2016北师大七年级上专题训练(四)整式的化简求值(含答案)

合集下载

七年级数学上册整式计算题专项练习(有答案)

七年级数学上册整式计算题专项练习(有答案)

整式的乘除计算训练(1)1. )2()(b a b a -++-2. (x+2)(y+3)-(x+1)(y-2)3. 22)2)(2(y y x y x ++-4.x(x -2)-(x+5)(x -5)5. ⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x224 6.)94)(32)(23(22x y x y y x +---7. ()()3`122122++-+a a 8.()()()2112+--+x x x9. (x -3y)(x+3y)-(x -3y)2 10. 23(1)(1)(21)x x x +---11. 22)23()23(y x y x --+ 12.22)()(y x y x -+13. 0.125100×810014. 3022)2(21)x (4554---÷⎪⎭⎫⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛15. (1211200622332141)()()()-⨯+----16—19题用乘法公式计算16.999×1001 17.1992-18.298 19.2010200820092⨯-20.化简求值:)4)(12()12(2+-+-a a a ,其中2-=a 。

21. 化简求值2(2)2()()2(3)x y x y x y y x y +--++-,其中12,2x y =-=。

22. 5(x-1)(x+3)-2(x-5)(x-2) 23. (a-b)(a2+ab+b2)24. (3y+2)(y-4)-3(y-2)(y-3) 25. a(b-c)+b(c-a)+c(a-b)1y2)2 26. (-2mn2)2-4mn3(mn+1) 27. 3xy(-2x)3·(-428. (-x-2)(x+2) 29. 5×108·(3×102) 30. (x-3y)(x+3y)-(x-3y)231. (a+b-c)(a-b-c)答案1. 2. 3. 4.5. 6. 7. 8.9. 10. 11. 12.13. 14. 15.16. 原式=(1000-1)(1000+1) 17. 原式=(99+1)(99-1)=1000000-1 =10098=999999 =980018. 原式=(900-2)2 19. 原式=20092-(2009+1)(2009-1)=10000-400+4 =20092-20092+1=9604 =120.原式=,当时,原式=21.原式=,当,时,原式=22. 23. 24. 25. 0 26. 27. 28. 29.30. 31.北师大七年级数学上册《整式及其加减》计算题专项练习一一.解答题(共12小题)1.计算题①12﹣(﹣8)+(﹣7)﹣15;②﹣12+2×(﹣5)﹣(﹣3)3÷;③(2x﹣3y)+(5x+4y);④(5a2+2a﹣1)﹣4(3﹣8a+2a2).2.(1)计算:4+(﹣2)2×2﹣(﹣36)÷4;(2)化简:3(3a﹣2b)﹣2(a﹣3b).3.计算:(1)7x+4(x2﹣2)﹣2(2x2﹣x+3);(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)];(3)(3mn﹣5m2)﹣(3m2﹣5mn);(4)2a+2(a+1)﹣3(a﹣1).4.化简(1)2(2a2+9b)+3(﹣5a2﹣4b)(2)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)5.(2009•柳州)先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.6.已知x=5,y=3,求代数式3(x+y)+4(x+y)﹣6(x+y)的值.7.已知A=x2﹣3y2,B=x2﹣y2,求解2A﹣B.8.若已知M=x2+3x﹣5,N=3x2+5,并且6M=2N﹣4,求x.9.已知A=5a2﹣2ab,B=﹣4a2+4ab,求:(1)A+B;(2)2A﹣B;(3)先化简,再求值:3(A+B)﹣2(2A﹣B),其中A=﹣2,B=1.10.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.(1)求a﹣(b﹣c)的值;(2)当x=时,求a﹣(b﹣c)的值.11.化简求值:已知a、b满足:|a﹣2|+(b+1)2=0,求代数式2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)的值.12.已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.北师大七年级数学上册《整式及其加减》计算题专项练习一参考答案与试题解析一.解答题(共12小题)1.计算题①12﹣(﹣8)+(﹣7)﹣15;②﹣12+2×(﹣5)﹣(﹣3)3÷;③(2x﹣3y)+(5x+4y);④(5a2+2a﹣1)﹣4(3﹣8a+2a2).考点:整式的加减;有理数的混合运算.专题:计算题.分析:(1)直接进行有理数的加减即可得出答案.(2)先进行幂的运算,然后根据先乘除后加减的法则进行计算.(3)先去括号,然后合并同类项即可得出结果.(4)先去括号,然后合并同类项即可得出结果.解答:解:①原式=12+8﹣7﹣15=﹣2;②原式=﹣1﹣10+27÷=﹣11+81=70;③原式=2x﹣3y+5x+4y=7x+y;④原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13.点评:本题考查了整式的加减及有理数的混合运算,属于基础题,解答本题的关键熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.2.(1)计算:4+(﹣2)2×2﹣(﹣36)÷4;(2)化简:3(3a﹣2b)﹣2(a﹣3b).考点:整式的加减;有理数的混合运算.分析:(1)按照有理数混合运算的顺序,先乘方后乘除最后算加减;(2)运用整式的加减运算顺序计算:先去括号,再合并同类项.解答:解:(1)原式=4+4×2﹣(﹣9)=4+8+9=17;(2)原式=9a﹣6b﹣2a+6b=(9﹣2)a+(﹣6+6)b=7a.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;熟记去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣;及熟练运用合并同类项的法则:字母和字母的指数不变,只把系数相加减.3.计算:(1)7x+4(x2﹣2)﹣2(2x2﹣x+3);(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)];(3)(3mn﹣5m2)﹣(3m2﹣5mn);(4)2a+2(a+1)﹣3(a﹣1).考点:整式的加减.分析:(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;(3)先去括号,再合并同类项即可;(4)先去括号,再合并同类项即可.解答:解:(1)7x+4(x2﹣2)﹣2(2x2﹣x+3)=7x+4x2﹣8﹣4x2+2x﹣6=9x﹣14;(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)]=4ab﹣3b2﹣[a2+b2﹣a2+b2]=4ab﹣3b2﹣2b2=4ab﹣5b2;(3)(3mn﹣5m2)﹣(3m2﹣5mn)=3mn﹣5m2﹣3m2+5mn=8mn﹣8m2;(4)2a+2(a+1)﹣3(a﹣1)=2a+2a+2﹣3a+3=a+5.点评:本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.4.化简(1)2(2a2+9b)+3(﹣5a2﹣4b)(2)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)考点:整式的加减.专题:计算题.分析:(1)原式利用去括号法则去括号后,合并同类项即可得到结果;(2)原式利用去括号法则去括号后,合并同类项即可得到结果.解答:解:(1)原式=4a2+18b﹣15a2﹣12b=﹣11a2+6b;(2)原式=3x3+6x2﹣3﹣3x3﹣4x2+2=2x2﹣1.点评:此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.5.(2009•柳州)先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.考点:整式的加减—化简求值.分析:本题应对方程去括号,合并同类项,将整式化为最简式,然后把x的值代入即可.解答:解:原式=3x﹣3﹣x+5=2x+2,当x=2时,原式=2×2+2=6.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.6.已知x=5,y=3,求代数式3(x+y)+4(x+y)﹣6(x+y)的值.考点:整式的加减—化简求值.分析:先把x+y当作一个整体来合并同类项,再代入求出即可.解答:解:∵x=5,y=3,∴3(x+y)+4(x+y)﹣6(x+y)=x+y=5+3=8.点评:本题考查了整式的加减的应用,主要考查学生的计算能力,用了整体思想.7.已知A=x2﹣3y2,B=x2﹣y2,求解2A﹣B.考点:整式的加减.分析:直接把A、B代入式子,进一步去括号,合并得出答案即可.解答:解:2A﹣B=2(x2﹣3y2)﹣(x2﹣y2)=2x2﹣6y2﹣x2+y2=x2﹣5y2.点评:此题考查整式的加减混合运算,掌握去括号法则和运算的方法是解决问题的关键.8.若已知M=x2+3x﹣5,N=3x2+5,并且6M=2N﹣4,求x.考点:整式的加减;解一元一次方程.专题:计算题.分析:把M与N代入计算即可求出x的值.解答:解:∵M=x2+3x﹣5,N=3x2+5,∴代入得:6x2+18x﹣30=6x2+10﹣4,解得:x=2.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.已知A=5a2﹣2ab,B=﹣4a2+4ab,求:(1)A+B;(2)2A﹣B;(3)先化简,再求值:3(A+B)﹣2(2A﹣B),其中A=﹣2,B=1.考点:整式的加减;整式的加减—化简求值.专题:计算题.分析:(1)把A与B代入A+B中计算即可得到结果;(2)把A与B代入2A﹣B中计算即可得到结果;(3)原式去括号合并得到最简结果,把A与B的值代入计算即可求出值.解答:解:(1)∵A=5a2﹣2ab,B=﹣4a2+4ab,∴A+B=5a2﹣2ab﹣4a2+4ab=a2+2ab;(2)∵A=5a2﹣2ab,B=﹣4a2+4ab,∴2A﹣B=10a2﹣4ab+4a2﹣4ab=14a2﹣8ab;(3)原式=3A+3B﹣4A+2B=﹣A+5B,把A=﹣2,B=1代入得:原式=2+5=7.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.(1)求a﹣(b﹣c)的值;(2)当x=时,求a﹣(b﹣c)的值.考点:整式的加减;代数式求值.专题:计算题.分析:(1)把a,b,c代入a﹣(b﹣c)中计算即可得到结果;(2)把x的值代入(1)的结果计算即可得到结果.解答:解:(1)把a=14x﹣6,b=﹣7x+3,c=21x﹣1代入得:a﹣(b﹣c)=a﹣b+c=14x﹣6+7x﹣3+21x﹣1=42x ﹣10;(2)把x=代入得:原式=42×﹣10=10.5﹣10=0.5.点评:此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.11.化简求值:已知a、b满足:|a﹣2|+(b+1)2=0,求代数式2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)的值.考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=4a﹣6b﹣a+4b﹣6a+4b=﹣3a+2b,∵|a﹣2|+(b+1)2=0,∴a=2,b=﹣1,则原式=﹣6﹣2=﹣8.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.分析:因为平方与绝对值都是非负数,且(x+1)2+|y﹣1|=0,所以x+1=0,y﹣1=0,解得x,y的值.再运用整式的加减运算,去括号、合并同类项,然后代入求值即可.解答:解:2(xy﹣5xy2)﹣(3xy2﹣xy)=(2xy﹣10xy2)﹣(3xy2﹣xy)=2xy﹣10xy2﹣3xy2+xy=(2xy+xy)+(﹣3xy2﹣10xy2)=3xy﹣13xy2,∵(x+1)2+|y﹣1|=0∴(x+1)=0,y﹣1=0∴x=﹣1,y=1.∴当x=﹣1,y=1时,3xy﹣13xy2=3×(﹣1)×1﹣13×(﹣1)×12=﹣3+13=10.答:2(xy﹣5xy2)﹣(3xy2﹣xy)的值为10.点评:整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简.。

