九年级数学专训1一元二次方程的解法归类
初中数学方程与不等式之一元二次方程专项训练及答案
初中数学方程与不等式之一元二次方程专项训练及答案一、选择题1.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=【答案】D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】x 1、x 2是一元二次方程x 2-2x=0的两个实数根,这里a=1,b=-2,c=0,b 2-4ac=(-2)2-4×1×0=4>0,所以方程有两个不相等的实数根,即12x x ≠,故A 选项正确,不符合题意; 21120x x -=,故B 选项正确,不符合题意;12221b x x a -+=-=-=,故C 选项正确,不符合题意; 120c x x a⋅==,故D 选项错误,符合题意, 故选D.【点睛】 本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键.2.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6-B .4-C .2-D .2【答案】C【解析】【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解, ∴△=4(a −4)2−4a 2⩾0,解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2 方程1311y a y y+-=-- 解得y=2a +2 ∵y 有整数解∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2,符合条件的a 的值的和是−2故选:C【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.3.将方程()22230x x x m n --=-=化为的形式,指出,m n 分别是( )A .1和3B .-1和3C .1和4D .-1和4 【答案】C【解析】【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【详解】移项得x 2-2x=3,配方得x 2-2x+1=4,即(x-1)2=4,∴m=1,n=4.故选C .【点睛】用配方法解一元二次方程的步骤:(1)形如x 2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx+c=0型,方程两边同时除以二次项系数,即化成x 2+px+q=0,然后配方.4.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【解析】【分析】 由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3.故选D .【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.5.八年级()1班部分学生去春游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片36张,则同去春游的人数是( )A .9B .8C .7D .6 【答案】A【解析】【分析】设同去春游的人数是x 人,由每人都和同行的其他每一人合照一张双人照且共照了双人照片36张,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设同去春游的人数是x 人, 依题意,得:1(1)362x x -=, 解得:19x =,28x =-(舍去).故选:A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.方程250x x -=的解是( )A .5x =-B .5x =C .10x =,25x =-D .10x =,25x =【答案】D【解析】【分析】提取公因式x 进行计算.【详解】提取公因式x 得:x·(x −5)=0,所以10x =,25x =. 故本题答案选D .【点睛】本题考查了一元二次方程的计算,掌握提取公因式这一知识点是解题的关键.7.如图,AC ⊥BC ,:3:4AC BC =,D 是AC 上一点,连接BD ,与∠ACB 的平分线交于点E ,连接AE ,若83ADE S ∆=,323BCE S ∆=,则BC =( )A .3B .8C .3D .10【答案】B【解析】【分析】 过E 作,,EF BC EG AC ⊥⊥垂足分别为,,F G 由角平分线的性质可得:,EF EG =利用83ADE S ∆=,323BCE S ∆=可以求得,AD BC进而求得,CDE BCD S S ∆∆的面积,利用面积公式列方程求解即可.【详解】解:如图,过E 作,,EF BC EG AC ⊥⊥垂足分别为,.F GCE Q 平分,ACB ∠,EF EG ∴=:3:4AC BC =Q ,设3,4,AC x BC x == Q 83ADE S ∆=,323BCE S ∆=, 18132,,2323AD EG BC EF ∴•=•= 1,,4AD AD x BC ∴=∴= 2,CD AC AD x ∴=-=162,3CDE ADE S S ∆∆∴==163216.33BCD S ∆∴=+= 12416,2x x ∴••= 2,x ∴= (负根舍去)48.BC x ∴==故选B .【点睛】本题考查的是三角形的平分线的性质,等高的两个三角形的面积与底边之间的关系,一元二次方程的解法,掌握相关知识点是解题关键.8.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.9.下列方程中,有实数根的是( )A 0=B 1+=C 10=D x - 【答案】D【解析】【分析】根据二次根式的性质逐项分析即可.【详解】A .∵x 2+2≥2, 0≥≠,故不正确;B .∵x-2≥0且2-x≥0,∴x=20=,故不正确;C 0≥110≥≠,故不正确;D .∵x+1≥0,-x≥0,∴-1≤x ≤0.x -,∴x+1=x 2,∴x 2-x-1=0,∵∆=1+4=5>0,∴x 1=12-,x 2=12+(舍去),x -有实数根,符合题意.故选D .【点睛】本题考查了二次根式的性质,无理方程的解法,以及一元二次方程的解法,熟练掌握各知识点是解答本题的关键.10.在解方程(x+2)(x ﹣2)=5时,甲同学说:由于5=1×5,可令x+2=1,x ﹣2=5,得方程的根x 1=﹣1,x 2=7;乙同学说:应把方程右边化为0,得x 2﹣9=0,再分解因式,即(x+3)(x ﹣3)=0,得方程的根x 1=﹣3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是..( )A.甲错误,乙正确 B.甲正确,乙错误C.甲、乙都正确 D.甲、乙都错误【答案】A【解析】(x+2)(x﹣2)=5,x2-4=5,x2-9=0,(x+3)(x-3)=0,x+3=0或x-3=0,x1=-3,x2=3,所以甲错误,乙正确,故选A.11.某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A.2(﹣)=B.22251196x(﹣)=1961225xC.2x(﹣)=1961225(﹣)=D.22251196x【答案】A【解析】【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=225,把相应数值代入即可求解.【详解】第一次降价后的价格为225×(1﹣x),第二次降价后的价格为225×(1﹣x)×(1﹣x),则225(1﹣x)2=196.故选A.【点睛】本题考查了一元二次方程的应用-增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.12.徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元.则平均每次降低成本的百分率是()A.8.5%B.9%C.9.5%D.10%【答案】D【解析】【分析】设平均每次降低成本的百分率为x的话,经过第一次下降,成本变为100(1-x)元,再经过一次下降后成本变为100(1-x)(1-x)元,根据两次降低后的成本是81元列方程求解即可.【详解】解:设平均每次降低成本的百分率为x,根据题意得100(1-x)(1-x)=81,解得x=0.1或1.9(不合题意,舍去)即x=10%故选D.13.若关于x的方程2230x x m-+=有两个不相等的实数根,则实数m的取值范围是()A.98m≤B.98m<C.98m>D.98m=【答案】B【解析】【分析】若一元二次方程有两不等根,则根的判别式△=b2-4ac>0,建立关于m的不等式,求出m 的取值范围.【详解】∵方程有两个不相等的实数根,a=2,b=-3,c=m,∴△=b2-4ac=(-3)2-4×2×m>0,解得98m<.故选:B.【点睛】此题考查根的判别式,解题关键在于掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=389【答案】B【解析】【分析】【详解】解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389 (1+x) 元,则今年上半年发放给每个经济困难学生389 (1+x) (1+x) =389(1+x)2元.据此,由题设今年上半年发放了438元,列出方程:389(1+x )2=438.故选B .15.已知关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1,x 2.若11x +21x =4m ,则m 的值是( ) A .2B .﹣1C .2或﹣1D .不存在【答案】A【解析】【分析】先由二次项系数非零及根的判别式△>0,得出关于m 的不等式组,解之得出m 的取值范围,再根据根与系数的关系可得出x 1+x 2=2m m +,x 1x 2=14,结合1211+x x =4m ,即可求出m 的值.【详解】∵关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1、x 2, ∴()202404m m m m ≠⎧⎪⎨∆=+-⋅>⎪⎩, 解得:m >﹣1且m≠0,∵x 1、x 2是方程mx 2﹣(m+2)x+4m =0的两个实数根, ∴x 1+x 2=2m m +,x 1x 2=14, ∵1211+x x =4m , ∴214m m +=4m , ∴m=2或﹣1,∵m >﹣1,∴m=2,故选A .【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:根据二次项系数非零及根的判别式△>0,找出关于m 的不等式组;牢记两根之和等于﹣b a、两根之积等于c a. 16.已知24b ac -是一元二次方程()200++=≠ax bx c a 的一个实数根,则ab 的取值范围为( )A .18ab ≥ B .18ab ≤ C .14ab ≥ D .14ab ≤ 【答案】B【解析】【分析】设u 的两个一元二次方程,并且这两个方程都有实根,所以由判别式大于或等于0即可得到ab≤18. 【详解】因为方程有实数解,故b 2-4ac≥0.24b ac =-24b ac =-,设 则有2au 2-u+b=0或2au 2+u+b=0,(a≠0),因为以上关于u 的两个一元二次方程有实数解,所以两个方程的判别式都大于或等于0,即得到1-8ab≥0,所以ab≤18. 故选B .【点睛】 本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的求根公式:(b 2-4ac≥0).17.关于x 的方程(2-a)x 2+5x-3=0有实数解,则整数a 的最大值是( )A .1B .2C .3D .4 【答案】D【解析】【分析】由于关于x 的方程(2-a )x 2+5x-3=0有实数根,分情况讨论:①当2-a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2-a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此可以确定整数a 的最大值.【详解】解:∵关于x 的方程(2−a )x 2+5x−3=0有实数根,∴①当2−a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2−a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,∴△=25+12(2−a)≥0,解之得a≤4912, ∴整数a 的最大值是4.故选D.【点睛】本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握一元二次方程的性质与根的判别式.18.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 【答案】D【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k V -≠⎧⎨=----⎩…, 解得:32k ≥且k≠2. 故选D .【点睛】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.19.若关于x 的一元二次方程ax 2+bx+6=0的一个根为x=﹣2,则代数式6a ﹣3b+6的值为( )A .9B .3C .0D .﹣3【答案】D【解析】分析:根据关于x 的一元二次方程260ax bx ++=的一个根为2x =-,可以求得2a b -的值,从而可以求得636a b -+的值.详解:∵关于x 的一元二次方程260ax bx ++=的一个根为x =−2,∴()()22260a b ,⨯-+⨯-+= 化简,得2a −b +3=0,∴2a −b =−3,∴6a −3b =−9,∴6a −3b +6=−9+6=−3,故选D.点睛:考查一元二次方程的解,解题的关键是明确题意,建立所求式子与已知方程之间的关系.20.某厂四月份生产零件100万个,第二季度共生产零件282万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .100(1+x )2=282B .100+100(1+x )+100(1+x )2=282C .100(1+2x )=282D .100+100(1+x )+100(1+2x )=282【答案】B【解析】【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【详解】五月份的产量=100(1+x ),六月份的产量=1002(1)x +, 根据题意可得:100+100(1+x )+1002(1)x +=282.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为2(1)a x b +=,a 为起始时间的有关数量,b 为终止时间的有关数量.。
