;fax:+46-8-674-17-80.E-mail address:pia.jakobsen@corr-institute.se (P.T.Jakobsen).1Present address.Swedish Corrosion Institute,Roslagsv a gen 101,hus 23A,SE-10405Stockholm,Sweden.0010-938X/01/$-see front matter Ó2001Elsevier Science Ltd.All rights reserved.PII:S 0010-938X (00)00167-0concentration and temperature,and in much the same way.Crevice corrosion is induced by less severe conditions than pitting corrosion.The resistance against these forms of corrosion is often expressed as a critical temperature [1,2].For pitting corrosion it is found that there exists a potential independent critical pitting corrosion temperature (CPT)[3,4].Below this temperature pitting is not possible and only transpassive corrosion occurs.Above this temperature pitting is possible,but it depends on the potential whether it will actually occur.This is illus-trated in Fig.1,which shows the temperature dependence of the breakthrough po-tential.The potential independent CPT is the temperature at which a sudden change in breakthrough potential is observed.A curve of the shape shown in Fig.1is found if the breakthrough potential is found from potentiodynamic scanning experiments on a specimen free from crevices as shown by Qvarfort [5,6].By potentiostatic testing with increasing temperature it is possible to determine the potential independent CPT if the potential is chosen between the upper end of the pitting potential range and the lower end of the transpassive corrosion range [4].On the other hand if the chosen potential is within the pitting potential range a potential dependent CPT is deter-mined [4].Arnvig and Bisg ard [4]determined a potential independent CPT whereasMellstr om and Bernhardsson [7]determined a potential dependent CPT.Crolet and Defranoux [8]and Old®eld and Sutton [9]have described a theory for initiation of crevice corrosion of stainless steels by a gradual change of the en-vironment in the crevice.Following Old®eld and Sutton [9],there is a neutral chloride solution containing dissolved oxygen inside and outside the crevice at the outset.Two reactions take place within as well as outside the crevice:Metal dissolution :Me 3Me z z e À1 Oxygen reduction :O 2 2H 2O 4e À34OH À21694P.T.Jakobsen,E.Maahn /Corrosion Science 43(2001)1693±1709Reaction2consumes oxygen which inside the crevice is only replenished by di usion. If the crevice is su ciently deep and tight a part of the crevice will be depleted from oxygen.Reaction1can still take place within the crevice balanced by reaction2 occurring on surfaces external to the crevice.The metal ions thus generated in the crevice will have a positive charge,and to maintain charge neutrality metal ions will migrate out and chloride ions will migrate into the crevice.The main process will be ingress of chloride ions into the crevice.At the same time the metal ions(particularly chromium)will hydrolyse thereby forming acid,e.g.:Cr3 H2O3Cr OH 2 H 3 These processes lead to a more aggressive environment in the crevice(higher chloride content and more acidic).This will accelerate the metal dissolution process(reac-tion1)leading to further migration of chloride ions into the crevice and to fur-ther acidi®cation due to hydrolysis.This continues until the environment formed is su ciently aggressive to break down the passive®lm permanently within the crevice. Once this happens crevice corrosion has initiated[9].Stockert and B o hni suggested that crevice corrosion initiates by a geometrical stabilisation of metastable pitting corrosion[10].A metastable pit is a small pit which initiates and grows for a while under a cover,which presumably is a remnant of the passive®lm.The growth of the pit leads to the formation of a concentrated environment within the pit,and an osmotic pressure builds up over the cover.When the osmotic pressure exceeds the strength of the cover the cover ruptures[10,11].It is found that the concentration of metal ions on the corroding surface of a cavity must exceed about75%of saturation concentration if rapid dissolution are to continue [12].Based on this®gure and a consideration of the steady state di usion out of an open hemispherical cavity Pistorius and Burstein[11]®nd that the product of the pit radius r and the current density i must ful®ll the criteria given in Eq.(4)for con-tinued pit growth to follow the rupture of the cover:ir P 3zFD D C2p; 4where z is the average charge of the metal ions,F is the Faraday number,D is the di usion coe cient and D C is the di erence in metal ion concentration from the corroding pit surface to the bulk solution.The product ir is called the pit stability product.If the pit stability product does not ful®ll the criteria given by Eq.