专题 整式的化简求值解答题(50题)(解析版)-七年级数学上册

专题 整式的化简求值解答题(50题)(解析版)-七年级数学上册

七年级上册数学《第二章整式的加减》专题整式的化简求值(50题)整式的加减—化简求值给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.1.先化简,再求值:11a2﹣[a2﹣3(2a﹣5a2)﹣4(a2﹣2a)],其中a=﹣4.【分析】先化简整式,再代入求值.【解答】解:原式=11a2﹣(a2﹣6a+15a2﹣4a2+8a)=11a2﹣a2+6a﹣15a2+4a2﹣8a=(11a2+4a2﹣15a2)﹣a2﹣8a+6a=﹣a2﹣2a.当a=﹣4时,原式=﹣(﹣4)2﹣2×(﹣4)=﹣16+8=﹣8.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.2.(2022秋•香洲区期末)先化简,再求值:2(x2+xy−32y)﹣(x2+2xy﹣1),其中x=﹣4,y=5.【分析】先去括号,然后合并同类项,最后将x=﹣4,y=5代入化简结果进行计算即可求解.【解答】解:原式=2x2+2xy﹣3y﹣x2﹣2xy+1=x2﹣3y+1,当x=﹣4,y=5时,原式=(﹣4)2﹣3×5+1=16﹣15+1=2.【点评】本题考查了整式的加减与化简求值,正确的去括号与合并同类项是解题的关键.3.(2022秋•亭湖区期末)先化简,再求值:a2﹣(3a2﹣2b2)+3(a2﹣b2),其中a=﹣2,b=3.【分析】原式去括号,合并同类项进行化简,然后代入求值.【解答】原式=a2﹣3a2+2b2+3a2﹣3b2=a2﹣b2;当a=﹣2;b=3时,原式=(﹣2)2﹣32=4﹣9=﹣5.【点评】本题考查整式的加减和化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.4.(2022秋•南昌县期中)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=16.【分析】先去括号,再合并同类项得到原式=﹣4x2y,然后把x、y的值代入计算即可.【解答】解:原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=16时,原式=﹣4×(﹣1)2×16=−23.【点评】本题考查了整式的加减﹣化简求值:先把整式去括号,合并,再把给定字母的值代入计算,得出整式的值.5.(2022秋•江岸区期末)先化简,再求值:5a2+4b﹣(5+3a2)+3b+4﹣a2,其中a=3,b=﹣2.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:5a2+4b﹣(5+3a2)+3b+4﹣a2=5a2+4b﹣5﹣3a2+3b+4﹣a2=a2+7b﹣1.当a=3,b=﹣2时,原式=32+7×(﹣2)﹣1=9﹣14﹣1=﹣6.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.6.(2022秋•辽阳期末)先化简,再求值:x2y﹣(3xy2﹣x2y)﹣2(xy2+x2y),其中x=1,y=﹣2.【分析】先去括号,再合并同类项,然后把x=1,y=﹣2代入化简后的结果,即可求解.【解答】解:原式=x2y﹣3xy2+x2y﹣2xy2﹣2x2y=﹣5xy2,当x=1,y=﹣2时,原式=﹣5×1×(﹣2)2=﹣20.【点评】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.7.(2022秋•盘山县期末)先化简再求值:﹣(3a2﹣2ab)+[3a2﹣(ab+2)],其中a=−12,b=4.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=﹣3a2+2ab+3a2﹣ab﹣2=ab﹣2,当a=−12,b=4时,原式=﹣2﹣2=﹣4.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2022秋•邻水县期末)先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.【分析】去括号,合并同类项,将x,y的值代入计算即可.【解答】解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2,当x=﹣1,y=2时,原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.【点评】本题主要考查了整式的加减与求值,正确利用去括号的法则运算是解题的关键.9.(2022秋•秀屿区期末)先化简,再求值:4x2y﹣3xy2+3(xy﹣2x2y)﹣2(3xy﹣3xy2)其中x=34,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x2y﹣3xy2+3xy﹣6x2y﹣6xy+6xy2=﹣2x2y+3xy2﹣3xy,当x=34,y=﹣1时,原式=98+94+94=458.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.10.(2022秋•黔江区期末)先化简,再求值:3(2+122−B)−(2B+32−122),其中x=1,y=2.【分析】先去括号,合并同类项,化简整式,然后将x,y的值代入求值.【解答】解:3(2+122−B)−(2B+32−122),=3x2+32y2﹣3xy﹣2xy﹣3x2+12y2=2y2﹣5xy,当x=1,y=2时,原式=2y2﹣5xy=2×22﹣5×1×2=﹣2.【点评】本题考查了整式的化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.11.(2022秋•高新区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=1,b=﹣2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=1,b=﹣2时,原式=﹣6﹣4=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.(2022秋•嘉峪关校级期末)先化简,再求值.2(3a﹣4b)﹣3(3a+2b)+4(3a﹣2b),其中=−13,=12.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=6a﹣8b﹣9a﹣6b+12a﹣8b=9a﹣22b,当a=−13,b=12时,原式=9×(−13)﹣22×12=−3﹣11=﹣14.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.13.(2022秋•皇姑区期末)先化简,再求值:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3],其中a=2,b=﹣1.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3]=3a2b﹣6b3+6ab﹣(6ab+2a2b﹣4b3)=3a2b﹣6b3+6ab﹣6ab﹣2a2b+4b3=a2b﹣2b3.当a=2,b=﹣1时,原式=22×(﹣1)﹣2×(﹣1)3=﹣4+2=﹣2.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.14.(2022秋•寻乌县期末)先化简,再求值:﹣3(x2﹣2x)+2(32x2﹣2x−12),其中x=﹣4.【分析】直接去括号进而合并同类项进而得出答案.【解答】解:原式=﹣3x2+6x+3x2﹣4x﹣1=2x﹣1,把x=﹣4代入得:原式=2×(﹣4)﹣1=﹣9.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.15.(2022秋•市南区校级期末)先化简,再求值:12−2(−132)+(−12+132),其中=−2,=23.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:原式=12x﹣2x+232−12+132=﹣2x+y2;当x=﹣2,y=23时,原式=﹣2×(﹣2)+(23)2=4+49=409.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.16.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.17.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.18.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.【分析】先去括号,合并同类项,再将x+y=6,xy=﹣4,整体代入进行计算即可.【解答】解:原式=5x+2y﹣3xy﹣2x+y﹣2xy=3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(2022秋•芙蓉区校级月考)已知xy=2,x+y=3,求(3xy+10y)+[5x﹣(2xy+2y﹣3x)]的值.【分析】先去括号合并同类项,然后将xy=2,x+y=3整体代入即可.【解答】解:原式=3xy+10y+5x﹣2xy﹣2y+3x=xy+8y+8x=8(x+y)+xy,当xy=2,x+y=3时,原式=8×3+2=26.【点评】本题考查了整式的加减﹣﹣化简求值,熟悉合并同类项是解题的关键.20.已知a2+b2=20,a2b﹣ab2=﹣3,求(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)的值.【分析】去括号、合并同类项,再把已知条件代入即可得到整式的值.【解答】解:(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)=b2﹣a2+a2b﹣3ab2﹣2b2+2ab2=﹣b2﹣a2+a2b﹣ab2=﹣(b2+a2)+(a2b﹣ab2)把a2+b2=20,a2b﹣ab2=﹣3代入,原式=﹣20+(﹣3)=﹣23.【点评】本题主要考查了整式的加减—化简求值,掌握整式的加减运算法则,整体思想是解题的关键.21.(2023春•大荔县期末)已知3a﹣b=﹣2,求代数式3(2B2−163+p−2(3B2−2p+的值.【分析】直接去括号,再合并同类项,再把已知数据代入得出答案.【解答】解:原式=6ab2﹣16a+3b﹣6ab2+4a+b=﹣12a+4b,∵3a﹣b=﹣2,∴原式=﹣4(3a﹣b)=﹣4×(﹣2)=8.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.22.已知b=2a+2,求整式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵b=2a+2,∴﹣2a+b=2,∴原式=4(﹣2a+b)=4×2=8.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.23.(2021秋•浉河区期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+7(a﹣b)2的结果是;(2)拓广探索:已知x2+2y=−13,求﹣6y﹣3x2+2021的值.【分析】(1)把(a﹣b)2看成一个整体,利用合并同类项运算法则进行计算;(2)将原式进行变形,然后利用整体思想代入求值.【解答】解:(1)原式=(3﹣6+7)(a﹣b)2=4(a﹣b)2,故答案为:4(a﹣b)2;(2)原式=﹣3(x2+2y)+2021,当x2+2y=−13时,原式=﹣3×(−13)+2021=1+2021=2022,即原式的值为2022.【点评】本题考查整式的加减运算,理解整体思想解题的应用,掌握合并同类项(系数相加,字母及其指数不变)的运算法则是解题关键.24.(2022秋•黔西南州期中)“整体思想”是中学数学解题中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:3(a+b)+2(a+b)=(3+2)(a+b)=5(a+b).请应用整体思想解答下列问题:(1)化简:3(x+y)2﹣5(x+y)2+7(x+y)2;(2)已知a2+2a+1=0,求2a2+4a﹣3的值.【分析】(1)直接利用合并同类项法则计算得出答案;(2)所求式子变形后,将已知等式代入计算即可求出值.【解答】解:(1)3(x+y)2﹣5(x+y)2+7(x+y)2=(3﹣5+7)(x+y)2=5(x+y)2;(2)∵a2+2a+1=0,∴2a2+4a﹣3=2(a2+2a+1)﹣5=0﹣5=﹣5.【点评】此题主要考查了代数式求值,利用了整体代入的思想.25.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是一种重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+7(a﹣b)2,其结果是;(2)已知x2﹣2y=1,求﹣3x2+6y+5的值.【分析】(1)把(a﹣b)2看成一个整体,根据合并同类项的法则化简即可;(2)把x2﹣2y=1看成一个整体,整体代入求值即可.【解答】解:(1)原式=(3﹣1+7)(a﹣b)2=9(a﹣b)2,故答案为:9(a﹣b)2;(2)∵x2﹣2y=1,∴原式=﹣3(x2﹣2y)+5=﹣3+5=2.【点评】本题考查了合并同类项,代数式求值,考查整体思想,把x2﹣2y=1看成一个整体,整体代入求值是解题的关键.26.(2022秋•沁县期末)我们知道:4x+2x﹣x=(4+2﹣1)x=5x,类似地,若我们把(a+b)看成一个整体,则有4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2;(2)已知:x2+2y=5,求代数式﹣3x2﹣6y+21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)利用“整体思想”和合并同类项法则进行计算即可;(2)先把﹣3x2﹣6y+21化成﹣3(x2+2y)+21,再把x2+2y=5整体代入,计算即可;(3)由a﹣2b=3,2b﹣c=﹣5,c﹣d=10,得出a﹣c=﹣2,2b﹣d=5,再代入计算即可.【解答】解:(1)3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2=﹣2(a﹣b)2;(2)﹣3x2﹣6y+21=﹣3(x2+2y)+21,当x2+2y=5时,原式=﹣3×5+21=6;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=3+(﹣5)=﹣2,2b﹣d=﹣5+10=5,∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣2+5﹣(﹣5)=8.【点评】本题考查了整式的加减—化简求值,会把整式正确化简及运用“整体思想”是解决问题的关键.27.(2022秋•铜梁区期末)先化简,再求值:6a2﹣[2(a2+ab)﹣4ab]﹣ab,其中a,b满足|a+1|+(b﹣2)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:∵6a2﹣[2(a2+ab)﹣4ab]﹣ab=6a2﹣(2a2+2ab﹣4ab)﹣ab=6a2﹣2a2+2ab﹣ab=4a2+ab,∵a,b满足|a+1|+(b﹣2)2=0,∴a+1=0,a=﹣1.b﹣2=0,b=2.则原式=4×(﹣1)2+(﹣1)×2=4﹣2=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2022秋•汝阳县期末)已知|a+1|+(b﹣2)2=0,求5ab2﹣[3ab﹣2(﹣2ab2+ab)]的值.【分析】直接利用非负数的性质得出a,b的值,再利用整式的加减运算法则计算,进而得出答案.【解答】解:∵|a+1|+(b﹣2)2=0,∴a+1=0,b﹣2=0,解得:a=﹣1,b=2,∵5ab2﹣[3ab﹣2(﹣2ab2+ab)]=5ab2﹣(3ab+4ab2﹣2ab)=5ab2﹣(ab+4ab2)=ab2﹣ab,将a=﹣1,b=2代入原式=ab2﹣ab=﹣1×22﹣(﹣1)×2=﹣4+2=﹣2.【点评】此题主要考查了整式的加减—化简求值,正确掌握相关运算法则是解题关键.29.(2022秋•沙坪坝区期末)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣(2x2﹣15xy+6x2﹣xy)=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.30.(2022秋•利州区校级期末)先化简,再求值:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2),其中x、y满足(x﹣3)2+|+13|=0.【分析】先化简整式,再根据非负数的和为0求出x、y的值,最后代入求值.【解答】解:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2)=3x2+2xy﹣3y2﹣2x2﹣2xy+2y2=x2﹣y2.∵(x﹣3)2+|+13|=0.又∵(x﹣3)2≥0,|+13|≥0.∴x=3,y=−13.∴原式=32﹣(−13)2=9−19=889.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则,根据非负数的和求出x、y的值是解决本题的关键.31.(2022秋•招远市期末)先化简,再求值;4B−[(2−2)−3(2+3B−132)],其中x、y满足(−2)2+ |+12|=0.【分析】先化简整式,再根据非负数的意义确定x、y的值,最后代入化简后的整式求值.【解答】解:4B−[(2−2)−3(2+3B−132)]=4xy﹣(x2﹣y2﹣3x2﹣9xy+y2)=4xy﹣x2+y2+3x2+9xy﹣y2=13xy+2x2.∵(−2)2+|+12|=0,又∵(x﹣2)2≥0,|y+12|≥0,∴x=2,y=−12.当x=2,y=−12时,原式=13×2×(−12)+2×22=﹣13+2×4=﹣13+8=﹣5.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及非负数的意义是解决本题的关键.32.(2022秋•万州区期末)化简求322b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.【分析】利用去括号的法则和合并同类项的法则化简运算,利用非负数的性质求得a,b的值,将a,b 的值代入运算即可.【解答】解:原式=322b﹣2ab2﹣2−32a2b+12ab2﹣2=−32B2−4.∵2(−3)2022+|+23|=0,(a﹣3)2022≥0,|b+23|≥0,∴a﹣3=0,+23=0,∴a=3,=−23.∴原式=−32×3×(−23)2−4=−92×49−4=﹣2﹣4=﹣6.【点评】本题主要考查了求代数式的值,整式的加减与化简求值,非负数的应用,正确利用去括号的法则和合并同类项的法则运算是解题的关键.33.(2022秋•潼南区期末)先化简,再求值:已知x,y满足|x﹣1|+(y+5)2=0,求代数式3(2−B+162)−2(2B+2−142)的值.【分析】利用非负数的性质求出x,y的值,去括号合并同类项可得结论.【解答】解:3(2−B+162)−2(2B+2−142)=3x2﹣3xy+12y2﹣4xy﹣2x2+12y2=x2﹣7xy+y2,∵|x﹣1|+(y+5)2=0,∴x=1,y=﹣5,∴原式=12﹣7×1×(﹣5)+(﹣5)2=61.【点评】本题考查整式的加减,非负数的性质等知识,解题的关键是掌握整式的混合运算的法则,属于中考常考题型.34.(2022秋•沙坪坝区校级期中)先化简,再求值:2(2−2B2)−[(−22+42p−13(6B2−322)],其中x是最大的负整数,y是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x是最大的负整数,y是绝对值最小的正整数,∴x=﹣1,y=1,∴2(2−2B2)−[(−22+42p−13(6B2−322)]=2x2y﹣4xy2﹣(﹣x2y2+4x2y﹣2xy2+x2y2)=2x2y﹣4xy2+x2y2﹣4x2y+2xy2﹣x2y2=﹣2x2y﹣2xy2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x2y﹣2xy2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.35.(2022秋•松滋市期末)已知关于x,y的单项式7x a y与﹣4x2y b是同类项.(1)求a、b的值;(2)化简求值:5(2a2b﹣ab2)﹣6(−32ab2+2a2b).【分析】(1)根据同类项的定义可得结论;(2)先去括号,再合并同类项.【解答】解:(1)∵单项式7x a y与﹣4x2y b是同类项,∴a=2,b=1.(2)5(2a2b﹣ab2)﹣6(−32ab2+2a2b)=10a2b﹣5ab2+9ab2﹣12a2b=4ab2﹣2a2b.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则、有理数的混合运算是解决本题的关键.36.已知2a3m b和﹣2a6b n+2是同类项,化简并求值:2(m2﹣mn)﹣3(2m2﹣3mn)﹣2[m2﹣(2m2﹣mn+m2)]﹣1.【分析】原式去括号合并得到最简结果,利用同类项定义求出m与n的值,代入计算即可求出值.【解答】解:原式=2m2﹣2mn﹣6m2+9mn﹣2m2+4m2﹣2mn+2m2﹣1=5mn﹣1,∵2a3m b和﹣2a6b n+2是同类项,∴3m=6,n+2=1,即m=2,n=﹣1,则原式=﹣10﹣1=﹣11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.37.已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.【分析】将A与B代入A+2B中,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:∵A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,∴A+2B=3a2﹣6ab+b2+2(﹣2a2+3ab﹣5b2)=3a2﹣6ab+b2﹣4a2+6ab﹣10b2=﹣a2﹣9b2,当a=1,b=﹣1时原式=﹣12﹣9×(﹣1)2=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.38.先化简,再求值:已知=−12+2,=34−−1.若3b﹣a的值为﹣8,求A﹣2B的值.【分析】此题需要先去括号,再合并同类项,将原整式化简,然后再将3b﹣a=﹣8代入求解即可.【解答】解:∵A=a−12b+2,B=34−b﹣1,∴A﹣2B=(−12+2)−2(34−−1)=−12+2−32+2+2=−12+32+4把3b﹣a=﹣8代入,原式=−r32+4=−82+4=−4+4=0.【点评】此题考查了整式的混合运算,主要考查了整式的加减法、去括号、合并同类项的知识点.注意运算顺序以及符号的处理.39.(2022秋•和平区校级期中)已知A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2.(1)化简:2A﹣3B;(2)当a=﹣1,b=2时,求2A﹣3B的值.【分析】(1)将A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2代入2A﹣3B中,再进行化简即可求解;(2)将a=﹣1,b=2代入(1)中化简的式子即可求解.【解答】解:(1)∵A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2,∴2A﹣3B=2(3b2﹣2a4+5ab)﹣3(4ab+2b2﹣a2)=6b2﹣4a4+10ab﹣12ab﹣6b2+3a2=﹣4a4+3a2﹣2ab;(2)当a=﹣1,b=2时,2A﹣3B=﹣4a4+3a2﹣2ab=﹣4×(﹣1)4+3×(﹣1)2﹣2×(﹣1)×2=﹣4+3+4=3.【点评】本题主要考查了整式的化简,掌握合并同类法则是解题的关键.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B ﹣2A的值.【分析】先把A、B表示的代数式代入并化简整式,再利用非负数的性质求出x、y的值,最后代入计算.【解答】解:B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣2x﹣4y=﹣5x﹣5y.∵|x﹣2|+(y−15)2=0,|x﹣2|≥0,(y−15)2≥0,∴|x﹣2|=0,(y−15)2=0.∴x=2,y=15.当x=2,y=15时,原式=﹣5×2﹣5×15=﹣10﹣1=﹣11.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则,非负数的性质是解决本题的关键.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab=7ab;(2)当a=−27,b=3时,A﹣2(A﹣B)=7×(−27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a2+2ab+7﹣6a2+9ab+3=11ab+10.(2)当a,b互为倒数时,ab=1,2A﹣(A+3B)=11ab+10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.44.(2022秋•兴城市期末)已知多项式A=3x2﹣bx+6,B=2ax2﹣4x﹣1;(1)若(a﹣3)2+|b﹣2|=0,求代数式2A﹣B的值;(2)若代数式2A+B的值与x无关,求5a+2b的值.【分析】(1)根据两个非负数的和为0,两个非负数分别为0,再进行化简求值即可求解;(2)根据2A+B的值与x的取值无关,即为含x的式子为0即可求解.【解答】解:(1)由题意得,a﹣3=0,b﹣2=0,∴a=3,b=2,∴A=3x2﹣2x+6,B=6x2﹣4x﹣1,∴2A﹣B=2(3x2﹣2x+6)﹣(6x2﹣4x﹣1)=6x2﹣4x+12﹣6x2+4x+1=13;(2)由题意得,2A+B=2(3x2﹣bx+6)+2ax2﹣4x﹣1,=6x2﹣2bx+12+2ax2﹣4x﹣1=(6+2a)x2﹣(2b+4)x+11∵代数式2A+B的值与x无关,∴6+2a=0,2b+4=0,∴a=﹣3,b=﹣2,∴5a+2b=5×(﹣3)+2×(﹣2)=﹣19.【点评】本题考查了整式的化简求值、非负数的性质,解决本题的关键是与x的值无关即是含x的式子为0.45.(2022秋•韩城市期末)已知关于x的多项式A,B,其中A=mx2+2x﹣1,B=x2﹣nx+2(m,n为有理数).(1)化简2B﹣A;(2)若2B﹣A的结果不含x项和x2项,求m、n的值.【分析】(1)根据整式的减法法则计算即可;(2)根据结果不含x项和x2项可知其系数为0,然后列式计算即可.【解答】解:(1)2B﹣A=2(x2﹣nx+2)﹣(mx2+2x﹣1)=2x2﹣2nx+4﹣mx2﹣2x+1=2x2﹣mx2﹣2nx﹣2x+5;(2)2B﹣A=2x2﹣mx2﹣2nx﹣2x+5=(2﹣m)x2﹣(2n+2)x+5,∵2B﹣A的结果不含x项和x2项,∴2﹣m=0,2n+2=0,解得m=2,n=﹣1.【点评】本题考查了整式的加减运算,关键是注意去括号时符号的变化情况.46.(2022秋•北碚区校级期末)已知A=32B2−2x﹣1,B=3x2−13mx+4,(1)当4A−3B的值与x的取值无关,求m、n的值;(2)在(1)的条件下,求多项式(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)的值.【分析】(1)化简整理整式,令含有x的项的系数为0,求出m、n的值;(2)把m、n的数据代入代数式求值.【解答】解:(1)∵A=32B2−2x﹣1,B=3x2−13mx+4,∴4A−3B=4(32B2−2x﹣1)﹣3(3x2−13mx+4)=6nx2﹣8x﹣4﹣9x2+mx﹣12=(6n﹣9)x2+(m﹣8)x﹣16,∵4A−3B的值与x的取值无关,∴6n﹣9=0,m﹣8=0,∴n=32,m=8;(2)由(1)得n=32,m=8,∴(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)=m2﹣3mn+3n2﹣2nm+mn+4n2=m2﹣4mn+7n2=82﹣4×8×32+7×(32)2=64﹣48+634=16+15.75=31.75.【点评】本题考查了整式的混合运算化简求值,解题的关键是掌握整式的混合运算.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式32−[2B2−4(B−342p]+2B2的值.【分析】首先求出a,b的值,再化简求值即可.【解答】解:A﹣B=(x2+ax﹣y)﹣(bx2﹣x﹣2y)=(1﹣b)x2+(a+1)x+y,∵A与B的差与x的取值无关,∴a=﹣1,b=1,∴原式=3a2b﹣2ab2+4ab﹣3a2b+2ab2=4ab=﹣4.【点评】本题考查整式的加减,解题关键是理解题意,掌握整式是加减法则,属于中考常考题型.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2+3xy﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以=25.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=−12;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b=3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=−12时,原式=(﹣4)2×(−12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。

北师大版七年级数学上册第三章《整式及其加减》练习题含答案解析 (31)

北师大版七年级数学上册第三章《整式及其加减》练习题含答案解析 (31)

一、选择题1. 小明与小亮在操场上练习跑步,小明的速度是 x m/s ,小亮的速度是 y m/s ,小亮比小明跑得快,两人从同一地点同时起跑 a s 后,小明落后小亮 ( ) A . (ax −ay ) m B . (ay −ax ) m C . (ax +ay ) mD . axy m2. 小明用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是 8 时,输出的数据是 ( )输入⋯12345⋯输出⋯3223512310730⋯ A . 839B . 738C . 637D . 5363. 如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是 ( )A .B .C.D.4.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,⋯,依此规律跳动下去,点P第99次跳动至点P99的坐标是( )A.(26,50)B.(−26,50)C.(25,50)D.(−25,50)5.1883年,康托尔构造的这个分形,称做康托尔集,从长度为1的线段开始,康托尔取走其中间三分之一而达到第一阶段;然后从每人个余下的三分之一线段中取走中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点就称做康托尔集,如图是康托尔集的最初几个阶段,当达到第5个阶段时,取走的所有线段的长度之和为( )A.13B.242243C.211243D.322436.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2,⋯以此类推,第n次平移将长方形A n−1B n−1C n−1D n−1沿A n−1B n−1的方向向右平移5个单位,得到长方形A n B n C n D n(n>2),则AB n长为( )A.5n+6B.5n+1C.5n+4D.5n+37.下列计算正确的是( )A.3a2+a=4a2B.−2(a−b)=−2a+bC.a2b−2a2b=−a2b D.5a−4a=18.下列按照一定规律排列一组图形,其中图形①中共有2个小三角形,图形②中共有6个小“三角形,图形③中共有11个小三角形,图形④中共有17个小三角形,⋯⋯,按此规律,图形⑧中共有n个小三角形,这里的n=( )A.32B.41C.51D.539.为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价格为a元,则降价前此药品的价格为( )A.52a元B.25a元C.53a元D.35a元10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,⋯⋯,如此下去,则第2018个图中共有正方形的个数为( )A.2018B.2019C.6052D.6056二、填空题11.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,⋯,则第n−1(n为正整数,n⋯2)个图案由个▲组成.12.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是.13.有理数a,b,c,d在数轴上的位置如图,则∣a−b∣+∣b−c∣−∣d−a∣=.14.在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(1,1),B(1,−1),C(−1,−1),D(−1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,⋯⋯,按此操作下去,则P2020的坐标为.15.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等.小明将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48.若将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0对准乙尺的刻度m,则此时甲尺的刻度n会对准乙尺的刻度为.(用含m,n的式子表示)16.观察下列图形:它们是按一定规律排列的,依照此规律,第10个图形中共有个点.+(b+c)m−m2的值为.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1.则abm三、解答题18.若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为ℎ(单位为:cm).(1) 用m,n,ℎ表示所需地毯的面积;(2) 若m=160,n=60,ℎ=75,求地毯的面积.19.如图所示,一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a,三角形的高为ℎ.(1) 用式子表示阴影部分的面积;(2) 当a=2,ℎ=1时,求阴影部分的面积.220.阅读下面材料:在数轴上5与−2所对的两点之间的距离:∣5−(−2)∣=7;在数轴上−2与3所对的两点之间的距离:∣−2−3∣=5;在数轴上−8与−5所对的两点之间的距离:∣(−8)−(−5)∣=3.在数轴上点A,B分别表示数a,b,则A,B两点之间的距离AB=∣a−b∣=∣b−a∣.回答下列问题:(1) 数轴上表示−2和−5的两点之间的距离是;数轴上表示数x和3的两点之间的距离表示为;数轴上表示数和的两点之间的距离表示为∣x+2∣;(2) 七年级研究性学习小组在数学老师指导下,对式子∣x+2∣+∣x−3∣进行探究:请你在草稿纸上画出数轴,当表示数x的点在−2与3之间移动时,∣x−3∣+∣x+2∣的值总是一个固定的值为:.21.学校操场上的环形跑道长400米,小胖、小杰的速度分别是a米/分,b米/分(其中a>b).两人从同一地点同时出发,求:(1) 如果两人反向而行,则经过多长时间两人第一次相遇?(2) 如果两人同向而行,则经过多长时间两人第一次相遇?22.归纳.人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学里,我们也常用这样的方法探求规律,例如:三角形有3个顶点,如果在它的内部再画n个点,并以(n+3)个点为顶点画三角形,那么最多以剪得多少个这样的三角形?为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.(1) 完成表格信息:,;(2) 通过观察、比较,可以发现:三角形内的点每增加1个,最多可以剪得的三角形增加个.于是,我们可以猜想:当三角形内的点的个数为n时,最多可以剪得个三角形.像这样通过对现象的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.在日常生活中,人们互相交谈时,常常有人在列举了一些现象后,说“这(即列举的现象)说明⋯⋯”其实这就是运用了归纳的方法.用归纳的方法得出的结论不一定正确,是否正确需要加以证实.(3) 请你尝试用归纳的方法探索(用表格呈现,并加以证实):1+3+5+7+⋯+(2n−1)的和是多少?23.探索规律,观察下面由⋇组成的图案和算式,解答问题:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52.⋯(1) 请猜想1+3+5+7+9+⋯+19=;(2) 请猜想1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3)=;(3) 请计算:101+103+⋯+197+199.24.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”.如图1的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1) 图2是显示部分代数式的“等和格”,可得a=(用含b的代数式表示);(2) 图3是显示部分代数式的“等和格”,可得a=,b=;(3) 图4是显示部分代数式的“等和格”,求b的值(写出具体求解过程).25.A,B两地果园分别有橘子40吨和60吨,C,D两地分别需要橘子30吨和70吨;已知从A,B到C,D的运价如表: 到C地到D地A果园每吨15元每吨12元B果园每吨10元每吨9元(1) 若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为吨,从A果园将橘子运往D地的运输费用为元.(2) 用含x的式子表示出总运输费(要求:列式,化简).(3) 求总运输费用的最大值和最小值.(4) 若这批橘子在C地和D地进行再加工,经测算,全部橘子加工完毕后总成本为w元,且w=−(x−25)2+4360.则当x=时,w有最值(填“大”或“小”).这个值是.答案一、选择题 1. 【答案】B【知识点】简单列代数式2. 【答案】D【解析】 ∵ 第 n 个数据的规律是:n+2n (n+1), 故 n =8 时为:8+28×9=1072=536. 【知识点】用代数式表示规律3. 【答案】C【解析】由题意知,原图形中各行、各列中点数之和为 10,符合此要求的只有C . 【知识点】用代数式表示规律4. 【答案】D【知识点】点的平移、用代数式表示规律5. 【答案】C【解析】根据题意知:第一阶段时,余下的线段的长度之和为 23, 第二阶段时,余下的线段的长度之和为 23×23=(23)2, 第三阶段时,余下的线段的长度之和为 23×23×23=(23)3, ⋯, 以此类推,当达到第五个阶段时,余下的线段的长度之和为 (23)5=32243, 取走的线段的长度之和为 1−32243=211243. 【知识点】用代数式表示规律6. 【答案】A【解析】每次平移 5 个单位,n 次平移 5n 个单位,即 BN 的长为 5n ,加上 AB 的长即为 AB n 的长,AB n =5n +AB =5n +6. 【知识点】用代数式表示规律7. 【答案】C【解析】3a2,a不是同类项,不能合并,故A错误;−2(a−b)=−2a+2b,故B错误;a2b−2a2b=−a2b,故C正确;5a−4a=a,故D错误,故选:C.【知识点】合并同类项、去括号8. 【答案】C【解析】设第m个图形中有a m(m为正整数)个小三角形.观察图形,可知:a1=1+1=2,a2=(1+2)+3=6,a3=(1+2+3)+5=11,a4= (1+2+3+4)+7=17,⋯,∴a m=(1+2+⋯+m)+2m−1=m(m+1)2+2m−1=12m2+52m−1(m为正整数),∴n=a8=12×82+52×8−1=51.【知识点】用代数式表示规律9. 【答案】C【知识点】用字母表示数10. 【答案】C【解析】第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形11个,⋯,第n个图形有正方形(3n−2)个,当n=2018时,3×2018−2=6052个正方形.【知识点】用代数式表示规律二、填空题11. 【答案】(3n−2)【解析】观察发现:第一个图形有3×2−3+1=4个三角形;第二个图形有3×3−3+1=7个三角形;第一个图形有3×4−3+1=10个三角形;⋯第n−1个图形有3n−3+1=3n−2个三角形.【知识点】用代数式表示规律12. 【答案】82【知识点】用代数式表示规律13. 【答案】c+d−2b【解析】根据数轴右侧的数大于左侧的数,则右侧数减去左侧数为正,去掉绝对值,∵a−b>0,b−c<0,d−a<0,∴∣a−b∣=a−b,∣b−c∣=−(b−c),∣d−a∣=−(d−a),故∣a−b∣+∣b−c∣−∣d−a∣=a−b−(b−c)+(d−a)=a−b−b+c+d−a=c+d−2b.【知识点】整式的加减运算、绝对值的几何意义14. 【答案】(0,2)【解析】∵点P坐标为(0,2),点A坐标为(1,1),∴点P关于点A的对称点P1的坐标为(2,0),点P1关于点B(1,−1)的对称点P2的坐标(0,−2),点P2关于点C(−1,−1)的对称点P3的坐标为(−2,0),点P3关于点D(−1,1)的对称点P4的坐标为(0,2),即点P4与点P重合了;∵2020÷4=505,∴点P2020的坐标与点P4的坐标相同,∴点P2020的坐标为(0,2).【知识点】坐标平面内图形轴对称变换n+m15. 【答案】43【知识点】简单列代数式16. 【答案】165【解析】第一个图形有3=3×1=3个点,第二个图形有3+6=3×(1+2)=9个点(在第一个图形的基础上,外面又包了一个三角形,三个顶点,在三边上多了三个点);第三个图形有3+6+9=3×(1+2+3)=18个点;(在第二个图形基础上,外面又包了一个三角形,在三边上多了三个点,即:在第一图形的基础上多了两个三角形,从里向外,依次多6个点,9个点,包括增加的三角形的顶点)⋯第n个图形有3+6+9+⋯+3n=3×(1+2+3+⋯+n)=3n(n+1)个点;2=165个点,当n=10时,3×10×112故答案为:165.【知识点】用代数式表示规律17. 【答案】0或−2【解析】ab=1,c+d=0.∣m∣=1.−1=0或−2.原式=1m【知识点】简单的代数式求值三、解答题18. 【答案】(1) 地毯的面积为:(mn+2nℎ)cm2.(2) 地毯总长:60×2+160=280(cm),160×60+2×60×75=18600(cm2),答:地毯的面积为18600cm2.【知识点】简单的代数式求值、简单列代数式19. 【答案】aℎ=a2−2aℎ.(1) 阴影部分的面积为:a2−4×12时,(2) 当a=2,ℎ=12原式=a2−2aℎ=22−2×2×12=2.【知识点】简单列代数式、简单的代数式求值20. 【答案】(1) 3;∣x−3∣;x;−2(2) 5【解析】(1) 数轴上表示−2和−5的两点之间的距离=∣−2−(−5)∣=3;数轴上表示数x和3的两点之间的距离=∣x−3∣;数轴上表示数x和−2的两点之间的距离表示为∣x+2∣.(2) 当−2≤x≤3时,∣x+2∣+∣x−3∣=x+2+3−x=5.【知识点】绝对值的几何意义、整式的加减运算、数轴的概念21. 【答案】(1) 400a+b分钟.(2) 400a−b分钟.【知识点】简单列代数式22. 【答案】(1) 5;7(2) 2;(2n+1)(3)加数的个数和1+3221+3+5321+3+5+742⋯⋯1+3+5+7+⋯+(2n−1)n2证明:∵S=1+3+5+7+⋯+(2n−5)+(2n−3)+(2n−1),∴S=(2n−1)+(2n−3)+(2n−5)+⋯+7+5+3+1,∴S+S=2n⋅n=2n2,2S=2n2,S=n2.【解析】(1) 由图形规律可得,答案为5,7.(2) ∵5−3=7−5=2,∴三角形内的点每增加1个,最多可以剪得的三角形增加2个;∵三角形内点的个数为1时,最多剪出的小三角形个数3=2×1+1,三角形内点的个数为2时,最多剪出的小三角形个数5=2×2+1,三角形内点的个数为3时,最多剪出的小三角形个数7=2×3+1,∴三角形内点的个数为n时,最多剪出的小三角形个数2n+1.【知识点】用代数式表示规律、整式的加减运算23. 【答案】(1) 100(2) (n+2)2(3)101+103+⋯+197+199 =(1+1992)2−(1+992)2=10000−2500=7500.【解析】(1) 1+3+5+7+9+⋯+19=(1+192)2=100.(2)1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3) =(1+2n+32)2=(n+2)2.【知识点】用代数式表示规律24. 【答案】(1) −b(2) −2;2(3) 2a2+a+(a−2a2)=a2+2a+(a+3),a2+a=−3,2a2+a+(a+3)=b+3a2+2a+(a2+2a),b=−2a2−2a+3,b=−2(a2+a)+3=6+3=9.【知识点】整式的加减运算25. 【答案】(1) (40−x),12(40−x).(2) 从A果园运到C地x吨,运费为每吨15元;从A果园运到D地的橘子为(40−x)吨,运费为每吨12元;从B果园运到C地(30−x)吨,运费为每吨10元;从B果园运到D地(30+x)吨,运费为每吨9元;所以总运费为:15x+12(40−x)+10(30−x)+9(30+x)=2x+1050.(3) 因为总运费=2x+1050,当x=30时,有最大值2×30+1050=1110元.当x=0时,有最小值2×0+1050=1050元.(4) 25大4360【解析】(1) 因为从A果园运到C地的橘子是x吨,那么从A果园运到D地的橘子为(40−x)吨,从A运到D地的运费是12元每吨,所以A果园将橘子运往D地的运输费用为12(40−x)吨.(4) w=−(x−25)2+4360,因为二次项系数−1<0,所以抛物线开口向下,当x=25时,w有最大值.最大值时4360.【知识点】二次函数的最值、简单的代数式求值、整式加减的应用、简单列代数式。