初三九年级数学华师版 第22章 一元二次方程 第22章 专训(word版)解码专训
解码专训一:根与系数的关系的四种应用类型名师点金:利用一元二次方程的根与系数的关系可以不解方程,仅通过系数就反映出方程两根的特征.在实数范围内运用一元二次方程的根与系数的关系时,必须注意Δ≥0这个前提,而应用判别式Δ的前提是二次项系数不为0.因此,解题时要注意分析题目中有没有隐含条件Δ≥0和a≠0.利用根与系数的关系求代数式的值1.设方程4x2-7x-3=0的两根为x1,x2,不解方程求下列各式的值.(1)(x1-3)(x2-3);(2)x2x1+1+x1x2+1;(3)x1-x2.利用根与系数的关系构造一元二次方程2.构造一个一元二次方程,使它的两根分别是方程5x2+2x-3=0各根的负倒数.利用根与系数的关系求字母的值或取值范围3.已知关于x的一元二次方程2x2-mx-2m+1=0的两根的平方和是29 4,求m的值.巧用根与系数的关系确定字母系数的存在性4.已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根,是否存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立?若存在,求出k 的值;若不存在,请说明理由.解码专训二:一元二次方程中的常见热门考点名师点金:一元二次方程题的类型非常丰富,常见的有一元二次方程的根、一元二次方程的解法、一元二次方程根的情况、一元二次方程根与系数的关系、一元二次方程的应用等,只要我们掌握了不同类型题的解法特点,就可以使问题变得简单,明了.一元二次方程的根1.(2015·兰州)若一元二次方程ax 2-bx -2 015=0有一根为x =-1,则a +b =________.2.若关于x 的一元二次方程ax 2+bx +c =0有一根为-1,且a =4-c +c -4-2,求(a +b )2 0162 015c 的值.一元二次方程的解法3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( )A .(x +1)2=0B .(x -1)2=0C .(x +1)2=2D .(x -1)2=24.一元二次方程x2-2x-3=0的解是()A.x1=-1,x2=3 B.x1=1,x2=-3C.x1=-1,x2=-3 D.x1=1,x2=35.选择适当的方法解下列方程:(1)(x-1)2+2x(x-1)=0;(2)x2-6x-6=0;(3)6 000(1-x)2=4 860;(4)(10+x)(50-x)=800;(5)(中考·山西)(2x-1)2=x(3x+2)-7.一元二次方程根的判别式6.(2015·河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥17.在等腰三角形ABC中,三边长分别为a,b,c.其中a=5,若关于x的方程x2+(b+2)x+(6-b)=0有两个相等的实数根,求△ABC的周长.8.(2015·南充)已知关于x的一元二次方程(x-1)(x-4)=p2,p为实数.(1)求证:方程有两个不相等的实数根.(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由).一元二次方程根与系数的关系9.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足1α+1β=-1,则m的值是()A.3 B.1C.3或-1 D.-3或110.关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实数根x1,x2,且有x1+x2-x1x2=1-a,求a的值.11.设x1,x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两个实数根,当a为何值时,x12+x22有最小值?最小值是多少?一元二次方程的应用12.(2015·乌鲁木齐)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?13.小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(求出剪成的两段铁丝的长度)(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.新定义问题14.(中考·厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,x2+3x-274=0,x2+6x-27=0,x2+4x+4=0都是“偶系二次方程”.判断方程x2+x-12=0是否是“偶系二次方程”,并说明理由.答案解码专训一1.解:根据一元二次方程根与系数的关系,有x 1+x 2=74,x 1x 2=-34.(1)(x 1-3)(x 2-3)=x 1x 2-3(x 1+x 2)+9=-34-3×74+9=3.(2)x 2x 1+1+x 1x 2+1=x 2(x 2+1)+x 1(x 1+1)(x 2+1)(x 1+1)= x 12+x 22+x 1+x 2x 1x 2+x 1+x 2+1=(x 1+x 2)2-2x 1x 2+(x 1+x 2)x 1x 2+(x 1+x 2)+1= ⎝ ⎛⎭⎪⎫742-2×⎝ ⎛⎭⎪⎫-34+74-34+74+1=10132. (3)∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫742-4×⎝ ⎛⎭⎪⎫-34=9716, ∴x 1-x 2=±9716=±1497.2.解:设方程5x 2+2x -3=0的两根为x 1,x 2,则x 1+x 2=-25,x 1x 2=-35.设所求方程为y 2+py +q =0,其两根为y 1,y 2,令y 1=-1x 1,y 2=-1x 2. ∴p =-(y 1+y 2)=-⎝ ⎛⎭⎪⎫-1x 1-1x 2=1x 1+1x 2=x 1+x 2x 1x 2=23,q =y 1y 2=⎝ ⎛⎭⎪⎫-1x 1⎝ ⎛⎭⎪⎫-1x 2=1x 1x 2=-53. ∴所求的方程为y 2+23y -53=0,即3y 2+2y -5=0.3.解:设方程两根为x 1,x 2,由已知得⎩⎪⎨⎪⎧x 1+x 2=m 2,x 1x 2=-2m +12.∵x 12+x 22=(x 1+x 2)2-2x 1x 2=294,即⎝ ⎛⎭⎪⎫m 22-2×-2m +12=294, ∴m 2+8m -33=0.解得m 1=-11,m 2=3.当m =-11时,方程为2x 2+11x +23=0,Δ=112-4×2×23<0,方程无实数根,∴m =-11不合题意,舍去;当m =3时,方程为2x 2-3x -5=0,Δ=(-3)2-4×2×(-5)>0,方程有两个不相等的实数根,符合题意.∴m 的值为3.4.解:不存在.理由如下:∵一元二次方程4kx 2-4kx +k +1=0有两个实数根,∴k ≠0,且Δ=(-4k)2-4×4k(k +1)=-16k ≥0,∴k <0.∵x 1,x 2是方程4kx 2-4kx +k +1=0的两个实数根,∴x 1+x 2=1,x 1x 2=k +14k .∴(2x 1-x 2)(x 1-2x 2)=2(x 1+x 2)2-9x 1x 2=-k +94k .又∵(2x 1-x 2)(x 1-2x 2)=-32,∴-k +94k =-32,∴k =95.又∵k<0,∴不存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立.方法总结:对于存在性问题,先根据方程根的情况,利用根的判别式确定出未知字母的取值范围,再利用根与系数的关系求出已知式子中字母的值,验证字母的值是否在其取值范围内.解码专训二1.2 015 点拨:把x =-1代入方程中得到a +b -2 015=0,即a +b =2 015.2.解:∵a =4-c +c -4-2,∴c -4≥0且4-c ≥0,即c =4,则a =-2.又∵-1是一元二次方程ax 2+bx +c =0的根,∴a -b +c =0,∴b =a +c =-2+4=2.∴原式=(-2+2)2 0162 015×4=0. 3.D 4.A5.解:(1)(x -1)2+2x(x -1)=0,(x -1)(x -1+2x) =0,(x -1)(3x -1) =0,∴x 1=1,x 2=13.(2)x 2-6x -6=0,∵a =1,b =-6,c =-6,∴b 2-4ac =(-6)2-4×1×(-6)=60.∴x =6±602=3±15,∴x 1=3+15,x 2=3-15.(3)6 000(1-x)2=4 860,(1-x)2= 0.81,1-x = ±0.9,∴x 1=1.9,x 2=0.1.(4)(10+x)(50-x)=800,x 2-40x +300= 0,∴x 1=10,x 2=30.(5)(2x -1)2=x(3x +2)-7,4x 2-4x +1 =3x 2+2x -7,x 2-6x +8 =0,∴x 1=2,x 2=4.6.B7.解:∵关于x 的方程x 2+(b +2)x +(6-b)=0有两个相等的实数根, ∴Δ=(b +2)2-4(6-b)=0,∴b 1=2,b 2=-10(舍去).当a 为腰时,△ABC 的周长为5+5+2=12.当b 为腰时,2+2<5,不能构成三角形.∴△ABC 的周长为12.8.(1)证明:原方程可化为x 2-5x +4-p 2=0.Δ=(-5)2-4(4-p 2)=9+4p 2.∵p 为实数,则p 2≥0,∴9+4p 2>0.即Δ>0,∴方程有两个不相等的实数根.(2)解:当p 为0,2,-2时,方程有整数解.(答案不唯一)点拨:(1)先将一元二次方程化为一般形式,由题意得,一元二次方程根的判别式b 2-4ac =(-5)2-4×1×(4-p 2)=9+4p 2,易得,9+4p 2>0,从而得证.(2)一元二次方程的解为x =5±9+4p 22,若方程有整数解,则9+4p 2必须是完全平方数,故当p =0、2、-2时,9+4p 2分别对应9、25、25,此时方程的解分别为整数.9.A10.解:由题意,得x 1+x 2=3a +1a ,x 1x 2=2(a +1)a ,∴3a +1a -2(a +1)a=1-a ,∴a 2-1=0,即a =±1.又∵方程有两个不相等的实数根,∴a ≠0,且Δ=[-(3a +1)]2-4a·2(a +1)>0,即a ≠0,且(a -1)2>0,∴a ≠0,且a ≠1,∴a =-1.11.解:∵方程有两个实数根,∴Δ=(2a)2-4(a 2+4a -2)≥0,∴a ≤12.又∵x 1+x 2=-2a ,x 1x 2=a 2+4a -2,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=2(a -2)2-4.∵a ≤12,∴当a =12时,x 12+x 22的值最小.此时x 12+x 22=2⎝ ⎛⎭⎪⎫12-22-4=12,即最小值为12. 点拨:本题中考虑Δ≥0从而确定a 的取值范围这一过程易被忽略.12.解:设每件商品降价x 元,则售价为每件(60-x)元,每星期的销量为(300+20x)件.根据题意,得(60-x -40)(300+20x)=6 080.解得x 1=1,x 2=4.又要顾客得实惠,故取x =4,即销售单价为56元.答:应将销售单价定为56元.13.解:(1)设剪成的较短的一段长为x cm ,则较长的一段长为(40-x) cm ,由题意,得⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫40-x 42=58,解得x 1=12,x 2=28.当x =12时,较长的一段长为40-12=28(cm ),当x =28时,较长的一段长为40-28=12(cm )<28cm (舍去).∴较短的一段长为12 cm ,较长的一段长为28 cm .(2)小峰的说法正确.理由如下:设剪成的较短的一段长为m cm ,则较长的一段长就为(40-m) cm ,由题意得⎝ ⎛⎭⎪⎫m 42+⎝ ⎛⎭⎪⎫40-m 42=48,变形为m 2-40m +416=0.∵Δ=(-40)2-4×416=-64<0,∴原方程无实数解,∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm2.14.解:不是.理由如下:解方程x2+x-12=0,得x1=-4,x2=3.|x1|+|x2|=4+3=2×|3.5|.∵3.5不是整数,∴方程x2+x-12=0不是“偶系二次方程”.。
专训1 一元二次方程与三角形的综合的四种类型(含答案)