(4)the metastable pit will repassivate when the cover ruptures.The current density by which a metastable pit grows is constant during the metastable growth period[11].A metastable pit initiated at a higher potential on average will grow with a higher current density.Pistorius and Burstein[13]further found that the radius of the metastable pit when the cover ruptures is almost in-dependent of the current density by which the metastable pit grows.This means that the probability that a metastable pit will be able to continue to grow as a stable pit after the cover ruptures will increase with increasing potential[11,13]. Metastable pitting will occur in a crevice as well as on open surfaces.If the metastable pit occurs in a particularly tight point in the crevice the opposite crevice P.T.Jakobsen,E.Maahn/Corrosion Science43(2001)1693±170916951696P.T.Jakobsen,E.Maahn/Corrosion Science43(2001)1693±1709wall will act as a di usion barrier.If the di usion out of the pit is limited su ciently the metastable pit will be stabilised even if it would not have survived on an open surface[10].This is geometrical stabilisation.The radius when the cover ruptures presumably will be una ected by the crevice,and thus a metastable pit growing at a smaller current density can be stabilised in a crevice.A metastable pit growing at a smaller current density will require a smaller crevice width to become stabilised. It is found that the number of metastable pits per unit area of the crevice must exceed a certain number before it is sure that initiation of crevice corrosion has happened[10].This is linked to the property that only su ciently tight points in the crevice are e ective as initiation sites.According to Laycock et al.(1998)[14]a metastable pit at temperatures below the potential independent CPT will repassivate by precipitation of a salt layer in a manner similar to that of iron passivating in sulphuric acid.The critical current density for passivation will increase with temperature.The current density required for stabilisation of a metastable pit will also increase with temperature but slower than the critical current density for passivation.The temperature where these two current densities are equal is the CPT[14].The current density required to stabilise the pit in the crevice is smaller than the current density required to stabilise the metastable pit on an open surface.The critical current density for passivation presumably will not depend on whether the pit is inside or outside the crevice.Following the argument of Laycock et al.(1998)[14] this will mean that the critical crevice corrosion temperature(CCT)will be lower than the CPT.However,the CCT will depend on the tightness of the point in crevice where the metastable pit happens.The CPT can be determined by electrochemical methods,for instance in Refs. [4,7].It may also be determined by simple immersion in solutions with increasing temperature[1].The CCT can also be determined by immersion tests[1,2]or by electrochemical tests[15].It appears from the literature that the CCT most often is determined by immersion tests.Some authors have determined breakthrough po-tentials for crevice corrosion by potentiodynamic scanning[16±18].These investi-gations only used one ycock et al.(1997)[19]measured breakthrough potentials as a function of temperature on rods of904L stainless steel with two o-rings as crevice formers.This paper presents a determination of the breakthrough potential for crevice corrosion as a function of temperature and aims at answering the question whether a potential independent crevice corrosion temperature exists in analogy with the po-tential independent CPT.2.ExperimentalTheÔAvesta CellÕwas developed to test pitting corrosion without the in¯uence of crevice corrosion[5].This is achieved by placing a®lter-paper gasket between the test specimen and the cell and having a small¯ow of distilled water through this gasket. This eliminates the possibility of crevice corrosion.TheÔAvesta CellÕhas later beenmodi®ed to test a larger exposed area of the test specimen [4].This larger area makes it possible to apply a crevice onto the exposed area of the test specimen in the ÔAvesta Cell Õ.In this way the e ect of the test specimen edges is eliminated from the test for crevice corrosion resistance.Fig.2is a schematic drawing of the Ôcrevice corrosion ÔAvesta Cell Õ(CCAC)Õ.The crevice in the CCAC is formed between the test specimen surface and a ring-shaped crevice former of polyvinylidene ¯uoride (PVDF).The crevice former is ground on silicon carbide paper to a #1000®nish.The crevice former is attached to a silicone rubber ring which in turn is attached to a connection piece.The silicone rubber ring ensures that the crevice forming surfaces are aligned.The connection piece is extended by a glass tube which allows the application of pressure onto the crevice.Pressure is applied by compressing the disc springs with the screw.The heating coil allows the cell temperature to be controlled.The small ¯ow of distilled water increases the electrolyte volume.To counteract this the CCAC has an over-¯ow.The dilution caused by the ¯ow of distilled water is compensated for by adding solution of the same composition but higher concentration than the bulk electrolyte.To assure an even ¯ow of distilled water,the distilled water is allowed to ®ll the exposed area before the electrolyte is poured into the cell.An even ¯ow is necessary if crevice corrosion between test specimen and cell is to be avoided.The electrolyte is diluted less