部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

专题05 整式的化简求值(30题) 专项训练1.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.2.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.3.(2022·陕西·七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.4.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.5.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.6.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.7.(2022·黑龙江牡丹江·七年级期末)先化简,再求值:3xy -12(6xy -12x 2y 2)+2(3xy -5x 2y 2),其中21||(2)02x y -++=8.(2022·河北保定·七年级期末)化简求值 222221382(33)(3)3535x x xy y x xy y -+-+++,其中1,22x y =-=9.(2022·江西赣州·七年级期末)先化简再求值:22222(3)2(3)3a b ab ab a b ab ---+,其中2a =-,3b =-.【答案】29a b ,108-.【分析】根据整式的混合运算法则将式子化简,再将a ,b 的值代入计算即可.【详解】解:原式=222223263a b ab ab a b ab --++,=29a b .当2a =-,3b =-时,29(2)(3)108´-´-=-.【点睛】本题考查整式的化简求值,解题的关键是熟练掌握整式的混合运算法则.10.(2022·四川乐山·七年级期末)先化简,再求值.已知:()()222352mn n mn m mn éù----+ëû,其中1m =,2n =-.【答案】﹣9mn++6n 2+5m 2,47【分析】首先根据整式的加减运算法则,将整式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】原式=﹣2mn +6n 2﹣5(mn ﹣m 2)﹣2mn =﹣2mn +6n 2﹣5mn +5m 2﹣2mn =﹣9mn++6n 2+5m 2当m =1,n =﹣2时,原式=()()229126251=18245=47-´´-+´-+´++.【点睛】本题考查了整式的乘法、去括号、合并同类项的知识点.解题的关键是熟练掌握整式的乘法、去括号、合并同类项法则.11.(2022·吉林松原·七年级期末)先化简,再求值:222(3)(2)()a b a b b a ---+-,其中2a =-,12b =-.【答案】22a b +,3【分析】先去括号,再合并同类项即可化简,然后把a 、b 值代入化简式计算即可.12.(2022·云南文山·七年级期末)先化简,再求值:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2),其中x =﹣1,y =2【答案】3x 2+y 2,7【分析】先去括号,然后合并同类项,即把式子进行化简,然后代入数值即可求解.【详解】解:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2)=2x 2+y 2+2y 2﹣3x 2﹣2y 2+4x 2=3x 2+y 2当x =﹣1,y =2时,原式=()223127´-+=.【点睛】本题主要考查了整式的加减的化简求值,正确去括号,合并同类项是解题的关键.13.(2022·黑龙江大庆·七年级期末)(1)化简:5(43)(92)a a b a b --+++;(2)先化简,再求值:()()323232242x y x y x ---+,其中3x =,2y =-.【答案】(1)b -;(2)3x -,27-【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项,最后将3x =代入计算即可得到答案.【详解】解:(1)()()54392a a b a b --+++54392a a b a b=---++b =-;(2)()()323232242x y x y x---+323232442x y x y x =--+-3x =-,当3x =时,原式3327=-=-.【点睛】本题考查整式的加减法则,解题的关键是熟练掌握去括号和合并同类项的法则.14.(2022·广西贵港·七年级期末)先化简,再求值:已知(2b −1)2+3|a +2|=0,求2(a 2b +ab 2)−(2ab 2−1+a 2b )−2的值.15.(2022·湖南衡阳·七年级期末)先化简,再求值:6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b ),其中a =2,b =﹣3.【答案】23ab -,-54【分析】先去括号,再合并同类项,然后把a =2,b =﹣3代入化简后的结果,即可求解.【详解】解∶ 6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b )()2222126312a b ab ab a b =---+ 2222126312a b ab ab a b =-+-23ab =-当a =2,b =﹣3时,原式()232354=-´´-=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.16.(2022·海南·七年级期末)先化简,再求值:()()222234+---x y xy x y xy x y ,其中x =1,y =−1.【答案】255x y xy -+,0【分析】先去括号,再合并同类项进行化简,然后将x 、y 的值代入即可.【详解】解:()()222234+---x y xy x y xy x y22222334x y xy x y xy x y =+-+-,255x y xy =-+.当x =1,y =−1时,原式()()2511511550=-´´-+´´-=-=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.17.(2022·河南三门峡·七年级期末)先化简,再求值:5x 2﹣(3y 2+5x 2)+(4y 2+7xy ),其中x =2,y =﹣1.(2)化简:33611106m n m n --+-+-(3)先化简,再求值:2222213242x y x y xy x y xy æöæö--+--ç÷ç÷,其中2x =-,14y =.19.(2022·河北保定·七年级期末)先化简,再求值:()()22222325x y xy xy x y ---+,其中1,33x y =-=.20.(2022·四川宜宾·七年级期末)先化简,再求值.22222(23)21,y x x y y éù+---+ëû其中22, 1.7x y ==-【答案】221y y ++,2【分析】先去括号,合并同类项对原式进行化简,再代入x 和y 的值计算即可.【详解】原式=222222321y x x y y éù+-+-+ëû=22321y y y +-+=221y y ++原式=2-1+1 =2.【点睛】本题考查整式的加减运算和化简求值,解题的关键是正确去括号和合并同类项.21.(2022·辽宁本溪·七年级期末)先化简,再求值:()()()322322232x y x y x y x -----+,其中3x =-,2y =-.【答案】2223y x y --+,8-【分析】利用去括号、合并同类项化简后,再代入求值即可.【详解】解:原式322324232x y x y x y x =--+-+-2223y x y=--+当3x =-,2y =-时,原式()()()22223328=-´--´-+´-=-.【点睛】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.22.(2022·河北石家庄·七年级期末)计算与化简(1)计算:()223232a b ab a b ab ---+ (2)先化简,再求值:()()2254542x x x x -+++-+,其中2x =-.【答案】(1)25a b ab - (2)291x x ++,-13【分析】(1)根据整式的加减运算法则进行去括号、合并同类项即可;(2)先根据整式的加减运算法则进行去括号、合并同类项,再将2x =-代入化简的结果进行计算即可.(1)解:原式22364a b ab a b ab =--++25a b ab=-(2)解:原式2254542x x x x =-+++-+291x x =++当2x =-时,原式()()2292113=-+´-+=-.【点睛】本题考查了整式的加减运算以及化简求值,熟练掌握运算法则并仔细计算是解题的关键.23.(2022·安徽芜湖·七年级期末)先化简,再求值:2﹣3(a 2﹣2a )+2(﹣3a 2+a +1),其中a =﹣2.【答案】﹣9a 2+8a +4,-48【分析】先去括号,再合并同类项,最后把a 的值代入计算即可.【详解】解:原式=2﹣3a 2+6a ﹣6a 2+2a +2=﹣9a 2+8a +4,当a =﹣2时,原式=﹣9×(﹣2)2+8×(﹣2)+4=﹣9×4﹣16+4=﹣48.【点睛】本题考查了整式的加减运算与求值,属于常考题型,熟练掌握整式的加减运算法则是解题关键.24.(2022·浙江金华·七年级期末)先化简再求值:()()226922x xy x xy --+++,其中2x =-,15y =.25.(2022·广东惠州·七年级期末)已知22(1)0a b ++-=,化简计算:()221129433a ab a ab ---()题的关键.26.(2022·湖北荆州·七年级期末)先化简,再求值:()223242xy x xy xy x æö+---+ç÷,其中4x =-,3y =.27.(2022·四川成都·七年级期末)(1)计算:﹣12022+8×(12-)3+2×|﹣6+2|;(2)先化简,再求值:2(﹣3x 2y ﹣2xy 252+)﹣5(﹣xy 2﹣2x 2y +1)﹣xy 2,其中20|1|2x y ++()﹣=.当x =-1,y =2时,原式=4×1×2=8.【点睛】本题考查了整式的加减-化简求值,有理数的混合运算,偶次方和绝对值的非负性,准确熟练地进行计算是解题的关键.28.(2022·四川成都·七年级期末)先化简,再求值:2a 212-(ab +a 2)52-ab ,其中a =2,b =﹣4.29.(2022·云南红河·七年级期末)先化简,再求值:()()22225342x x x x x ---++,其中12x =-.30.(2022·辽宁大连·七年级期末)若()22120a b -++=,试求多项式:()22212322a b a a b æö-+-+ç÷的值.。

七年级数学上册化简求值专项训练(带答案)

七年级数学上册化简求值专项训练(带答案)