专训1一元二次方程与三角形的综合的四种类型名师点金:一元二次方程是初中数学重点内容之一,常常与其他知识结合,其中一元二次方程与三角形的综合应用就是非常重要的一种,主要考查一元二次方程的根的概念、根的判别式的应用、一元二次方程的解法及一元二次方程与等腰三角形、直角三角形的性质等知识的综合运用.一元二次方程与三角形三边关系的综合1.三角形的两边长分别为4和6,第三边长是方程x2-7x+12=0的解,则第三边的长为() A.3B.4C.3或4D.无法确定2.根据一元二次方程根的定义,解答下列问题.一个三角形两边长分别为3 cm和7 cm,第三边长为a cm(a为整数),且a满足a2-10a+21=0,求三角形的周长.解:由已知可得4<a<10,则a可取5,6,7,8,9.(第一步)当a=5时,代入a2-10a+21,得52-10×5+21≠0,故a=5不是方程的根.同理可知a=6,a=8,a=9都不是方程的根,a=7是方程的根.(第二步)∴三角形的周长是3+7+7=17(cm).上述过程中,第一步是根据_____________________________________________________ ____________________________,第二步应用的数学思想是__________,确定a值的大小是根据______________.一元二次方程与直角三角形的综合3.已知一个直角三角形的两条直角边的长恰好是方程x2-14x+48=0的两个根,则这个直角三角形的斜边长为________.4.已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2max=0有两个相等的实数根,试判断△ABC的形状,并说明理由.一元二次方程与等腰三角形的综合5.已知关于x的方程x2-(k+2)x+2k=0.(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.一元二次方程与动态几何综合6.如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm.点P从点A开始沿AB边向点B以1 cm/s 的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积为4 cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度为5 cm?(3)在(1)中,△PBQ的面积能否为7 cm2并说明理由.(第6题)答案1.C2.三角形任意两边之和大于第三边,任意两边之差小于第三边;分类讨论思想;方程根的定义3.104.解:△ABC是直角三角形.理由如下:原方程可化为(b+c)x2-2max+cm-bm=0,Δ=4ma2-4m(c-b)(c+b)=4m(a2+b2-c2).∵m>0,且原方程有两个相等的实数根,∴a2+b2-c2=0,即a2+b2=c2.∴△ABC是直角三角形.5.(1)证明:∵Δ=(k+2)2-8k=k2+4k+4-8k=k2-4k+4=(k-2)2≥0,∴无论k取任何实数值,方程总有实数根.(2)解:解方程x2-(k+2)x+2k=0,得x1=k,x2=2.∵△ABC为等腰三角形,∴当a=k=1时,另一边长为2,此时,不能构成三角形;当a=1,k=2时,△ABC的周长为5.6.解:设P,Q运动的时间为x s,则由题意知AP=x cm,BP=(5-x) cm,BQ=2x cm,CQ=(7-2x) cm.(1)S△PBQ=12·PB·BQ=12×(5-x)×2x=4.解得x1=1,x2=4.当x=1时,5-1>0,7-2×1>0,满足题意;当x=4时,5-4>0,7-2×4<0,不满足题意,舍去.故1 s后,△PBQ的面积为4 cm2(2)由题意知PQ2=PB2+BQ2=(5-x)2+(2x)2,若PQ=5 cm,则(5-x)2+(2x)2=25.解得x1=0(舍去),x2=2.故2 s后,PQ的长度为5 cm.(3)不能.理由如下:仿照(1),得12(5-x)·2x=7,整理,得x2-5x+7=0.∵Δ=b2-4ac=25-4×1×7=-3<0,∴此方程无实数解.∴△PBQ的面积不能为7 cm2.。
专题01 一元二次方程的解法重难点题型专训(解析版)
专题01一元二次方程的解法重难点题型专训【题型目录】题型一用直接开方法解一元二次方程题型二用配方法解一元二次方程题型三用公式法解一元二次方程题型四用因式分解法解一元二次方程题型五用换元法解一元二次方程题型六根据判别式判断一元二次方程根的情况题型七根据一元二次方程根的情况求参数题型八配方法的应用【经典例题一用直接开方法解一元二次方程】【解题技巧】开平方法:对于形如n x 2或)0()(2 a n b ax 的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解.形如n x 2的方程的解法:当0 n 时,n x ;当0 n 时,021 x x ;当0 n 时,方程无实数根。
【例1】(2023春·安徽·八年级淮北一中校联考阶段练习)若一元二次方程 20ax b ab 的两根分别是1m 和23m ,则ba的值为()A .16B .259C .25D .259或25【答案】B【分析】直接开平方得到:bx a,得到方程的两个根互为相反数,所以1230m m ,解得23m ,则方程的两个根分别是153x ,253x ,则有53b a ,然后两边平方即可得出答案.【详解】解:∵一元二次方程2ax b 的两个根分别是1m 与213m ,且bx a,∴1230m m ,解得:23m ,即方程的根是:153x ,253x ,∴2259b b a a,故选:B .【点睛】题目主要考查了解一元二次方程及一元一次方程,灵活运用一元二次方程2(0)ax b ab =的两根互为相反数是解题关键.【变式训练】1.(2022春·八年级单元测试)下列哪个是一元二次方程22(1)3x 的解()A .12x ,23x B .132x ,232x C .1612x,612x D .1612x,2612x 【答案】C【分析】两边同时除以2,再两边开方,即可得出两个一元一次方程,求出方程的解即可.【详解】解: 2213x ,2312x,612x,解得,1612x ,2612x ,故选:C【点睛】本题考查了解一元二次方程-直接开平方法,类型有: 20x a a ;2ax b (a b,同号且0a ); 20x a b b ; 2( a x b c a c ,同号且0)a .法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解.2.(2023·安徽·校联考模拟预测)在平面直角坐标系xOy 中,直线2y x b 分别与x 的正半轴、y 的负半轴相交于A B ,两点,已知AOB 的面积等于16,则b 的值为______.【答案】8【分析】依据题目求出1,02A b, 0,B b ,再根据AOB 的面积等于16,即可得出答案.【详解】当0y 时,02x b∴12x b ,∴1,02A b,当0x 时,y b ∴ 0,B b ,∵直线2y x b 分别与x 的正半轴、y 的负半轴相交于A B ,两点,∴12OA b ,OB b∵AOB 的面积等于16,∴ 111622b b,解得:8b ,8b (不合题意,舍去).故答案为:8 .【点睛】此题考查了一次函数与x 轴、y 轴的交点问题,以及三角形面积问题,一元二次方程的解,掌握一次函数与x 轴、y 轴的交点的求法是解题的关键.3.(2023·上海·八年级假期作业)解关于x 的方程: 2222x a a ab b .【答案】12x a b ,2x b .【分析】根据直接开平方法解一元二次方程即可.【详解】解: 22x a a b ,∴ x a a b ,∴x a a b 或 x a a b ,解得:12x a b ,2x b .【点睛】本题考查一元二次方程的解法,解题的关键是灵活运用直接开平方法解一元二次方程.【经典例题二用配方法解一元二次方程】【解题技巧】配方法:通过配方的方法把一元二次方程转化为n m x 2)(的方程,再运用开平方法求解。
第21章一元二次方程(压轴必刷30题7种题型专项训练)(原卷版)-2024-2025学年九年级数学上
第21章一元二次方程(压轴必刷30题7种题型专项训练)一.解一元二次方程-配方法(共1小题)1.(2022秋•仙桃校级月考)小明在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得:[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得.x1=﹣2+,x2=﹣2﹣.我们称小明这种解法为“平均数法”.(1)下面是小明用“平均数法”解方程(x+3)(x+7)=5时写的解题过程.解:原方程可变形,得:[(x+a)﹣b][(x+a)+b]=5.(x+a)2﹣b2=5,(x+a)2=5+b2.直接开平方并整理,得.x1=c,x2=d.上述过程中的a、b、c、d表示的数分别为,,,.(2)请用“平均数法”解方程:(x﹣5)(x+3)=6.二.解一元二次方程-因式分解法(共1小题)2.(2021秋•高安市校级月考)阅读下面的例题:解方程:x2﹣|x|﹣2=0解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=1(不合题意,舍去),x2=﹣2∴原方程的根是x1=2,x2=﹣2.请参照例题解方程x2﹣|x﹣3|﹣3=0,则此方程的根是.三.换元法解一元二次方程(共1小题)3.(2021秋•高州市月考)先阅读,再解题解方程(x﹣1)2﹣5(x﹣1)+4=0,可以将(x﹣1)看成一个整体,设x﹣1=y,则原方程可化y2﹣5y+4=0,解得y1=1;y2=4,当y=1时,即x﹣1=1,解得x=2,当y=4时,即x﹣1=4,解得x=5,所原方程的解为x1=2,x2=5请利用上述这种方法解方程:(3x﹣5)2﹣4(5﹣3x)+3=0.四.根的判别式(共4小题)4.(2022秋•宝应县校级月考)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.5.(2022春•雷州市月考)已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.6.(2022秋•罗山县校级月考)已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.7.(2022秋•仪陇县月考)已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.五.根与系数的关系(共5小题)8.(2021春•拱墅区月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.9.(2021秋•冷水滩区校级月考)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:(1)已知a、b是方程x2+15x+5=0的二根,则=(2)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知和是关于x,y的方程组的两个不相等的实数解.问:是否存在实数k,使得y1y2﹣=2?若存在,求出的k 值,若不存在,请说明理由.10.(2021春•崇川区校级月考)已知关于x的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.11.(2021秋•顺德区月考)已知方程a(2x+a)=x(1﹣x)的两个实数根为x1,x2,设.(1)当a=﹣2时,求S的值;(2)当a取什么整数时,S的值为1;(3)是否存在负数a,使S2的值不小于25?若存在,请求出a的取值范围;若不存在,请说明理由.12.(2020秋•椒江区校级月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则另一个根为2t,因此ax2+bx+c=a(x﹣t)(x﹣2t)=ax2﹣3atx+2t2a,所以有b2﹣ac=0;我们记“K=b2﹣ac”即K=0时,方程ax2+bx+c=0为倍根方程;下面我们根据此结论来解决问题:(1)方程①x2﹣x﹣2=0;方程②x2﹣6x+8=0这两个方程中,是倍根方程的是(填序号即可);(2)若(x﹣2)(mx+n)=0是倍根方程,求4m2+5mn+n2的值;(3)关于x的一元二次方程x2﹣n=0(m≥0)是倍根方程,且点A(m,n)在一次函数y=3x﹣8的图象上,求此倍根方程的表达式.六.配方法的应用(共1小题)13.(2021秋•建瓯市校级月考)先阅读,再解决问题.阅读:材料一配方法可用来解一元二次方程.例如,对于方程x2+2x﹣1=0可先配方(x+1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.材料二对于代数式3a2+1,因为3a2≥0,所以3a2+1≥1,即3a2+1有最小值1,且当a=0时,3a2+1取得最小值为1.类似地,对于代数式﹣3a2+1,因为﹣3a2≤0,所以﹣3a2+1≤1,即﹣3a2+1有最大值1,且当a=0时,﹣3a2+1取得最大值为1.解答下列问题:(1)填空:①当x=时,代数式2x2﹣1有最小值为;②当x=时,代数式﹣2(x+1)2+1有最大值为.(2)试求代数式2x2﹣4x+1的最小值,并求出代数式取得最小值时的x的值.(要求写出必要的运算推理过程)七.一元二次方程的应用(共17小题)14.(2022秋•岳阳县校级月考)已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?15.(2022春•宜秀区校级月考)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?16.(2022秋•中原区校级月考)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)时间第一个月第二个月清仓时单价(元)8040销售量(件)200(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?17.(2022秋•南海区校级月考)在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,两条纵向,一条横向,横向与纵向互相垂直,(如图),把耕地分成大小相等的六块作试验田,要使实验地面积为570m2,问道路应为多宽?18.