than 2&.The exposed area of the test specimen is 10cm 2including the crevice area.The crevice area is 2.4cm 2.The ¯ow rate of distilled waterisFig.2.Schematic drawing of the CCAC.P.T.Jakobsen,E.Maahn /Corrosion Science 43(2001)1693±17091697approximately 40ml/h.The crevice was applied after the electrolyte had been poured into the cell,which means that the electrolyte will ®ll the volumes inside and outside the crevice former.The crevice will also be ®lled with electrolyte from the start of the experiment.The springs were compressed with a force of 220Æ10N.The test specimens were made from cold rolled,as delivered AISI 316plate.The surface is designated 2B according to EN 10088.The composition of the speci®c material used is given in Table 1.The test specimens were washed with hot water and soap,degreased by rinsing with acetone and ethanol,and following this dried in hot air.The test solution was 1MNaCl made from distilled water and analytical grade NaCl.A few experiments were done in 1MNaCl acidi®ed with HCl.Polarisation scans in anodic direction,starting from 0mV/SCE,were made at di erent temperatures.The scan rate was 1mV/min.The scan was stopped when the current density reached a predetermined value.All current densities are referred to the exposed area of 10cm 2.The test solution was held thermostatically at the desired temperature Æ0:5°C.3.ResultsFig.3shows breakthrough potentials as a function of temperature for pitting corrosion measurements.The breakthrough potential is taken as the potential at which the current density continuously exceeds 10l A/cm 2.The data used in Fig.3were found without applying the crevice.The test specimen surface has thus been openly exposed to the electrolyte in these experiments.In Fig.3linear regressions for the data are included.These are included to show the overall tendency of the data and thus assist the interpretation of the ®gure.The data for pitting corrosion show the potential independent CPT to be 15.5°C.Fig.3only includes few points,but more points would not have changed the conclusion signi®cantly,as the CPT is described by other authors [4]to be well de®ned.Fig.4shows breakthrough potentials for crevice corrosion experiments as a function of temperature.Linear regressions of the data are included in this ®gure for the same reasons as in Fig.3.The data for crevice corrosion in some respects re-semble and in some respects di er from the data for pitting corrosion.The data for crevice corrosion does not have a sharp transition from high to low breakthrough potentials.The transition happens over a temperature interval,and in this tem-perature interval also intermediate values of the breakthrough potential are observed.The breakthrough potential for crevice corrosion is lower than the breakthrough potential found on an open surface both at temperatures above and below the transition temperature interval (tti)(hereafter transition interval).TheTable 1Composition of the AISI 316steel used for the investigation Element Cr Ni Mo Si Mn C N P S Others Fe %17.0412.702.620.451.690.0150.0540.0280.0010.96Balance1698P.T.Jakobsen,E.Maahn /Corrosion Science 43(2001)1693±1709limits of the breakthrough potentials for crevice corrosion at temperatures in the transition interval are seen to be set by the behaviour at temperatures aboveandP.T.Jakobsen,E.Maahn /Corrosion Science 43(2001)1693±17091699below the transition interval.It is found that the attack is localised to the crevice at all temperatures (even at temperatures below the transition interval)for the crevice corrosion experiments.Fig.5shows a typical curve from potentiodynamic scanning with the crevice at a temperature above the transition interval.The passive current density increases very slightly as the potential increases.When the breakthrough is reached the current rises quite fast.This behaviour is typical for localised corrosion of stainless steel.The increase in current from 1to 100l A/cm 2is typically observed to happen over 100±150mV at temperatures above the transition interval.This is somewhat slower than seen for pitting corrosion,but the propagation of crevice corrosion in the early stages is slowed down by the electrolyte resistance in the crevice cavity [20].The attacks seen above the transition interval are in a few distinct positions in the crevice,most commonly just one or two.The attack is a patch of uniform corrosion,and it is deeper at the outer circumference of the crevice area.The attacks observed on specimens from experiments in the transition interval are not signi®cantly di erent from those observed above the transition interval.This implies that the attacks are initiated by the same mechanism in and above the transition interval.Fig.6shows typical curves from potentiodynamic scanning with the crevice in 1M NaCl solutions of various pH values at a temperature below the transition interval.Considering the curve in 1MNaCl solution it is seen that this curve di ers from the curve in Fig.5in several ways.Firstly by the higher breakthrough potential.However,this is the characteristic by which the 1MNaCl curve in