七年级数学上册化简求值专项训练(带答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2015年11月14日整式的加减(化简求值)一.解答题(共30小题)1.(2014秋•黔东南州期末)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.2.(2014•咸阳模拟)已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.3.(2015•宝应县校级模拟)先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2012.4.(2014•咸阳模拟)已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.5.(2014•咸阳模拟)已知A=x2﹣2x+1,B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.6.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.7.(2014•陕西模拟)先化简,再求值:m﹣2()﹣(),其中m=,n=﹣1.8.(2015春•萧山区校级月考)化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y),其中|x+|+(y﹣)2=0.9.(2015•宝应县校级模拟)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)10.(2011秋•正安县期末)4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.11.(2009秋•吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中12.(2010秋•武进区期中)已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.13.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?14.(2012秋•德清县校级期中)先化简,再求值:﹣(3a2﹣4ab)+a2﹣2(2a+2ab),其中a=2,b=﹣1.15.已知,B=2a2+3a﹣6,C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B﹣2C的值.16.(2008秋•城口县校级期中)已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A ﹣2B+3C的值,其中x=﹣2.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4,其中a=﹣2,b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a},其中a=﹣,b=0.4的值.18.已知a、b在数轴上如图所示,化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.19.(2012秋•中山市校级期末)(1)﹣=1(2)[(x+1)+2]﹣2=x(3)化简并求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.20.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.21.已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.22.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.23.先化简,再求值.(1)已知(a+2)2+|b﹣|=0,求a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2的值.(2)已知a﹣b=2,求多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a).(3)已知:a+b=﹣2,a﹣b=﹣3,求代数式:2(4a﹣3b﹣2ab)﹣3(2a﹣)的值.24.(2014秋•漳州期末)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).级别月用水量水价第1级20吨以下(含20吨) 1.6元/吨第2级20吨﹣30吨(含30吨)超过20吨部分按2.4元/吨第3级30吨以上超过30吨部分按4.8元/吨(1)若张红家5月份用水量为15吨,则该月需缴交水费元;(2)若张红家6月份缴交水费44元,则该月用水量为吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元(用含a的代数式表示)25.(2014•咸阳模拟)先化简,再求值(1)(3a﹣4a2+1+2a3)﹣(﹣a+5a2+3a3),其中a=﹣1.(2)0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y,其中.26.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n的值.27.(2015春•濮阳校级期中)有一道题,求3a2﹣4a2b+3ab+4a2b﹣ab+a2﹣2ab的值,其中a=﹣1,b=,小明同学把b=错写成了b=﹣,但他计算的结果是正确的,请你通过计算说明这是怎么回事?28.(2014秋•温州期末)有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.29.(2015春•绥阳县校级期末)化简并求值.4(x﹣1)﹣2(x2+1)﹣(4x2﹣2x),其中x=2.30.(2014•咸阳模拟)先化简,再求值.(1)3x3﹣[x3+(6x2﹣7x)]﹣2(x3﹣2x2﹣4x),其中x=﹣1;(2)5x2﹣(3y2+7xy)+(2y2﹣5x2),其中x=,y=﹣2015年11月14日整式的加减(化简求值)参考答案与试题解析一.解答题(共30小题)1.(2014秋•黔东南州期末)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.【考点】整式的加减—化简求值.【分析】首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.【点评】熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.2.(2014•咸阳模拟)已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.【考点】整式的加减;数轴;绝对值.【分析】本题涉及数轴、绝对值,解答时根据绝对值定义分别求出绝对值,再根据整式的加减,去括号、合并同类项即可化简.【解答】解:由图可知,a>0,a+b<0,c﹣a<0,b+c<0,∴原式=a+(a+b)﹣(c﹣a)﹣(b+c)=a+a+b﹣c+a﹣b﹣c=3a﹣2c.【点评】解决此类问题,应熟练掌握绝对值的代数定义,正数的绝对值等于它本身,负数的绝对值等于它的相反数.注意化简即去括号、合并同类项.3.(2015•宝应县校级模拟)先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2012.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣x2+x﹣2y+x+2y=﹣x2+x,当x=,y=2012时,原式=﹣+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.4.(2014•咸阳模拟)已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】因为平方与绝对值都是非负数,且(x+1)2+|y﹣1|=0,所以x+1=0,y﹣1=0,解得x,y的值.再运用整式的加减运算,去括号、合并同类项,然后代入求值即可.【解答】解:2(xy﹣5xy2)﹣(3xy2﹣xy)=(2xy﹣10xy2)﹣(3xy2﹣xy)=2xy﹣10xy2﹣3xy2+xy=(2xy+xy)+(﹣3xy2﹣10xy2)=3xy﹣13xy2,∵(x+1)2+|y﹣1|=0∴(x+1)=0,y﹣1=0∴x=﹣1,y=1.∴当x=﹣1,y=1时,3xy﹣13xy2=3×(﹣1)×1﹣13×(﹣1)×12=﹣3+13=10.答:2(xy﹣5xy2)﹣(3xy2﹣xy)的值为10.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简.5.(2014•咸阳模拟)已知A=x2﹣2x+1,B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.【考点】整式的加减.【专题】计算题.【分析】(1)根据题意可得A+2B=x2﹣2x+1+2(2x2﹣6x+3),去括号合并可得出答案.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3),先去括号,然后合并即可.【解答】解:(1)由题意得:A+2B=x2﹣2x+1+2(2x2﹣6x+3),=x2﹣2x+1+4x2﹣12x+6,=5x2﹣14x+7.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3),=2x2﹣4x+2﹣2x2+6x﹣3,=2x﹣1.【点评】本题考查了整式的加减,难度不大,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.6.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).∵x=﹣2,∴原式=﹣16.【点评】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.然后代入求值即可.7.(2014•陕西模拟)先化简,再求值:m﹣2()﹣(),其中m=,n=﹣1.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将m与n的值代入计算即可求出值.【解答】解:原式=m﹣2m+n2﹣m+n2=﹣3m+n2,当m=,n=﹣1时,原式=﹣3×+(﹣1)2=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2015春•萧山区校级月考)化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y),其中|x+|+(y﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=5x2﹣10y﹣x2+y﹣8x2+16y﹣x2+y=﹣4x2+8y,∵|x+|+(y﹣)2=0,∴x+=0,y﹣=0,即x=﹣,y=,则原式=﹣1+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.9.(2015•宝应县校级模拟)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)【考点】整式的加减.【专题】计算题.【分析】原式去括号合并即可得到结果.【解答】解:原式=6x2﹣4xy﹣8x2+4xy+4=﹣2x2+4.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.(2011秋•正安县期末)4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.【考点】整式的加减—化简求值.【专题】计算题.【分析】根据运算顺序,先计算小括号里的,故先把小括号外边的2利用乘法分配律乘到括号里边,然后根据去括号法则:括号前面是负号,去掉括号和负号,括号里各项都变号,合并后再利用去括号法则计算,再合并即可得到最后结果,最后把x与y的值代入到化简得式子中即可求出值.【解答】解:4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1=4x2y﹣[6xy﹣(6xy﹣4)﹣x2y]+1=4x2y﹣(6xy﹣6xy+4﹣x2y)+1=4x2y﹣(4﹣x2y)+1=4x2y﹣4+x2y+1=5x2y﹣3,当x=﹣,y=4时,原式=5x2y﹣3=5××4﹣3=5﹣3=2.【点评】此题考查了整式的化简求值,去括号法则,以及合并同类项.其中去括号法则为:括号前面是正号,去掉括号和正号,括号里各项不变号;括号前面是负号,去掉括号和负号,括号里各项都要变号,此外注意括号外边有数字因式,先把数字因式乘到括号里再计算.合并同类项法则为:只把系数相加减,字母和字母的指数不变.解答此类题时注意把原式化到最简后再代值.11.(2009秋•吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中【考点】整式的加减—化简求值;整式的加减.【分析】(1)先去括号,3a+(﹣8a+2)﹣(3﹣4a)=3a﹣8a+2﹣3+4a;再合并同类项.(2)先去括号,2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3=2xy2+6y3﹣2x2y+2x2y﹣y3﹣xy2﹣4y3;再合并同类项;(3)先去括号,合并同类项,将复杂整式,化为最简式﹣3x+y2;再将代入计算即可.【解答】解:(1)3a+(﹣8a+2)﹣(3﹣4a),=3a﹣8a+2﹣3+4a,=﹣a﹣1;(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3=2xy2+6y3﹣2x2y+2x2y﹣y3﹣xy2﹣4y3=xy2+y3;(3)原式=x y2﹣x+y2=﹣3x+y2当时,原式=﹣3×(﹣2)+()2=6.【点评】此类题的解答规律是先去括号,合并同类项,将整式化为最简式,最后代入计算求值.易错点是多项式合并时易漏项.12.(2010秋•武进区期中)已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】由,据非负数≥0,即任意数的偶次方或绝对值都是非负数,故只能x﹣=0,和y+3=0;将3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)去括号,化简得x2y+4x2,问题可求.【解答】解:由题意,∵,∴x﹣=0,y+3=0,即x=,y=﹣3;∴3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2),=3x2y﹣2x2y+9x2y﹣6x2y﹣4x2﹣3x2y+8x2,=x2y+4x2,=x2(y+4),=()2×(﹣3+4),=.【点评】本题综合考查了非负数的性质和化简求值,正确解答的关键是掌握:非负数≥0,这个知识点.13.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?【考点】整式的加减.【分析】先根据A﹣B=﹣8x2+7x+10得出A,再求出A+B即可.【解答】解:∵A﹣B=﹣8x2+7x+10,B=3x2﹣2x﹣6,∴A=(﹣8x2+7x+10)+(3x2﹣2x﹣6)=﹣8x2+7x+10+3x2﹣2x﹣6=﹣5x2+5x+4,∴A+B=(﹣5x2+5x+4)+(3x2﹣2x﹣6)=﹣5x2+5x+4+3x2﹣2x﹣6=﹣2x2+3x﹣2.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.14.(2012秋•德清县校级期中)先化简,再求值:﹣(3a2﹣4ab)+a2﹣2(2a+2ab),其中a=2,b=﹣1.【考点】整式的加减;合并同类项;去括号与添括号.【专题】计算题.【分析】先去括号,再合并同类项,把a=2代入求出即可.【解答】解:当a=2,b=﹣1时,原式=﹣3a2+4ab+a2﹣4a﹣4ab,=﹣2a2﹣4a,=﹣2×22﹣4×2,=﹣16.【点评】本题考查了整式的加减,合并同类项,去括号等知识点的应用,通过做此题培养了学生运用所学的知识进行计算的能力,题目比较典型,难度适中.15.已知,B=2a2+3a﹣6,C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B﹣2C的值.【考点】整式的加减;代数式求值.【分析】(1)根据题意列出A+B﹣2C的式子,再去括号,合并同类项即可;(2)把a=﹣2代入(1)中的式子即可.【解答】解:(1)∵,B=2a2+3a﹣6,C=a2﹣3.∴A+B﹣2C=(a2﹣1)+(2a2+3a﹣6)﹣2(a2﹣3)=a2﹣+2a2+3a﹣6﹣2a2+6=a2+3a﹣;(2)∵由(1)知,A+B﹣2C=a2+3a﹣,∴当a=﹣2时,原式=﹣6﹣=﹣5.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.16.(2008秋•城口县校级期中)已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A ﹣2B+3C的值,其中x=﹣2.【考点】整式的加减—化简求值.【专题】常规题型.【分析】由B=x2+2x﹣6,可得2B=2x2+4x﹣12;由C=x3+2x﹣3,可得3C=3x3+6x﹣9;把A、B、C代入A﹣2B+3C去括号,合并化简,最后代入x=﹣2计算即可.【解答】解:∵B=x2+2x﹣6,∴2B=2x2+4x﹣12;∵C=x3+2x﹣3,∴3C=3x3+6x﹣9;由题意,得:A﹣2B+3C=x3﹣2x2+4x+3﹣(2x2+4x﹣12)+(3x3+6x﹣9),=x3﹣2x2+4x+3﹣2x2﹣4x+12+3x3+6x﹣9,=4x3﹣4x2+6x+6,=4x2(x﹣1)+6x+6,∵x=﹣2.∴原式=4×(﹣2)2(﹣2﹣1)+6×(﹣2)+6,=4×4×(﹣3)﹣12+6,=﹣48﹣12+6,=﹣54.【点评】本题的解答,不要忙于代入计算;应先将复杂的式子整理成最简式,再代入计算.此类题的解答,关键是不要怕麻烦,一步一步的求解.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4,其中a=﹣2,b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a},其中a=﹣,b=0.4的值.【考点】整式的加减—化简求值.【分析】(1)直接合并同类项,再代值计算;(2)去括号,合并同类项,再代值计算.【解答】解:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4=﹣a4+7ab﹣13a2b2﹣3ab2+6a2b当a=﹣2,b=1时,原式=﹣(﹣2)4+7×(﹣2)×1﹣13(﹣2)2×12﹣3×(﹣2)×(﹣1)2+6(﹣2)2×1=﹣16﹣14﹣52+6+24,=﹣52;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a}=2a﹣{7b+[4a﹣7b﹣2a+6a+4b]﹣3a}=2a﹣{7b+4a﹣7b﹣2a+6a+4b﹣3a}=2a﹣{5a+4b}=﹣3a﹣4b,当a=﹣,b=0.4时,原式=﹣3×(﹣)﹣4×0.4=﹣.【点评】本题考查了整式的加减及求值问题,需要先化简,再代值.直接代值,可能使运算麻烦,容易出错.18.已知a、b在数轴上如图所示,化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.【考点】整式的加减;数轴;绝对值.【专题】计算题.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|>|b|,∴a+b<0,a﹣b<0,﹣b﹣a=﹣(a+b)>0,b﹣a>0,则原式=﹣2a﹣2b+a﹣b+a+b+b﹣a=﹣a﹣b.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.19.(2012秋•中山市校级期末)(1)﹣=1(2)[(x+1)+2]﹣2=x(3)化简并求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.【考点】整式的加减—化简求值;整式的加减;解一元一次方程.【专题】计算题.【分析】(1)方程去分母,去括号,移项合并,把m系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)去分母得:3﹣3m﹣6+6m=6,移项合并得:3m=9,解得:m=3;(2)去括号得:x+1+3﹣=x,去分母得:3x+48﹣30=8x,解得:x=;(3)原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.【考点】合并同类项.【分析】运用相反数的定义得(﹣3a)3+(2m﹣5)a n=0,求出m,a,再代入求值.【解答】解:∵(﹣3a)3与(2m﹣5)a n互为相反数∴(﹣3a)3+(2m﹣5)a n=0,∴2m﹣5=27,n=3,解得m=16,n=3,∴==5.【点评】本题主要考查了合并同类项,解题的关键是确定(﹣3a)3+(2m﹣5)a n=0,21.已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据三个非负数的和为0,必须都为0得出a+2=0,b+1=0,c﹣=0,求出a b c的值,先去小括号、再去中括号,最后去大括号后合并同类项,把a b c的值代入求出即可.【解答】解:∵|a+2|+(b+1)2+(c﹣)2=0,∴三个非负数的和为0,必须都为0,即a+2=0,b+1=0,c﹣=0,解得:a=﹣2,b=﹣1,c=,5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}=5abc﹣{2a2b﹣[3abc﹣4ab2+a2b]}=5abc﹣{2a2b﹣3abc+4ab2﹣a2b}=5abc﹣2a2b+3abc﹣4ab2+a2b=8abc﹣a2b﹣4ab2,当a=﹣2,b=﹣1,c=时,原式=8×(﹣2)×(﹣1)×﹣(﹣2)2×(﹣1)﹣4×(﹣2)×(﹣1)2=+4+8=17.【点评】本题考查了求代数式的值,整式的加减,非负数的性质等知识点,关键是正确化简和求出a b c的值,题目比较典型,但是一道比较容易出错的题目.22.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.【考点】合并同类项;多项式.【分析】由于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,在合并同类项时,可以得到二次项为0,由此得到故m、n的方程,即m﹣3=0,2n+4=0,解方程即可求出m,n,然后把m、n的值代入n m,即可求出代数式的值.【解答】解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=4.【点评】考查了多项式,根据在多项式中不含哪一项,则哪一项的系数为0,由此建立方程,解方程即可求得待定系数的值.23.先化简,再求值.(1)已知(a+2)2+|b﹣|=0,求a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2的值.(2)已知a﹣b=2,求多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a).(3)已知:a+b=﹣2,a﹣b=﹣3,求代数式:2(4a﹣3b﹣2ab)﹣3(2a﹣)的值.【考点】整式的加减—化简求值.【分析】(1)根据非负数的性质得到a,b的值,再把a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2去括号、合并同类项进行化简后代值计算即可求解;(2)先把多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a)合并同类项,再把a﹣b=2整体代入即可求解;(3)先把代数式2(4a﹣3b﹣2ab)﹣3(2a﹣)化简,再根据a+b=﹣2,a﹣b=﹣3,得到ab的值,最后整体代入即可求解.【解答】解:(1)∵(a+2)2+|b﹣|=0,∴a+2=0,解得a=﹣2,b﹣=0,解得b=;a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2=a2b﹣[2a2﹣2ab2+4a2b﹣4]﹣2ab2=a2b﹣2a2+2ab2﹣4a2b+4﹣2ab2=﹣3a2b﹣2a2+4=﹣6﹣8+4=﹣10.(2)∵a﹣b=2,(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a)=﹣(a﹣b)2﹣4(a﹣b)=﹣1﹣8=﹣9.(3)∵a+b=﹣2,a﹣b=﹣3,∴(a+b)2﹣(a+b)2=a2+2ab+b2﹣a2+2ab﹣b2=4ab=4﹣9=﹣5,∴ab=﹣1.25,∴2(4a﹣3b﹣2ab)﹣3(2a﹣)=8a﹣6b﹣4ab﹣6a+8b+ab=2a+2b﹣3ab=2(a+b)﹣3ab=﹣4+3.75=﹣0.25.【点评】考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.注意整体思想的运用.24.(2014秋•漳州期末)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).级别月用水量水价第1级20吨以下(含20吨) 1.6元/吨第2级20吨﹣30吨(含30吨)超过20吨部分按2.4元/吨第3级30吨以上超过30吨部分按4.8元/吨(1)若张红家5月份用水量为15吨,则该月需缴交水费24元;(2)若张红家6月份缴交水费44元,则该月用水量为25吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元(用含a的代数式表示)【考点】整式的加减;列代数式.【专题】应用题.【分析】(1)判断得到15吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得到6月份用水量在20吨﹣30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.【解答】解:(1)∵15<20,∴该月需缴水费为15×1.6=24(元);故答案为:24;(2)设该月用水量为x吨,经判断20<x<30,根据题意得:20×1.5+(x﹣20)×2.4=44,解得:x=25,故答案为:25;(3)20×1.6+10×2.4+(a﹣20﹣10)×4.8=4.8a﹣88;答:该月需缴交水费(4.8a﹣88)元.【点评】本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.25.(2014•咸阳模拟)先化简,再求值(1)(3a﹣4a2+1+2a3)﹣(﹣a+5a2+3a3),其中a=﹣1.(2)0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y,其中.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)先将原式去括号、合并同类项,再把a=﹣1代入化简后的式子,计算即可;(2)先将原式合并同类项,再把x=﹣1,y=代入化简后的式子,计算即可.【解答】解:(1)原式=3a﹣4a2+1+2a3+a﹣5a2﹣3a3=﹣a3﹣9a2+4a+1,当a=﹣1时,原式=1﹣9×1﹣4+1=﹣11;(2)原式=0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y=0.6x2y﹣0.5xy2,当x=﹣1,y=时,原式=0.6×1×﹣0.5×(﹣1)×=+=.【点评】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.26.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n的值.【考点】同类项.【专题】计算题.【分析】同类项的含有相同的字母且相同字母的指数相同,由此可得出答案.【解答】解:由题意得:m=1,n+1=4,解得:m=1,n=3.∴2m+n=5.【点评】本题考查同类项的知识,属于基础题,注意掌握同类项的定义.27.(2015春•濮阳校级期中)有一道题,求3a2﹣4a2b+3ab+4a2b﹣ab+a2﹣2ab的值,其中a=﹣1,b=,小明同学把b=错写成了b=﹣,但他计算的结果是正确的,请你通过计算说明这是怎么回事?【考点】整式的加减—化简求值.【专题】计算题.【分析】原式合并同类项得到结果不含b,则有b的取值无关.【解答】解:原式=4a2,当a=﹣1,b=时,原式=4,与b的值无关.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2014秋•温州期末)有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.【考点】整式的加减.【专题】应用题.【分析】首先将原代数式去括号,合并同类项,化为最简整式为﹣2y3,与x无关;所以甲同学把“”错抄成“”,但他计算的结果也是正确的.【解答】解:(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3=﹣2×(﹣1)3=2.因为化简的结果中不含x,所以原式的值与x值无关.【点评】整式的加减运算实际上就是去括号、合并同类项.注意去括号时符号的变化.21。

部编数学七年级上册培优专题04整式的化简求值的五种类型解析版含答案

部编数学七年级上册培优专题04整式的化简求值的五种类型解析版含答案

培优专题04 整式的化简求值的五种类型【专题精讲】整式的化简常与求值相结合,体现了特殊与一般的辩证关系.解决这类问题的大体步骤可以简化为“一化、二代、三计算”,但有时也可根据题目的特征和已知条件灵活选择解题方法.根据代入方法的不同,可将整式的化简求值题划分为以下几种类型:(1)利用直接代入法求值;(2)利用整体代入法求值(3)利用拆项或添项法求值(4)利用降次消元法求值;(5)利用赋值法求值◎类型一:利用直接代入法求值解题方法:整式的化简求值一般分为三步:一是利用整式加减的运算法则将整式化简;二是把已知字母或某个整式的值代入化简后的式子;三是依据有理数的运算法则进行计算1.(黑龙江省大庆市庆新中学2021-2022学年六年级(五四学制)下学期期末考试数学试题)先化简,再求值213((1)322----+xy y xy x,其中54,33x y==()()23343334a a a a a +----+,其中a =﹣1.【答案】327353a a a -++-,2【分析】首先去括号,合并同类项,把代数式化简,然后再代入a 的值,进而可得答案.【详解】解:()()23343334a a a a a +----+23343334a a a a a =+--+-327353a a a =-++-当a =﹣1时,原式()()()3271315132=-´-+´-+´--=【点睛】此题主要考查了整式的化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.3.(2020·天津市红桥区教师发展中心七年级期中)已知2223A x xy y =+-,2223B x xy y =-+(1)求32A B +;(2)当21,==x y ,求32A B +的值.【答案】(1)2277x y -(2)21【分析】(1)把A 和B 代入,去括号,然后合并同类项即可求解;(2)把x 和y 的值代入求解即可.(1)解:32A B+()()2222323223x xy y x xy y =+++﹣﹣2222369462x xy y x xy y -+++-=2277x y =-(2)解:当2x =,y =1时,原式=()227x y -()22721=´-()741=´-=21【点睛】本题主要考查整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解题的关键.4.(2021·福建·福州十八中七年级期中)先化简,再求值:(1)()()2232223,a a a a ---其中3a =-.(2)()2272421,x y xy xy x y éù-----+ëû其中x ,y 满足()2201510x y -++=.◎类型二:利用整体代入法求值解题方法:解答此类题目,先将原式化简,再将已知条件(或变形后的条件)整体代入求值。

人教版七年级数学上册作业课件 第二章 整式的加减 专题训练(四) 整式化简求值的常见类型

人教版七年级数学上册作业课件 第二章 整式的加减 专题训练(四) 整式化简求值的常见类型

4.已知2x2+xy=10,3y2+2xy=6,求4x2+8xy+9y2的值. 解:原式=4x2+2xy+6xy+9y2=2(2x2+xy)+3(3y2+2xy)=2×10+3×6=38 5.已知当x=2时,多项式-ax3-[8-(bx+2ax3)]的值为5,求当x=-2时该多项式的值. 解:-ax3-[8-(bx+2ax3)]=ax3+bx-8, 当x=2时,原式=8a+2b-8=5,所以8a+2b=13; 当x=-2时,原式=-8a-2b-8=-(8a+2b)-8=-13-8=-21
11.已知关于x,y的多项式(2bx2+ax-y+6)-(2x2-3x+5y-1)化简后不含x2项和x项, 求a,b的值. 解:原式=2bx2+ax-y+6-2x2+3x-5y+1=(2b-2)x2+(a+3)x-6y+7. 因为化简后不含x2项与x项,所以2b-2=0且a+3=0,则a=-3,b=1
12.已知A=2x2+3xy-2x-1,B=-x2+xy-1. (1)求3A+6B的值; (2)若3A+6B的值与x取值无关,求y的值. 解:(1)3A+6B=3(2x2+3xy-2x-1)+6(-x2+xy-1) =6x2+9xy-6x-3-6x2+6xy-6=15xy-6x-9 (2)原式=(15y-6)x-9.因为其值与 x 无关,所以 15y-6=0,则 y=25
解:原式=5ab-6ab+8ab2+ab-5ab2=3ab2, 当 a=12 ,b=-23 时,原式=23
(3)3x2y-[2x2y-3(2xy-x2y)-xy],其中 x=-12 ,y=2.
解:原式=3x2y-[2x2y-6xy+3x2y-xy]=3x2y-2x2y+6xy-3x2y+xy= -2x2y+7xy,当 x=-12 ,y=2 时,原式=-2×(-12 )2×2+7×(-12 )×2=-8

新人教版七年级数学上册专题训练:整式的化简求值(含答案)

新人教版七年级数学上册专题训练:整式的化简求值(含答案)

专题训练 整式的化简求值类型1 化简后直接代入求值1.(柳州期中)先化简,再求值:5x 2+4-3x 2-5x -2x 2-5+6x ,其中x =-3.解:原式=(5-3-2)x 2+(-5+6)x +(4-5) =x -1.当x =-3时,原式=-3-1=-4.2.(北流期中)先化简,再求值:(3a 2b -2ab 2)-2(ab 2-2a 2b),其中a =2,b =-1.解:原式=3a 2b -2ab 2-2ab 2+4a 2b=7a 2b -4ab 2.当a =2,b =-1时,原式=-28-8=-36. 3.先化简,再求值:2(x +x 2y)-23(3x 2y +32x)-y 2,其中x =1,y =-3.解:原式=2x +2x 2y -2x 2y -x -y 2=x -y 2.当x =1,y =-3时,原式=1-9=-8.4.(钦南期末)先化简,再求值:2x 2y -[2xy 2-2(-x 2y +4xy 2)],其中x =12,y =-2.解:原式=2x 2y -2xy 2-2x 2y +8xy 2=6xy 2.当x =12,y =-2时,原式=6×12×4=12.5.(南宁四十七中月考)先化简,再求值:2(x 2y +xy)-3(x 2y -xy)-4x 2y ,其中x ,y 满足|x +1|+(y -12)2=0. 解:原式=2x 2y +2xy -3x 2y +3xy -4x 2y=-5x 2y +5xy.因为|x +1|+(y -12)2=0,所以x =-1,y =12.故原式=-52-52=-5.类型2 整体代入求值6.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.解:原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2.当a 2+2b 2=5时,原式=2(a 2+2b 2)=10.7.已知||m +n -2+(mn +3)2=0,求2(m +n)-2[mn +(m +n)]-3[2(m +n)-3mn]的值.解:由已知条件知m +n =2,mn =-3,所以原式=2(m +n)-2mn -2(m +n)-6(m +n)+9mn =-6(m +n)+7mn =-12-21 =-33.专题训练角的计算类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.解:因为∠EOD=28°46′,OD 平分∠COE, 所以∠COE=2∠EOD=2×28°46′=57°32′. 又因为∠AOB =40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1,当∠AOB 与∠BOC 互补时,求∠COD 的度数; (2)如图2,当∠AOB 与∠BOC 互余时,求∠COD 的度数. 解:(1)因为∠AOB 与∠BOC 互补, 所以∠AOB+∠BOC =180°. 又因为∠AOB=40°,所以∠BOC=180°-40°=140°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=70°.(2)因为∠AOB 与∠BOC 互余, 所以∠AOB+∠BOC=90°. 又因为∠AOB=40°,所以∠BOC=90°-40°=50°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.5.一个角的余角比它的补角的23还少40°,求这个角的度数.解:设这个角的度数为x °,根据题意,得 90-x =23(180-x)-40.解得x =30.所以这个角的度数是30°.6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °.因为OB 平分∠AOC, 所以∠AOB=3x °.所以2x +3x +3x +20=180. 解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °. 因为∠AOB=12∠BOC,所以∠BOC=2x °.所以3x +3x +2x +x =360. 解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小.解:因为∠AOB=75°,∠AOC =23∠AOB,所以∠AOC=23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°; 如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线, 所以∠AOC=12∠AOB.因为∠AOB=60°, 所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°. (3)90°+α2 或90°-α2.专题训练 整式的加减运算计算:(1)(钦南期末)a 2b +3ab 2-a 2b ;解:原式=3ab 2.(2)2(a -1)-(2a -3)+3; 解:原式=4.(3)2(2a 2+9b)+3(-5a 2-4b);解:原式=-11a 2+6b.(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);解:原式=2x 2-1.(5)(钦南期末)(2x 2-12+3x)-4(x -x 2+12);解:原式=2x 2-12+3x -4x +4x 2-2=6x 2-x -52.(6)3(x 2-x 2y -2x 2y 2)-2(-x 2+2x 2y -3);解:原式=3x2-3x2y-6x2y2+2x2-4x2y+6=5x2-7x2y-6x2y2+6.(7)-(2x2+3xy-1)+(3x2-3xy+x-3);解:原式=-2x2-3xy+1+3x2-3xy+x-3=x2-6xy+x-2.(8)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=-2a2+b2.(9)-3(2x2-xy)+4(x2+xy-6);解:原式=-6x2+3xy+4x2+4xy-24=-2x2+7xy-24.(10)(钦州期中)2a2-[-5ab+(ab-a2)]-2ab. 解:原式=2a2+5ab-ab+a2-2ab=3a2+2ab.。