(2023春•莱芜区期中)如图,在矩形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发,沿AD、BC、CB、DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止、已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,点P、N重合;(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形.19.(2022春•拱墅区校级月考)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC 和Rt△BED边长,易知,这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”必有实数根;(3)若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6,求△ABC面积.20.(2021春•崇川区校级月考)某种产品的年产量不超过1 000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图(2).若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣费用)21.(2021秋•莲池区校级月考)毕业在即,某商店抓住商机,准备购进一批纪念品,若商店花440元可以购进50本学生纪念品和10本教师纪念品,其中教师纪念品的成本比学生纪念品的成本多8元.(1)请问这两种不同纪念品的成本分别是多少?(2)如果商店购进1200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利2500元,问第二周每个纪念品的销售价格为多少元?22.(2022秋•佛山月考)如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点D从点C开始沿CA边运动,速度为1cm/s,与此同时,点E从点B开始沿BC边运动,速度为2cm/s,当点E到达点C时,点D同时停止运动,连接AE,设运动时间为ts,△ADE的面积为S.(1)是否存在某一时刻t,使DE∥AB?若存在,请求出此时刻t的值,若不存在,请说明理由.(2)点D运动至何处时,S=S△ABC?23.(2022秋•胶州市校级月考)如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?24.(2022秋•沙坪坝区校级月考)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?25.(2022秋•渝水区校级月考)已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.26.(2022秋•宜兴市月考)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?27.(2022秋•宜阳县月考)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)花圃的面积为米2(用含a的式子表示);(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;(3)已知某园林公司修建通道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价为105920元?28.(2022秋•仙桃校级月考)已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.29.(2021秋•开州区校级月考)今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在原售价基础上每箱降价3m%,这样每天可多销售m%;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m的值.30.(2022秋•中原区校级月考)如图所示,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,P、Q 分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动.点P停止运动时点Q也停止运动.(1)P、Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P、Q两点从出发开始到几秒时,点P和点Q的距离第一次是10cm?。
解一元二次方程(十字相乘法)专项训练
解一元二次方程(十字相乘法)专项训练一、一元二次方程的解法归类:1.直接开平方法:适合)0()(2≥=+k k h x 的形式。
如:07)5(2=--x 解:57,57,75,7)5(212+-=+=±=-=-x x x x2.配方法:→万能方法(比较适合二次项系数等于1,而且一次项系数是偶数的方程)关键步骤:方程两边都加上一次项系数一半的平方。
如:1562=+x x 解:362,362,623,24)3(,915962122--=-=±=+=++=++x x x x x x注:代数式的配方,应先提取二次项系数,将二次项系数变成1,再进行配方。
因为代数式没有两边,无法进行两边都加上一次项系数一半的平方,所以必须加多少再减多少,而且配方与常数项无关,所以常数项必须放到括号以外。
如:455)23(37427)23(37)49493(37)3(379322222+--=++--=+-+--=+--=++-x x x x x x x x 3.公式法:→万能方法(系数比较大的方程不太适合) 如:0122=-+x x 解:∵,1,1,2-===c b a ∴,9)1(24142=-⨯⨯-=-ac b ∴431±-=x 4.因式分解法:①提公因式法:如1)2)(1(+=-+x x x解:3,1,0)3)(1(,0)12)(1(,0)1()2)(1(21=-==-+=--+=+--+x x x x x x x x x ②运用平方差公式:))((22b a b a b a -+=-如0)12(22=--x x 解:1,31,0)1)(13(,0)12)(12(21===--=--+-x x x x x x x x ③运用完全平方公式:222)(2b a b ab a +=++, 222)(2b a b ab a -=+-如:016)1(8)1(2=++-+x x 解:3,0)3(,0)41(2122===-=-+x x x x④十字相乘法:如:0652=++x x 解:3,2,0)3)(2(21-=-==++x x x xx 2x 3x x x 523=+ 0)3)(2(=++x x又如:035682=-+x x 解:47,25,0)74)(52(21=-==-+x x x x x 2 5x 4 7-x x x 62014=+-0)74)(52(=-+x x二、十字相乘法专题练习:(1)01072=++x x (2)0672=++x x(3)0862=+-x x (4)01582=+-x x(5)01662=-+x x(6)0122=--x x(7)03722=++x x(8)071362=+-x x(9)0101962=++x x(10)0351162=--x x三、用恰当的方法解方程:(1)02732=-x(2)142=-x x (3)42)2(3-=-x x x(4)01522=+-x x (5)01492=+-x x (6)07252=--x x。
一元二次方程的6种解法
一元二次方程的6种解法
一元二次方程的6种解法如下:
1、因式分解法:将一元二次方程化成 ax^2+bx+c=0 的形式,先将两边同乘以a后,即a(x^2+ b/ax + c/a),然后将此形式拆解为(x+())(x+(/))的形式,得到两个一元一次方程,求出x的值,即可求出原方程的解。
2、公式法:用公式法求解一元二次方程,即通过求解公式:x=(-
b±√(b^2-4ac))/2a来求解,此公式中,b和c为方程的系数,a为系数前的系数。
3、图像法:使用图像法求解一元二次方程,即作出ax^2+bx+c=0方程图象,然后根据图象上的交点判断出方程的解。
4、判别式法:此法根据一元二次方程的判别式来求解,即当判别式b^2-4ac>0时,方程有两个不等实根;当判别式b^2-4ac=0时,方程有一个实根;当判别式b^2-4ac<0时,方程没有实根。
5、求根公式法:此法可以用来求解一元二次方程的实根,即用求根公式x1=(-b+ √(b2- 4ac))÷2a和x2=(-b-√(b2- 4ac))÷2a,其中,b 为系数前的系数,a和c分别为方程的系数。
6、特殊值法:此法适用于一元二次方程中特殊的系数或解。
如当
a=0,系数b和c任意时,可将该方程化为一元一次方程,求解即可;当a=b=0时,可直接算出方程的解。
一元二次方程的解法
一元二次方程的解法汇总1.直接开方法解一元二次方程(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:(点击图片可放大阅览)要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程(点击图片可放大阅览)【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:(点击图片可放大阅览)类型二、因式分解法解一元二次方程(点击图片可放大阅览)【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.(点击图片可放大阅览)【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
一元二次方程的解法归纳总结
一元二次方程的解法归纳总结一元二次方程的解法是每一个中学生都必须掌握的,共有 5 种解法,其中直接开平方法、因式分解法、配方法和公式法是教材上重点讲解的四种方法,并没有提到换元法,我们在这次归纳总结中给于详细的讲解.另外,还将介绍某些特殊的一元二次方程的解法.在上面提到的四种解一元二次方程的方法中,直接开平方法是最直接的方法,因式分解法是最简单的方法,配方法是最基本的方法,而公式法是最万能的方法.我们要根据一元二次方程的特点选择合适的解法,如一元二次方程缺少一次项,选择用直接开平方法求解;一元二次方程缺少常数项,选择用因式分解法(缺常选因)求解.一、直接开平方法解形如x2 p (p≥0)和ax b 2 c(c ≥0)的一元二次方程,用直接开平方法. 用直接开平方法解一元二次方程的一般步骤:(1)把一元二次方程化为x2 p (p≥0)或ax b 2 c(c ≥0)的形式;(2)直接开平方, 把方程转化为两个一元一次方程;(3)分别解这两个一元一次方程, 得到一元二次方程的两个解. 注意:(1)直接开平方法是最直接的解一元二次方程的方法, 并不适合所有的一元二次方程的求解;(2)对于一元二次方程x2 p,当p 0时,方程无解;(3)对于一元二次方程ax b 2 c:①当 c 0时, 一元二次方程有两个不相等的实数根;②当 c 0时, 一元二次方程有两个相等的实数根;③当 c 0 时, 一元二次方程没有实数根.例 1. 解下列方程:(1)x2 2 0; (2)16x2 81 0.分析:观察到两个方程的特点,都可以化为x2 p(p≥0)的形式,所有选择用直接开平方法求解. 当一元二次方程缺少一次项时, 考虑使用直接开平方法求解.解:( 1) x 2 2 x2∴x 1 2,x 22;2 281(2)16x 2 81,x 21681 9 x 16 4∴9 9 ∴ x1,x 2.44例 2. 解下列方程 :22(1) x 3 2 9 0; (2)12 2 x 2 9 0.分析:观察到两个方程的特点 ,都可以化为 ax b 2 c ( c ≥0)的形式 ,所有选择用直接开 平方法求解 . 解:( 1) x 3 2 9 x 3 3∴ x 3 3 或 x 3 322)12 x 2 2 9293x 2 2 192 34 ∴ x 2 3 342 33∴ x 2 或 x 2 2233∴x 1 2 , x 2 2 1 2 2习题 2. 若 x 2 y 2 12 4,则 x 2 y 2___________________习题 1. 下列方程中 ,不能用直接开平方法求解的是A ) x 2 3 0B ) x 1 240C ) x 22 02D ) x 1 222习题 3. 若a,b为方程x2 4 x 1 1的两根,且a b,则 a b(A5 (B)4 (C)1(D)3)习题4. 解下列方程:(1)2x 8 2 16 ;(2) 29 3x 2 64.习题 5. 解下列方程:1)4x 1 2 9 0 ;习题 6. 对于实数p,q ,我们用符号min p,q 表示p,q两数中较小的数,如min 1,2 1.(1)min 2 , 3 _____________ ;(2)若min x 1 2, x2 1,则x ______________.习题7. 已知直角三角形的两边长x, y满足x2 16 y2 9 0 ,求这个直角三角形第三边的长.(注意分类讨论第三边的长)、因式分解法 因式分解法解一元二次方程的一般步骤是 : (1)移项 把方程的右边化为 0;(2)化积 将方程的左边分解为两个一次因式的乘积 ; (3)转化 令每个因式等于 0, 得到两个一元一次方程 ;(4)求解 解这两个一元一次方程 , 得到一元二次方程的两个解 例 1. 用因式分解法解方程 : x 2 3x . 解:x 2 3x 0 x x 3 0 ∴ x 0 或 x 3 0∴x 1 0,x 2 3.解 : x 1 x 1 2x 0∴x 1 1, x 2 1.例 3. 解方程 :3x 2 12x 12. 