Fig.6isde®ned1700P.T.Jakobsen,E.Maahn /Corrosion Science 43(2001)1693±1709as being below the transition interval,and the curve in Fig.5is above the transition interval.At a potential around 750mV/SCE the current density in the 1MNaCl curve in Fig.6becomes almost constant until the breakthrough starts.If the ex-periment is stopped at low current density,a ring of yellowish brown discoloration can be seen approximately halfway between the inner and outer peripheries of the crevice area.The attack seen when the experiment is stopped at a higher current density will be a large number of small patches of uniform attack evenly distributed along the circle and with discoloration between the patches.There will be more patches of attack near the outer periphery of the crevice area than near the inner periphery.Fig.7shows typical curves from potentiodynamic scanning in 1MNaCl solutions of various pH values in experiments where the crevice was not used.The experiments were made at a temperature below the potential independent CPT.This means that the resulting corrosion was transpassive corrosion.The 1MNaCl curve in Fig.7is characterised by having a local maximum in the passive current density at a potential around 750mV/SCE.At a higher potential a local minimum in the current density is observed.The curves shown in Fig.7for experiments done without crevice in 1MNaCl acidi®ed to pH 4and pH 2show that the current density in the maximum becomes higher the lower the pH is.The change is small at pH 4.At pH 2the maximum current density is near 10l A/cm 2.The current density measured at the minimum is also higher the lower the pH is.At pH 2the current density decreases to about 2l A/cm 2.At pH 1the current simply increases without passing through amaximum.P.T.Jakobsen,E.Maahn /Corrosion Science 43(2001)1693±17091701The rise of the current starts where the increase towards the maximum starts when the pH value is higher.This behaviour indicates primary transpassive corrosion followed by a secondary passivation and ®nally secondary transpassive corrosion [6].This kind of behaviour has been observed by other authors for stainless steels [6,21].After terminating experiments done without crevice below the CPT the solutions smelled as chlorinated water does.This indicates that the current rise after the minimum was due to oxidation of chloride,although it is possible that some oxygen evolution took place simultaneously.The secondary passivity is in¯uenced by pH and is not possible if the pH decreases too much.The curves shown in Fig.6for experiments done with crevice in 1MNaCl acidi®ed to pH 4and pH 2show that the behaviour in the pH 4solution is very similar to the behaviour in 1MNaCl.At pH 2the current passed 1l A/cm 2at a lower potential than in 1MNaCl.Between 10and 15l A/cm 2the current rose very slowly in the pH 2solution.4.DiscussionAt temperatures below the transition interval the initiation of crevice corrosion appears to happen quite uniformly in the part of the crevice where the distance to the edges of the crevice area is largest.The experiments done in acidic bulk solutions help to explain the mechanism of initiation of crevice corrosion at temperatures below the transition paring the curves done at the same pH value from Figs.6and 7it is seen that the overall behaviour of the two curves is the sameuntil1702P.T.Jakobsen,E.Maahn /Corrosion Science 43(2001)1693±1709the potential at which the maximum in current density occurs for the experiment done without crevice.As the potential increases above the value at the maximum the current density decreases for the experiment without the crevice,but it remains almost constant for the experiment with the crevice.Thus no secondary passivation is observed in the experiments with crevice although it is probable that secondary passivation will occur outside the crevice in these experiments.The current density within the crevice will therefore increase during the interval in which almost constant current density is observed.A rising current density inside the crevice can be rationalised if the pH within the crevice is lower,cf.Fig.7.The occurrence of sec-ondary passivation in the experiments without crevice show that primary transpas-sive corrosion has taken place[22,23].By primary transpassive corrosion soluble Cr(VI)-species are formed,e.g.[24]:Cr 4H2O3HCrOÀ4 7H 6eÀ 5 It is seen that acid is formed simultaneously with the Cr(VI)-species.Convection will make the concentration of Cr(VI)-species and acid low at the surface of the metal outside the crevice.Inside the crevice there is no convection,and the concentration of Cr(VI)-species and acid will increase.In Appendix A[26]the pH in the crevice is calculated based on assumptions as indicated in the appendix.Depending on the crevice width used in the calculation the pH is found to be between0.57and1.57. However,the curve found in Appendix A for the current within the crevice indicates that secondary passivation does take place in the crevice before breakthrough.Thus it is proposed that crevice corrosion below the transition interval initiates due to a gradual acidi®cation of the