七年级整式的加减计算及化简求值练习100道(含答案)

七年级整式的加减计算及化简求值练习100道(含答案)

七年级整式的加减计算及化简求值练习100道(含答案)一.合并同类项1.化简:(1)﹣5a+(3a﹣2)﹣(3a﹣7);(2)(5a2+a﹣6)﹣4(3﹣8a+2a2)2.化简:(1)x2﹣7x﹣2﹣2x2+4x﹣1(2)(8xy﹣3y2)﹣2(3xy﹣2x2)(3)﹣7a2+(6a2﹣4ab)﹣(3b2+ab﹣a2)3.计算:(1)3x+2(x﹣)﹣(x+1)(2)5(2a2b﹣ab2)﹣(6a2b﹣3ab2)4.化简(1)3a3+a2﹣2a3﹣4a2 (2)(2x2﹣1+3x)﹣4(x﹣x2+)5.计算:(1)3(x2﹣5xy)﹣4(x2+2xy﹣y2)﹣5(y2﹣3xy)(2)(x﹣x2+1)﹣2(x2﹣1+3x)6.化简:(1)a2+3b2+3ab﹣4a2﹣4b2;(2)8x2﹣[5x﹣(x﹣7)+2x2]﹣47.合并同类项:(1)(2xy﹣y)﹣(﹣y+xy)(2)(3a2﹣ab+7)﹣(﹣4a2+2ab+7)8.整式的化简:(1)a﹣(2a﹣3b)+2(3b﹣2a)(2)3a2b﹣[4ab2﹣3(ab2+a2b)﹣ab2]﹣6a2b 9.计算:(1)3a2+3b2+2ab﹣4a2﹣3b2;(2)a2+(5a2﹣2a)﹣2(a2﹣3a).10.化简:(1)2(x﹣3x2+l)﹣3(2x2﹣x﹣2)(2)5mn2+3m2n﹣mn2﹣2m2n﹣111.化简(1)a2﹣2(a2+b)﹣2b(2)﹣3(2x2﹣xy)+4(x2+xy﹣1)12.化简:3x2y﹣[2xy﹣2(xy﹣x2y)+xy]二.化简求值13.已知两个多项式A、B,A﹣B=2x2+6,A=3x2+x+5,(1)用含x的式子表示B;(2)当x=2时,求2A﹣3B的值.14.先化简,再求值:(3a2﹣ab+7)﹣(﹣4a2+2ab+7),其中a=﹣1,b=215.求x﹣2(2x﹣)+3(﹣)值,其中x=|1﹣32|,y=2.16.先化简,再求值,a2b﹣[a2b﹣(3abc﹣a2c)+4a2c],其中a,b,c满足关于x、y的单项式cx2a+2y2与﹣4xy b+4的和为0.17.先化简下式,再求值:x﹣2(x﹣y2)+(﹣x+y2).其中x=3,y=2.18.已知A=(2x﹣y)2,B=4x(x﹣y)(1)求2A﹣B的值,其中x=﹣1,y=1;(2)试比较代数式A、B的大小.19.先化简,再求值:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y﹣1],其中x=2,y=﹣.20.先化简,再求值:(4a2﹣2ab+b2)﹣3(a2﹣ab+b2),其中a=﹣1,b=﹣.21.先化简,再求值:5m2﹣[3m﹣(3m+3)+4m2],其中m=﹣3.22.(1)﹣(+9)﹣12﹣()(2)4﹣2×(﹣3)2+6÷(﹣)(3)化简:5(a2+5a)﹣(a2+7a)(4)先化简,再求值:2(a2b+ab2)﹣3(a2b﹣1)﹣2ab2﹣4,其中a=2018,b=.23.已知A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2,(1)求2A﹣3B;(2)若|2x﹣3|=1,y2=9,且|x﹣y|=y﹣x,求2A﹣3B的值.24.(1)计算:﹣12019﹣(﹣)×[4﹣(﹣)2](2)先化简,再求值:(2x3﹣3x2y﹣xy2)﹣(x3﹣2xy2﹣y3)+(﹣x3+3x2y﹣y3),其中x=,y=2.25.先化简,再求值(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y2)+(﹣x3+3x2y﹣y2),其中x=2019,y=﹣126.先化简,后求值:(3m2﹣4mn)﹣2(m2+2mn),其中m,n满足单项式﹣x m+1y3与y n x2的和仍是单项式.27.先化简,再求值:(6a2﹣16a)﹣5(a2﹣3a+2),其中a2﹣a﹣7=028.先化简,再求值:2(ab+3a2)﹣[5a2﹣(3ab﹣b2)],其中a=,b=1.29.先化简,再求值:6ab2﹣(ab2+3a2b)+5(3a2b﹣ab2),其中a=,b=﹣1.21.先化简,再求值:已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,求当a=﹣,b=2时,﹣B+2A的值.24.(1)化简:5(2x3y+3xy2)﹣(6xy2﹣3x3y)(2)化简求值:已知a+b=9,ab=20,求(﹣15a+3ab)+(2ab﹣10a)﹣4(ab+3b)的值.25.先化简,再求值:(4x2y﹣5xy2+2xy)﹣3(x2y﹣xy2+yx),其中x=2,y=﹣.26.先化简,再求值:5(3a2b﹣ab2)﹣2(﹣ab2+4a2b),其中a=2,b=﹣3.27.(1)﹣45×(﹣0.4)(2)﹣22+(﹣2)+(﹣)﹣|﹣1.5|(3)先化简,再求值:x2+(x2﹣4y)﹣2(x2﹣2y+1),其中x=﹣1,y=28.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.29.先化简,再求值:x﹣(4x+5xy﹣y2)+2(x﹣xy﹣y2),其中x=2,y=.30.先化简,再求值:5(3x2y﹣xy2)﹣(xy2+3x2y),其中x=1,y=﹣1.31.已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1).(1)化简此多项式;(2)若x,y互为倒数,且恰好计算得多项式的值等于0,求x的值.32.(1)化简:﹣(2k3+4k2﹣28)+(k3﹣2k2+4k).(2)已知A﹣B=7a2﹣7ab,且B=﹣4a2+6ab+7.①求A+B;②若a=﹣1,b=2,求A+B的值.33.已知A=2a2﹣3b2,B=﹣a2+2b2,C=5a2﹣b2.(1)用含有a、b的代数式表示A+B﹣C;(2)若a=﹣,b=,求(1)中代数式的值.34.先化简,再求值:3(x2﹣2xy)﹣2[xy+(﹣xy+x2)﹣1],其中x=﹣4,y=.38.已知m是系数,关于x,y的两个多项式2mx2﹣2x+y与﹣6x2+x﹣3y的差中不含二次项,求代数式m2+3m﹣的值.39.(1)先化简,再求值:,其中m=,n=﹣3.(2)已知2a﹣b+5=0,求整式6a+b与﹣2a﹣3b+27的和的值.40.已知:A=x2﹣2xy+y2,B=x2+2xy+y2.(1)求﹣A+B;(2)如果2A﹣3B+C=0,那么C的表达式是什么?41.(1)化简:(3x2+1)+2(x2﹣2x+3)﹣(3x2+4x);(2)先化简,再求值:m﹣(n2﹣m)+2(m﹣n2)+5,其中m=2,n=﹣3.42.先化简,再求值:,其中m=2,n=3.43.化简与求值(1)化简:2m2﹣2m﹣m2﹣3;(2)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣3(ab2+1),其中a=﹣2,b=244.先化简,再求值:(1)(5x+y)﹣2(3x﹣4y),其中x=1,y=3(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=46.先化简,再求值.(1)5x2﹣(3y2+5x2)+(4y2+7xy),其中x=﹣1,y=1.(2),其中x=,y=2.48.计算题(1)已知A=3x2+4xy,B=x2+3xy﹣﹣y2,求:﹣A+2B.(2)先化简,再求值:2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=,b=﹣.七年级整式的加减计算及化简求值练习100道(含答案)一.合并同类项1.【解】(1)原式=﹣5a+3a﹣2﹣3a+7=﹣5a+5;(2)原式=5a2+a﹣6﹣12+32a﹣8a2=﹣3a2+33a﹣18;2.【解】(1)x2﹣7x﹣2﹣2x2+4x﹣1=﹣x2﹣3x﹣3;(2)(8xy﹣3y2)﹣2(3xy﹣2x2)=2xy﹣3y2+4x2;(3)﹣7a2+(6a2﹣4ab)﹣(3b2+ab﹣a2)=﹣3a2﹣3ab﹣3b2.3.【解】(1)3x+2(x﹣)﹣(x+1)=4x﹣2;(2)5(2a2b﹣ab2)﹣(6a2b﹣3ab2)=6a2b.4.【解】(1)原式=a3﹣3a2;(2)原式=2x2﹣1+3x﹣4x+4x2﹣2=6x2﹣x﹣3;5.【解】(1)3(x2﹣5xy)﹣4(x2+2xy﹣y2)﹣5(y2﹣3xy)=﹣x2﹣8xy﹣y2;(2)(x﹣x2+1)﹣2(x2﹣1+3x)=﹣3x2﹣5x+3.6.【解】(1)a2+3b2+3ab﹣4a2﹣4b2=﹣3a2﹣b2+3ab;(2)8x2﹣[5x﹣(x﹣7)+2x2]﹣4=6x2﹣x﹣11.7.【解】(1)原式=2xy﹣y+y﹣xy=xy;(2)原式=3a2﹣ab+7+4a2﹣2ab﹣7=7a2﹣3ab.8.【解】(1)a﹣(2a﹣3b)+2(3b﹣2a)=﹣5a+9b;(2)3a2b﹣[4ab2﹣3(ab2+a2b)﹣ab2]﹣6a2b=﹣2a2b.9.【解】(1)原式=(3a2﹣4a2)+(3b2﹣3b2)+2ab=﹣a2+2ab;(2)原式=a2+5a2﹣2a﹣2a2+6a=4a2+4a.10.【解】(1)原式=2x﹣6x2+2﹣6x2+3x+6=﹣12x2+5x+8;(2)原式=4mn2+m2n﹣1.11.【解】(1)原式=a2﹣2a2﹣b﹣2b=﹣a2﹣3b;(2)原式=﹣6x2+3xy+4x2+4xy﹣4=﹣2x2+7xy﹣4;12.【解】原式=x2y﹣xy二.化简求值13.【解】(1)∵A﹣B=2x2+6,A=3x2+x+5,∴B=A﹣(2x2+6)=3x2+x+5﹣2x2﹣6=x2+x﹣1;(2)2A﹣3B=2(3x2+x+5)﹣3(x2+x﹣1)=3x2﹣x﹣7,当x=2时,原式=12﹣2﹣7=﹣3;14.【解】原式=3a2﹣ab+7+4a2﹣2ab﹣7=7a2﹣3ab,当a=﹣1,b=2时,原式=7×1﹣3×(﹣1)×2=7+6=13.15.【解】原式=x﹣4x+y2﹣x+y2=﹣5x+y2,当x=|1﹣32|=|﹣8|=8,y=2÷(﹣)=2×(﹣3)=﹣6时,原式=﹣40+48=8.16.【解】根据题意得:cx2a+2y2+﹣4xy b+4=0,∴2a+2=1,b+4=2,c+﹣4)=0,∴a=﹣,b=﹣2,c=4;a2b﹣[a2b﹣(3abc﹣a2c)+4a2c]=﹣a2b+3abc﹣5a2c.把a=﹣,b=﹣2,c=4代入上式得,原式=.17.【解】原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=3,y=2时,原式=﹣9+4=﹣5.18.【解】(1)∵A=(2x﹣y)2,B=4x(x﹣y),∴2A﹣B=2(2x﹣y)2﹣4x(x﹣y)=8x2﹣8xy+2y2﹣4x2+4xy=4x2﹣4xy+2y2把x=﹣1,y=1代入上式得:原式=4×(﹣1)2﹣4×(﹣1)×1+2×12=10;(2)∵A=(2x﹣y)2,B=4x(x﹣y),∴A﹣B=(2x﹣y)2﹣4x(x﹣y)=4x2﹣4xy+y2﹣4x2+4xy=y2,∵y2≥0,∴A≥B.19.【解】原式=4x2y﹣(6xy﹣12xy+6﹣x2y﹣1)=5x2y+6xy﹣5当x=2,y=时,原式=5×4×()+6×2×()﹣5=﹣21;20.【解】原式=4a2﹣2ab+b2﹣3a2+3ab﹣3b2=a2+ab﹣2b2,当a=﹣1,b=时,原式=1+﹣=1.21.【解】原式=5m2﹣(3m﹣3m﹣3+4m2)=5m2+3﹣4m2=m2+3,当m=﹣3时,原式=9+3=12.22.【解】(1)原式=﹣﹣21=;(2)原式=4﹣2×9﹣12=﹣26;(3)原式=5a2+25a﹣a2﹣7a=4a2+18a;(4)原式=2a2b+2ab2﹣3a2b+3﹣2ab2﹣4=﹣a2b﹣1,当a=2018,b=时,原式=﹣2019;23.【解】(1)2A﹣3B=12x2+12y2﹣7xy;(2)由题意可知:2x﹣3=±1,y=±3,∴x=2或1,y=±3,由于|x﹣y|=y﹣x,∴y﹣x≥0,∴y≥x,当y=3,x=2时,原式=12(x2+y2)﹣7xy=114,当y=3,x=1时,原式=12×16﹣31×3=99.24.【解】(1)原式=﹣;(2)原式=2x3﹣3x2y﹣xy2﹣x3+2xy2+y3﹣x3+3x2y﹣y3=xy2,当x=,y=2时,原式=1.25.【解】原式=﹣2y2,当x=2019,y=﹣1时,原式=﹣2.26.【解】原式=3m2﹣4mn﹣2m2﹣4mn=m2﹣8mn,∵单项式﹣x m+1y3与y n x2的和仍是单项式,∴﹣x m+1y3与y n x2是同类项,∴m+1=2,即m=1,n=3,则原式=﹣23.27.【解】原式=6a2﹣16a﹣5a2+15a﹣10=a2﹣a﹣10,∵a2﹣a﹣7=0,∴a2﹣a=7,则原式=7﹣10=﹣3.28.【解】原式=2ab+6a2﹣5a2+3ab﹣b2=5ab+a2﹣b2,当a=,b=1时,原式==.29.【解】原式=6ab2﹣ab2﹣3a2b+15a2b﹣5ab2=12a2b,当a=,b=﹣1时,原式=12××(﹣1)=﹣3.21.【解】∴﹣B+2A=2a2+5b2﹣12ab,当a=﹣,b=2时,原式=32.24.【解】(1)原式=10x3y+15xy2﹣6xy2+3x3y=13x3y+9xy2;(2)原式=,把a+b=9,ab=20代入.25.【解】原式=4x2y﹣5xy2+2xy﹣3x2y+4xy2﹣3yx=x2y﹣xy2﹣xy,当x=2,y=﹣时,原式=22×(﹣)﹣2×(﹣)2﹣2×(﹣)=﹣1.26.【解】原式=15a2b﹣5ab2+2ab2﹣8a2b=7a2b﹣3ab2,当a=2,b=﹣3时,原式=﹣138.27.【解】(1)原式=﹣47;(2)原式==﹣8;(3)原=x2+3y﹣2,把x=﹣1,y=代入x2+3y﹣2=0.28.【解】(1)原式=4A﹣3A+2B=4ab﹣2a+,当a=﹣1,b=﹣2时,原式=10;(2)由(1)得:原式=(4b﹣2)a+,由结果与a的取值无关,得到4b﹣2=0,解得:b=.29.【解】原式=﹣2x﹣10xy﹣y2,当x=2,y=时,原式==﹣14.30.【解】原式=15x2y﹣5xy2﹣xy2﹣3x2y=12x2y﹣6xy2,当x=1,y=﹣1时,原式=﹣18.31.【解】(1)原式==2xy+4x﹣8;(2)∵x,y互为倒数,∴xy=1,则2xy+4x﹣8=2+4x﹣8=4x﹣6,由题意知4x﹣6=0,解得:x=.32.【解】(1)原式=﹣2k2+2k+7;(2)①A+B=A﹣B+2B=7a2﹣7ab+2(﹣4a2+6ab+7)=﹣a2+5ab+14,②当a=﹣1,b=2时,原式==3.33.【解】(1)A+B﹣C=﹣4a2;(2)将a=﹣代入,原式=﹣4×=﹣1.34.【解】原式=3x2﹣6xy﹣xy﹣3(﹣xy+x2)+2=﹣xy+2,当x=﹣4,y=时,原式==9.38.【解】∵m是系数,关于x,y的两个多项式2mx2﹣2x+y与﹣6x2+x﹣3y的差中不含二次项,∴2mx2﹣2x+y﹣(﹣6x2+x﹣3y)=(2m+6)x2﹣x+4y,∴2m+6=0,解得:m=﹣3,∴m2+3m﹣=9﹣9﹣=﹣.39【解】(1)原式=4mn﹣10当m=,n=﹣3时,原式=﹣16;(2)因为2a﹣b=﹣5,又因为6a+b+(﹣2a﹣3b+27)=6a+b﹣2a﹣3b+27=17答:整式6a+b与﹣2a﹣3b+27的和的值是17.40.【解】(1)﹣A+B=﹣(x2﹣2xy+y2)+(x2+2xy+y2)=4xy(2)因为2A﹣3B+C=0所以C=3B﹣2A=3(x2+2xy+y2)﹣2(x2﹣2xy+y2)=3x2+6xy+3y2﹣2x2+4xy﹣2y2=x2+10xy+y241.【解】(1)原式=2x2﹣8x+7;(2)原式=4m﹣n2+5,当m=2,n=﹣3时,原式=4;42.【解】原式=,把m=2,n=3代入,原式=343.【解】(1)2m2﹣2m﹣m2﹣3=m2﹣2m﹣3;(2)2(a2b+ab2)﹣2(a2b﹣1)﹣3(ab2+1)=﹣ab2﹣1把a=﹣2,b=2代入上式可得:原式=7.44.【解】(1)原式=5x+y﹣6x+8y=﹣x+9y,当x=1、y=3时,原式=﹣1+27=26;(2)原式=5a2﹣3ab﹣14,当a=2,b=时,原式=﹣3.46.【解】(1)原式=5x2﹣3y2﹣5x2+4y2+7xy=y2+7xy,当x=﹣1,y=1时,原式=12+7×(﹣1)×1=﹣6;(2)原式=x2﹣3x2﹣3xy+y2+x2+3xy+y2=y2,当y=2时,原式=22=4.48.【解】(1)∵A=3x2+4xy,B=x2+3xy﹣y2,∴﹣A+2B=﹣x2+2xy﹣2y2;(2)原式=﹣32a2﹣8ab+9b2,当a=,b=﹣时,原式=﹣10。

小专题(四) 整式的化简求值

小专题(四) 整式的化简求值

3.(邵阳县期末)先化简,再求值:(3x2-xy+7)-(5xy-4x2+ 7),其中 x,y 满足(x-2)2+|3y-1|=0.
解:原式=3x2-xy+7-5xy+4x2-7=7x2-6xy. 由题意知 x-2=0,3y-1=0,所以 x=2,y=13. 则原式=28-4=24.
4.已知:x-2y-2=0. (1)x-2y=2 ; (2)求+(5+4x-6y)+2(y-x+1)的值. 解:因为 x-2y=2, 所以原式=5+4x-6y+2y-2x+2 =7+2x-4y =7+2(x-2y) =7+2×2 =11.
(2)14(-4x2+2x-8)-(12x-1),其中 x=12; 解:原式=-x2+12x-2-12x+1 =-x2-1. 当 x=12时,原式=-14-1=-54.

(3)(张家界慈利县期中)先化简,再求值:2(x2y+3xy)-3(x2y- 1)-2xy-2,其中 x=-2,y=2;
解:原式=2x2y+6xy-3x2y+3-2xy-2 =-x2y+4xy+1. 当 x=-2,y=2 时, 原式=-(-2)2×2+4×(-2)×2+1 =-23.
(4)2(a2b+ab2)-2(a2b-1)-2ab2-2,其中 a=-2,b=2.
解:原式=2a2b+2ab2-2a2b+2-2ab2-2 =0. 当 a=-2,b=2 时,原式=0.
2.已知 a2+2b2=5,求(3a2-2ab+b2)-(a2-2ab-3b2)的值;
解:原式=3a2-2ab+b2-a2+2ab+3b2 =2a2+4b2. 当 a2+2b2=5 时, 原式=2(a2+2b2)=10.
5.已知代数式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值与字 母 x 的取值无关,求代数式12a2-2b+4ab 的值.