解:3x 2 12x 12 0 3 x 2 4x 4 0 3 x 2 2 0∴x 1 x 2 2.例 4. 解方程 :x 2 x 3x 3. 解:x 2 x 3x 3 0∴x 11,x 2 3.因式分解法解高次方程 例 5. 解方程 : x 2 1 2 3 x 2 1 0. 解: x 2 1 x 2 1 3 0例 2. 用因式分解法解方程 2: x 1 22x x 1 0.x2 1 x 2 4 0x 1 x 1 x 2 x 2 0∴ x 1 0 或x 1 0或x 2 0 或x 2 0∴x11, x2 1,x32, x4 2.例 6. 解方程: x2 3 2 4 x2 3 0.解: x2 3 x2 3 4 022x2 3 x2 1 0x2 3 x 1 x 1 0∵ x2 3 0∴ x 1 x 1 0∴ x 1 0 或x 1 0∴x1 1,x2 1.用十字相乘法分解因式解方程对于一元二次方程ax2 bx c 0 a 0 , 当b2 4ac ≥0 且的值为完全平方数时可以用十字相乘法分解因式解方程.例7. 解方程:x2 5x 6 0.分析: 5 2 4 6 25 24 1,其结果为完全平方数,可以使用十字相乘法分解因式解: x 2 x 3 0∴ x 2 0 或x 3 0∴ x1 2,x2 3.例 8. 解方程 :2x 2 7x 3 0. 分析 : 72 4 2 3 49 24 25, 其结果为完全平方数 , 可以使用十字相乘法分解因式.解 : 2x 1 x 3 0 ∴ 2x 1 0 或 x 3 0例 9. 设方程 2013x 2 2014 2012x 1 0的较大根为 a ,方程 x 2 2011x 2012 0 的较 小根为 b ,求 a b 的值 .2 解 : 2013x 22014 2012x 1 0 22013x 22013 1 2013 1 x 1 0 2 2 220132x 2 20132 x x 1 02 20132x x 1 x 1 0 x 1 20132 x 1 0 ∴ x 1 0 或 20132 x 1 01∴ x11,x 2 21220132∵ a 是该方程的较大根 ∴ a 12x 2 2011x 2012 0 x 1 x 2012 0 ∴ x 1 0 或 x 2012 0 ∴ x 1 1, x 2 2012 ∵ b 是该方程的较小根 ∴ b 2012∴ a b 1 2012 2013.1∴x 1 2 ,x 23.习题 1. 方程x2 2x的根是___________ .习题 2. 方程x x 2 x 2 0 的根是 ________________ .习题 3. 方程x2 4x 4 0 的解是______________ .习题 4. 方程x 2 x 3 x 2 的解是 _________________习题 5. 如果x 2 x 1 x 1 ,那么x 的值为(A)2 或1 (B)0或1(C)2(D)1习题 6. 方程x x 2 x 的根是_________ .习题7. 已知等腰三角形的腰和底的长分别是一元二次方程x 2 6x 的周长为_________ .习题8. 解下列方程:(1)3x x 2 2 2 x ;(2)x2 3 2 x 1 ;22 (3)x 2 4x 4 3 2x ;2(4)2x2 4x 2 .0的根,则该三角形习题9. 解下列方程:22)x 2 5x 4 0 .2习题 10. 解方程 : 2x 1 2 2 2x 1 1 0 .、配方法解用配方法解一元二次方程 ax 2 bx c 0 a 0 共分六步 :一移、二化、三配、四开、五转、 六解 .1)一移 把常数项移到方程的右边 ,注意变号 ;ax 2 bx c2)二化 在方程的左右两边同时除以二次项系数a ,化二次项系数为 1;x 2 b x c aa3)三配 即配方 ,把方程的左边配成完全平方的形式 ,需要在方程的左右两边同时加上次项系数一半的平方 ;说明 :由上面配方的结果可以确定一元二次方程有实数根的条件和求根公式bx abc 2a a2ab 2 4ac4a 2(4)四开直接开平方 ; b b 24acx(注意 2a2a(5)五转 把第( 4)步得到的bb 2 4acbx 或x2a 2a2a(6)解 解这两个一元一次方程2:当b 2 4ac ≥ 0 时方程有实数根)元一次方程 ;b b 2 4ac 2ab b 2 4ac2ax 12b a2b 2 4ac2a,x 2,得到一元二次方程的两个解22一元二次方程 ax 2 bx c 0 a 0 有实数根的条件是b 2 4ac ≥0, 求根公式为b b 2 4acx . 2a例 1. 用配方法解方程 :x 2 4x 1 0 . 解:x 2 4x 1 2 x 24x 4 1 4 2x 2 5 x 2 5∴ x 2 5 或 x 2 5 ∴ x 1 2 5, x 2 2 5 . 例 2. 解方程 :3x 2 2x 3 0 .分析:按照用配方法解一元二次方程的一般步骤 ,在移项之后 , 要化二次项系数为“ 1 解:3x 2 2x 3x2 2x 1 322 1 1 x 2x139 921210 x3 91 10x331 10 1 10∴x 或 x3 3 3 3 1 10 1 10∴ x 1 ,x 21 3 323 3 例 3. 用配方法解关于 x 的方程 :22x px q 0 ( p4q ≥ 0) .解:x 2 px q 222p p x px q44 x p p 2 4q x 2 4p p 2 4qx pp 2 3 4q ,x p p 2 4qx2 2 ,x 2 2 p 2 4q ≥022p p 4q p p 4q∴ x12,x22说明:p 2 4q ≥0 既是二次根式 p 2 4q 有意义的条件 ,也是一元二次方程 x 2 px q 0有实数根的前提 . 因此把 p 2 4q 叫做一元二次方程 x 2 px q 0 的根的判别式 . 习题 1. 用配方法解方程 x 2 4x 1 0,配方后的方程是【 】22(A ) x 2 2 3(B ) x 2 2 3 22(C ) x 2 2 5(D ) x 2 2 5习题 2. 若方程 x 2 8x m 0 可以通过配方写成 x n 2 6 的形式 ,那么 x 2 8x m 5 可以配成2(A ) x n 5 2 12( B ) x n 2 12( D ) x n 2 1122) 3x 2 6x 1 0;2 4) 4x 212x 1 0 .2(C ) x n 5 2 11 习题 3. 用配方法解方程 (1) x 2 x 1 0; 3 x 2 5x 6 0;四、公式法元二次方程的求根公式b b 2 4ac x2a例 1. 证明一元二次方程的求根公式 分析 :用配方法可以证明一元二次方程的求根公式bb2 4ac( b 2 4ac ≥0).2a注意:当b 2 4 ac ≥ 0时,一元二次方程 ax 2 bx c 0(a 0 )有实数根 ;当b 2 4ac 0时, 二次根式 b 2 4ac 无意义 ,方程无实数根 .公式法解一元二次方程的一般步骤 : 用公式法解一元二次方程的一般步骤是 : (1)把一元二次方程化为一般形式 ; (2)确定 a,b,c 的值, 包括符号 ;(3)当 b 2 4ac ≥0时,把 a,b,c 的值代入求根公式求解 ;当b 2 4ac 0时,方程无实数根 .证明 :ax 2 bx c 0ax 2 bx c a b 2 4ba 22 b x a b x a b 2 b 2a c b 2 a 4a 2 x 2a 4ac4a2b b 2 4ac2a ∴ x b 2ab 2 4ac 或x 2a b b 2 4ac2a2ab b 2 4ac ∴ x 1 2a , x 2b b 2 4ac2a元二次方程 ax 2bx c 0 ( a 0 )的求根公式为 :当 b 2 4ac 0 时 ,元二次方程无实数根2b4ac ≥ 0)即一元 次方程 ax 2 bx c 0( a 0)的根为例 1. 用公式法解方程 :2x 3 x 6 0 . 分析:用公式法解一元二次方程时要先将方程化为一般形式 ,并正确确定 a,b,c 的值 ,包括符 号.解:a 2,b 1,c 6 ∴ b 2 4ac 12 4 2 6 494 173∴x 1,x 242例 2. 解下列方程 :解:( 1) x 2 4x 2 0 22b 24ac 42 4 2 242 6,x 2 2 6 ;2) 4x 2 12x 9 022b 24ac 122 4 4 9 144 144 03 ax 2bx c 0 ( a 0 )有两个相等的实数根 .x 1 0.4 322 2.次方程获得的启示a 0 ),可以用 a,b,c 的值确定方程解的情况以及方12 0 12 0 ∴x 83∴x 1 x 21 22说明:当b 2 4ac 0 时,一元二次方程对于一元二次方程 ax 2 bx c 01 49 1 7 ∴x 1) x 2 4x 2;22) 4x 2 4x 10 1 8x .4 24 4 2 6 ∴x26b 2 4ac 有意义的条件即为方程有解的条件:当程的解,并且求根公式里面的二次根式∴x 1 3,x 2 4.b 2 4ac ≥0 时,二次根式 b 2 4ac ,一元二次方程有实数根 ;当b 2 4ac 0时,二次根式 b 2 4ac 无意义 ,一元二次方程无实数根 .(1)当 b 2 4ac 0 时,一元二次方程有两个不相等的实数根 ;(2)当 b 2 4ac 0 时,方程有两个相等的实数根 .把 b 2 4ac 叫做一元二次方程根的判别式 ,用 “ ”表示 ,所以 b 2 4ac .在不解方程的前提下 ,可以由 的符号确定一元二次方程根的情况 . 习题 1. 解方程 :1)求 a 2 4a 2018的值 ;1 2a a2 a 2 2a 1 12a 1 a a a1) 2x 2 x 6 ;22) 4x 2 3x 1 x 2 ;3) x 2 2x 2 0 ;4) 2x x 2 1 .习题 2. 已知 a 是一元二次方程 x 2 4x 1 0 的两个实数根中较小的根2)化简并求值五、换元法解某些高次方程或具有一定结构特点的方程时 ,我们可以通过整体换元的方法 ,把方程转 化为一元二次方程进行求解 ,从而达到降次或变复杂为简单的目的 .换元法的实质是换元 ,关键是构造元和设元 ,体现的是转化化归思想 . 用换元法解某些高次方程 例 1. 解方程 :x 4 2x 2 3 0.分析 : 这是一元四次方程 , 可设 x 2 y (注意 : y ≥0), 这样通过换元就把原方程转化为关于 y 的一元二次方程 . 解:设 x 2 y ,则有 : y ≥0 ∴ y 2 2y 3 0∴ y 1 1, y 2 3∵ y ≥0∴ y 3 ( y 1 舍去) ∴ x 2 3用换元法解具有一定结构特点的方程 例 2. 解方程 : x 2 2 3 x 2 2 0.分析 : 注意到该方程中整体 x 2 出现了两次 , 可整体设元 , 从结构上简化方程 解:设 x 2 t ,则有 :t 2 3t 2 0∴t 1 1,t 2 2∴ x 2 1 或 x 2 2∴x 13,x 2 3.∴x 1 3,x 2 4.例 3. 解方程 : x 2 x 8 x 2 x 12 0.分析 : 本题中的方程若展开整理 , 则得到的是一个高次方程 , 但方程本身具有非常明显的结 构特点 , 可整体换元 , 不用展开即可得到一个简洁的一元二次方程 . 解:设 x 2 x y ,则有 : y 2 8y 12 0 y 2 y 6 0∴y 2 0 或y 6 0 ∴y 1 2,y 2 6∴ x 2 x 2 或 x 2 x 6解方程 x 2 x 2得: x 1 1,x 2 2 ; 解方程 x 2 x 6 得: x 1 2,x 2 3综上 ,原方程的解为 x 1 1,x 2 2,x 3 2,x 4 3.原方程转化为关于 t 的整式方程 , 且为一元二次方程 . x 1 2 解:设 x 21 t ,则有 : t 2 1 x 2t 整理得 :t 2 t 2 0∴t 1 1,t 2 2x 1 2由 2 1得: x 2x 1 0 ,此时方程无解 ;x x 1 1由 2 2得:2x 2x 10,解之得 :x 1 ,x 21.x 221综上 ,原方程的解为 x 1 1,x 2 1.1 2 211 例 5. 解方程 :x 22 x 0.x 2x2分析 : 设 x 1 y , 则 x 2 12x 1 2 y 2 2.xx 2x2 x 1 2x 2 例 4. 解方程 : x 1 2x2x x 1 x2分析 : 方程中 x 1 与 x x 11.x 2x 1x1互为倒数 , 若设 x 1 t , 则x11 1, 经过这样的换元 , 最后可把 t1或 x 2 1x2x211解:x 22 x 0 x 2x1 21 x x2 0 xx设 x 1 y ,则有 : y y 2 0 x y 1 y 2 0 ∴ y 1 0 或 y 2 0 ∴ y 1 1, y 2 211 ∴x 1 或 x 2xx 12 由 x 1得: x 2 x 1 0,此时方程无解 ; x 12 由 x 2得: x 2 2x 1 0,解之得 :x 1 x 2 1. x综上 ,原方程的解为 x 1 x 2 1.211 1本题变式 : 已知实数 x 满足 x 212x 10,那么 x1的值是【 】 x 2xx(A )1或 2(B ) 1或 2 (C )1 (D ) 2例 6. 已知 x 2 y 2 x 2 y 2 1 12 ,求 x 2 y 2 的值 .分析:整体设元 :设 x 2 y 2 m ,则 m ≥ 0,据此注意根的取舍 . 解:设 x 2 y 2 m ,则有 :m ≥0 ∴m m 1 12 整理得 :m 2 m 12 0 解之得 :m 1 3,m 2 4∵ m ≥ 0 ∴ m 3 22∴ x 2 y 2 的值为 3.习题 1. 解下列方程 :22习题 2. 解方程 : x 2 x 22 1.x 2 x习题 3. 阅读下面的材料 ,回答问题 :解方程 x 4 5x 2 4 0 ,这是一个一元四次方程 ,根据该方程的特点 ,它的解法通常是 : 设 x 2 y ,则原方程变形为 : y 2 5y 4 0 ①解之得 :y 1 1, y 2 4当 y 1时, x 2 1,解之得 : x 1 ;2当 y 4时,x 2 4,解之得 : x 2.综上 ,原方程的解为 : x 1 1, x 2 1, x 3 2, x 4 2 .