environment in the crevice,but initiation is only possible once secondary passivation has occurred in the crevice.When secondary passivation occurs the passive®lm becomes more iron-rich.It appears that the environment formed in the crevice is only able to break down the more iron-rich®lm. Experiments atÀ0.5°C in which the potential was scanned by1mV/min to 600mV/SCE and then held potentiostatically at600mV/SCE for48h showed de-creasing current density during the potentiostatic period.Similar experiments but with the potential held at800mV/SCE also showed decreasing current density during the potentiostatic period.Thus it appears that an over-potential is necessary for stable propagation of crevice corrosion at temperatures below the transition interval.This mechanism can be considered a modi®cation of the mechanism pro-posed by Crolet and Defranoux[8]and by Old®eld and Sutton[9].However,it is important to note that the mechanism proposed here depends critically on the high potential to produce an acidic environment and that probably initiation is only possible once secondary passivation has occurred within the crevice.In and above the transition interval the corrosion attack is seen as one or perhaps a few patches of uniform corrosion in the crevice.This indicates that the initiation is pointwise.The geometrical stabilisation of metastable pitting theory of Stockert and B o hni[10]will lead to pointwise initiation.Under the experimental conditions used in this investigation the number of metastable pits as a function of temperature and potential during potentiodynamicscanning becomes important.Pistorius and Burstein[11,13]found that the meta-stable pitting rate(number of metastable pits per unit area per unit time)has a maximum at intermediate potentials(which actually are quite low).The number of possible metastable pitting sites increases with potential at®rst and then becomes constant[11,13].Gar®as-Mesias and Sykes[25]did potentiodynamic scanning on 25Cr duplex stainless steel.Their curves show some transients but each of these probably includes several metastable transients.They also®nd a maximum in metastable pitting rate at intermediate potentials.At higher potentials the transients are few and occur randomly.The size and number of observed transients increase with temperature in the measurements of Gar®as-Mesias and Sykes[25].This pre-sumably signi®es that the number of transients increase with temperature and that the current density at which the individual metastable pit is growing also increases with temperature.It is assumed that at temperatures above the transition interval the number of metastable events at low potentials exceeds the number necessary to initiate crevice corrosion.The breakthrough potential therefore is low.As the metastable events are distributed randomly over the surface,the actual number of events happening before the initiation will vary.This explains the variation in the breakthrough potential at one temperature.If the temperature is decreased the number and size of the meta-stable events decreases.Both of these e ects will shift the breakthrough potential to higher values with decreasing temperature.In the transition interval it is believed that the number of metastable events at low potentials will not exceed the number necessary to initiate crevice corrosion.Thus the initiation might happen at low potentials,or it might happen at higher potentials. If crevice corrosion does not initiate at low potentials the breakthrough will appear to happen coincidentally,because the metastable events occur randomly.This is the reason for the large variation of the breakthrough potential in the transition interval. When decreasing the temperature further,the size of the metastable pits becomes too small to initiate crevice corrosion,because the crevice width is not su ciently small. At this temperature the mechanism of initiation shifts from geometrical stabilisation of metastable pitting to gradual acidi®cation(moving towards lower temperatures). The lowest temperature at which a metastable pit can be stabilised in the crevice is a CCT in the sense that initiation of crevice corrosion will not(normally)be possible at lower temperatures where the redox-potential of the bulk solution will have to be unusually high to give crevice corrosion.The transition interval arises because of the variations in crevice geometry be-tween the experiments and because the metastable pits occur in random positions on the surface.The tightness of the tightest points probably will not be the same in each experiment and a metastable pit might not occur in the tightest points.Both these factors might lead to a scatter in temperature as well as potential.Thus the ap-pearance of a transition interval is presumably unavoidable for experimental de-termination of crevice corrosion behaviour.At the lowest temperature in the transition interval it will be possible to initiate crevice corrosion by geometrical stabilisation of metastable pitting at a low potential although this situation will not be realised in every experiment due to the dependence。