初中数学整式的混合运算—化简求值(含答案)

初中数学整式的混合运算—化简求值(含答案)

初中数学整式的混合运算—化简求值(含答案)1.求值:x2(x﹣1)﹣x(x2+x﹣1),其中x=.考点:整式的混合运算—化简求值。

分析:先去括号,然后合并同类项,在将x的值代入即可得出答案.解答:解:原式=x3﹣x2﹣x3﹣x2+x=﹣2x2+x,将x=代入得:原式=0.故答案为:0.点评:本题考查了整式的混合运算化简求值,是比较热点的一类题目,但难度不大,要注意细心运算.2.先化简,再求值:(1)a(a﹣1)﹣(a﹣1)(a+1),其中.(2)[(2a+b)2+(2a+b)(b﹣2a)﹣6ab]÷2b,且|a+1|+=0.考点:整式的混合运算—化简求值;非负数的性质:偶次方;非负数的性质:算术平方根。

专题:计算题。

分析:(1)先将代数式化简,然后将a的值代入计算;(2)先将代数式化简,然后将a、b的值代入计算.解答:解:(1)a(a﹣1)﹣(a﹣1)(a+1)=a2﹣a﹣a2+1=1﹣a将代入上式中计算得,原式=a+1=+1+1=+2(2)[(2a+b)2+(2a+b)(b﹣2a)﹣6ab]÷2b=(4a2+4ab+b2﹣4a2+2ab﹣2ab+b2﹣6ab)÷2b=(2b2﹣2ab)÷2b=2b(b﹣a)÷2b=b﹣a由|a+1|+=0可得,a+1=0,b﹣3=0,解得,a=﹣1,b=3,将他们代入(b﹣a)中计算得,b﹣a=3﹣(﹣1)=4点评:这两题主要题考查的是整式的混合运算,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.3.化简求值:(a+1)2+a(a﹣2),其中.考点:整式的混合运算—化简求值。

专题:计算题。

分析:先按照完全平方公式、单项式乘以多项式的法则展开,再合并,最后把a的值代入计算即可.解答:解:原式=a2+2a+1+a2﹣2a=2a2+1,当a=时,原式=2×()2+1=6+1=7.点评:本题考查了整式的化简求值,解题的关键是公式的使用、合并同类项.4.,其中x+y=3.考点:整式的混合运算—化简求值。

北师大版2024新版七年级数学上册习题练课件:整式的化简求值

北师大版2024新版七年级数学上册习题练课件:整式的化简求值


2
+ 1 − 2 = 0, = 0.8,求打包带的长。
+ − = ,所以 = , = . 。
因为 = , = . , = . ,
所以 + + = × + × . + × . = . (米)。
答:打包带的长为8.2米。
3 − 2 − −5 + = 3 − 2 + 5 − = 3 + 3 − = 3(
+ ) − = 3 × 2 024 − 24 = 6 048。
4.已知 − 2 + 1 = 0,求代数式5 22 − 4 + − 2 52 − 9 − 的值。
到内进行;(2)字母代换成数字时,一般要将省略的乘号还原,当代入负数
时,应将负数用括号括起来。
类型2 整体代入求值
3.[2024宜春期末]已知 + = 2 024, = 24,则
6 048
3 − 2 − −5 + 的值为_______。
【解析】 因为 + = 2 024, = 24,所以
= − + − +
= + − − +
= − ,
当 = −, = 时,原式= − = − − × 源自 。整式的化简求值的关键点
(1)化简时,若有多重括号,去括号时可以从内到外进行,也可以从外
= + − ,
当 = 时,原式= + × − = + − = 。
2.[2024泰州期末]先化简,再求值:
2 + (−5 2 + 2 ) − 2 2 − 2 2 ,其中 = −1, = 3。

北师大版七年级数学上册整式的化简求值专题训练题及答案

北师大版七年级数学上册整式的化简求值专题训练题及答案

北师大版七年级数学上册整式的化简求值专题训练题及答案专题训练(四)整式的化简求值1•计算:8a+7b—12a~5b;(l)2x2—3X+4X2—6x—5:(2)3xy+4X2;,—3.n*—:(3)(4)(5m?r-2w+3n)-(7?n一7mw):a2+(5〃2—2a)—2(垢一3々):(5)3a—[—28+2(。

一3b)—4。

].(6)2•先化简,再求值:2x—y4-(2y2—x2).—(x2-F2^)•其中x=—§,y=—3:(l)(4〃+3。

2)—3—3/—(―u+4/)•其中a=—2;(2)4x-[3x-2x-(x-3)],其中x=*(3)3x,—[Ivv*2—2(xy r一手2)‘)+?]+3xy2,咒中x=3*y=—j.(4)3•若"2|+(y-导=0,求代数式孵—2x2y+了,+3x2y+5xy2+7—5xy2的值. 4-若a:+2b2=5•求多项式(3a2—2ab+b:)—(a:—2ab—3b:)的值.5 •己知x=-2,y=|,求kx-2(x-9)+(一玄+3)的值•一位同学在做题时把x=-2看成x=2,但结果也正确,己知计算过程无误•求k的值.6・求TiiTi+Zmn—3nm2—3iim+4m2n的值,其,中in是最小的正整数,n是绝对值等于1的数.27 -一位同学做一道题:“己知两个多项心、B,计算2A+B”.他误将“2A+B”看成“A+2B”,求得的结果为9x:—2x+7.己知B=x,+3x—2,请求出正确答•案.参考答案I.(1)原式=(8—12)a+(7—5)b=—4a+2b.⑵原式=6x:—9x—5.(3)原式=3xy—xy—3xy2.(4)原式=5mn—2m4-3n—7m4-7mii=12mn-9m+3n(5)原A=a24-5a2—2a—2a2+6a=4a2+4a.(6)原式=3a—(—2b+2a—6b—4a_)=3a+2b—2a+6b+4a=5a+8b. 2.(1)原式=2x—y+Zy2—x?—x'—2『=—2x'+2x—y.M彳x=—§,y=—3时•原式=—2x1—1—(—3)=1.⑵原式=—7a3+3a2+5a—3..当a=—2时,原式=55.(3)原式=4x—3.当x=【时,4 2 2原式=—1.(4)原式=3x'y.—2顽+2乂尸一3x5^—xy+mxy^xj'+xy.当x=3,y=—,原式=—j.3.由题意,得x=—2,y=?原式=x34-x2y+7=l.4.原式=3a2—2ab+b2—a2+2ab4-3b2—2a24-4b2.当/+2护=5时,原式=2(a:+2b2)=10.5.原式=(k—fx+y2.由题意知:代数式的值与x无关,.所以k—:=0.解得k=y. 6.|m,n+2mn—3皿^—3mn4-4m2n-Tirn—inn.Ft]题意知:m=l,n=±l.当m=l,n=1时,原式=上:当m=l,n=—1时,原式.2 22 7.由题意•得A+2(x-4-3x—2)=9x2—2x4-7•A=9x2—2x4-7—2(x2H-3x—2)=9x2—2x+7—2x2—6x4-4=7x2—8x4-II.所以正确答案为:2A+B=2(7x?—8x+11)+(x2+3x-2)=14x2-16x+22+x,+3x-2=15x2-13x+20.。

专题训练(四) 整式化简求值的六种类型。

专题训练(四) 整式化简求值的六种类型。

专题训练(四) 整式化简求值的六种类型。

专题训练(四)整式化简求值的六种类型类型一:利用条件直接代入进行化简求值1.2018·扬州江都区期中,先化简,再求值:x^4-3x^2+8x-5-(2x-3x^2+x^4-3),其中x=-1/2.解:将x代入原式,得:1/2)^4 - 3(-1/2)^2 + 8(-1/2) - 5 - (2(-1/2) - 3(-1/2)^2 + (-1/2)^4 - 3)1/16 + 3/4 - 4 - 5 + 1 + 311/162.2018·常熟期中,先化简,再求值:5x^2y-[3xy^2-3(xy-x^2y)+xy]+3xy^2,其中x=5,y=-3/5.解:将x和y代入原式,得:5(5)^2(-3/5) - [3(5)(-3/5)^2 - 3(5(-3/5) - 5^2(-3/5)) + 5(-3/5)]+ 3(-3/5)^275 - 9 + 51 + 3/5132 2/5类型二:利用条件间接代入进行化简求值3.2018·北海合浦县期中,已知-0.5mxn^3与5m^4ny是同类项,求(-5x^2y-4y^3-2x^2y+3x^3)-(2x^3-5x^2y-3y^3-2x^2y)的值.解:将-0.5mxn^3和5m^4ny代入原式,得:5x^2y - 4y^3 - 2x^2y + 3x^3) - (2x^3 - 5x^2y - 3y^3 - 2x^2y) x^3 - 7y^34.已知-3a^2的值,求3(m+n)^2-(m-n)-4(m+n)^2+2(m-n)的值.解:将-3a^2和b|1n|a^2代入原式,得:3(m+n)^2 - (m-n) - 4(m+n)^2 + 2(m-n)9a^2 - b|1n|a^26.2018·武汉新洲区期中,已知多项式(2mx^2-x^2+8x+1)-(5x^2-5y^2+6x)化简后不含x^2项,求多项式2m^3-[3m^3-(4m-6)+m]的值.解:将(2mx^2-x^2+8x+1)-(5x^2-5y^2+6x)化简后不含x^2项的结果代入原式,得:2m^3 - [3m^3 - (4m - 6) + m]m + 6类型三:利用整体代入进行化简求值5.已知x^2-2x+2=0,求代数式2(x^3-x^2-x+1)-(2x^3-x^2+2x^2)+x^2+8x的值.解:将x^2-2x+2代入原式,得:2(x^3 - x^2 - x + 1) - (2x^3 - x^2 + 2x^2) + x^2 + 8xx^3 + 3x^2 + 6x - 2228.若(3xy+2)^2+|7-x-y|=0,求代数式(5xy+10y)-[-5x-(4xy-2y+3x)]的值.解:将(3xy+2)^2+|7-x-y|=0代入原式,得:5xy + 10y) - [-5x - (4xy - 2y + 3x)]2xy + 5y + 5x - 29.当x=2时,代数式ax^3-bx+1的值等于-17,求:当x=-1时,代数式12ax-3bx^3-5的值.解:将x=2时,ax^3-bx+1=-17代入原式,得:8a - 2b + 1 = -17将x=-1代入原式,得:12a + 3b - 5类型四:利用“无关”化简求值10.2018·莱阳期中,已知多项式(2ax^2+3x-1)-(bx-2x^2-3)的值与x的取值无关,求代数式-(a-ab)-3(ab-b)+2ab的值.解:已知多项式(2ax^2+3x-1)-(bx-2x^2-3)的值与x 的取值无关,即:2ax^2+3x-1)-(bx-2x^2-3) = k (k为常数)化简得:(2a+b)x^2 + (3-b)x + 2 = k由于x的取值无关,所以2a+b=0,3-b=0,解得a=3/4,b=3,k=-1.将a、b、k代入原式,得:a-ab)-3(ab-b)+2ab3/411.已知代数式x^2+ax+6-2bx^2+x-1的值与字母x 的取值无关,又A=-a^2+ab-2b^2,B=3a^2-ab+3b^2.求4(A-B)+3(B-A)的值.解:已知代数式x^2+ax+6-2bx^2+x-1的值与字母x 的取值无关,即:x^2 + ax + 6 - 2bx^2 + x - 1 = k (k为常数)化简得:(1-2b)x^2 + (a+1)x + 5 = k由于x的取值无关,所以1-2b=0,a+1=0,解得a=-1,b=1/2,k=5.将a、b、k代入4(A-B)+3(B-A),得:7/2类型五:整体加减求值12.已知m^2-mn=21,mn-n^2=-12,求下列代数式的值:1)m^2-n^2;2)m^2-2mn+n^2.解:(1)将m^2-mn=21和mn-n^2=-12代入m^2-n^2,得:m^2 - n^2 = 332)将m^2-mn=21和mn-n^2=-12代入m^2-2mn+n^2,得:m^2 - 2mn + n^2 = 33 + 12 = 45类型六:整式的化简求值与数轴、绝对值的综合13.2018·南京玄武区期中,有理数a,b,c在数轴上的位置如图4-ZT-1所示.(1)用“>”或“<”填空:a+b<0;b+c>0;a+c<0.2)求代数式|a|+|b|+|c|的值.解:(1)根据图4-ZT-1,可得a+b<0,b+c>0,a+c <0.2)根据绝对值的性质,可得:a| + |b| + |c| = (a+b+c) + (|a-b|+|b-c|+|c-a|)由于b+c>0,a+c<0,所以a+b+c<0,又因为a+b<0,所以|a-b|=b-a,|b-c|=c-b,|c-a|=a-c,代入上式,得:a| + |b| + |c| = -(a+b+c) + (b-a+c-b+a-c) = 2|a| + 2|c|根据图4-ZT-1,可得a<0,c<0,所以|a|=-a,|c|=-c,代入上式,得:a| + |b| + |c| = 2a + 2c.1.化简代数式:|b-c|+2|a+b|-|c-a|2.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点到原点的距离相等。

北师大版数学七年级上册解答题专题训练50题(含答案)

北师大版数学七年级上册解答题专题训练50题(含答案)