(1)在由原方程得到方程 ①的过程中 ,利用 ________ 法达到 ________ 的目的 ,体现了数学的转化思想 ;(2)解方程 : x 2 x 2 4 x 2 x 12 0 .1) x 2 x 2 x 2 x 6 ;22) x 1 5 x 1 6 0 .特殊一元二次方程的解法举例某些方程的解需采用特殊的处理和方法,下面列举几例.例 1. 解方程: x2 5x 1 x2 5x 7 7.分析:若把该方程展开并整理,会得到一个一元四次方程, 这不是我们想看到的结果. 可使用换元法解该方程: 设x2 5x 1 t , 这样就能把原方程转化为关于t 的一元二次方程解:设x2 5x 1 t ,则原方程可转化为:t t 6 7∴ t 2 6t 7 0t 1 t 7 0∴ t 1 0或t 7 0∴ t1 1,t 27∴ x2 5x 1 1 或x2 5x 1 7由x2 5x 1 1得:x2 5x 0,解之得:x1 0,x25;由x2 5x 1 7 得:x2 5x 8 0 ,此时方程无解.综上,原方程的解为x1 0,x2 5.例 2. 解方程:x 2 x 2 0.解法1:当x ≥0,原方程可化为: x2 x 2 0,解之得:x 1(x 2舍去);当x 0 时,原方程可化为:x2 x 2 0,解之得:x 1(x 2 舍去).综上所述,原方程的解为x1 1,x2 1.解法2:原方程可化为: x 2 x 2 0∴ x 1 x 2 0∵ x 2 0∴ x 1 0, x 1∴x1 1, x2 1∴原方程的解为x1 1, x2 1.解法3:(图象法)原方程可化为: x 2 2 x设 f (x) x2 2,g(x) x ,在同一平面直角坐标系中画出二者的图象如图所示∵两个函数的图象有两个交点1,1 和1,1∴方程x2 2 x 有两个实数根,且根为x1 1, x2 1 ∴原方程的解为x11, x2 1 .习题 1. 参照例 2 的解法,解方程: x2 6x x 3 3 0 .例 3. 解方程: x 1 x 2 x 3 x 4 48 .解: x 1 x 4 x 2 x 3 48∴ x 2 5x 4 x 2 5x 6 48设x2 5x 5 t ,则有: t 1 t 1 48∴ t2 1 48,t 2 49∴ t1 7, t 2 7第 21 页 5x 5 7时,解之得: x 15 33,x 2 5 33 ; 22当 x 2 5x 5 7 时,此时方程无解 . 综上所述 ,原方程的解为 x 1 5 233,x 2 5 233习题 2. 方程 x 2 2 x 4 27 0的所有根的和为 ________________ 1 1 1 习题 3. 已知实数 x 满足 x 2 2 x 0 ,那么 x 的值是 x 2x x (A )1或 2 (B ) 1或 2(C )1 【】 D ) 2。
九年级数学 专训1 一元二次方程与三角形的综合
九年级数学专训1一元二次方程与三角形的综合名师点金:一元二次方程是初中数学重点内容之一,常常与其他知识结合,其中一元二次方程与三角形的综合应用就是非常重要的一种,主要考查一元二次方程的根的概念、根的判别式的应用、一元二次方程的解法及与等腰三角形、直角三角形的性质等知识的综合运用.一元二次方程与三角形三边关系的综合1.三角形的两边长分别为4和6,第三边长是方程x2-7x+12=0的解,则第三边的长为()A.3B.4C.3或4D.无法确定2.根据一元二次方程根的定义,解答下列问题.一个三角形两边长分别为3 cm和7 cm,第三边长为a cm,且整数a满足a2-10a+21=0,求三角形的周长.解:由已知可得4<a<10,则a可取5,6,7,8,9.(第一步)当a=5时,代入a2-10a+21,得52-10×5+21≠0,故a=5不是方程的根.同理可知a=6,a=8,a=9都不是方程的根,a=7是方程的根.(第二步)∴三角形的周长是3+7+7=17(cm).上述过程中,第一步是根据________________________________________________________________________ ________________________________________________________________________,第二步应用的数学思想是______________,确定a值的大小是根据______________.一元二次方程与直角三角形的综合3.已知一个直角三角形的两条直角边的长恰好是方程x2-17x+60=0的两个根,则这个直角三角形的斜边长为________.4.已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2max=0有两个相等的实数根,试判断△ABC的形状,并说明理由.一元二次方程与等腰三角形的综合5.已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.一元二次方程与动态几何的综合6.如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm.点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积为4 cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度为5 cm?(3)在(1)中,△PBQ的面积能否为7 cm2?并说明理由.【京师导学号:93602018】(第6题)答案1.C2.三角形任意两边之和大于第三边,任意两边之差小于第三边;分类讨论思想;方程根的定义3.134.解:△ABC是直角三角形.理由如下:原方程可化为(b+c)x2-2max+cm-bm=0,Δ=4ma2-4m(c-b)(c+b)=4m(a2+b2-c2).∵m>0,且原方程有两个相等的实数根,∴a2+b2-c2=0,即a2+b2=c2.∴△ABC是直角三角形.5.(1)证明:∵a=1,b=-(2k+1),c=k2+k,∴Δ=[-(2k+1)]2-4(k2+k)=1>0.∴此方程有两个不相等的实数根.(2)解:∵△ABC的两边AB,AC的长是方程x2-(2k+1)x+k2+k=0的两个实数根,∴由(1)知,AB≠AC,∵△ABC的第三边BC的长为5,且△ABC是等腰三角形,∴AB=5或AC=5,即x=5是方程x2-(2k+1)x+k2+k=0的一个解.将x=5代入方程x2-(2k+1)x+k2+k=0,得25-5(2k+1)+k2+k=0,解得k=4或k=5.当k=4时,原方程为x2-9x+20=0,解得x1=5,x2=4,以5,5,4为边长能构成等腰三角形;当k=5时,原方程为x2-11x+30=0,解得x1=5,x2=6,以5,5,6为边长能构成等腰三角形.综上,k的值为4或5.6.解:设A,P运动的时间为x s,则由题意知AP=x cm,BP=(5-x) cm,BQ=2x cm,CQ=(7-2x) cm.(1)S△PBQ=12·PB·BQ=12×(5-x)×2x=4.解得x1=1,x2=4.当x=1时,5-1>0,7-2×1>0,满足题意;当x=4时,5-4>0,7-2×4<0,不满足题意,舍去.故1 s后,△PBQ的面积为4 cm2.(2)由题意知PQ2=PB2+BQ2=(5-x)2+(2x)2,若PQ=5 cm,则(5-x)2+(2x)2=25.解得x1=0(舍去),x2=2.故2 s后,PQ的长度为5 cm.(3)不能.理由如下:仿照(1),得12(5-x)·2x=7,整理,得x2-5x+7=0,∵Δ=b2-4ac=25-4×1×7=-3<0,∴此方程无实数解.∴△PBQ的面积不能为7 cm2.。
一元二次方程的解法重难点题型专训
一元二次方程的解法重难点题型专训一元二次方程在中学数学中是一个非常重要的内容,它涉及到方程的解法、图像的性质、以及实际问题的应用等多个方面。
在学习一元二次方程的过程中,学生往往会遇到一些重难点的题型,这些题型需要我们有深入、全面的理解和掌握。
接下来,我们就来对一元二次方程的解法重难点题型进行专项训练和剖析。
一、基本概念回顾我们需要回顾和理解一元二次方程的基本概念。
一元二次方程是指形如ax²+bx+c=0的方程,其中a≠0。
在解一元二次方程时,我们通常会运用求根公式、配方法、因式分解等不同的方法。
一元二次方程的解可能包括两个实数解、两个虚数解、或者重根等多种情况。
1. 求根公式:对于一元二次方程ax²+bx+c=0,其求根公式为x=[-b±√(b²-4ac)]/(2a)。
2. 配方法:当一元二次方程难以直接使用求根公式时,我们可以尝试通过配方法将方程化简成完全平方式,然后再求解。
3. 因式分解:一元二次方程的解也可以通过因式分解来求得,这一方法通常适用于特殊的题型。
以上是一元二次方程的基本概念和解法方法,接下来我们会围绕这些方法来训练重难点题型。
二、重难点题型专练1. 关于实数根和虚数根的情况:有些一元二次方程可能没有实数解,而是有两个虚数解,例如x²+1=0这样的方程。
这种情况下,我们需要掌握虚数的性质和运算方法,以及如何判断方程的根的情况。
2. 关于一元二次方程在几何问题中的应用:一个抛物线与x轴交于两点,我们需要求抛物线的方程,并且要求交点的坐标。
这种情况下,我们需要将实际问题转化为代数方程,并运用一元二次方程的相关知识进行求解。
3. 关于一元二次方程的应用拓展:如何通过已知一元二次方程的根,求解与该方程有关的其他问题,这需要我们将方程的栠与系数之间的关系联系起来,进行推导和拓展。
三、个人观点和理解在学习和教学一元二次方程时,我认为重难点题型的训练是非常重要的。
中考数学专项训练: 一元二次方程(含解析)
一、选择题3.(2019·泰州) 方程2x 2+6x -1=0的两根为x 1、x 2,则x 1+x 2等于( )A.-6B.6C.-3D.3 【答案】C【解析】根据一元二次方程根与系数的关系,x 1+x 2=62-=-3,故选C.6. (2019·烟台)当5b c +=时,关于x 的一元二次方程230x bx c +-=的根的情况为( ). A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .无法确定 【答案】A【解析】因为5b c +=,所以5c b =-,因为()2224343(5)6240b c b b b ∆=-⨯⨯=-⨯⨯-=-+>,所以该一元二次方程有两个不相等的实数根.10.(2019·威海)已知a ,b 是方程x 2+x -3=0的两个实数根,则a 2-b+2019的值是( ) A,2023 B,2021 C.2020 D.2019【答案】A【解析】由题得a 2+a -3=0,a+b =-1,所以a 2=-a +3,所以a 2-b+2019=-a +3-b +2019=-(a +b )+3+ 2019=-(-1)+3+2019=2023,故选A. 8.(2019·盐城)关于 x 的一元二次方程 x 2 +kx-2=0(k 为实数)根的情况是( )A. 有两个不相等的实数根 C. 没有实数根B. 有两个相等的实数根 D. 不能确定 【答案】A【解析】∵a =1,b =k ,c=-2,∴△=b 2-4ac =k 2-4×1×(-2)=k 2+8>0,∴方程有两个不相等的实数根.故选A .8.(2019·山西)一元二次方程x 2-4x -1=0配方后可化为( )A.(x+2)2=3B.(x+2)2=5C.(x -2)2=3D.(x -2)2=5【答案】D【解析】原方程可化为:x 2-4x =1,x 2-4x+4=1+4,(x -2)2=5,故选D.7.(2019·淮安)若关于x 的一元二次方程022=-+k x x 有两个不相等的实数根,则k 的取值范围是( ) A.k<-1 B.k>-1 C.k<1 D.k>1 【答案】B【解析】∵关于x 的一元二次方程022=-+k x x 有两个不相等的实数根, ∴△=k k 44)(1422+=-⨯⨯->0, ∴k >-1.4.(2019·黄冈)若x 1,x 2是一元一次方程x 2-4x -5=0的两根,则x 1·x 2的值为 ( )A.-5B.5C.-4D.4【答案】A【解析】由根与系数的关系可知x 1·x 2=-5.1. (2019·怀化)一元二次方程x 2+2x +1=0的解是( ) A.x 1=1,x 2=-1 B.x 1=x 2=1 C.x 1=x 2=-1 D.x 1=-1,x 2=2 【答案】C.【解析】方程x 2+2x +1=0, 配方可得(x +1)2=0, 解得x 1=x 2=-1.故选C.2. (2019·滨州)用配方法解一元二次方程x 2-4x +1=0时,下列变形正确的是( ) A .(x -2)2=1 B .(x -2)2=5 C .(x +2)2=3 D .(x -2)2=3【答案】D【解析】x 2-4x+1=0,移项得x 2-4x=-1,两边配方得x 2-4x+4=-1+4,即(x -2)2=3.故选D .3. (2019·聊城)若关于x 的一元二次方程(k -2)x 2-2kx+k =6有实数根,则k 的取值范围为 ( )A.k ≥0B.k ≥0且k ≠2C.k ≥32D.k ≥32且k ≠2 【答案】D【解析】∵原方程是一元二次方程,∴k -2≠0,∴k ≠2,∵其有实数根,∴(-2k)2-4(k -2)k ≥0,解之得,k ≥32,∴k 的取值范围为k ≥32且k ≠2,故选D.4. (2019·潍坊)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( ) A .m =-2 B .m =3 C .m =3或m =-2 D .m =3或m =2 【答案】A【解析】由题意可得:222121212()212x x x x x x +=+-=,因为:122122,x x m x x m m+=-⎧⎨=+⎩ 所以:22(2)2()12m m m --+=,解得:m 1=3,m 2=-2;当m =3时Δ=62-4×1×12<0,所以m =3应舍去; 当m =-2时Δ=(-4)2-4×1×2>0,符合题意. 