北师大版数学七年级上册解答题专题训练50题含答案1.如果2,a b =与3-是相反数,c 是绝对值最小的有理数,a c <,求,,a b c 的值. 【答案】a =−2,b =3,c =0【分析】利用绝对值的性质,以及互为相反数的定义,进而分析得出即可. 【详解】∵|a|=2, ∵a =±2,∵b 与−3互为相反数, ∵b =3,∵c 是绝对值最小的有理数, ∵c =0, ∵a <c , ∵a =−2.综上所述:a =−2,b =3,c =0.【点睛】此题主要考查了绝对值和相反数,正确把握相关定义是解题关键.2.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题: (1)本次调查的学生人数为___________人;(2)样本中,女生身高E 组所占的圆心角的度数为 度;(3)已知该校共有男生400人,女生380人,请估计身高在160≤<170之间的学生约有多少人?【答案】(1)80;(2)18;(3)332.【详解】试题分析:(1)∵抽取的样本中,男生、女生的人数相同,∵算出男生人数,再乘以2即可;(2)用圆周角360度乘以E 所占的百分比即是;(3)观察分组表得知,身高在160≤<170之间的是C 组和D 组,求出男生400人中C ,D 组人数,再加上女生380人中C ,D 组的人数即可.试题解析:(1)抽取的男生人数为4+12+10+8+6=40,40×2=80(人),∵本次调查的学生人数为80人;(2)先求E 占的百分比:1-37.5%-17.5%-15%-25%=5%,再求圆心角:360°×5%=18°,∵女生身高E 组所占的圆心角的度数为18°;(3)身高在160≤<170之间的是C 组和D 组,男生400人中C ,D 组人数为:400×10840+人,女生380人中C ,D 组的人数为:380×(25%+15%)人,∵400×+380×(25%+15%)=332(人).3.已知,,a b c 在数轴上的位置如图所示,化简:(1)||||a c c -+ (2)||||a b c b +--4.计算:(1)()()33.122.910.5--+-; (2)()()()()815912---+---;(3)1241()()()2352+---+-;(4)101157()()()34612+---+-5.已知2324A x x y xy =-+-,223B x x y xy =--+. (1)化简23A B -. (2)当57x y +=,2xy =-时,求23A B -的值.键.6.计算:(1)111()(12) 624-+⨯-;(2)(﹣2)3÷4﹣(﹣1)2022+|﹣6|.111121212624=﹣2+6﹣3=17.合肥某110巡警骑摩托车在南北方向的徽州大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向北方向为正.当天行驶记录如下(单位:千米):+9,﹣8,+6,﹣10,+7,﹣12,+3,﹣2.(1)该巡警巡逻时离岗亭最远是多少千米?(2)A处在岗亭何方,距岗亭多远?(3)若摩托车每行1千米耗油0.03升,那么该摩托车这天巡逻共耗油多少升?【答案】(1)离岗亭的位置分别是9千米,1千米,7千米,3千米,4千米,8千米,5千米,7千米,所以最远是9米;(2)A在岗亭南方7千米处;(3)该摩托车这天巡逻共耗油1.71升.【分析】(1)依次计算相邻两个数据之和,选和为最大者;(2)由已知,把所有数据相加,如果得数是正数,则A处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(3)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.03升,那么乘以0.03就是一天共耗油的量. 【详解】根据题意,得(1)离岗亭的位置分别是9千米,1千米,7千米,3千米,4千米,8千米,5千米,7千米,所以最远是9米;(2)根据题意,可得:9﹣8+6﹣10+7﹣12+3﹣2=﹣7, 即A 在岗亭南方7千米处;(3)该巡警巡逻时,共走了9+8+6+10+7+12+3+2=57(km ), 那么该摩托车这天巡逻共耗油:57×0.03=1.71升.【点睛】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.一般情况下具有相反意义的量才是一对具有相反意义的量.8.画一条数轴,在数轴上分别表示3.5,0,2.5,1-,3-,12-,并用“<”把这些数连接起来.19.化简:(1)3x +2y ﹣5x ﹣y ;(2)2(x 2+xy ﹣5)﹣(x 2﹣2xy ). 【答案】(1)2x y -+;(2)2104x xy -+ 【分析】(1)根据整式加减运算,求解即可; (2)去括号,然后根据整式加减运算求解即可. 【详解】解:(1)3252x y x y x y +--=-+; (2)222(5)(2)x xy x xy --+-22=+--+22102x xy x xy21+40=-x xy【点睛】此题考查了整式的加减运算,解题的关键是掌握整式加减运算法则.10.作为一项惠农强农应对国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已取得成效,在气温较低的季节,电冰箱也有一定的销量.我市某家电公司营销点对自去年10月份至今年3月份销售两种不同品牌冰箱的数量做出统计,数据如图所示:根据图提供的信息解答下列问题:(1)请你从平均数角度对这6个月甲、乙两品牌冰箱的销售量作出评价;(2)请你从方差角度对这6个月甲、乙两品牌冰箱的销售情况作出评价;(3)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.11.某路公交车从起点A出发,依次经过B、C、D三站到达终点E,到达终点站时乘客全部下车.该车某趟出车途中上下乘客如下表所示.(1)上述表中,=a;(2)当公交车行驶在站和站(相邻两站)之间时,车上的乘客最多;(3)若该路公交车的票价为2元/人次,请问该路公交车此趟出车的营业额为多少钱?【答案】(1)5;(2)C,D;(3)60【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及中点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价2元,然后计算即可得解.【详解】解:(1)由题意有:12+7-3+6-4+a-6=17解得a=5(2)在A-B站之间有:12人;在B-C之间有:12+7-3=16(人);在C-D之间有:16+6-4=18(人);在D-E之间有:18+5-6=17(人);故行驶在C站和D站之间时,车上乘客最多;(3)2×(12+7+6+5)=2×30=60(元)【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.12.计算:﹣14﹣16÷(﹣2)3+|﹣32|×(﹣1).13.化简求值:3223242(32)x x x x x x +--+-其中2x =- 【答案】32435x x x +-,58-【分析】先去括号,再合并同类项,然后代值计算即可. 【详解】3223242(32)x x x x x x +--+- 322324232x x x x x x =+---+,32435x x x =+-;当2x =-时,原式()()()324232523262058=⨯-+⨯--⨯-=---=-.【点睛】本题考查整式加减中的化简求值.熟练掌握合并同类项进行化简是解题的关键.14.计算:()2215130.34130.343737-⨯-⨯+⨯--⨯15.如图,C 为线段AB 的中点,D 是线段CB 的中点,CB=2cm ,请你求出图中以A 为端点的所有线段长度的和.【答案】9【分析】先找到以A 为端点的所有线段有:AC 、AD 、AB ,再根据中点性质求出各线段的长,即可得到答案.【详解】解:∵C 为线段AB 的中点,CB=2 ,16.(1)如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中分别只画出一种符合题意的图形即可)、,求(2)拿起圆规和直尺,耐心做一做,不写作法,保留作图痕迹.已知线段a b作线段AB,使2=-.AB a b【答案】(1)见解析;(2)见解析【分析】(1)和一个正方体的平面展开图相比较,可得出一个正方体11种平面展开图,据此补全图形可得;(2)先作AD=2a,再在AD上截取BD=b,AB即为所求.【详解】解:(1)如图1、图2所示:(图1、图2中分别画出任意一种符合题意的图形即可)图1:图2:(2)如图所示,线段AB 即为所求.【点睛】本题考查了作图-应用与设计作图,解题的关键是掌握正方体共有11种表面展开图及线段和差的作法.17.先化简,再求值:()()23232a a b b a --+-,其中2a =-,1b .【答案】59a b -+,1【分析】先去括号,再算加减,最后代入计算即可. 【详解】解:原式2364a a b b a =-++- 59a b =-+;当2a =-,1b 时,595(2)9(1)1091a b -+=-⨯-+⨯-=-=.【点睛】本题考查了整式的加减及化简求值,熟练掌握知识点是解题的关键. 18.如图,A 、B 、C 、D 是在同一平面内不在同一直线上的四个点,请按要求完成下列问题.(1)∵作射线AC ;∵作直线BD 与射线AC 相交与点O ;∵分别连接AB 、AD ; (2)如作图所示,从点B 到点D 的路线有 条;若选最近路线走,你的选择为走线段 ,理由为 . 【答案】(1)见解析(2)4;BD ;两点之间,线段最短【分析】(1)根据题意作图即可;(2)根据(1)所作图形找到从点B 到点D 的所有路线即可;再根据两点之间线段最短选择路线即可. (1)解:如图所示,即为所求;(2)解:从B到D可以有如下路线:B—A—D,B—O—D,B—A—O—D,B—O—A—D,一共4条路线,选择走线段BD最近,理由是两点之间,线段最短.【点睛】本题主要考查了作直线,射线,线段,两点之间,线段最短等等,熟知相关知识是解题的关键.19.如图,O为直线AB上一点,∵AOC=13∵BOC,OC是∵AOD的平分线.判断OD与AB的位置关系,并说明理由.20.(随着双减政策的落实,同学们的家庭作业减少了.为了解同学们完成家庭作业需要的时间,某校数学兴趣小组随机调查了部分学生(问卷调查的内容如图1所示),并根据调查结果绘制了如图2所示的尚不完整的统计图.图1(1)本次接受调查的学生共有______人;(2)请补全条形统计图;(3)求被调查的学生中,完成家庭作业时间不超过40分钟的学生人数占总调查人数的百分比.【答案】(1)50(2)见解析(3)82%【分析】(1)用A组的人数除以A组所占比例即可求出调查人数;(2)用总人数分别减去其它四组人数,可得出B组人数,即可补全条形统计图;(3)用1分别减去C、D两组的比例即可.(1)解:本次接受调查的学生共有:20÷40%=50(人),故答案为:50.(2)解:B组人数为:50-20-9-5-4=12(人),补全条形统计图如下:(3)解:1-10%-8%=82%,答:完成家庭作业时间不超过40分钟的学生人数占总调查人数的百分比为82%.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,利用数形结合的思想解答是解答本题的关键.21.公路养护小组乘车沿南北公路巡视维护,某天早晨从A地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下(单位:km):189********,,,,,,,,问:+-+--+--(1)B地在A地何方,相距多少千米?(2)若汽车行驶每千米耗油1.2升,求该天共耗油多少升?意义是解题的关键.22.温度的变化与高度有关:高度每增加1km ,气温大约下降5.8∵.(1)已知地表温度是12∵,则此时高度为3km 的山顶温度是多少?(2)如果山顶温度是﹣6.1∵,此时地表温度是20∵,那么这座山的高度是多少? 【答案】(1)山顶温度为 5.4-℃;(2)这座山的高度为4.5千米【分析】(1)根据题意,列出算式进行计算即可;(2)根据题意先求温度差,利用温度差除以5.8,即可得出高度.【详解】解:(1)由题意,得123 5.81217.4 5.4()-⨯=-=-℃.答:山顶温度为 5.4-℃.(2)[20( 6.1)] 5.8--÷26.1 5.8=÷4.5=(千米)答:这座山的高度为4.5千米.【点睛】本题考查有理数的混合运算.解题的关键是根据题意列出算式进行计算. 23.计算(1)()()()()3.1 4.5 4.4 1.3---++-+;(2)()()324112345⎡⎤--⨯-----⎣⎦.乘方的有理数的混合运算的运算顺序”是解本题的关键,运算顺序为:先乘方,再乘除,最后算加减,同级运算按照从左至右的顺序进行,有括号先计算括号内的运算.24.小王上周买进某种股票1000股,每股27元.(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)若小王在本周五的收盘价将股票全部卖出,你认为他会获利吗?【答案】(1)28元;(2)最高29.5元,最低25.5元;(3)不会获利【分析】(1)看懂统计表,正确列出算式,按照正负数相加的问题即可解决;(2)由表格列出算式每天的价格即可;(3)利用正负数加法求出周五的收盘价,与上周购进价格进行比较就能得出结论.【详解】解:(1)27+1+1.5-1.5=28(元),则星期三收盘时,每股是28元;(2)由表格可知,周一:27+1=28(元);周二:28+1.5=29.5(元);周三:29.5-1.5=28(元);周四:28-2.5=25.5(元);周五:25.5+0.5=26(元),所用周二最高是:29.5(元),周四最低是:25.5(元);(3)本周五的收盘价为26(元),则26<27,所以若小王按本周五的收盘价将股票全部卖出,不会获利.【点睛】本题考查的是学生读表和计算正负数加法的问题,看清数据读懂表格就可以解决该题了,本题的关键是列对算式.25.如图是正方体的展开图,如果将它叠成一个正方体后相对的面上的数相等,试求xy的值.【答案】xy的值是±3.【分析】根据正方体后相对的面上的数相等,求出x、y的值,再求xy即可.【详解】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“x2”相对的是1,与“y”相对的是3,所以x=±1,y=3,所以xy的值是±3.【点睛】本题考查正方体表面展开图,将展开图还原是解决本题的关键.26.先化简,再求值:()222233a ab b ab ⎛⎫--- ⎪⎝⎭,其中3,2a b ==-.27.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,如下图,线段()011AB =--=;线段202BC =-=;线段()213AC =--=则:(1)数轴上点M 、N 代表的数分别为9-和1,则线段MN =______;(2)数轴上点E 、F 代表的数分别为6-和3-,则线段EF =______;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为______.【答案】(1)10(2)3(3)7或3-【分析】(1)根据数轴上两点间的距离解答;(2)根据数轴上两点间的距离解答;(3)根据题意、结合数轴、方程解答.【详解】(1)解:∵点M N 、代表的数分别为9-和1,∵线段1(9)10MN =--=;故答案为:10;(2)∵点E F 、代表的数分别为6-和3-,28.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来. 132-,()1--,2.5,5--.29.先化简,再求值.2(ab-5ab 2)-(2ab 2-ab),其中a=﹣1,b=2【答案】42【详解】试题分析:本题考查了整式的化简求值,整式的化简就是去括号合并同类项,化简后再把a =﹣1,b =2代入求值.解:原式=2ab-10a-2a+ab=3ab-12a当 a=﹣1,b=2时,原式=3ab-12a=3×(-1)×2-12×(-1)×=-6+48=4230.化简求值:22212()3()22xy x x xy y xy ⎡⎤----++⎣⎦,其中x=2,y=12-31.观察下列等式:第1个等式:11111212a ==-⨯ 第2个等式:21112323a ==-⨯ 第3个等式:31113434a ==-⨯ 第4个等式:41114545a ==-⨯ 第5个等式:51115656a ==-⨯ 解答下列问题:(1)按以上规律写出第6个等式: ;(2)求a 1+a 2+…+a 2020的值;(3)求1111366991220192022++++⨯⨯⨯⨯ 的值.1++-201932.某校为了解学生的课外阅读情况,对部分学生进行了调查,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制如图两幅不完整的统计图,请你根据以上信息解答下列问题:(1)本次调查活动的样本容量是.(2)图2中E的圆心角度数为度,并补全图1的频数分布直方图.(3)该校有800名学生,估计该校学生平均每天的课外阅读时间不少于70min的人数.16+233.化简求值()()2222+-+--,其中()22212a b ab ab a b-+-=.b a21|3|034.先化简,再求值:7ab ﹣3(a 2﹣2ab )﹣5(4ab ﹣a 2),其中a =3,b =﹣2.【答案】2a 2﹣7ab ,60.【分析】先根据整式加减的方法步骤进行化简,再代数计算即可.【详解】解:原式=7ab ﹣3a 2+6ab ﹣20ab +5a 2=2a 2﹣7ab ,当a =3,b =﹣2时,原式=2×32﹣7×3×(﹣2)=18+42=60.【点睛】本题以代数求值的方式考查整式加减与有理数运算,熟练掌握有关知识点是解答关键.35.已知:21m =,求代数式2(1)(2)(3)m m m +--+的值.【答案】8或6 .【详解】试题分析:由21m =求出m=±1,分别代入化简后的代数式求值即可. 原式=222167m m m m m ++--+=+ .∵21m =,∵m="±1" .当m=1时,原式=8;当m=-1时,原式=6.∵原式的值为8或6 .考点:1.代数式求值;2.分类思想的应用.36.先化简,再求值:()()2237547a ab ab a -+--+,其中21(1)0a b -++=.【详解】解:1(a b -+10b +=,,1b , 754ab ab +-+1b 时, (61-⨯⨯-【点睛】本题考查了非负数的性质,以及整式的化简求值,熟练掌握非负数的性质和37.(-12)+18-23-(-17)【答案】0【分析】先去括号,再将18和17结合、-12和-23结合,最后计算减法即可.【详解】解:原式12182317=-+-+()18171223=+-+3535=-0=.【点睛】本题考查了有理数的加减混合运算,熟练掌握运算法则是解题的关键. 38.计算.(1)()321244312⎛⎫-+-⨯- ⎪⎝⎭.(2)()(()20092135-⨯--.()()()2122=-⨯---24=-2=-.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.39.某厂三个车间共有140人,第二车间人数是第一车间人数的2倍还多1人,第三车间人数是第一车间人数的一半还少一人,三个车间各有多少人?40.解方程:(1)7x+2=3x﹣2(2)253164x x---=.【答案】(1)x=﹣1;(2)x=13【分析】(1)此题可项移、合并同类项,系数化1,可求出x的值.(2)此题的两个分母一个为6一个为4,因此可让方程两边同乘4,6的最小公倍数12,然后对方程进行化简即可.【详解】解:(1)移项、合并同类项,得4x=﹣4系数化1,得x=﹣1.(2)去分母,得12﹣2(2x﹣5)=3(3﹣x)去括号,得12﹣4x+10=9﹣3x移项、合并同类项,得﹣x=﹣13系数化1,得x=13.【点睛】本题容易在去分母,移项上出错,将方程移项要注意符号的改变.学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.41.某学校准备组织部分教师到杭州旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为400元/人,同时两家旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客七五折优惠,而乙旅行社是免去一位带队老师的费用,其余老师八折优惠.(1)如果设参加旅游的老师共有()10x x >人,则甲旅行社的费用为 元,乙旅行社的费用为 元;(用含x 的代数式表示,并化简)(2)假如某校组织17名教师到杭州旅游,该校选择哪一家旅行社比较优惠?请说明理由;(3)如果计划在11月份内外出旅游五天,假如这五天的日期之和为30的倍数,则他们可能于11月多少号出发?【答案】(1)300x ,320x -320;(2)甲旅行社比较优惠,理由见解析;(3)4号或10号或16号或22号【分析】(1)甲旅行社的费用为:总价×0.75,乙旅行社的费用为(x -1)个人的总价×0.8;(2)把x =17代入(1)中,求得值进行比较;(3)相邻日期相隔1,中间一天的日期为a .由此我们可以用含一个字母的代数式表示其他四天日期,五天的日期之和为5a .从而求得11月出发日期.【详解】解:(1)甲旅行社的费用为:400x ×0.75=300x ,乙旅行社的费用为(x -1)×400×0.8=320x -320;(2)x =17时,需付甲:300×17=5100元,需付乙320×17-320=5120元;5100<5120,∵选甲旅行社;(3)中间一天的日期为a ,那么其他日期为a -2、a -1、a +1、a +2,五天的日期之和为5a .∵五天的日期之和为30的倍数,∵5a =30k ,a =6k ,当k =1时,a =6,第一天为4,当k =2时,a =12,第一天为10,当k =3时,a =18,第一天为16,当k =4时,a =24,第一天为22,当k =5时,a =30,后面的天数就到了12月.∵他们可能于11月出发的日期是4号或10号或16号或22号.【点睛】本题考查列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系.注意(3)中出发日期的变化.42.几个相同的数码摆成一个数,并且不用任何数学运算符号(含括号),如果要使摆成的数尽可能的大,该怎样摆呢?如用3个1按上述要求摆成一个数,有如下四种形式:∵111;∵111;∵111;∵.显然,111是这四个数中的最大的数.那么3个2有几种摆法?请找出其中的最大数.【答案】222是这四个数中的最大的数【详解】试题解析:按照题目中的数字的排列方法即可得到3个2所有的摆法,然后找到最大的即可.试题解析:∵222;∵222;∵222;∵222.显然,222是这四个数中的最大的数.【点睛】此题主要考查了有理数的乘方,综合性较强,做题的关键是:根据要求把几种形式分别表示出来.43.求下列各式的值(1)已知:22y a b 与233a b 是同类项,且()250x m -+=,求:()()2222339x xy m x xy y --+的值.(2)已知6,4x y xy +==-,求:()3445x y xy x y xy +--++的值.44.解方程:(1)23(5)4x x +-=(2)314112x x -+-=45.已知a =﹣(﹣2)2×3,b =|﹣9|+(﹣7),c =(1153-)÷115. (1)求2[a ﹣(b+c)]﹣[b ﹣(a ﹣2c)]的值.(2)若A =(﹣13)2÷(﹣127)+(1﹣12)2×(1﹣3)2,B =|a|﹣5b+2c ,试比较A 和B 的大小. (3)如图,已知点D 是线段AC 的中点,点B 是线段DC 上的一点,且CB :BD =2:3,若AB═12ab ccm ,求BC 的长.46.(8分)我市中学组篮球比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少? 【答案】胜负场数应分别是18和4.【详解】试题分析:设胜了x 场,那么负了(22-x )场,根据得分为40分可列方程求解.试题解析:设胜了x 场,那么负了(22﹣x )场,根据题意得:2x+1•(22﹣x )=40解得x=1822﹣18=4.那么这个队的胜负场数应分别是18和4.点睛:本题考查一元一次方程的应用.主要考查学生理解题意的能力,关键是设出胜的场数,以总分作为等量关系列方程求解.47.因式分解:26. (1)(2)2(2)(4)3'(2)(2)(2)6'm n m n n =-----=-+---解:原式 27.(3) 【答案】222225)2102143'10254'(6'x y x xy y y x xy y -=-++----=-+----=----解:原式 2)22(3'(2)(2)6'a b a b a b -=-----=-+------解:原式 2)22(3'(2)(2)6'a b a b a b -=-----=-+------解:原式 【详解】(1) (2)222225)2102143'10254'(6'x y x xy y y x xy y -=-++----=-+----=----解:原式2)22(3'(2)(2)6'a b a b a b -=-----=-+------解:原式 (3)2)22(3'(2)(2)6'a b a b a b -=-----=-+------解:原式 48.化简:(1)()22214632x y xy xy x y ⎛⎫--+ ⎪⎝⎭; (2)()()()4335x y y x x y x ⎡⎤----+--⎣⎦49.观察下面三行数:2,﹣4,8,﹣16,32,﹣64,…4,﹣2,10,﹣14,34,﹣62,…﹣1,2,﹣4,8,﹣16,32,…在上面三行数的第n 列中,从上往下的三个数分别记为a ,b ,c ,观察这些数的特点,根据你所得到的规律,解答下列为问题.(1)用含n 的式子分别表示出a ,b ,c ;(2)根据(1)的结论,若a ,b ,c 三个数的和为770,求n 的值.【答案】(1)a =﹣(﹣2)n ,b =﹣(﹣2)n +2,c =﹣(﹣2)n -1;(2)9.【分析】(1)由题意可知,第一行数中的各数可变形为:()()()()12342,2,2,2--------,由此即可得出第一行数的规律,第二行每个数是第一行数对应列的数加2,第三行每个数是第一行数对应列的数除以(﹣2),据此即可表示出a ,b ,c ;(2)根据(1)题的结果即可得出关于n 的方程,解方程即可求出n 的值.【详解】解:(1)由题意可知,第一行数的规律为﹣(﹣2)n ,第二行每个数是第一行数对应列的数加2,即第二行数的规律为﹣(﹣2)n +2,第三行每个数是第一行数对应列的数除以(﹣2),即第三行数的规律为﹣(﹣2)n -1; 所以a =﹣(﹣2)n ,b =﹣(﹣2)n +2,c =﹣(﹣2)n -1;(2)∵a ,b ,c 三个数的和为770,∵﹣(﹣2)n ﹣(﹣2)n +2﹣(﹣2)n -1=770,设(﹣2)n -1=x ,则上式变形为:222770x x x ++-=,解得:x =256,即(﹣2)n -1=256,解得:n =9.【点睛】本题考查了数字的变化类规律、有理数乘方的意义和一元一次方程的应用,解题的关键是正确表示出第一行中各数的规律,第(2)小题中的关于n 的方程求解时有一定的难度,需要灵活应用乘方的意义进行变形.50.解方程:x 12x 1123+--=. 【答案】x 1=-.【分析】按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可.【详解】去分母得:()()3x 122x 16+--=,去括号得:3x 34x 26+-+=,移项得:3x-4x=6-3-2,合并同类项得:x 1-=,系数化为1得:x 1=-.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.。

部编数学七年级上册专题06整式的化简与求值专项训练40题(解析版)含答案

部编数学七年级上册专题06整式的化简与求值专项训练40题(解析版)含答案

专题06 整式的化简与求值 专项训练40题1.(2022·山东青岛·七年级阶段练习)先化简,再求值:()3222231322362b a a ab a b æö---+-ç÷èø,其中2a =,1b =-.2.(2022·内蒙古赤峰·七年级期末)先化简,再求值:()()22222322x y xy x y x xy y +----,其中x ,y 的值满足()2220x y ++-=3.(2022·山东威海·期末)计算:(1)()()222433224ab b ab b +--+-; (2)()2323132424424433xy x xy x æö-+---+ç÷èø.(3)先化简,再求值:13(2)3(2)2a ab a b --+-+,其中4a =-,12b =.4.(2022·湖南常德·七年级期中)先化简,再求值:221123(4)22ab ab a b a ---êúêú,其中122a b =-=,5.(2021·黑龙江哈尔滨·七年级期末)先化简,再求值:()224222éù---+ëûx y xy xy x y xy ,其中x 与y 互为倒数.【答案】4xy -;4-【分析】根据x 与y 互为倒数,可得1xy =,原式去括号合并同类项后得到最简结果,再把1xy =代入计算即可求出值.【详解】解:原式()224222=--++x y xy xy x y xy 2244242=-+--x y xy xy x y xy 4xy=-∵x 与y 互为倒数,∴1xy =,∴原式4414=-=-´=-xy .【点睛】本题考查整式的加减—化简求值,熟练掌握去括号法则与合并同类项法则是解题的关键.6.(2021·湖北咸宁·七年级期中)先化简后求值:2223322()2x y xy yx x y éù---êú,其中15,5x y ==-.7.(2022·贵州铜仁·七年级期末)先化简,再求值:()222242x xy y x xy y -+--+,其中11,2x y =-=-.8.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.9.(2022·黑龙江大庆·期中)先化简再求值:22113122223a a b a b æöæö-----ç÷ç÷,其中2a =-,32b =.10.(2022·内蒙古鄂尔多斯·七年级期末)先化简,再求值:(1)3(2a 2b ﹣ab 2)﹣(5a 2b ﹣4ab 2),其中a =2,b =1;(2)若a 2+2b 2=5,求多项式(3a 2﹣2ab +b 2)﹣(a 2﹣2ab ﹣3b 2)的值.【答案】(1)a 2b +ab 2,-2 (2)10【分析】(1)先合并同类项,再代入计算即可;(2)原式去括号合并整理后,把已知等式代入计算即可求出值.(1)解:3(2a 2b ﹣ab 2)﹣(5a 2b ﹣4ab 2)=6a 2b ﹣3ab 2﹣5a 2b +4ab 2=a 2b +ab 2,当a =2,b =﹣1时,原式=22×(﹣1)+2×(﹣1)2=﹣2;(2)解:当a 2+2b 2=5时,原式=3a 2﹣2ab +b 2﹣a 2+2ab +3b 2=2a 2+4b 2=2(a 2+2b 2),=2×5=10.【点睛】本题考查了整式加减的化简求值,正确的化简代数式是解题的关键.11.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.12.(2022·黑龙江·哈尔滨市第十七中学校七年级阶段练习)先化简,再求值:()()2254452x x x x -++---,其中2x =-.【答案】291,13x x ++-【分析】原式先去括号,再合并得到最简结果,最后把2x =-代入求值即可.【详解】解:()()2254452x x x x-++---=2254452x x x x -++-++291x x =++当2x =-时,原式=2(2)9(2)1-+´-+13=-【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.13.(2022·江苏南京·七年级期中)已知2(1)|2|0x y +++=,求代数式322332311543222xy x y xy y x xy x y --+--的值.14.(2022·陕西咸阳·七年级开学考试)化简:()()22222332133a b ab a b ab --+-+,若12b =-,请给a 取一个非零有理数代入化简后的式子中求值.15.(2022·浙江绍兴·七年级期中)先化简,再求值:2(2)()a a b a b -++,其中3a =-,5b =【答案】222a b +,43【分析】由单项式乘以多项式法则,结合完全平方公式进行化简,再代入数值计算即可.【详解】解:原式=22222a ab a ab b -+++= 222a b +当3a =-,5b =时,原式=()2223543´-+=.【点睛】本题考查整式加减的化简求值,涉及完全平方公式,掌握相关知识是解题关键.16.(2021·河南洛阳·七年级期中)化简求值:22225[(52)2(3)]a a a a a a -+---,其中12a =.17.(2021·四川广元·七年级期末)先化简,再求值:已知|a +1|+(b ﹣2)2=0,求代数式3a 2b ﹣[2ab 2﹣2(a 2b +3ab 2)]﹣4ab 2的值.【答案】25a b ;10【分析】根据整式的加减化简代数式,然后根据非负数的性质求得,a b 的值,代入化简后的代数式进行计算即可求解.【详解】解:原式()2222232264a b ab a b ab ab=----=2222232264a b ab a b ab ab -+-+25a b =;∵|a +1|+(b ﹣2)2=0,∴1,2a b =-=,∴原式=()251210´-´=.【点睛】本题考查了整式加减化简求值,非负数的性质,正确的去括号是解题的关键.18.(2021·河南周口·七年级期中)先化简,再求值:﹣xy +3x 2﹣(2xy ﹣x 2)﹣3(x 2﹣xy +y 2),其中x ,y 满足(x +1)2+|y ﹣2|=0.【答案】x 2﹣3y 2,-11【分析】先根据整式的加减混合运算法则化简原式,再根据平方式和绝对值的非负性求出x 、y ,代入化简式子中求解即可.【详解】解:﹣xy +3x 2﹣(2xy ﹣x 2)﹣3(x 2﹣xy +y 2)=﹣xy +3x 2﹣2xy +x 2﹣3x 2+3xy -3y 2=x 2﹣3y 2,∵x ,y 满足(x +1)2+|y ﹣2|=0,且(x +1)2≥0,|y ﹣2|≥0,∴x +1=0,y -2=0,解得:x =-1,y =2,∴原式=(-1)2-3×22=1-12=-11.【点睛】本题考查整式加减中的化简求值、平方式和绝对值的非负性,熟记整式加减混合运算法则是解答的关键.19.(2022·黑龙江·哈尔滨市虹桥初级中学校七年级期中)先化简,求值2222223723323535x x xy y x xy y æöæö-+-+++ç÷ç÷,其中12x =-,2y =-.【点睛】本题主要考查了整式的化简求值,掌握整式加减运算法则是解题的关键.20.(2022·黑龙江·哈尔滨市第十七中学校期中)先化简再求值:()()3322x xyz x xyz xyz --++,其中1x =,2y =,3z =-.【答案】2xyz -,12【分析】先去括号,再合并同类项,然后把x 、y 的值代入计算即可.【详解】(2x ³-xyz )-2(x ³+xyz )+xyz =2x ³-xyz -2x ³-2xyz +xyz =-2xyz当x =1,y =2,z =-3时,原式=-2×1×2×(-3)=12.【点睛】本题主要考查了整式的化简求值,熟练掌握去括号法则是解题的关键.21.(2022·陕西·紫阳县师训教研中心七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.22.(2022·黑龙江·哈尔滨工业大学附属中学校期中)先化简,再求值:22137(43)2x x x x éù----êú,其中1x =-.23.(2022·陕西·紫阳县师训教研中心七年级期末)先化简,再求值:()()222222122+----a b ab a b ab ab ,其中2a =-,12b =.24.(2022·河北承德·七年级期末)(1)计算:()()322231--´-+;2111941836æöæö-+¸-ç÷ç÷èøèø.(2)先化简,再求值:()221532x xy x xy æö+--ç÷èø,其中x 、y 的取值如图所示.25.(2022·河北承德·七年级期末)(1)计算:()()322231--´-+;2111941836æöæö-+¸-ç÷ç÷èøèø.(2)先化简,再求值:()221532x xy x xy æö+--ç÷èø,其中x 、y 的取值如图所示.整式的加减运算.26.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.(2022·全国·七年级课时练习)(1)先化简,再求值:()()2222523625x y xy y x -++-,其中13x =,12y =-;(2)设2345A a ab =++,22B a ab =-.当a ,b 互为倒数时,求3A B -的值.28.(2022·新疆昌吉·七年级期末)先化简下式,再求值:222345256x x x x x +----+,其中2x =-.【答案】1x -,-3【分析】先合并同类项化简,再把2x =-代入,即可求解.【详解】解∶ 222345256x x x x x+----+()()()222325645x x x x x --+-++-=1x =-当2x =-时,原式213=--=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.29.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.30.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.31.(2022·山东滨州·七年级期末)(1)计算:23100422(1)593æö-¸´-+-´ç÷èø;(2)先化简再求值:22113122323a a b a b æöæö--+-+ç÷ç÷,其中22,3a b =-=.32.(2022·安徽滁州·七年级期末)已知4x =-,2y =,求代数式()()2222332x y xy x y xy ---的值.【答案】25xy ;-80【分析】先化简整式,再代入求值即可.【详解】原式2222336x y xy x y xy =--+25xy =,当4x =-,2y =时,原式()254280=´-´=-.【点睛】本题考查整式化简求值,熟练掌握整加减运算法则是解题的关键.33.(2022·河南南阳·七年级期末)先化简,再求值:()22463421x y xy xy x y éù----+ëû.其中,2x =-,12y =.【答案】2565+-x y xy ,-1【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求值。

专题2.4整式的化简求值四大题型专项训练(40题)-【新教材】2024-2025学年

专题2.4整式的化简求值四大题型专项训练(40题)-【新教材】2024-2025学年
20.已知 A = -a 2 + 5ab + 12 , B = -4a 2 + 6ab + 7 ,
(1)求 A - 2 B ;
(2)已知 a - 2 + b + 1 = 0 ,求 A - 2 B 的值.
2
【题型 3 整式加减中的无关性问题】
(23-24 六年级下·黑龙江大庆·期末)
21.已知关于 x 的整式 A = x 2 + mx + 1 , B = nx 2 + 3 x + 2m (m,n 为常数).若整式 A + B 的
试卷第 1 页,共 7 页
2
2
2
(2) 2a - b - 2 a - 2b - 2b - 3a .
(23-24 六年级下·吉林长春·期末)
7.计算:
(1) 5 x - y - 2 x - 3 y + x .
(2) 6 2ab + 3a - 7 4a - ab .
1 2ö
æ
(2) m - 2 ç m - n ÷ - ç m - n ÷ .
2
3
2
3 ø
è
ø è
(22-23 七年级上·江苏盐城·期末)
2
2
2
2
10.(1)化简: 4 x - 2 3 y + 6 xy + 6 y - 5 x ;
(2)已知 A = a 2 + a b - 1 , B = 3a2 - 2ab .化简: 3A - B .
专题 2.4 整式的化简求值四大题型专项训练(40 题)
【华东师大版 2024】【题型 1 整式加减的运算】

部编数学七年级上册专题04整式中加减无关型的三种考法(解析版)(人教版)含答案

部编数学七年级上册专题04整式中加减无关型的三种考法(解析版)(人教版)含答案

专题04 整式中加减无关型的三种考法类型一、不含某一项例.已知关于x 的整式A 、B ,其中A =4x 2+(m ﹣1)x +1,B =nx 2+2x +1.若当A +2B 中不含x 的二次项和一次项时,求m +n 的值.【答案】-5【详解】解:A +2B =[4x 2+(m -1)x +1]+2(nx 2+2x +1)=4x 2+(m -1)x +1+2nx 2+4x +2=(4+2n )x 2+(m +3)x +3,∵A +2B 中不含x 的二次项和一次项,∴4+2n =0,m +3=0,解得:n =-2,m =-3,∴m +n =-3+(-2)=-5,即m +n 的值为-5.【变式训练1】若多项式4323325x ax x bx x x -+++--不含3x 和x 项,则+a b 的值为_______.【答案】3【详解】x 4-ax 3+3x 2+bx +x 3-2x -5=x 4+(1-a )x 3+3x 2+(b -2)x -5,∵多项式x 4-ax 3+3x 2+bx +x 3-2x -5不含x 3和x 项,∴1-a =0,b -2=0,解得a =1,b =2,∴a +b =1+2=3.故答案为:3.【变式训练2】若多项式322x 8x +x 1--与多项式323x +2mx 5x+3-相减后不含二次项,则m 的值为______ .【答案】-4【详解】由题意可得:-8-2m=0,解之可得:m=-4,故答案为-4.【变式训练3】.先化简再求值:(1)()222233a ab a ab æö---ç÷èø,其中2,3a b =-=.(2)已知整式226x ax y +-+与整式22351bx x y -+-的差不含x 和2x 项,试求出+a b 的值.【答案】(1)ab ,-6;(2)-2【详解】(1)()222233a ab a ab æö---ç÷èø=222322a ab a ab --+=ab ,将2,3a b =-=代入,原式=23-´=-6;(2)()22235126x a x x bx y y +--++--=22262351x ax y bx x y +-+-+-+=()()222367b x a x y -++-+∵结果不含x 和2x 项,∴2-2b =0,a +3=0,∴a =-3,b =1,∴a +b =-3+1=-2.故答案为:(1)ab ,-6;(2)-2【变式训练4】若要使多项式()222352x x x mx -+-+化简后不含x 的二次项,则m 等于( )A .1B .1-C .5D .5-【答案】D 【详解】3x 2-(5+x -2x 2)+mx 2=3x 2-5-x +2x 2+mx 2=(3+2+m )x 2-5-x ,二次项的系数为:3+2+m ,因为多项式化简后不含x 的二次项,则有3+2+m =0,解得:m =-5.故选:D .类型二、与某一项的取值无关例1.已知21A x ax =--,221B x ax =--,且多项式12A B -的值与字母x 取值无关,求a 的值.【答案】0【详解】解:()()22221111111211222222A B x ax x ax x ax x ax ax -=-----=---++=--,∵12A B -的值与字母x 的取值无关,∴0a =.【变式训练1】已知代数式2236351x ax y bx x y -++--+-的值与x 的取值无关,则ab =________.【答案】-9【详解】2236351x ax y bx x y -++--+-=()()23365b x a x y --+++∵值与x 的取值无关,∴3-b =0,a +3=0,∴a =-3,b =3,∴339ab =-´=-,故答案为:-9.【变式训练2】定义:若x y m -=,则称x 与y 是关于m 的相关数.(1)若5与a 是关于2的相关数,则=a _____.(2)若A 与B 是关于m 的相关数,356A mn m n =-++,B 的值与m 无关,求B 的值.【答案】(1)3;(2)B =8【解析】(1)解:∵5与a 是关于2的相关数,∴52a -=,解得3a =;(2)解:∵A 与B 是关于m 的相关数,356A mn m n =-++,∴A B m-=356366B A m mn m n m mn m n \=-=-++-=-++()326m n n=-++Q B 的值与m 无关,∴n-2=0,得n=2,8B =.【变式训练3】(1)化简求值()()222222232a ab b a ab b +--+-,其中2,a b ==.(2)已知22,223A x ax B bx x =+=-+,若多项式4A B +的值与字母x 的取值无关,求,a b 的值.【答案】(1)2252a b -+;14(2)a=12,b=-2.【详解】(1)()()222222232a ab ba ab b +--+-=222222624a ab b a ab b +---+=()()()222262224a a ab ab b b -+-+-+=2252a b -+把2,a b ==代入原式=-5×4+2×3=-20+6=-14.(2)∵22,223A x ax B bx x =+=-+,∴4A B +=()()224223x ax bx x ++-+=2244223x ax bx x ++-+=()()242423b x a x ++-+∵多项式4A B +的值与字母x 的取值无关,∴420b +=,42a -=0解得a=12,b=-2.故答案为:(1)2252a b -+;14(2)a=12,b=-2.【变式训练4】定义:若A B m -=,则称A 与B 是关于m 的关联数.例如:若2A B -=,则称A 与B 是关于2的关联数;(1)若3与a 是关于2a 的关联数,则=a __________.(2)若()21x -与1x +是关于-2的关联数,求x 的值.(3)若M 与N 是关于m 的关联数,23M mn n =-+,N 的值与m 无关,求N 的值.【答案】(1)1;(2)11x =,22x =;(3)2.5【解析】(1)解:∵3与a 是关于2a 的关联数,∴3-a =2a ,∴a =1,故答案为:1(2)解:()()2112x x --+=-,整理得2320x x -+= 则(2)(1)0x x --= 解得:11x =,22x =.∴x 的值为1或2;(3)解:()23mn n N m -+-=,()23213N mn m n m n n =--+=--+,∵N 的值与m 无关,∴210n -=,∴0.5n =,∴ 2.5N =.类型三、问题探究例1.有这样一道题:计算()()22263341x xy x xy -+-++-的值,其中23x =,5y =-小明把5y =-抄成5y =.但他的计算结果却是正确的,你能说出其中的原因吗?请你求出正确结果.【答案】原因见解析,319【详解】()()22263341x xy x xy -+-++-=2221263123x xy x xy --+++-=23x +由于所得的结果与y 的取值没有关系,故他将x 的值代入计算后,所得的结果也正确,正确结果为:原式=2233æö+ç÷èø=319.故答案为:原因见解析,319【变式训练1】李老师写出了一个整式ax 2+bx -2-(5x 2+3x ),其中a ,b 为常数,且表示为系数,然后让同学赋予a ,b 不同的数值进行计算.(1)甲同学给出了a =6,b =-2,请按照甲同学给出的数值化简整式;(2)乙同学给出了一组数据,计算的最后结果与x 的取值无关,请求出乙同学给出的a ,b 的值.【答案】(1)x 2-5x -2;(2)a =5,b =3【解析】(1)当a =6,b =-2时,原式=(6x 2-2x -2)-(5x 2+3x )=6x 2-2x -2-5x 2-3x =x 2-5x -2;(2)(ax 2+bx -2)-(5x 2+3x )=ax 2+bx -2-5x 2-3x =(a -5)x 2+(b -3)x -2.因为结果与x 的取值无关,所以a -5=0,b -3=0,所以a =5,b =3.【变式训练2】有这样一道题:“当2017a =,2018b =-时,求多项式3323323853453122020a a b a b a a b a b a -+++--+值.”小明认为:本题中2017a =,2018b =是多余的条件.小强反对说:“这不可能,多项式中含有a 和b ,不给出a 、b 的值,就不能求出多项式的值.”你同意谁的观点?请说明理由.【答案】小明的说法正确,理由见解析【详解】解:小明的说法正确,理由如下,3323323853453122020a ab a b a a b a b a -+++--+()()()332841255332020a ab a b =+-+-+-+2020=Q 结果与,a b 的值无关\本题中2017a =,2018b =是多余的条件.故小明的说法正确【变式训练3】有这样一道题“当2,3a b ==-时,求多项式23223223111(4)(3)5244a b ab b a b ab b a b ab -+---++-的值”,小马虎做题时把2a =错抄成2a =-, 但他做出的结果却是正确的,你知道这是怎么回事吗?请说明理由,并求出结果.【答案】理由见解析,13【详解】23223223111(4)(3)5244a b ab b a b ab b a b ab -+---++-Q 23223223111435244a b ab b a b ab b a b ab =-+-++++-=2b 2-5,∴此整式化简后与a 的值无关,∴马小虎做题时把a =2错抄成a =-2,但他做出的结果却是正确的.当b =-3时,原式=2×(-3)2-5=13.故答案为:13【变式训练4】已知22A a b abc =+,小红错将“2A B -”看成了“2A B +”,算得结果为254a b abc +.(1)求B ;(2)小军跟小红说:“2A B -的大小与c 取值无关”,小军的说法对吗?为什么?【答案】(1)22B a b abc =+;(2)对,理由见解析【解析】(1)根据题意:22A a b abc =+,2254A B a b abc +=+,即2542B a b abc A=+-()225422a b abc a b abc =+-+225442a b abc a b abc=+--22a b abc =+;(2)小军的说法对,理由:∵22A a b abc =+,22B a b abc =+,∴2A B -()()22222a b abc a b abc =+-+22422a b abc a b abc =+--23a b =,∴结果不含c ,即2A B -的大小与c 取值无关,故小军的说法对.课后作业1.若多项式322(2)26k k x kx x -+--是关于x 的二次多项式,则k 的值为().A .0B .1C .2D .以上都不正确【答案】A【详解】解:∵多项式322(2)26k k x kx x -+--是关于x 的二次多项式,∴不含x 3项,即k (k -2)=0,且k -2≠0,解得k =0;∴k 的值是0.故选:A .2.整式()()()22241332xyz xy xy z yx xyz xy +-+-+--+的值( ).A .与x 、y 、z 的值都有关B .只与x 的值有关C .只与x 、y 的值有关D .与x 、y 、z 的值都无关【答案】D 【详解】解:原式=xyz 2+4yx -1-3xy +z 2yx -3-2xyz 2-xy =-4,则代数式的值与x 、y 、z 的取值都无关.故选D .3.多项式23635x x -+与3231257x mx x +-+相加后不含二次项,则常数m 的值是( )A .3-B .3C .2-D .13-【答案】A 【详解】解:36x 2-3x +5+3x 3+12mx 2-5x +7=3x 3+(36+12m )x 2-8x +12,∵多项式36x 2-3x +5与3x 3+12mx 2-5x +7相加后,不含二次项,∴36+12m =0,解得,m =-3,故选:A .4.(1)已知3x =时,多项式35ax bx -+的值是1,当3x =-时,求35ax bx -+的值.(2)如果关于字母x 的二次多项式2233x mx nx x -++-+的值与x 的取值无关,求()()m n m n +-的值.【答案】(1)9;(2)-8.【详解】解:(1)依题意得:当3x =时,27351a b -+=,即2734a b -=-,而当3x =-时,()27352735459a b a b -++=--+=+=;(2)∵()()22233313x mx nx x n x m x -++-+=-+-+,依题意得30n -=,10m -=,即3n =,1m =, ()()()()13138m n m n \+-=+-=-.5.已知关于x 的代数式226x bx y --+和51ax x y +--的值都与字母x 的取值无关.(1)求a ,b 的值;(2)若A =4a 2-ab -4b 2,B =3a 2-ab -3b 2,求()()4325A A B A B +---éùëû的值.【答案】(1)a =-1,b =1;(2)5【解析】(1)解:∵关于x 的代数式226x bx y --+和51ax x y +--的值都与字母x 的取值无关,∴1010b a -=ìí+=î,∴11a b =-ìí=î;(2)解:()()4325A A B A B +---éùëû()43255A A B A B =+--+43255A A B A B=+--+23A B =+()2222828333a ab b a ab b =--+--2222828939a ab b a ab b =--+--2217517a ab b =--当11a b =-ìí=î时,原式()()221715111715=´--´-´-´=6.已知:代数式23421A x xy x =-++,代数式222B x xy x =---,代数式()()2121C a x b x =--+.(1)化简2A B -所表示的代数式;(2)若代数式2A B C -+的值与x 的取值无关,求出a 、b 的值.【答案】(1)245x x ++;(2)1,2a b =-=【解析】(1)解:(1)A -2B =3x 2-4xy +2x +1-2(x 2-2xy -x -2)=3x 2-4xy +2x +1-2x 2+4xy +2x +4=x 2+4x +5;(2)(2)A -2B +C =x 2+4x +5+a (x 2-1)-b (2x +1)=x 2+4x +5+ax 2-a -2bx -b=(1+a )x 2+(4-2b )x +5-a -b .∵代数式A -2B +C 的值与x 的取值无关,∴1+a =0,4-2b =0,∴a =-1,b =2.7.对于多项式22222735x xy y x kxy y +++-+,老师提出了两个问题,第一个问题是:当k 为何值时,多项式中不含xy 项?第二个问题是:在第一问的前提下,如果2x =,1y =-,多项式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下面吧;(2)在做第二个问题时,马小虎同学把1y =-,错看成1y =,可是他得到的最后结果却是正确的,你知道这是为什么吗?【答案】(1)见解析;(2)正确,理由见解析【详解】解:(1)因为22222735x xy y x kxy y +++-+2222(2)(35)(7)x x y y xy kxy =++++-2238(7)x y k xy =++-,所以只要70k -=,这个多项式就不含xy 项即7k =时,多项式中不含xy 项;(2)因为在第一问的前提下原多项式为:2238x y +,当2,1x y ==-时,2238x y +22328(1)+´=´-128=+20=.当2,1x y ==时,2238x y +2238x y =+223281=´´+128=+20=.所以当1y =-和1y =时结果是相等的.8.李老师写出了一个式子()()22253ax bx x x ++-+,其中a 、b 为常数,且表示系数.然后让同学赋予a 、b 不同的数值进行计算.(1)甲同学给出了5a =,3b =-.请按照甲同学给出的数值化简原式;(2)乙同学给出了一组数据,最后计算的结果为2242x x -+,求乙同学给出的a 、b 的值;(3)丙同学给出了一组数据,计算的最后结果与x 的取值无关,请求出丙同学的计算结果.【答案】(1)﹣6x +2;(2)a =7,b =﹣1;(3)2【解析】(1)解:由题意得:(5x 2﹣3x +2)﹣(5x 2+3x )=5x 2﹣3x +2﹣5x 2﹣3x =﹣6x +2;(2)解:(ax 2+bx +2)﹣(5x 2+3x )=ax 2+bx +2﹣5x 2﹣3x=(a ﹣5)x 2+(b ﹣3)x +2,∵其结果为2x 2﹣4x +2,∴a ﹣5=2,b ﹣3=﹣4,解得:a =7,b =﹣1;(3)解:(ax 2+bx +2)﹣(5x 2+3x )=ax 2+bx +2﹣5x 2﹣3x=(a ﹣5)x 2+(b ﹣3)x +2,∵结果与x 的取值无关,∴原式=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练(四) 整式的化简求值
1.计算:
(1)8a +7b -12a -5b ;
(2)2x 2-3x +4x 2-6x -5;
(3)3xy +4x 2y -3xy 2-5x 2y ;
(4)(5mn -2m +3n )-(7m -7mn );
(5)a 2+(5a 2-2a )-2(a 2-3a );
(6)3a -[-2b +2(a -3b )-4a ].
2.先化简,再求值:
(1)2x -y +(2y 2-x 2)-(x 2+2y 2),其中x =-12
,y =-3;
(2)(4a +3a 2)-3-3a 3-(-a +4a 3),其中a =-2;
(3)4x -[3x -2x -(x -3)],其中x =12;
(4)3x 2y -[2xy 2-2(xy -32x 2y )+xy ]+3xy 2,其中x =3,y =-13
.
3.若|x +2|+(y -12)2=0,求代数式13x 3-2x 2y +23
x 3+3x 2y +5xy 2+7-5xy 2的值.
4.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.
5.已知x =-2,y =23,求kx -2(x -13y 2)+(-32x +13
y 2)的值.一位同学在做题时把x =-2看成x =2,但结果也正确,已知计算过程无误,求k 的值.
6.求12
m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.
7.一位同学做一道题:“已知两个多项式A 、B ,计算2A +B ”.他误将“2A +B ”看成“A +2B ”,求得的结果为9x 2-2x +7.已知B =x 2+3x -2,请求出正确答案.
参考答案
1.(1)原式=(8-12)a +(7-5)b =-4a +2b. (2)原式=6x 2-9x -5. (3)原式=3xy -x 2y -3xy 2. (4)原式=5mn -2m +3n -7m +7mn =12mn -9m +3n. (5)原式=a 2+5a 2-2a -2a 2+6a =4a 2+4a. (6)原式=3a -(-2b +2a -6b -4a )=3a +2b -2a +6b +4a =5a +8b. 2.(1)原式=2x -y +2y 2-x 2-x 2-2y 2=-2x 2+2x -y.当x =-12,y =-3时,原式=-2×14-1-(-3)=32. (2)原式=-7a 3+3a 2+5a -3.当a =-2时,原式=55. (3)原式=4x -3.当x =12
时,原式=-1. (4)原式=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy 2+xy.当x =3,y =-13时,原式=-23
. 3.由题意,得x =-2,y =12
.原式=x 3+x 2y +7=1. 4.原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2.当a 2+2b 2=5时,原式=2(a 2+2b 2)=10. 5.原式=(k -72)x +y 2.由题意知:代数式的值与x 无关,所以k -72=0.解得k =72. 6.12
m 2n +2mn -3nm 2-3nm +4m 2n =32m 2n -mn.由题意知:m =1,n =±1.当m =1,n =1时,原式=12;当m =1,n =-1时,原式=-12
. 7.由题意,得A +2(x 2+3x -2)=9x 2-2x +7,A =9x 2-2x +7-2(x 2+3x -2)=9x 2-2x +7-2x 2-6x +4=7x 2-8x +11.所以正确答案为:2A +B =2(7x 2-8x +11)+(x 2+3x -2)=14x 2-16x +22+x 2+3x -2=15x 2-13x +20.。

相关文档
最新文档