所以m =-2,故选择A .5. (2019·淄博) 若2212123,5,x x x x +=+=则以12,x x 为根的一元二次方程是( ) A.2320x x -+= B.2320x x +-=C.2320x x ++=D.2320x x --=【答案】A.【解析】222121212()2,x x x x x x +=++⋅ 又∵2212123,5,x x x x +=+=∴2221212122()()954,x x x x x x ⋅=+-+=-= ∴12,2x x =,∴以12,x x 为根的一元二次方程是2320x x -+=.故选A.6.(2019·自贡)关于x 的一元二次方程x 2-2x +m =0无实数根,则实数m 的取值范围是( ) A.m <1 B.m ≥1 C.m ≤1 D.m >1 【答案】D.【解析】∵方程无实数根, ∴△=(-2)2-4×1·m =4-4m <0. 解得,m >1. 故选D.7. (2019·金华)用配方法解方程x 2-6x -8=0时,配方结果正确的是( ) A. 2(3)17x -= B. 2(3)14x -= C. 2(6)44x -= D. 2(3)1x -=【答案】A .【解析】解方程x 2-6x -8=0,配方,得(x -3)2=17,故选A .8. (2019·宁波) 能说明命题”关于x 的方程x 2-4x+m =0一定有实数根”是假命题的反例为A.m =-1B.m =0C.m =4D.m =5 【答案】D【解析】方程的根的判别式∆=(-4)2-4m =16-4m,当∆<0时,方程无实数根,∴应使16-4m<0,即m>4,可得原方程无实数根,四个选项中,只有m =5符合条件,故选D.二、填空题15.(2019·嘉兴)在x 2+ +4=0的括号中添加一个关于x 的一次项,使方程有两个相等的实数根. 【答案】4x ±【解析】根据一元二次方程有两个相等的实数根的条件可知,则△=b 2﹣4ac =b 2﹣16=0,得b =±4, 故一次项为±4x ,故答案为4x ±.14.(2019·泰州)若关于x 的方程x 2+2x+m =0有两个不相等的实数根,则m 的取值范围是________. 【答案】m<1【解析】该方程的根的判别式∆=22-4m =4-4m,因为有两个不相等的实数根,∴4-4m>0,所以m<1. 16.(2019·威海) 一元二次方程3x 2=4-2x 的解是【答案】1x =,2x = 【解析】直接利用公式法解一元二次方程得出答案.3x 2=4-2x 即3x 2+2x-4=0,则△b 2-4ac =4-4×3×13.(2019·盐城)设1x 、2x 是方程2320x x +-=的两个根,则1212x x x x +-⋅= . 【答案】1【解析】根据一元二次方程中根与系数的关系,由韦达定理可知121232b cx x x x a a+==⋅==-,,得12121x x x x +-⋅=.10.(2019·青岛)若关于x 的一元二欠方程2x 2-x +m =0有两个相等的实数根,则m 的值为 . 【答案】18【解析】本题考查一元二次方程根的判别式,因为一元二次方程有两个相等的实数根,所以△=(-1)2-4×2m =1-8m =0,解得m =18. 9.(2019·江西)设1x ,2x 是一元二次方程012=--x x 的两根,则2121x x x x ++= . 【答案】0【解析】∵1x ,2x 是一元二次方程012=--x x 的两根, ∴=+21x x 1,=21x x -1, ∴2121x x x x ++=1+(-1)=0.15.(2019·武汉) 抛物线y =ax 2+bx +c 经过点A (-3,0)、B (4,0)两点,则关于x 的一元二次方程 a (x -1)2+c =b -bx 的解是___________.【答案】x =-2或5 【解析】∵抛物线y =ax 2+bx +c 经过点A (-3,0)、B (4,0)两点,∴y =a (x +3)(x -4)=ax 2-2ax -12a .∴b =-2a ,c =-12a .∴一元二次方程为 a (x -1)2-12a =-2a +2ax ,整理,得ax 2-3ax -10a =0,∵a ≠0,∴x 2-3x -10=0,解得x 1=-2,x 2=5.9.(2019·济宁) 已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是 .【答案】-2【解析】方法1:把x =1代入得1+b -2=0,解得b =1,所以方程是x 2 +x -2=0,解得x 1=1,x 2=-2. 方法2:设方程另一个根为x 1,由根与系数的关系知1×x 1=-2.∴x 1=-2. 14.(2019·陇南)关于x 的一元二次方程x 2+x +1=0有两个相等的实数根,则m 的取值为 . 【答案】4.【解析】∵关于x 的一元二次方程x 2+x+1=0有两个相等的实数根,∴2411-⨯⨯=0,解得,m=4, 故答案为:4. 1. (2019·泰安)已知关于x 的一元二次方程x 2-(2k -1)x+k 2+3=0有两个不相等的实数根,则实数k 的取值范围是________.【答案】k<114-【解析】∵关于x 的一元二次方程x 2-(2k -1)x+k 2+3=0有两个不相等的实数根,∴∆=(2k -1)2-4(k 2+3)>0,解之,得k<114-.2. (2019·枣庄)已知关于x 的方程ax 2+2x -3=0有两个不相等的实数根,则a 的取值范围是________.【答案】a>13-且a ≠0【解析】因为关于x 的方程ax 2+2x -3=0有两个不相等的实数根,∴a ≠0,且22-4a(-3)>0,解之得,a>13-且a ≠0.17.(2019·娄底)已知方程230x bx ++=___________.【解析】设原方程的另一个根为1x ,则由一元二次方程根与系数的关系12c x x a=得13x ⨯=∴13x ===3. (2019·眉山) 设a 、b 是方程x 2+x -2019=0的两个实数,根则(a -1)(b -1)的值为 . 【答案】-2017【解析】解:根据题意,得:a+b=-1,ab=-2019,∴(a-1)(b-1)=ab-(a+b )+1=-2019+1+1=-2017,故答案为:-2017.4. (2019·攀枝花)已知x 1、x 2是方程x 2-2x -1=0的两根,则2212x x += 。
一元二次方程解法总结
一元二次方程解法总结
嘿,朋友们!今天咱就来好好唠唠一元二次方程的解法总结。
先来说说直接开平方法,就好像是打开一扇神秘的门一样直接!比如说方程x²=4,那不是一下就能知道 x 等于正负 2 嘛,简单粗暴!
然后就是配方法啦,这就像是给方程精心打扮一番。
比如方程
x²+4x=5,我们就把左边加上 4 变成完全平方,这不就好解了!
还有因式分解法,哇塞,这可真是个神奇的办法!比如方程x²-
5x+6=0,可以分解成(x-2)(x-3)=0,那马上就知道 x 等于 2 或者 3 呀。
再讲讲公式法,它就像一把万能钥匙!不管啥样的一元二次方程都能试试。
比如方程2x²+3x-1=0,直接套公式,总能求出答案。
我跟你们说,这几种解法就像是我们手里的利器,对付一元二次方程那叫一个得心应手!想象一下,方程就像一个小怪兽,我们用这些方法一下就把它打败了,多牛啊!你说是不是?咱可不能被那些方程给难住了呀!
一元二次方程的解法真的很重要啊,学会了它们,我们就能在数学的海洋里畅游无阻啦!我们要把这些解法牢牢掌握,在遇到问题时能迅速找出最适合的方法来解决,别犹豫,别害怕,勇敢地去挑战那些一元二次方程吧!
这就是我对一元二次方程解法的总结啦,朋友们可得好好记住呀!。
初中数学九年级专项训练一元二次方程专题根与系数关系
一元二次方程专题复习(二)根与系数的关系及其应用如果一元二次方程ax 2+bx +c=0(a ≠0)的两根为x 1,x 2,那么反过来,如果x 1,x 2满足x 1+x 2=p ,x 1x 2=q ,则x 1,x 2是一元二次方程x 2-px+q=0的两个根.一元二次方程的韦达定理,揭示了根与系数的一种必然联系.利用这个关系,我们可以解决诸如已知一根求另一根、求根的代数式的值、构造方程、证明等式和不等式等问题,它是中学数学中的一个有用的工具.【典型例题】应用一:已知一个根,求另一个根;例1 : 方程(1998x)2-1997·1999x-1=0的大根为a ,方程x 2+1998x-1999=0的小根为b ,求a-b 的值.解 : 先求出a ,b .由观察知,1是方程(1998x)2-1997·1999x-1=0的根,于是由韦达定理知,另一根为219981-,于是可得a=1.又从观察知,1也是方程x 2+1998x-1999=0的根,此方程的另一根为-1999,从而b=-1999.所以a-b=1-(-1999)=2000.应用二:求根的代数式的值不解方程,利用一元二次方程根与系数的关系求两个代数式的值关键是把所给的代数式经过恒等变形,化为含,的形式,然后把,的值代入,即可求出所求代数式的值.常见的代数式变形有:① ②③ ④⑤例2: 已知二次方程x 2-3x +1=0的两根为α,β,求:(1)βα11+ (2)22βα+ (3)α3+β3解: 由韦达定理知 : α+β=3, α·β=1.(1)31311==+=+αββαβα(2)()72912322222=-=⨯-=-+=+αββαβα (3)α3+β3=(α+β)(α2-αβ+β2)=(α+β)[(α+β)2-3αβ]=3(9-3)=18;例3: 设方程4x 2-2x -3=0的两个根是α和β,求4α2+2β的值.解: 因为α是方程4x 2-2x -3=0的根,所以4α2-2α-3=0,即 4α2=2α+3.由韦达定理可知,21=+βα.所以4α2+2β=2α+3+2β=2(α+β)+3=4.例4: 已知α,β分别是方程x 2+x -1=0的两个根,求2α5+5β3的值.解: 由于α,β分别是方程x 2+x -1=0的根,所以α2+α-1=0,β2+β-1=0,即 α2=1-α,β2=1-β.α5=(α2)2·α=(1-α)2α=(α2-2α+1)α=(1-α-2α+1)α= -3α2+2α = -3(1-α)+2α=5α-3,β3=β2·β=(1-β)β=β-β2=β-(1-β)=2β-1.所以 2α5+5β3=2(5α-3)+5(2β-1)=10(α+β)-11=-21.说明: 此解法的关键在于利用α,β是方程的根,从而可以把它们的幂指数降次,最后都降到一次,这种方法很重要.应用三:与两根之比有关的问题;例5: 已知x 1,x 2是一元二次方程 4x 2-(3m -5)x -6m 2=0的两实数根,且23x x 21=,求m 的值.解: 首先,△=(3m -5)2+96m 2>0,方程有两个实数根.由韦达定理知从上面两式中消去k ,便得即 m 2-6m+5=0, 所以m 1=1,m 2=5.应用四:求作新的二次方程例6: 求一个一元二次方程,使它的两根分别是212313, 。
专题1.1一元二次方程九大考点精讲精练
2022-2023学年九年级数学上学期复习备考高分秘籍专题1.1一元二次方程九大考点精讲精练(知识梳理+典例剖析+变式训练)【知识梳理】1.一元二次方程的有关概念:(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.(2)一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax²叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(3)一元二次方程的根:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.2.一元二次方程的解法:(1)直接开平方法:形如x2=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.(2)配方法解一元二次方程的步骤:①把原方程化为20++=(a≠0)的形式;ax bx c②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.(3)公式法:把x b2-4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2-4ac的值(若b2-4ac<0,方程无实数根);③在b2-4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2-4ac≥0.(4)因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.3.一元二次方程根的判别式:利用一元二次方程根的判别式(△=b2-4ac)判断方程的根的情况.一元二次方程a x2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.一元二次方程根与系数的关系:(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+ x2=-p,x1x2=q反过来可得p=-(x1+ x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程a x2+bx+c=0(a≠0)的两根时,,反过来也成立,x1+ x2=—ba ,x1x2=ca(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.【典例剖析】【考点1】一元二次方程的定义【例1】(2022·安徽·滁州市第六中学八年级阶段练习)若(m+3)x|m|−1−(m−3)x−5=0是关于x的一元二次方程,则m的值为( )A.3B.﹣3C.±3D.±2【变式1.1】(2021·天津市晟楷中学九年级阶段练习)下列关于x的方程中,一定是一元二次方程的为()A.a x2+bx+c=0B.x2−4=(x+3)2C.x2+3x−5=0D.3x(x−4)=0【变式1.2】(2022·新疆·和硕县第二中学九年级期末)关于x的方程(a+2)x a2−2−3x−1=0是一元二次方程,则a的值是( )A.a=±2B.a=−2C.a=2D.a为任意实数【变式1.3】(2022·江苏南通·八年级期末)若关于x的方程(a−1)x2+x=0是一元二次方程,则a的范围是()A.a=1B.a>1C.a≠1D.a<1【考点2】一元二次方程的一般形式【例2】(2022·浙江温州·八年级期末)把一元二次方程x(2x−1)=x−3化为一般形式,正确的是()A.2x2+3=0B.2x2−2x−3=0C.2x2−x+2=0D.2x2−2x+3=0【变式2.1】(2022·全国·九年级单元测试)将一元二次方程(x+1)(x+2)=0化成一般形式后的常数项是___.【变式2.2】(2022·全国·九年级单元测试)一元二次方程(2+x)(3x−4)=5化为一般形式为______,它的二次项是_______,一次项是_______,常数项是_______.【变式2.3】(2022·山东淄博·八年级期末)关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为__.【考点3】一元二次方程的根【例3】(2022·河北保定师范附属学校九年级期末)若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则2022﹣2a+2b的值为_____.【变式3.1】(2022·广西崇左·八年级期末)已知x=1是一元二次方程x2+ax−2=0的一个根,则a的值为_________.【变式3.2】(2022·浙江绍兴·八年级期末)若a是方程2x2−x−5=0的一个根,则代数式2a−4a2+1的值是_________.【变式3.3】(2022·福建·莆田哲理中学九年级期末)关于x的方程x2+bx+2a=0(a、b为实数且a≠0),a恰好是该方程的根,则a+b的值为_____.【考点4】一元二次方程的解法—配方法选填题【例4】(2022·西藏·江达县第二初级中学校九年级期末)将一元二次方程x2−6x−6=0配方后可写为________.【变式4.1】(2022·山东烟台·八年级期末)把一元二次方程x2−4x−8=0化成(x−m)2=n的形式,则m+n的值为________.【变式4.2】(2022·四川宜宾·九年级期末)将方程x2−mx+8=0用配方法化为(x−3)2=n,则m+n的值是_______.【变式4.3】(2022·山东威海·八年级期中)对于二次三项式x2+6x+3,若x取值为m,则二次三项式的最小值为n,那么m+n的值为_________.【考点5】一元二次方程的解法—因式分解法选填题【例5】(2022·甘肃·张掖育才中学九年级期末)一元二次方程(2x−3)2=9(x+1)2的根为x1=_____,x2=_____.【变式5.1】(2021·四川·荣县一中九年级阶段练习)x2=2x的根为_____.【变式5.2】(2021·黑龙江哈尔滨·八年级期末)若一个一元二次方程x2−5x+6=0的两个根分别是Rt△ABC的两条直角边长,则Rt△ABC斜边长为___.【变式5.3】(2021·河南·邓州市城区第五初级中学校.九年级阶段练习)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2−(a−b)2.若(m+2)◎(m﹣3)=24,则m=_____.【考点6】一元二次方程的解法—解答题【例6】(2022·山东省泰安南关中学八年级期中)解下列方程(1)2x2−4x+1=0(用配方法);(2)3x2−4x−1=0(公式法);【变式6.1】(2022·山东·泰安市泰山区树人外国语学校八年级期中)按照指定方法解下列方程:(1)x2+4x+1=13(配方法);(2)3x2﹣4x﹣1=0(公式法);(3)(x+1)2=3(x+1)(4)(x﹣3)(x+2)=6【变式6.2】(2022·浙江·吴宁第三中学八年级期中)解方程:(1)2x2+2x=1(2)2x2−3x−5=0【变式6.3】(2022·安徽·滁州市第六中学八年级阶段练习)阅读下面的材料,解答问题.材料:解含绝对值的方程:x2−3|x|−10=0.解:分两种情况:(1)当x≥0时,原方程化为x2−3x−10=0,解得x1=5,x2=﹣2(舍去);(2)当x<0时,原方程化为x2+3x−10=0,解得x1=﹣5,x2=2(舍去);综上所述,原方程的解是x1=5,x2=﹣5.问题:仿照上面的方法,解方程:x2−2|2x+3|+9=0.【考点7】根的判别式【例7】(2022·江苏扬州·八年级期末)已知关于x的一元二次方程x(x−2)=k.(1)若k=3,求此方程的解;(2)当k≥−1时,试判断方程的根的情况.【变式7.1】(2022·江苏南通·八年级期末)已知关于x的一元二次方程(a−1)x2+(2a+1) x+2=0.(1)求证:此方程一定有两个不相等的实数根;(2)如果这个方程根的判别式的值等于9,求a的值.【变式7.2】(2022·全国·九年级单元测试)已知关于x的方程p x2+(2p+1)x+(p−1)=0有两个不相等的实根,判断关于x的方程x2−3x−2p=0的根的情况.【变式7.3】(2022·江苏扬州·八年级期末)已知关于x的一元二次方程k x2+(3k+1)x+2k+2=0(k≠0).(1)求证:无论x取何值,此方程总有两个实数根;(2)若该方程的两根都是整数,求整数k的值.【考点8】根与系数的关系【例8】(2022·广西玉林·二模)关于x的一元二次方程x2−(k−3)x−2k+2=0.(1)求证:方程总有两个实数根;(2)若方程的两根分为x1、x2,且x2+x22+x1x2=19,求k的值.1【变式8.1】(2022·陕西·西安铁一中分校九年级期末)已知关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两根x1,x2满足x1+x2=12,请求出方程的两根.【变式8.2】(2022·山东淄博·八年级期末)已知关于x的一元二次方程x2−2kx+k−12=0.(1)判断该方程根的情况,并说明理由;(2)若方程的两个实数根之和等于两根之积,求k的值.【变式8.3】(2022·全国·九年级单元测试)已知关于x的一元二次方程x2+(m+2)x+m=0,(1)求证:无论m取何值,原方程总有两个不相等的实数根.(2)若x1,x2是原方程的两根,且1x1+1x2=−2,求m的值.【考点9】配方法的综合应用【例9】(2022·福建·福州十八中八年级期末)请阅读下列材料:我们可以通过以下方法求代数式x2+6x+5的最小值.x2+6x+5=x2+2•x•3+32﹣32+5=(x+3)2﹣4∵(x+3)2≥0∴当x=﹣3时,x2+6x+5有最小值﹣4.请根据上述方法,解答下列问题:(1)x2+5x﹣1=(x+a)2+b,则ab的值是_______.(2)求证:无论x取何值,代数式x2+7的值都是正数;(3)若代数式2x2+kx+7的最小值为2,求k的值.【变式9.1】(2022·广西北海·七年级期中)阅读材料:把代数式x2−6x−7因式分解,可以分解如下:x2−6x−7=x2−6x+9−9−7=(x−3)2−16=(x−3+4)(x−3−4)=(x+1)(x−7)(1)探究:请你仿照上面的方法,把代数式x2−8x+7因式分解.(2)拓展:当代数式x2+2xy−3y2=0时,求xy的值.【变式9.2】(2022·广西贺州·八年级期中)请阅读下列材料:我们可以通过以下方法求代数式的x2+2x−3最小值.x2+2x−3=x2+2x⋅1+12−12−3=(x+1)2−4∵(x+1)2≥0∴当x=-1时,x2+2x−3有最小值-4请根据上述方法,解答下列问题:(1)x2+5=x2+2+2+2=(x+a)2+b,则a=__________,b=__________;(2)若代数式x2−2kx+7的最小值为3,求k的值.【变式9.3】(2022·全国·九年级课时练习)先阅读,后解题.已知m2+2m+n2−6n+10=0,求m和n的值.解:将左边分组配方:(m2+2m+1)+(n2−6n+9)=0.即(m+1)2+(n−3)2=0.∵(m+1)2≥0,(n−3)2≥0,且和为0,∴(m+1)2=0且(n−3)2=0,∴m=-1,n=-3.利用以上解法,解下列问题:(1)已知:x2+4x+y2−2y+5=0,求x和y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=8a+6b−25且△ABC为直角三角形,求c.。
九年级数学 一元二次方程的九种解法
14.解方程:6x4-35x3+62x2-35x+6=0. 解:经验证 x=0 不是方程的根,原方程两边同除以 x2, 得 6x2-35x+62-3x5+x62=0, 即 6x2+x12-35x+1x+62=0.设 y=x+1x,则 x2+x12=y2-2, 原方程可变为 6(y2-2)-35y+62=0.解得 y1=52,y2=130.
(x2-10x+25)+(y2-16y+64)=0,
(x-5)2+(y-8)2=0,
∴x】一 元二次方 程 x(x-2)=2-x的 根是 ( D)
A.-1 B.2 C.1和2 D.-1和2
6.解下列一元二次方程:
(1)x2-2x=0;
(2)16x2-9=0;
x-2=±2 6,
∴x1=2+2 6,x2=2-2 6.
3.解方程:x2+4x-2=0. 解:x2+4x-2=0, x2+4x=2, (x+2)2=6, x+2=± 6, ∴x1=-2+ 6,x2=-2- 6.
4.已知 x2-10x+y2-16y+89=0,求xy的值.
解:
x2-10x+y2-16y+89=0,
解:x2-2x=0, x(x-2)=0,
∴x1=0,x2=2.
解: 16x2-9=0, (4x+3)(4x-3)=0, ∴x1=-34,x2=34.
(3)【2018·巴中】3x(x-2)=x-2. 解: 3x(x-2)=x-2, 3x(x-2)-(x-2)=0, (x-2)(3x-1)=0, ∴x-2=0 或 3x-1=0, ∴x1=2,x2=13.
当 x+1x=52时,解得 x1=2,x2=12; 当 x+1x=130时,解得 x3=3,x4=13. 经检验,均符合题意.∴原方程的根为 x1=2,x2=12, x3=3,x4=13.
新初三数学:【一元二次方程】常见解法梳理汇总doc
新初三数学:【一元二次方程】常见解法梳理汇总,开学前抓紧掌握一元二次方程的基本内容现有一个长方形宽为x米,长比宽的2倍少3米,那么当面积为10平方米时宽是多少?根据长方形的面积公式我们能够得到:(2x-3)·x=10,化简后,2x^2-3x-10=0。
在数学中,我们把这类式子叫做“一元二次方程”。
1、方程满足的条件●(1)等号两边都是整式●(2)只含有一个未知数●(3)未知数的最高次数是2的方程2、方程的形式一元二次方程的一般形式:ax2+bx+c=0(a≠0),特征是:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
3、方程的性质(1)一元二次方程根的判别式:当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式。
当Δ>0 <=> 有两个不等的实根;当Δ=0 <=> 有两个相等的实根;当Δ<0 <=> 无实根。
注意:当Δ≥0 <=> 有两个实根,需要根据题目要求,验证这两个实根是否相等。
(2)方程的两根与方程系数的关系:x1+x2= -b/a,x1·x2=c/a,方程两根为x1,x2时,方程为:x2+(x1+x2)X+x1x2=0。
一元二次方程的应用01方程解法一元二次方程的解是以降次为目的,以求解方法为主要手段,从而把一元二次方程转化为一元一次方程求解。
一元二次方程的一般解法有以下几种:解一元二次方程时一般不使用配方法(除特别要求外),但必须熟练掌握。
解一元二次方程选择方法的一般顺序是:直接开平方法→因式分解法→公式法→配方法。
02根的判别式利用一元二次方程根的判别式,确定方程字母系数的值时候,要注意二次项系数不为零这个隐含条件。
主要考察内容:(1)不解方程,应用根的判别式,判断一元二次方程根的情况(2)已知方程中根的情况,如何由判别式逆推参数的取值范围(3)分类讨论:如果方程没有支出二次方程和根的情况,一定要对方程进行分类讨论,如果二次系数为0,方程可能是一元一次方程,如果二次项系数不为0,一元二次方程可能有两个相等或不相等的实数根以及无实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年
专训1 一元二次方程的解法归类
名师点金:解一元二次方程时,主要考虑降次,其解法有直接开平方法、配方法、公式法和因式分解法等.在具体的解题过程中,结合方程的特点选择合适的方法,往往会达到事半功倍的效果.
限定方法解一元二次方程
形如(x+m)2=n(n≥0)的一元二次方程用直接开平方法求解
1.方程4x2-25=0的解为( )
A.x=B.x=
C.x=±D.x=±
2.用直接开平方法解下列一元二次方程,其中无解的方程为( )
A.x2-5=5 B.-3x2=0
C.x2+4=0 D.(x+1)2=0
当二次项系数为1,且一次项系数为偶数时,用配方法求解
3.用配方法解方程x2+3=4x,配方后的方程变为( )
A.(x-2)2=7 B.(x+2)2=1
C.(x-2)2=1 D.(x+2)2=2
4.解方程:x2+4x-2=0.
5.已知x2-10x+y2-16y+89=0,求的值.
能化成形如(x+a)(x+b)=0的一元二次方程用因式分解法求解
6.(中考·宁夏)一元二次方程x(x-2)=2-x的根是( ) A.-1 B.0
C.1和2 D.-1和2
7.解下列一元二次方程:
(1)x2-2x=0;
(2)16x2-9=0;
(3)4x2=4x-1.
如果一个一元二次方程易于化为它的一般式,则用公式法求解8.用公式法解一元二次方程x2-=2x,方程的解应是( ) A.x=B.x=
C.x=D.x=
9.用公式法解下列方程.
(1)3(x2+1)-7x=0;
(2)4x2-3x-5=x-2.
选择合适的方法解一元二次方程
10.方程4x2-49=0的解为( )
A.x=B.x=。